WorldWideScience

Sample records for quantitative proteomics identification

  1. Target identification of natural and traditional medicines with quantitative chemical proteomics approaches.

    Science.gov (United States)

    Wang, Jigang; Gao, Liqian; Lee, Yew Mun; Kalesh, Karunakaran A; Ong, Yong Siang; Lim, Jaehong; Jee, Joo-Eun; Sun, Hongyan; Lee, Su Seong; Hua, Zi-Chun; Lin, Qingsong

    2016-06-01

    Natural and traditional medicines, being a great source of drugs and drug leads, have regained wide interests due to the limited success of high-throughput screening of compound libraries in the past few decades and the recent technology advancement. Many drugs/bioactive compounds exert their functions through interaction with their protein targets, with more and more drugs showing their ability to target multiple proteins, thus target identification has an important role in drug discovery and biomedical research fields. Identifying drug targets not only furthers the understanding of the mechanism of action (MOA) of a drug but also reveals its potential therapeutic applications and adverse side effects. Chemical proteomics makes use of affinity chromatography approaches coupled with mass spectrometry to systematically identify small molecule-protein interactions. Although traditional affinity-based chemical proteomics approaches have made great progress in the identification of cellular targets and elucidation of MOAs of many bioactive molecules, nonspecific binding remains a major issue which may reduce the accuracy of target identification and may hamper the drug development process. Recently, quantitative proteomics approaches, namely, metabolic labeling, chemical labeling, or label-free approaches, have been implemented in target identification to overcome such limitations. In this review, we will summarize and discuss the recent advances in the application of various quantitative chemical proteomics approaches for the identification of targets of natural and traditional medicines. Copyright © 2016. Published by Elsevier Inc.

  2. Identification of redox-sensitive cysteines in the arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method

    KAUST Repository

    Liu, Pei

    2014-01-28

    Cellular redox status plays a key role in mediating various physiological and developmental processes often through modulating activities of redox-sensitive proteins. Various stresses trigger over-production of reactive oxygen/nitrogen species which lead to oxidative modifications of redox-sensitive proteins. Identification and characterization of redox-sensitive proteins are important steps toward understanding molecular mechanisms of stress responses. Here, we report a high-throughput quantitative proteomic approach termed OxiTRAQ for identifying proteins whose thiols undergo reversible oxidative modifications in Arabidopsis cells subjected to oxidative stress. In this approach, a biotinylated thiol-reactive reagent is used for differential labeling of reduced and oxidized thiols. The biotin-tagged peptides are affinity purified, labeled with iTRAQ reagents, and analyzed using a paralleled HCD-CID fragmentation mode in an LTQ-Orbitrap. With this approach, we identified 195 cysteine-containing peptides from 179 proteins whose thiols underwent oxidative modifications in Arabidopsis cells following the treatment with hydrogen peroxide. A majority of those redox-sensitive proteins, including several transcription factors, were not identified by previous redox proteomics studies. This approach allows identification of the specific redox-regulated cysteine residues, and offers an effective tool for elucidation of redox proteomes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. PIQMIe: A web server for semi-quantitative proteomics data management and analysis

    NARCIS (Netherlands)

    A. Kuzniar (Arnold); R. Kanaar (Roland)

    2014-01-01

    textabstractWe present the Proteomics Identifications and Quantitations Data Management and Integration Service or PIQMIe that aids in reliable and scalable data management, analysis and visualization of semi-quantitative mass spectrometry based proteomics experiments. PIQMIe readily integrates

  4. A comparative proteomics method for multiple samples based on a 18O-reference strategy and a quantitation and identification-decoupled strategy.

    Science.gov (United States)

    Wang, Hongbin; Zhang, Yongqian; Gui, Shuqi; Zhang, Yong; Lu, Fuping; Deng, Yulin

    2017-08-15

    Comparisons across large numbers of samples are frequently necessary in quantitative proteomics. Many quantitative methods used in proteomics are based on stable isotope labeling, but most of these are only useful for comparing two samples. For up to eight samples, the iTRAQ labeling technique can be used. For greater numbers of samples, the label-free method has been used, but this method was criticized for low reproducibility and accuracy. An ingenious strategy has been introduced, comparing each sample against a 18 O-labeled reference sample that was created by pooling equal amounts of all samples. However, it is necessary to use proportion-known protein mixtures to investigate and evaluate this new strategy. Another problem for comparative proteomics of multiple samples is the poor coincidence and reproducibility in protein identification results across samples. In present study, a method combining 18 O-reference strategy and a quantitation and identification-decoupled strategy was investigated with proportion-known protein mixtures. The results obviously demonstrated that the 18 O-reference strategy had greater accuracy and reliability than other previously used comparison methods based on transferring comparison or label-free strategies. By the decoupling strategy, the quantification data acquired by LC-MS and the identification data acquired by LC-MS/MS are matched and correlated to identify differential expressed proteins, according to retention time and accurate mass. This strategy made protein identification possible for all samples using a single pooled sample, and therefore gave a good reproducibility in protein identification across multiple samples, and allowed for optimizing peptide identification separately so as to identify more proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Analysis of high accuracy, quantitative proteomics data in the MaxQB database.

    Science.gov (United States)

    Schaab, Christoph; Geiger, Tamar; Stoehr, Gabriele; Cox, Juergen; Mann, Matthias

    2012-03-01

    MS-based proteomics generates rapidly increasing amounts of precise and quantitative information. Analysis of individual proteomic experiments has made great strides, but the crucial ability to compare and store information across different proteome measurements still presents many challenges. For example, it has been difficult to avoid contamination of databases with low quality peptide identifications, to control for the inflation in false positive identifications when combining data sets, and to integrate quantitative data. Although, for example, the contamination with low quality identifications has been addressed by joint analysis of deposited raw data in some public repositories, we reasoned that there should be a role for a database specifically designed for high resolution and quantitative data. Here we describe a novel database termed MaxQB that stores and displays collections of large proteomics projects and allows joint analysis and comparison. We demonstrate the analysis tools of MaxQB using proteome data of 11 different human cell lines and 28 mouse tissues. The database-wide false discovery rate is controlled by adjusting the project specific cutoff scores for the combined data sets. The 11 cell line proteomes together identify proteins expressed from more than half of all human genes. For each protein of interest, expression levels estimated by label-free quantification can be visualized across the cell lines. Similarly, the expression rank order and estimated amount of each protein within each proteome are plotted. We used MaxQB to calculate the signal reproducibility of the detected peptides for the same proteins across different proteomes. Spearman rank correlation between peptide intensity and detection probability of identified proteins was greater than 0.8 for 64% of the proteome, whereas a minority of proteins have negative correlation. This information can be used to pinpoint false protein identifications, independently of peptide database

  6. Quantitative proteome profiling of normal human circulating microparticles

    DEFF Research Database (Denmark)

    Østergaard, Ole; Nielsen, Christoffer T; Iversen, Line V

    2012-01-01

    Circulating microparticles (MPs) are produced as part of normal physiology. Their numbers, origin, and composition change in pathology. Despite this, the normal MP proteome has not yet been characterized with standardized high-resolution methods. We here quantitatively profile the normal MP...... proteome using nano-LC-MS/MS on an LTQ-Orbitrap with optimized sample collection, preparation, and analysis of 12 different normal samples. Analytical and procedural variation were estimated in triply processed samples analyzed in triplicate from two different donors. Label-free quantitation was validated...... by the correlation of cytoskeletal protein intensities with MP numbers obtained by flow cytometry. Finally, the validity of using pooled samples was evaluated using overlap protein identification numbers and multivariate data analysis. Using conservative parameters, 536 different unique proteins were quantitated...

  7. [Methods of quantitative proteomics].

    Science.gov (United States)

    Kopylov, A T; Zgoda, V G

    2007-01-01

    In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and functional homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.

  8. The APEX Quantitative Proteomics Tool: Generating protein quantitation estimates from LC-MS/MS proteomics results

    Directory of Open Access Journals (Sweden)

    Saeed Alexander I

    2008-12-01

    Full Text Available Abstract Background Mass spectrometry (MS based label-free protein quantitation has mainly focused on analysis of ion peak heights and peptide spectral counts. Most analyses of tandem mass spectrometry (MS/MS data begin with an enzymatic digestion of a complex protein mixture to generate smaller peptides that can be separated and identified by an MS/MS instrument. Peptide spectral counting techniques attempt to quantify protein abundance by counting the number of detected tryptic peptides and their corresponding MS spectra. However, spectral counting is confounded by the fact that peptide physicochemical properties severely affect MS detection resulting in each peptide having a different detection probability. Lu et al. (2007 described a modified spectral counting technique, Absolute Protein Expression (APEX, which improves on basic spectral counting methods by including a correction factor for each protein (called Oi value that accounts for variable peptide detection by MS techniques. The technique uses machine learning classification to derive peptide detection probabilities that are used to predict the number of tryptic peptides expected to be detected for one molecule of a particular protein (Oi. This predicted spectral count is compared to the protein's observed MS total spectral count during APEX computation of protein abundances. Results The APEX Quantitative Proteomics Tool, introduced here, is a free open source Java application that supports the APEX protein quantitation technique. The APEX tool uses data from standard tandem mass spectrometry proteomics experiments and provides computational support for APEX protein abundance quantitation through a set of graphical user interfaces that partition thparameter controls for the various processing tasks. The tool also provides a Z-score analysis for identification of significant differential protein expression, a utility to assess APEX classifier performance via cross validation, and a

  9. PIQMIe: a web server for semi-quantitative proteomics data management and analysis.

    Science.gov (United States)

    Kuzniar, Arnold; Kanaar, Roland

    2014-07-01

    We present the Proteomics Identifications and Quantitations Data Management and Integration Service or PIQMIe that aids in reliable and scalable data management, analysis and visualization of semi-quantitative mass spectrometry based proteomics experiments. PIQMIe readily integrates peptide and (non-redundant) protein identifications and quantitations from multiple experiments with additional biological information on the protein entries, and makes the linked data available in the form of a light-weight relational database, which enables dedicated data analyses (e.g. in R) and user-driven queries. Using the web interface, users are presented with a concise summary of their proteomics experiments in numerical and graphical forms, as well as with a searchable protein grid and interactive visualization tools to aid in the rapid assessment of the experiments and in the identification of proteins of interest. The web server not only provides data access through a web interface but also supports programmatic access through RESTful web service. The web server is available at http://piqmie.semiqprot-emc.cloudlet.sara.nl or http://www.bioinformatics.nl/piqmie. This website is free and open to all users and there is no login requirement. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. [Progress in stable isotope labeled quantitative proteomics methods].

    Science.gov (United States)

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2013-06-01

    Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.

  11. The Spectra Count Label-free Quantitation in Cancer Proteomics

    OpenAIRE

    Zhou, Weidong; Liotta, Lance A.; Petricoin, Emanuel F.

    2012-01-01

    Mass spectrometry is used routinely for large-scale protein identification from complex biological mixtures. Recently, relative quantitation approach on the basis of spectra count has been applied in several cancer proteomic studies. In this review, we examine the mechanism of this technique and highlight several important parameters associated with its application.

  12. Development and standardization of multiplexed antibody microarrays for use in quantitative proteomics

    Directory of Open Access Journals (Sweden)

    Sorette M

    2004-12-01

    Full Text Available Abstract Background Quantitative proteomics is an emerging field that encompasses multiplexed measurement of many known proteins in groups of experimental samples in order to identify differences between groups. Antibody arrays are a novel technology that is increasingly being used for quantitative proteomics studies due to highly multiplexed content, scalability, matrix flexibility and economy of sample consumption. Key applications of antibody arrays in quantitative proteomics studies are identification of novel diagnostic assays, biomarker discovery in trials of new drugs, and validation of qualitative proteomics discoveries. These applications require performance benchmarking, standardization and specification. Results Six dual-antibody, sandwich immunoassay arrays that measure 170 serum or plasma proteins were developed and experimental procedures refined in more than thirty quantitative proteomics studies. This report provides detailed information and specification for manufacture, qualification, assay automation, performance, assay validation and data processing for antibody arrays in large scale quantitative proteomics studies. Conclusion The present report describes development of first generation standards for antibody arrays in quantitative proteomics. Specifically, it describes the requirements of a comprehensive validation program to identify and minimize antibody cross reaction under highly multiplexed conditions; provides the rationale for the application of standardized statistical approaches to manage the data output of highly replicated assays; defines design requirements for controls to normalize sample replicate measurements; emphasizes the importance of stringent quality control testing of reagents and antibody microarrays; recommends the use of real-time monitors to evaluate sensitivity, dynamic range and platform precision; and presents survey procedures to reveal the significance of biomarker findings.

  13. UNiquant, a Program for Quantitative Proteomics Analysis Using Stable Isotope Labeling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xin; Tolmachev, Aleksey V.; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A.; Smith, Richard D.; Chan, Wing C.; Hinrichs, Steven; Fu, Kai; Ding, Shi-Jian

    2011-03-04

    We present UNiquant, a new software program for analyzing stable isotope labeling (SIL) based quantitative proteomics data. UNiquant surpassed the performance of two other platforms, MaxQuant and Mascot Distiller, using complex proteome mixtures having either known or unknown heavy/light ratios. UNiquant is compatible with a broad spectrum of search engines and SIL methods, providing outstanding peptide pair identification and accurate measurement of the relative peptide/protein abundance.

  14. Guidelines for reporting quantitative mass spectrometry based experiments in proteomics.

    Science.gov (United States)

    Martínez-Bartolomé, Salvador; Deutsch, Eric W; Binz, Pierre-Alain; Jones, Andrew R; Eisenacher, Martin; Mayer, Gerhard; Campos, Alex; Canals, Francesc; Bech-Serra, Joan-Josep; Carrascal, Montserrat; Gay, Marina; Paradela, Alberto; Navajas, Rosana; Marcilla, Miguel; Hernáez, María Luisa; Gutiérrez-Blázquez, María Dolores; Velarde, Luis Felipe Clemente; Aloria, Kerman; Beaskoetxea, Jabier; Medina-Aunon, J Alberto; Albar, Juan P

    2013-12-16

    Mass spectrometry is already a well-established protein identification tool and recent methodological and technological developments have also made possible the extraction of quantitative data of protein abundance in large-scale studies. Several strategies for absolute and relative quantitative proteomics and the statistical assessment of quantifications are possible, each having specific measurements and therefore, different data analysis workflows. The guidelines for Mass Spectrometry Quantification allow the description of a wide range of quantitative approaches, including labeled and label-free techniques and also targeted approaches such as Selected Reaction Monitoring (SRM). The HUPO Proteomics Standards Initiative (HUPO-PSI) has invested considerable efforts to improve the standardization of proteomics data handling, representation and sharing through the development of data standards, reporting guidelines, controlled vocabularies and tooling. In this manuscript, we describe a key output from the HUPO-PSI-namely the MIAPE Quant guidelines, which have developed in parallel with the corresponding data exchange format mzQuantML [1]. The MIAPE Quant guidelines describe the HUPO-PSI proposal concerning the minimum information to be reported when a quantitative data set, derived from mass spectrometry (MS), is submitted to a database or as supplementary information to a journal. The guidelines have been developed with input from a broad spectrum of stakeholders in the proteomics field to represent a true consensus view of the most important data types and metadata, required for a quantitative experiment to be analyzed critically or a data analysis pipeline to be reproduced. It is anticipated that they will influence or be directly adopted as part of journal guidelines for publication and by public proteomics databases and thus may have an impact on proteomics laboratories across the world. This article is part of a Special Issue entitled: Standardization and

  15. Identification of redox-sensitive cysteines in the arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method

    KAUST Repository

    Liu, Pei; Zhang, Huoming; Wang, Hai; Xia, Yiji

    2014-01-01

    -throughput quantitative proteomic approach termed OxiTRAQ for identifying proteins whose thiols undergo reversible oxidative modifications in Arabidopsis cells subjected to oxidative stress. In this approach, a biotinylated thiol-reactive reagent is used for differential

  16. Stable isotope dimethyl labelling for quantitative proteomics and beyond

    Science.gov (United States)

    Hsu, Jue-Liang; Chen, Shu-Hui

    2016-01-01

    Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644970

  17. An Automated High Throughput Proteolysis and Desalting Platform for Quantitative Proteomic Analysis

    Directory of Open Access Journals (Sweden)

    Albert-Baskar Arul

    2013-06-01

    Full Text Available Proteomics for biomarker validation needs high throughput instrumentation to analyze huge set of clinical samples for quantitative and reproducible analysis at a minimum time without manual experimental errors. Sample preparation, a vital step in proteomics plays a major role in identification and quantification of proteins from biological samples. Tryptic digestion a major check point in sample preparation for mass spectrometry based proteomics needs to be more accurate with rapid processing time. The present study focuses on establishing a high throughput automated online system for proteolytic digestion and desalting of proteins from biological samples quantitatively and qualitatively in a reproducible manner. The present study compares online protein digestion and desalting of BSA with conventional off-line (in-solution method and validated for real time sample for reproducibility. Proteins were identified using SEQUEST data base search engine and the data were quantified using IDEALQ software. The present study shows that the online system capable of handling high throughput samples in 96 well formats carries out protein digestion and peptide desalting efficiently in a reproducible and quantitative manner. Label free quantification showed clear increase of peptide quantities with increase in concentration with much linearity compared to off line method. Hence we would like to suggest that inclusion of this online system in proteomic pipeline will be effective in quantification of proteins in comparative proteomics were the quantification is really very crucial.

  18. Identification of Host Defense-Related Proteins Using Label-Free Quantitative Proteomic Analysis of Milk Whey from Cows with Staphylococcus aureus Subclinical Mastitis

    Directory of Open Access Journals (Sweden)

    Shaimaa Abdelmegid

    2017-12-01

    Full Text Available Staphylococcus aureus is the most common contagious pathogen associated with bovine subclinical mastitis. Current diagnosis of S. aureus mastitis is based on bacteriological culture of milk samples and somatic cell counts, which lack either sensitivity or specificity. Identification of milk proteins that contribute to host defense and their variable responses to pathogenic stimuli would enable the characterization of putative biomarkers of subclinical mastitis. To accomplish this, milk whey samples from healthy and mastitic dairy cows were analyzed using a label-free quantitative proteomics approach. In total, 90 proteins were identified, of which 25 showed significant differential abundance between healthy and mastitic samples. In silico functional analyses indicated the involvement of the differentially abundant proteins in biological mechanisms and signaling pathways related to host defense including pathogen-recognition, direct antimicrobial function, and the acute-phase response. This proteomics and bioinformatics analysis not only facilitates the identification of putative biomarkers of S. aureus subclinical mastitis but also recapitulates previous findings demonstrating the abundance of host defense proteins in intramammary infection. All mass spectrometry data are available via ProteomeXchange with identifier PXD007516.

  19. Inspection, visualisation and analysis of quantitative proteomics data

    OpenAIRE

    Gatto, Laurent

    2016-01-01

    Material Quantitative Proteomics and Data Analysis Course. 4 - 5 April 2016, Queen Hotel, Chester, UK Table D - Inspection, visualisation and analysis of quantitative proteomics data, Laurent Gatto (University of Cambridge)

  20. Analytical performance of reciprocal isotope labeling of proteome digests for quantitative proteomics and its application for comparative studies of aerobic and anaerobic Escherichia coli proteomes

    International Nuclear Information System (INIS)

    Lo, Andy; Weiner, Joel H.; Li, Liang

    2013-01-01

    Graphical abstract: -- Highlights: •Investigating a strategy of reciprocal isotope labeling of comparative samples. •Filtering out incorrect peptide identification or quantification values. •Analyzing the proteome changes of E. coli cells grown aerobically or anaerobically. •Presenting guidelines for reciprocal labeling experimental design. -- Abstract: Due to limited sample amounts, instrument time considerations, and reagent costs, only a small number of replicate experiments are typically performed for quantitative proteome analyses. Generation of reproducible data that can be readily assessed for consistency within a small number of datasets is critical for accurate quantification. We report our investigation of a strategy using reciprocal isotope labeling of two comparative samples as a tool for determining proteome changes. Reciprocal labeling was evaluated to determine the internal consistency of quantified proteome changes from Escherichia coli grown under aerobic and anaerobic conditions. Qualitatively, the peptide overlap between replicate analyses of the same sample and reverse labeled samples were found to be within 8%. Quantitatively, reciprocal analyses showed only a slight increase in average overall inconsistency when compared with replicate analyses (1.29 vs. 1.24-fold difference). Most importantly, reverse labeling was successfully used to identify spurious values resulting from incorrect peptide identifications and poor peak fitting. After removal of 5% of the peptide data with low reproducibility, a total of 275 differentially expressed proteins (>1.50-fold difference) were consistently identified and were then subjected to bioinformatics analysis. General considerations and guidelines for reciprocal labeling experimental design and biological significance of obtained results are discussed

  1. Magnetoresistive biosensors for quantitative proteomics

    Science.gov (United States)

    Zhou, Xiahan; Huang, Chih-Cheng; Hall, Drew A.

    2017-08-01

    Quantitative proteomics, as a developing method for study of proteins and identification of diseases, reveals more comprehensive and accurate information of an organism than traditional genomics. A variety of platforms, such as mass spectrometry, optical sensors, electrochemical sensors, magnetic sensors, etc., have been developed for detecting proteins quantitatively. The sandwich immunoassay is widely used as a labeled detection method due to its high specificity and flexibility allowing multiple different types of labels. While optical sensors use enzyme and fluorophore labels to detect proteins with high sensitivity, they often suffer from high background signal and challenges in miniaturization. Magnetic biosensors, including nuclear magnetic resonance sensors, oscillator-based sensors, Hall-effect sensors, and magnetoresistive sensors, use the specific binding events between magnetic nanoparticles (MNPs) and target proteins to measure the analyte concentration. Compared with other biosensing techniques, magnetic sensors take advantage of the intrinsic lack of magnetic signatures in biological samples to achieve high sensitivity and high specificity, and are compatible with semiconductor-based fabrication process to have low-cost and small-size for point-of-care (POC) applications. Although still in the development stage, magnetic biosensing is a promising technique for in-home testing and portable disease monitoring.

  2. Recent advances on multidimensional liquid chromatography–mass spectrometry for proteomics: From qualitative to quantitative analysis—A review

    International Nuclear Information System (INIS)

    Wu Qi; Yuan Huiming; Zhang Lihua; Zhang Yukui

    2012-01-01

    Highlights: ► We discuss progress of MDLC–MS systems in qualitative and quantitative proteomics. ► Both “Top-down” and “bottom-up” strategies are discussed in detail. ► On-line integrations of stable isotope labeling process are highlighted. ► This review gives insights into further directions for higher level integration. - Abstract: With the acceleration of proteome research, increasing attention has been paid to multidimensional liquid chromatography–mass spectrometry (MDLC–MS) due to its high peak capacity and separation efficiency. Recently, many efforts have been put to improve MDLC-based strategies including “top-down” and “bottom-up” to enable highly sensitive qualitative and quantitative analysis of proteins, as well as accelerate the whole analytical procedure. Integrated platforms with combination of sample pretreatment, multidimensional separations and identification were also developed to achieve high throughput and sensitive detection of proteomes, facilitating highly accurate and reproducible quantification. This review summarized the recent advances of such techniques and their applications in qualitative and quantitative analysis of proteomes.

  3. Proteome identification of the silkworm middle silk gland

    Directory of Open Access Journals (Sweden)

    Jian-ying Li

    2016-03-01

    Full Text Available To investigate the functional differentiation among the anterior (A, middle (M, and posterior (P regions of silkworm middle silk gland (MSG, their proteomes were characterized by shotgun LC–MS/MS analysis with a LTQ-Orbitrap mass spectrometer. To get better proteome identification and quantification, triplicate replicates of mass spectrometry analysis were performed for each sample. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaíno et al., 2014 [1] via the PRIDE partner repository (Vizcaino, 2013 [2] with the dataset identifier http://www.ebi.ac.uk/pride/archive/projects/PXD003371. The peptide identifications that were further processed by PeptideProphet program in Trans-Proteomic Pipeline (TPP after database search with Mascot software were also available in .XML format files. Data presented here are related to a research article published in Journal of Proteomics by Li et al. (2015 [3]. Keywords: Bombyx mori, Middle silk gland, Silk protein synthesis, Shotgun proteomics, Label-free

  4. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    Science.gov (United States)

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills.

  5. Direct identification of amyloids by label-free quantitative LC-MS

    DEFF Research Database (Denmark)

    Dueholm, Morten Simonsen; Danielsen, Heidi Nolsøe; Hansen, Susan Hove

    adhesive and therefore bind to pipette tips and other consumables. Pure cultures, large sample volumes and high productivity of amyloids are therefore required for successful purification. We here present a quantitative proteomics technique that allow direct identification of functional amyloid candidates......Direct identification of amyloids by label-free quantitative LC-MS H. N. Danielsen, S. H. Hansen, F.-A. Herbst, P. H. Nielsen, M. S. Dueholm Amyloids are highly ordered fibrillar protein polymers used by organisms from all domains of life due to their exceptional properties. We have previously...... in complex samples based on their structural stability in the presence of increasing concentrations of formic acid....

  6. Quantitative Clinical Chemistry Proteomics (qCCP) using mass spectrometry: general characteristics and application.

    Science.gov (United States)

    Lehmann, Sylvain; Hoofnagle, Andrew; Hochstrasser, Denis; Brede, Cato; Glueckmann, Matthias; Cocho, José A; Ceglarek, Uta; Lenz, Christof; Vialaret, Jérôme; Scherl, Alexander; Hirtz, Christophe

    2013-05-01

    Proteomics studies typically aim to exhaustively detect peptides/proteins in a given biological sample. Over the past decade, the number of publications using proteomics methodologies has exploded. This was made possible due to the availability of high-quality genomic data and many technological advances in the fields of microfluidics and mass spectrometry. Proteomics in biomedical research was initially used in 'functional' studies for the identification of proteins involved in pathophysiological processes, complexes and networks. Improved sensitivity of instrumentation facilitated the analysis of even more complex sample types, including human biological fluids. It is at that point the field of clinical proteomics was born, and its fundamental aim was the discovery and (ideally) validation of biomarkers for the diagnosis, prognosis, or therapeutic monitoring of disease. Eventually, it was recognized that the technologies used in clinical proteomics studies [particularly liquid chromatography-tandem mass spectrometry (LC-MS/MS)] could represent an alternative to classical immunochemical assays. Prior to deploying MS in the measurement of peptides/proteins in the clinical laboratory, it seems likely that traditional proteomics workflows and data management systems will need to adapt to the clinical environment and meet in vitro diagnostic (IVD) regulatory constraints. This defines a new field, as reviewed in this article, that we have termed quantitative Clinical Chemistry Proteomics (qCCP).

  7. Quantitative proteomics by amino acid labeling in C. elegans

    DEFF Research Database (Denmark)

    Fredens, Julius; Engholm-Keller, Kasper; Giessing, Anders

    2011-01-01

    We demonstrate labeling of Caenorhabditis elegans with heavy isotope-labeled lysine by feeding them with heavy isotope-labeled Escherichia coli. Using heavy isotope-labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi-med......-mediated knockdown of the nuclear hormone receptor 49 in C. elegans. The combined use of quantitative proteomics and selective gene knockdown is a powerful tool for C. elegans biology.......We demonstrate labeling of Caenorhabditis elegans with heavy isotope-labeled lysine by feeding them with heavy isotope-labeled Escherichia coli. Using heavy isotope-labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi...

  8. Elucidation of cross-species proteomic effects in human and hominin bone proteome identification through a bioinformatics experiment.

    Science.gov (United States)

    Welker, F

    2018-02-20

    The study of ancient protein sequences is increasingly focused on the analysis of older samples, including those of ancient hominins. The analysis of such ancient proteomes thereby potentially suffers from "cross-species proteomic effects": the loss of peptide and protein identifications at increased evolutionary distances due to a larger number of protein sequence differences between the database sequence and the analyzed organism. Error-tolerant proteomic search algorithms should theoretically overcome this problem at both the peptide and protein level; however, this has not been demonstrated. If error-tolerant searches do not overcome the cross-species proteomic issue then there might be inherent biases in the identified proteomes. Here, a bioinformatics experiment is performed to test this using a set of modern human bone proteomes and three independent searches against sequence databases at increasing evolutionary distances: the human (0 Ma), chimpanzee (6-8 Ma) and orangutan (16-17 Ma) reference proteomes, respectively. Incorrectly suggested amino acid substitutions are absent when employing adequate filtering criteria for mutable Peptide Spectrum Matches (PSMs), but roughly half of the mutable PSMs were not recovered. As a result, peptide and protein identification rates are higher in error-tolerant mode compared to non-error-tolerant searches but did not recover protein identifications completely. Data indicates that peptide length and the number of mutations between the target and database sequences are the main factors influencing mutable PSM identification. The error-tolerant results suggest that the cross-species proteomics problem is not overcome at increasing evolutionary distances, even at the protein level. Peptide and protein loss has the potential to significantly impact divergence dating and proteome comparisons when using ancient samples as there is a bias towards the identification of conserved sequences and proteins. Effects are minimized

  9. Quantitative proteomic analysis of microdissected oral epithelium for cancer biomarker discovery.

    Science.gov (United States)

    Xiao, Hua; Langerman, Alexander; Zhang, Yan; Khalid, Omar; Hu, Shen; Cao, Cheng-Xi; Lingen, Mark W; Wong, David T W

    2015-11-01

    Specific biomarkers are urgently needed for the detection and progression of oral cancer. The objective of this study was to discover cancer biomarkers from oral epithelium through utilizing high throughput quantitative proteomics approaches. Morphologically malignant, epithelial dysplasia, and adjacent normal epithelial tissues were laser capture microdissected (LCM) from 19 patients and used for proteomics analysis. Total proteins from each group were extracted, digested and then labelled with corresponding isobaric tags for relative and absolute quantitation (iTRAQ). Labelled peptides from each sample were combined and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS) for protein identification and quantification. In total, 500 proteins were identified and 425 of them were quantified. When compared with adjacent normal oral epithelium, 17 and 15 proteins were consistently up-regulated or down-regulated in malignant and epithelial dysplasia, respectively. Half of these candidate biomarkers were discovered for oral cancer for the first time. Cornulin was initially confirmed in tissue protein extracts and was further validated in tissue microarray. Its presence in the saliva of oral cancer patients was also explored. Myoglobin and S100A8 were pre-validated by tissue microarray. These data demonstrated that the proteomic biomarkers discovered through this strategy are potential targets for oral cancer detection and salivary diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Identification of cypermethrin induced protein changes in green algae by iTRAQ quantitative proteomics.

    Science.gov (United States)

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-04-29

    Cypermethrin (CYP) is one of the most widely used pesticides in large scale for agricultural and domestic purpose and the residue often seriously affects aquatic system. Environmental pollutant-induced protein changes in organisms could be detected by proteomics, leading to discovery of potential biomarkers and understanding of mode of action. While proteomics investigations of CYP stress in some animal models have been well studied, few reports about the effects of exposure to CYP on algae proteome were published. To determine CYP effect in algae, the impact of various dosages (0.001μg/L, 0.01μg/L and 1μg/L) of CYP on green algae Chlorella vulgaris for 24h and 96h was investigated by using iTRAQ quantitative proteomics technique. A total of 162 and 198 proteins were significantly altered after CYP exposure for 24h and 96h, respectively. Overview of iTRAQ results indicated that the influence of CYP on algae protein might be dosage-dependent. Functional analysis of differentially expressed proteins showed that CYP could induce protein alterations related to photosynthesis, stress responses and carbohydrate metabolism. This study provides a comprehensive view of complex mode of action of algae under CYP stress and highlights several potential biomarkers for further investigation of pesticide-exposed plant and algae. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Quantitative Proteomics Identifies Activation of Hallmark Pathways of Cancer in Patient Melanoma.

    Science.gov (United States)

    Byrum, Stephanie D; Larson, Signe K; Avaritt, Nathan L; Moreland, Linley E; Mackintosh, Samuel G; Cheung, Wang L; Tackett, Alan J

    2013-03-01

    Molecular pathways regulating melanoma initiation and progression are potential targets of therapeutic development for this aggressive cancer. Identification and molecular analysis of these pathways in patients has been primarily restricted to targeted studies on individual proteins. Here, we report the most comprehensive analysis of formalin-fixed paraffin-embedded human melanoma tissues using quantitative proteomics. From 61 patient samples, we identified 171 proteins varying in abundance among benign nevi, primary melanoma, and metastatic melanoma. Seventy-three percent of these proteins were validated by immunohistochemistry staining of malignant melanoma tissues from the Human Protein Atlas database. Our results reveal that molecular pathways involved with tumor cell proliferation, motility, and apoptosis are mis-regulated in melanoma. These data provide the most comprehensive proteome resource on patient melanoma and reveal insight into the molecular mechanisms driving melanoma progression.

  12. Data from quantitative label free proteomics analysis of rat spleen

    Directory of Open Access Journals (Sweden)

    Khadar Dudekula

    2016-09-01

    Full Text Available The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides. A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis. Keywords: Spleen, Rat, Protein extraction, Label-free quantitative proteomics

  13. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity

    OpenAIRE

    Barkla, Bronwyn J.

    2016-01-01

    Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may cont...

  14. Quantitative proteomic assessment of very early cellular signaling events

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Olsen, Jesper V

    2007-01-01

    Technical limitations have prevented proteomic analyses of events occurring less than 30 s after signal initiation. We developed an automated, continuous quench-flow system allowing quantitative proteomic assessment of very early cellular signaling events (qPACE) with a time resolution of 1 s...

  15. Identification Of Protein Vaccine Candidates Using Comprehensive Proteomic Analysis Strategies

    Science.gov (United States)

    2007-12-01

    that fascinating fungus known as Coccidioides. I also want to thank the UA Mass Spectrometry Facility and the UA Proteomics Consortium, especially...W. & N. N. Kav. 2006. The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics 6: 5995-6007. 127. de Godoy, L. M., J. V...IDENTIFICATION OF PROTEIN VACCINE CANDIDATES USING COMPREHENSIVE PROTEOMIC ANALYSIS STRATEGIES by James G. Rohrbough

  16. PANDA-view: An easy-to-use tool for statistical analysis and visualization of quantitative proteomics data.

    Science.gov (United States)

    Chang, Cheng; Xu, Kaikun; Guo, Chaoping; Wang, Jinxia; Yan, Qi; Zhang, Jian; He, Fuchu; Zhu, Yunping

    2018-05-22

    Compared with the numerous software tools developed for identification and quantification of -omics data, there remains a lack of suitable tools for both downstream analysis and data visualization. To help researchers better understand the biological meanings in their -omics data, we present an easy-to-use tool, named PANDA-view, for both statistical analysis and visualization of quantitative proteomics data and other -omics data. PANDA-view contains various kinds of analysis methods such as normalization, missing value imputation, statistical tests, clustering and principal component analysis, as well as the most commonly-used data visualization methods including an interactive volcano plot. Additionally, it provides user-friendly interfaces for protein-peptide-spectrum representation of the quantitative proteomics data. PANDA-view is freely available at https://sourceforge.net/projects/panda-view/. 1987ccpacer@163.com and zhuyunping@gmail.com. Supplementary data are available at Bioinformatics online.

  17. Elucidation of cross-species proteomic effects in human and hominin bone proteome identification through a bioinformatics experiment

    DEFF Research Database (Denmark)

    Welker, F.

    2018-01-01

    Background: The study of ancient protein sequences is increasingly focused on the analysis of older samples, including those of ancient hominins. The analysis of such ancient proteomes thereby potentially suffers from "cross-species proteomic effects": the loss of peptide and protein identificati......Background: The study of ancient protein sequences is increasingly focused on the analysis of older samples, including those of ancient hominins. The analysis of such ancient proteomes thereby potentially suffers from "cross-species proteomic effects": the loss of peptide and protein...... not been demonstrated. If error-tolerant searches do not overcome the cross-species proteomic issue then there might be inherent biases in the identified proteomes. Here, a bioinformatics experiment is performed to test this using a set of modern human bone proteomes and three independent searches against......), but roughly half of the mutable PSMs were not recovered. As a result, peptide and protein identification rates are higher in error-tolerant mode compared to non-error-tolerant searches but did not recover protein identifications completely. Data indicates that peptide length and the number of mutations...

  18. Quality Assessments of Long-Term Quantitative Proteomic Analysis of Breast Cancer Xenograft Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian-Ying; Chen, Lijun; Zhang, Bai; Tian, Yuan; Liu, Tao; Thomas, Stefani N.; Chen, Li; Schnaubelt, Michael; Boja, Emily; Hiltket, Tara; Kinsinger, Christopher; Rodriguez, Henry; Davies, Sherri; Li, Shunqiang; Snider, Jacqueline E.; Erdmann-Gilmore, Petra; Tabb, David L.; Townsend, Reid; Ellis, Matthew; Rodland, Karin D.; Smith, Richard D.; Carr, Steven A.; Zhang, Zhen; Chan, Daniel W.; Zhang, Hui

    2017-09-21

    The identification of protein biomarkers requires large-scale analysis of human specimens to achieve statistical significance. In this study, we evaluated the long-term reproducibility of an iTRAQ (isobaric tags for relative and absolute quantification) based quantitative proteomics strategy using one channel for universal normalization across all samples. A total of 307 liquid chromatography tandem mass spectrometric (LC-MS/MS) analyses were completed, generating 107 one-dimensional (1D) LC-MS/MS datasets and 8 offline two-dimensional (2D) LC-MS/MS datasets (25 fractions for each set) for human-in-mouse breast cancer xenograft tissues representative of basal and luminal subtypes. Such large-scale studies require the implementation of robust metrics to assess the contributions of technical and biological variability in the qualitative and quantitative data. Accordingly, we developed a quantification confidence score based on the quality of each peptide-spectrum match (PSM) to remove quantification outliers from each analysis. After combining confidence score filtering and statistical analysis, reproducible protein identification and quantitative results were achieved from LC-MS/MS datasets collected over a 16 month period.

  19. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes

    Science.gov (United States)

    Trinkle-Mulcahy, Laura; Boulon, Séverine; Lam, Yun Wah; Urcia, Roby; Boisvert, François-Michel; Vandermoere, Franck; Morrice, Nick A.; Swift, Sam; Rothbauer, Ulrich; Leonhardt, Heinrich; Lamond, Angus

    2008-01-01

    The identification of interaction partners in protein complexes is a major goal in cell biology. Here we present a reliable affinity purification strategy to identify specific interactors that combines quantitative SILAC-based mass spectrometry with characterization of common contaminants binding to affinity matrices (bead proteomes). This strategy can be applied to affinity purification of either tagged fusion protein complexes or endogenous protein complexes, illustrated here using the well-characterized SMN complex as a model. GFP is used as the tag of choice because it shows minimal nonspecific binding to mammalian cell proteins, can be quantitatively depleted from cell extracts, and allows the integration of biochemical protein interaction data with in vivo measurements using fluorescence microscopy. Proteins binding nonspecifically to the most commonly used affinity matrices were determined using quantitative mass spectrometry, revealing important differences that affect experimental design. These data provide a specificity filter to distinguish specific protein binding partners in both quantitative and nonquantitative pull-down and immunoprecipitation experiments. PMID:18936248

  20. A Quantitative Proteomics Approach to Clinical Research with Non-Traditional Samples

    Directory of Open Access Journals (Sweden)

    Rígel Licier

    2016-10-01

    Full Text Available The proper handling of samples to be analyzed by mass spectrometry (MS can guarantee excellent results and a greater depth of analysis when working in quantitative proteomics. This is critical when trying to assess non-traditional sources such as ear wax, saliva, vitreous humor, aqueous humor, tears, nipple aspirate fluid, breast milk/colostrum, cervical-vaginal fluid, nasal secretions, bronco-alveolar lavage fluid, and stools. We intend to provide the investigator with relevant aspects of quantitative proteomics and to recognize the most recent clinical research work conducted with atypical samples and analyzed by quantitative proteomics. Having as reference the most recent and different approaches used with non-traditional sources allows us to compare new strategies in the development of novel experimental models. On the other hand, these references help us to contribute significantly to the understanding of the proportions of proteins in different proteomes of clinical interest and may lead to potential advances in the emerging field of precision medicine.

  1. A Quantitative Proteomics Approach to Clinical Research with Non-Traditional Samples.

    Science.gov (United States)

    Licier, Rígel; Miranda, Eric; Serrano, Horacio

    2016-10-17

    The proper handling of samples to be analyzed by mass spectrometry (MS) can guarantee excellent results and a greater depth of analysis when working in quantitative proteomics. This is critical when trying to assess non-traditional sources such as ear wax, saliva, vitreous humor, aqueous humor, tears, nipple aspirate fluid, breast milk/colostrum, cervical-vaginal fluid, nasal secretions, bronco-alveolar lavage fluid, and stools. We intend to provide the investigator with relevant aspects of quantitative proteomics and to recognize the most recent clinical research work conducted with atypical samples and analyzed by quantitative proteomics. Having as reference the most recent and different approaches used with non-traditional sources allows us to compare new strategies in the development of novel experimental models. On the other hand, these references help us to contribute significantly to the understanding of the proportions of proteins in different proteomes of clinical interest and may lead to potential advances in the emerging field of precision medicine.

  2. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)

    Science.gov (United States)

    Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.

  3. Quantitative proteomic analysis by iTRAQ® for the identification of candidate biomarkers in ovarian cancer serum

    Directory of Open Access Journals (Sweden)

    Higgins LeeAnn

    2010-06-01

    Full Text Available Abstract Background Ovarian cancer is the most lethal gynecologic malignancy, with the majority of cases diagnosed at an advanced stage when treatments are less successful. Novel serum protein markers are needed to detect ovarian cancer in its earliest stage; when detected early, survival rates are over 90%. The identification of new serum biomarkers is hindered by the presence of a small number of highly abundant proteins that comprise approximately 95% of serum total protein. In this study, we used pooled serum depleted of the most highly abundant proteins to reduce the dynamic range of proteins, and thereby enhance the identification of serum biomarkers using the quantitative proteomic method iTRAQ®. Results Medium and low abundance proteins from 6 serum pools of 10 patients each from women with serous ovarian carcinoma, and 6 non-cancer control pools were labeled with isobaric tags using iTRAQ® to determine the relative abundance of serum proteins identified by MS. A total of 220 unique proteins were identified and fourteen proteins were elevated in ovarian cancer compared to control serum pools, including several novel candidate ovarian cancer biomarkers: extracellular matrix protein-1, leucine-rich alpha-2 glycoprotein-1, lipopolysaccharide binding protein-1, and proteoglycan-4. Western immunoblotting validated the relative increases in serum protein levels for several of the proteins identified. Conclusions This study provides the first analysis of immunodepleted serum in combination with iTRAQ® to measure relative protein expression in ovarian cancer patients for the pursuit of serum biomarkers. Several candidate biomarkers were identified which warrant further development.

  4. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity.

    Science.gov (United States)

    Barkla, Bronwyn J

    2016-09-08

    Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised.

  5. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity

    Directory of Open Access Journals (Sweden)

    Bronwyn J. Barkla

    2016-09-01

    Full Text Available Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised.

  6. Clinical veterinary proteomics: Techniques and approaches to decipher the animal plasma proteome.

    Science.gov (United States)

    Ghodasara, P; Sadowski, P; Satake, N; Kopp, S; Mills, P C

    2017-12-01

    Over the last two decades, technological advancements in the field of proteomics have advanced our understanding of the complex biological systems of living organisms. Techniques based on mass spectrometry (MS) have emerged as powerful tools to contextualise existing genomic information and to create quantitative protein profiles from plasma, tissues or cell lines of various species. Proteomic approaches have been used increasingly in veterinary science to investigate biological processes responsible for growth, reproduction and pathological events. However, the adoption of proteomic approaches by veterinary investigators lags behind that of researchers in the human medical field. Furthermore, in contrast to human proteomics studies, interpretation of veterinary proteomic data is difficult due to the limited protein databases available for many animal species. This review article examines the current use of advanced proteomics techniques for evaluation of animal health and welfare and covers the current status of clinical veterinary proteomics research, including successful protein identification and data interpretation studies. It includes a description of an emerging tool, sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS), available on selected mass spectrometry instruments. This newly developed data acquisition technique combines advantages of discovery and targeted proteomics approaches, and thus has the potential to advance the veterinary proteomics field by enhancing identification and reproducibility of proteomics data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Quantitative targeted proteomics for understanding the blood-brain barrier: towards pharmacoproteomics.

    Science.gov (United States)

    Ohtsuki, Sumio; Hirayama, Mio; Ito, Shingo; Uchida, Yasuo; Tachikawa, Masanori; Terasaki, Tetsuya

    2014-06-01

    The blood-brain barrier (BBB) is formed by brain capillary endothelial cells linked together via complex tight junctions, and serves to prevent entry of drugs into the brain. Multiple transporters are expressed at the BBB, where they control exchange of materials between the circulating blood and brain interstitial fluid, thereby supporting and protecting the CNS. An understanding of the BBB is necessary for efficient development of CNS-acting drugs and to identify potential drug targets for treatment of CNS diseases. Quantitative targeted proteomics can provide detailed information on protein expression levels at the BBB. The present review highlights the latest applications of quantitative targeted proteomics in BBB research, specifically to evaluate species and in vivo-in vitro differences, and to reconstruct in vivo transport activity. Such a BBB quantitative proteomics approach can be considered as pharmacoproteomics.

  8. Exploring glycopeptide-resistance in Staphylococcus aureus: a combined proteomics and transcriptomics approach for the identification of resistance-related markers

    Directory of Open Access Journals (Sweden)

    Renzoni Adriana

    2006-11-01

    Full Text Available Abstract Background To unravel molecular targets involved in glycopeptide resistance, three isogenic strains of Staphylococcus aureus with different susceptibility levels to vancomycin or teicoplanin were subjected to whole-genome microarray-based transcription and quantitative proteomic profiling. Quantitative proteomics performed on membrane extracts showed exquisite inter-experimental reproducibility permitting the identification and relative quantification of >30% of the predicted S. aureus proteome. Results In the absence of antibiotic selection pressure, comparison of stable resistant and susceptible strains revealed 94 differentially expressed genes and 178 proteins. As expected, only partial correlation was obtained between transcriptomic and proteomic results during stationary-phase. Application of massively parallel methods identified one third of the complete proteome, a majority of which was only predicted based on genome sequencing, but never identified to date. Several over-expressed genes represent previously reported targets, while series of genes and proteins possibly involved in the glycopeptide resistance mechanism were discovered here, including regulators, global regulator attenuator, hyper-mutability factor or hypothetical proteins. Gene expression of these markers was confirmed in a collection of genetically unrelated strains showing altered susceptibility to glycopeptides. Conclusion Our proteome and transcriptome analyses have been performed during stationary-phase of growth on isogenic strains showing susceptibility or intermediate level of resistance against glycopeptides. Altered susceptibility had emerged spontaneously after infection with a sensitive parental strain, thus not selected in vitro. This combined analysis allows the identification of hundreds of proteins considered, so far as hypothetical protein. In addition, this study provides not only a global picture of transcription and expression adaptations

  9. iTRAQ-Based Quantitative Proteomics of Developing and Ripening Muscadine Grape Berry

    Science.gov (United States)

    Kambiranda, Devaiah; Katam, Ramesh; Basha, Sheikh M.; Siebert, Shalom

    2014-01-01

    Grapes are among the widely cultivated fruit crops in the world. Grape berries like other nonclimacteric fruits undergo a complex set of dynamic, physical, physiological, and biochemical changes during ripening. Muscadine grapes are widely cultivated in the southern United States for fresh fruit and wine. To date, changes in the metabolites composition of muscadine grapes have been well documented; however, the molecular changes during berry development and ripening are not fully known. The aim of this study was to investigate changes in the berry proteome during ripening in muscadine grape cv. Noble. Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS was used to detect statistically significant changes in the berry proteome. A total of 674 proteins were detected, and 76 were differentially expressed across four time points in muscadine berry. Proteins obtained were further analyzed to provide information about its potential functions during ripening. Several proteins involved in abiotic and biotic stimuli and sucrose and hexose metabolism were upregulated during berry ripening. Quantitative real-time PCR analysis validated the protein expression results for nine proteins. Identification of vicilin-like antimicrobial peptides indicates additional disease tolerance proteins are present in muscadines for berry protection during ripening. The results provide new information for characterization and understanding muscadine berry proteome and grape ripening. PMID:24251720

  10. GProX, a user-friendly platform for bioinformatics analysis and visualization of quantitative proteomics data.

    Science.gov (United States)

    Rigbolt, Kristoffer T G; Vanselow, Jens T; Blagoev, Blagoy

    2011-08-01

    Recent technological advances have made it possible to identify and quantify thousands of proteins in a single proteomics experiment. As a result of these developments, the analysis of data has become the bottleneck of proteomics experiment. To provide the proteomics community with a user-friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)(1). The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics experimenters with a toolbox for bioinformatics analysis of quantitative proteomics data. The program is released as open-source and can be freely downloaded from the project webpage at http://gprox.sourceforge.net.

  11. Data from quantitative label free proteomics analysis of rat spleen.

    Science.gov (United States)

    Dudekula, Khadar; Le Bihan, Thierry

    2016-09-01

    The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides). A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis.

  12. Quantitative proteomic analysis of post-translational modifications of human histones

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Nielsen, Eva C; Matthiesen, Rune

    2006-01-01

    , and H4 in a site-specific and dose-dependent manner. This unbiased analysis revealed that a relative increase in acetylated peptide from the histone variants H2A, H2B, and H4 was accompanied by a relative decrease of dimethylated Lys(57) from histone H2B. The dose-response results obtained...... by quantitative proteomics of histones from HDACi-treated cells were consistent with Western blot analysis of histone acetylation, cytotoxicity, and dose-dependent expression profiles of p21 and cyclin A2. This demonstrates that mass spectrometry-based quantitative proteomic analysis of post-translational...

  13. Characterization of global yeast quantitative proteome data generated from the wild-type and glucose repression Saccharomyces cerevisiae strains: The comparison of two quantitative methods

    DEFF Research Database (Denmark)

    Usaite, Renata; Wohlschlegel, James; Venable, John D.

    2008-01-01

    The quantitative proteomic analysis of complex protein mixtures is emerging as a technically challenging but viable systems-level approach for studying cellular function. This study presents a large-scale comparative analysis of protein abundances from yeast protein lysates derived from both wild......-type yeast and yeast strains lacking key components of the Snf1 kinase complex. Four different strains were grown under well-controlled chemostat conditions. Multidimensional protein identification technology followed by quantitation using either spectral counting or stable isotope labeling approaches...... labeling strategy. The stable isotope labeling based quantitative approach was found to be highly reproducible among biological replicates when complex protein mixtures containing small expression changes were analyzed. Where poor correlation between stable isotope labeling and spectral counting was found...

  14. GProX, a User-Friendly Platform for Bioinformatics Analysis and Visualization of Quantitative Proteomics Data

    DEFF Research Database (Denmark)

    Rigbolt, Kristoffer T G; Vanselow, Jens T; Blagoev, Blagoy

    2011-01-01

    -friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)(1). The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface...... such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical...... displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics...

  15. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis

    NARCIS (Netherlands)

    Low, T.Y.; van Heesch, S.; van den Toorn, H.; Giansanti, P.; Cristobal, A.; Toonen, P.; Schafer, S.; Hubner, N.; van Breukelen, B.; Mohammed, S.; Cuppen, E.; Heck, A.J.R.; Guryev, V.

    2013-01-01

    Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we integrated in-depth transcriptome and proteome analyses of liver tissues from two rat strains to unravel the interactions within and between these layers. We

  16. Quantitative and Qualitative Proteome Characteristics Extracted from In-Depth Integrated Genomics and Proteomics Analysis

    NARCIS (Netherlands)

    Low, Teck Yew; van Heesch, Sebastiaan; van den Toorn, Henk; Giansanti, Piero; Cristobal, Alba; Toonen, Pim; Schafer, Sebastian; Huebner, Norbert; van Breukelen, Bas; Mohammed, Shabaz; Cuppen, Edwin; Heck, Albert J. R.; Guryev, Victor

    2013-01-01

    Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and post-transcriptional levels. Here, we integrated in-depth transcriptome and proteome analyses of liver tissues from two rat strains to unravel the interactions within and between these layers. We

  17. High-resolution proteomic profiling of spider venom: expanding the toxin diversity of Phoneutria nigriventer venom.

    Science.gov (United States)

    Liberato, Tarcísio; Troncone, Lanfranco Ranieri Paolo; Yamashiro, Edson T; Serrano, Solange M T; Zelanis, André

    2016-03-01

    Here we present a proteomic characterization of Phoneutria nigriventer venom. A shotgun proteomic approach allowed the identification, for the first time, of O-glycosyl hydrolases (chitinases) in P. nigriventer venom. The electrophoretic profiles under nonreducing and reducing conditions, and protein identification by mass spectrometry, indicated the presence of oligomeric toxin structures in the venom. Complementary proteomic approaches allowed for a qualitative and semi-quantitative profiling of P. nigriventer venom complexity, expanding its known venom proteome diversity.

  18. Mapping Protein-Protein Interactions by Quantitative Proteomics

    DEFF Research Database (Denmark)

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2010-01-01

    spectrometry (MS)-based proteomics in combination with affinity purification protocols has become the method of choice to map and track the dynamic changes in protein-protein interactions, including the ones occurring during cellular signaling events. Different quantitative MS strategies have been used...... to characterize protein interaction networks. In this chapter we describe in detail the use of stable isotope labeling by amino acids in cell culture (SILAC) for the quantitative analysis of stimulus-dependent dynamic protein interactions.......Proteins exert their function inside a cell generally in multiprotein complexes. These complexes are highly dynamic structures changing their composition over time and cell state. The same protein may thereby fulfill different functions depending on its binding partners. Quantitative mass...

  19. Will Quantitative Proteomics Redefine Some of the Key Concepts in Skeletal Muscle Physiology?

    Science.gov (United States)

    Gizak, Agnieszka; Rakus, Dariusz

    2016-01-11

    Molecular and cellular biology methodology is traditionally based on the reasoning called "the mechanistic explanation". In practice, this means identifying and selecting correlations between biological processes which result from our manipulation of a biological system. In theory, a successful application of this approach requires precise knowledge about all parameters of a studied system. However, in practice, due to the systems' complexity, this requirement is rarely, if ever, accomplished. Typically, it is limited to a quantitative or semi-quantitative measurements of selected parameters (e.g., concentrations of some metabolites), and a qualitative or semi-quantitative description of expression/post-translational modifications changes within selected proteins. A quantitative proteomics approach gives a possibility of quantitative characterization of the entire proteome of a biological system, in the context of the titer of proteins as well as their post-translational modifications. This enables not only more accurate testing of novel hypotheses but also provides tools that can be used to verify some of the most fundamental dogmas of modern biology. In this short review, we discuss some of the consequences of using quantitative proteomics to verify several key concepts in skeletal muscle physiology.

  20. Will Quantitative Proteomics Redefine Some of the Key Concepts in Skeletal Muscle Physiology?

    Directory of Open Access Journals (Sweden)

    Agnieszka Gizak

    2016-01-01

    Full Text Available Molecular and cellular biology methodology is traditionally based on the reasoning called “the mechanistic explanation”. In practice, this means identifying and selecting correlations between biological processes which result from our manipulation of a biological system. In theory, a successful application of this approach requires precise knowledge about all parameters of a studied system. However, in practice, due to the systems’ complexity, this requirement is rarely, if ever, accomplished. Typically, it is limited to a quantitative or semi-quantitative measurements of selected parameters (e.g., concentrations of some metabolites, and a qualitative or semi-quantitative description of expression/post-translational modifications changes within selected proteins. A quantitative proteomics approach gives a possibility of quantitative characterization of the entire proteome of a biological system, in the context of the titer of proteins as well as their post-translational modifications. This enables not only more accurate testing of novel hypotheses but also provides tools that can be used to verify some of the most fundamental dogmas of modern biology. In this short review, we discuss some of the consequences of using quantitative proteomics to verify several key concepts in skeletal muscle physiology.

  1. Quantitative Proteomic Analysis of Sulfolobus solfataricus Membrane Proteins

    NARCIS (Netherlands)

    Pham, T.K.; Sierocinski, P.; Oost, van der J.; Wright, P.C.

    2010-01-01

    A quantitative proteomic analysis of the membrane of the archaeon Sulfolobus solfataricus P2 using iTRAQ was successfully demonstrated in this technical note. The estimated number of membrane proteins of this organism is 883 (predicted based on Gravy score), corresponding to 30 % of the total

  2. Analysis of mass spectrometry data in proteomics

    DEFF Research Database (Denmark)

    Matthiesen, Rune; Jensen, Ole N

    2008-01-01

    The systematic study of proteins and protein networks, that is, proteomics, calls for qualitative and quantitative analysis of proteins and peptides. Mass spectrometry (MS) is a key analytical technology in current proteomics and modern mass spectrometers generate large amounts of high-quality data...... that in turn allow protein identification, annotation of secondary modifications, and determination of the absolute or relative abundance of individual proteins. Advances in mass spectrometry-driven proteomics rely on robust bioinformatics tools that enable large-scale data analysis. This chapter describes...... some of the basic concepts and current approaches to the analysis of MS and MS/MS data in proteomics....

  3. A multicenter study benchmarks software tools for label-free proteome quantification.

    Science.gov (United States)

    Navarro, Pedro; Kuharev, Jörg; Gillet, Ludovic C; Bernhardt, Oliver M; MacLean, Brendan; Röst, Hannes L; Tate, Stephen A; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I; Aebersold, Ruedi; Tenzer, Stefan

    2016-11-01

    Consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH 2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from sequential window acquisition of all theoretical fragment-ion spectra (SWATH)-MS, which uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test data sets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation-window setups. For consistent evaluation, we developed LFQbench, an R package, to calculate metrics of precision and accuracy in label-free quantitative MS and report the identification performance, robustness and specificity of each software tool. Our reference data sets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics.

  4. Science, marketing and wishful thinking in quantitative proteomics.

    Science.gov (United States)

    Hackett, Murray

    2008-11-01

    In a recent editorial (J. Proteome Res. 2007, 6, 1633) and elsewhere questions have been raised regarding the lack of attention paid to good analytical practice with respect to the reporting of quantitative results in proteomics. Using those comments as a starting point, several issues are discussed that relate to the challenges involved in achieving adequate sampling with MS-based methods in order to generate valid data for large-scale studies. The discussion touches on the relationships that connect sampling depth and the power to detect protein abundance change, conflict of interest, and strategies to overcome bureaucratic obstacles that impede the use of peer-to-peer technologies for transfer and storage of large data files generated in such experiments.

  5. Data in support of quantitative proteomics to identify potential virulence regulators in Paracoccidioides brasiliensis isolates

    Directory of Open Access Journals (Sweden)

    Alexandre Keiji Tashima

    2015-12-01

    Full Text Available Paracoccidioides genus are the etiologic agents of paracoccidioidomycosis (PCM, a systemic mycosis endemic in Latin America. Few virulence factors have been identified in these fungi. This paper describes support data from the quantitative proteomics of Paracoccidioides brasiliensis attenuated and virulent isolates [1]. The protein compositions of two isolates of the Pb18 strain showing distinct infection profiles were quantitatively assessed by stable isotopic dimethyl labeling and proteomic analysis. The mass spectrometry and the analysis dataset have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with identifier PXD000804.

  6. Identification of targets of miR-200b by a SILAC-based quantitative proteomic approach

    Directory of Open Access Journals (Sweden)

    Arivusudar Marimuthu

    2014-09-01

    Full Text Available miRNAs regulate gene expression by binding to cognate mRNAs causing mRNA degradation or translational repression. Mass spectrometry-based proteomic analysis is being widely used to identify miRNA targets. The miR-200b miRNA cluster is often overexpressed in multiple cancer types, but the identity of the targets remains elusive. Using SILAC-based analysis, we examined the effects of overexpression of a miR-200b mimic or a control miRNA in fibrosarcoma cells. We identified around 300 potential targets of miR-200b based on a change in the expression of protein levels. We validated a subset of potential targets at the transcript level using quantitative PCR.

  7. Network analysis of quantitative proteomics on asthmatic bronchi: effects of inhaled glucocorticoid treatment

    Directory of Open Access Journals (Sweden)

    Sihlbom Carina

    2011-09-01

    Full Text Available Abstract Background Proteomic studies of respiratory disorders have the potential to identify protein biomarkers for diagnosis and disease monitoring. Utilisation of sensitive quantitative proteomic methods creates opportunities to determine individual patient proteomes. The aim of the current study was to determine if quantitative proteomics of bronchial biopsies from asthmatics can distinguish relevant biological functions and whether inhaled glucocorticoid treatment affects these functions. Methods Endobronchial biopsies were taken from untreated asthmatic patients (n = 12 and healthy controls (n = 3. Asthmatic patients were randomised to double blind treatment with either placebo or budesonide (800 μg daily for 3 months and new biopsies were obtained. Proteins extracted from the biopsies were digested and analysed using isobaric tags for relative and absolute quantitation combined with a nanoLC-LTQ Orbitrap mass spectrometer. Spectra obtained were used to identify and quantify proteins. Pathways analysis was performed using Ingenuity Pathway Analysis to identify significant biological pathways in asthma and determine how the expression of these pathways was changed by treatment. Results More than 1800 proteins were identified and quantified in the bronchial biopsies of subjects. The pathway analysis revealed acute phase response signalling, cell-to-cell signalling and tissue development associations with proteins expressed in asthmatics compared to controls. The functions and pathways associated with placebo and budesonide treatment showed distinct differences, including the decreased association with acute phase proteins as a result of budesonide treatment compared to placebo. Conclusions Proteomic analysis of bronchial biopsy material can be used to identify and quantify proteins using highly sensitive technologies, without the need for pooling of samples from several patients. Distinct pathophysiological features of asthma can be

  8. Relative Quantitative Proteomic Analysis of Brucella abortus Reveals Metabolic Adaptation to Multiple Environmental Stresses.

    Science.gov (United States)

    Zai, Xiaodong; Yang, Qiaoling; Yin, Ying; Li, Ruihua; Qian, Mengying; Zhao, Taoran; Li, Yaohui; Zhang, Jun; Fu, Ling; Xu, Junjie; Chen, Wei

    2017-01-01

    Brucella spp. are facultative intracellular pathogens that cause chronic brucellosis in humans and animals. The virulence of Brucella primarily depends on its successful survival and replication in host cells. During invasion of the host tissue, Brucella is simultaneously subjected to a variety of harsh conditions, including nutrient limitation, low pH, antimicrobial defenses, and extreme levels of reactive oxygen species (ROS) via the host immune response. This suggests that Brucella may be able to regulate its metabolic adaptation in response to the distinct stresses encountered during its intracellular infection of the host. An investigation into the differential proteome expression patterns of Brucella grown under the relevant stress conditions may contribute toward a better understanding of its pathogenesis and adaptive response. Here, we utilized a mass spectrometry-based label-free relative quantitative proteomics approach to investigate and compare global proteomic changes in B. abortus in response to eight different stress treatments. The 3 h short-term in vitro single-stress and multi-stress conditions mimicked the in vivo conditions of B. abortus under intracellular infection, with survival rates ranging from 3.17 to 73.17%. The proteomic analysis identified and quantified a total of 2,272 proteins and 74% of the theoretical proteome, thereby providing wide coverage of the B. abortus proteome. By including eight distinct growth conditions and comparing these with a control condition, we identified a total of 1,221 differentially expressed proteins (DEPs) that were significantly changed under the stress treatments. Pathway analysis revealed that most of the proteins were involved in oxidative phosphorylation, ABC transporters, two-component systems, biosynthesis of secondary metabolites, the citrate cycle, thiamine metabolism, and nitrogen metabolism; constituting major response mechanisms toward the reconstruction of cellular homeostasis and metabolic

  9. The Seed Proteome Web Portal

    Directory of Open Access Journals (Sweden)

    Marc eGalland

    2012-06-01

    Full Text Available The Seed Proteome Web Portal (SPWP; http://www.seedproteome.com/ gives access to information both on quantitative seed proteomic data and on seed-related protocols. Firstly, the SPWP provides access to the 475 different Arabidopsis seed proteins annotated from 2 dimensional electrophoresis (2DE maps. Quantitative data are available for each protein according to their accumulation profile during the germination process. These proteins can be retrieved either in list format or directly on scanned 2DE maps. These proteomic data reveal that 40% of seed proteins maintain a stable abundance over germination, up to radicle protrusion. During sensu stricto germination (24 h upon imbibition about 50% of the proteins display quantitative variations, exhibiting an increased abundance (35% or a decreasing abundance (15%. Moreover, during radicle protrusion (24 h to 48 h upon imbibition, 41% proteins display quantitative variations with an increased (23% or a decreasing abundance (18%. In addition, an analysis of the seed proteome revealed the importance of protein post-translational modifications as demonstrated by the poor correlation (r2 = 0.29 between the theoretical (predicted from Arabidopsis genome and the observed protein isoelectric points. Secondly, the SPWP is a relevant technical resource for protocols specifically dedicated to Arabidopsis seed proteome studies. Concerning 2D electrophoresis, the user can find efficient procedures for sample preparation, electrophoresis coupled with gel analysis and protein identification by mass spectrometry, which we have routinely used during the last 12 years. Particular applications such as the detection of oxidized proteins or de novo synthetized proteins radiolabeled by [35S]-methionine are also given in great details. Future developments of this portal will include proteomic data from studies such as dormancy release and protein turnover through de novo protein synthesis analyses during germination.

  10. Evaluation of six sample preparation procedures for qualitative and quantitative proteomics analysis of milk fat globule membrane.

    Science.gov (United States)

    Yang, Yongxin; Anderson, Elizabeth; Zhang, Sheng

    2018-04-12

    Proteomic analysis of membrane proteins is challenged by the proteins solubility and detergent incompatibility with MS analysis. No single perfect protocol can be used to comprehensively characterize the proteome of membrane fraction. Here, we used cow milk fat globule membrane (MFGM) proteome analysis to assess six sample preparation procedures including one in-gel and five in-solution digestion approaches prior to LC-MS/MS analysis. The largest number of MFGM proteins were identified by suspension trapping (S-Trap) and filter-aided sample preparation (FASP) methods, followed by acetone precipitation without clean-up of tryptic peptides method. Protein identifications with highest average coverage was achieved by Chloroform/MeOH, in-gel and S-Trap methods. Most distinct proteins were identified by FASP method, followed by S-Trap. Analyses by Venn diagram, principal-component analysis, hierarchical clustering and the abundance ranking of quantitative proteins highlight differences in the MFGM fraction by the all sample preparation procedures. These results reveal the biased proteins/peptides loss occurred in each protocol. In this study, we found several novel proteins that were not observed previously by in-depth proteomics characterization of MFGM fraction in milk. Thus, a combination of multiple procedures with orthologous properties of sample preparation was demonstrated to improve the protein sequence coverage and expression level accuracy of membrane samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Quantitative Proteomics Analysis of Altered Protein Expression in the Placental Villous Tissue of Early Pregnancy Loss Using Isobaric Tandem Mass Tags

    Directory of Open Access Journals (Sweden)

    Xiaobei Ni

    2014-01-01

    Full Text Available Many pregnant women suffer miscarriages during early gestation, but the description of these early pregnancy losses (EPL can be somewhat confusing because of the complexities of early development. Thus, the identification of proteins with different expression profiles related to early pregnancy loss is essential for understanding the comprehensive pathophysiological mechanism. In this study, we report a gel-free tandem mass tags- (TMT- labeling based proteomic analysis of five placental villous tissues from patients with early pregnancy loss and five from normal pregnant women. The application of this method resulted in the identification of 3423 proteins and 19647 peptides among the patient group and the matched normal control group. Qualitative and quantitative proteomic analysis revealed 51 proteins to be differentially abundant between the two groups (≥1.2-fold, Student's t-test, P<0.05. To obtain an overview of the biological functions of the proteins whose expression levels altered significantly in EPL group, gene ontology analysis was performed. We also investigated the twelve proteins with a difference over 1.5-fold using pathways analysis. Our results demonstrate that the gel-free TMT-based proteomic approach allows the quantification of differences in protein expression levels, which is useful for obtaining molecular insights into early pregnancy loss.

  12. Proteomic Identification and Quantification of S-glutathionylation in Mouse Macrophages Using Resin-Assisted Enrichment and Isobaric Labeling

    Energy Technology Data Exchange (ETDEWEB)

    Su, Dian; Gaffrey, Matthew J.; Guo, Jia; Hatchell, Kayla E.; Chu, Rosalie K.; Clauss, Therese RW; Aldrich, Joshua T.; Wu, Si; Purvine, Samuel O.; Camp, David G.; Smith, Richard D.; Thrall, Brian D.; Qian, Weijun

    2014-02-11

    Protein S-glutathionylation (SSG) is an important regulatory posttranslational modification of protein cysteine (Cys) thiol redox switches, yet the role of specific cysteine residues as targets of modification is poorly understood. We report a novel quantitative mass spectrometry (MS)-based proteomic method for site-specific identification and quantification of S-glutathionylation across different conditions. Briefly, this approach consists of initial blocking of free thiols by alkylation, selective reduction of glutathionylated thiols and enrichment using thiol affinity resins, followed by on-resin tryptic digestion and isobaric labeling with iTRAQ (isobaric tags for relative and absolute quantitation) for MS-based identification and quantification. The overall approach was validated by application to RAW 264.7 mouse macrophages treated with different doses of diamide to induce glutathionylation. A total of 1071 Cys-sites from 690 proteins were identified in response to diamide treatment, with ~90% of the sites displaying >2-fold increases in SSG-modification compared to controls.. This approach was extended to identify potential SSG modified Cys-sites in response to H2O2, an endogenous oxidant produced by activated macrophages and many pathophysiological stimuli. The results revealed 364 Cys-sites from 265 proteins that were sensitive to S-glutathionylation in response to H2O2 treatment. These proteins covered a range of molecular types and molecular functions with free radical scavenging, and cell death and survival included as the most significantly enriched functional categories. Overall the results demonstrate that our approach is effective for site-specific identification and quantification of S-glutathionylated proteins. The analytical strategy also provides a unique approach to determining the major pathways and cell processes most susceptible to glutathionylation at a proteome-wide scale.

  13. Dissecting the C. elegans response during infection using quantitative proteomics

    DEFF Research Database (Denmark)

    Simonsen, Karina Trankjær; Møller-Jensen, Jakob; Kristensen, Anders Riis

    2008-01-01

    The adherent invasive E. coli isolated from patients with Crohn’s disease in humans is pathogenic for C. elegans. We show here that when C. elegans feeds on the pathogenic E. coli, the life span is shortened significantly compared to the normal laboratory food, the OP50 E. coli. In this study...... the infection process is followed using GFP-expressing bacteria and persistence assays. A quantitative proteomic approach was used to follow the C. elegans host response during the infection process. C. elegans were metabolic labeled with the stable isotope 15N and samples from three different time points......, many of which also have been found in studies using other pathogens. So far, large-scale investigations of the C. elegans immune response have been performed using micro-arrays. This study is the first to make use of quantitative proteomics to directly follow the protein dynamics during the infection...

  14. Application of targeted quantitative proteomics analysis in human cerebrospinal fluid using a liquid chromatography matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (LC MALDI TOF/TOF) platform.

    Science.gov (United States)

    Pan, Sheng; Rush, John; Peskind, Elaine R; Galasko, Douglas; Chung, Kathryn; Quinn, Joseph; Jankovic, Joseph; Leverenz, James B; Zabetian, Cyrus; Pan, Catherine; Wang, Yan; Oh, Jung Hun; Gao, Jean; Zhang, Jianpeng; Montine, Thomas; Zhang, Jing

    2008-02-01

    Targeted quantitative proteomics by mass spectrometry aims to selectively detect one or a panel of peptides/proteins in a complex sample and is particularly appealing for novel biomarker verification/validation because it does not require specific antibodies. Here, we demonstrated the application of targeted quantitative proteomics in searching, identifying, and quantifying selected peptides in human cerebrospinal spinal fluid (CSF) using a matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (MALDI TOF/TOF)-based platform. The approach involved two major components: the use of isotopic-labeled synthetic peptides as references for targeted identification and quantification and a highly selective mass spectrometric analysis based on the unique characteristics of the MALDI instrument. The platform provides high confidence for targeted peptide detection in a complex system and can potentially be developed into a high-throughput system. Using the liquid chromatography (LC) MALDI TOF/TOF platform and the complementary identification strategy, we were able to selectively identify and quantify a panel of targeted peptides in the whole proteome of CSF without prior depletion of abundant proteins. The effectiveness and robustness of the approach associated with different sample complexity, sample preparation strategies, as well as mass spectrometric quantification were evaluated. Other issues related to chromatography separation and the feasibility for high-throughput analysis were also discussed. Finally, we applied targeted quantitative proteomics to analyze a subset of previously identified candidate markers in CSF samples of patients with Parkinson's disease (PD) at different stages and Alzheimer's disease (AD) along with normal controls.

  15. Quantitative proteomics reveals the kinetics of trypsin-catalyzed protein digestion.

    Science.gov (United States)

    Pan, Yanbo; Cheng, Kai; Mao, Jiawei; Liu, Fangjie; Liu, Jing; Ye, Mingliang; Zou, Hanfa

    2014-10-01

    Trypsin is the popular protease to digest proteins into peptides in shotgun proteomics, but few studies have attempted to systematically investigate the kinetics of trypsin-catalyzed protein digestion in proteome samples. In this study, we applied quantitative proteomics via triplex stable isotope dimethyl labeling to investigate the kinetics of trypsin-catalyzed cleavage. It was found that trypsin cleaves the C-terminal to lysine (K) and arginine (R) residues with higher rates for R. And the cleavage sites surrounded by neutral residues could be quickly cut, while those with neighboring charged residues (D/E/K/R) or proline residue (P) could be slowly cut. In a proteome sample, a huge number of proteins with different physical chemical properties coexists. If any type of protein could be preferably digested, then limited digestion could be applied to reduce the sample complexity. However, we found that protein abundance and other physicochemical properties, such as molecular weight (Mw), grand average of hydropathicity (GRAVY), aliphatic index, and isoelectric point (pI) have no notable correlation with digestion priority of proteins.

  16. Redefining the Breast Cancer Exosome Proteome by Tandem Mass Tag Quantitative Proteomics and Multivariate Cluster Analysis.

    Science.gov (United States)

    Clark, David J; Fondrie, William E; Liao, Zhongping; Hanson, Phyllis I; Fulton, Amy; Mao, Li; Yang, Austin J

    2015-10-20

    Exosomes are microvesicles of endocytic origin constitutively released by multiple cell types into the extracellular environment. With evidence that exosomes can be detected in the blood of patients with various malignancies, the development of a platform that uses exosomes as a diagnostic tool has been proposed. However, it has been difficult to truly define the exosome proteome due to the challenge of discerning contaminant proteins that may be identified via mass spectrometry using various exosome enrichment strategies. To better define the exosome proteome in breast cancer, we incorporated a combination of Tandem-Mass-Tag (TMT) quantitative proteomics approach and Support Vector Machine (SVM) cluster analysis of three conditioned media derived fractions corresponding to a 10 000g cellular debris pellet, a 100 000g crude exosome pellet, and an Optiprep enriched exosome pellet. The quantitative analysis identified 2 179 proteins in all three fractions, with known exosomal cargo proteins displaying at least a 2-fold enrichment in the exosome fraction based on the TMT protein ratios. Employing SVM cluster analysis allowed for the classification 251 proteins as "true" exosomal cargo proteins. This study provides a robust and vigorous framework for the future development of using exosomes as a potential multiprotein marker phenotyping tool that could be useful in breast cancer diagnosis and monitoring disease progression.

  17. Method and platform standardization in MRM-based quantitative plasma proteomics.

    Science.gov (United States)

    Percy, Andrew J; Chambers, Andrew G; Yang, Juncong; Jackson, Angela M; Domanski, Dominik; Burkhart, Julia; Sickmann, Albert; Borchers, Christoph H

    2013-12-16

    There exists a growing demand in the proteomics community to standardize experimental methods and liquid chromatography-mass spectrometry (LC/MS) platforms in order to enable the acquisition of more precise and accurate quantitative data. This necessity is heightened by the evolving trend of verifying and validating candidate disease biomarkers in complex biofluids, such as blood plasma, through targeted multiple reaction monitoring (MRM)-based approaches with stable isotope-labeled standards (SIS). Considering the lack of performance standards for quantitative plasma proteomics, we previously developed two reference kits to evaluate the MRM with SIS peptide approach using undepleted and non-enriched human plasma. The first kit tests the effectiveness of the LC/MRM-MS platform (kit #1), while the second evaluates the performance of an entire analytical workflow (kit #2). Here, these kits have been refined for practical use and then evaluated through intra- and inter-laboratory testing on 6 common LC/MS platforms. For an identical panel of 22 plasma proteins, similar concentrations were determined, regardless of the kit, instrument platform, and laboratory of analysis. These results demonstrate the value of the kit and reinforce the utility of standardized methods and protocols. The proteomics community needs standardized experimental protocols and quality control methods in order to improve the reproducibility of MS-based quantitative data. This need is heightened by the evolving trend for MRM-based validation of proposed disease biomarkers in complex biofluids such as blood plasma. We have developed two kits to assist in the inter- and intra-laboratory quality control of MRM experiments: the first kit tests the effectiveness of the LC/MRM-MS platform (kit #1), while the second evaluates the performance of an entire analytical workflow (kit #2). In this paper, we report the use of these kits in intra- and inter-laboratory testing on 6 common LC/MS platforms. This

  18. A multi-center study benchmarks software tools for label-free proteome quantification

    Science.gov (United States)

    Gillet, Ludovic C; Bernhardt, Oliver M.; MacLean, Brendan; Röst, Hannes L.; Tate, Stephen A.; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I.; Aebersold, Ruedi; Tenzer, Stefan

    2016-01-01

    The consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra), a method that uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test datasets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation windows setups. For consistent evaluation we developed LFQbench, an R-package to calculate metrics of precision and accuracy in label-free quantitative MS, and report the identification performance, robustness and specificity of each software tool. Our reference datasets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics. PMID:27701404

  19. Combinatorial hexapeptide ligand libraries (ProteoMiner): an innovative fractionation tool for differential quantitative clinical proteomics.

    Science.gov (United States)

    Hartwig, Sonja; Czibere, Akos; Kotzka, Jorg; Passlack, Waltraud; Haas, Rainer; Eckel, Jürgen; Lehr, Stefan

    2009-07-01

    Blood serum samples are the major source for clinical proteomics approaches, which aim to identify diagnostically relevant or treatment-response related proteins. But, the presence of very high-abundance proteins and the enormous dynamic range of protein distribution hinders whole serum analysis. An innovative tool to overcome these limitations, utilizes combinatorial hexapeptide ligand libraries (ProteoMiner). Here, we demonstrate that ProteoMiner can be used for comparative and quantitative analysis of complex proteomes. We spiked serum samples with increasing amounts (3 microg to 300 microg) of whole E. coli lysate, processed it with ProteoMiner and performed quantitative analyses of 2D-gels. We found, that the concentration of the spiked bacteria proteome, reflected by the maintained proportional spot intensities, was not altered by ProteoMiner treatment. Therefore, we conclude that the ProteoMiner technology can be used for quantitative analysis of low abundant proteins in complex biological samples.

  20. Protein identification and quantification from riverbank grape, Vitis riparia: Comparing SDS-PAGE and FASP-GPF techniques for shotgun proteomic analysis.

    Science.gov (United States)

    George, Iniga S; Fennell, Anne Y; Haynes, Paul A

    2015-09-01

    Protein sample preparation optimisation is critical for establishing reproducible high throughput proteomic analysis. In this study, two different fractionation sample preparation techniques (in-gel digestion and in-solution digestion) for shotgun proteomics were used to quantitatively compare proteins identified in Vitis riparia leaf samples. The total number of proteins and peptides identified were compared between filter aided sample preparation (FASP) coupled with gas phase fractionation (GPF) and SDS-PAGE methods. There was a 24% increase in the total number of reproducibly identified proteins when FASP-GPF was used. FASP-GPF is more reproducible, less expensive and a better method than SDS-PAGE for shotgun proteomics of grapevine samples as it significantly increases protein identification across biological replicates. Total peptide and protein information from the two fractionation techniques is available in PRIDE with the identifier PXD001399 (http://proteomecentral.proteomexchange.org/dataset/PXD001399). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The proteome of human liver peroxisomes: identification of five new peroxisomal constituents by a label-free quantitative proteomics survey.

    Directory of Open Access Journals (Sweden)

    Thomas Gronemeyer

    Full Text Available The peroxisome is a key organelle of low abundance that fulfils various functions essential for human cell metabolism. Severe genetic diseases in humans are caused by defects in peroxisome biogenesis or deficiencies in the function of single peroxisomal proteins. To improve our knowledge of this important cellular structure, we studied for the first time human liver peroxisomes by quantitative proteomics. Peroxisomes were isolated by differential and Nycodenz density gradient centrifugation. A label-free quantitative study of 314 proteins across the density gradient was accomplished using high resolution mass spectrometry. By pairing statistical data evaluation, cDNA cloning and in vivo colocalization studies, we report the association of five new proteins with human liver peroxisomes. Among these, isochorismatase domain containing 1 protein points to the existence of a new metabolic pathway and hydroxysteroid dehydrogenase like 2 protein is likely involved in the transport or β-oxidation of fatty acids in human peroxisomes. The detection of alcohol dehydrogenase 1A suggests the presence of an alternative alcohol-oxidizing system in hepatic peroxisomes. In addition, lactate dehydrogenase A and malate dehydrogenase 1 partially associate with human liver peroxisomes and enzyme activity profiles support the idea that NAD(+ becomes regenerated during fatty acid β-oxidation by alternative shuttling processes in human peroxisomes involving lactate dehydrogenase and/or malate dehydrogenase. Taken together, our data represent a valuable resource for future studies of peroxisome biochemistry that will advance research of human peroxisomes in health and disease.

  2. Repeatability and Reproducibility in Proteomic Identifications by Liquid Chromatography—Tandem Mass Spectrometry

    Science.gov (United States)

    Tabb, David L.; Vega-Montoto, Lorenzo; Rudnick, Paul A.; Variyath, Asokan Mulayath; Ham, Amy-Joan L.; Bunk, David M.; Kilpatrick, Lisa E.; Billheimer, Dean D.; Blackman, Ronald K.; Cardasis, Helene L.; Carr, Steven A.; Clauser, Karl R.; Jaffe, Jacob D.; Kowalski, Kevin A.; Neubert, Thomas A.; Regnier, Fred E.; Schilling, Birgit; Tegeler, Tony J.; Wang, Mu; Wang, Pei; Whiteaker, Jeffrey R.; Zimmerman, Lisa J.; Fisher, Susan J.; Gibson, Bradford W.; Kinsinger, Christopher R.; Mesri, Mehdi; Rodriguez, Henry; Stein, Steven E.; Tempst, Paul; Paulovich, Amanda G.; Liebler, Daniel C.; Spiegelman, Cliff

    2009-01-01

    The complexity of proteomic instrumentation for LC-MS/MS introduces many possible sources of variability. Data-dependent sampling of peptides constitutes a stochastic element at the heart of discovery proteomics. Although this variation impacts the identification of peptides, proteomic identifications are far from completely random. In this study, we analyzed interlaboratory data sets from the NCI Clinical Proteomic Technology Assessment for Cancer to examine repeatability and reproducibility in peptide and protein identifications. Included data spanned 144 LC-MS/MS experiments on four Thermo LTQ and four Orbitrap instruments. Samples included yeast lysate, the NCI-20 defined dynamic range protein mix, and the Sigma UPS 1 defined equimolar protein mix. Some of our findings reinforced conventional wisdom, such as repeatability and reproducibility being higher for proteins than for peptides. Most lessons from the data, however, were more subtle. Orbitraps proved capable of higher repeatability and reproducibility, but aberrant performance occasionally erased these gains. Even the simplest protein digestions yielded more peptide ions than LC-MS/MS could identify during a single experiment. We observed that peptide lists from pairs of technical replicates overlapped by 35–60%, giving a range for peptide-level repeatability in these experiments. Sample complexity did not appear to affect peptide identification repeatability, even as numbers of identified spectra changed by an order of magnitude. Statistical analysis of protein spectral counts revealed greater stability across technical replicates for Orbitraps, making them superior to LTQ instruments for biomarker candidate discovery. The most repeatable peptides were those corresponding to conventional tryptic cleavage sites, those that produced intense MS signals, and those that resulted from proteins generating many distinct peptides. Reproducibility among different instruments of the same type lagged behind

  3. Quantitative Proteomics Reveals Temporal Proteomic Changes in Signaling Pathways during BV2 Mouse Microglial Cell Activation.

    Science.gov (United States)

    Woo, Jongmin; Han, Dohyun; Wang, Joseph Injae; Park, Joonho; Kim, Hyunsoo; Kim, Youngsoo

    2017-09-01

    The development of systematic proteomic quantification techniques in systems biology research has enabled one to perform an in-depth analysis of cellular systems. We have developed a systematic proteomic approach that encompasses the spectrum from global to targeted analysis on a single platform. We have applied this technique to an activated microglia cell system to examine changes in the intracellular and extracellular proteomes. Microglia become activated when their homeostatic microenvironment is disrupted. There are varying degrees of microglial activation, and we chose to focus on the proinflammatory reactive state that is induced by exposure to such stimuli as lipopolysaccharide (LPS) and interferon-gamma (IFN-γ). Using an improved shotgun proteomics approach, we identified 5497 proteins in the whole-cell proteome and 4938 proteins in the secretome that were associated with the activation of BV2 mouse microglia by LPS or IFN-γ. Of the differentially expressed proteins in stimulated microglia, we classified pathways that were related to immune-inflammatory responses and metabolism. Our label-free parallel reaction monitoring (PRM) approach made it possible to comprehensively measure the hyper-multiplex quantitative value of each protein by high-resolution mass spectrometry. Over 450 peptides that corresponded to pathway proteins and direct or indirect interactors via the STRING database were quantified by label-free PRM in a single run. Moreover, we performed a longitudinal quantification of secreted proteins during microglial activation, in which neurotoxic molecules that mediate neuronal cell loss in the brain are released. These data suggest that latent pathways that are associated with neurodegenerative diseases can be discovered by constructing and analyzing a pathway network model of proteins. Furthermore, this systematic quantification platform has tremendous potential for applications in large-scale targeted analyses. The proteomics data for

  4. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Jicheng; Gaffrey, Matthew J.; Qian, Wei-Jun

    2017-01-01

    Protein cysteine thiols play a crucial role in redox signaling, regulation of enzymatic activity and protein function, and maintaining redox homeostasis in living systems. The unique chemical reactivity of thiol groups makes cysteine susceptible to oxidative modifications by reactive oxygen and nitrogen species to form a broad array of reversible and irreversible protein post-translational modifications (PTMs). The reversible modifications in particular are one of the major components of redox signaling and are involved in regulation of various cellular processes under physiological and pathological conditions. The biological significance of these redox PTMs in health and diseases has been increasingly recognized. Herein, we review the recent advances of quantitative proteomic approaches for investigating redox PTMs in complex biological systems, including the general considerations of sample processing, various chemical or affinity enrichment strategies, and quantitative approaches. We also highlight a number of redox proteomic approaches that enable effective profiling of redox PTMs for addressing specific biological questions. Although some technological limitations remain, redox proteomics is paving the way towards a better understanding of redox signaling and regulation in human health and diseases.

  5. Serum proteome profiling in canine idiopathic dilated cardiomyopathy using TMT-based quantitative proteomics approach.

    Science.gov (United States)

    Bilić, Petra; Guillemin, Nicolas; Kovačević, Alan; Beer Ljubić, Blanka; Jović, Ines; Galan, Asier; Eckersall, Peter David; Burchmore, Richard; Mrljak, Vladimir

    2018-05-15

    Idiopathic dilated cardiomyopathy (iDCM) is a primary myocardial disorder with an unknown aetiology, characterized by reduced contractility and ventricular dilation of the left or both ventricles. Naturally occurring canine iDCM was used herein to identify serum proteomic signature of the disease compared to the healthy state, providing an insight into underlying mechanisms and revealing proteins with biomarker potential. To achieve this, we used high-throughput label-based quantitative LC-MS/MS proteomics approach and bioinformatics analysis of the in silico inferred interactome protein network created from the initial list of differential proteins. To complement the proteomic analysis, serum biochemical parameters and levels of know biomarkers of cardiac function were measured. Several proteins with biomarker potential were identified, such as inter-alpha-trypsin inhibitor heavy chain H4, microfibril-associated glycoprotein 4 and apolipoprotein A-IV, which were validated using an independent method (Western blotting) and showed high specificity and sensitivity according to the receiver operating characteristic curve analysis. Bioinformatics analysis revealed involvement of different pathways in iDCM, such as complement cascade activation, lipoprotein particles dynamics, elastic fibre formation, GPCR signalling and respiratory electron transport chain. Idiopathic dilated cardiomyopathy is a severe primary myocardial disease of unknown cause, affecting both humans and dogs. This study is a contribution to the canine heart disease research by means of proteomic and bioinformatic state of the art analyses, following similar approach in human iDCM research. Importantly, we used serum as non-invasive and easily accessible biological source of information and contributed to the scarce data on biofluid proteome research on this topic. Bioinformatics analysis revealed biological pathways modulated in canine iDCM with potential of further targeted research. Also, several

  6. Relative Quantitative Proteomic Analysis of Brucella abortus Reveals Metabolic Adaptation to Multiple Environmental Stresses

    Directory of Open Access Journals (Sweden)

    Xiaodong Zai

    2017-11-01

    Full Text Available Brucella spp. are facultative intracellular pathogens that cause chronic brucellosis in humans and animals. The virulence of Brucella primarily depends on its successful survival and replication in host cells. During invasion of the host tissue, Brucella is simultaneously subjected to a variety of harsh conditions, including nutrient limitation, low pH, antimicrobial defenses, and extreme levels of reactive oxygen species (ROS via the host immune response. This suggests that Brucella may be able to regulate its metabolic adaptation in response to the distinct stresses encountered during its intracellular infection of the host. An investigation into the differential proteome expression patterns of Brucella grown under the relevant stress conditions may contribute toward a better understanding of its pathogenesis and adaptive response. Here, we utilized a mass spectrometry-based label-free relative quantitative proteomics approach to investigate and compare global proteomic changes in B. abortus in response to eight different stress treatments. The 3 h short-term in vitro single-stress and multi-stress conditions mimicked the in vivo conditions of B. abortus under intracellular infection, with survival rates ranging from 3.17 to 73.17%. The proteomic analysis identified and quantified a total of 2,272 proteins and 74% of the theoretical proteome, thereby providing wide coverage of the B. abortus proteome. By including eight distinct growth conditions and comparing these with a control condition, we identified a total of 1,221 differentially expressed proteins (DEPs that were significantly changed under the stress treatments. Pathway analysis revealed that most of the proteins were involved in oxidative phosphorylation, ABC transporters, two-component systems, biosynthesis of secondary metabolites, the citrate cycle, thiamine metabolism, and nitrogen metabolism; constituting major response mechanisms toward the reconstruction of cellular

  7. Quantitative changes in proteins responsible for flavonoid and anthocyanin biosynthesis in strawberry fruit at different ripening stages: A targeted quantitative proteomic investigation employing multiple reaction monitoring.

    Science.gov (United States)

    Song, Jun; Du, Lina; Li, Li; Kalt, Wilhelmina; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, Ying; Zhang, ZhaoQi; Li, XiHong

    2015-06-03

    To better understand the regulation of flavonoid and anthocyanin biosynthesis, a targeted quantitative proteomic investigation employing LC-MS with multiple reaction monitoring was conducted on two strawberry cultivars at three ripening stages. This quantitative proteomic workflow was improved through an OFFGEL electrophoresis to fractionate peptides from total protein digests. A total of 154 peptide transitions from 47 peptides covering 21 proteins and isoforms related to anthocyanin biosynthesis were investigated. The normalized protein abundance, which was measured using isotopically-labeled standards, was significantly changed concurrently with increased anthocyanin content and advanced fruit maturity. The protein abundance of phenylalanine ammonia-lyase; anthocyanidin synthase, chalcone isomerase; flavanone 3-hydroxylase; dihydroflavonol 4-reductase, UDP-glucose:flavonoid-3-O-glucosyltransferase, cytochrome c and cytochrome C oxidase subunit 2, was all significantly increased in fruit of more advanced ripeness. An interaction between cultivar and maturity was also shown with respect to chalcone isomerase. The good correlation between protein abundance and anthocyanin content suggested that a metabolic control point may exist for anthocyanin biosynthesis. This research provides insights into the process of anthocyanin formation in strawberry fruit at the level of protein concentration and reveals possible candidates in the regulation of anthocyanin formation during fruit ripening. To gain insight into the molecular mechanisms contributing to flavonoids and anthocyanin biosynthesis and regulation of strawberry fruit during ripening is challenging due to limited molecular biology tools and established hypothesis. Our targeted proteomic approach employing LC-MS/MS analysis and MRM technique to quantify proteins in relation to flavonoids and anthocyanin biosynthesis and regulation in strawberry fruit during fruit ripening is novel. The identification of peptides

  8. An Overview of Advanced SILAC-Labeling Strategies for Quantitative Proteomics.

    Science.gov (United States)

    Terzi, F; Cambridge, S

    2017-01-01

    Comparative, quantitative mass spectrometry of proteins provides great insight to protein abundance and function, but some molecular characteristics related to protein dynamics are not so easily obtained. Because the metabolic incorporation of stable amino acid isotopes allows the extraction of distinct temporal and spatial aspects of protein dynamics, the SILAC methodology is uniquely suited to be adapted for advanced labeling strategies. New SILAC strategies have emerged that allow deeper foraging into the complexity of cellular proteomes. Here, we review a few advanced SILAC-labeling strategies that have been published during last the years. Among them, different subsaturating-labeling as well as dual-labeling schemes are most prominent for a range of analyses including those of neuronal proteomes, secretion, or cell-cell-induced stimulations. These recent developments suggest that much more information can be gained from proteomic analyses if the labeling strategies are specifically tailored toward the experimental design. © 2017 Elsevier Inc. All rights reserved.

  9. ABRF-PRG07: advanced quantitative proteomics study.

    Science.gov (United States)

    Falick, Arnold M; Lane, William S; Lilley, Kathryn S; MacCoss, Michael J; Phinney, Brett S; Sherman, Nicholas E; Weintraub, Susan T; Witkowska, H Ewa; Yates, Nathan A

    2011-04-01

    A major challenge for core facilities is determining quantitative protein differences across complex biological samples. Although there are numerous techniques in the literature for relative and absolute protein quantification, the majority is nonroutine and can be challenging to carry out effectively. There are few studies comparing these technologies in terms of their reproducibility, accuracy, and precision, and no studies to date deal with performance across multiple laboratories with varied levels of expertise. Here, we describe an Association of Biomolecular Resource Facilities (ABRF) Proteomics Research Group (PRG) study based on samples composed of a complex protein mixture into which 12 known proteins were added at varying but defined ratios. All of the proteins were present at the same concentration in each of three tubes that were provided. The primary goal of this study was to allow each laboratory to evaluate its capabilities and approaches with regard to: detection and identification of proteins spiked into samples that also contain complex mixtures of background proteins and determination of relative quantities of the spiked proteins. The results returned by 43 participants were compiled by the PRG, which also collected information about the strategies used to assess overall performance and as an aid to development of optimized protocols for the methodologies used. The most accurate results were generally reported by the most experienced laboratories. Among laboratories that used the same technique, values that were closer to the expected ratio were obtained by more experienced groups.

  10. The mzqLibrary--An open source Java library supporting the HUPO-PSI quantitative proteomics standard.

    Science.gov (United States)

    Qi, Da; Zhang, Huaizhong; Fan, Jun; Perkins, Simon; Pisconti, Addolorata; Simpson, Deborah M; Bessant, Conrad; Hubbard, Simon; Jones, Andrew R

    2015-09-01

    The mzQuantML standard has been developed by the Proteomics Standards Initiative for capturing, archiving and exchanging quantitative proteomic data, derived from mass spectrometry. It is a rich XML-based format, capable of representing data about two-dimensional features from LC-MS data, and peptides, proteins or groups of proteins that have been quantified from multiple samples. In this article we report the development of an open source Java-based library of routines for mzQuantML, called the mzqLibrary, and associated software for visualising data called the mzqViewer. The mzqLibrary contains routines for mapping (peptide) identifications on quantified features, inference of protein (group)-level quantification values from peptide-level values, normalisation and basic statistics for differential expression. These routines can be accessed via the command line, via a Java programming interface access or a basic graphical user interface. The mzqLibrary also contains several file format converters, including import converters (to mzQuantML) from OpenMS, Progenesis LC-MS and MaxQuant, and exporters (from mzQuantML) to other standards or useful formats (mzTab, HTML, csv). The mzqViewer contains in-built routines for viewing the tables of data (about features, peptides or proteins), and connects to the R statistical library for more advanced plotting options. The mzqLibrary and mzqViewer packages are available from https://code.google.com/p/mzq-lib/. © 2015 The Authors. PROTEOMICS Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A label-free quantitative shotgun proteomics analysis of rice grain development

    Directory of Open Access Journals (Sweden)

    Koh Hee-Jong

    2011-09-01

    Full Text Available Abstract Background Although a great deal of rice proteomic research has been conducted, there are relatively few studies specifically addressing the rice grain proteome. The existing rice grain proteomic researches have focused on the identification of differentially expressed proteins or monitoring protein expression patterns during grain filling stages. Results Proteins were extracted from rice grains 10, 20, and 30 days after flowering, as well as from fully mature grains. By merging all of the identified proteins in this study, we identified 4,172 non-redundant proteins with a wide range of molecular weights (from 5.2 kDa to 611 kDa and pI values (from pH 2.9 to pH 12.6. A Genome Ontology category enrichment analysis for the 4,172 proteins revealed that 52 categories were enriched, including the carbohydrate metabolic process, transport, localization, lipid metabolic process, and secondary metabolic process. The relative abundances of the 1,784 reproducibly identified proteins were compared to detect 484 differentially expressed proteins during rice grain development. Clustering analysis and Genome Ontology category enrichment analysis revealed that proteins involved in the metabolic process were enriched through all stages of development, suggesting that proteome changes occurred even in the desiccation phase. Interestingly, enrichments of proteins involved in protein folding were detected in the desiccation phase and in fully mature grain. Conclusion This is the first report conducting comprehensive identification of rice grain proteins. With a label free shotgun proteomic approach, we identified large number of rice grain proteins and compared the expression patterns of reproducibly identified proteins during rice grain development. Clustering analysis, Genome Ontology category enrichment analysis, and the analysis of composite expression profiles revealed dynamic changes of metabolisms during rice grain development. Interestingly, we

  12. Global analysis of the yeast osmotic stress response by quantitative proteomics

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kelstrup, C.D.; Stoehr, G.

    2009-01-01

    a comprehensive, quantitative, and time-resolved analysis using high-resolution mass spectrometry of phospho-proteome and proteome changes in response to osmotic stress in yeast. We identified 5534 unique phosphopeptide variants and 3383 yeast proteins. More than 15% of the detected phosphorylation site status...... changed more than two-fold within 5 minutes of treatment. Many of the corresponding phosphoproteins are involved in the early response to environmental stress. Surprisingly, we find that 158 regulated phosphorylation sites are potential substrates of basophilic kinases as opposed to the classical proline......-directed MAP kinase network implicated in stress response mechanisms such as p38 and HOG pathways. Proteome changes reveal an increase in abundance of more than one hundred proteins after 20 min of salt stress. Many of these are involved in the cellular response to increased osmolarity, which include proteins...

  13. The Drosophila melanogaster PeptideAtlas facilitates the use of peptide data for improved fly proteomics and genome annotation

    Directory of Open Access Journals (Sweden)

    King Nichole L

    2009-02-01

    Full Text Available Abstract Background Crucial foundations of any quantitative systems biology experiment are correct genome and proteome annotations. Protein databases compiled from high quality empirical protein identifications that are in turn based on correct gene models increase the correctness, sensitivity, and quantitative accuracy of systems biology genome-scale experiments. Results In this manuscript, we present the Drosophila melanogaster PeptideAtlas, a fly proteomics and genomics resource of unsurpassed depth. Based on peptide mass spectrometry data collected in our laboratory the portal http://www.drosophila-peptideatlas.org allows querying fly protein data observed with respect to gene model confirmation and splice site verification as well as for the identification of proteotypic peptides suited for targeted proteomics studies. Additionally, the database provides consensus mass spectra for observed peptides along with qualitative and quantitative information about the number of observations of a particular peptide and the sample(s in which it was observed. Conclusion PeptideAtlas is an open access database for the Drosophila community that has several features and applications that support (1 reduction of the complexity inherently associated with performing targeted proteomic studies, (2 designing and accelerating shotgun proteomics experiments, (3 confirming or questioning gene models, and (4 adjusting gene models such that they are in line with observed Drosophila peptides. While the database consists of proteomic data it is not required that the user is a proteomics expert.

  14. Genomes to Proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Grigoriev, Igor [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Daly, Don S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webb-Robertson, Bobbie-Jo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  15. Comparison of serum fractionation methods by data independent label-free proteomics

    Directory of Open Access Journals (Sweden)

    D. Baiwir

    2015-12-01

    Full Text Available Off-line sample prefractionations applied prior to biomarker discovery proteomics are options to enable more protein identifications and detect low-abundance proteins. This work compared five commercial methods efficiency to raw serum analysis using label-free proteomics. The variability of the protein quantities determined for each process was similar to the unprefractionated serum. A 49% increase in protein identifications and 12.2% of reliable quantification were obtained. A 61 times lower limit of protein quantitation was reached compared to protein concentrations observed in raw serum. The concentrations of detected proteins were confronted to estimated reference values.

  16. Respiratory Proteomics Today: Are Technological Advances for the Identification of Biomarker Signatures Catching up with Their Promise? A Critical Review of the Literature in the Decade 2004-2013.

    Science.gov (United States)

    Viglio, Simona; Stolk, Jan; Iadarola, Paolo; Giuliano, Serena; Luisetti, Maurizio; Salvini, Roberta; Fumagalli, Marco; Bardoni, Anna

    2014-01-22

    To improve the knowledge on a variety of severe disorders, research has moved from the analysis of individual proteins to the investigation of all proteins expressed by a tissue/organism. This global proteomic approach could prove very useful: (i) for investigating the biochemical pathways involved in disease; (ii) for generating hypotheses; or (iii) as a tool for the identification of proteins differentially expressed in response to the disease state. Proteomics has not been used yet in the field of respiratory research as extensively as in other fields, only a few reproducible and clinically applicable molecular markers, which can assist in diagnosis, having been currently identified. The continuous advances in both instrumentation and methodology, which enable sensitive and quantitative proteomic analyses in much smaller amounts of biological material than before, will hopefully promote the identification of new candidate biomarkers in this area. The aim of this report is to critically review the application over the decade 2004-2013 of very sophisticated technologies to the study of respiratory disorders. The observed changes in protein expression profiles from tissues/fluids of patients affected by pulmonary disorders opens the route for the identification of novel pathological mediators of these disorders.

  17. Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics.

    Science.gov (United States)

    Nanjo, Yohei; Nakamura, Takuji; Komatsu, Setsuko

    2013-11-01

    Flooding injury is one of the abiotic constraints on soybean growth. An experimental system established for evaluating flooding injury in soybean seedlings indicated that the degree of injury is dependent on seedling density in floodwater. Dissolved oxygen levels in the floodwater were decreased by the seedlings and correlated with the degree of injury. To understand the molecular mechanism responsible for the injury, proteomic alterations in soybean seedlings that correlated with severity of stress were analyzed using label-free quantitative proteomics. The analysis showed that the abundance of proteins involved in cell wall modification, such as polygalacturonase inhibitor-like and expansin-like B1-like proteins, which may be associated with the defense system, increased dependence on stress at both the protein and mRNA levels in all organs during flooding. The manner of alteration in abundance of these proteins was distinct from those of other responsive proteins. Furthermore, proteins also showing specific changes in abundance in the root tip included protein phosphatase 2A subunit-like proteins, which are possibly involved in flooding-induced root tip cell death. Additionally, decreases in abundance of cell wall synthesis-related proteins, such as cinnamyl-alcohol dehydrogenase and cellulose synthase-interactive protein-like proteins, were identified in hypocotyls of seedlings grown for 3 days after flooding, and these proteins may be associated with suppression of growth after flooding. These flooding injury-associated proteins can be defined as indicator proteins for severity of flooding stress in soybean.

  18. Quantitative proteomic characterization of the lung extracellular matrix in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Åhrman, Emma; Hallgren, Oskar; Malmström, Lars; Hedström, Ulf; Malmström, Anders; Bjermer, Leif; Zhou, Xiao-Hong; Westergren-Thorsson, Gunilla; Malmström, Johan

    2018-03-01

    Remodeling of the extracellular matrix (ECM) is a common feature in lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Here, we applied a sequential tissue extraction strategy to describe disease-specific remodeling of human lung tissue in disease, using end-stages of COPD and IPF. Our strategy was based on quantitative comparison of the disease proteomes, with specific focus on the matrisome, using data-independent acquisition and targeted data analysis (SWATH-MS). Our work provides an in-depth proteomic characterization of human lung tissue during impaired tissue remodeling. In addition, we show important quantitative and qualitative effects of the solubility of matrisome proteins. COPD was characterized by a disease-specific increase in ECM regulators, metalloproteinase inhibitor 3 (TIMP3) and matrix metalloproteinase 28 (MMP-28), whereas for IPF, impairment in cell adhesion proteins, such as collagen VI and laminins, was most prominent. For both diseases, we identified increased levels of proteins involved in the regulation of endopeptidase activity, with several proteins belonging to the serpin family. The established human lung quantitative proteome inventory and the construction of a tissue-specific protein assay library provides a resource for future quantitative proteomic analyses of human lung tissues. We present a sequential tissue extraction strategy to determine changes in extractability of matrisome proteins in end-stage COPD and IPF compared to healthy control tissue. Extensive quantitative analysis of the proteome changes of the disease states revealed altered solubility of matrisome proteins involved in ECM regulators and cell-ECM communication. The results highlight disease-specific remodeling mechanisms associated with COPD and IPF. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob.

    Science.gov (United States)

    Goeminne, Ludger J E; Gevaert, Kris; Clement, Lieven

    2018-01-16

    Label-free shotgun proteomics is routinely used to assess proteomes. However, extracting relevant information from the massive amounts of generated data remains difficult. This tutorial provides a strong foundation on analysis of quantitative proteomics data. We provide key statistical concepts that help researchers to design proteomics experiments and we showcase how to analyze quantitative proteomics data using our recent free and open-source R package MSqRob, which was developed to implement the peptide-level robust ridge regression method for relative protein quantification described by Goeminne et al. MSqRob can handle virtually any experimental proteomics design and outputs proteins ordered by statistical significance. Moreover, its graphical user interface and interactive diagnostic plots provide easy inspection and also detection of anomalies in the data and flaws in the data analysis, allowing deeper assessment of the validity of results and a critical review of the experimental design. Our tutorial discusses interactive preprocessing, data analysis and visualization of label-free MS-based quantitative proteomics experiments with simple and more complex designs. We provide well-documented scripts to run analyses in bash mode on GitHub, enabling the integration of MSqRob in automated pipelines on cluster environments (https://github.com/statOmics/MSqRob). The concepts outlined in this tutorial aid in designing better experiments and analyzing the resulting data more appropriately. The two case studies using the MSqRob graphical user interface will contribute to a wider adaptation of advanced peptide-based models, resulting in higher quality data analysis workflows and more reproducible results in the proteomics community. We also provide well-documented scripts for experienced users that aim at automating MSqRob on cluster environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics

    DEFF Research Database (Denmark)

    Ong, S.E.; Blagoev, B.; Kratchmarova, I.

    2002-01-01

    Quantitative proteomics has traditionally been performed by two-dimensional gel electrophoresis, but recently, mass spectrometric methods based on stable isotope quantitation have shown great promise for the simultaneous and automated identification and quantitation of complex protein mixtures. H...

  1. Detection of Nuclear Protein Profile Changes by Human Metapneumovirus M2-2 Protein Using Quantitative Differential Proteomics

    Directory of Open Access Journals (Sweden)

    Yuping Ren

    2017-12-01

    Full Text Available Human metapneumovirus (hMPV is a leading cause of lower respiratory infection in pediatric populations globally. This study examined proteomic profile changes in A549 cells infected with hMPV and two attenuated mutants with deleted PDZ domain-binding motif(s in the M2-2 protein. These motifs are involved in the interruption of antiviral signaling, namely the interaction between the TNF receptor associated factor (TRAF and mitochondrial antiviral-signaling (MAVS proteins. The aim of this study was to provide insight into the overall and novel impact of M2-2 motifs on cellular responses via an unbiased comparison. Tandem mass tagging, stable isotope labeling, and high-resolution mass spectrometry were used for quantitative proteomic analysis. Using quantitative proteomics and Venn analysis, 1248 common proteins were detected in all infected samples of both technical sets. Hierarchical clustering of the differentiated proteome displayed distinct proteomic signatures that were controlled by the motif(s. Bioinformatics and experimental analysis confirmed the differentiated proteomes, revealed novel cellular biological events, and implicated key pathways controlled by hMPV M2-2 PDZ domain-binding motif(s. This provides further insight for evaluating M2-2 mutants as potent vaccine candidates.

  2. Proteomic platform for the identification of proteins in olive (Olea europaea) pulp.

    Science.gov (United States)

    Capriotti, Anna Laura; Cavaliere, Chiara; Foglia, Patrizia; Piovesana, Susy; Samperi, Roberto; Stampachiacchiere, Serena; Laganà, Aldo

    2013-10-24

    The nutritional and cancer-protective properties of the oil extracted mechanically from the ripe fruits of Olea europaea trees are attracting constantly more attention worldwide. The preparation of high-quality protein samples from plant tissues for proteomic analysis poses many challenging problems. In this study we employed a proteomic platform based on two different extraction methods, SDS and CHAPS based protocols, followed by two precipitation protocols, TCA/acetone and MeOH precipitation, in order to increase the final number of identified proteins. The use of advanced MS techniques in combination with the Swissprot and NCBI Viridiplantae databases and TAIR10 Arabidopsis database allowed us to identify 1265 proteins, of which 22 belong to O. europaea. The application of this proteomic platform for protein extraction and identification will be useful also for other proteomic studies on recalcitrant plant/fruit tissues. Copyright © 2013. Published by Elsevier B.V.

  3. Improving data quality and preserving HCD-generated reporter ions with EThcD for isobaric tag-based quantitative proteomics and proteome-wide PTM studies

    International Nuclear Information System (INIS)

    Yu, Qing; Shi, Xudong; Feng, Yu; Kent, K. Craig; Li, Lingjun

    2017-01-01

    Mass spectrometry (MS)-based isobaric labeling has undergone rapid development in recent years due to its capability for high throughput quantitation. Apart from its originally designed use with collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD), isobaric tagging technique could also work with electron-transfer dissociation (ETD), which provides complementarity to CID and is preferred in sequencing peptides with post-translational modifications (PTMs). However, ETD suffers from long reaction time, reduced duty cycle and bias against peptides with lower charge states. In addition, common fragmentation mechanism in ETD results in altered reporter ion production, decreased multiplexing capability, and even loss of quantitation capability for some of the isobaric tags, including custom-designed dimethyl leucine (DiLeu) tags. Here, we demonstrate a novel electron-transfer/higher-energy collision dissociation (EThcD) approach that preserves original reporter ion channels, mitigates bias against lower charge states, improves sensitivity, and significantly improves data quality for quantitative proteomics and proteome-wide PTM studies. Systematic optimization was performed to achieve a balance between data quality and sensitivity. We provide direct comparison of EThcD with ETD and HCD for DiLeu- and TMT-labeled HEK cell lysate and IMAC enriched phosphopeptides. Results demonstrate improved data quality and phosphorylation localization accuracy while preserving sufficient reporter ion production. Biological studies were performed to investigate phosphorylation changes in a mouse vascular smooth muscle cell line treated with four different conditions. Overall, EThcD exhibits superior performance compared to conventional ETD and offers distinct advantages compared to HCD in isobaric labeling based quantitative proteomics and quantitative PTM studies. - Highlights: • EThcD was optimized for isobaric tag-labeled peptides for quantitative

  4. Improving data quality and preserving HCD-generated reporter ions with EThcD for isobaric tag-based quantitative proteomics and proteome-wide PTM studies

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qing [School of Pharmacy, University of Wisconsin, Madison, WI 53705 (United States); Shi, Xudong [Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705 (United States); Feng, Yu [School of Pharmacy, University of Wisconsin, Madison, WI 53705 (United States); Kent, K. Craig [Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705 (United States); Li, Lingjun, E-mail: lingjun.li@wisc.edu [School of Pharmacy, University of Wisconsin, Madison, WI 53705 (United States); Department of Chemistry, University of Wisconsin, Madison, WI 53706 (United States)

    2017-05-22

    Mass spectrometry (MS)-based isobaric labeling has undergone rapid development in recent years due to its capability for high throughput quantitation. Apart from its originally designed use with collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD), isobaric tagging technique could also work with electron-transfer dissociation (ETD), which provides complementarity to CID and is preferred in sequencing peptides with post-translational modifications (PTMs). However, ETD suffers from long reaction time, reduced duty cycle and bias against peptides with lower charge states. In addition, common fragmentation mechanism in ETD results in altered reporter ion production, decreased multiplexing capability, and even loss of quantitation capability for some of the isobaric tags, including custom-designed dimethyl leucine (DiLeu) tags. Here, we demonstrate a novel electron-transfer/higher-energy collision dissociation (EThcD) approach that preserves original reporter ion channels, mitigates bias against lower charge states, improves sensitivity, and significantly improves data quality for quantitative proteomics and proteome-wide PTM studies. Systematic optimization was performed to achieve a balance between data quality and sensitivity. We provide direct comparison of EThcD with ETD and HCD for DiLeu- and TMT-labeled HEK cell lysate and IMAC enriched phosphopeptides. Results demonstrate improved data quality and phosphorylation localization accuracy while preserving sufficient reporter ion production. Biological studies were performed to investigate phosphorylation changes in a mouse vascular smooth muscle cell line treated with four different conditions. Overall, EThcD exhibits superior performance compared to conventional ETD and offers distinct advantages compared to HCD in isobaric labeling based quantitative proteomics and quantitative PTM studies. - Highlights: • EThcD was optimized for isobaric tag-labeled peptides for quantitative

  5. ProteomicsDB.

    Science.gov (United States)

    Schmidt, Tobias; Samaras, Patroklos; Frejno, Martin; Gessulat, Siegfried; Barnert, Maximilian; Kienegger, Harald; Krcmar, Helmut; Schlegl, Judith; Ehrlich, Hans-Christian; Aiche, Stephan; Kuster, Bernhard; Wilhelm, Mathias

    2018-01-04

    ProteomicsDB (https://www.ProteomicsDB.org) is a protein-centric in-memory database for the exploration of large collections of quantitative mass spectrometry-based proteomics data. ProteomicsDB was first released in 2014 to enable the interactive exploration of the first draft of the human proteome. To date, it contains quantitative data from 78 projects totalling over 19k LC-MS/MS experiments. A standardized analysis pipeline enables comparisons between multiple datasets to facilitate the exploration of protein expression across hundreds of tissues, body fluids and cell lines. We recently extended the data model to enable the storage and integrated visualization of other quantitative omics data. This includes transcriptomics data from e.g. NCBI GEO, protein-protein interaction information from STRING, functional annotations from KEGG, drug-sensitivity/selectivity data from several public sources and reference mass spectra from the ProteomeTools project. The extended functionality transforms ProteomicsDB into a multi-purpose resource connecting quantification and meta-data for each protein. The rich user interface helps researchers to navigate all data sources in either a protein-centric or multi-protein-centric manner. Several options are available to download data manually, while our application programming interface enables accessing quantitative data systematically. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Unrestrictive identification of post-translational modifications in the urine proteome without enrichment

    Science.gov (United States)

    2013-01-01

    Background Research on the human urine proteome may lay the foundation for the discovery of relevant disease biomarkers. Post-translational modifications (PTMs) have important effects on the functions of protein biomarkers. Identifying PTMs without enrichment adds no extra steps to conventional identification procedures for urine proteomics. The only difference is that this method requires software that can conduct unrestrictive identifications of PTMs. In this study, routine urine proteomics techniques were used to identify urine proteins. Unspecified PTMs were searched by MODa and PEAKS 6 automated software, followed by a manual search to screen out in vivo PTMs by removing all in vitro PTMs and amino acid substitutions. Results There were 75 peptides with 6 in vivo PTMs that were found by both MODa and PEAKS 6. Of these, 34 peptides in 18 proteins have novel in vivo PTMs compared with the annotation information of these proteins on the Universal Protein Resource website. These new in vivo PTMs had undergone methylation, dehydration, oxidation, hydroxylation, phosphorylation, or dihydroxylation. Conclusions In this study, we identified PTMs of urine proteins without the need for enrichment. Our investigation may provide a useful reference for biomarker discovery in the future. PMID:23317149

  7. Quantitative proteomic analysis of human lung tumor xenografts treated with the ectopic ATP synthase inhibitor citreoviridin.

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Wu

    Full Text Available ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor, selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ and provided a comprehensive insight into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141 differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better understanding of the links between metabolism and tumorigenesis in cancer therapy.

  8. New insights into the mechanisms of acetic acid resistance in Acetobacter pasteurianus using iTRAQ-dependent quantitative proteomic analysis.

    Science.gov (United States)

    Xia, Kai; Zang, Ning; Zhang, Junmei; Zhang, Hong; Li, Yudong; Liu, Ye; Feng, Wei; Liang, Xinle

    2016-12-05

    Acetobacter pasteurianus is the main starter in rice vinegar manufacturing due to its remarkable abilities to resist and produce acetic acid. Although several mechanisms of acetic acid resistance have been proposed and only a few effector proteins have been identified, a comprehensive depiction of the biological processes involved in acetic acid resistance is needed. In this study, iTRAQ-based quantitative proteomic analysis was adopted to investigate the whole proteome of different acidic titers (3.6, 7.1 and 9.3%, w/v) of Acetobacter pasteurianus Ab3 during the vinegar fermentation process. Consequently, 1386 proteins, including 318 differentially expressed proteins (p150 proteins were differentially expressed. Specifically, proteins involved in amino acid metabolic processes and fatty acid biosynthesis were differentially expressed, which may contribute to the acetic acid resistance of Acetobacter. Transcription factors, two component systems and toxin-antitoxin systems were implicated in the modulatory network at multiple levels. In addition, the identification of proteins involved in redox homeostasis, protein metabolism, and the cell envelope suggested that the whole cellular system is mobilized in response to acid stress. These findings provide a differential proteomic profile of acetic acid resistance in Acetobacter pasteurianus and have potential application to highly acidic rice vinegar manufacturing. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Strigolactone-Regulated Proteins Revealed by iTRAQ-Based Quantitative Proteomics in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhou [ORNL; Czarnecki, Olaf [ORNL; Chourey, Karuna [ORNL; Yang, Jun [ORNL; Tuskan, Gerald A [ORNL; Hurst, Gregory {Greg} B [ORNL; Pan, Chongle [ORNL; Chen, Jay [ORNL

    2014-01-01

    Strigolactones (SLs) are a new class of plant hormones. In addition to acting as a key inhibitor of shoot branching, SLs stimulate seed germination of root parasitic plants and promote hyphal branching and root colonization of symbiotic arbuscular mycorrhizal fungi. They also regulate many other aspects of plant growth and development. At the transcription level, SL-regulated genes have been reported. However, nothing is known about the proteome regulated by this new class of plant hormones. Here, a quantitative proteomics approach using an isobaric chemical labeling reagent, iTRAQ, to identify the proteome regulated by SLs in Arabidopsis seedlings is presented. It was found SLs regulate the expression of about three dozens of proteins that have not been previously assigned to SL pathways. These findings provide a new tool to investigate the molecular mechanism of action of SLs.

  10. Quantitative Analysis of Human Pluripotency and Neural Specification by In-Depth (PhosphoProteomic Profiling

    Directory of Open Access Journals (Sweden)

    Ilyas Singec

    2016-09-01

    Full Text Available Controlled differentiation of human embryonic stem cells (hESCs can be utilized for precise analysis of cell type identities during early development. We established a highly efficient neural induction strategy and an improved analytical platform, and determined proteomic and phosphoproteomic profiles of hESCs and their specified multipotent neural stem cell derivatives (hNSCs. This quantitative dataset (nearly 13,000 proteins and 60,000 phosphorylation sites provides unique molecular insights into pluripotency and neural lineage entry. Systems-level comparative analysis of proteins (e.g., transcription factors, epigenetic regulators, kinase families, phosphorylation sites, and numerous biological pathways allowed the identification of distinct signatures in pluripotent and multipotent cells. Furthermore, as predicted by the dataset, we functionally validated an autocrine/paracrine mechanism by demonstrating that the secreted protein midkine is a regulator of neural specification. This resource is freely available to the scientific community, including a searchable website, PluriProt.

  11. iTRAQ-based Quantitative Proteomics Study in Patients with Refractory Mycoplasma pneumoniae Pneumonia.

    Science.gov (United States)

    Yu, Jia-Lu; Song, Qi-Fang; Xie, Zhi-Wei; Jiang, Wen-Hui; Chen, Jia-Hui; Fan, Hui-Feng; Xie, Ya-Ping; Lu, Gen

    2017-09-25

    Mycoplasma pneumoniae (MP) is a leading cause of community-acquired pneumonia in children and young adults. Although MP pneumonia is usually benign and self-limited, in some cases it can develop into life-threating refractory MP pneumonia (RMPP). However, the pathogenesis of RMPP is poorly understood. The identification and characterization of proteins related to RMPP could provide a proof of principle to facilitate appropriate diagnostic and therapeutic strategies for treating paients with MP. In this study, we used a quantitative proteomic technique (iTRAQ) to analyze MP-related proteins in serum samples from 5 patients with RMPP, 5 patients with non-refractory MP pneumonia (NRMPP), and 5 healthy children. Functional classification, sub-cellular localization, and protein interaction network analysis were carried out based on protein annotation through evolutionary relationship (PANTHER) and Cytoscape analysis. A total of 260 differentially expressed proteins were identified in the RMPP and NRMPP groups. Compared to the control group, the NRMPP and RMPP groups showed 134 (70 up-regulated and 64 down-regulated) and 126 (63 up-regulated and 63 down-regulated) differentially expressed proteins, respectively. The complex functional classification and protein interaction network of the identified proteins reflected the complex pathogenesis of RMPP. Our study provides the first comprehensive proteome map of RMPP-related proteins from MP pneumonia. These profiles may be useful as part of a diagnostic panel, and the identified proteins provide new insights into the pathological mechanisms underlying RMPP.

  12. Proteomic identification of CIB1 as a potential diagnostic factor in ...

    Indian Academy of Sciences (India)

    Proteomic identification of CIB1 as a potential diagnostic factor in hepatocellular carcinoma. Tong Junrong Zhou Huancheng H E Feng Gao Yi Yang Xiaoqin Luo Zhengmao Zhang Hong Zeng Jianying Wang Yin Huang Yuanhang Zhang Jianlin Sun Longhua He Guolin. Articles Volume 36 Issue 4 September 2011 pp 659- ...

  13. A Proof of Concept to Bridge the Gap between Mass Spectrometry Imaging, Protein Identification and Relative Quantitation: MSI~LC-MS/MS-LF

    Directory of Open Access Journals (Sweden)

    Laëtitia Théron

    2016-10-01

    Full Text Available Mass spectrometry imaging (MSI is a powerful tool to visualize the spatial distribution of molecules on a tissue section. The main limitation of MALDI-MSI of proteins is the lack of direct identification. Therefore, this study focuses on a MSI~LC-MS/MS-LF workflow to link the results from MALDI-MSI with potential peak identification and label-free quantitation, using only one tissue section. At first, we studied the impact of matrix deposition and laser ablation on protein extraction from the tissue section. Then, we did a back-correlation of the m/z of the proteins detected by MALDI-MSI to those identified by label-free quantitation. This allowed us to compare the label-free quantitation of proteins obtained in LC-MS/MS with the peak intensities observed in MALDI-MSI. We managed to link identification to nine peaks observed by MALDI-MSI. The results showed that the MSI~LC-MS/MS-LF workflow (i allowed us to study a representative muscle proteome compared to a classical bottom-up workflow; and (ii was sparsely impacted by matrix deposition and laser ablation. This workflow, performed as a proof-of-concept, suggests that a single tissue section can be used to perform MALDI-MSI and protein extraction, identification, and relative quantitation.

  14. Optimized Clinical Use of RNALater and FFPE Samples for Quantitative Proteomics

    DEFF Research Database (Denmark)

    Bennike, Tue Bjerg; Kastaniegaard, Kenneth; Padurariu, Simona

    2015-01-01

    Introduction and Objectives The availability of patient samples is essential for clinical proteomic research. Biobanks worldwide store mainly samples stabilized in RNAlater as well as formalin-fixed and paraffin embedded (FFPE) biopsies. Biobank material is a potential source for clinical...... we compare to FFPE and frozen samples being the control. Methods From the sigmoideum of two healthy participants’ twenty-four biopsies were extracted using endoscopy. The biopsies was stabilized either by being directly frozen, RNAlater, FFPE or incubated for 30 min at room temperature prior to FFPE...... information. Conclusion We have demonstrated that quantitative proteome analysis and pathway mapping of samples stabilized in RNAlater as well as by FFPE is feasible with minimal impact on the quality of protein quantification and post-translational modifications....

  15. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of Bacillus subtilis

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kumar, C.; Gnad, F.

    2010-01-01

    We applied stable isotope labeling by amino acids in cell culture (SILAC) to large-scale quantitative proteomics analyses of the model bacterium Bacillus subtilis in two physiological conditions: growth on succinate and growth under phosphate starvation. Using a B. subtilis strain auxotrophic...... of the most comprehensive quantitative proteomics studies in bacteria, covering more than 75% of the B. subtilis genes expressed in the log phase of growth. Furthermore, we detect and quantify dynamics of 35 Ser/Thr/Tyr phosphorylation sites under growth on succinate, and 10 phosphorylation sites under...

  16. Progress on the HUPO Draft Human Proteome: 2017 Metrics of the Human Proteome Project.

    Science.gov (United States)

    Omenn, Gilbert S; Lane, Lydie; Lundberg, Emma K; Overall, Christopher M; Deutsch, Eric W

    2017-12-01

    The Human Proteome Organization (HUPO) Human Proteome Project (HPP) continues to make progress on its two overall goals: (1) completing the protein parts list, with an annual update of the HUPO draft human proteome, and (2) making proteomics an integrated complement to genomics and transcriptomics throughout biomedical and life sciences research. neXtProt version 2017-01-23 has 17 008 confident protein identifications (Protein Existence [PE] level 1) that are compliant with the HPP Guidelines v2.1 ( https://hupo.org/Guidelines ), up from 13 664 in 2012-12 and 16 518 in 2016-04. Remaining to be found by mass spectrometry and other methods are 2579 "missing proteins" (PE2+3+4), down from 2949 in 2016. PeptideAtlas 2017-01 has 15 173 canonical proteins, accounting for nearly all of the 15 290 PE1 proteins based on MS data. These resources have extensive data on PTMs, single amino acid variants, and splice isoforms. The Human Protein Atlas v16 has 10 492 highly curated protein entries with tissue and subcellular spatial localization of proteins and transcript expression. Organ-specific popular protein lists have been generated for broad use in quantitative targeted proteomics using SRM-MS or DIA-SWATH-MS studies of biology and disease.

  17. Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Yoichiro Fukao

    2016-01-01

    Full Text Available The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex, respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots.

  18. Quantitative proteome changes in Arabidopsis thaliana suspension-cultured cells in response to plant natriuretic peptides

    KAUST Repository

    Turek, Ilona; Wheeler, Janet I.; Gehring, Christoph A; Irving, Helen R.; Marondedze, Claudius

    2015-01-01

    Proteome changes in the Arabidopsis thaliana suspension cells in response to the A. thaliana plant natriuretic peptide (PNP), AtPNP-A (At2g18660) were assessed using quantitative proteomics employing tandem mass tag (TMT) labeling and tandem mass spectrometry (LC–MS/MS). In this study, we characterized temporal responses of suspension-cultured cells to 1 nM and 10 pM AtPNP-A at 0, 10 and 30 min post-treatment. Both concentrations we found to yield a distinct differential proteome signature. The data shown in this article are associated with the article “Plant natriuretic peptides induce a specific set of proteins diagnostic for an adaptive response to abiotic stress” by Turek et al. (Front. Plant Sci. 5 (2014) 661) and have been deposited to the ProteomeXchange with identifier PXD001386.

  19. Quantitative proteome changes in Arabidopsis thaliana suspension-cultured cells in response to plant natriuretic peptides

    KAUST Repository

    Turek, Ilona

    2015-06-30

    Proteome changes in the Arabidopsis thaliana suspension cells in response to the A. thaliana plant natriuretic peptide (PNP), AtPNP-A (At2g18660) were assessed using quantitative proteomics employing tandem mass tag (TMT) labeling and tandem mass spectrometry (LC–MS/MS). In this study, we characterized temporal responses of suspension-cultured cells to 1 nM and 10 pM AtPNP-A at 0, 10 and 30 min post-treatment. Both concentrations we found to yield a distinct differential proteome signature. The data shown in this article are associated with the article “Plant natriuretic peptides induce a specific set of proteins diagnostic for an adaptive response to abiotic stress” by Turek et al. (Front. Plant Sci. 5 (2014) 661) and have been deposited to the ProteomeXchange with identifier PXD001386.

  20. Proteomic identification of gender molecular markers in Bothrops jararaca venom.

    Science.gov (United States)

    Zelanis, André; Menezes, Milene C; Kitano, Eduardo S; Liberato, Tarcísio; Tashima, Alexandre K; Pinto, Antonio F M; Sherman, Nicholas E; Ho, Paulo L; Fox, Jay W; Serrano, Solange M T

    2016-04-29

    Variation in the snake venom proteome is a well-documented phenomenon; however, sex-based variation in the venom proteome/peptidome is poorly understood. Bothrops jararaca shows significant sexual size dimorphism and here we report a comparative proteomic/peptidomic analysis of venoms from male and female specimens and correlate it with the evaluation of important venom features. We demonstrate that adult male and female venoms have distinct profiles of proteolytic activity upon fibrinogen and gelatin. These differences were clearly reflected in their different profiles of SDS-PAGE, two-dimensional electrophoresis and glycosylated proteins. Identification of differential protein bands and spots between male or female venoms revealed gender-specific molecular markers. However, the proteome comparison by in-solution trypsin digestion and label-free quantification analysis showed that the overall profiles of male and female venoms are similar at the polypeptide chain level but show striking variation regarding their attached carbohydrate moieties. The analysis of the peptidomes of male and female venoms revealed different contents of peptides, while the bradykinin potentiating peptides (BPPs) showed rather similar profiles. Furthermore we confirmed the ubiquitous presence of four BPPs that lack the C-terminal Q-I-P-P sequence only in the female venom as gender molecular markers. As a result of these studies we demonstrate that the sexual size dimorphism is associated with differences in the venom proteome/peptidome in B. jararaca species. Moreover, gender-based variations contributed by different glycosylation levels in toxins impact venom complexity. Bothrops jararaca is primarily a nocturnal and generalist snake species, however, it exhibits a notable ontogenetic shift in diet and in venom proteome upon neonate to adult transition. As is common in the Bothrops genus, B. jararaca shows significant sexual dimorphism in snout-vent length and weight, with females being

  1. Identification and characterization of N-glycosylated proteins using proteomics

    DEFF Research Database (Denmark)

    Selby, David S; Larsen, Martin R; Calvano, Cosima Damiana

    2008-01-01

    and analysis of glycoproteins and glycopeptides. Combinations of affinity-enrichment techniques, chemical and biochemical protocols, and advanced mass spectrometry facilitate detailed glycoprotein analysis in proteomics, from fundamental biological studies to biomarker discovery in biomedicine....... is a complex task and is currently achieved by mass spectrometry-based methods that enable identification of glycoproteins and localization, classification, and analysis of individual glycan structures on proteins. In this chapter we briefly introduce a range of analytical technologies for recovery...

  2. Proteomic maps of breast cancer subtypes

    DEFF Research Database (Denmark)

    Tyanova, Stefka; Albrechtsen, Reidar; Kronqvist, Pauliina

    2016-01-01

    Systems-wide profiling of breast cancer has almost always entailed RNA and DNA analysis by microarray and sequencing techniques. Marked developments in proteomic technologies now enable very deep profiling of clinical samples, with high identification and quantification accuracy. We analysed 40...... oestrogen receptor positive (luminal), Her2 positive and triple negative breast tumours and reached a quantitative depth of >10,000 proteins. These proteomic profiles identified functional differences between breast cancer subtypes, related to energy metabolism, cell growth, mRNA translation and cell......-cell communication. Furthermore, we derived a signature of 19 proteins, which differ between the breast cancer subtypes, through support vector machine (SVM)-based classification and feature selection. Remarkably, only three proteins of the signature were associated with gene copy number variations and eleven were...

  3. Tissue-based quantitative proteome analysis of human hepatocellular carcinoma using tandem mass tags.

    Science.gov (United States)

    Megger, Dominik Andre; Rosowski, Kristin; Ahrens, Maike; Bracht, Thilo; Eisenacher, Martin; Schlaak, Jörg F; Weber, Frank; Hoffmann, Andreas-Claudius; Meyer, Helmut E; Baba, Hideo A; Sitek, Barbara

    2017-03-01

    Human hepatocellular carcinoma (HCC) is a severe malignant disease, and accurate and reliable diagnostic markers are still needed. This study was aimed for the discovery of novel marker candidates by quantitative proteomics. Proteomic differences between HCC and nontumorous liver tissue were studied by mass spectrometry. Among several significantly upregulated proteins, translocator protein 18 (TSPO) and Ras-related protein Rab-1A (RAB1A) were selected for verification by immunohistochemistry in an independent cohort. For RAB1A, a high accuracy for the discrimination of HCC and nontumorous liver tissue was observed. RAB1A was verified to be a potent biomarker candidate for HCC.

  4. Thermo-msf-parser: an open source Java library to parse and visualize Thermo Proteome Discoverer msf files.

    Science.gov (United States)

    Colaert, Niklaas; Barsnes, Harald; Vaudel, Marc; Helsens, Kenny; Timmerman, Evy; Sickmann, Albert; Gevaert, Kris; Martens, Lennart

    2011-08-05

    The Thermo Proteome Discoverer program integrates both peptide identification and quantification into a single workflow for peptide-centric proteomics. Furthermore, its close integration with Thermo mass spectrometers has made it increasingly popular in the field. Here, we present a Java library to parse the msf files that constitute the output of Proteome Discoverer. The parser is also implemented as a graphical user interface allowing convenient access to the information found in the msf files, and in Rover, a program to analyze and validate quantitative proteomics information. All code, binaries, and documentation is freely available at http://thermo-msf-parser.googlecode.com.

  5. A qualitative and quantitative evaluation of the peptide characteristics of microwave- and ultrasound-assisted digestion in discovery and targeted proteomic analyses.

    Science.gov (United States)

    Guo, Zhengguang; Cheng, Jie; Sun, Haidan; Sun, Wei

    2017-08-30

    Fast digestion methods can dramatically accelerate enzyme digestion and increase the throughput of proteomic analysis. However, the peptide characteristics of fast digestion methods and their performance in discovery and targeted proteomic analysis must be systematically evaluated. Three digestion methods, including overnight digestion, microwave-assisted protein enzymatic digestion (MAPED), and high-intensity focused ultrasonic-assisted enzymatic digestion (HIFUSAED), in trypsin or in trypsin/Lys-C were comprehensively compared in both discovery and targeted proteomics analysis using the HeLa cell proteome. In discovery proteomic analysis, the highest numbers of peptides and proteins were identified when the sample was digested via the MAPED method with trypsin/Lys-C. The fast digestion methods showed a higher mis-cleavage rate and a lower semi-tryptic rate than the overnight digestion method. In both label-free quantitative analysis and targeted proteomic analysis, both fully cleaved peptides (FCPs) and mis-cleaved peptides (MCPs) from the fast digestion methods and the overnight digestion method showed good reproducibility if they showed good abundance. When both the FCPs and MCPs were included in the analysis, the MAPED with trypsin/Lys-C method showed the best results for both discovery proteomic analysis and relative quantitative targeted proteomic analysis. These results will be beneficial for the application of fast digestion methods to proteomics. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics.

    Science.gov (United States)

    Prudova, Anna; auf dem Keller, Ulrich; Butler, Georgina S; Overall, Christopher M

    2010-05-01

    Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein isobaric tag for relative and absolute quantitation (iTRAQ) labeling method that simultaneously labels and blocks all primary amines including protein N- termini and lysine side chains. Blocking lysines limits trypsin cleavage to arginine, which effectively elongates the proteolytically truncated peptides for improved MS/MS analysis and peptide identification. Incorporating iTRAQ whole protein labeling with terminal amine isotopic labeling of substrates (iTRAQ-TAILS) to enrich the N-terminome by negative selection of the blocked mature original N-termini and neo-N-termini has many advantages. It enables simultaneous characterization of the natural N-termini of proteins, their N-terminal modifications, and proteolysis product and cleavage site identification. Furthermore, iTRAQ-TAILS also enables multiplex N-terminomics analysis of up to eight samples and allows for quantification in MS2 mode, thus preventing an increase in spectral complexity and extending proteome coverage by signal amplification of low abundance proteins. We compared the substrate degradomes of two closely related matrix metalloproteinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), in fibroblast secreted proteins. Among 3,152 unique N-terminal peptides identified corresponding to 1,054 proteins, we detected 201 cleavage products for MMP-2 and unexpectedly only 19 for the homologous MMP-9 under identical conditions. Novel substrates identified and biochemically validated include insulin-like growth factor binding protein-4, complement C1r component A, galectin-1, dickkopf-related protein-3, and thrombospondin-2. Hence, N-terminomics analyses

  7. Quantitative proteomic analysis of serum from pregnant women carrying a fetus with conotruncal heart defect using isobaric tags for relative and absolute quantitation (iTRAQ labeling.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available To identify differentially expressed proteins from serum of pregnant women carrying a conotruncal heart defects (CTD fetus, using proteomic analysis.The study was conducted using a nested case-control design. The 5473 maternal serum samples were collected at 14-18 weeks of gestation. The serum from 9 pregnant women carrying a CTD fetus, 10 with another CHD (ACHD fetus, and 11 with a normal fetus were selected from the above samples, and analyzed by using isobaric tags for relative and absolute quantitation (iTRAQ coupled with two-dimensional liquid chromatography-tandem mass spectrometry(2D LC-MS/MS. The differentially expressed proteins identified by iTRAQ were further validated with Western blot.A total of 105 unique proteins present in the three groups were identified, and relative expression data were obtained for 92 of them with high confidence by employing the iTRAQ-based experiments. The downregulation of gelsolin in maternal serum of fetus with CTD was further verified by Western blot.The identification of differentially expressed protein gelsolin in the serum of the pregnant women carrying a CTD fetus by using proteomic technology may be able to serve as a foundation to further explore the biomarker for detection of CTD fetus from the maternal serum.

  8. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Abdallah, Cosette; Valot, Benoit; Guillier, Christelle; Mounier, Arnaud; Balliau, Thierry; Zivy, Michel; van Tuinen, Diederik; Renaut, Jenny; Wipf, Daniel; Dumas-Gaudot, Eliane; Recorbet, Ghislaine

    2014-08-28

    Arbuscular mycorrhizal (AM) symbiosis that associates roots of most land plants with soil-borne fungi (Glomeromycota), is characterized by reciprocal nutritional benefits. Fungal colonization of plant roots induces massive changes in cortical cells where the fungus differentiates an arbuscule, which drives proliferation of the plasma membrane. Despite the recognized importance of membrane proteins in sustaining AM symbiosis, the root microsomal proteome elicited upon mycorrhiza still remains to be explored. In this study, we first examined the qualitative composition of the root membrane proteome of Medicago truncatula after microsome enrichment and subsequent in depth analysis by GeLC-MS/MS. The results obtained highlighted the identification of 1226 root membrane protein candidates whose cellular and functional classifications predispose plastids and protein synthesis as prevalent organelle and function, respectively. Changes at the protein abundance level between the membrane proteomes of mycorrhizal and nonmycorrhizal roots were further monitored by spectral counting, which retrieved a total of 96 proteins that displayed a differential accumulation upon AM symbiosis. Besides the canonical markers of the periarbuscular membrane, new candidates supporting the importance of membrane trafficking events during mycorrhiza establishment/functioning were identified, including flotillin-like proteins. The data have been deposited to the ProteomeXchange with identifier PXD000875. During arbuscular mycorrhizal symbiosis, one of the most widespread mutualistic associations in nature, the endomembrane system of plant roots is believed to undergo qualitative and quantitative changes in order to sustain both the accommodation process of the AM fungus within cortical cells and the exchange of nutrients between symbionts. Large-scale GeLC-MS/MS proteomic analysis of the membrane fractions from mycorrhizal and nonmycorrhizal roots of M. truncatula coupled to spectral counting

  9. Label-Free Quantitative Proteomic Analysis of Harmless and Pathogenic Strains of Infectious Microalgae, Prototheca spp.

    Directory of Open Access Journals (Sweden)

    Jayaseelan Murugaiyan

    2016-12-01

    Full Text Available Microalgae of the genus Prototheca (P. spp are associated with rare algal infections of invertebrates termed protothecosis. Among the seven generally accepted species, P. zopfii genotype 2 (GT2 is associated with a severe form of bovine mastitis while P. blaschkeae causes the mild and sub-clinical form of mastitis. The reason behind the infectious nature of P. zopfii GT2, while genotype 1 (GT1 remains non-infectious, is not known. Therefore, in the present study we investigated the protein expression level difference between the genotypes of P. zopfii and P. blaschkeae. Cells were cultured to the mid-exponential phase, harvested, and processed for LC-MS analysis. Peptide data was acquired on an LTQ Orbitrap Velos, raw spectra were quantitatively analyzed with MaxQuant software and matching with the reference database of Chlorella variabilis and Auxenochlorella protothecoides resulted in the identification of 226 proteins. Comparison of an environmental strain with infectious strains resulted in the identification of 51 differentially expressed proteins related to carbohydrate metabolism, energy production and protein translation. The expression level of Hsp70 proteins and their role in the infectious process is worth further investigation. All mass spectrometry data are available via ProteomeXchange with identifier PXD005305.

  10. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    NARCIS (Netherlands)

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.; Acha, Moshe Ray; Newton-Cheh, Christopher; Pfeufer, Arne; Lyneh, Stacey N.; Olesen, Soren-Peter; Brunak, Soren; Ellinor, Patrick T.; Jukema, J. Wouter; Trompet, Stella; Ford, Ian; Macfarlane, Peter W.; Krijthe, Bouwe P.; Hofman, Albert; Uitterlinden, Andre G.; Stricker, Bruno H.; Nathoe, Hendrik M.; Spiering, Wilko; Daly, Mark J.; Asselbergs, Ikea W.; van der Harst, Pim; Milan, David J.; de Bakker, Paul I. W.; Lage, Kasper; Olsen, Jesper V.

    Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes

  11. The Arabidopsis thaliana Cyclic-Nucleotide-Dependent Response – a Quantitative Proteomic and Phosphoproteomic Analysis

    KAUST Repository

    Alqurashi, May M.

    2013-11-01

    Protein phosphorylation governs many regulatory pathways and an increasing number of kinases, proteins that transfer phosphate groups, are in turn activated by cyclic nucleotides. One of the cyclic nucleotides, cyclic adenosine monophosphate (cAMP), has been shown to be a second messenger in abiotic and biotic stress responses. However, little is known about the precise role of cAMP in plants and in the down-stream activation of kinases, and hence cAMP-dependent phosphorylation. To increase our understanding of the role of cAMP, proteomic and phosphoproteomic profiles of Arabidopsis thaliana suspension culture cells were analyzed before and after treatment of cells with two different concentrations of 8-Bromo-cAMP (1 µM and 100 nM) and over a time-course of one hour. A comparative quantitative analysis was undertaken using two- dimensional gel electrophoresis and the Delta 2D software (DECODON) followed by protein spot identification by tandem mass spectrometry combined with Mascot and Scaffold. Differentially expressed proteins and regulated phosphoproteins were categorized according to their biological function using bioinformatics tools. The results revealed that the treatment with 1 µM and 100 nM 8-Bromo-cAMP was sufficient to induce specific concentration- and time-dependent changes at the proteome and phosphoproteome levels. In particular, different phosphorylation patterns were observed overtime preferentially affecting proteins in a number of functional categories, notably phosphatases, proteins that remove phosphate groups. This suggests that cAMP both transiently activates and deactivates proteins through specific phosphorylation events and provides new insight into biological mechanisms and functions at the systems level.

  12. LFQuant: a label-free fast quantitative analysis tool for high-resolution LC-MS/MS proteomics data.

    Science.gov (United States)

    Zhang, Wei; Zhang, Jiyang; Xu, Changming; Li, Ning; Liu, Hui; Ma, Jie; Zhu, Yunping; Xie, Hongwei

    2012-12-01

    Database searching based methods for label-free quantification aim to reconstruct the peptide extracted ion chromatogram based on the identification information, which can limit the search space and thus make the data processing much faster. The random effect of the MS/MS sampling can be remedied by cross-assignment among different runs. Here, we present a new label-free fast quantitative analysis tool, LFQuant, for high-resolution LC-MS/MS proteomics data based on database searching. It is designed to accept raw data in two common formats (mzXML and Thermo RAW), and database search results from mainstream tools (MASCOT, SEQUEST, and X!Tandem), as input data. LFQuant can handle large-scale label-free data with fractionation such as SDS-PAGE and 2D LC. It is easy to use and provides handy user interfaces for data loading, parameter setting, quantitative analysis, and quantitative data visualization. LFQuant was compared with two common quantification software packages, MaxQuant and IDEAL-Q, on the replication data set and the UPS1 standard data set. The results show that LFQuant performs better than them in terms of both precision and accuracy, and consumes significantly less processing time. LFQuant is freely available under the GNU General Public License v3.0 at http://sourceforge.net/projects/lfquant/. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Optimized protein extraction for quantitative proteomics of yeasts.

    Directory of Open Access Journals (Sweden)

    Tobias von der Haar

    2007-10-01

    Full Text Available The absolute quantification of intracellular protein levels is technically demanding, but has recently become more prominent because novel approaches like systems biology and metabolic control analysis require knowledge of these parameters. Current protocols for the extraction of proteins from yeast cells are likely to introduce artifacts into quantification procedures because of incomplete or selective extraction.We have developed a novel procedure for protein extraction from S. cerevisiae based on chemical lysis and simultaneous solubilization in SDS and urea, which can extract the great majority of proteins to apparent completeness. The procedure can be used for different Saccharomyces yeast species and varying growth conditions, is suitable for high-throughput extraction in a 96-well format, and the resulting extracts can easily be post-processed for use in non-SDS compatible procedures like 2D gel electrophoresis.An improved method for quantitative protein extraction has been developed that removes some of the sources of artefacts in quantitative proteomics experiments, while at the same time allowing novel types of applications.

  14. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.

    Science.gov (United States)

    Eckhard, Ulrich; Marino, Giada; Butler, Georgina S; Overall, Christopher M

    2016-03-01

    Proteolytic processing is a pervasive and irreversible post-translational modification that expands the protein universe by generating new proteoforms (protein isoforms). Unlike signal peptide or prodomain removal, protease-generated proteoforms can rarely be predicted from gene sequences. Positional proteomic techniques that enrich for N- or C-terminal peptides from proteomes are indispensable for a comprehensive understanding of a protein's function in biological environments since protease cleavage frequently results in altered protein activity and localization. Proteases often process other proteases and protease inhibitors which perturbs proteolytic networks and potentiates the initial cleavage event to affect other molecular networks and cellular processes in physiological and pathological conditions. This review is aimed at researchers with a keen interest in state of the art systems level positional proteomic approaches that: (i) enable the study of complex protease-protease, protease-inhibitor and protease-substrate crosstalk and networks; (ii) allow the identification of proteolytic signatures as candidate disease biomarkers; and (iii) are expected to fill the Human Proteome Project missing proteins gap. We predict that these methodologies will be an integral part of emerging precision medicine initiatives that aim to customize healthcare, converting reactive medicine into a personalized and proactive approach, improving clinical care and maximizing patient health and wellbeing, while decreasing health costs by eliminating ineffective therapies, trial-and-error prescribing, and adverse drug effects. Such initiatives require quantitative and functional proteome profiling and dynamic disease biomarkers in addition to current pharmacogenomics approaches. With proteases at the pathogenic center of many diseases, high-throughput protein termini identification techniques such as TAILS (Terminal Amine Isotopic Labeling of Substrates) and COFRADIC (COmbined

  15. Quantitative proteomic analysis of ibuprofen-degrading Patulibacter sp. strain I11

    DEFF Research Database (Denmark)

    Almeida, Barbara; Kjeldal, Henrik; Lolas, Ihab Bishara Yousef

    2013-01-01

    was identified and quantified by gel based shotgun-proteomics. In total 251 unique proteins were quantitated using this approach. Biological process and pathway analysis indicated a number of proteins that were up-regulated in response to active degradation of ibuprofen, some of them are known to be involved...... in the degradation of aromatic compounds. Data analysis revealed that several of these proteins are likely involved in ibuprofen degradation by Patulibacter sp. strain I11.......Ibuprofen is the third most consumed pharmaceutical drug in the world. Several isolates have been shown to degrade ibuprofen, but very little is known about the biochemistry of this process. This study investigates the degradation of ibuprofen by Patulibacter sp. strain I11 by quantitative...

  16. Transcriptome and quantitative proteome analysis reveals molecular processes associated with larval metamorphosis in the polychaete pseudopolydora vexillosa

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2013-03-01

    Larval growth of the polychaete worm Pseudopolydora vexillosa involves the formation of segment-specific structures. When larvae attain competency to settle, they discard swimming chaetae and secrete mucus. The larvae build tubes around themselves and metamorphose into benthic juveniles. Understanding the molecular processes, which regulate this complex and unique transition, remains a major challenge because of the limited molecular information available. To improve this situation, we conducted high-throughput RNA sequencing and quantitative proteome analysis of the larval stages of P. vexillosa. Based on gene ontology (GO) analysis, transcripts related to cellular and metabolic processes, binding, and catalytic activities were highly represented during larval-adult transition. Mitogen-activated protein kinase (MAPK), calcium-signaling, Wnt/β-catenin, and notch signaling metabolic pathways were enriched in transcriptome data. Quantitative proteomics identified 107 differentially expressed proteins in three distinct larval stages. Fourteen and 53 proteins exhibited specific differential expression during competency and metamorphosis, respectively. Dramatic up-regulation of proteins involved in signaling, metabolism, and cytoskeleton functions were found during the larval-juvenile transition. Several proteins involved in cell signaling, cytoskeleton and metabolism were up-regulated, whereas proteins related to transcription and oxidative phosphorylation were down-regulated during competency. The integration of high-throughput RNA sequencing and quantitative proteomics allowed a global scale analysis of larval transcripts/proteins associated molecular processes in the metamorphosis of polychaete worms. Further, transcriptomic and proteomic insights provide a new direction to understand the fundamental mechanisms that regulate larval metamorphosis in polychaetes. © 2013 American Chemical Society.

  17. Transcriptome and quantitative proteome analysis reveals molecular processes associated with larval metamorphosis in the polychaete pseudopolydora vexillosa

    KAUST Repository

    Chandramouli, Kondethimmanahalli; Sun, Jin; Mok, FloraSy; Liu, Lingli; Qiu, Jianwen; Ravasi, Timothy; Qian, Peiyuan

    2013-01-01

    Larval growth of the polychaete worm Pseudopolydora vexillosa involves the formation of segment-specific structures. When larvae attain competency to settle, they discard swimming chaetae and secrete mucus. The larvae build tubes around themselves and metamorphose into benthic juveniles. Understanding the molecular processes, which regulate this complex and unique transition, remains a major challenge because of the limited molecular information available. To improve this situation, we conducted high-throughput RNA sequencing and quantitative proteome analysis of the larval stages of P. vexillosa. Based on gene ontology (GO) analysis, transcripts related to cellular and metabolic processes, binding, and catalytic activities were highly represented during larval-adult transition. Mitogen-activated protein kinase (MAPK), calcium-signaling, Wnt/β-catenin, and notch signaling metabolic pathways were enriched in transcriptome data. Quantitative proteomics identified 107 differentially expressed proteins in three distinct larval stages. Fourteen and 53 proteins exhibited specific differential expression during competency and metamorphosis, respectively. Dramatic up-regulation of proteins involved in signaling, metabolism, and cytoskeleton functions were found during the larval-juvenile transition. Several proteins involved in cell signaling, cytoskeleton and metabolism were up-regulated, whereas proteins related to transcription and oxidative phosphorylation were down-regulated during competency. The integration of high-throughput RNA sequencing and quantitative proteomics allowed a global scale analysis of larval transcripts/proteins associated molecular processes in the metamorphosis of polychaete worms. Further, transcriptomic and proteomic insights provide a new direction to understand the fundamental mechanisms that regulate larval metamorphosis in polychaetes. © 2013 American Chemical Society.

  18. Enhanced detection method for corneal protein identification using shotgun proteomics

    Directory of Open Access Journals (Sweden)

    Schlager John J

    2009-06-01

    Full Text Available Abstract Background The cornea is a specialized transparent connective tissue responsible for the majority of light refraction and image focus for the retina. There are three main layers of the cornea: the epithelium that is exposed and acts as a protective barrier for the eye, the center stroma consisting of parallel collagen fibrils that refract light, and the endothelium that is responsible for hydration of the cornea from the aqueous humor. Normal cornea is an immunologically privileged tissue devoid of blood vessels, but injury can produce a loss of these conditions causing invasion of other processes that degrade the homeostatic properties resulting in a decrease in the amount of light refracted onto the retina. Determining a measure and drift of phenotypic cornea state from normal to an injured or diseased state requires knowledge of the existing protein signature within the tissue. In the study of corneal proteins, proteomics procedures have typically involved the pulverization of the entire cornea prior to analysis. Separation of the epithelium and endothelium from the core stroma and performing separate shotgun proteomics using liquid chromatography/mass spectrometry results in identification of many more proteins than previously employed methods using complete pulverized cornea. Results Rabbit corneas were purchased, the epithelium and endothelium regions were removed, proteins processed and separately analyzed using liquid chromatography/mass spectrometry. Proteins identified from separate layers were compared against results from complete corneal samples. Protein digests were separated using a six hour liquid chromatographic gradient and ion-trap mass spectrometry used for detection of eluted peptide fractions. The SEQUEST database search results were filtered to allow only proteins with match probabilities of equal or better than 10-3 and peptides with a probability of 10-2 or less with at least two unique peptides isolated within

  19. Parasites, proteomes and systems: has Descartes' clock run out of time?

    Science.gov (United States)

    Wastling, J M; Armstrong, S D; Krishna, R; Xia, D

    2012-08-01

    Systems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we discuss how well positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is readily accessible to the user-community and can be translated and integrated with other relevant data types.

  20. Toward improved peptide feature detection in quantitative proteomics using stable isotope labeling.

    Science.gov (United States)

    Nilse, Lars; Sigloch, Florian Christoph; Biniossek, Martin L; Schilling, Oliver

    2015-08-01

    Reliable detection of peptides in LC-MS data is a key algorithmic step in the analysis of quantitative proteomics experiments. While highly abundant peptides can be detected reliably by most modern software tools, there is much less agreement on medium and low-intensity peptides in a sample. The choice of software tools can have a big impact on the quantification of proteins, especially for proteins that appear in lower concentrations. However, in many experiments, it is precisely this region of less abundant but substantially regulated proteins that holds the biggest potential for discoveries. This is particularly true for discovery proteomics in the pharmacological sector with a specific interest in key regulatory proteins. In this viewpoint article, we discuss how the development of novel software algorithms allows us to study this region of the proteome with increased confidence. Reliable results are one of many aspects to be considered when deciding on a bioinformatics software platform. Deployment into existing IT infrastructures, compatibility with other software packages, scalability, automation, flexibility, and support need to be considered and are briefly addressed in this viewpoint article. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Quantitative proteomics reveals the central changes of wheat in response to powdery mildew.

    Science.gov (United States)

    Fu, Ying; Zhang, Hong; Mandal, Siddikun Nabi; Wang, Changyou; Chen, Chunhuan; Ji, Wanquan

    2016-01-01

    Powdery mildew (Pm), caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most important crop diseases, causing severe economic losses to wheat production worldwide. However, there are few reports about the proteomic response to Bgt infection in resistant wheat. Hence, quantitative proteomic analysis of N9134, a resistant wheat line, was performed to explore the molecular mechanism of wheat in defense against Bgt. Comparing the leaf proteins of Bgt-inoculated N9134 with that of mock-inoculated controls, a total of 2182 protein-species were quantified by iTRAQ at 24, 48 and 72h postinoculation (hpi) with Bgt, of which 394 showed differential accumulation. These differentially accumulated protein-species (DAPs) mainly included pathogenesis-related (PR) polypeptides, oxidative stress responsive proteins and components involved in primary metabolic pathways. KEGG enrichment analysis showed that phenylpropanoid biosynthesis, phenylalanine metabolism and photosynthesis-antenna proteins were the key pathways in response to Bgt infection. InterProScan 5 and the Gibbs Motif Sampler cluster 394 DAPs into eight conserved motifs, which shared leucine repeats and histidine sites in the sequence motifs. Moreover, eight separate protein-protein interaction (PPI) networks were predicted from STRING database. This study provides a powerful platform for further exploration of the molecular mechanism underlying resistant wheat responding to Bgt. Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive pathogenic disease in wheat-producing regions worldwide, resulting in severe yield reductions. Although many resistant wheat varieties have been cultivated, there are few reports about the proteomic response to Bgt infection in resistant wheat. Therefore, an iTRAQ-based quantitative proteomic analysis of a resistant wheat line (N9134) in response to Bgt infection has been performed. This paper provides new insights into the underlying molecular

  2. Efficient Isolation and Quantitative Proteomic Analysis of Cancer Cell Plasma Membrane Proteins for Identification of Metastasis-Associated Cell Surface Markers

    DEFF Research Database (Denmark)

    Lund, Rikke; Leth-Larsen, Rikke; Jensen, Ole N

    2009-01-01

    Cell surface membrane proteins are involved in central processes such as cell signaling, cell-cell interactions, ion and solute transport, and they seem to play a pivotal role in several steps of the metastatic process of cancer cells. The low abundance and hydrophobic nature of cell surface...... membrane proteins complicate their purification and identification by MS. We used two isogenic cell lines with opposite metastatic capabilities in nude mice to optimize cell surface membrane protein purification and to identify potential novel markers of metastatic cancer. The cell surface membrane...... proteins were isolated by centrifugation/ultracentrifugation steps, followed by membrane separation using a Percoll/sucrose density gradient. The gradient fractions containing the cell surface membrane proteins were identified by enzymatic assays. Stable isotope labeling of the proteome of the metastatic...

  3. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    Science.gov (United States)

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  4. EBprot: Statistical analysis of labeling-based quantitative proteomics data.

    Science.gov (United States)

    Koh, Hiromi W L; Swa, Hannah L F; Fermin, Damian; Ler, Siok Ghee; Gunaratne, Jayantha; Choi, Hyungwon

    2015-08-01

    Labeling-based proteomics is a powerful method for detection of differentially expressed proteins (DEPs). The current data analysis platform typically relies on protein-level ratios, which is obtained by summarizing peptide-level ratios for each protein. In shotgun proteomics, however, some proteins are quantified with more peptides than others, and this reproducibility information is not incorporated into the differential expression (DE) analysis. Here, we propose a novel probabilistic framework EBprot that directly models the peptide-protein hierarchy and rewards the proteins with reproducible evidence of DE over multiple peptides. To evaluate its performance with known DE states, we conducted a simulation study to show that the peptide-level analysis of EBprot provides better receiver-operating characteristic and more accurate estimation of the false discovery rates than the methods based on protein-level ratios. We also demonstrate superior classification performance of peptide-level EBprot analysis in a spike-in dataset. To illustrate the wide applicability of EBprot in different experimental designs, we applied EBprot to a dataset for lung cancer subtype analysis with biological replicates and another dataset for time course phosphoproteome analysis of EGF-stimulated HeLa cells with multiplexed labeling. Through these examples, we show that the peptide-level analysis of EBprot is a robust alternative to the existing statistical methods for the DE analysis of labeling-based quantitative datasets. The software suite is freely available on the Sourceforge website http://ebprot.sourceforge.net/. All MS data have been deposited in the ProteomeXchange with identifier PXD001426 (http://proteomecentral.proteomexchange.org/dataset/PXD001426/). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Quantitative and temporal proteome analysis of butyrate-treated colorectal cancer cells.

    Science.gov (United States)

    Tan, Hwee Tong; Tan, Sandra; Lin, Qingsong; Lim, Teck Kwang; Hew, Choy Leong; Chung, Maxey C M

    2008-06-01

    Colorectal cancer is one of the most common cancers in developed countries, and its incidence is negatively associated with high dietary fiber intake. Butyrate, a short-chain fatty acid fermentation by-product of fiber induces cell maturation with the promotion of growth arrest, differentiation, and/or apoptosis of cancer cells. The stimulation of cell maturation by butyrate in colonic cancer cells follows a temporal progression from the early phase of growth arrest to the activation of apoptotic cascades. Previously we performed two-dimensional DIGE to identify differentially expressed proteins induced by 24-h butyrate treatment of HCT-116 colorectal cancer cells. Herein we used quantitative proteomics approaches using iTRAQ (isobaric tags for relative and absolute quantitation), a stable isotope labeling methodology that enables multiplexing of four samples, for a temporal study of HCT-116 cells treated with butyrate. In addition, cleavable ICAT, which selectively tags cysteine-containing proteins, was also used, and the results complemented those obtained from the iTRAQ strategy. Selected protein targets were validated by real time PCR and Western blotting. A model is proposed to illustrate our findings from this temporal analysis of the butyrate-responsive proteome that uncovered several integrated cellular processes and pathways involved in growth arrest, apoptosis, and metastasis. These signature clusters of butyrate-regulated pathways are potential targets for novel chemopreventive and therapeutic drugs for treatment of colorectal cancer.

  6. Quantitative proteomics of Spodoptera frugiperda cells during growth and baculovirus infection.

    Directory of Open Access Journals (Sweden)

    Nuno Carinhas

    Full Text Available Baculovirus infection of Spodoptera frugiperda cells is a system of choice to produce a range of recombinant proteins, vaccines and, potentially, gene therapy vectors. While baculovirus genomes are well characterized, the genome of S. frugiperda is not sequenced and the virus-host molecular interplay is sparsely known. Herein, we describe the application of stable isotope labeling by amino acids in cell culture (SILAC to obtain the first comparative proteome quantitation of S. frugiperda cells during growth and early baculovirus infection. The proteome coverage was maximized by compiling a search database with protein annotations from insect species. Of interest were differentially proteins related to energy metabolism, endoplasmic reticulum and oxidative stress, yet not investigated in the scope of baculovirus infection. Further, the reduced expression of key viral-encoded proteins early in the infection cycle is suggested to be related with decreased viral replication at high cell density culture. These findings have implications for virological research and improvement of baculovirus-based bioprocesses.

  7. A proteomics approach to the identification of biomarkers for psoriasis utilising keratome biopsy

    DEFF Research Database (Denmark)

    Williamson, James C; Scheipers, Peter; Schwämmle, Veit

    2013-01-01

    a quantitative proteomics screen of four patients with psoriasis using stable isotope dimethyl labelling and identified over 50 proteins consistently altered in abundance in psoriasis lesional versus non-lesional skin. This includes several canonical psoriasis related proteins (e.g. S100A7 [Psoriasin] and FABP5...

  8. Identification of SUMO conjugation sites in the budding yeast proteome

    Directory of Open Access Journals (Sweden)

    Miguel Esteras

    2017-10-01

    Full Text Available Post-translational modification by the small ubiquitin-like modifier (SUMO is an important mechanism regulating protein function. Identification of SUMO conjugation sites on substrates is a challenging task. Here we employed a proteomic method to map SUMO acceptor lysines in budding yeast proteins. We report the identification of 257 lysine residues where SUMO is potentially attached. Amongst the hits, we identified already known SUMO substrates and sites, confirming the success of the approach. In addition, we tested several of the novel substrates using SUMO immunoprecipitation analysis and confirmed that the SUMO acceptor lysines identified in these proteins are indeed bona fide SUMOylation sites. We believe that the collection of SUMO sites presented here is an important resource for future functional studies of SUMOylation in yeast.

  9. Quantitative Proteomic Analysis of Hepatic Tissue of T2DM Rhesus Macaque

    Directory of Open Access Journals (Sweden)

    Tingfu Du

    2017-01-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a metabolic disorder that severely affects human health, but the pathogenesis of the disease remains unknown. The high-fat/high-sucrose diets combined with streptozotocin- (STZ- induced nonhuman primate animal model of diabetes are a valuable research source of T2DM. Here, we present a study of a STZ rhesus macaque model of T2DM that utilizes quantitative iTRAQ-based proteomic method. We compared the protein profiles in the liver of STZ-treated macaques as well as age-matched healthy controls. We identified 171 proteins differentially expressed in the STZ-treated groups, about 70 of which were documented as diabetes-related gene in previous studies. Pathway analyses indicated that the biological functions of differentially expressed proteins were related to glycolysis/gluconeogenesis, fatty acid metabolism, complements, and coagulation cascades. Expression change in tryptophan metabolism pathway was also found in this study which may be associations with diabetes. This study is the first to explore genome-wide protein expression in hepatic tissue of diabetes macaque model using HPLC-Q-TOF/MS technology. In addition to providing potential T2DM biomarkers, this quantitative proteomic study may also shed insights regarding the molecular pathogenesis of T2DM.

  10. Aspergillus niger membrane-associated proteome analysis for the identification of glucose transporters.

    Science.gov (United States)

    Sloothaak, J; Odoni, D I; de Graaff, L H; Martins Dos Santos, V A P; Schaap, P J; Tamayo-Ramos, J A

    2015-01-01

    The development of biological processes that replace the existing petrochemical-based industry is one of the biggest challenges in biotechnology. Aspergillus niger is one of the main industrial producers of lignocellulolytic enzymes, which are used in the conversion of lignocellulosic feedstocks into fermentable sugars. Both the hydrolytic enzymes responsible for lignocellulose depolymerisation and the molecular mechanisms controlling their expression have been well described, but little is known about the transport systems for sugar uptake in A. niger. Understanding the transportome of A. niger is essential to achieve further improvements at strain and process design level. Therefore, this study aims to identify and classify A. niger sugar transporters, using newly developed tools for in silico and in vivo analysis of its membrane-associated proteome. In the present research work, a hidden Markov model (HMM), that shows a good performance in the identification and segmentation of functionally validated glucose transporters, was constructed. The model (HMMgluT) was used to analyse the A. niger membrane-associated proteome response to high and low glucose concentrations at a low pH. By combining the abundance patterns of the proteins found in the A. niger plasmalemma proteome with their HMMgluT scores, two new putative high-affinity glucose transporters, denoted MstG and MstH, were identified. MstG and MstH were functionally validated and biochemically characterised by heterologous expression in a S. cerevisiae glucose transport null mutant. They were shown to be a high-affinity glucose transporter (K m = 0.5 ± 0.04 mM) and a very high-affinity glucose transporter (K m = 0.06 ± 0.005 mM), respectively. This study, focusing for the first time on the membrane-associated proteome of the industrially relevant organism A. niger, shows the global response of the transportome to the availability of different glucose concentrations. Analysis of the A. niger

  11. Spiked proteomic standard dataset for testing label-free quantitative software and statistical methods

    Directory of Open Access Journals (Sweden)

    Claire Ramus

    2016-03-01

    Full Text Available This data article describes a controlled, spiked proteomic dataset for which the “ground truth” of variant proteins is known. It is based on the LC-MS analysis of samples composed of a fixed background of yeast lysate and different spiked amounts of the UPS1 mixture of 48 recombinant proteins. It can be used to objectively evaluate bioinformatic pipelines for label-free quantitative analysis, and their ability to detect variant proteins with good sensitivity and low false discovery rate in large-scale proteomic studies. More specifically, it can be useful for tuning software tools parameters, but also testing new algorithms for label-free quantitative analysis, or for evaluation of downstream statistical methods. The raw MS files can be downloaded from ProteomeXchange with identifier http://www.ebi.ac.uk/pride/archive/projects/PXD001819. Starting from some raw files of this dataset, we also provide here some processed data obtained through various bioinformatics tools (including MaxQuant, Skyline, MFPaQ, IRMa-hEIDI and Scaffold in different workflows, to exemplify the use of such data in the context of software benchmarking, as discussed in details in the accompanying manuscript [1]. The experimental design used here for data processing takes advantage of the different spike levels introduced in the samples composing the dataset, and processed data are merged in a single file to facilitate the evaluation and illustration of software tools results for the detection of variant proteins with different absolute expression levels and fold change values.

  12. SAFER, an Analysis Method of Quantitative Proteomic Data, Reveals New Interactors of the C. elegans Autophagic Protein LGG-1.

    Science.gov (United States)

    Yi, Zhou; Manil-Ségalen, Marion; Sago, Laila; Glatigny, Annie; Redeker, Virginie; Legouis, Renaud; Mucchielli-Giorgi, Marie-Hélène

    2016-05-06

    Affinity purifications followed by mass spectrometric analysis are used to identify protein-protein interactions. Because quantitative proteomic data are noisy, it is necessary to develop statistical methods to eliminate false-positives and identify true partners. We present here a novel approach for filtering false interactors, named "SAFER" for mass Spectrometry data Analysis by Filtering of Experimental Replicates, which is based on the reproducibility of the replicates and the fold-change of the protein intensities between bait and control. To identify regulators or targets of autophagy, we characterized the interactors of LGG1, a ubiquitin-like protein involved in autophagosome formation in C. elegans. LGG-1 partners were purified by affinity, analyzed by nanoLC-MS/MS mass spectrometry, and quantified by a label-free proteomic approach based on the mass spectrometric signal intensity of peptide precursor ions. Because the selection of confident interactions depends on the method used for statistical analysis, we compared SAFER with several statistical tests and different scoring algorithms on this set of data. We show that SAFER recovers high-confidence interactors that have been ignored by the other methods and identified new candidates involved in the autophagy process. We further validated our method on a public data set and conclude that SAFER notably improves the identification of protein interactors.

  13. Final Report: Proteomic study of brassinosteroid responses in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiyong [Carnegie Inst. of Washington, Argonne, IL (United States); Burlingame, Alma [Univ. of California, San Francisco, CA (United States)

    2017-11-29

    The steroid hormone brassinosteroid (BR) is a major growth-promoting phytohormone. The specific aim of the current project is to identify BR-regulated proteins and characterize their functions in various aspects of plant growth, development, and adaptation. Our research has significantly advanced our understanding of how BR signal is transduced from the receptor at the cell surface to changes of nuclear gene expression and other cellular responses such as vesicle trafficking, as well as developmental transitions such as seed germination and flowering. We have also developed effective proteomic methods for quantitative analysis of protein phosphorylation and for identification of glycosylated proteins. Through this DOE funding, we have performed several proteomic experiments and made major discoveries.

  14. Quantitative multiplexed proteomics of Taenia solium cysts obtained from the skeletal muscle and central nervous system of pigs.

    Directory of Open Access Journals (Sweden)

    José Navarrete-Perea

    2017-09-01

    Full Text Available In human and porcine cysticercosis caused by the tapeworm Taenia solium, the larval stage (cysts can infest several tissues including the central nervous system (CNS and the skeletal muscles (SM. The cyst's proteomics changes associated with the tissue localization in the host tissues have been poorly studied. Quantitative multiplexed proteomics has the power to evaluate global proteome changes in response to different conditions. Here, using a TMT-multiplexed strategy we identified and quantified over 4,200 proteins in cysts obtained from the SM and CNS of pigs, of which 891 were host proteins. To our knowledge, this is the most extensive intermixing of host and parasite proteins reported for tapeworm infections.Several antigens in cysticercosis, i.e., GP50, paramyosin and a calcium-binding protein were enriched in skeletal muscle cysts. Our results suggested the occurrence of tissue-enriched antigen that could be useful in the improvement of the immunodiagnosis for cysticercosis. Using several algorithms for epitope detection, we selected 42 highly antigenic proteins enriched for each tissue localization of the cysts. Taking into account the fold changes and the antigen/epitope contents, we selected 10 proteins and produced synthetic peptides from the best epitopes. Nine peptides were recognized by serum antibodies of cysticercotic pigs, suggesting that those peptides are antigens. Mixtures of peptides derived from SM and CNS cysts yielded better results than mixtures of peptides derived from a single tissue location, however the identification of the 'optimal' tissue-enriched antigens remains to be discovered. Through machine learning technologies, we determined that a reliable immunodiagnostic test for porcine cysticercosis required at least five different antigenic determinants.

  15. Quantitative multiplexed proteomics of Taenia solium cysts obtained from the skeletal muscle and central nervous system of pigs.

    Science.gov (United States)

    Navarrete-Perea, José; Isasa, Marta; Paulo, Joao A; Corral-Corral, Ricardo; Flores-Bautista, Jeanette; Hernández-Téllez, Beatriz; Bobes, Raúl J; Fragoso, Gladis; Sciutto, Edda; Soberón, Xavier; Gygi, Steven P; Laclette, Juan P

    2017-09-01

    In human and porcine cysticercosis caused by the tapeworm Taenia solium, the larval stage (cysts) can infest several tissues including the central nervous system (CNS) and the skeletal muscles (SM). The cyst's proteomics changes associated with the tissue localization in the host tissues have been poorly studied. Quantitative multiplexed proteomics has the power to evaluate global proteome changes in response to different conditions. Here, using a TMT-multiplexed strategy we identified and quantified over 4,200 proteins in cysts obtained from the SM and CNS of pigs, of which 891 were host proteins. To our knowledge, this is the most extensive intermixing of host and parasite proteins reported for tapeworm infections.Several antigens in cysticercosis, i.e., GP50, paramyosin and a calcium-binding protein were enriched in skeletal muscle cysts. Our results suggested the occurrence of tissue-enriched antigen that could be useful in the improvement of the immunodiagnosis for cysticercosis. Using several algorithms for epitope detection, we selected 42 highly antigenic proteins enriched for each tissue localization of the cysts. Taking into account the fold changes and the antigen/epitope contents, we selected 10 proteins and produced synthetic peptides from the best epitopes. Nine peptides were recognized by serum antibodies of cysticercotic pigs, suggesting that those peptides are antigens. Mixtures of peptides derived from SM and CNS cysts yielded better results than mixtures of peptides derived from a single tissue location, however the identification of the 'optimal' tissue-enriched antigens remains to be discovered. Through machine learning technologies, we determined that a reliable immunodiagnostic test for porcine cysticercosis required at least five different antigenic determinants.

  16. Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics

    DEFF Research Database (Denmark)

    Akimov, Vyacheslav; Rigbolt, Kristoffer T G; Nielsen, Mogens M

    2011-01-01

    Protein ubiquitination is a dynamic reversible post-translational modification that plays a key role in the regulation of numerous cellular processes including signal transduction, endocytosis, cell cycle control, DNA repair and gene transcription. The conjugation of the small protein ubiquitin...... investigating ubiquitination on a proteomic scale, mainly due to the inherited complexity and heterogeneity of ubiquitination. We describe here a quantitative proteomics strategy based on the specificity of ubiquitin binding domains (UBDs) and Stable Isotope Labeling by Amino acids in Cell culture (SILAC...... as ubiquitination-dependent events in signaling pathways. In addition to a detailed seven time-point profile of EGFR ubiquitination over 30 minutes of ligand stimulation, our data determined prominent involvement of Lysine-63 ubiquitin branching in EGF signaling. Furthermore, we found two centrosomal proteins, PCM1...

  17. Evaluation of sample extraction methods for proteomics analysis of green algae Chlorella vulgaris.

    Science.gov (United States)

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-05-01

    Many protein extraction methods have been developed for plant proteome analysis but information is limited on the optimal protein extraction method from algae species. This study evaluated four protein extraction methods, i.e. direct lysis buffer method, TCA-acetone method, phenol method, and phenol/TCA-acetone method, using green algae Chlorella vulgaris for proteome analysis. The data presented showed that phenol/TCA-acetone method was superior to the other three tested methods with regards to shotgun proteomics. Proteins identified using shotgun proteomics were validated using sequential window acquisition of all theoretical fragment-ion spectra (SWATH) technique. Additionally, SWATH provides protein quantitation information from different methods and protein abundance using different protein extraction methods was evaluated. These results highlight the importance of green algae protein extraction method for subsequent MS analysis and identification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Multidimensional electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research.

    Science.gov (United States)

    Loroch, Stefan; Schommartz, Tim; Brune, Wolfram; Zahedi, René Peiman; Sickmann, Albert

    2015-05-01

    Quantitative proteomics and phosphoproteomics have become key disciplines in understanding cellular processes. Fundamental research can be done using cell culture providing researchers with virtually infinite sample amounts. In contrast, clinical, pre-clinical and biomedical research is often restricted to minute sample amounts and requires an efficient analysis with only micrograms of protein. To address this issue, we generated a highly sensitive workflow for combined LC-MS-based quantitative proteomics and phosphoproteomics by refining an ERLIC-based 2D phosphoproteomics workflow into an ERLIC-based 3D workflow covering the global proteome as well. The resulting 3D strategy was successfully used for an in-depth quantitative analysis of both, the proteome and the phosphoproteome of murine cytomegalovirus-infected mouse fibroblasts, a model system for host cell manipulation by a virus. In a 2-plex SILAC experiment with 150 μg of a tryptic digest per condition, the 3D strategy enabled the quantification of ~75% more proteins and even ~134% more peptides compared to the 2D strategy. Additionally, we could quantify ~50% more phosphoproteins by non-phosphorylated peptides, concurrently yielding insights into changes on the levels of protein expression and phosphorylation. Beside its sensitivity, our novel three-dimensional ERLIC-strategy has the potential for semi-automated sample processing rendering it a suitable future perspective for clinical, pre-clinical and biomedical research. Copyright © 2015. Published by Elsevier B.V.

  19. Quantitative proteomics identifies Gemin5, a scaffolding protein involved in ribonucleoprotein assembly, as a novel partner for eukaryotic initiation factor 4E

    DEFF Research Database (Denmark)

    Fierro-Monti, Ivo; Mohammed, Shabaz; Matthiesen, Rune

    2006-01-01

    Protein complexes are dynamic entities; identification and quantitation of their components is critical in elucidating functional roles under specific cellular conditions. We report the first quantitative proteomic analysis of the human cap-binding protein complex. Components and proteins......-starved tumorigenic human mesenchymal stromal cells, attested to their activated translational states. The WD-repeat, scaffolding-protein Gemin5 was identified as a novel eIF4E binding partner, which interacted directly with eIF4E through a motif (YXXXXLPhi) present in a number of eIF4E-interacting partners. Elevated...... levels of Gemin5:eIF4E complexes were found in phorbol ester treated HEK293 cells. Gemin5 and eIF4E co-localized to cytoplasmic P-bodies in human osteosarcoma U2OS cells. Interaction between eIF4E and Gemin5 and their co-localization to the P-bodies, may serve to recruit capped mRNAs to these RNP...

  20. Proteomics: Protein Identification Using Online Databases

    Science.gov (United States)

    Eurich, Chris; Fields, Peter A.; Rice, Elizabeth

    2012-01-01

    Proteomics is an emerging area of systems biology that allows simultaneous study of thousands of proteins expressed in cells, tissues, or whole organisms. We have developed this activity to enable high school or college students to explore proteomic databases using mass spectrometry data files generated from yeast proteins in a college laboratory…

  1. Quantitative Proteomics for the Comprehensive Analysis of Stress Responses of Lactobacillus paracasei subsp. paracasei F19.

    Science.gov (United States)

    Schott, Ann-Sophie; Behr, Jürgen; Geißler, Andreas J; Kuster, Bernhard; Hahne, Hannes; Vogel, Rudi F

    2017-10-06

    Lactic acid bacteria are broadly employed as starter cultures in the manufacture of foods. Upon technological preparation, they are confronted with drying stress that amalgamates numerous stress conditions resulting in losses of fitness and survival. To better understand and differentiate physiological stress responses, discover general and specific markers for the investigated stress conditions, and predict optimal preconditioning for starter cultures, we performed a comprehensive genomic and quantitative proteomic analysis of a commonly used model system, Lactobacillus paracasei subsp. paracasei TMW 1.1434 (isogenic with F19) under 11 typical stress conditions, including among others oxidative, osmotic, pH, and pressure stress. We identified and quantified >1900 proteins in triplicate analyses, representing 65% of all genes encoded in the genome. The identified genes were thoroughly annotated in terms of subcellular localization prediction and biological functions, suggesting unbiased and comprehensive proteome coverage. In total, 427 proteins were significantly differentially expressed in at least one condition. Most notably, our analysis suggests that optimal preconditioning toward drying was predicted to be alkaline and high-pressure stress preconditioning. Taken together, we believe the presented strategy may serve as a prototypic example for the analysis and utility of employing quantitative-mass-spectrometry-based proteomics to study bacterial physiology.

  2. Integrative Analysis of Subcellular Quantitative Proteomics Studies Reveals Functional Cytoskeleton Membrane-Lipid Raft Interactions in Cancer.

    Science.gov (United States)

    Shah, Anup D; Inder, Kerry L; Shah, Alok K; Cristino, Alexandre S; McKie, Arthur B; Gabra, Hani; Davis, Melissa J; Hill, Michelle M

    2016-10-07

    Lipid rafts are dynamic membrane microdomains that orchestrate molecular interactions and are implicated in cancer development. To understand the functions of lipid rafts in cancer, we performed an integrated analysis of quantitative lipid raft proteomics data sets modeling progression in breast cancer, melanoma, and renal cell carcinoma. This analysis revealed that cancer development is associated with increased membrane raft-cytoskeleton interactions, with ∼40% of elevated lipid raft proteins being cytoskeletal components. Previous studies suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft proteome modulation by an unrelated tumor suppressor opioid binding protein cell-adhesion molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are cytoskeletal components, with microfilaments and intermediate filaments specifically down-regulated. Furthermore, protein-protein interaction network and simulation analysis showed significantly higher interactions among cancer raft proteins compared with general human raft proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of lipid raft domains with greater molecular interactions as a common, functional, and reversible feature of cancer cells.

  3. Dataset for the proteomic inventory and quantitative analysis of the breast cancer hypoxic secretome associated with osteotropism

    DEFF Research Database (Denmark)

    Cox, T.R.; Schoof, Erwin; Gartland, A.

    2015-01-01

    secretomes are known to be active mediators of both local and distant host cells and play an important role in the progression and dissemination of cancer. Here we have quantitatively profiled both the composition of breast cancer secretomes associated with osteotropism, and their modulation under normoxic...... and hypoxic conditions. We detect and quantify 162 secretome proteins across all conditions which show differential hypoxic induction and association with osteotropism. Mass Spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000397...

  4. Combination of RT-PCR and proteomics for the identification of Crimean-Congo hemorrhagic fever virus in ticks

    Directory of Open Access Journals (Sweden)

    Isabel G. Fernández de Mera

    2017-07-01

    Full Text Available Crimean-Congo hemorrhagic fever (CCHF is an emerging tick-borne zoonotic disease caused by the CCHF virus (CCHFV. In this study, an experimental approach combining RT-PCR and proteomics was used for the identification and characterization of CCHFV in 106 ticks from 7 species that were collected from small ruminants in Greece. The methodological approach included an initial screening for CCHFV by RT-PCR followed by proteomics analysis of positive and control negative tick samples. This novel approach allowed the identification of CCHFV-positive ticks and provided additional information to corroborate the RT-PCR findings using a different approach. Two ticks, Dermacentor marginatus and Haemaphysalis parva collected from a goat and a sheep, respectively were positive for CCHFV. The sequences for CCHFV RNA segments S and L were characterized by RT-PCR and proteomics analysis of tick samples, respectively. These results showed the possibility of combining analyses at the RNA and protein levels using RT-PCR and proteomics for the characterization of CCHFV in ticks. The results supported that the CCHFV identified in ticks are genetic variants of the AP92 strain. Although the AP92-like strains probably do not represent a high risk of CCHF to the population, the circulation of genetically diverse CCHFV strains could potentially result in the appearance of novel viral genotypes with increased pathogenicity and fitness.

  5. Identification of Thioredoxin Disulfide Targets Using a Quantitative Proteomics Approach Based on Isotope-Coded Affinity Tags

    DEFF Research Database (Denmark)

    Hägglund, Per; Bunkenborg, Jakob; Maeda, Kenji

    2008-01-01

    Thioredoxin (Trx) is a ubiquitous protein disulfide reductase involved in a wide range of cellular redox processes. A large number of putative target proteins have been identified using proteomics approaches, but insight into target specificity at the molecular level is lacking since the reactivity...... of Trx toward individual disulfides has not been quantified. Here, a novel proteomics procedure is described for quantification of Trx-mediated target disulfide reduction based on thiol-specific differential labeling with the iodoacetamide-based isotope-coded affinity tag (ICAT) reagents. Briefly......, protein extract of embryos from germinated barley seeds was treated +/- Trx, and thiols released from target protein disulfides were irreversibly blocked with iodoacetamide. The remaining cysteine residues in the Trx-treated and the control (-Trx) samples were then chemically reduced and labeled...

  6. Comparison of Pancreas Juice Proteins from Cancer Versus Pancreatitis Using Quantitative Proteomic Analysis

    Science.gov (United States)

    Chen, Ru; Pan, Sheng; Cooke, Kelly; Moyes, Kara White; Bronner, Mary P.; Goodlett, David R.; Aebersold, Ruedi; Brentnall, Teresa A.

    2008-01-01

    Objectives Pancreatitis is an inflammatory condition of the pancreas. However, it often shares many molecular features with pancreatic cancer. Biomarkers present in pancreatic cancer frequently occur in the setting of pancreatitis. The efforts to develop diagnostic biomarkers for pancreatic cancer have thus been complicated by the false-positive involvement of pancreatitis. Methods In an attempt to develop protein biomarkers for pancreatic cancer, we previously use quantitative proteomics to identify and quantify the proteins from pancreatic cancer juice. Pancreatic juice is a rich source of proteins that are shed by the pancreatic ductal cells. In this study, we used a similar approach to identify and quantify proteins from pancreatitis juice. Results In total, 72 proteins were identified and quantified in the comparison of pancreatic juice from pancreatitis patients versus pooled normal control juice. Nineteen of the juice proteins were overexpressed, and 8 were underexpressed in pancreatitis juice by at least 2-fold compared with normal pancreatic juice. Of these 27 differentially expressed proteins in pancreatitis, 9 proteins were also differentially expressed in the pancreatic juice from pancreatic cancer patient. Conclusions Identification of these differentially expressed proteins from pancreatitis juice provides useful information for future study of specific pancreatitis-associated proteins and to eliminate potential false-positive biomarkers for pancreatic cancer. PMID:17198186

  7. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects.

    Science.gov (United States)

    Batthyány, Carlos; Bartesaghi, Silvina; Mastrogiovanni, Mauricio; Lima, Analía; Demicheli, Verónica; Radi, Rafael

    2017-03-01

    "Nitroproteomic" is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues. Precise identification and quantitation of 3-nitrotyrosine in proteins has represented a "tour de force" for researchers. Recent Advances: A small number of proteins are preferential targets of nitration (usually less than 100 proteins per proteome), contrasting with the large number of proteins modified by other post-translational modifications such as phosphorylation, acetylation, and, notably, S-nitrosation. Proteomic approaches have revealed key features of tyrosine nitration both in vivo and in vitro, including selectivity, site specificity, and effects in protein structure and function. Identification of 3-nitrotyrosine-containing proteins and mapping nitrated residues is challenging, due to low abundance of this oxidative modification in biological samples and its unfriendly behavior in mass spectrometry (MS)-based technologies, that is, MALDI, electrospray ionization, and collision-induced dissociation. The use of (i) classical two-dimensional electrophoresis with immunochemical detection of nitrated proteins followed by protein ID by regular MS/MS in combination with (ii) immuno-enrichment of tyrosine-nitrated peptides and (iii) identification of nitrated peptides by a MIDAS™ experiment is arising as a potent methodology to unambiguously map and quantitate tyrosine-nitrated proteins in vivo. Antioxid. Redox Signal. 26, 313-328.

  8. Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria.

    Science.gov (United States)

    Cheng, Keding; Chui, Huixia; Domish, Larissa; Hernandez, Drexler; Wang, Gehua

    2016-04-01

    Identification and typing of bacteria occupy a large fraction of time and work in clinical microbiology laboratories. With the certification of some MS platforms in recent years, more applications and tests of MS-based diagnosis methods for bacteria identification and typing have been created, not only on well-accepted MALDI-TOF-MS-based fingerprint matches, but also on solving the insufficiencies of MALDI-TOF-MS-based platforms and advancing the technology to areas such as targeted MS identification and typing of bacteria, bacterial toxin identification, antibiotics susceptibility/resistance tests, and MS-based diagnostic method development on unique bacteria such as Clostridium and Mycobacteria. This review summarizes the recent development in MS platforms and applications in bacteria identification and typing of common pathogenic bacteria. © 2016 The Authors. PROTEOMICS - Clinical Applications Published by WILEY-VCH Verlag GmbH & Co. KGaA.

  9. YPED: an integrated bioinformatics suite and database for mass spectrometry-based proteomics research.

    Science.gov (United States)

    Colangelo, Christopher M; Shifman, Mark; Cheung, Kei-Hoi; Stone, Kathryn L; Carriero, Nicholas J; Gulcicek, Erol E; Lam, TuKiet T; Wu, Terence; Bjornson, Robert D; Bruce, Can; Nairn, Angus C; Rinehart, Jesse; Miller, Perry L; Williams, Kenneth R

    2015-02-01

    We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database (YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a single laboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography-tandem mass spectrometry (LC-MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization. In addition, we have added both peptide and protein comparative analysis tools to enable pairwise analysis of distinct peptides/proteins in each sample and of overlapping peptides/proteins between all samples in multiple datasets. We have also implemented a targeted proteomics module for automated multiple reaction monitoring (MRM)/selective reaction monitoring (SRM) assay development. We have linked YPED's database search results and both label-based and label-free fold-change analysis to the Skyline Panorama repository for online spectra visualization. In addition, we have built enhanced functionality to curate peptide identifications into an MS/MS peptide spectral library for all of our protein database search identification results. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  10. iTRAQ-Based Quantitative Proteomic Analysis of the Initiation of Head Regeneration in Planarians.

    Directory of Open Access Journals (Sweden)

    Xiaofang Geng

    Full Text Available The planarian Dugesia japonica has amazing ability to regenerate a head from the anterior ends of the amputated stump with maintenance of the original anterior-posterior polarity. Although planarians present an attractive system for molecular investigation of regeneration and research has focused on clarifying the molecular mechanism of regeneration initiation in planarians at transcriptional level, but the initiation mechanism of planarian head regeneration (PHR remains unclear at the protein level. Here, a global analysis of proteome dynamics during the early stage of PHR was performed using isobaric tags for relative and absolute quantitation (iTRAQ-based quantitative proteomics strategy, and our data are available via ProteomeXchange with identifier PXD002100. The results showed that 162 proteins were differentially expressed at 2 h and 6 h following amputation. Furthermore, the analysis of expression patterns and functional enrichment of the differentially expressed proteins showed that proteins involved in muscle contraction, oxidation reduction and protein synthesis were up-regulated in the initiation of PHR. Moreover, ingenuity pathway analysis showed that predominant signaling pathways such as ILK, calcium, EIF2 and mTOR signaling which were associated with cell migration, cell proliferation and protein synthesis were likely to be involved in the initiation of PHR. The results for the first time demonstrated that muscle contraction and ILK signaling might played important roles in the initiation of PHR at the global protein level. The findings of this research provide a molecular basis for further unraveling the mechanism of head regeneration initiation in planarians.

  11. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors.

    Science.gov (United States)

    Deshmukh, Atul S; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T; Cox, Jürgen; Mann, Matthias

    2015-04-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Clinical proteomics

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Frederiksen, Hanne; Johannsen, Trine Holm

    2018-01-01

    Clinical proteomics aims to deliver cost-effective multiplexing of potentially hundreds of diagnostic proteins, including distinct protein isoforms. The analytical strategy known as targeted proteomics is particularly promising because it is compatible with robust mass spectrometry (MS)-platforms...... standards and calibrants. The present challenge is to examine if targeted proteomics of IGF-I can truly measure up to the routine performance that must be expected from a clinical testing platform.......Clinical proteomics aims to deliver cost-effective multiplexing of potentially hundreds of diagnostic proteins, including distinct protein isoforms. The analytical strategy known as targeted proteomics is particularly promising because it is compatible with robust mass spectrometry (MS......)-platforms already implemented in many clinical laboratories for routine quantitation of small molecules (i.e. uHPLC coupled to triple-quadrupole MS). Progress in targeted proteomics of circulating insulin-like growth factor 1 (IGF-I) have provided valuable insights about tryptic peptides, transitions, internal...

  13. Analysis of biostimulated microbial communities from two field experiments reveals temporal and spatial differences in proteome profiles

    Energy Technology Data Exchange (ETDEWEB)

    Callister, S.J.; Wilkins, M.J.; Nicora, C.D.; Williams, K.H.; Banfield, J.F.; VerBerkmoes, N.C.; Hettich, R.L.; NGuessan, A.L.; Mouser, P.J.; Elifantz, H.; Smith, R.D.; Lovley, D.R.; Lipton, M.S.; Long, P.E.

    2010-07-15

    Stimulated by an acetate-amendment field experiment conducted in 2007, anaerobic microbial populations in the aquifer at the Rifle Integrated Field Research Challenge site in Colorado reduced mobile U(VI) to insoluble U(IV). During this experiment, planktonic biomass was sampled at various time points to quantitatively evaluate proteomes. In 2008, an acetate-amended field experiment was again conducted in a similar manner to the 2007 experiment. As there was no comprehensive metagenome sequence available for use in proteomics analysis, we systematically evaluated 12 different organism genome sequences to generate sets of aggregate genomes, or “pseudo-metagenomes”, for supplying relative quantitative peptide and protein identifications. Proteomics results support previous observations of the dominance of Geobacteraceae during biostimulation using acetate as sole electron donor, and revealed a shift from an early stage of iron reduction to a late stage of iron reduction. Additionally, a shift from iron reduction to sulfate reduction was indicated by changes in the contribution of proteome information contributed by different organism genome sequences within the aggregate set. In addition, the comparison of proteome measurements made between the 2007 field experiment and 2008 field experiment revealed differences in proteome profiles. These differences may be the result of alterations in abundance and population structure within the planktonic biomass samples collected for analysis.

  14. Automatic and rapid identification of glycopeptides by nano-UPLC-LTQ-FT-MS and proteomic search engine.

    Science.gov (United States)

    Giménez, Estela; Gay, Marina; Vilaseca, Marta

    2017-01-30

    Here we demonstrate the potential of nano-UPLC-LTQ-FT-MS and the Byonic™ proteomic search engine for the separation, detection, and identification of N- and O-glycopeptide glycoforms in standard glycoproteins. The use of a BEH C18 nanoACQUITY column allowed the separation of the glycopeptides present in the glycoprotein digest and a baseline-resolution of the glycoforms of the same glycopeptide on the basis of the number of sialic acids. Moreover, we evaluated several acquisition strategies in order to improve the detection and characterization of glycopeptide glycoforms with the maximum number of identification percentages. The proposed strategy is simple to set up with the technology platforms commonly used in proteomic labs. The method allows the straightforward and rapid obtention of a general glycosylated map of a given protein, including glycosites and their corresponding glycosylated structures. The MS strategy selected in this work, based on a gas phase fractionation approach, led to 136 unique peptides from four standard proteins, which represented 78% of the total number of peptides identified. Moreover, the method does not require an extra glycopeptide enrichment step, thus preventing the bias that this step could cause towards certain glycopeptide species. Data are available via ProteomeXchange with identifier PXD003578. We propose a simple and high-throughput glycoproteomics-based methodology that allows the separation of glycopeptide glycoforms on the basis of the number of sialic acids, and their automatic and rapid identification without prior knowledge of protein glycosites or type and structure of the glycans. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Quantitative proteomics of Chlorobaculum tepidum

    DEFF Research Database (Denmark)

    Falkenby, Lasse Gaarde; Szymanska, Monika; Holkenbrink, Carina

    2011-01-01

    Chlorobaculum (Cba.) tepidum is a green sulfur bacterium that oxidizes sulfide, elemental sulfur, and thiosulfate for photosynthetic growth. To gain insight into the sulfur metabolism, the proteome of Cba. tepidum cells sampled under different growth conditions has been quantified using a rapid g...

  16. Quantitative analysis of oyster larval proteome provides new insights into the effects of multiple climate change stressors

    KAUST Repository

    Dineshram, Ramadoss; Chandramouli, Kondethimmanahalli; Ko, Ginger Wai Kuen; Zhang, Huoming; Qian, Pei-Yuan; Ravasi, Timothy; Thiyagarajan, Vengatesen

    2016-01-01

    might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling

  17. Data set for the proteomic inventory and quantitative analysis of chicken uterine fluid during eggshell biomineralization

    Directory of Open Access Journals (Sweden)

    Pauline Marie

    2014-12-01

    Full Text Available Chicken eggshell is the protective barrier of the egg. It is a biomineral composed of 95% calcium carbonate on calcitic form and 3.5% organic matrix proteins. Mineralization process occurs in uterus into the uterine fluid. This acellular fluid contains ions and organic matrix proteins precursors which are interacting with the mineral phase and control crystal growth, eggshell structure and mechanical properties. We performed a proteomic approach and identified 308 uterine fluid proteins. Gene Ontology terms enrichments were determined to investigate their potential functions. Mass spectrometry analyses were also combined to label free quantitative analysis to determine the relative abundance of 96 proteins at initiation, rapid growth phase and termination of shell calcification. Sixty four showed differential abundance according to the mineralization stage. Their potential functions have been annotated. The complete proteomic, bioinformatic and functional analyses are reported in Marie et al., J. Proteomics (2015 [1].

  18. Identification of autophagosome-associated proteins and regulators by quantitative proteomic analysis and genetic screens

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Høyer-Hansen, Maria; Nielsen, Maria

    2012-01-01

    Autophagy is one of the major intracellular catabolic pathways, but little is known about the composition of autophagosomes. To study the associated proteins, we isolated autophagosomes from human breast cancer cells using two different biochemical methods and three stimulus types: amino acid dep...... regulators of autophagy, including subunits of the retromer complex. The combined spatiotemporal proteomic and genetic data sets presented here provide a basis for further characterization of autophagosome biogenesis and cargo selection....

  19. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    DEFF Research Database (Denmark)

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.

    2014-01-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes...... involved in the Mendelian disorder long QT syndrome (LOTS). We integrated the LOTS network with GWAS loci from the corresponding common complex trait, QT-interval variation, to identify candidate genes that were subsequently confirmed in Xenopus laevis oocytes and zebrafish. We used the LOTS protein...... network to filter weak GWAS signals by identifying single-nucleotide polymorphisms (SNPs) in proximity to genes in the network supported by strong proteomic evidence. Three SNPs passing this filter reached genome-wide significance after replication genotyping. Overall, we present a general strategy...

  20. Proteomic tools for environmental microbiology--a roadmap from sample preparation to protein identification and quantification.

    Science.gov (United States)

    Wöhlbrand, Lars; Trautwein, Kathleen; Rabus, Ralf

    2013-10-01

    The steadily increasing amount of (meta-)genomic sequence information of diverse organisms and habitats has a strong impact on research in microbial physiology and ecology. In-depth functional understanding of metabolic processes and overall physiological adaptation to environmental changes, however, requires application of proteomics, as the context specific proteome constitutes the true functional output of a cell. Considering the enormous structural and functional diversity of proteins, only rational combinations of various analytical approaches allow a holistic view on the overall state of the cell. Within the past decade, proteomic methods became increasingly accessible to microbiologists mainly due to the robustness of analytical methods (e.g. 2DE), and affordability of mass spectrometers and their relative ease of use. This review provides an overview on the complex portfolio of state-of-the-art proteomics and highlights the basic principles of key methods, ranging from sample preparation of laboratory or environmental samples, via protein/peptide separation (gel-based or gel-free) and different types of mass spectrometric protein/peptide analyses, to protein identification and abundance determination. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Study of monocyte membrane proteome perturbation during lipopolysaccharide-induced tolerance using iTRAQ-based quantitative proteomic approach

    KAUST Repository

    Zhang, Huoming

    2010-07-02

    Human monocytes\\' exposure to low-level lipopolysaccharide (LPS) induces temporary monocytic insensitivity to subsequent LPS challenge. The underlying mechanism of this phenomenon could have important clinical utilities in preventing and/or treating severe infections. In this study, we used an iTRAQ-based quantitative proteomic approach to comprehensively characterize the membrane proteomes of monocytes before and after LPS exposure. We identified a total of 1651 proteins, of which 53.6% were membrane proteins. Ninety-four percent of the proteins were quantified and 255 proteins were shown to be tightly regulated by LPS. Subcellular location analysis revealed organelle-specific response to LPS exposure: more than 90% of identified mitochondrial membrane proteins were significant downregulated, whereas the majority of proteins from other organelles such as ER, Golgi and ribosome were upregulated. Moreover, we found that the expression of most receptors potentially involved in LPS signal pathway (CD14, toll-like receptor 4, CD11/CD18 complex) were substantially decreased, while the expression of molecules involved in LPS neutralization were enhanced after LPS challenge. Together, these findings could be of significance in understanding the mechanism of LPS tolerance and provide values for designing new approaches for regulating monocytic responses in sepsis patients.

  2. Study of monocyte membrane proteome perturbation during lipopolysaccharide-induced tolerance using iTRAQ-based quantitative proteomic approach

    KAUST Repository

    Zhang, Huoming; Zhao, Changqing; Li, Xin; Zhu, Yi; Gan, Chee Sian; Wang, Yong; Ravasi, Timothy; Qian, Pei-Yuan; Wong, Siew Cheng; Sze, Siu Kwan

    2010-01-01

    Human monocytes' exposure to low-level lipopolysaccharide (LPS) induces temporary monocytic insensitivity to subsequent LPS challenge. The underlying mechanism of this phenomenon could have important clinical utilities in preventing and/or treating severe infections. In this study, we used an iTRAQ-based quantitative proteomic approach to comprehensively characterize the membrane proteomes of monocytes before and after LPS exposure. We identified a total of 1651 proteins, of which 53.6% were membrane proteins. Ninety-four percent of the proteins were quantified and 255 proteins were shown to be tightly regulated by LPS. Subcellular location analysis revealed organelle-specific response to LPS exposure: more than 90% of identified mitochondrial membrane proteins were significant downregulated, whereas the majority of proteins from other organelles such as ER, Golgi and ribosome were upregulated. Moreover, we found that the expression of most receptors potentially involved in LPS signal pathway (CD14, toll-like receptor 4, CD11/CD18 complex) were substantially decreased, while the expression of molecules involved in LPS neutralization were enhanced after LPS challenge. Together, these findings could be of significance in understanding the mechanism of LPS tolerance and provide values for designing new approaches for regulating monocytic responses in sepsis patients.

  3. Systematic and quantitative comparison of digest efficiency and specificity reveals the impact of trypsin quality on MS-based proteomics.

    Science.gov (United States)

    Burkhart, Julia Maria; Schumbrutzki, Cornelia; Wortelkamp, Stefanie; Sickmann, Albert; Zahedi, René Peiman

    2012-02-02

    Trypsin is the most frequently used proteolytic enzyme in mass spectrometry-based proteomics. Beside its good availability, it also offers some major advantages such as an optimal average peptide length of ~14 amino acids, and typically the presence of at least two defined positive charges at the N-terminus as well as the C-terminal Arg/Lys, rendering tryptic peptides well suited for CID-based LC-MS/MS. Here, we conducted a systematic study of different types of commercially available trypsin in order to qualitatively and quantitatively compare cleavage specificity, efficiency as well as reproducibility and the potential impact on quantitation and proteome coverage. We present a straightforward strategy applied to complex digests of human platelets, comprising (1) digest controls using a monolithic column HPLC-setup, (2) SCX enrichment of semitryptic/nonspecific peptides, (3) targeted MRM analysis of corresponding full cleavage/missed cleavage peptide pairs as well as (4) LC-MS analyses of complete digests with a three-step data interpretation. Thus, differences in digest performance can be readily assessed, rendering these procedures extremely beneficial to quality control not only the trypsin of choice, but also to effectively compare as well as optimize different digestion conditions and to evaluate the reproducibility of a dedicated digest protocol for all kinds of quantitative proteome studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Identification of Novel Translational Urinary Biomarkers for Acetaminophen-Induced Acute Liver Injury Using Proteomic Profiling in Mice

    NARCIS (Netherlands)

    van Swelm, Rachel P. L.; Laarakkers, Coby M. M.; van der Kuur, Ellen C.; Morava-Kozicz, Eva; Wevers, Ron A.; Augustijn, Kevin D.; Touw, Daan J.; Sandel, Maro H.; Masereeuw, Rosalinde; Russel, Frans G. M.

    2012-01-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced

  5. Label free quantitative proteomics analysis on the cisplatin resistance in ovarian cancer cells.

    Science.gov (United States)

    Wang, F; Zhu, Y; Fang, S; Li, S; Liu, S

    2017-05-20

    Quantitative proteomics has been made great progress in recent years. Label free quantitative proteomics analysis based on the mass spectrometry is widely used. Using this technique, we determined the differentially expressed proteins in the cisplatin-sensitive ovarian cancer cells COC1 and cisplatin-resistant cells COC1/DDP before and after the application of cisplatin. Using the GO analysis, we classified those proteins into different subgroups bases on their cellular component, biological process, and molecular function. We also used KEGG pathway analysis to determine the key signal pathways that those proteins were involved in. There are 710 differential proteins between COC1 and COC1/DDP cells, 783 between COC1 and COC1/DDP cells treated with cisplatin, 917 between the COC1/DDP cells and COC1/DDP cells treated with LaCl3, 775 between COC1/DDP cells treated with cisplatin and COC1/DDP cells treated with cisplatin and LaCl3. Among the same 411 differentially expressed proteins in cisplatin-sensitive COC1 cells and cisplain-resistant COC1/DDP cells before and after cisplatin treatment, 14% of them were localized on the cell membrane. According to the KEGG results, differentially expressed proteins were classified into 21 groups. The most abundant proteins were involved in spliceosome. This study lays a foundation for deciphering the mechanism for drug resistance in ovarian tumor.

  6. Dataset for the proteomic inventory and quantitative analysis of the breast cancer hypoxic secretome associated with osteotropism

    Directory of Open Access Journals (Sweden)

    Thomas R. Cox

    2015-12-01

    Full Text Available The cancer secretome includes all of the macromolecules secreted by cells into their microenvironment. Cancer cell secretomes are significantly different to that of normal cells reflecting the changes that normal cells have undergone during their transition to malignancy. More importantly, cancer secretomes are known to be active mediators of both local and distant host cells and play an important role in the progression and dissemination of cancer. Here we have quantitatively profiled both the composition of breast cancer secretomes associated with osteotropism, and their modulation under normoxic and hypoxic conditions. We detect and quantify 162 secretome proteins across all conditions which show differential hypoxic induction and association with osteotropism. Mass Spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000397 and the complete proteomic, bioinformatic and biological analyses are reported in Cox et al. (2015 [1].

  7. Integration analysis of quantitative proteomics and transcriptomics data identifies potential targets of frizzled-8 protein-related antiproliferative factor in vivo.

    Science.gov (United States)

    Yang, Wei; Kim, Yongsoo; Kim, Taek-Kyun; Keay, Susan K; Kim, Kwang Pyo; Steen, Hanno; Freeman, Michael R; Hwang, Daehee; Kim, Jayoung

    2012-12-01

    identify more differentially expressed genes with a lower false discovery rate from a previously published microarray data set, an integrative hypothesis-testing statistical approach was applied. • For validation experiments, expression and phosphorylation levels of select proteins were evaluated by western blotting. • Integration analysis of this transcriptomics data set with our own quantitative proteomics data set identified 10 genes that are potentially regulated by APF in vivo from 4140 differentially expressed genes identified with a false discovery rate of 1%. • Of these, five (i.e. JUP, MAPKSP1, GSPT1, PTGS2/COX-2 and XPOT) were found to be prominent after network modelling of the common genes identified in the proteomics and microarray studies. • This molecular signature reflects the biological processes of cell adhesion, cell proliferation and inflammation, which is consistent with the known physiological effects of APF. • Lastly, we found the mammalian target of rapamycin pathway was down-regulated in response to APF. • This unbiased integration analysis of in vitro quantitative proteomics data with in vivo quantitative transcriptomics data led to the identification of potential downstream mediators of the APF signal transduction pathway. © 2012 THE AUTHORS. BJU INTERNATIONAL © 2012 BJU INTERNATIONAL.

  8. Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites.

    Science.gov (United States)

    Zelanis, André; Huesgen, Pitter F; Oliveira, Ana Karina; Tashima, Alexandre K; Serrano, Solange M T; Overall, Christopher M

    2015-01-15

    Many snake venom toxins are serine proteases but their specific in vivo targets are mostly unknown. Various act on components of the coagulation cascade, and fibrinolytic and kallikrein-kinin systems to trigger various pathological effects observed in the envenomation. Despite showing high similarity in terms of primary structure snake venom serine proteinases (SVSPs) show exquisite specificity towards macromolecular substrates. Therefore, the characterization of their peptide bond specificity is important for understanding the active site preference associated with effective proteolysis as well as for the design of peptide substrates and inhibitors. Bothrops jararaca contains various SVSPs among which Bothrops protease A is a specific fibrinogenolytic agent and PA-BJ is a platelet-activating enzyme. In this study we used proteome derived peptide libraries in the Proteomic Identification of protease Cleavage Sites (PICS) approach to explore the peptide bond specificity of Bothrops protease A and PA-BJ in order to determine their individual peptide cleavage sequences. A total of 371 cleavage sites (208 for Bothrops protease A and 163 for PA-BJ) were detected and both proteinases displayed a clear preference for arginine at the P1 position. Moreover, the analysis of the specificity profiles of Bothrops protease A and PA-BJ revealed subtle differences in the preferences along P6-P6', despite a common yet unusual preference for Pro at P2. Taken together, these results map the subsite specificity of both SVSPs and shed light in the functional differences between these proteinases. Proteolysis is key to various pathological effects observed upon envenomation by viperid snakes. The use of the Proteomic Identification of protease Cleavage Sites (PICS) approach for the easy mapping of proteinase subsite preferences at both the prime- and non-prime sides concurrently gives rise to a fresh understanding of the interaction of the snake venom serine proteinases with peptide and

  9. Proteomics - a novel approach to the identification and characterisation of plasmodesmatal proteins

    International Nuclear Information System (INIS)

    Faulkner, C.R.; Blackman, L.M.; Lyon, B.R.; Overall, R.L.

    2001-01-01

    The development of proteomic methods, such as 2-dimensional gel electrophoresis (2-DE), has established a high resolution means of identifying and characterising proteins from a given protein mixture. The biochemical composition of plasmodesmata, the intercellular channels between plant cells, is poorly described despite extensive attempts to identify protemaceous plasmodesmatal components. These attempts have been confounded by the large number of proteins in the cell wall. We have exploited the anatomy of the alga Chara corallina to separate tissues with (nodal cells) and tissues without (internodal cells) plasmodesmata. Proteins specific to the cytoplasmic and wall protein extracts of nodal and internodal tissue were identified by comparison of 2-DE gels of these extracts. In particular, a 95 kDa protein was identified as specific to the nodal cells in both 1-dimensional and 2-dimensional comparisons of cytoplasmic nodal and internodal protein extracts. This protein was analysed by electron spray ionization time of flight tandem mass spectroscopy (ESI-TOF MS/MS) and the sequence obtained showed similarity to plant lipoxygenases. Further proteins of interest were identified in 2-DE resolution of extracts from the nodal cytoplasm, including two 49 kDa proteins and two 46 kDa proteins, and from the nodal cell walls, including a cluster of proteins around 30 kDa. Thus, a proteomic strategy for the identification and characterisation of proteins specific to different cell types in Chara corallina has been developed, with potential application to the identification and characterisation of plasmodesmatal proteins

  10. A knowledge-based T2-statistic to perform pathway analysis for quantitative proteomic data.

    Science.gov (United States)

    Lai, En-Yu; Chen, Yi-Hau; Wu, Kun-Pin

    2017-06-01

    Approaches to identify significant pathways from high-throughput quantitative data have been developed in recent years. Still, the analysis of proteomic data stays difficult because of limited sample size. This limitation also leads to the practice of using a competitive null as common approach; which fundamentally implies genes or proteins as independent units. The independent assumption ignores the associations among biomolecules with similar functions or cellular localization, as well as the interactions among them manifested as changes in expression ratios. Consequently, these methods often underestimate the associations among biomolecules and cause false positives in practice. Some studies incorporate the sample covariance matrix into the calculation to address this issue. However, sample covariance may not be a precise estimation if the sample size is very limited, which is usually the case for the data produced by mass spectrometry. In this study, we introduce a multivariate test under a self-contained null to perform pathway analysis for quantitative proteomic data. The covariance matrix used in the test statistic is constructed by the confidence scores retrieved from the STRING database or the HitPredict database. We also design an integrating procedure to retain pathways of sufficient evidence as a pathway group. The performance of the proposed T2-statistic is demonstrated using five published experimental datasets: the T-cell activation, the cAMP/PKA signaling, the myoblast differentiation, and the effect of dasatinib on the BCR-ABL pathway are proteomic datasets produced by mass spectrometry; and the protective effect of myocilin via the MAPK signaling pathway is a gene expression dataset of limited sample size. Compared with other popular statistics, the proposed T2-statistic yields more accurate descriptions in agreement with the discussion of the original publication. We implemented the T2-statistic into an R package T2GA, which is available at https

  11. Quantitative proteomic study of Aspergillus Fumigatus secretome revealed deamidation of secretory enzymes.

    Science.gov (United States)

    Adav, Sunil S; Ravindran, Anita; Sze, Siu Kwan

    2015-04-24

    Aspergillus sp. plays an essential role in lignocellulosic biomass recycling and is also exploited as cell factories for the production of industrial enzymes. This study profiled the secretome of Aspergillus fumigatus when grown with cellulose, xylan and starch by high throughput quantitative proteomics using isobaric tags for relative and absolute quantification (iTRAQ). Post translational modifications (PTMs) of proteins play a critical role in protein functions. However, our understanding of the PTMs in secretory proteins is limited. Here, we present the identification of PTMs such as deamidation of secreted proteins of A. fumigatus. This study quantified diverse groups of extracellular secreted enzymes and their functional classification revealed cellulases and glycoside hydrolases (32.9%), amylases (0.9%), hemicellulases (16.2%), lignin degrading enzymes (8.1%), peptidases and proteases (11.7%), chitinases, lipases and phosphatases (7.6%), and proteins with unknown function (22.5%). The comparison of quantitative iTRAQ results revealed that cellulose and xylan stimulates expression of specific cellulases and hemicellulases, and their abundance level as a function of substrate. In-depth data analysis revealed deamidation as a major PTM of key cellulose hydrolyzing enzymes like endoglucanases, cellobiohydrolases and glucosidases. Hemicellulose degrading endo-1,4-beta-xylanase, monosidases, xylosidases, lignin degrading laccase, isoamyl alcohol oxidase and oxidoreductases were also found to be deamidated. The filamentous fungi play an essential role in lignocellulosic biomass recycling and fungal strains belonging to Aspergillus were also exploited as cell factories for the production of organic acids, pharmaceuticals, and industrially important enzymes. In this study, extracellular proteins secreted by thermophilic A. fumigatus when grown with cellulose, xylan and starch were profiled using isobaric tags for relative and absolute quantification (iTRAQ) by

  12. Label-Free Quantitative Analysis of Mitochondrial Proteomes Using the Multienzyme Digestion-Filter Aided Sample Preparation (MED-FASP) and "Total Protein Approach".

    Science.gov (United States)

    Wiśniewski, Jacek R

    2017-01-01

    Determination of proteome composition and measuring of changes in protein titers provide important information with a substantial value for studying mitochondria.This chapter describes a workflow for the quantitative analysis of mitochondrial proteome with a focus on sample preparation and quantitative analysis of the data. The workflow involves the multienzyme digestion-filter aided sample preparation (MED-FASP) protocol enabling efficient extraction of proteins and high rate of protein-to-peptide conversion. Consecutive protein digestion with Lys C and trypsin enables generation of peptide fractions with minimal overlap, largely increases the number of identified proteins, and extends their sequence coverage. Abundances of proteins identified by multiple peptides can be assessed by the "Total Protein Approach."

  13. Quantitative proteomic analysis for novel biomarkers of buccal squamous cell carcinoma arising in background of oral submucous fibrosis

    International Nuclear Information System (INIS)

    Liu, Wen; Zeng, Lijuan; Li, Ning; Wang, Fei; Jiang, Canhua; Guo, Feng; Chen, Xinqun; Su, Tong; Xu, Chunjiao; Zhang, Shanshan; Fang, Changyun

    2016-01-01

    In South and Southeast Asian, the majority of buccal squamous cell carcinoma (BSCC) can arise from oral submucous fibrosis (OSF). BSCCs develop in OSF that are often not completely resected, causing local relapse. The aim of our study was to find candidate protein biomarkers to detect OSF and predict prognosis in BSCCs by quantitative proteomics approaches. We compared normal oral mucosa (NBM) and paired biopsies of BSCC and OSF by quantitative proteomics using isobaric tags for relative and absolute quantification (iTRAQ) to discover proteins with differential expression. Gene Ontology and KEGG networks were analyzed. The prognostic value of biomarkers was evaluated in 94 BSCCs accompanied with OSF. Significant associations were assessed by Kaplan-Meier survival and Cox-proportional hazards analysis. In total 30 proteins were identified with significantly different expression (false discovery rate < 0.05) among three tissues. Two consistently upregulated proteins, ANXA4 and FLNA, were validated. The disease-free survival was negatively associated with the expression of ANXA4 (hazard ratio, 3.4; P = 0.000), FLNA (hazard ratio, 2.1; P = 0.000) and their combination (hazard ratio, 8.8; P = 0.002) in BSCCs. The present study indicates that iTRAQ quantitative proteomics analysis for tissues of BSCC and OSF is a reliable strategy. A significantly up-regulated ANXA4 and FLNA could be not only candidate biomarkers for BSCC prognosis but also potential targets for its therapy. The online version of this article (doi:10.1186/s12885-016-2650-1) contains supplementary material, which is available to authorized users

  14. Quantitative iTRAQ-Based Proteomic Identification of Candidate Biomarkers for Diabetic Nephropathy in Plasma of Type 1 Diabetic Patients

    DEFF Research Database (Denmark)

    Overgaard, Anne Julie; Thingholm, Tine Engberg; Larsen, Martin R

    2010-01-01

    INTRODUCTION: As part of a clinical proteomics programme focused on diabetes and its complications, it was our goal to investigate the proteome of plasma in order to find improved candidate biomarkers to predict diabetic nephropathy. METHODS: Proteins derived from plasma from a cross-sectional co...... nephropathy; however, they need to be confirmed in a longitudinal cohort. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12014-010-9053-0) contains supplementary material, which is available to authorized users....

  15. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology.

    Science.gov (United States)

    von Bergen, Martin; Jehmlich, Nico; Taubert, Martin; Vogt, Carsten; Bastida, Felipe; Herbst, Florian-Alexander; Schmidt, Frank; Richnow, Hans-Hermann; Seifert, Jana

    2013-10-01

    The recent development of metaproteomics has enabled the direct identification and quantification of expressed proteins from microbial communities in situ, without the need for microbial enrichment. This became possible by (1) significant increases in quality and quantity of metagenome data and by improvements of (2) accuracy and (3) sensitivity of modern mass spectrometers (MS). The identification of physiologically relevant enzymes can help to understand the role of specific species within a community or an ecological niche. Beside identification, relative and absolute quantitation is also crucial. We will review label-free and label-based methods of quantitation in MS-based proteome analysis and the contribution of quantitative proteome data to microbial ecology. Additionally, approaches of protein-based stable isotope probing (protein-SIP) for deciphering community structures are reviewed. Information on the species-specific metabolic activity can be obtained when substrates or nutrients are labeled with stable isotopes in a protein-SIP approach. The stable isotopes ((13)C, (15)N, (36)S) are incorporated into proteins and the rate of incorporation can be used for assessing the metabolic activity of the corresponding species. We will focus on the relevance of the metabolic and phylogenetic information retrieved with protein-SIP studies and for detecting and quantifying the carbon flux within microbial consortia. Furthermore, the combination of protein-SIP with established tools in microbial ecology such as other stable isotope probing techniques are discussed.

  16. Quantitative Proteomic Analysis of Mosquito C6/36 Cells Reveals Host Proteins Involved in Zika Virus Infection.

    Science.gov (United States)

    Xin, Qi-Lin; Deng, Cheng-Lin; Chen, Xi; Wang, Jun; Wang, Shao-Bo; Wang, Wei; Deng, Fei; Zhang, Bo; Xiao, Gengfu; Zhang, Lei-Ke

    2017-06-15

    Zika virus (ZIKV) is an emerging arbovirus belonging to the genus Flavivirus of the family Flaviviridae During replication processes, flavivirus manipulates host cell systems to facilitate its replication, while the host cells activate antiviral responses. Identification of host proteins involved in the flavivirus replication process may lead to the discovery of antiviral targets. The mosquitoes Aedes aegypti and Aedes albopictus are epidemiologically important vectors for ZIKV, and effective restrictions of ZIKV replication in mosquitoes will be vital in controlling the spread of virus. In this study, an iTRAQ-based quantitative proteomic analysis of ZIKV-infected Aedes albopictus C6/36 cells was performed to investigate host proteins involved in the ZIKV infection process. A total of 3,544 host proteins were quantified, with 200 being differentially regulated, among which CHCHD2 can be upregulated by ZIKV infection in both mosquito C6/36 and human HeLa cells. Our further study indicated that CHCHD2 can promote ZIKV replication and inhibit beta interferon (IFN-β) production in HeLa cells, suggesting that ZIKV infection may upregulate CHCHD2 to inhibit IFN-I production and thus promote virus replication. Bioinformatics analysis of regulated host proteins highlighted several ZIKV infection-regulated biological processes. Further study indicated that the ubiquitin proteasome system (UPS) plays roles in the ZIKV entry process and that an FDA-approved inhibitor of the 20S proteasome, bortezomib, can inhibit ZIKV infection in vivo Our study illustrated how host cells respond to ZIKV infection and also provided a candidate drug for the control of ZIKV infection in mosquitoes and treatment of ZIKV infection in patients. IMPORTANCE ZIKV infection poses great threats to human health, and there is no FDA-approved drug available for the treatment of ZIKV infection. During replication, ZIKV manipulates host cell systems to facilitate its replication, while host cells activate

  17. Quantitative proteomics study of larval settlement in the barnacle Balanus amphitrite

    KAUST Repository

    Chen, Zhang-Fan; Zhang, Huoming; Wang, Hao; Matsumura, Kiyotaka; Wong, Yue Him; Ravasi, Timothy; Qian, Pei-Yuan

    2014-01-01

    Barnacles are major sessile components of the intertidal areas worldwide, and also one of the most dominant fouling organisms in fouling communities. Larval settlement has a crucial ecological effect not only on the distribution of the barnacle population but also intertidal community structures. However, the molecular mechanisms involved in the transition process from the larval to the juvenile stage remain largely unclear. In this study, we carried out comparative proteomic profiles of stage II nauplii, stage VI nauplii, cyprids, and juveniles of the barnacle Balanus amphitrite using label-free quantitative proteomics, followed by the measurement of the gene expression levels of candidate proteins. More than 700 proteins were identified at each stage; 80 were significantly up-regulated in cyprids and 95 in juveniles vs other stages. Specifically, proteins involved in energy and metabolism, the nervous system and signal transduction were significantly up-regulated in cyprids, whereas proteins involved in cytoskeletal remodeling, transcription and translation, cell proliferation and differentiation, and biomineralization were up-regulated in juveniles, consistent with changes associated with larval metamorphosis and tissue remodeling in juveniles. These findings provided molecular evidence for the morphological, physiological and biological changes that occur during the transition process from the larval to the juvenile stages in B. amphitrite. © 2014 Chen et al.

  18. Quantitative proteomics study of larval settlement in the barnacle Balanus amphitrite

    KAUST Repository

    Chen, Zhang-Fan

    2014-02-13

    Barnacles are major sessile components of the intertidal areas worldwide, and also one of the most dominant fouling organisms in fouling communities. Larval settlement has a crucial ecological effect not only on the distribution of the barnacle population but also intertidal community structures. However, the molecular mechanisms involved in the transition process from the larval to the juvenile stage remain largely unclear. In this study, we carried out comparative proteomic profiles of stage II nauplii, stage VI nauplii, cyprids, and juveniles of the barnacle Balanus amphitrite using label-free quantitative proteomics, followed by the measurement of the gene expression levels of candidate proteins. More than 700 proteins were identified at each stage; 80 were significantly up-regulated in cyprids and 95 in juveniles vs other stages. Specifically, proteins involved in energy and metabolism, the nervous system and signal transduction were significantly up-regulated in cyprids, whereas proteins involved in cytoskeletal remodeling, transcription and translation, cell proliferation and differentiation, and biomineralization were up-regulated in juveniles, consistent with changes associated with larval metamorphosis and tissue remodeling in juveniles. These findings provided molecular evidence for the morphological, physiological and biological changes that occur during the transition process from the larval to the juvenile stages in B. amphitrite. © 2014 Chen et al.

  19. Population-specific plasma proteomes of marine and freshwater three-spined sticklebacks (Gasterosteus aculeatus).

    Science.gov (United States)

    Kültz, Dietmar; Li, Johnathon; Zhang, Xuezhen; Villarreal, Fernando; Pham, Tuan; Paguio, Darlene

    2015-12-01

    Molecular phenotypes that distinguish resident marine (Bodega Harbor) from landlocked freshwater (FW, Lake Solano) three-spined sticklebacks were revealed by label-free quantitative proteomics. Secreted plasma proteins involved in lipid transport, blood coagulation, proteolysis, plasminogen-activating cascades, extracellular stimulus responses, and immunity are most abundant in this species. Globulins and albumins are much less abundant than in mammalian plasma. Unbiased quantitative proteome profiling identified 45 highly population-specific plasma proteins. Population-specific abundance differences were validated by targeted proteomics based on data-independent acquisition. Gene ontology enrichment analyses and known functions of population-specific plasma proteins indicate enrichment of processes controlling cell adhesion, tissue remodeling, proteolytic processing, and defense signaling in marine sticklebacks. Moreover, fetuin B and leukocyte cell derived chemotaxin 2 are much more abundant in marine fish. These proteins promote bone morphogenesis and likely contribute to population-specific body armor differences. Plasma proteins enriched in FW fish promote translation, heme biosynthesis, and lipid transport, suggesting a greater presence of plasma microparticles. Many prominent population-specific plasma proteins (e.g. apoptosis-associated speck-like protein containing a CARD) lack any homolog of known function or adequate functional characterization. Their functional characterization and the identification of population-specific environmental contexts and selective pressures that cause plasma proteome diversification are future directions emerging from this study. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Proteome scale identification, classification and structural analysis of iron-binding proteins in bread wheat.

    Science.gov (United States)

    Verma, Shailender Kumar; Sharma, Ankita; Sandhu, Padmani; Choudhary, Neha; Sharma, Shailaja; Acharya, Vishal; Akhter, Yusuf

    2017-05-01

    Bread wheat is one of the major staple foods of worldwide population and iron plays a significant role in growth and development of the plant. In this report, we are presenting the genome wide identification of iron-binding proteins in bread wheat. The wheat genome derived putative proteome was screened for identification of iron-binding sequence motifs. Out of 602 putative iron-binding proteins, 130 were able to produce reliable structural models by homology techniques and further analyzed for the presence of iron-binding structural motifs. The computationally identified proteins appear to bind to ferrous and ferric ions and showed diverse coordination geometries. Glu, His, Asp and Cys amino acid residues were found to be mostly involved in iron binding. We have classified these proteins on the basis of their localization in the different cellular compartments. The identified proteins were further classified into their protein folds, families and functional classes ranging from structure maintenance of cellular components, regulation of gene expression, post translational modification, membrane proteins, enzymes, signaling and storage proteins. This comprehensive report regarding structural iron binding proteome provides useful insights into the diversity of iron binding proteins of wheat plants and further utilized to study their roles in plant growth, development and physiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Quantitative Proteomic Analysis of Serum Exosomes from Patients with Locally Advanced Pancreatic Cancer Undergoing Chemoradiotherapy.

    Science.gov (United States)

    An, Mingrui; Lohse, Ines; Tan, Zhijing; Zhu, Jianhui; Wu, Jing; Kurapati, Himabindu; Morgan, Meredith A; Lawrence, Theodore S; Cuneo, Kyle C; Lubman, David M

    2017-04-07

    Pancreatic cancer is the third leading cause of cancer-related death in the USA. Despite extensive research, minimal improvements in patient outcomes have been achieved. Early identification of treatment response and metastasis would be valuable to determine the appropriate therapeutic course for patients. In this work, we isolated exosomes from the serum of 10 patients with locally advanced pancreatic cancer at serial time points over a course of therapy, and quantitative analysis was performed using the iTRAQ method. We detected approximately 700-800 exosomal proteins per sample, several of which have been implicated in metastasis and treatment resistance. We compared the exosomal proteome of patients at different time points during treatment to healthy controls and identified eight proteins that show global treatment-specific changes. We then tested the effect of patient-derived exosomes on the migration of tumor cells and found that patient-derived exosomes, but not healthy controls, induce cell migration, supporting their role in metastasis. Our data show that exosomes can be reliably extracted from patient serum and analyzed for protein content. The differential loading of exosomes during a course of therapy suggests that exosomes may provide novel insights into the development of treatment resistance and metastasis.

  2. Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation.

    Science.gov (United States)

    Moore, Henna M; Bai, Baoyan; Boisvert, François-Michel; Latonen, Leena; Rantanen, Ville; Simpson, Jeremy C; Pepperkok, Rainer; Lamond, Angus I; Laiho, Marikki

    2011-10-01

    The nucleolus is a nuclear organelle that coordinates rRNA transcription and ribosome subunit biogenesis. Recent proteomic analyses have shown that the nucleolus contains proteins involved in cell cycle control, DNA processing and DNA damage response and repair, in addition to the many proteins connected with ribosome subunit production. Here we study the dynamics of nucleolar protein responses in cells exposed to stress and DNA damage caused by ionizing and ultraviolet (UV) radiation in diploid human fibroblasts. We show using a combination of imaging and quantitative proteomics methods that nucleolar substructure and the nucleolar proteome undergo selective reorganization in response to UV damage. The proteomic responses to UV include alterations of functional protein complexes such as the SSU processome and exosome, and paraspeckle proteins, involving both decreases and increases in steady state protein ratios, respectively. Several nonhomologous end-joining proteins (NHEJ), such as Ku70/80, display similar fast responses to UV. In contrast, nucleolar proteomic responses to IR are both temporally and spatially distinct from those caused by UV, and more limited in terms of magnitude. With the exception of the NHEJ and paraspeckle proteins, where IR induces rapid and transient changes within 15 min of the damage, IR does not alter the ratios of most other functional nucleolar protein complexes. The rapid transient decrease of NHEJ proteins in the nucleolus indicates that it may reflect a response to DNA damage. Our results underline that the nucleolus is a specific stress response organelle that responds to different damage and stress agents in a unique, damage-specific manner.

  3. Quantitative, high-resolution proteomics for data-driven systems biology

    DEFF Research Database (Denmark)

    Cox, J.; Mann, M.

    2011-01-01

    Systems biology requires comprehensive data at all molecular levels. Mass spectrometry (MS)-based proteomics has emerged as a powerful and universal method for the global measurement of proteins. In the most widespread format, it uses liquid chromatography (LC) coupled to high-resolution tandem...... primary structure of proteins including posttranslational modifications, to localize proteins to organelles, and to determine protein interactions. Here, we describe the principles of analysis and the areas of biology where proteomics can make unique contributions. The large-scale nature of proteomics...... data and its high accuracy pose special opportunities as well as challenges in systems biology that have been largely untapped so far....

  4. Response of Human Osteoblast to n-HA/PEEK—Quantitative Proteomic Study of Bio-effects of Nano-Hydroxyapatite Composite

    Science.gov (United States)

    Zhao, Minzhi; Li, Haiyun; Liu, Xiaochen; Wei, Jie; Ji, Jianguo; Yang, Shu; Hu, Zhiyuan; Wei, Shicheng

    2016-03-01

    Nano-sized hydroxyapatite (n-HA) is considered as a bio-active material, which is often mixed into bone implant material, polyetheretherketone (PEEK). To reveal the global protein expression modulations of osteoblast in response to direct contact with the PEEK composite containing high level (40%) nano-sized hydroxyapatite (n-HA/PEEK) and explain its comprehensive bio-effects, quantitative proteomic analysis was conducted on human osteoblast-like cells MG-63 cultured on n-HA/PEEK in comparison with pure PEEK. Results from quantitative proteomic analysis showed that the most enriched categories in the up-regulated proteins were related to calcium ion processes and associated functions while the most enriched categories in the down-regulated proteins were related to RNA process. This enhanced our understanding to the molecular mechanism of the promotion of the cell adhesion and differentiation with the inhibition of the cell proliferation on n-HA/PEEK composite. It also exhibited that although the calcium ion level of incubate environment hadn’t increased, merely the calcium fixed on the surface of material had influence to intracellular calcium related processes, which was also reflect by the higher intracellular Ca2+ concentration of n-HA/PEEK. This study could lead to more comprehensive cognition to the versatile biocompatibility of composite materials. It further proves that proteomics is useful in new bio-effect discovery.

  5. Response of Human Osteoblast to n-HA/PEEK—Quantitative Proteomic Study of Bio-effects of Nano-Hydroxyapatite Composite

    Science.gov (United States)

    Zhao, Minzhi; Li, Haiyun; Liu, Xiaochen; Wei, Jie; Ji, Jianguo; Yang, Shu; Hu, Zhiyuan; Wei, Shicheng

    2016-01-01

    Nano-sized hydroxyapatite (n-HA) is considered as a bio-active material, which is often mixed into bone implant material, polyetheretherketone (PEEK). To reveal the global protein expression modulations of osteoblast in response to direct contact with the PEEK composite containing high level (40%) nano-sized hydroxyapatite (n-HA/PEEK) and explain its comprehensive bio-effects, quantitative proteomic analysis was conducted on human osteoblast-like cells MG-63 cultured on n-HA/PEEK in comparison with pure PEEK. Results from quantitative proteomic analysis showed that the most enriched categories in the up-regulated proteins were related to calcium ion processes and associated functions while the most enriched categories in the down-regulated proteins were related to RNA process. This enhanced our understanding to the molecular mechanism of the promotion of the cell adhesion and differentiation with the inhibition of the cell proliferation on n-HA/PEEK composite. It also exhibited that although the calcium ion level of incubate environment hadn’t increased, merely the calcium fixed on the surface of material had influence to intracellular calcium related processes, which was also reflect by the higher intracellular Ca2+ concentration of n-HA/PEEK. This study could lead to more comprehensive cognition to the versatile biocompatibility of composite materials. It further proves that proteomics is useful in new bio-effect discovery. PMID:26956660

  6. Quantitative proteomics analysis using 2D-PAGE to investigate the effects of cigarette smoke and aerosol of a prototypic modified risk tobacco product on the lung proteome in C57BL/6 mice.

    Science.gov (United States)

    Elamin, Ashraf; Titz, Bjoern; Dijon, Sophie; Merg, Celine; Geertz, Marcel; Schneider, Thomas; Martin, Florian; Schlage, Walter K; Frentzel, Stefan; Talamo, Fabio; Phillips, Blaine; Veljkovic, Emilija; Ivanov, Nikolai V; Vanscheeuwijck, Patrick; Peitsch, Manuel C; Hoeng, Julia

    2016-08-11

    Smoking is associated with several serious diseases, such as lung cancer and chronic obstructive pulmonary disease (COPD). Within our systems toxicology framework, we are assessing whether potential modified risk tobacco products (MRTP) can reduce smoking-related health risks compared to conventional cigarettes. In this article, we evaluated to what extent 2D-PAGE/MALDI MS/MS (2D-PAGE) can complement the iTRAQ LC-MS/MS results from a previously reported mouse inhalation study, in which we assessed a prototypic MRTP (pMRTP). Selected differentially expressed proteins identified by both LC-MS/MS and 2D-PAGE approaches were further verified using reverse-phase protein microarrays. LC-MS/MS captured the effects of cigarette smoke (CS) on the lung proteome more comprehensively than 2D-PAGE. However, an integrated analysis of both proteomics data sets showed that 2D-PAGE data complement the LC-MS/MS results by supporting the overall trend of lower effects of pMRTP aerosol than CS on the lung proteome. Biological effects of CS exposure supported by both methods included increases in immune-related, surfactant metabolism, proteasome, and actin cytoskeleton protein clusters. Overall, while 2D-PAGE has its value, especially as a complementary method for the analysis of effects on intact proteins, LC-MS/MS approaches will likely be the method of choice for proteome analysis in systems toxicology investigations. Quantitative proteomics is anticipated to play a growing role within systems toxicology assessment frameworks in the future. To further understand how different proteomics technologies can contribute to toxicity assessment, we conducted a quantitative proteomics analysis using 2D-PAGE and isobaric tag-based LC-MS/MS approaches and compared the results produced from the 2 approaches. Using a prototypic modified risk tobacco product (pMRTP) as our test item, we show compared with cigarette smoke, how 2D-PAGE results can complement and support LC-MS/MS data, demonstrating

  7. Proteomics Development and Application for Bioforensics

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Karen L.; Wunschel, David S.; Clowers, Brian H.

    2010-09-15

    Proteomics is a relatively new scientific discipline dedicated to the comprehensive study of the protein composition of biological systems. While genomic sequencing is an invaluable tool for bioforensic sample identification, proteomics complements genomics in that the genes present in an organism code for the proteins that can be present in a microorganism. Many proteins are conserved for general identification while other protein expression varies with environment/growth state/growth conditions (i.e. not all proteins are expressed at any given time or condition) providing additional information beyond genomic analysis. This expression specificity and the relative stability of proteins with respect to genetic material make them attractive targets for microorganism identification and forensic applications to complement genomic approaches. Proteomic analysis depends upon the availability of genome sequences of the relevant organisms or their near relatives. The known amino acid sequences for potential proteins within the database can be compared to amino acid sequences of actual proteins present in a sample as determined with high mass accuracy by mass spectrometry for identification of the proteins in the sample. With the development of technology for rapid genome sequencing of organisms, the known protein database is growing, supporting improved identification of the proteins present in a sample. Recent developments in mass spectrometry instrumentation and microbial sequencing are leading to an increased growth in application of proteomics to microbiology, pathogen detection, disease diagnosis and microbial forensics as well as other biological disciplines. Mass spectrometry analysis does not require a priori knowledge of the sample or expected targets to gain meaningful.

  8. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ying; Piehowski, Paul D.; Zhao, Rui; Chen, Jing; Shen, Yufeng; Moore, Ronald J.; Shukla, Anil K.; Petyuk, Vladislav A.; Campbell-Thompson, Martha; Mathews, Clayton E.; Smith, Richard D.; Qian, Wei-Jun; Kelly, Ryan T.

    2018-02-28

    Nanoscale or single cell technologies are critical for biomedical applications. However, current mass spectrometry (MS)-based proteomic approaches require samples comprising a minimum of thousands of cells to provide in-depth profiling. Here, we report the development of a nanoPOTS (Nanodroplet Processing in One pot for Trace Samples) platform as a major advance in overall sensitivity. NanoPOTS dramatically enhances the efficiency and recovery of sample processing by downscaling processing volumes to <200 nL to minimize surface losses. When combined with ultrasensitive LC-MS, nanoPOTS allows identification of ~1500 to ~3,000 proteins from ~10 to ~140 cells, respectively. By incorporating the Match Between Runs algorithm of MaxQuant, >3000 proteins were consistently identified from as few as 10 cells. Furthermore, we demonstrate robust quantification of ~2400 proteins from single human pancreatic islet thin sections from type 1 diabetic and control donors, illustrating the application of nanoPOTS for spatially resolved proteome measurements from clinical tissues.

  9. Centrosome isolation and analysis by mass spectrometry-based proteomics

    DEFF Research Database (Denmark)

    Jakobsen, Lis; Schrøder, Jacob Morville; Larsen, Katja M

    2013-01-01

    Centrioles are microtubule-based scaffolds that are essential for the formation of centrosomes, cilia, and flagella with important functions throughout the cell cycle, in physiology and during development. The ability to purify centriole-containing organelles on a large scale, combined with advan...... to isolate centrosomes from human cells and strategies to selectively identify and study the properties of the associated proteins using quantitative mass spectrometry-based proteomics.......Centrioles are microtubule-based scaffolds that are essential for the formation of centrosomes, cilia, and flagella with important functions throughout the cell cycle, in physiology and during development. The ability to purify centriole-containing organelles on a large scale, combined...... with advances in protein identification using mass spectrometry-based proteomics, have revealed multiple centriole-associated proteins that are conserved during evolution in eukaryotes. Despite these advances, the molecular basis for the plethora of processes coordinated by cilia and centrosomes is not fully...

  10. Label-free quantitative proteome analysis of the surface-bound salivary pellicle.

    Science.gov (United States)

    Delius, Judith; Trautmann, Simone; Médard, Guillaume; Kuster, Bernhard; Hannig, Matthias; Hofmann, Thomas

    2017-04-01

    The salivary pellicle, covering natural as well as restored tooth surfaces in the oral cavity as an immobilized protein-rich layer, acts as an important physico-chemical and biological mediator at the tooth-saliva-interface. For the first time, the pellicle's proteome of individual volunteers were analyzed separately on three consecutive days and the relative protein abundance determined by a label-free quantitative nano-LC-MS/MS approach. A total of 72 major proteins were identified in the initial pellicles formed intraorally on dental ceramic specimens already after 3min with high inter-individual and inter-day consistency. In comparison, significant differences in protein abundance were evident between subjects, thus indicating unique individual pellicle profiles. Furthermore, the relative protein abundance in pellicles was compared to the proteome pattern in the corresponding saliva samples of the same individuals to provide first data on significantly enriched and depleted salivary proteins (p <0.05) within the surface-bound salivary pellicle. Our findings reveal the initial adsorption of salivary proteins at the solid-liquid interface to be a rapid, highly selective, and reproducible process leading to the immobilization of a broad range of protective proteins and enzymes on the substratum surface within a few minutes. This provides evidence that the pellicle layer might be physiologically functional even without further maturation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Quantitative proteome and phosphoproteome analyses of Streptomyces coelicolor reveal proteins and phosphoproteins modulating differentiation and secondary metabolism

    DEFF Research Database (Denmark)

    Rioseras, Beatriz; Sliaha, Pavel V; Gorshkov, Vladimir

    2018-01-01

    identified and quantified 3461 proteins corresponding to 44.3% of the S. coelicolor proteome across three developmental stages: vegetative hypha (MI); secondary metabolite producing hyphae (MII); and sporulating hyphae. A total of 1350 proteins exhibited more than 2-fold expression changes during....../Thr/Tyr kinases, making this genus an outstanding model for the study of bacterial protein phosphorylation events. We used mass spectrometry based quantitative proteomics and phosphoproteomics to characterize bacterial differentiation and activation of secondary metabolism of Streptomyces coelicolor. We...... the bacterial differentiation process. These proteins include 136 regulators (transcriptional regulators, transducers, Ser/Thr/Tyr kinases, signalling proteins), as well as 542 putative proteins with no clear homology to known proteins which are likely to play a role in differentiation and secondary metabolism...

  12. Quantitative Characterization of Major Hepatic UDP-Glucuronosyltransferase Enzymes in Human Liver Microsomes: Comparison of Two Proteomic Methods and Correlation with Catalytic Activity.

    Science.gov (United States)

    Achour, Brahim; Dantonio, Alyssa; Niosi, Mark; Novak, Jonathan J; Fallon, John K; Barber, Jill; Smith, Philip C; Rostami-Hodjegan, Amin; Goosen, Theunis C

    2017-10-01

    Quantitative characterization of UDP-glucuronosyltransferase (UGT) enzymes is valuable in glucuronidation reaction phenotyping, predicting metabolic clearance and drug-drug interactions using extrapolation exercises based on pharmacokinetic modeling. Different quantitative proteomic workflows have been employed to quantify UGT enzymes in various systems, with reports indicating large variability in expression, which cannot be explained by interindividual variability alone. To evaluate the effect of methodological differences on end-point UGT abundance quantification, eight UGT enzymes were quantified in 24 matched liver microsomal samples by two laboratories using stable isotope-labeled (SIL) peptides or quantitative concatemer (QconCAT) standard, and measurements were assessed against catalytic activity in seven enzymes ( n = 59). There was little agreement between individual abundance levels reported by the two methods; only UGT1A1 showed strong correlation [Spearman rank order correlation (Rs) = 0.73, P quantitative proteomic data should be validated against catalytic activity whenever possible. In addition, metabolic reaction phenotyping exercises should consider spurious abundance-activity correlations to avoid misleading conclusions. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  13. pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification.

    Science.gov (United States)

    Liu, Ming-Qi; Zeng, Wen-Feng; Fang, Pan; Cao, Wei-Qian; Liu, Chao; Yan, Guo-Quan; Zhang, Yang; Peng, Chao; Wu, Jian-Qiang; Zhang, Xiao-Jin; Tu, Hui-Jun; Chi, Hao; Sun, Rui-Xiang; Cao, Yong; Dong, Meng-Qiu; Jiang, Bi-Yun; Huang, Jiang-Ming; Shen, Hua-Li; Wong, Catherine C L; He, Si-Min; Yang, Peng-Yuan

    2017-09-05

    The precise and large-scale identification of intact glycopeptides is a critical step in glycoproteomics. Owing to the complexity of glycosylation, the current overall throughput, data quality and accessibility of intact glycopeptide identification lack behind those in routine proteomic analyses. Here, we propose a workflow for the precise high-throughput identification of intact N-glycopeptides at the proteome scale using stepped-energy fragmentation and a dedicated search engine. pGlyco 2.0 conducts comprehensive quality control including false discovery rate evaluation at all three levels of matches to glycans, peptides and glycopeptides, improving the current level of accuracy of intact glycopeptide identification. The N-glycoproteome of samples metabolically labeled with 15 N/ 13 C were analyzed quantitatively and utilized to validate the glycopeptide identification, which could be used as a novel benchmark pipeline to compare different search engines. Finally, we report a large-scale glycoproteome dataset consisting of 10,009 distinct site-specific N-glycans on 1988 glycosylation sites from 955 glycoproteins in five mouse tissues.Protein glycosylation is a heterogeneous post-translational modification that generates greater proteomic diversity that is difficult to analyze. Here the authors describe pGlyco 2.0, a workflow for the precise one step identification of intact N-glycopeptides at the proteome scale.

  14. In silico proteome analysis to facilitate proteomics experiments using mass spectrometry

    Directory of Open Access Journals (Sweden)

    Lindo Micheal

    2003-08-01

    Full Text Available Abstract Proteomics experiments typically involve protein or peptide separation steps coupled to the identification of many hundreds to thousands of peptides by mass spectrometry. Development of methodology and instrumentation in this field is proceeding rapidly, and effective software is needed to link the different stages of proteomic analysis. We have developed an application, proteogest, written in Perl that generates descriptive and statistical analyses of the biophysical properties of multiple (e.g. thousands protein sequences submitted by the user, for instance protein sequences inferred from the complete genome sequence of a model organism. The application also carries out in silico proteolytic digestion of the submitted proteomes, or subsets thereof, and the distribution of biophysical properties of the resulting peptides is presented. proteogest is customizable, the user being able to select many options, for instance the cleavage pattern of the digestion treatment or the presence of modifications to specific amino acid residues. We show how proteogest can be used to compare the proteomes and digested proteome products of model organisms, to examine the added complexity generated by modification of residues, and to facilitate the design of proteomics experiments for optimal representation of component proteins.

  15. Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p.

    Science.gov (United States)

    Bailey, Ulla-Maja; Schulz, Benjamin L

    2013-04-01

    Post-translational modification of proteins with glycosylation is of key importance in many biological systems in eukaryotes, influencing fundamental biological processes and regulating protein function. Changes in glycosylation are therefore of interest in understanding these processes and are also useful as clinical biomarkers of disease. The presence of glycosylation can also inhibit protease digestion and lower the quality and confidence of protein identification by mass spectrometry. While deglycosylation can improve the efficiency of subsequent protease digest and increase protein coverage, this step is often excluded from proteomic workflows. Here, we performed a systematic analysis that showed that deglycosylation with peptide-N-glycosidase F (PNGase F) prior to protease digestion with AspN or trypsin improved the quality of identification of the yeast cell wall proteome. The improvement in the confidence of identification of glycoproteins following PNGase F deglycosylation correlated with a higher density of glycosylation sites. Optimal identification across the proteome was achieved with PNGase F deglycosylation and complementary proteolysis with either AspN or trypsin. We used this combination of deglycosylation and complementary protease digest to identify changes in the yeast cell wall proteome caused by lack of the Alg3p protein, a key component of the biosynthetic pathway of protein N-glycosylation. The cell wall of yeast lacking Alg3p showed specifically increased levels of Cis3p, a protein important for cell wall integrity. Our results showed that deglycosylation prior to protease digestion improved the quality of proteomic analyses even if protein glycosylation is not of direct relevance to the study at hand. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Comparison of two label-free global quantitation methods, APEX and 2D gel electrophoresis, applied to the Shigella dysenteriae proteome

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-06-01

    Full Text Available Abstract The in vitro stationary phase proteome of the human pathogen Shigella dysenteriae serotype 1 (SD1 was quantitatively analyzed in Coomassie Blue G250 (CBB-stained 2D gels. More than four hundred and fifty proteins, of which 271 were associated with distinct gel spots, were identified. In parallel, we employed 2D-LC-MS/MS followed by the label-free computationally modified spectral counting method APEX for absolute protein expression measurements. Of the 4502 genome-predicted SD1 proteins, 1148 proteins were identified with a false positive discovery rate of 5% and quantitated using 2D-LC-MS/MS and APEX. The dynamic range of the APEX method was approximately one order of magnitude higher than that of CBB-stained spot intensity quantitation. A squared Pearson correlation analysis revealed a reasonably good correlation (R2 = 0.67 for protein quantities surveyed by both methods. The correlation was decreased for protein subsets with specific physicochemical properties, such as low Mr values and high hydropathy scores. Stoichiometric ratios of subunits of protein complexes characterized in E. coli were compared with APEX quantitative ratios of orthologous SD1 protein complexes. A high correlation was observed for subunits of soluble cellular protein complexes in several cases, demonstrating versatile applications of the APEX method in quantitative proteomics.

  17. Identification of Mediator Kinase Substrates in Human Cells using Cortistatin A and Quantitative Phosphoproteomics.

    Science.gov (United States)

    Poss, Zachary C; Ebmeier, Christopher C; Odell, Aaron T; Tangpeerachaikul, Anupong; Lee, Thomas; Pelish, Henry E; Shair, Matthew D; Dowell, Robin D; Old, William M; Taatjes, Dylan J

    2016-04-12

    Cortistatin A (CA) is a highly selective inhibitor of the Mediator kinases CDK8 and CDK19. Using CA, we now report a large-scale identification of Mediator kinase substrates in human cells (HCT116). We identified over 16,000 quantified phosphosites including 78 high-confidence Mediator kinase targets within 64 proteins, including DNA-binding transcription factors and proteins associated with chromatin, DNA repair, and RNA polymerase II. Although RNA-seq data correlated with Mediator kinase targets, the effects of CA on gene expression were limited and distinct from CDK8 or CDK19 knockdown. Quantitative proteome analyses, tracking around 7,000 proteins across six time points (0-24 hr), revealed that CA selectively affected pathways implicated in inflammation, growth, and metabolic regulation. Contrary to expectations, increased turnover of Mediator kinase targets was not generally observed. Collectively, these data support Mediator kinases as regulators of chromatin and RNA polymerase II activity and suggest their roles extend beyond transcription to metabolism and DNA repair. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Identification of p90 Ribosomal S6 Kinase 2 as a Novel Host Protein in HBx Augmenting HBV Replication by iTRAQ-Based Quantitative Comparative Proteomics.

    Science.gov (United States)

    Yan, Li-Bo; Yu, You-Jia; Zhang, Qing-Bo; Tang, Xiao-Qiong; Bai, Lang; Huang, FeiJun; Tang, Hong

    2018-05-01

    The aim of this study was to screen for novel host proteins that play a role in HBx augmenting Hepatitis B virus (HBV) replication. Three HepG2 cell lines stably harboring different functional domains of HBx (HBx, HBx-Cm6, and HBx-Cm16) were cultured. ITRAQ technology integrated with LC-MS/MS analysis was applied to identify the proteome differences among these three cell lines. In brief, a total of 70 different proteins were identified among HepG2-HBx, HepG2-HBx-Cm6, and HepG2-HBx-Cm16 by double repetition. Several differentially expressed proteins, including p90 ribosomal S6 kinase 2 (RSK2), were further validated. RSK2 was expressed at higher levels in HepG2-HBx and HepG2-HBx-Cm6 compared with HepG2-HBx-Cm16. Furthermore, levels of HBV replication intermediates were decreased after silencing RSK2 in HepG2.2.15. An HBx-minus HBV mutant genome led to decreased levels of HBV replication intermediates and these decreases were restored to levels similar to wild-type HBV by transient ectopic expression of HBx. After silencing RSK2 expression, the levels of HBV replication intermediates synthesized from the HBx-minus HBV mutant genome were not restored to levels that were observed with wild-type HBV by transient HBx expression. Based on iTRAQ quantitative comparative proteomics, RSK2 was identified as a novel host protein that plays a role in HBx augmenting HBV replication. © 2018 The Authors. Proteomics - Clinical Application Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The hemolymph proteome of fed and starved Drosophila larvae.

    Science.gov (United States)

    Handke, Björn; Poernbacher, Ingrid; Goetze, Sandra; Ahrens, Christian H; Omasits, Ulrich; Marty, Florian; Simigdala, Nikiana; Meyer, Imke; Wollscheid, Bernd; Brunner, Erich; Hafen, Ernst; Lehner, Christian F

    2013-01-01

    The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid) contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics.

  20. The hemolymph proteome of fed and starved Drosophila larvae.

    Directory of Open Access Journals (Sweden)

    Björn Handke

    Full Text Available The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics.

  1. Quantitative proteomics and terminomics to elucidate the role of ubiquitination and proteolysis in adaptive immunity.

    Science.gov (United States)

    Klein, Theo; Viner, Rosa I; Overall, Christopher M

    2016-10-28

    Adaptive immunity is the specialized defence mechanism in vertebrates that evolved to eliminate pathogens. Specialized lymphocytes recognize specific protein epitopes through antigen receptors to mount potent immune responses, many of which are initiated by nuclear factor-kappa B activation and gene transcription. Most, if not all, pathways in adaptive immunity are further regulated by post-translational modification (PTM) of signalling proteins, e.g. phosphorylation, citrullination, ubiquitination and proteolytic processing. The importance of PTMs is reflected by genetic or acquired defects in these pathways that lead to a dysfunctional immune response. Here we discuss the state of the art in targeted proteomics and systems biology approaches to dissect the PTM landscape specifically regarding ubiquitination and proteolysis in B- and T-cell activation. Recent advances have occurred in methods for specific enrichment and targeted quantitation. Together with improved instrument sensitivity, these advances enable the accurate analysis of often rare PTM events that are opaque to conventional proteomics approaches, now rendering in-depth analysis and pathway dissection possible. We discuss published approaches, including as a case study the profiling of the N-terminome of lymphocytes of a rare patient with a genetic defect in the paracaspase protease MALT1, a key regulator protease in antigen-driven signalling, which was manifested by elevated linear ubiquitination.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Authors.

  2. Quantitative proteome analysis of plasma microparticles for the characterization of HCV-induced hepatic cirrhosis and hepatocellular carcinoma.

    Science.gov (United States)

    Taleb, Raghda Saad Zaghloul; Moez, Pacint; Younan, Doreen; Eisenacher, Martin; Tenbusch, Matthias; Sitek, Barbara; Bracht, Thilo

    2017-12-01

    Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and a leading cause of cancer-related deaths worldwide. Cirrhosis induced by hepatitis-C virus (HCV) infection is the most critical risk factor for HCC. However, the mechanism of HCV-induced carcinogenesis is not fully understood. Plasma microparticles (PMP) contribute to numerous physiological and pathological processes and contain proteins whose composition correlates to the respective pathophysiological conditions. We analyzed PMP from 22 HCV-induced cirrhosis patients, 16 HCV-positive HCC patients with underlying cirrhosis and 18 healthy controls. PMP were isolated using ultracentrifugation and analyzed via label-free LC-MS/MS. We identified 840 protein groups and quantified 507 proteins. 159 proteins were found differentially abundant between the three experimental groups. PMP in both disease entities displayed remarkable differences in the proteome composition compared to healthy controls. Conversely, the proteome difference between both diseases was minimal. GO analysis revealed that PMP isolated from both diseases were significantly enriched in proteins involved in complement activation, while endopeptidase activity was downregulated exclusively in HCC patients. This study reports for the first time a quantitative proteome analysis for PMP from patients with HCV-induced cirrhosis and HCC. Data are available via ProteomeXchange with identifier PXD005777. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: A quantitative proteomics approach.

    Science.gov (United States)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-04-14

    Marine bioadhesives have unmatched performances in wet environments, being an inspiration for biomedical applications. In sea urchins specialized adhesive organs, tube feet, mediate reversible adhesion, being composed by a disc, producing adhesive and de-adhesive secretions, and a motile stem. After tube foot detachment, the secreted adhesive remains bound to the substratum as a footprint. Sea urchin adhesive is composed by proteins and sugars, but so far only one protein, Nectin, was shown to be over-expressed as a transcript in tube feet discs, suggesting its involvement in sea urchin adhesion. Here we use high-resolution quantitative mass-spectrometry to perform the first study combining the analysis of the differential proteome of an adhesive organ, with the proteome of its secreted adhesive. This strategy allowed us to identify 163 highly over-expressed disc proteins, specifically involved in sea urchin reversible adhesion; to find that 70% of the secreted adhesive components fall within five protein groups, involved in exocytosis and microbial protection; and to provide evidences that Nectin is not only highly expressed in tube feet discs but is an actual component of the adhesive. These results give an unprecedented insight into the molecular mechanisms underlying sea urchin adhesion, and opening new doors to develop wet-reliable, reversible, and ecological biomimetic adhesives. Sea urchins attach strongly but in a reversible manner to substratum, being a valuable source of inspiration for industrial and biomedical applications. Yet, the molecular mechanisms governing reversible adhesion are still poorly studied delaying the engineering of biomimetic adhesives. We used the latest mass spectrometry techniques to analyze the differential proteome of an adhesive organ and the proteome of its secreted adhesive, allowing us to uncover the key players in sea urchin reversible adhesion. We demonstrate, that Nectin, a protein previously pointed out as potentially

  4. Nucleophosmin in the pathogenesis of arsenic-related bladder carcinogenesis revealed by quantitative proteomics

    International Nuclear Information System (INIS)

    Chen Shuhui; Wang Yiwen; Hsu Jueliang; Chang Hongyi; Wang Chiyun; Shen Potsun; Chiang Chiwu; Chuang Jingjing; Tsai Hungwen; Gu Powen; Chang Fangchih; Liu Hsiaosheng; Chow Nanhaw

    2010-01-01

    To investigate the molecular mechanisms of arsenic (As)-associated carcinogenesis, we performed proteomic analysis on E7 immortalized human uroepithelial cells after treatment with As in vitro. Quantitative proteomics was performed using stable isotope dimethyl labeling coupled with two-dimensional liquid chromatography peptide separation and mass spectrometry (MS)/MS analysis. Among 285 proteins, a total of 26 proteins were upregulated (ratio > 2.0) and 18 proteins were downregulated (ratio < 0.65) by As treatment, which are related to nucleotide binding, lipid metabolism, protein folding, protein biosynthesis, transcription, DNA repair, cell cycle control, and signal transduction. This study reports the potential significance of nucleophosmin (NPM) in the As-related bladder carcinogenesis. NPM was universally expressed in all of uroepithelial cell lines examined, implying that NPM may play a role in human bladder carcinogenesis. Upregulation of NPM tends to be dose- and time-dependent after As treatment. Expression of NPM was associated with cell proliferation, migration and anti-apoptosis. On the contrary, soy isoflavones inhibited the expression of NPM in vitro. The results suggest that NPM may play a role in the As-related bladder carcinogenesis, and soybean-based foods may have potential in the suppression of As/NPM-related tumorigenesis.

  5. Proteomics in medical microbiology.

    Science.gov (United States)

    Cash, P

    2000-04-01

    The techniques of proteomics (high resolution two-dimensional electrophoresis and protein characterisation) are widely used for microbiological research to analyse global protein synthesis as an indicator of gene expression. The rapid progress in microbial proteomics has been achieved through the wide availability of whole genome sequences for a number of bacterial groups. Beyond providing a basic understanding of microbial gene expression, proteomics has also played a role in medical areas of microbiology. Progress has been made in the use of the techniques for investigating the epidemiology and taxonomy of human microbial pathogens, the identification of novel pathogenic mechanisms and the analysis of drug resistance. In each of these areas, proteomics has provided new insights that complement genomic-based investigations. This review describes the current progress in these research fields and highlights some of the technical challenges existing for the application of proteomics in medical microbiology. The latter concern the analysis of genetically heterogeneous bacterial populations and the integration of the proteomic and genomic data for these bacteria. The characterisation of the proteomes of bacterial pathogens growing in their natural hosts remains a future challenge.

  6. Quantitative proteomics links metabolic pathways to specific developmental stages of the plant-pathogenic oomycete Phytophthora capsici.

    Science.gov (United States)

    Pang, Zhili; Srivastava, Vaibhav; Liu, Xili; Bulone, Vincent

    2017-04-01

    The oomycete Phytophthora capsici is a plant pathogen responsible for important losses to vegetable production worldwide. Its asexual reproduction plays an important role in the rapid propagation and spread of the disease in the field. A global proteomics study was conducted to compare two key asexual life stages of P. capsici, i.e. the mycelium and cysts, to identify stage-specific biochemical processes. A total of 1200 proteins was identified using qualitative and quantitative proteomics. The transcript abundance of some of the enriched proteins was also analysed by quantitative real-time polymerase chain reaction. Seventy-three proteins exhibited different levels of abundance between the mycelium and cysts. The proteins enriched in the mycelium are mainly associated with glycolysis, the tricarboxylic acid (or citric acid) cycle and the pentose phosphate pathway, providing the energy required for the biosynthesis of cellular building blocks and hyphal growth. In contrast, the proteins that are predominant in cysts are essentially involved in fatty acid degradation, suggesting that the early infection stage of the pathogen relies primarily on fatty acid degradation for energy production. The data provide a better understanding of P. capsici biology and suggest potential metabolic targets at the two different developmental stages for disease control. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  7. A novel algorithm for validating peptide identification from a shotgun proteomics search engine.

    Science.gov (United States)

    Jian, Ling; Niu, Xinnan; Xia, Zhonghang; Samir, Parimal; Sumanasekera, Chiranthani; Mu, Zheng; Jennings, Jennifer L; Hoek, Kristen L; Allos, Tara; Howard, Leigh M; Edwards, Kathryn M; Weil, P Anthony; Link, Andrew J

    2013-03-01

    Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has revolutionized the proteomics analysis of complexes, cells, and tissues. In a typical proteomic analysis, the tandem mass spectra from a LC-MS/MS experiment are assigned to a peptide by a search engine that compares the experimental MS/MS peptide data to theoretical peptide sequences in a protein database. The peptide spectra matches are then used to infer a list of identified proteins in the original sample. However, the search engines often fail to distinguish between correct and incorrect peptides assignments. In this study, we designed and implemented a novel algorithm called De-Noise to reduce the number of incorrect peptide matches and maximize the number of correct peptides at a fixed false discovery rate using a minimal number of scoring outputs from the SEQUEST search engine. The novel algorithm uses a three-step process: data cleaning, data refining through a SVM-based decision function, and a final data refining step based on proteolytic peptide patterns. Using proteomics data generated on different types of mass spectrometers, we optimized the De-Noise algorithm on the basis of the resolution and mass accuracy of the mass spectrometer employed in the LC-MS/MS experiment. Our results demonstrate De-Noise improves peptide identification compared to other methods used to process the peptide sequence matches assigned by SEQUEST. Because De-Noise uses a limited number of scoring attributes, it can be easily implemented with other search engines.

  8. Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol.

    Science.gov (United States)

    Tian, Xiaoxu; Chen, Lei; Wang, Jiangxin; Qiao, Jianjun; Zhang, Weiwen

    2013-01-14

    Butanol is a promising biofuel, and recent metabolic engineering efforts have demonstrated the use of photosynthetic cyanobacterial hosts for its production. However, cyanobacteria have very low tolerance to butanol, limiting the economic viability of butanol production from these renewable producing systems. The existing knowledge of molecular mechanism involved in butanol tolerance in cyanobacteria is very limited. To build a foundation necessary to engineer robust butanol-producing cyanobacterial hosts, in this study, the responses of Synechocystis PCC 6803 to butanol were investigated using a quantitative proteomics approach with iTRAQ - LC-MS/MS technologies. The resulting high-quality dataset consisted of 25,347 peptides corresponding to 1452 unique proteins, a coverage of approximately 40% of the predicted proteins in Synechocystis. Comparative quantification of protein abundances led to the identification of 303 differentially regulated proteins by butanol. Annotation and GO term enrichment analysis showed that multiple biological processes were regulated, suggesting that Synechocystis probably employed multiple and synergistic resistance mechanisms in dealing with butanol stress. Notably, the analysis revealed the induction of heat-shock protein and transporters, along with modification of cell membrane and envelope were the major protection mechanisms against butanol. A conceptual cellular model of Synechocystis PCC 6803 responses to butanol stress was constructed to illustrate the putative molecular mechanisms employed to defend against butanol stress. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Evaluation of FASP, SP3, and iST Protocols for Proteomic Sample Preparation in the Low Microgram Range.

    Science.gov (United States)

    Sielaff, Malte; Kuharev, Jörg; Bohn, Toszka; Hahlbrock, Jennifer; Bopp, Tobias; Tenzer, Stefan; Distler, Ute

    2017-11-03

    Efficient and reproducible sample preparation is a prerequisite for any robust and sensitive quantitative bottom-up proteomics workflow. Here, we performed an independent comparison between single-pot solid-phase-enhanced sample preparation (SP3), filter-aided sample preparation (FASP), and a commercial kit based on the in-StageTip (iST) method. We assessed their performance for the processing of proteomic samples in the low μg range using varying amounts of HeLa cell lysate (1-20 μg of total protein). All three workflows showed similar performances for 20 μg of starting material. When handling sample sizes below 10 μg, the number of identified proteins and peptides as well as the quantitative reproducibility and precision drastically dropped in case of FASP. In contrast, SP3 and iST provided high proteome coverage even in the low μg range. Even when digesting 1 μg of starting material, both methods still enabled the identification of over 3000 proteins and between 25 000 and 30 000 peptides. On average, the quantitative reproducibility between experimental replicates was slightly higher in case of SP3 (R 2 = 0.97 (SP3); R 2 = 0.93 (iST)). Applying SP3 toward the characterization of the proteome of FACS-sorted tumor-associated macrophages in the B16 tumor model enabled the quantification of 2965 proteins and revealed a "mixed" M1/M2 phenotype.

  10. Proteomics-Based Identification of the Molecular Signatures of Liver Tissues from Aged Rats following Eight Weeks of Medium-Intensity Exercise

    Directory of Open Access Journals (Sweden)

    Fanghui Li

    2016-01-01

    Full Text Available Physical activity has emerged as a powerful intervention that promotes healthy aging by maintaining the functional capacity of critical organ systems. Here, by combining functional and proteomics analyses, we examined how hepatic phenotypes might respond to exercise treatment in aged rats. 16 male aged (20 months old SD rats were divided into exercise and parallel control groups at random; the exercise group had 8 weeks of treadmill training with medium intensity. Whole protein samples of the liver were extracted from both groups and separated by two-dimensional gel electrophoresis. Alternatively objective protein spots with >2-fold difference in expression were selected for enzymological extraction and MS/MS identification. Results show increased activity of the manganese superoxide dismutase and elevated glutathione levels in the livers of exercise-treated animals, but malondialdehyde contents obviously decreased in the liver of the exercise group. Proteomics-based identification of differentially expressed proteins provided an integrated view of the metabolic adaptations occurring in the liver proteome during exercise, which significantly altered the expression of several proteins involved in key liver metabolic pathways including mitochondrial sulfur, glycolysis, methionine, and protein metabolism. These findings indicate that exercise may be beneficial to aged rats through modulation of hepatic protein expression profiles.

  11. Proteogenomics Dashboard for the Human Proteome Project.

    Science.gov (United States)

    Tabas-Madrid, Daniel; Alves-Cruzeiro, Joao; Segura, Victor; Guruceaga, Elizabeth; Vialas, Vital; Prieto, Gorka; García, Carlos; Corrales, Fernando J; Albar, Juan Pablo; Pascual-Montano, Alberto

    2015-09-04

    dasHPPboard is a novel proteomics-based dashboard that collects and reports the experiments produced by the Spanish Human Proteome Project consortium (SpHPP) and aims to help HPP to map the entire human proteome. We have followed the strategy of analog genomics projects like the Encyclopedia of DNA Elements (ENCODE), which provides a vast amount of data on human cell lines experiments. The dashboard includes results of shotgun and selected reaction monitoring proteomics experiments, post-translational modifications information, as well as proteogenomics studies. We have also processed the transcriptomics data from the ENCODE and Human Body Map (HBM) projects for the identification of specific gene expression patterns in different cell lines and tissues, taking special interest in those genes having little proteomic evidence available (missing proteins). Peptide databases have been built using single nucleotide variants and novel junctions derived from RNA-Seq data that can be used in search engines for sample-specific protein identifications on the same cell lines or tissues. The dasHPPboard has been designed as a tool that can be used to share and visualize a combination of proteomic and transcriptomic data, providing at the same time easy access to resources for proteogenomics analyses. The dasHPPboard can be freely accessed at: http://sphppdashboard.cnb.csic.es.

  12. Differential effects of a post-anthesis fertilizer regimen on the wheat flour proteome determined by quantitative 2-DE

    Directory of Open Access Journals (Sweden)

    Altenbach Susan B

    2011-08-01

    Full Text Available Abstract Background Mineral nutrition during wheat grain development has large effects on wheat flour protein content and composition, which in turn affect flour quality and immunogenic potential for a commodity of great economic value. However, it has been difficult to define the precise effects of mineral nutrition on protein composition because of the complexity of the wheat flour proteome. Recent improvements in the identification of flour proteins by tandem mass spectrometry (MS/MS and the availability of a comprehensive proteome map of flour from the US wheat Butte 86 now make it possible to document changes in the proportions of individual flour proteins that result from the application of mineral nutrition. Results Plants of Triticum aestivum 'Butte 86' were grown with or without post-anthesis fertilization (PAF and quantitative 2-dimensional gel electrophoresis (2-DE was used to analyze protein composition of the resulting flour. Significant changes in the proportions of 54 unique proteins were observed as a result of the treatment. Most omega-gliadins, high molecular weight glutenin subunits (HMW-GS and serpins as well as some alpha-gliadins increased in proportion with PAF. In contrast, alpha-amylase/protease inhibitors, farinins, purinins and puroindolines decreased in proportion. Decreases were also observed in several low molecular weight glutenin subunits (LMW-GS, globulins, defense proteins and enzymes. The ratio of HMW-GS to LMW-GS in the flour increased from 0.61 to 0.95 and the ratio of gliadins to glutenins increased from 1.02 to 1.30 with PAF. Because flour protein content doubled with PAF from 7 to 14%, most protein types actually increased in absolute amount (μg/mg flour protein. Data further suggest that flour proteins change with PAF according to their content of sulfur-containing amino acids Cys + Met. Conclusions A 2-DE approach revealed changes in the wheat flour proteome due to PAF that are important for flour

  13. SWATH2stats: An R/Bioconductor Package to Process and Convert Quantitative SWATH-MS Proteomics Data for Downstream Analysis Tools.

    Science.gov (United States)

    Blattmann, Peter; Heusel, Moritz; Aebersold, Ruedi

    2016-01-01

    SWATH-MS is an acquisition and analysis technique of targeted proteomics that enables measuring several thousand proteins with high reproducibility and accuracy across many samples. OpenSWATH is popular open-source software for peptide identification and quantification from SWATH-MS data. For downstream statistical and quantitative analysis there exist different tools such as MSstats, mapDIA and aLFQ. However, the transfer of data from OpenSWATH to the downstream statistical tools is currently technically challenging. Here we introduce the R/Bioconductor package SWATH2stats, which allows convenient processing of the data into a format directly readable by the downstream analysis tools. In addition, SWATH2stats allows annotation, analyzing the variation and the reproducibility of the measurements, FDR estimation, and advanced filtering before submitting the processed data to downstream tools. These functionalities are important to quickly analyze the quality of the SWATH-MS data. Hence, SWATH2stats is a new open-source tool that summarizes several practical functionalities for analyzing, processing, and converting SWATH-MS data and thus facilitates the efficient analysis of large-scale SWATH/DIA datasets.

  14. Proteomics-grade de novo sequencing approach

    DEFF Research Database (Denmark)

    Savitski, Mikhail M; Nielsen, Michael L; Kjeldsen, Frank

    2005-01-01

    The conventional approach in modern proteomics to identify proteins from limited information provided by molecular and fragment masses of their enzymatic degradation products carries an inherent risk of both false positive and false negative identifications. For reliable identification of even kn...

  15. Determining protein complex connectivity using a probabilistic deletion network derived from quantitative proteomics.

    Science.gov (United States)

    Sardiu, Mihaela E; Gilmore, Joshua M; Carrozza, Michael J; Li, Bing; Workman, Jerry L; Florens, Laurence; Washburn, Michael P

    2009-10-06

    Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.

  16. Condenser: a statistical aggregation tool for multi-sample quantitative proteomic data from Matrix Science Mascot Distiller™.

    Science.gov (United States)

    Knudsen, Anders Dahl; Bennike, Tue; Kjeldal, Henrik; Birkelund, Svend; Otzen, Daniel Erik; Stensballe, Allan

    2014-05-30

    We describe Condenser, a freely available, comprehensive open-source tool for merging multidimensional quantitative proteomics data from the Matrix Science Mascot Distiller Quantitation Toolbox into a common format ready for subsequent bioinformatic analysis. A number of different relative quantitation technologies, such as metabolic (15)N and amino acid stable isotope incorporation, label-free and chemical-label quantitation are supported. The program features multiple options for curative filtering of the quantified peptides, allowing the user to choose data quality thresholds appropriate for the current dataset, and ensure the quality of the calculated relative protein abundances. Condenser also features optional global normalization, peptide outlier removal, multiple testing and calculation of t-test statistics for highlighting and evaluating proteins with significantly altered relative protein abundances. Condenser provides an attractive addition to the gold-standard quantitative workflow of Mascot Distiller, allowing easy handling of larger multi-dimensional experiments. Source code, binaries, test data set and documentation are available at http://condenser.googlecode.com/. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Quantitative proteomics reveals the mechanism and consequence of gliotoxin-mediated dysregulation of the methionine cycle in Aspergillus niger.

    Science.gov (United States)

    Manzanares-Miralles, Lara; Sarikaya-Bayram, Özlem; Smith, Elizabeth B; Dolan, Stephen K; Bayram, Özgür; Jones, Gary W; Doyle, Sean

    2016-01-10

    Gliotoxin (GT) is a redox-active metabolite, produced by Aspergillus fumigatus, which inhibits the growth of other fungi. Here we demonstrate how Aspergillus niger responds to GT exposure. Quantitative proteomics revealed that GT dysregulated the abundance of 378 proteins including those involved in methionine metabolism and induced de novo abundance of two S-adenosylmethionine (SAM)-dependent methyltransferases. Increased abundance of enzymes S-adenosylhomocysteinase (p=0.0018) required for homocysteine generation from S-adenosylhomocysteine (SAH), and spermidine synthase (p=0.0068), involved in the recycling of Met, was observed. Analysis of Met-related metabolites revealed significant increases in the levels of Met and adenosine, in correlation with proteomic data. Methyltransferase MT-II is responsible for bisthiobis(methylthio)gliotoxin (BmGT) formation, deletion of MT-II abolished BmGT formation and led to increased GT sensitivity in A. niger. Proteomic analysis also revealed that GT exposure also significantly (pniger. Thus, it provides new opportunities to exploit the response of GT-naïve fungi to GT. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Elevated host lipid metabolism revealed by iTRAQ-based quantitative proteomic analysis of cerebrospinal fluid of tuberculous meningitis patients

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Jun [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Chongqing Key Laboratory of Neurobiology, Chongqing (China); Yang, Yongtao [Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Chongqing Key Laboratory of Neurobiology, Chongqing (China); Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing (China); Chen, Jin; Cheng, Ke; Li, Qi; Wei, Yongdong; Zhu, Dan; Shao, Weihua; Zheng, Peng [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Chongqing Key Laboratory of Neurobiology, Chongqing (China); Xie, Peng, E-mail: xiepeng@cqmu.edu.cn [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Chongqing Key Laboratory of Neurobiology, Chongqing (China); Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing (China)

    2015-10-30

    Purpose: Tuberculous meningitis (TBM) remains to be one of the most deadly infectious diseases. The pathogen interacts with the host immune system, the process of which is largely unknown. Various cellular processes of Mycobacterium tuberculosis (MTB) centers around lipid metabolism. To determine the lipid metabolism related proteins, a quantitative proteomic study was performed here to identify differential proteins in the cerebrospinal fluid (CSF) obtained from TBM patients (n = 12) and healthy controls (n = 12). Methods: CSF samples were desalted, concentrated, labelled with isobaric tags for relative and absolute quantitation (iTRAQ™), and analyzed by multi-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene ontology and proteomic phenotyping analysis of the differential proteins were conducted using Database for Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resources. ApoE and ApoB were selected for validation by ELISA. Results: Proteomic phenotyping of the 4 differential proteins was invloved in the lipid metabolism. ELISA showed significantly increased ApoB levels in TBM subjects compared to healthy controls. Area under the receiver operating characteristic curve analysis demonstrated ApoB levels could distinguish TBM subjects from healthy controls and viral meningitis subjects with 89.3% sensitivity and 92% specificity. Conclusions: CSF lipid metabolism disregulation, especially elevated expression of ApoB, gives insights into the pathogenesis of TBM. Further evaluation of these findings in larger studies including anti-tuberculosis medicated and unmedicated patient cohorts with other center nervous system infectious diseases is required for successful clinical translation. - Highlights: • The first proteomic study on the cerebrospinal fluid of tuberculous meningitis patients using iTRAQ. • Identify 4 differential proteins invloved in the lipid metabolism. • Elevated expression of ApoB gives

  19. Elevated host lipid metabolism revealed by iTRAQ-based quantitative proteomic analysis of cerebrospinal fluid of tuberculous meningitis patients

    International Nuclear Information System (INIS)

    Mu, Jun; Yang, Yongtao; Chen, Jin; Cheng, Ke; Li, Qi; Wei, Yongdong; Zhu, Dan; Shao, Weihua; Zheng, Peng; Xie, Peng

    2015-01-01

    Purpose: Tuberculous meningitis (TBM) remains to be one of the most deadly infectious diseases. The pathogen interacts with the host immune system, the process of which is largely unknown. Various cellular processes of Mycobacterium tuberculosis (MTB) centers around lipid metabolism. To determine the lipid metabolism related proteins, a quantitative proteomic study was performed here to identify differential proteins in the cerebrospinal fluid (CSF) obtained from TBM patients (n = 12) and healthy controls (n = 12). Methods: CSF samples were desalted, concentrated, labelled with isobaric tags for relative and absolute quantitation (iTRAQ™), and analyzed by multi-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene ontology and proteomic phenotyping analysis of the differential proteins were conducted using Database for Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resources. ApoE and ApoB were selected for validation by ELISA. Results: Proteomic phenotyping of the 4 differential proteins was invloved in the lipid metabolism. ELISA showed significantly increased ApoB levels in TBM subjects compared to healthy controls. Area under the receiver operating characteristic curve analysis demonstrated ApoB levels could distinguish TBM subjects from healthy controls and viral meningitis subjects with 89.3% sensitivity and 92% specificity. Conclusions: CSF lipid metabolism disregulation, especially elevated expression of ApoB, gives insights into the pathogenesis of TBM. Further evaluation of these findings in larger studies including anti-tuberculosis medicated and unmedicated patient cohorts with other center nervous system infectious diseases is required for successful clinical translation. - Highlights: • The first proteomic study on the cerebrospinal fluid of tuberculous meningitis patients using iTRAQ. • Identify 4 differential proteins invloved in the lipid metabolism. • Elevated expression of ApoB gives

  20. Application of mass spectrometry-based proteomics for biomarker discovery in neurological disorders

    Directory of Open Access Journals (Sweden)

    Venugopal Abhilash

    2009-01-01

    Full Text Available Mass spectrometry-based quantitative proteomics has emerged as a powerful approach that has the potential to accelerate biomarker discovery, both for diagnostic as well as therapeutic purposes. Proteomics has traditionally been synonymous with 2D gels but is increasingly shifting to the use of gel-free systems and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS. Quantitative proteomic approaches have already been applied to investigate various neurological disorders, especially in the context of identifying biomarkers from cerebrospinal fluid and serum. This review highlights the scope of different applications of quantitative proteomics in understanding neurological disorders with special emphasis on biomarker discovery.

  1. iTRAQ-Based Quantitative Proteomics Identifies Potential Regulatory Proteins Involved in Chicken Eggshell Brownness.

    Directory of Open Access Journals (Sweden)

    Guangqi Li

    Full Text Available Brown eggs are popular in many countries and consumers regard eggshell brownness as an important indicator of egg quality. However, the potential regulatory proteins and detailed molecular mechanisms regulating eggshell brownness have yet to be clearly defined. In the present study, we performed quantitative proteomics analysis with iTRAQ technology in the shell gland epithelium of hens laying dark and light brown eggs to investigate the candidate proteins and molecular mechanisms underlying variation in chicken eggshell brownness. The results indicated 147 differentially expressed proteins between these two groups, among which 65 and 82 proteins were significantly up-regulated in the light and dark groups, respectively. Functional analysis indicated that in the light group, the down-regulated iron-sulfur cluster assembly protein (Iba57 would decrease the synthesis of protoporphyrin IX; furthermore, the up-regulated protein solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator, member 5 (SLC25A5 and down-regulated translocator protein (TSPO would lead to increased amounts of protoporphyrin IX transported into the mitochondria matrix to form heme with iron, which is supplied by ovotransferrin protein (TF. In other words, chickens from the light group produce less protoporphyrin IX, which is mainly used for heme synthesis. Therefore, the exported protoporphyrin IX available for eggshell deposition and brownness is reduced in the light group. The current study provides valuable information to elucidate variation of chicken eggshell brownness, and demonstrates the feasibility and sensitivity of iTRAQ-based quantitative proteomics analysis in providing useful insights into the molecular mechanisms underlying brown eggshell pigmentation.

  2. Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 2. Label-free relative quantitative proteomics.

    Science.gov (United States)

    Mudaliar, Manikhandan; Tassi, Riccardo; Thomas, Funmilola C; McNeilly, Tom N; Weidt, Stefan K; McLaughlin, Mark; Wilson, David; Burchmore, Richard; Herzyk, Pawel; Eckersall, P David; Zadoks, Ruth N

    2016-08-16

    Mastitis, inflammation of the mammary gland, is the most common and costly disease of dairy cattle in the western world. It is primarily caused by bacteria, with Streptococcus uberis as one of the most prevalent causative agents. To characterize the proteome during Streptococcus uberis mastitis, an experimentally induced model of intramammary infection was used. Milk whey samples obtained from 6 cows at 6 time points were processed using label-free relative quantitative proteomics. This proteomic analysis complements clinical, bacteriological and immunological studies as well as peptidomic and metabolomic analysis of the same challenge model. A total of 2552 non-redundant bovine peptides were identified, and from these, 570 bovine proteins were quantified. Hierarchical cluster analysis and principal component analysis showed clear clustering of results by stage of infection, with similarities between pre-infection and resolution stages (0 and 312 h post challenge), early infection stages (36 and 42 h post challenge) and late infection stages (57 and 81 h post challenge). Ingenuity pathway analysis identified upregulation of acute phase protein pathways over the course of infection, with dominance of different acute phase proteins at different time points based on differential expression analysis. Antimicrobial peptides, notably cathelicidins and peptidoglycan recognition protein, were upregulated at all time points post challenge and peaked at 57 h, which coincided with 10 000-fold decrease in average bacterial counts. The integration of clinical, bacteriological, immunological and quantitative proteomics and other-omic data provides a more detailed systems level view of the host response to mastitis than has been achieved previously.

  3. Quantitative proteomic view on secreted, cell surface-associated, and cytoplasmic proteins of the methicillin-resistant human pathogen Staphylococcus aureus under iron-limited conditions.

    Science.gov (United States)

    Hempel, Kristina; Herbst, Florian-Alexander; Moche, Martin; Hecker, Michael; Becher, Dörte

    2011-04-01

    Staphylococcus aureus is capable of colonizing and infecting humans by its arsenal of surface-exposed and secreted proteins. Iron-limited conditions in mammalian body fluids serve as a major environmental signal to bacteria to express virulence determinants. Here we present a comprehensive, gel-free, and GeLC-MS/MS-based quantitative proteome profiling of S. aureus under this infection-relevant situation. (14)N(15)N metabolic labeling and three complementing approaches were combined for relative quantitative analyses of surface-associated proteins. The surface-exposed and secreted proteome profiling approaches comprise trypsin shaving, biotinylation, and precipitation of the supernatant. By analysis of the outer subproteomic and cytoplasmic protein fraction, 1210 proteins could be identified including 221 surface-associated proteins. Thus, access was enabled to 70% of the predicted cell wall-associated proteins, 80% of the predicted sortase substrates, two/thirds of lipoproteins and more than 50% of secreted and cytoplasmic proteins. For iron-deficiency, 158 surface-associated proteins were quantified. Twenty-nine proteins were found in altered amounts showing particularly surface-exposed proteins strongly induced, such as the iron-regulated surface determinant proteins IsdA, IsdB, IsdC and IsdD as well as lipid-anchored iron compound-binding proteins. The work presents a crucial subject for understanding S. aureus pathophysiology by the use of methods that allow quantitative surface proteome profiling.

  4. Elevated host lipid metabolism revealed by iTRAQ-based quantitative proteomic analysis of cerebrospinal fluid of tuberculous meningitis patients.

    Science.gov (United States)

    Mu, Jun; Yang, Yongtao; Chen, Jin; Cheng, Ke; Li, Qi; Wei, Yongdong; Zhu, Dan; Shao, Weihua; Zheng, Peng; Xie, Peng

    2015-10-30

    Tuberculous meningitis (TBM) remains to be one of the most deadly infectious diseases. The pathogen interacts with the host immune system, the process of which is largely unknown. Various cellular processes of Mycobacterium tuberculosis (MTB) centers around lipid metabolism. To determine the lipid metabolism related proteins, a quantitative proteomic study was performed here to identify differential proteins in the cerebrospinal fluid (CSF) obtained from TBM patients (n = 12) and healthy controls (n = 12). CSF samples were desalted, concentrated, labelled with isobaric tags for relative and absolute quantitation (iTRAQ™), and analyzed by multi-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene ontology and proteomic phenotyping analysis of the differential proteins were conducted using Database for Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resources. ApoE and ApoB were selected for validation by ELISA. Proteomic phenotyping of the 4 differential proteins was invloved in the lipid metabolism. ELISA showed significantly increased ApoB levels in TBM subjects compared to healthy controls. Area under the receiver operating characteristic curve analysis demonstrated ApoB levels could distinguish TBM subjects from healthy controls and viral meningitis subjects with 89.3% sensitivity and 92% specificity. CSF lipid metabolism disregulation, especially elevated expression of ApoB, gives insights into the pathogenesis of TBM. Further evaluation of these findings in larger studies including anti-tuberculosis medicated and unmedicated patient cohorts with other center nervous system infectious diseases is required for successful clinical translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. An individual urinary proteome analysis in normal human beings to define the minimal sample number to represent the normal urinary proteome

    Directory of Open Access Journals (Sweden)

    Liu Xuejiao

    2012-11-01

    Full Text Available Abstract Background The urinary proteome has been widely used for biomarker discovery. A urinary proteome database from normal humans can provide a background for discovery proteomics and candidate proteins/peptides for targeted proteomics. Therefore, it is necessary to define the minimum number of individuals required for sampling to represent the normal urinary proteome. Methods In this study, inter-individual and inter-gender variations of urinary proteome were taken into consideration to achieve a representative database. An individual analysis was performed on overnight urine samples from 20 normal volunteers (10 males and 10 females by 1DLC/MS/MS. To obtain a representative result of each sample, a replicate 1DLCMS/MS analysis was performed. The minimal sample number was estimated by statistical analysis. Results For qualitative analysis, less than 5% of new proteins/peptides were identified in a male/female normal group by adding a new sample when the sample number exceeded nine. In addition, in a normal group, the percentage of newly identified proteins/peptides was less than 5% upon adding a new sample when the sample number reached 10. Furthermore, a statistical analysis indicated that urinary proteomes from normal males and females showed different patterns. For quantitative analysis, the variation of protein abundance was defined by spectrum count and western blotting methods. And then the minimal sample number for quantitative proteomic analysis was identified. Conclusions For qualitative analysis, when considering the inter-individual and inter-gender variations, the minimum sample number is 10 and requires a balanced number of males and females in order to obtain a representative normal human urinary proteome. For quantitative analysis, the minimal sample number is much greater than that for qualitative analysis and depends on the experimental methods used for quantification.

  6. A targeted proteomics approach to the quantitative analysis of ERK/Bcl-2-mediated anti-apoptosis and multi-drug resistance in breast cancer.

    Science.gov (United States)

    Yang, Ting; Xu, Feifei; Sheng, Yuan; Zhang, Wen; Chen, Yun

    2016-10-01

    Apoptosis suppression caused by overexpression of anti-apoptotic proteins is a central factor to the acquisition of multi-drug resistance (MDR) in breast cancer. As a highly conserved anti-apoptotic protein, Bcl-2 can initiate an anti-apoptosis response via an ERK1/2-mediated pathway. However, the details therein are still far from completely understood and a quantitative description of the associated proteins in the biological context may provide more insights into this process. Following our previous attempts in the quantitative analysis of MDR mechanisms, liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based targeted proteomics was continually employed here to describe ERK/Bcl-2-mediated anti-apoptosis. A targeted proteomics assay was developed and validated first for the simultaneous quantification of ERK1/2 and Bcl-2. In particular, ERK isoforms (i.e., ERK1 and ERK2) and their differential phosphorylated forms including isobaric ones were distinguished. Using this assay, differential protein levels and site-specific phosphorylation stoichiometry were observed in parental drug-sensitive MCF-7/WT cancer cells and drug-resistant MCF-7/ADR cancer cells and breast tissue samples from two groups of patients who were either suspected or diagnosed to have drug resistance. In addition, quantitative analysis of the time course of both ERK1/2 and Bcl-2 in doxorubicin (DOX)-treated MCF-7/WT cells confirmed these findings. Overall, we propose that targeted proteomics can be used generally to resolve more complex cellular events.

  7. Investigation of Pokemon-regulated proteins in hepatocellular carcinoma using mass spectrometry-based multiplex quantitative proteomics.

    Science.gov (United States)

    Bi, Xin; Jin, Yibao; Gao, Xiang; Liu, Feng; Gao, Dan; Jiang, Yuyang; Liu, Hongxia

    2013-01-01

    Pokemon is a transcription regulator involved in embryonic development, cellular differentiation and oncogenesis. It is aberrantly overexpressed in multiple human cancers including Hepatocellular carcinoma (HCC) and is considered as a promising biomarker for HCC. In this work, the isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy was used to investigate the proteomic profile associated with Pokemon in human HCC cell line QGY7703 and human hepatocyte line HL7702. Samples were labeled with four-plex iTRAQ reagents followed by two-dimensional liquid chromatography coupled with tandem mass spectrometry analysis. A total of 24 differentially expressed proteins were selected as significant. Nine proteins were potentially up-regulated by Pokemon while 15 proteins were potentially down-regulated and many proteins were previously identified as potential biomarkers for HCC. Gene ontology (GO) term enrichment revealed that the listed proteins were mainly involved in DNA metabolism and biosynthesis process. The changes of glucose-6-phosphate 1-dehydrogenase (G6PD, up-regulated) and ribonucleoside-diphosphate reductase large sub-unit (RIM1, down-regulated) were validated by Western blotting analysis and denoted as Pokemon's function of oncogenesis. We also found that Pokemon potentially repressed the expression of highly clustered proteins (MCM3, MCM5, MCM6, MCM7) which played key roles in promoting DNA replication. Altogether, our results may help better understand the role of Pokemon in HCC and promote the clinical applications.

  8. SuperQuant-assisted comparative proteome analysis of glioblastoma subpopulations allows for identification of potential novel therapeutic targets and cell markers

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Gorshkov, Vladimir; Munthe, Sune

    2018-01-01

    Glioblastoma (GBM) is a highly aggressive brain cancer with poor prognosis and low survival rate. Invasive cancer stem-like cells (CSCs) are responsible for tumor recurrence because they escape current treatments. Our main goal was to study the proteome of three GBM subpopulations to identify key...... molecules behind GBM cell phenotypes and potential cell markers for migrating cells. We used SuperQuant-an enhanced quantitative proteome approach-to increase proteome coverage. We found 148 proteins differentially regulated in migrating CSCs and 199 proteins differentially regulated in differentiated cells...... migration. Moreover, our data suggested that microRNA-122 (miR-122) is a potential upstream regulator of GBM phenotypes as miR-122 activation was predicted for differentiated cells while its inhibition was predicted for migrating CSCs. Finally, we validated transferrin (TF) and procollagen-lysine 2...

  9. Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies.

    Science.gov (United States)

    Lazar, Cosmin; Gatto, Laurent; Ferro, Myriam; Bruley, Christophe; Burger, Thomas

    2016-04-01

    Missing values are a genuine issue in label-free quantitative proteomics. Recent works have surveyed the different statistical methods to conduct imputation and have compared them on real or simulated data sets and recommended a list of missing value imputation methods for proteomics application. Although insightful, these comparisons do not account for two important facts: (i) depending on the proteomics data set, the missingness mechanism may be of different natures and (ii) each imputation method is devoted to a specific type of missingness mechanism. As a result, we believe that the question at stake is not to find the most accurate imputation method in general but instead the most appropriate one. We describe a series of comparisons that support our views: For instance, we show that a supposedly "under-performing" method (i.e., giving baseline average results), if applied at the "appropriate" time in the data-processing pipeline (before or after peptide aggregation) on a data set with the "appropriate" nature of missing values, can outperform a blindly applied, supposedly "better-performing" method (i.e., the reference method from the state-of-the-art). This leads us to formulate few practical guidelines regarding the choice and the application of an imputation method in a proteomics context.

  10. Polyphemus, Odysseus and the ovine milk proteome.

    Science.gov (United States)

    Cunsolo, Vincenzo; Fasoli, Elisa; Di Francesco, Antonella; Saletti, Rosaria; Muccilli, Vera; Gallina, Serafina; Righetti, Pier Giorgio; Foti, Salvatore

    2017-01-30

    In the last years the amount of ovine milk production, mainly used to formulate a wide range of different and exclusive dairy products often categorized as gourmet food, has been progressively increasing. Taking also into account that sheep milk (SM) also appears to be potentially less allergenic than cow's one, an in-depth information about its protein composition is essential to improve the comprehension of its potential benefits for human consumption. The present work reports the results of an in-depth characterization of SM whey proteome, carried out by coupling the CPLL technology with SDS-PAGE and high resolution UPLC-nESI MS/MS analysis. This approach allowed the identification of 718 different protein components, 644 of which are from unique genes. Particularly, this identification has expanded literature data about sheep whey proteome by 193 novel proteins previously undetected, many of which are involved in the defence/immunity mechanisms or in the nutrient delivery system. A comparative analysis of SM proteome known to date with cow's milk proteome, evidenced that while about 29% of SM proteins are also present in CM, 71% of the identified components appear to be unique of SM proteome and include a heterogeneous group of components which seem to have health-promoting benefits. The data have been deposited to the ProteomeXchange with identifier . Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The mzTab Data Exchange Format: Communicating Mass-spectrometry-based Proteomics and Metabolomics Experimental Results to a Wider Audience*

    Science.gov (United States)

    Griss, Johannes; Jones, Andrew R.; Sachsenberg, Timo; Walzer, Mathias; Gatto, Laurent; Hartler, Jürgen; Thallinger, Gerhard G.; Salek, Reza M.; Steinbeck, Christoph; Neuhauser, Nadin; Cox, Jürgen; Neumann, Steffen; Fan, Jun; Reisinger, Florian; Xu, Qing-Wei; del Toro, Noemi; Pérez-Riverol, Yasset; Ghali, Fawaz; Bandeira, Nuno; Xenarios, Ioannis; Kohlbacher, Oliver; Vizcaíno, Juan Antonio; Hermjakob, Henning

    2014-01-01

    The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R. We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online. PMID:24980485

  12. Modification-specific proteomics in plant biology

    DEFF Research Database (Denmark)

    Ytterberg, A Jimmy; Jensen, Ole N

    2010-01-01

    and proteomics. In general, methods for PTM characterization are developed to study yeast and mammalian biology and later adopted to investigate plants. Our point of view is that it is advantageous to enrich for PTMs on the peptide level as part of a quantitative proteomics strategy to not only identify the PTM...

  13. Proteomic profiling of an undefined microbial consortium cultured in fermented dairy manure: Methods development.

    Science.gov (United States)

    Hanson, Andrea J; Paszczynski, Andrzej J; Coats, Erik R

    2016-03-01

    The production of polyhydroxyalkanoates (PHA; bioplastics) from waste or surplus feedstocks using mixed microbial consortia (MMC) and aerobic dynamic feeding (ADF) is a growing field within mixed culture biotechnology. This study aimed to optimize a 2DE workflow to investigate the proteome dynamics of an MMC synthesizing PHA from fermented dairy manure. To mitigate the challenges posed to effective 2DE by this complex sample matrix, the bacterial biomass was purified using Accudenz gradient centrifugation (AGC) before protein extraction. The optimized 2DE method yielded high-quality gels suitable for quantitative comparative analysis and subsequent protein identification by LC-MS/MS. The optimized 2DE method could be adapted to other proteomic investigations involving MMC in complex organic or environmental matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantitative proteomics reveals the mechanism and consequence of gliotoxin-mediated dysregulation of the methionine cycle in Aspergillus niger

    OpenAIRE

    Manzanares-Miralles, Lara; Bayram, Ozgur; Sarikaya-Bayram, Ozlem; Smith, Elizabeth B.; Dolan, Stephen K.; Jones, Gary W.; Doyle, Sean

    2016-01-01

    Gliotoxin (GT) is a redox-active metabolite, produced by Aspergillus fumigatus,which inhibits the growth of other fungi. Here we demonstrate how Aspergillus niger responds to GT exposure. Quantitative proteomics revealed that GT dysregulated the abundance of 378 proteins including those involved in methionine metabolism and induced de novo abundance of two S-adenosylmethionine (SAM)-dependent methyltransferases. Increased abundance of enzymes S-adenosylhomocysteinase (p = 0.0018) ...

  15. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  16. Development stage-specific proteomic profiling uncovers small, lineage specific proteins most abundant in the Aspergillus Fumigatus conidial proteome

    Directory of Open Access Journals (Sweden)

    Suh Moo-Jin

    2012-04-01

    Full Text Available Abstract Background The pathogenic mold Aspergillus fumigatus is the most frequent infectious cause of death in severely immunocompromised individuals such as leukemia and bone marrow transplant patients. Germination of inhaled conidia (asexual spores in the host is critical for the initiation of infection, but little is known about the underlying mechanisms of this process. Results To gain insights into early germination events and facilitate the identification of potential stage-specific biomarkers and vaccine candidates, we have used quantitative shotgun proteomics to elucidate patterns of protein abundance changes during early fungal development. Four different stages were examined: dormant conidia, isotropically expanding conidia, hyphae in which germ tube emergence has just begun, and pre-septation hyphae. To enrich for glycan-linked cell wall proteins we used an alkaline cell extraction method. Shotgun proteomic resulted in the identification of 375 unique gene products with high confidence, with no evidence for enrichment of cell wall-immobilized and secreted proteins. The most interesting discovery was the identification of 52 proteins enriched in dormant conidia including 28 proteins that have never been detected in the A. fumigatus conidial proteome such as signaling protein Pil1, chaperones BipA and calnexin, and transcription factor HapB. Additionally we found many small, Aspergillus specific proteins of unknown function including 17 hypothetical proteins. Thus, the most abundant protein, Grg1 (AFUA_5G14210, was also one of the smallest proteins detected in this study (M.W. 7,367. Among previously characterized proteins were melanin pigment and pseurotin A biosynthesis enzymes, histones H3 and H4.1, and other proteins involved in conidiation and response to oxidative or hypoxic stress. In contrast, expanding conidia, hyphae with early germ tubes, and pre-septation hyphae samples were enriched for proteins responsible for

  17. Xylem sap proteomics.

    Science.gov (United States)

    de Bernonville, Thomas Dugé; Albenne, Cécile; Arlat, Matthieu; Hoffmann, Laurent; Lauber, Emmanuelle; Jamet, Elisabeth

    2014-01-01

    Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.

  18. A high-quality catalog of the Drosophila melanogaster proteome

    DEFF Research Database (Denmark)

    Brunner, Erich; Ahrens, Christian H.; Mohanty, Sonaly

    2007-01-01

    % of the predicted Drosophila melanogaster proteome by detecting 9,124 proteins from 498,000 redundant and 72,281 distinct peptide identifications. This unprecedented high proteome coverage for a complex eukaryote was achieved by combining sample diversity, multidimensional biochemical fractionation and analysis...

  19. Pre-fractionation strategies to resolve pea (Pisum sativum sub-proteomes

    Directory of Open Access Journals (Sweden)

    Claudia Nicole Meisrimler

    2015-10-01

    Full Text Available Legumes are important crop plants and pea (Pisum sativum L. has been investigated as a model with respect to several physiological aspects. The sequencing of the pea genome has not been completed. Therefore, proteomic approaches are currently limited. Nevertheless, the increasing numbers of available EST-databases as well as the high homology of the pea and medicago genome (Medicago truncatula G. allow the successful identification of proteins. Due to the un-sequenced pea genome, pre-fractionation approaches have been used in pea proteomic surveys in the past. Aside from a number of selective proteome studies on crude extracts and the chloroplast, few studies have targeted other components such as the pea secretome, an important sub-proteome of interest due to its role in abiotic and biotic stress processes. The secretome itself can be further divided into different sub-proteomes (plasma membrane, apoplast, cell wall proteins. Cell fractionation in combination with different gel-electrophoresis, chromatography methods and protein identification by mass spectrometry are important partners to gain insight into pea sub-proteomes, post-translational modifications and protein functions. Overall, pea proteomics needs to link numerous existing physiological and biochemical data to gain further insight into adaptation processes, which play important roles in field applications. Future developments and directions in pea proteomics are discussed.

  20. MSQuant, an Open Source Platform for Mass Spectrometry-Based Quantitative Proteomics

    DEFF Research Database (Denmark)

    Mortensen, Peter; Gouw, Joost W; Olsen, Jesper V

    2010-01-01

    Mass spectrometry-based proteomics critically depends on algorithms for data interpretation. A current bottleneck in the rapid advance of proteomics technology is the closed nature and slow development cycle of vendor-supplied software solutions. We have created an open source software environment...

  1. Tissue-based map of the human proteome

    DEFF Research Database (Denmark)

    Uhlén, Mathias; Fagerberg, Linn; Hallström, Björn M.

    2015-01-01

    Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transc...

  2. Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities.

    Science.gov (United States)

    Lapek, John D; Greninger, Patricia; Morris, Robert; Amzallag, Arnaud; Pruteanu-Malinici, Iulian; Benes, Cyril H; Haas, Wilhelm

    2017-10-01

    The formation of protein complexes and the co-regulation of the cellular concentrations of proteins are essential mechanisms for cellular signaling and for maintaining homeostasis. Here we use isobaric-labeling multiplexed proteomics to analyze protein co-regulation and show that this allows the identification of protein-protein associations with high accuracy. We apply this 'interactome mapping by high-throughput quantitative proteome analysis' (IMAHP) method to a panel of 41 breast cancer cell lines and show that deviations of the observed protein co-regulations in specific cell lines from the consensus network affects cellular fitness. Furthermore, these aberrant interactions serve as biomarkers that predict the drug sensitivity of cell lines in screens across 195 drugs. We expect that IMAHP can be broadly used to gain insight into how changing landscapes of protein-protein associations affect the phenotype of biological systems.

  3. Quantitative Analysis of Human Salivary Gland-Derived Intact Proteome Using Top-Down Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Si; Brown, Joseph N.; Tolic, Nikola; Meng, Da; Liu, Xiaowen; Zhang, Haizhen; Zhao, Rui; Moore, Ronald J.; Pevzner, Pavel A.; Smith, Richard D.; Pasa-Tolic, Ljiljana

    2014-05-31

    There are several notable challenges inherent to fully characterizing the entirety of the human saliva proteome using bottom-up approaches, including polymorphic isoforms, post-translational modifications, unique splice variants, deletions, and truncations. To address these challenges, we have developed a top-down based liquid chromatography-mass spectrometry (LC-MS) approach, which cataloged 20 major human salivary proteins with a total of 83 proteoforms, containing a broad range of post-translational modifications. Among these proteins, several previously reported disease biomarker proteins were identified at the intact protein level, such as beta-2 microglobulin (B2M). In addition, intact glycosylated proteoforms of several saliva proteins were also characterized, including intact N-glycosylated protein prolactin inducible protein (PIP) and O-glycosylated acidic protein rich protein (aPRP). These characterized proteoforms constitute an intact saliva proteoform database, which was used for quantitative comparison of intact salivary proteoforms among six healthy individuals. Human parotid (PS) and submandibular/sublingual gland (SMSL) secretion samples (2 μg of protein each) from six healthy individuals were compared using RPLC coupled with the 12T FTICR mass spectrometer. Significantly different protein and PTM patterns were resolved with high reproducibility between PS and SMSL glands. The results from this study provide further insight into the potential mechanisms of PTM pathways in oral glandular secretion, expanding our knowledge of this complex yet easily accessible fluid. Intact protein LC-MS approach presented herein can potentially be applied for rapid and accurate identification of biomarkers from only a few microliters of human glandular saliva.

  4. Quantitative proteomic analysis of extracellular matrix extracted from mono- and dual-species biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis.

    Science.gov (United States)

    Mohammed, Marwan Mansoor Ali; Pettersen, Veronika Kuchařová; Nerland, Audun H; Wiker, Harald G; Bakken, Vidar

    2017-04-01

    The Gram-negative bacteria Fusobacterium nucleatum and Porphyromonas gingivalis are members of a complex dental biofilm associated with periodontal disease. In this study, we cultured F. nucleatum and P. gingivalis as mono- and dual-species biofilms, and analyzed the protein composition of the biofilms extracellular polymeric matrix (EPM) by high-resolution liquid chromatography-tandem mass spectrometry. Label-free quantitative proteomic analysis was used for identification of proteins and sequence-based functional characterization for their classification and prediction of possible roles in EPM. We identified 542, 93 and 280 proteins in the matrix of F. nucleatum, P. gingivalis, and the dual-species biofilm, respectively. Nearly 70% of all EPM proteins in the dual-species biofilm originated from F. nucleatum, and a majority of these were cytoplasmic proteins, suggesting an enhanced lysis of F. nucleatum cells. The proteomic analysis also indicated an interaction between the two species: 22 F. nucleatum proteins showed differential levels between the mono and dual-species EPMs, and 11 proteins (8 and 3 from F. nucleatum and P. gingivalis, respectively) were exclusively detected in the dual-species EPM. Oxidoreductases and chaperones were among the most abundant proteins identified in all three EPMs. The biofilm matrices in addition contained several known and hypothetical virulence proteins, which can mediate adhesion to the host cells and disintegration of the periodontal tissues. This study demonstrated that the biofilm matrix of two important periodontal pathogens consists of a multitude of proteins whose amounts and functionalities vary largely. Relatively high levels of several of the detected proteins might facilitate their potential use as targets for the inhibition of biofilm development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Nawrocki, Arkadiusz; Jensen, Steffen Grann

    2014-01-01

    Cancer cells secrete soluble factors and various extracellular vesicles, including exosomes, into their tissue microenvironment. The secretion of exosomes is speculated to facilitate local invasion and metastatic spread. Here, we used an in vivo metastasis model of human bladder carcinoma cell line...... T24 without metastatic capacity and its two isogenic derivate cell lines SLT4 and FL3, which form metastases in the lungs and liver of mice, respectively. Cultivation in CLAD1000 bioreactors rather than conventional culture flasks resulted in a 13-16-fold increased exosome yield and facilitated...... quantitative proteomics of fractionated exosomes. Exosomes from T24, SLT4, and FL3 cells were partitioned into membrane and luminal fractions and changes in protein abundance related to the gain of metastatic capacity were identified by quantitative iTRAQ- proteomics. We identified several proteins linked...

  6. Proteomics wants cRacker: automated standardized data analysis of LC-MS derived proteomic data.

    Science.gov (United States)

    Zauber, Henrik; Schulze, Waltraud X

    2012-11-02

    The large-scale analysis of thousands of proteins under various experimental conditions or in mutant lines has gained more and more importance in hypothesis-driven scientific research and systems biology in the past years. Quantitative analysis by large scale proteomics using modern mass spectrometry usually results in long lists of peptide ion intensities. The main interest for most researchers, however, is to draw conclusions on the protein level. Postprocessing and combining peptide intensities of a proteomic data set requires expert knowledge, and the often repetitive and standardized manual calculations can be time-consuming. The analysis of complex samples can result in very large data sets (lists with several 1000s to 100,000 entries of different peptides) that cannot easily be analyzed using standard spreadsheet programs. To improve speed and consistency of the data analysis of LC-MS derived proteomic data, we developed cRacker. cRacker is an R-based program for automated downstream proteomic data analysis including data normalization strategies for metabolic labeling and label free quantitation. In addition, cRacker includes basic statistical analysis, such as clustering of data, or ANOVA and t tests for comparison between treatments. Results are presented in editable graphic formats and in list files.

  7. Identification of Analytical Factors Affecting Complex Proteomics Profiles Acquired in a Factorial Design Study with Analysis of Variance : Simultaneous Component Analysis

    NARCIS (Netherlands)

    Mitra, V.; Govorukhina, N.; Zwanenburg, G.; Hoefsloot, H.; Westra, I.; Smilde, A.; Reijmers, T.; van der Zee, A.G.J.; Suits, F.; Bischoff, R.; Horvatovich, P.

    2016-01-01

    Complex shotgun proteomics peptide profiles obtained in quantitative differential protein expression studies, such as in biomarker discovery, may be affected by multiple experimental factors. These preanalytical factors may affect the measured protein abundances which in turn influence the outcome

  8. iTRAQ Quantitative Proteomic Analysis of Vitreous from Patients with Retinal Detachment

    Directory of Open Access Journals (Sweden)

    Fátima Milhano Santos

    2018-04-01

    Full Text Available Rhegmatogenous retinal detachment (RRD is a potentially blinding condition characterized by a physical separation between neurosensory retina and retinal pigment epithelium. Quantitative proteomics can help to understand the changes that occur at the cellular level during RRD, providing additional information about the molecular mechanisms underlying its pathogenesis. In the present study, iTRAQ labeling was combined with two-dimensional LC-ESI-MS/MS to find expression changes in the proteome of vitreous from patients with RRD when compared to control samples. A total of 150 proteins were found differentially expressed in the vitreous of patients with RRD, including 96 overexpressed and 54 underexpressed. Several overexpressed proteins, several such as glycolytic enzymes (fructose-bisphosphate aldolase A, gamma-enolase, and phosphoglycerate kinase 1, glucose transporters (GLUT-1, growth factors (metalloproteinase inhibitor 1, and serine protease inhibitors (plasminogen activator inhibitor 1 are regulated by HIF-1, which suggests that HIF-1 signaling pathway can be triggered in response to RRD. Also, the accumulation of photoreceptor proteins, including phosducin, rhodopsin, and s-arrestin, and vimentin in vitreous may indicate that photoreceptor degeneration occurs in RRD. Also, the accumulation of photoreceptor proteins, including phosducin, rhodopsin, and s-arrestin, and vimentin in vitreous may indicate that photoreceptor degeneration occurs in RRD. Nevertheless, the differentially expressed proteins found in this study suggest that different mechanisms are activated after RRD to promote the survival of retinal cells through complex cellular responses.

  9. Quantitative Proteomics Analysis of the cAMP/Protein Kinase A Signaling Pathway

    Science.gov (United States)

    2012-01-01

    To define the proteins whose expression is regulated by cAMP and protein kinase A (PKA), we used a quantitative proteomics approach in studies of wild-type (WT) and kin- (PKA-null) S49 murine T lymphoma cells. We also compared the impact of endogenous increases in the level of cAMP [by forskolin (Fsk) and the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX)] or by a cAMP analogue (8-CPT-cAMP). We identified 1056 proteins in WT and kin- S49 cells and found that 8-CPT-cAMP and Fsk with IBMX produced differences in protein expression. WT S49 cells had a correlation coefficient of 0.41 between DNA microarray data and the proteomics analysis in cells incubated with 8-CPT-cAMP for 24 h and a correlation coefficient of 0.42 between the DNA microarray data obtained at 6 h and the changes in protein expression after incubation with 8-CPT-cAMP for 24 h. Glutathione reductase (Gsr) had a higher level of basal expression in kin- S49 cells than in WT cells. Consistent with this finding, kin- cells are less sensitive to cell killing and generation of malondialdehyde than are WT cells incubated with H2O2. Cyclic AMP acting via PKA thus has a broad impact on protein expression in mammalian cells, including in the regulation of Gsr and oxidative stress. PMID:23110364

  10. Determining protein complex connectivity using a probabilistic deletion network derived from quantitative proteomics.

    Directory of Open Access Journals (Sweden)

    Mihaela E Sardiu

    2009-10-01

    Full Text Available Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.

  11. The Proteome of Primary Prostate Cancer

    DEFF Research Database (Denmark)

    Iglesias-Gato, Diego; Wikström, Pernilla; Tyanova, Stefka

    2016-01-01

    for disease aggressiveness. DESIGN, SETTING, AND PARTICIPANTS: Mass spectrometry was used for genome-scale quantitative proteomic profiling of 28 prostate tumors (Gleason score 6-9) and neighboring nonmalignant tissue in eight cases, obtained from formalin-fixed paraffin-embedded prostatectomy samples. Two...... changes occurring during prostate cancer (PCa) initiation and progression can result in clinically relevant discoveries. OBJECTIVES: To study cellular processes altered in PCa using system-wide quantitative analysis of changes in protein expression in clinical samples and to identify prognostic biomarkers......BACKGROUND: Clinical management of the prostate needs improved prognostic tests and treatment strategies. Because proteins are the ultimate effectors of most cellular reactions, are targets for drug actions and constitute potential biomarkers; a quantitative systemic overview of the proteome...

  12. Study of early leaf senescence in Arabidopsis thaliana by quantitative proteomics using reciprocal N-14/N-15 Labeling and difference gel electrophoresis

    NARCIS (Netherlands)

    Hebeler, Romano; Oeljeklaus, Silke; Reidegeld, Kai E.; Eisenacher, Martin; Stephan, Christian; Sitek, Barbara; Stuehler, Kai; Meyer, Helmut E.; Sturre, Marcel J. G.; Dijkwel, Paul P.; Warscheid, Bettina

    Leaf senescence represents the final stage of leaf development and is associated with fundamental changes on the level of the proteome. For the quantitative analysis of changes in protein abundance related to early leaf senescence, we designed an elaborate double and reverse labeling strategy

  13. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress.

    Science.gov (United States)

    Xie, He; Yang, Da-Hai; Yao, Heng; Bai, Ge; Zhang, Yi-Han; Xiao, Bing-Guang

    2016-01-15

    Drought is one of the most severe forms of abiotic stresses that threaten the survival of plants, including crops. In turn, plants dramatically change their physiology to increase drought tolerance, including reconfiguration of proteomes. Here, we studied drought-induced proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum), a solanaceous plant, using the isobaric tags for relative and absolute quantitation (iTRAQ)-based protein labeling technology. Of identified 5570 proteins totally, drought treatment increased and decreased abundance of 260 and 206 proteins, respectively, compared with control condition. Most of these differentially regulated proteins are involved in photosynthesis, metabolism, and stress and defense. Although abscisic acid (ABA) levels greatly increased in drought-treated tobacco leaves, abundance of detected ABA biosynthetic enzymes showed no obvious changes. In contrast, heat shock proteins (HSPs), thioredoxins, ascorbate-, glutathione-, and hydrogen peroxide (H2O2)-related proteins were up- or down-regulated in drought-treated tobacco leaves, suggesting that chaperones and redox signaling are important for tobacco tolerance to drought, and it is likely that redox-induced posttranslational modifications play an important role in modulating protein activity. This study not only provides a comprehensive dataset on overall protein changes in drought-treated tobacco leaves, but also shed light on the mechanism by which solanaceous plants adapt to drought stress. Copyright © 2015 Yunnan Academy of Tobacco Agricultural Sciences. Published by Elsevier Inc. All rights reserved.

  14. A Proteomic View on the Role of Legume Symbiotic Interactions

    Science.gov (United States)

    Larrainzar, Estíbaliz; Wienkoop, Stefanie

    2017-01-01

    Legume plants are key elements in sustainable agriculture and represent a significant source of plant-based protein for humans and animal feed worldwide. One specific feature of the family is the ability to establish nitrogen-fixing symbiosis with Rhizobium bacteria. Additionally, like most vascular flowering plants, legumes are able to form a mutualistic endosymbiosis with arbuscular mycorrhizal (AM) fungi. These beneficial associations can enhance the plant resistance to biotic and abiotic stresses. Understanding how symbiotic interactions influence and increase plant stress tolerance are relevant questions toward maintaining crop yield and food safety in the scope of climate change. Proteomics offers numerous tools for the identification of proteins involved in such responses, allowing the study of sub-cellular localization and turnover regulation, as well as the discovery of post-translational modifications (PTMs). The current work reviews the progress made during the last decades in the field of proteomics applied to the study of the legume-Rhizobium and -AM symbioses, and highlights their influence on the plant responses to pathogens and abiotic stresses. We further discuss future perspectives and new experimental approaches that are likely to have a significant impact on the field including peptidomics, mass spectrometric imaging, and quantitative proteomics. PMID:28769967

  15. Isobaric Tags for Relative and Absolute Quantification (iTRAQ)-Based Untargeted Quantitative Proteomic Approach To Identify Change of the Plasma Proteins by Salbutamol Abuse in Beef Cattle.

    Science.gov (United States)

    Zhang, Kai; Tang, Chaohua; Liang, Xiaowei; Zhao, Qingyu; Zhang, Junmin

    2018-01-10

    Salbutamol, a selective β 2 -agonist, endangers the safety of animal products as a result of illegal use in food animals. In this study, an iTRAQ-based untargeted quantitative proteomic approach was applied to screen potential protein biomarkers in plasma of cattle before and after treatment with salbutamol for 21 days. A total of 62 plasma proteins were significantly affected by salbutamol treatment, which can be used as potential biomarkers to screen for the illegal use of salbutamol in beef cattle. Enzyme-linked immunosorbent assay measurements of five selected proteins demonstrated the reliability of iTRAQ-based proteomics in screening of candidate biomarkers among the plasma proteins. The plasma samples collected before and after salbutamol treatment were well-separated by principal component analysis (PCA) using the differentially expressed proteins. These results suggested that an iTRAQ-based untargeted quantitative proteomic strategy combined with PCA pattern recognition methods can discriminate differences in plasma protein profiles collected before and after salbutamol treatment.

  16. Quantitative Analysis of Differential Proteome Expression in Bladder Cancer vs. Normal Bladder Cells Using SILAC Method.

    Directory of Open Access Journals (Sweden)

    Ganglong Yang

    Full Text Available The best way to increase patient survival rate is to identify patients who are likely to progress to muscle-invasive or metastatic disease upfront and treat them more aggressively. The human cell lines HCV29 (normal bladder epithelia, KK47 (low grade nonmuscle invasive bladder cancer, NMIBC, and YTS1 (metastatic bladder cancer have been widely used in studies of molecular mechanisms and cell signaling during bladder cancer (BC progression. However, little attention has been paid to global quantitative proteome analysis of these three cell lines. We labeled HCV29, KK47, and YTS1 cells by the SILAC method using three stable isotopes each of arginine and lysine. Labeled proteins were analyzed by 2D ultrahigh-resolution liquid chromatography LTQ Orbitrap mass spectrometry. Among 3721 unique identified and annotated proteins in KK47 and YTS1 cells, 36 were significantly upregulated and 74 were significantly downregulated with >95% confidence. Differential expression of these proteins was confirmed by western blotting, quantitative RT-PCR, and cell staining with specific antibodies. Gene ontology (GO term and pathway analysis indicated that the differentially regulated proteins were involved in DNA replication and molecular transport, cell growth and proliferation, cellular movement, immune cell trafficking, and cell death and survival. These proteins and the advanced proteome techniques described here will be useful for further elucidation of molecular mechanisms in BC and other types of cancer.

  17. Urine Proteomics in the Era of Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ashley Beasley-Green

    2016-11-01

    Full Text Available With the technological advances of mass spectrometry (MS-based platforms, clinical proteomics is one of the most rapidly growing areas in biomedical research. Urine proteomics has become a popular subdiscipline of clinical proteomics because it is an ideal source for the discovery of noninvasive disease biomarkers. The urine proteome offers a comprehensive view of the local and systemic physiology since the proteome is primarily composed of proteins/peptides from the kidneys and plasma. The emergence of MS-based proteomic platforms as prominent bioanalytical tools in clinical applications has enhanced the identification of protein-based urinary biomarkers. This review highlights the characteristics of urine that make it an attractive biofluid for biomarker discovery and the impact of MS-based technologies on the clinical assessment of urinary protein biomarkers.

  18. Benchmarking sample preparation/digestion protocols reveals tube-gel being a fast and repeatable method for quantitative proteomics.

    Science.gov (United States)

    Muller, Leslie; Fornecker, Luc; Van Dorsselaer, Alain; Cianférani, Sarah; Carapito, Christine

    2016-12-01

    Sample preparation, typically by in-solution or in-gel approaches, has a strong influence on the accuracy and robustness of quantitative proteomics workflows. The major benefit of in-gel procedures is their compatibility with detergents (such as SDS) for protein solubilization. However, SDS-PAGE is a time-consuming approach. Tube-gel (TG) preparation circumvents this drawback as it involves directly trapping the sample in a polyacrylamide gel matrix without electrophoresis. We report here the first global label-free quantitative comparison between TG, stacking gel (SG), and basic liquid digestion (LD). A series of UPS1 standard mixtures (at 0.5, 1, 2.5, 5, 10, and 25 fmol) were spiked in a complex yeast lysate background. TG preparation allowed more yeast proteins to be identified than did the SG and LD approaches, with mean numbers of 1979, 1788, and 1323 proteins identified, respectively. Furthermore, the TG method proved equivalent to SG and superior to LD in terms of the repeatability of the subsequent experiments, with mean CV for yeast protein label-free quantifications of 7, 9, and 10%. Finally, known variant UPS1 proteins were successfully detected in the TG-prepared sample within a complex background with high sensitivity. All the data from this study are accessible on ProteomeXchange (PXD003841). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. LFQProfiler and RNP(xl): Open-Source Tools for Label-Free Quantification and Protein-RNA Cross-Linking Integrated into Proteome Discoverer.

    Science.gov (United States)

    Veit, Johannes; Sachsenberg, Timo; Chernev, Aleksandar; Aicheler, Fabian; Urlaub, Henning; Kohlbacher, Oliver

    2016-09-02

    Modern mass spectrometry setups used in today's proteomics studies generate vast amounts of raw data, calling for highly efficient data processing and analysis tools. Software for analyzing these data is either monolithic (easy to use, but sometimes too rigid) or workflow-driven (easy to customize, but sometimes complex). Thermo Proteome Discoverer (PD) is a powerful software for workflow-driven data analysis in proteomics which, in our eyes, achieves a good trade-off between flexibility and usability. Here, we present two open-source plugins for PD providing additional functionality: LFQProfiler for label-free quantification of peptides and proteins, and RNP(xl) for UV-induced peptide-RNA cross-linking data analysis. LFQProfiler interacts with existing PD nodes for peptide identification and validation and takes care of the entire quantitative part of the workflow. We show that it performs at least on par with other state-of-the-art software solutions for label-free quantification in a recently published benchmark ( Ramus, C.; J. Proteomics 2016 , 132 , 51 - 62 ). The second workflow, RNP(xl), represents the first software solution to date for identification of peptide-RNA cross-links including automatic localization of the cross-links at amino acid resolution and localization scoring. It comes with a customized integrated cross-link fragment spectrum viewer for convenient manual inspection and validation of the results.

  20. Quantitative proteomic analysis of paired colorectal cancer and non-tumorigenic tissues reveals signature proteins and perturbed pathways involved in CRC progression and metastasis.

    Science.gov (United States)

    Sethi, Manveen K; Thaysen-Andersen, Morten; Kim, Hoguen; Park, Cheol Keun; Baker, Mark S; Packer, Nicolle H; Paik, Young-Ki; Hancock, William S; Fanayan, Susan

    2015-08-03

    Modern proteomics has proven instrumental in our understanding of the molecular deregulations associated with the development and progression of cancer. Herein, we profile membrane-enriched proteome of tumor and adjacent normal tissues from eight CRC patients using label-free nanoLC-MS/MS-based quantitative proteomics and advanced pathway analysis. Of the 948 identified proteins, 184 proteins were differentially expressed (P1.5) between the tumor and non-tumor tissue (69 up-regulated and 115 down-regulated in tumor tissues). The CRC tumor and non-tumor tissues clustered tightly in separate groups using hierarchical cluster analysis of the differentially expressed proteins, indicating a strong CRC-association of this proteome subset. Specifically, cancer associated proteins such as FN1, TNC, DEFA1, ITGB2, MLEC, CDH17, EZR and pathways including actin cytoskeleton and RhoGDI signaling were deregulated. Stage-specific proteome signatures were identified including up-regulated ribosomal proteins and down-regulated annexin proteins in early stage CRC. Finally, EGFR(+) CRC tissues showed an EGFR-dependent down-regulation of cell adhesion molecules, relative to EGFR(-) tissues. Taken together, this study provides a detailed map of the altered proteome and associated protein pathways in CRC, which enhances our mechanistic understanding of CRC biology and opens avenues for a knowledge-driven search for candidate CRC protein markers. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The mzTab data exchange format: communicating mass-spectrometry-based proteomics and metabolomics experimental results to a wider audience.

    Science.gov (United States)

    Griss, Johannes; Jones, Andrew R; Sachsenberg, Timo; Walzer, Mathias; Gatto, Laurent; Hartler, Jürgen; Thallinger, Gerhard G; Salek, Reza M; Steinbeck, Christoph; Neuhauser, Nadin; Cox, Jürgen; Neumann, Steffen; Fan, Jun; Reisinger, Florian; Xu, Qing-Wei; Del Toro, Noemi; Pérez-Riverol, Yasset; Ghali, Fawaz; Bandeira, Nuno; Xenarios, Ioannis; Kohlbacher, Oliver; Vizcaíno, Juan Antonio; Hermjakob, Henning

    2014-10-01

    The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R. We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Proteomic Identification of Altered Cerebral Proteins in the Complex Regional Pain Syndrome Animal Model

    Directory of Open Access Journals (Sweden)

    Francis Sahngun Nahm

    2014-01-01

    Full Text Available Background. Complex regional pain syndrome (CRPS is a rare but debilitating pain disorder. Although the exact pathophysiology of CRPS is not fully understood, central and peripheral mechanisms might be involved in the development of this disorder. To reveal the central mechanism of CRPS, we conducted a proteomic analysis of rat cerebrum using the chronic postischemia pain (CPIP model, a novel experimental model of CRPS. Materials and Methods. After generating the CPIP animal model, we performed a proteomic analysis of the rat cerebrum using a multidimensional protein identification technology, and screened the proteins differentially expressed between the CPIP and control groups. Results. A total of 155 proteins were differentially expressed between the CPIP and control groups: 125 increased and 30 decreased; expressions of proteins related to cell signaling, synaptic plasticity, regulation of cell proliferation, and cytoskeletal formation were increased in the CPIP group. However, proenkephalin A, cereblon, and neuroserpin were decreased in CPIP group. Conclusion. Altered expression of cerebral proteins in the CPIP model indicates cerebral involvement in the pathogenesis of CRPS. Further study is required to elucidate the roles of these proteins in the development and maintenance of CRPS.

  3. Proteomic identification of altered cerebral proteins in the complex regional pain syndrome animal model.

    Science.gov (United States)

    Nahm, Francis Sahngun; Park, Zee-Yong; Nahm, Sang-Soep; Kim, Yong Chul; Lee, Pyung Bok

    2014-01-01

    Complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder. Although the exact pathophysiology of CRPS is not fully understood, central and peripheral mechanisms might be involved in the development of this disorder. To reveal the central mechanism of CRPS, we conducted a proteomic analysis of rat cerebrum using the chronic postischemia pain (CPIP) model, a novel experimental model of CRPS. After generating the CPIP animal model, we performed a proteomic analysis of the rat cerebrum using a multidimensional protein identification technology, and screened the proteins differentially expressed between the CPIP and control groups. Results. A total of 155 proteins were differentially expressed between the CPIP and control groups: 125 increased and 30 decreased; expressions of proteins related to cell signaling, synaptic plasticity, regulation of cell proliferation, and cytoskeletal formation were increased in the CPIP group. However, proenkephalin A, cereblon, and neuroserpin were decreased in CPIP group. Altered expression of cerebral proteins in the CPIP model indicates cerebral involvement in the pathogenesis of CRPS. Further study is required to elucidate the roles of these proteins in the development and maintenance of CRPS.

  4. A proteomic approach to investigating gene cluster expression and secondary metabolite functionality in Aspergillus fumigatus.

    OpenAIRE

    Owens, RA; Hammel, S; Sheridan, KJ; Jones, GW; Doyle, S

    2014-01-01

    A combined proteomics and metabolomics approach was utilised to advance the identification and characterisation of secondary metabolites in Aspergillus fumigatus. Here, implementation of a shotgun proteomic strategy led to the identification of non-redundant mycelial proteins (n = 414) from A. fumigatus including proteins typically under-represented in 2-D proteome maps: proteins with multiple transmembrane regions, hydrophobic proteins and proteins with extremes of molecular mass and pI. Ind...

  5. Quantitative Proteomics Reveals Membrane Protein-Mediated Hypersaline Sensitivity and Adaptation in Halophilic Nocardiopsis xinjiangensis.

    Science.gov (United States)

    Zhang, Yao; Li, Yanchang; Zhang, Yongguang; Wang, Zhiqiang; Zhao, Mingzhi; Su, Na; Zhang, Tao; Chen, Lingsheng; Wei, Wei; Luo, Jing; Zhou, Yanxia; Xu, Yongru; Xu, Ping; Li, Wenjun; Tao, Yong

    2016-01-04

    The genus Nocardiopsis is one of the most dominant Actinobacteria that survives in hypersaline environments. However, the adaptation mechanisms for halophilism are still unclear. Here, we performed isobaric tags for relative and absolute quantification based quantitative proteomics to investigate the functions of the membrane proteome after salt stress. A total of 683 membrane proteins were identified and quantified, of which 126 membrane proteins displayed salt-induced changes in abundance. Intriguingly, bioinformatics analyses indicated that these differential proteins showed two expression patterns, which were further validated by phenotypic changes and functional differences. The majority of ABC transporters, secondary active transporters, cell motility proteins, and signal transduction kinases were up-regulated with increasing salt concentration, whereas cell differentiation, small molecular transporter (ions and amino acids), and secondary metabolism proteins were significantly up-regulated at optimum salinity, but down-regulated or unchanged at higher salinity. The small molecule transporters and cell differentiation-related proteins acted as sensing proteins that played a more important biological role at optimum salinity. However, the ABC transporters for compatible solutes, Na(+)-dependent transporters, and cell motility proteins acted as adaptive proteins that actively counteracted higher salinity stress. Overall, regulation of membrane proteins may provide a major protection strategy against hyperosmotic stress.

  6. Quantitative proteomic analysis of the rice (Oryza sativa L. salt response.

    Directory of Open Access Journals (Sweden)

    Jianwen Xu

    Full Text Available Salt stress is one of most serious limiting factors for crop growth and production. An isobaric Tags for Relative and Absolute Quantitation (iTRAQ approach was used to analyze proteomic changes in rice shoots under salt stress in this study. A total of 56 proteins were significantly altered and 16 of them were enriched in the pathways of photosynthesis, antioxidant and oxidative phosphorylation. Among these 16 proteins, peroxiredoxin Q and photosystem I subunit D were up-regulated, while thioredoxin M-like, thioredoxin x, thioredoxin peroxidase, glutathione S-transferase F3, PSI subunit H, light-harvesting antenna complex I subunits, chloroplast chaperonin, vacuolar ATP synthase subunit H, and ATP synthase delta chain were down-regulated. Moreover, physiological data including total antioxidant capacity, peroxiredoxin activity, chlorophyll a/b content, glutathione S-transferase activity, reduced glutathione content and ATPase activity were consistent with changes in the levels of these proteins. The levels of the mRNAs encoding these proteins were also analyzed by real-time quantitative reverse transcription PCR, and approximately 86% of the results were consistent with the iTRAQ data. Importantly, our data suggest the important role of PSI in balancing energy supply and ROS generation under salt stress. This study provides information for an improved understanding of the function of photosynthesis and PSI in the salt-stress response of rice.

  7. Quantitative Proteomic Analysis of Optimal Cutting Temperature (OCT) Embedded Core-Needle Biopsy of Lung Cancer

    Science.gov (United States)

    Zhao, Xiaozheng; Huffman, Kenneth E.; Fujimoto, Junya; Canales, Jamie Rodriguez; Girard, Luc; Nie, Guangjun; Heymach, John V.; Wistuba, Igacio I.; Minna, John D.; Yu, Yonghao

    2017-10-01

    With recent advances in understanding the genomic underpinnings and oncogenic drivers of pathogenesis in different subtypes, it is increasingly clear that proper pretreatment diagnostics are essential for the choice of appropriate treatment options for non-small cell lung cancer (NSCLC). Tumor tissue preservation in optimal cutting temperature (OCT) compound is commonly used in the surgical suite. However, proteins recovered from OCT-embedded specimens pose a challenge for LC-MS/MS experiments, due to the large amounts of polymers present in OCT. Here we present a simple workflow for whole proteome analysis of OCT-embedded NSCLC tissue samples, which involves a simple trichloroacetic acid precipitation step. Comparisons of protein recovery between frozen versus OCT-embedded tissue showed excellent consistency with more than 9200 proteins identified. Using an isobaric labeling strategy, we quantified more than 5400 proteins in tumor versus normal OCT-embedded core needle biopsy samples. Gene ontology analysis indicated that a number of proliferative as well as squamous cell carcinoma (SqCC) marker proteins were overexpressed in the tumor, consistent with the patient's pathology based diagnosis of "poorly differentiated SqCC". Among the most downregulated proteins in the tumor sample, we noted a number of proteins with potential immunomodulatory functions. Finally, interrogation of the aberrantly expressed proteins using a candidate approach and cross-referencing with publicly available databases led to the identification of potential druggable targets in DNA replication and DNA damage repair pathways. We conclude that our approach allows LC-MS/MS proteomic analyses on OCT-embedded lung cancer specimens, opening the way to bring powerful proteomics into the clinic. [Figure not available: see fulltext.

  8. Arabidopsis peroxisome proteomics

    Directory of Open Access Journals (Sweden)

    John D. Bussell

    2013-04-01

    Full Text Available The analytical depth of investigation of the peroxisomal proteome of the model plant Arabidopsis thaliana has not yet reached that of other major cellular organelles such as chloroplasts or mitochondria. This is primarily due to the difficulties associated with isolating and obtaining purified samples of peroxisomes from Arabidopsis. So far only a handful of research groups have been successful in obtaining such fractions. To make things worse, enriched peroxisome fractions frequently suffer from significant organellar contamination, lowering confidence in localization assignment of the identified proteins. As with other cellular compartments, identification of peroxisomal proteins forms the basis for investigations of the dynamics of the peroxisomal proteome. It is therefore not surprising that, in terms of functional analyses by proteomic means, there remains a considerable gap between peroxisomes and chloroplasts or mitochondria. Alternative strategies are needed to overcome the obstacle of hard-to-obtain organellar fractions. This will help to close the knowledge gap between peroxisomes and other organelles and provide a full picture of the physiological pathways shared between organelles. In this review we briefly summarize the status quo and discuss some of the methodological alternatives to classic organelle proteomic approaches.

  9. Quantitative proteomic analyses of the microbial degradation of estrone under various background nitrogen and carbon conditions.

    Science.gov (United States)

    Du, Zhe; Chen, Yinguang; Li, Xu

    2017-10-15

    Microbial degradation of estrogenic compounds can be affected by the nitrogen source and background carbon in the environment. However, the underlying mechanisms are not well understood. The objective of this study was to elucidate the molecular mechanisms of estrone (E1) biodegradation at the protein level under various background nitrogen (nitrate or ammonium) and carbon conditions (no background carbon, acetic acid, or humic acid as background carbon) by a newly isolated bacterial strain. The E1 degrading bacterial strain, Hydrogenophaga atypica ZD1, was isolated from river sediments and its proteome was characterized under various experimental conditions using quantitative proteomics. Results show that the E1 degradation rate was faster when ammonium was used as the nitrogen source than with nitrate. The degradation rate was also faster when either acetic acid or humic acid was present in the background. Proteomics analyses suggested that the E1 biodegradation products enter the tyrosine metabolism pathway. Compared to nitrate, ammonium likely promoted E1 degradation by increasing the activities of the branched-chain-amino-acid aminotransferase (IlvE) and enzymes involved in the glutamine synthetase-glutamine oxoglutarate aminotransferase (GS-GOGAT) pathway. The increased E1 degradation rate with acetic acid or humic acid in the background can also be attributed to the up-regulation of IlvE. Results from this study can help predict and explain E1 biodegradation kinetics under various environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Identification of Proteins Related to Epigenetic Regulation in the Malignant Transformation of Aberrant Karyotypic Human Embryonic Stem Cells by Quantitative Proteomics

    Science.gov (United States)

    Sun, Yi; Yang, Yixuan; Zeng, Sicong; Tan, Yueqiu; Lu, Guangxiu; Lin, Ge

    2014-01-01

    Previous reports have demonstrated that human embryonic stem cells (hESCs) tend to develop genomic alterations and progress to a malignant state during long-term in vitro culture. This raises concerns of the clinical safety in using cultured hESCs. However, transformed hESCs might serve as an excellent model to determine the process of embryonic stem cell transition. In this study, ITRAQ-based tandem mass spectrometry was used to quantify normal and aberrant karyotypic hESCs proteins from simple to more complex karyotypic abnormalities. We identified and quantified 2583 proteins, and found that the expression levels of 316 proteins that represented at least 23 functional molecular groups were significantly different in both normal and abnormal hESCs. Dysregulated protein expression in epigenetic regulation was further verified in six pairs of hESC lines in early and late passage. In summary, this study is the first large-scale quantitative proteomic analysis of the malignant transformation of aberrant karyotypic hESCs. The data generated should serve as a useful reference of stem cell-derived tumor progression. Increased expression of both HDAC2 and CTNNB1 are detected as early as the pre-neoplastic stage, and might serve as prognostic markers in the malignant transformation of hESCs. PMID:24465727

  11. Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis.

    Science.gov (United States)

    Bouchal, Pavel; Roumeliotis, Theodoros; Hrstka, Roman; Nenutil, Rudolf; Vojtesek, Borivoj; Garbis, Spiros D

    2009-01-01

    The present pilot study constitutes a proof-of-principle in the use of a quantitative LC-MS/MS based proteomic method for the comparative analysis of representative low-grade breast primary tumor tissues with and without metastases and metastasis in lymph node relative to the nonmetastatic tumor type. The study method incorporated iTRAQ stable isotope labeling, two-dimensional liquid chromatography, nanoelectrospray ionization and high resolution tandem mass spectrometry using the hybrid QqTOF platform (iTRAQ-2DLC-MS/MS). The principal aims of this study were (1) to define the protein spectrum obtainable using this approach, and (2) to highlight potential candidates for verification and validation studies focused on biomarkers involved in metastatic processes in breast cancer. The study resulted in the reproducible identification of 605 nonredundant proteins (p biomarker discovery program.

  12. Social network architecture of human immune cells unveiled by quantitative proteomics.

    Science.gov (United States)

    Rieckmann, Jan C; Geiger, Roger; Hornburg, Daniel; Wolf, Tobias; Kveler, Ksenya; Jarrossay, David; Sallusto, Federica; Shen-Orr, Shai S; Lanzavecchia, Antonio; Mann, Matthias; Meissner, Felix

    2017-05-01

    The immune system is unique in its dynamic interplay between numerous cell types. However, a system-wide view of how immune cells communicate to protect against disease has not yet been established. We applied high-resolution mass-spectrometry-based proteomics to characterize 28 primary human hematopoietic cell populations in steady and activated states at a depth of >10,000 proteins in total. Protein copy numbers revealed a specialization of immune cells for ligand and receptor expression, thereby connecting distinct immune functions. By integrating total and secreted proteomes, we discovered fundamental intercellular communication structures and previously unknown connections between cell types. Our publicly accessible (http://www.immprot.org/) proteomic resource provides a framework for the orchestration of cellular interplay and a reference for altered communication associated with pathology.

  13. Quantitative proteomic analysis for high-throughput screening of differential glycoproteins in hepatocellular carcinoma serum

    International Nuclear Information System (INIS)

    Gao, Hua-Jun; Chen, Ya-Jing; Zuo, Duo; Xiao, Ming-Ming; Li, Ying; Guo, Hua; Zhang, Ning; Chen, Rui-Bing

    2015-01-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths. Novel serum biomarkers are required to increase the sensitivity and specificity of serum screening for early HCC diagnosis. This study employed a quantitative proteomic strategy to analyze the differential expression of serum glycoproteins between HCC and normal control serum samples. Lectin affinity chromatography (LAC) was used to enrich glycoproteins from the serum samples. Quantitative mass spectrometric analysis combined with stable isotope dimethyl labeling and 2D liquid chromatography (LC) separations were performed to examine the differential levels of the detected proteins between HCC and control serum samples. Western blot was used to analyze the differential expression levels of the three serum proteins. A total of 2,280 protein groups were identified in the serum samples from HCC patients by using the 2D LC-MS/MS method. Up to 36 proteins were up-regulated in the HCC serum, whereas 19 proteins were down-regulated. Three differential glycoproteins, namely, fibrinogen gamma chain (FGG), FOS-like antigen 2 (FOSL2), and α-1,6-mannosylglycoprotein 6-β-N-acetylglucosaminyltransferase B (MGAT5B) were validated by Western blot. All these three proteins were up-regulated in the HCC serum samples. A quantitative glycoproteomic method was established and proven useful to determine potential novel biomarkers for HCC

  14. Comprehensive analysis of temporal alterations in cellular proteome of Bacillus subtilis under curcumin treatment.

    Directory of Open Access Journals (Sweden)

    Panga Jaipal Reddy

    Full Text Available Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division.

  15. Comparative Membrane Proteomics Reveals a Nonannotated E. coli Heat Shock Protein.

    Science.gov (United States)

    Yuan, Peijia; D'Lima, Nadia G; Slavoff, Sarah A

    2018-01-09

    Recent advances in proteomics and genomics have enabled discovery of thousands of previously nonannotated small open reading frames (smORFs) in genomes across evolutionary space. Furthermore, quantitative mass spectrometry has recently been applied to analysis of regulated smORF expression. However, bottom-up proteomics has remained relatively insensitive to membrane proteins, suggesting they may have been underdetected in previous studies. In this report, we add biochemical membrane protein enrichment to our previously developed label-free quantitative proteomics protocol, revealing a never-before-identified heat shock protein in Escherichia coli K12. This putative smORF-encoded heat shock protein, GndA, is likely to be ∼36-55 amino acids in length and contains a predicted transmembrane helix. We validate heat shock-regulated expression of the gndA smORF and demonstrate that a GndA-GFP fusion protein cofractionates with the cell membrane. Quantitative membrane proteomics therefore has the ability to reveal nonannotated small proteins that may play roles in bacterial stress responses.

  16. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis)

    Science.gov (United States)

    2013-01-01

    Background Advances in DNA sequencing and proteomics have facilitated quantitative comparisons of snake venom composition. Most studies have employed one approach or the other. Here, both Illumina cDNA sequencing and LC/MS were used to compare the transcriptomes and proteomes of two pit vipers, Protobothrops flavoviridis and Ovophis okinavensis, which differ greatly in their biology. Results Sequencing of venom gland cDNA produced 104,830 transcripts. The Protobothrops transcriptome contained transcripts for 103 venom-related proteins, while the Ovophis transcriptome contained 95. In both, transcript abundances spanned six orders of magnitude. Mass spectrometry identified peptides from 100% of transcripts that occurred at higher than contaminant (e.g. human keratin) levels, including a number of proteins never before sequenced from snakes. These transcriptomes reveal fundamentally different envenomation strategies. Adult Protobothrops venom promotes hemorrhage, hypotension, incoagulable blood, and prey digestion, consistent with mammalian predation. Ovophis venom composition is less readily interpreted, owing to insufficient pharmacological data for venom serine and metalloproteases, which comprise more than 97.3% of Ovophis transcripts, but only 38.0% of Protobothrops transcripts. Ovophis venom apparently represents a hybrid strategy optimized for frogs and small mammals. Conclusions This study illustrates the power of cDNA sequencing combined with MS profiling. The former quantifies transcript composition, allowing detection of novel proteins, but cannot indicate which proteins are actually secreted, as does MS. We show, for the first time, that transcript and peptide abundances are correlated. This means that MS can be used for quantitative, non-invasive venom profiling, which will be beneficial for studies of endangered species. PMID:24224955

  17. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis

    Directory of Open Access Journals (Sweden)

    Christian eFalter

    2015-03-01

    Full Text Available The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape – liquid cover glass technique for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the adhesive tape – liquid cover glass technique for simple leaf epidermis preparation and the compatibility to laser microdissection and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.

  18. Proteomics Insights into Autophagy.

    Science.gov (United States)

    Cudjoe, Emmanuel K; Saleh, Tareq; Hawkridge, Adam M; Gewirtz, David A

    2017-10-01

    Autophagy, a conserved cellular process by which cells recycle their contents either to maintain basal homeostasis or in response to external stimuli, has for the past two decades become one of the most studied physiological processes in cell biology. The 2016 Nobel Prize in Medicine and Biology awarded to Dr. Ohsumi Yoshinori, one of the first scientists to characterize this cellular mechanism, attests to its importance. The induction and consequent completion of the process of autophagy results in wide ranging changes to the cellular proteome as well as the secretome. MS-based proteomics affords the ability to measure, in an unbiased manner, the ubiquitous changes that occur when autophagy is initiated and progresses in the cell. The continuous improvements and advances in mass spectrometers, especially relating to ionization sources and detectors, coupled with advances in proteomics experimental design, has made it possible to study autophagy, among other process, in great detail. Innovative labeling strategies and protein separation techniques as well as complementary methods including immuno-capture/blotting/staining have been used in proteomics studies to provide more specific protein identification. In this review, we will discuss recent advances in proteomics studies focused on autophagy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Region and cell-type resolved quantitative proteomic map of the human heart

    DEFF Research Database (Denmark)

    Doll, Sophia; Dreßen, Martina; Geyer, Philipp E

    2017-01-01

    The heart is a central human organ and its diseases are the leading cause of death worldwide, but an in-depth knowledge of the identity and quantity of its constituent proteins is still lacking. Here, we determine the healthy human heart proteome by measuring 16 anatomical regions and three major...... cardiac cell types by high-resolution mass spectrometry-based proteomics. From low microgram sample amounts, we quantify over 10,700 proteins in this high dynamic range tissue. We combine copy numbers per cell with protein organellar assignments to build a model of the heart proteome at the subcellular...

  20. Scientific Workflow Management in Proteomics

    Science.gov (United States)

    de Bruin, Jeroen S.; Deelder, André M.; Palmblad, Magnus

    2012-01-01

    Data processing in proteomics can be a challenging endeavor, requiring extensive knowledge of many different software packages, all with different algorithms, data format requirements, and user interfaces. In this article we describe the integration of a number of existing programs and tools in Taverna Workbench, a scientific workflow manager currently being developed in the bioinformatics community. We demonstrate how a workflow manager provides a single, visually clear and intuitive interface to complex data analysis tasks in proteomics, from raw mass spectrometry data to protein identifications and beyond. PMID:22411703

  1. Isobaric Tags for Relative and Absolute Quantitation-Based Proteomic Analysis of Patent and Constricted Ductus Arteriosus Tissues Confirms the Systemic Regulation of Ductus Arteriosus Closure.

    Science.gov (United States)

    Hong, Haifa; Ye, Lincai; Chen, Huiwen; Xia, Yu; Liu, Yue; Liu, Jinfen; Lu, Yanan; Zhang, Haibo

    2015-08-01

    We aimed to evaluate global changes in protein expression associated with patency by undertaking proteomic analysis of human constricted and patent ductus arteriosus (DA). Ten constricted and 10 patent human DAs were excised from infants with ductal-dependent heart disease during surgery. Using isobaric tags for relative and absolute quantitation-based quantitative proteomics, 132 differentially expressed proteins were identified. Of 132 proteins, voltage-gated sodium channel 1.3 (SCN3A), myosin 1d (Myo1d), Rho GTPase activating protein 26 (ARHGAP26), and retinitis pigmentosa 1 (RP1) were selected for validation by Western blot and quantitative real-time polymerase chain reaction analyses. Significant upregulation of SCN3A, Myo1d, and RP1 messenger RNA, and protein levels was observed in the patent DA group (all P ≤ 0.048). ARHGAP26 messenger RNA and protein levels were decreased in patent DA tissue (both P ≤ 0.018). Immunohistochemistry analysis revealed that Myo1d, ARHGAP26, and RP1 were specifically expressed in the subendothelial region of constricted DAs; however, diffuse expression of these proteins was noted in the patent group. Proteomic analysis revealed global changes in the expression of proteins that regulate oxygen sensing, ion channels, smooth muscle cell migration, nervous system, immune system, and metabolism, suggesting a basis for the systemic regulation of DA patency by diverse signaling pathways, which will be confirmed in further studies.

  2. Proteomic landscape in Central and Eastern Europe: the 9th Central and Eastern European Proteomic Conference, Poznań, Poland.

    Science.gov (United States)

    Gadher, Suresh Jivan; Marczak, Łukasz; Łuczak, Magdalena; Stobiecki, Maciej; Widlak, Piotr; Kovarova, Hana

    2016-01-01

    Every year since 2007, the Central and Eastern European Proteomic Conference (CEEPC) has excelled in representing state-of-the-art proteomics in and around Central and Eastern Europe, and linking it to international institutions worldwide. Its mission remains to contribute to all approaches of proteomics including traditional and often-revisited methodologies as well as the latest technological achievements in clinical, quantitative and structural proteomics with a view to systems biology of a variety of processes. The 9th CEEPC was held from June 15th to 18th, 2015, at the Institute of Bioorganic Chemistry, Polish Academy of Sciences in Poznań, Poland. The scientific program stimulated exchange of proteomic knowledge whilst the spectacular venue of the conference allowed participants to enjoy the cobblestoned historical city of Poznań.

  3. Halobacterium salinarum NRC-1 PeptideAtlas: toward strategies for targeted proteomics and improved proteome coverage.

    Science.gov (United States)

    Van, Phu T; Schmid, Amy K; King, Nichole L; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T; Goo, Young Ah; Deutsch, Eric W; Reiss, David J; Mallick, Parag; Baliga, Nitin S

    2008-09-01

    The relatively small numbers of proteins and fewer possible post-translational modifications in microbes provide a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a PeptideAtlas (PA) covering 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636 000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has highlighted plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore, we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics.

  4. A comparative proteomic characterization and nutritional assessment of naturally- and artificially-cultivated Cordyceps sinensis.

    Science.gov (United States)

    Zhang, Xu; Liu, Qun; Zhou, Wei; Li, Ping; Alolga, Raphael N; Qi, Lian-Wen; Yin, Xiaojian

    2018-03-30

    Cordyceps sinensis has gained increasing attention due to its nutritional and medicinal properties. Herein, we employed label-free quantitative mass spectrometry to explore the proteome differences between naturally- and artificially-cultivated C. sinensis. A total of 22,829 peptides with confidence ≥95%, corresponding to 2541 protein groups were identified from the caterpillar bodies/stromata of 12 naturally- and artificially-cultivated samples of C. sinensis. Among them, 165 proteins showed significant differences between the samples of natural and artificial cultivation. These proteins were mainly involved in energy production/conversion, amino acid transport/metabolism, and transcription regulation. The proteomic results were confirmed by the identification of 4 significantly changed metabolites, thus, lysine, threonine, serine, and arginine via untargeted metabolomics. The change tendencies of these metabolites were partly in accordance with changes in abundance of the proteins, which was upstream of their synthetic pathways. In addition, the nutritional value in terms of the levels of nucleosides, nucleotides, and adenosine between the artificially- and naturally-cultivated samples was virtually same. These proteomic data will be useful for understanding the medicinal value of C. sinensis and serve as reference for its artificial cultivation. C. sinensis is a precious and valued medicinal product, the current basic proteome dataset would provide useful information to understand its development/infection processes as well as help to artificially cultivate it. This work would also provide basic proteome profile for further study of C. sinensis. Copyright © 2018. Published by Elsevier B.V.

  5. Top Down proteomics: Facts and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Catherman, Adam D.; Skinner, Owen S.; Kelleher, Neil L., E-mail: n-kelleher@northwestern.edu

    2014-03-21

    Highlights: • Top Down versus Bottom Up proteomics analysis. • Separations methods for Top Down proteomics. • Developments in mass spectrometry instrumentation and fragmentation. • Native mass spectrometry. - Abstract: The rise of the “Top Down” method in the field of mass spectrometry-based proteomics has ushered in a new age of promise and challenge for the characterization and identification of proteins. Injecting intact proteins into the mass spectrometer allows for better characterization of post-translational modifications and avoids several of the serious “inference” problems associated with peptide-based proteomics. However, successful implementation of a Top Down approach to endogenous or other biologically relevant samples often requires the use of one or more forms of separation prior to mass spectrometric analysis, which have only begun to mature for whole protein MS. Recent advances in instrumentation have been used in conjunction with new ion fragmentation using photons and electrons that allow for better (and often complete) protein characterization on cases simply not tractable even just a few years ago. Finally, the use of native electrospray mass spectrometry has shown great promise for the identification and characterization of whole protein complexes in the 100 kDa to 1 MDa regime, with prospects for complete compositional analysis for endogenous protein assemblies a viable goal over the coming few years.

  6. Top Down proteomics: Facts and perspectives

    International Nuclear Information System (INIS)

    Catherman, Adam D.; Skinner, Owen S.; Kelleher, Neil L.

    2014-01-01

    Highlights: • Top Down versus Bottom Up proteomics analysis. • Separations methods for Top Down proteomics. • Developments in mass spectrometry instrumentation and fragmentation. • Native mass spectrometry. - Abstract: The rise of the “Top Down” method in the field of mass spectrometry-based proteomics has ushered in a new age of promise and challenge for the characterization and identification of proteins. Injecting intact proteins into the mass spectrometer allows for better characterization of post-translational modifications and avoids several of the serious “inference” problems associated with peptide-based proteomics. However, successful implementation of a Top Down approach to endogenous or other biologically relevant samples often requires the use of one or more forms of separation prior to mass spectrometric analysis, which have only begun to mature for whole protein MS. Recent advances in instrumentation have been used in conjunction with new ion fragmentation using photons and electrons that allow for better (and often complete) protein characterization on cases simply not tractable even just a few years ago. Finally, the use of native electrospray mass spectrometry has shown great promise for the identification and characterization of whole protein complexes in the 100 kDa to 1 MDa regime, with prospects for complete compositional analysis for endogenous protein assemblies a viable goal over the coming few years

  7. Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein

    NARCIS (Netherlands)

    Sotoca Covaleda, A.M.; Sollewijn Gelpke, M.D.; Boeren, S.; Ström, A.; Gustafsson, J.A.; Murk, A.J.; Rietjens, I.M.C.M.; Vervoort, J.J.M.

    2011-01-01

    The present study addresses, by transcriptomics and quantitative SILAC-based proteomics, the estrogen receptor alpha (ER) and beta (ERß)-mediated effects on gene and protein expression in T47D breast cancer cells exposed to the phytoestrogen genistein. Using the T47D human breast cancer cell line

  8. AUTOMATED ANALYSIS OF QUANTITATIVE IMAGE DATA USING ISOMORPHIC FUNCTIONAL MIXED MODELS, WITH APPLICATION TO PROTEOMICS DATA.

    Science.gov (United States)

    Morris, Jeffrey S; Baladandayuthapani, Veerabhadran; Herrick, Richard C; Sanna, Pietro; Gutstein, Howard

    2011-01-01

    Image data are increasingly encountered and are of growing importance in many areas of science. Much of these data are quantitative image data, which are characterized by intensities that represent some measurement of interest in the scanned images. The data typically consist of multiple images on the same domain and the goal of the research is to combine the quantitative information across images to make inference about populations or interventions. In this paper, we present a unified analysis framework for the analysis of quantitative image data using a Bayesian functional mixed model approach. This framework is flexible enough to handle complex, irregular images with many local features, and can model the simultaneous effects of multiple factors on the image intensities and account for the correlation between images induced by the design. We introduce a general isomorphic modeling approach to fitting the functional mixed model, of which the wavelet-based functional mixed model is one special case. With suitable modeling choices, this approach leads to efficient calculations and can result in flexible modeling and adaptive smoothing of the salient features in the data. The proposed method has the following advantages: it can be run automatically, it produces inferential plots indicating which regions of the image are associated with each factor, it simultaneously considers the practical and statistical significance of findings, and it controls the false discovery rate. Although the method we present is general and can be applied to quantitative image data from any application, in this paper we focus on image-based proteomic data. We apply our method to an animal study investigating the effects of opiate addiction on the brain proteome. Our image-based functional mixed model approach finds results that are missed with conventional spot-based analysis approaches. In particular, we find that the significant regions of the image identified by the proposed method

  9. Application of survival analysis methodology to the quantitative analysis of LC-MS proteomics data.

    Science.gov (United States)

    Tekwe, Carmen D; Carroll, Raymond J; Dabney, Alan R

    2012-08-01

    Protein abundance in quantitative proteomics is often based on observed spectral features derived from liquid chromatography mass spectrometry (LC-MS) or LC-MS/MS experiments. Peak intensities are largely non-normal in distribution. Furthermore, LC-MS-based proteomics data frequently have large proportions of missing peak intensities due to censoring mechanisms on low-abundance spectral features. Recognizing that the observed peak intensities detected with the LC-MS method are all positive, skewed and often left-censored, we propose using survival methodology to carry out differential expression analysis of proteins. Various standard statistical techniques including non-parametric tests such as the Kolmogorov-Smirnov and Wilcoxon-Mann-Whitney rank sum tests, and the parametric survival model and accelerated failure time-model with log-normal, log-logistic and Weibull distributions were used to detect any differentially expressed proteins. The statistical operating characteristics of each method are explored using both real and simulated datasets. Survival methods generally have greater statistical power than standard differential expression methods when the proportion of missing protein level data is 5% or more. In particular, the AFT models we consider consistently achieve greater statistical power than standard testing procedures, with the discrepancy widening with increasing missingness in the proportions. The testing procedures discussed in this article can all be performed using readily available software such as R. The R codes are provided as supplemental materials. ctekwe@stat.tamu.edu.

  10. Proteomic Analysis of the Endosperm Ontogeny of Jatropha curcas L. Seeds.

    Science.gov (United States)

    Shah, Mohibullah; Soares, Emanoella L; Carvalho, Paulo C; Soares, Arlete A; Domont, Gilberto B; Nogueira, Fábio C S; Campos, Francisco A P

    2015-06-05

    Seeds of Jatropha curcas L. represent a potential source of raw material for the production of biodiesel. However, this use is hampered by the lack of basic information on the biosynthetic pathways associated with synthesis of toxic diterpenes, fatty acids, and triacylglycerols, as well as the pattern of deposition of storage proteins during seed development. In this study, we performed an in-depth proteome analysis of the endosperm isolated from five developmental stages which resulted in the identification of 1517, 1256, 1033, 752, and 307 proteins, respectively, summing up 1760 different proteins. Proteins with similar label free quantitation expression pattern were grouped into five clusters. The biological significance of these identifications is discussed with special focus on the analysis of seed storage proteins, proteins involved in the metabolism of fatty acids, carbohydrates, toxic components and proteolytic processing. Although several enzymes belonging to the biosynthesis of diterpenoid precursors were identified, we were unable to find any terpene synthase/cyclase, indicating that the synthesis of phorbol esters, the main toxic diterpenes, does not occur in seeds. The strategy used enabled us to provide a first in depth proteome analysis of the developing endosperm of this biodiesel plant, providing an important glimpse into the enzymatic machinery devoted to the production of C and N sources to sustain seed development.

  11. High-throughput sperm differential proteomics suggests that epigenetic alterations contribute to failed assisted reproduction.

    Science.gov (United States)

    Azpiazu, Rubén; Amaral, Alexandra; Castillo, Judit; Estanyol, Josep Maria; Guimerà, Marta; Ballescà, Josep Lluís; Balasch, Juan; Oliva, Rafael

    2014-06-01

    Are there quantitative alterations in the proteome of normozoospermic sperm samples that are able to complete IVF but whose female partner does not achieve pregnancy? Normozoospermic sperm samples with different IVF outcomes (pregnancy versus no pregnancy) differed in the levels of at least 66 proteins. The analysis of the proteome of sperm samples with distinct fertilization capacity using low-throughput proteomic techniques resulted in the detection of a few differential proteins. Current high-throughput mass spectrometry approaches allow the identification and quantification of a substantially higher number of proteins. This was a case-control study including 31 men with normozoospermic sperm and their partners who underwent IVF with successful fertilization recruited between 2007 and 2008. Normozoospermic sperm samples from 15 men whose female partners did not achieve pregnancy after IVF (no pregnancy) and 16 men from couples that did achieve pregnancy after IVF (pregnancy) were included in this study. To perform the differential proteomic experiments, 10 no pregnancy samples and 10 pregnancy samples were separately pooled and subsequently used for tandem mass tags (TMT) protein labelling, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, liquid chromatography tandem mass spectrometry (LC-MS/MS) identification and peak intensity relative protein quantification. Bioinformatic analyses were performed using UniProt Knowledgebase, DAVID and Reactome. Individual samples (n = 5 no pregnancy samples; n = 6 pregnancy samples) and aliquots from the above TMT pools were used for western blotting. By using TMT labelling and LC-MS/MS, we have detected 31 proteins present at lower abundance (ratio no pregnancy/pregnancy 1.5) in the no pregnancy group. Bioinformatic analyses showed that the proteins with differing abundance are involved in chromatin assembly and lipoprotein metabolism (P values Economia y Competividad; FEDER BFU 2009-07118 and PI13/00699) and

  12. [A review of current methods for nutrimetabolomic and proteomic research in biochemistry of nutrition].

    Science.gov (United States)

    Kirbaeva, N V; Sharanova, N É; Pertsov, S S

    2014-01-01

    At present biochemistry of nutrition involves the use of OMICs to investigate food quality, safety, bioactivity and nutrition mechanisms. In this context, nutrimetabolomics is one of the latest directions of nutrition development and provides a better understanding of the influence of nutritional factors on the metabolic pathways of the organism. Proteomic methods play an important role in nutrimetabolomics and allow to detect, identify and quantify proteins under different conditions. Variety of technical and methodological advances, improvements in bioinformatics and possibility of tandem use of different methods helps to solve a number of basic and applied science's problems. Currently huge amount of qualitative and quantitative data on the structure, functions and activities of proteins and their interactions is accumulated. Proteomics aims to establish and characterize a complete set of proteins of the organism. This review summarizes the basic applications of proteomics used in nutrimetabolomic researches. The advantages and disadvantages of the most common techniques of protein separation and sample ionization, types of mass analyzers, basic approaches to the identification of proteins and most widely used databases of known biological sequences are overviewed with a critical assessment of challenges and potential applications.

  13. Quantitative analysis of oyster larval proteome provides new insights into the effects of multiple climate change stressors

    KAUST Repository

    Dineshram, Ramadoss

    2016-03-19

    The metamorphosis of planktonic larvae of the Pacific oyster (Crassostrea gigas) underpins their complex life-history strategy by switching on the molecular machinery required for sessile life and building calcite shells. Metamorphosis becomes a survival bottleneck, which will be pressured by different anthropogenically induced climate change-related variables. Therefore, it is important to understand how metamorphosing larvae interact with emerging climate change stressors. To predict how larvae might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling using iTRAQ-LC-MS/MS identified more than 1300 proteins. Decreased pH had a negative effect on metamorphosis by down-regulating several proteins involved in energy production, metabolism, and protein synthesis. However, warming switched on these down-regulated pathways at pH 7.4. Under multiple stressors, cell signaling, energy production, growth, and developmental pathways were up-regulated, although metamorphosis was still reduced. Despite the lack of lethal effects, significant physiological responses to both individual and interacting climate change related stressors were observed at proteome level. The metamorphosing larvae of the C. gigas population in the Yellow Sea appear to have adequate phenotypic plasticity at the proteome level to survive in future coastal oceans, but with developmental and physiological costs. © 2016 John Wiley & Sons Ltd.

  14. Annotating N termini for the human proteome project: N termini and Nα-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome.

    Science.gov (United States)

    Lange, Philipp F; Huesgen, Pitter F; Nguyen, Karen; Overall, Christopher M

    2014-04-04

    A goal of the Chromosome-centric Human Proteome Project is to identify all human protein species. With 3844 proteins annotated as "missing", this is challenging. Moreover, proteolytic processing generates new protein species with characteristic neo-N termini that are frequently accompanied by altered half-lives, function, interactions, and location. Enucleated and largely void of internal membranes and organelles, erythrocytes are simple yet proteomically challenging cells due to the high hemoglobin content and wide dynamic range of protein concentrations that impedes protein identification. Using the N-terminomics procedure TAILS, we identified 1369 human erythrocyte natural and neo-N-termini and 1234 proteins. Multiple semitryptic N-terminal peptides exhibited improved mass spectrometric identification properties versus the intact tryptic peptide enabling identification of 281 novel erythrocyte proteins and six missing proteins identified for the first time in the human proteome. With an improved bioinformatics workflow, we developed a new classification system and the Terminus Cluster Score. Thereby we described a new stabilizing N-end rule for processed protein termini, which discriminates novel protein species from degradation remnants, and identified protein domain hot spots susceptible to cleavage. Strikingly, 68% of the N-termini were within genome-encoded protein sequences, revealing alternative translation initiation sites, pervasive endoproteolytic processing, and stabilization of protein fragments in vivo. The mass spectrometry proteomics data have been deposited to ProteomeXchange with the data set identifier .

  15. Quantitative proteomic analysis of whey proteins in the colostrum and mature milk of yak (Bos grunniens).

    Science.gov (United States)

    Yang, Yongxin; Zhao, Xiaowei; Yu, Shumin; Cao, Suizhong

    2015-02-01

    Yak (Bos grunniens) is an important natural resource in mountainous regions. To date, few studies have addressed the differences in the protein profiles of yak colostrum and milk. We used quantitative proteomics to compare the protein profiles of whey from yak colostrum and milk. Milk samples were collected from 21 yaks after calving (1 and 28 d). Whey protein profiles were generated through isobaric tag for relative and absolute quantification (iTRAQ)-labelled proteomics. We identified 183 proteins in milk whey; of these, the expression levels of 86 proteins differed significantly between the whey from colostrum and milk. Haemoglobin expression showed the greatest change; its levels were significantly higher in the whey from colostrum than in mature milk whey. Functional analysis revealed that many of the differentially expressed proteins were associated with biological regulation and response to stimuli. Further, eight differentially expressed proteins involved in the complement and coagulation cascade pathway were enriched in milk whey. These findings add to the general understanding of the protein composition of yak milk, suggest potential functions of the differentially expressed proteins, and provide novel information on the role of colostral components in calf survival. © 2014 Society of Chemical Industry.

  16. Dentistry proteomics: from laboratory development to clinical practice.

    Science.gov (United States)

    Rezende, Taia M B; Lima, Stella M F; Petriz, Bernardo A; Silva, Osmar N; Freire, Mirna S; Franco, Octávio L

    2013-12-01

    Despite all the dental information acquired over centuries and the importance of proteome research, the cross-link between these two areas only emerged around mid-nineties. Proteomic tools can help dentistry in the identification of risk factors, early diagnosis, prevention, and systematic control that will promote the evolution of treatment in all dentistry specialties. This review mainly focuses on the evolution of dentistry in different specialties based on proteomic research and how these tools can improve knowledge in dentistry. The subjects covered are an overview of proteomics in dentistry, specific information on different fields in dentistry (dental structure, restorative dentistry, endodontics, periodontics, oral pathology, oral surgery, and orthodontics) and future directions. There are many new proteomic technologies that have never been used in dentistry studies and some dentistry areas that have never been explored by proteomic tools. It is expected that a greater integration of these areas will help to understand what is still unknown in oral health and disease. Copyright © 2013 Wiley Periodicals, Inc.

  17. Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells.

    Science.gov (United States)

    Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf

    2015-12-14

    Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.

  18. Aspects of the barley seed proteome during development and germination

    DEFF Research Database (Denmark)

    Finnie, Christine; Maeda, K.; Østergaard, O.

    2004-01-01

    Analysis of the water-soluble barley seed proteome has led to the identification of proteins by MS in the major spots on two-dimensional gels covering the pi ranges 4-7 and 6-11. This provides the basis for in-depth studies of proteome changes during seed development and germination, tissue...

  19. Differential Proteomics Identification of HSP90 as Potential Serum Biomarker in Hepatocellular Carcinoma by Two-dimensional Electrophoresis and Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Yiyi Sun

    2010-03-01

    Full Text Available The aim of the current study is to identify the potential biomarkers involved in Hepatocellular carcinoma (HCC carcinogenesis. A comparative proteomics approach was utilized to identify the differentially expressed proteins in the serum of 10 HCC patients and 10 controls. A total of 12 significantly altered proteins were identified by mass spectrometry. Of the 12 proteins identified, HSP90 was one of the most significantly altered proteins and its over-expression in the serum of 20 HCC patients was confirmed using ELISA analysis. The observations suggest that HSP90 might be a potential biomarker for early diagnosis, prognosis, and monitoring in the therapy of HCC. This work demonstrates that a comprehensive strategy of proteomic identification combined with further validation should be adopted in the field of cancer biomarker discovery.

  20. A hybrid approach to protein differential expression in mass spectrometry-based proteomics

    KAUST Repository

    Wang, X.; Anderson, G. A.; Smith, R. D.; Dabney, A. R.

    2012-01-01

    MOTIVATION: Quantitative mass spectrometry-based proteomics involves statistical inference on protein abundance, based on the intensities of each protein's associated spectral peaks. However, typical MS-based proteomics datasets have substantial

  1. GO Explorer: A gene-ontology tool to aid in the interpretation of shotgun proteomics data.

    Science.gov (United States)

    Carvalho, Paulo C; Fischer, Juliana Sg; Chen, Emily I; Domont, Gilberto B; Carvalho, Maria Gc; Degrave, Wim M; Yates, John R; Barbosa, Valmir C

    2009-02-24

    Spectral counting is a shotgun proteomics approach comprising the identification and relative quantitation of thousands of proteins in complex mixtures. However, this strategy generates bewildering amounts of data whose biological interpretation is a challenge. Here we present a new algorithm, termed GO Explorer (GOEx), that leverages the gene ontology (GO) to aid in the interpretation of proteomic data. GOEx stands out because it combines data from protein fold changes with GO over-representation statistics to help draw conclusions. Moreover, it is tightly integrated within the PatternLab for Proteomics project and, thus, lies within a complete computational environment that provides parsers and pattern recognition tools designed for spectral counting. GOEx offers three independent methods to query data: an interactive directed acyclic graph, a specialist mode where key words can be searched, and an automatic search. Its usefulness is demonstrated by applying it to help interpret the effects of perillyl alcohol, a natural chemotherapeutic agent, on glioblastoma multiform cell lines (A172). We used a new multi-surfactant shotgun proteomic strategy and identified more than 2600 proteins; GOEx pinpointed key sets of differentially expressed proteins related to cell cycle, alcohol catabolism, the Ras pathway, apoptosis, and stress response, to name a few. GOEx facilitates organism-specific studies by leveraging GO and providing a rich graphical user interface. It is a simple to use tool, specialized for biologists who wish to analyze spectral counting data from shotgun proteomics. GOEx is available at http://pcarvalho.com/patternlab.

  2. Comprehensive proteomic analysis of human pancreatic juice

    DEFF Research Database (Denmark)

    Grønborg, Mads; Bunkenborg, Jakob; Kristiansen, Troels Zakarias

    2004-01-01

    Proteomic technologies provide an excellent means for analysis of body fluids for cataloging protein constituents and identifying biomarkers for early detection of cancers. The biomarkers currently available for pancreatic cancer, such as CA19-9, lack adequate sensitivity and specificity...... contributing to late diagnosis of this deadly disease. In this study, we carried out a comprehensive characterization of the "pancreatic juice proteome" in patients with pancreatic adenocarcinoma. Pancreatic juice was first fractionated by 1-dimensional gel electrophoresis and subsequently analyzed by liquid...... in this study could be directly assessed for their potential as biomarkers for pancreatic cancer by quantitative proteomics methods or immunoassays....

  3. Proteomic workflow for analysis of archival formalin-fixed and paraffin-embedded clinical samples to a depth of 10 000 proteins.

    Science.gov (United States)

    Wiśniewski, Jacek R; Duś, Kamila; Mann, Matthias

    2013-04-01

    Archival formalin-fixed and paraffin-embedded clinical samples represent a very diverse source of material for proteomic investigation of diseases, often with follow-up patient information. Here, we describe an analytical workflow for analysis of laser-capture microdissected formalin-fixed and paraffin-embedded samples that allows studying proteomes to a depth of 10 000 proteins per sample. The workflow involves lysis of tissue in SDS-containing buffer, detergent removal, and consecutive digestion of the proteins with two enzymes by the multienzyme digestion filter-aided sample preparation method. Resulting peptides are fractionated by pipette-tip based strong anion exchange into six fractions and analyzed by LC-MS/MS on a bench top quadrupole Orbitrap mass spectrometer. Analysis of the data using the MaxQuant software resulted in the identification of 9502 ± 28 protein groups per a 110 nL sample of microdissected cells from human colonic adenoma. This depth of proteome analysis enables systemic insights into the organization of the adenoma cells and an estimation of the abundances of known biomarkers. It also allows the identification of proteins expressed from tumor suppressors, oncogenes, and other key players in the development and progression of the colorectal cancer. Our proteomic platform can be used for quantitative comparisons between samples representing different stages of diseases and thus can be applied to the discovery of biomarkers or drug targets. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cross-sample validation provides enhanced proteome coverage in rat vocal fold mucosa.

    Directory of Open Access Journals (Sweden)

    Nathan V Welham

    2011-03-01

    Full Text Available The vocal fold mucosa is a biomechanically unique tissue comprised of a densely cellular epithelium, superficial to an extracellular matrix (ECM-rich lamina propria. Such ECM-rich tissues are challenging to analyze using proteomic assays, primarily due to extensive crosslinking and glycosylation of the majority of high M(r ECM proteins. In this study, we implemented an LC-MS/MS-based strategy to characterize the rat vocal fold mucosa proteome. Our sample preparation protocol successfully solubilized both proteins and certain high M(r glycoconjugates and resulted in the identification of hundreds of mucosal proteins. A straightforward approach to the treatment of protein identifications attributed to single peptide hits allowed the retention of potentially important low abundance identifications (validated by a cross-sample match and de novo interpretation of relevant spectra while still eliminating potentially spurious identifications (global single peptide hits with no cross-sample match. The resulting vocal fold mucosa proteome was characterized by a wide range of cellular and extracellular proteins spanning 12 functional categories.

  5. Detergents: Friends not foes for high-performance membrane proteomics toward precision medicine.

    Science.gov (United States)

    Zhang, Xi

    2017-02-01

    Precision medicine, particularly therapeutics, emphasizes the atomic-precise, dynamic, and systems visualization of human membrane proteins and their endogenous modifiers. For years, bottom-up proteomics has grappled with removing and avoiding detergents, yet faltered at the therapeutic-pivotal membrane proteins, which have been tackled by classical approaches and are known for decades refractory to single-phase aqueous or organic denaturants. Hydrophobicity and aggregation commonly challenge tissue and cell lysates, biofluids, and enriched samples. Frequently, expected membrane proteins and peptides are not identified by shotgun bottom-up proteomics, let alone robust quantitation. This review argues the cause of this proteomic crisis is not detergents per se, but the choice of detergents. Recently, inclusion of compatible detergents for membrane protein extraction and digestion has revealed stark improvements in both quantitative and structural proteomics. This review analyzes detergent properties behind recent proteomic advances, and proposes that rational use of detergents may reconcile outstanding membrane proteomics dilemmas, enabling ultradeep coverage and minimal artifacts for robust protein and endogenous PTM measurements. The simplicity of detergent tools confers bottom-up membrane proteomics the sophistication toward precision medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Large-scale proteomic identification of S100 proteins in breast cancer tissues

    International Nuclear Information System (INIS)

    Cancemi, Patrizia; Di Cara, Gianluca; Albanese, Nadia Ninfa; Costantini, Francesca; Marabeti, Maria Rita; Musso, Rosa; Lupo, Carmelo; Roz, Elena; Pucci-Minafra, Ida

    2010-01-01

    Attempts to reduce morbidity and mortality in breast cancer is based on efforts to identify novel biomarkers to support prognosis and therapeutic choices. The present study has focussed on S100 proteins as a potentially promising group of markers in cancer development and progression. One reason of interest in this family of proteins is because the majority of the S100 genes are clustered on a region of human chromosome 1q21 that is prone to genomic rearrangements. Moreover, there is increasing evidence that S100 proteins are often up-regulated in many cancers, including breast, and this is frequently associated with tumour progression. Samples of breast cancer tissues were obtained during surgical intervention, according to the bioethical recommendations, and cryo-preserved until used. Tissue extracts were submitted to proteomic preparations for 2D-IPG. Protein identification was performed by N-terminal sequencing and/or peptide mass finger printing. The majority of the detected S100 proteins were absent, or present at very low levels, in the non-tumoral tissues adjacent to the primary tumor. This finding strengthens the role of S100 proteins as putative biomarkers. The proteomic screening of 100 cryo-preserved breast cancer tissues showed that some proteins were ubiquitously expressed in almost all patients while others appeared more sporadic. Most, if not all, of the detected S100 members appeared reciprocally correlated. Finally, from the perspective of biomarkers establishment, a promising finding was the observation that patients which developed distant metastases after a three year follow-up showed a general tendency of higher S100 protein expression, compared to the disease-free group. This article reports for the first time the comparative proteomic screening of several S100 protein members among a large group of breast cancer patients. The results obtained strongly support the hypothesis that a significant deregulation of multiple S100 protein members is

  7. Data from proteome analysis of Lasiodiplodia theobromae (Botryosphaeriaceae

    Directory of Open Access Journals (Sweden)

    Carla C. Uranga

    2017-08-01

    Full Text Available Trunk disease fungi are a global problem affecting many economically important fruiting trees. The Botryosphaeriaceae are a family of trunk disease fungi that require detailed biochemical characterization in order to gain insight into their pathogenicity. The application of a modified Folch extraction to protein extraction from the Botryosphaeriaceae Lasiodiplodia theobromae generated an unprecedented data set of protein identifications from fragmentation analysis and de novo peptide sequencing of its proteome. This article contains data from protein identifications obtained from a database-dependent fragmentation analysis using three different proteomics algorithms (MSGF, Comet and X! Tandem via the SearchGUI proteomics pipeline program and de novo peptide sequencing. Included are data sets of gene ontology annotations using an all-Uniprot ontology database, as well as a Saccharomyces cerevisiae-only and a Candida albicans-only ontology database, in order to discern between those proteins involved in common functions with S. cerevisiae and those in common with the pathogenic yeast C. albicans. Our results reveal the proteome of L. theobromae contains more ontological categories in common to C. albicans, yet possesses a much wider metabolic repertoire than any of the yeasts studied in this work. Many novel proteins of interest were identified for further biochemical characterization and annotation efforts, as further discussed in the article referencing this article (1. Interactive Cytoscape networks of molecular functions of identified peptides using an all-Uniprot ontological database are included. Data, including raw data, are available via ProteomeXchange with identifier PXD005283.

  8. iTRAQ-based quantitative proteomic analysis of midgut in silkworm infected with Bombyx mori cytoplasmic polyhedrosis virus.

    Science.gov (United States)

    Gao, Kun; Deng, Xiang-Yuan; Shang, Meng-Ke; Qin, Guang-Xing; Hou, Cheng-Xiang; Guo, Xi-Jie

    2017-01-30

    Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) specifically infects the epithelial cells in the midgut of silkworm and causes them to death, which negatively affects the sericulture industry. In order to determine the midgut response at the protein levels to the virus infection, differential proteomes of the silkworm midgut responsive to BmCPV infection were identified with isobaric tags for relative and absolute quantitation (iTRAQ) labeling followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). 193, 408, 189 differentially expressed proteins (DEPs) were reliably quantified by iTRAQ analysis in the midgut of BmCPV-infected and control larvae at 24, 48, 72h post infection (hpi) respectively. KEGG enrichment analysis showed that Oxidative phosphorylation, amyotrophic lateral sclerosis, Toll-like receptor signaling pathway, steroid hormone biosynthesis were the significant pathways (Q value≤0.05) both at 24 and 48hpi. qRT-PCR was used to further verify gene transcription of 30 DEPs from iTRAQ, showing that the regulations of 24 genes at the transcript level were consistent with those at the proteomic level. Moreover, the cluster analysis of the three time groups showed that there were seven co-regulated DEPs including BGIBMGA002620-PA, which was a putative p62/sequestosome-1 protein in silkworm. It was upregulated at both the mRNA level and the proteomic level and may play an important role in regulating the autophagy and apoptosis (especially apoptosis) induced by BmCPV infection. This was the first report using an iTRAQ approach to analyze proteomes of the silkworm midgut against BmCPV infection, which contributes to understanding the defense mechanisms of silkworm midgut to virus infection. The domesticated silkworm, Bombyx mori, is renowned for silk production as well as being a traditional lepidopteron model insect served as a subject for morphological, genetic, physiological, and developmental studies. Bombyx mori cytoplasmic polyhedrosis

  9. Application of survival analysis methodology to the quantitative analysis of LC-MS proteomics data

    KAUST Repository

    Tekwe, C. D.

    2012-05-24

    MOTIVATION: Protein abundance in quantitative proteomics is often based on observed spectral features derived from liquid chromatography mass spectrometry (LC-MS) or LC-MS/MS experiments. Peak intensities are largely non-normal in distribution. Furthermore, LC-MS-based proteomics data frequently have large proportions of missing peak intensities due to censoring mechanisms on low-abundance spectral features. Recognizing that the observed peak intensities detected with the LC-MS method are all positive, skewed and often left-censored, we propose using survival methodology to carry out differential expression analysis of proteins. Various standard statistical techniques including non-parametric tests such as the Kolmogorov-Smirnov and Wilcoxon-Mann-Whitney rank sum tests, and the parametric survival model and accelerated failure time-model with log-normal, log-logistic and Weibull distributions were used to detect any differentially expressed proteins. The statistical operating characteristics of each method are explored using both real and simulated datasets. RESULTS: Survival methods generally have greater statistical power than standard differential expression methods when the proportion of missing protein level data is 5% or more. In particular, the AFT models we consider consistently achieve greater statistical power than standard testing procedures, with the discrepancy widening with increasing missingness in the proportions. AVAILABILITY: The testing procedures discussed in this article can all be performed using readily available software such as R. The R codes are provided as supplemental materials. CONTACT: ctekwe@stat.tamu.edu.

  10. A Proteomic Approach to Investigating Gene Cluster Expression and Secondary Metabolite Functionality in Aspergillus fumigatus

    Science.gov (United States)

    Owens, Rebecca A.; Hammel, Stephen; Sheridan, Kevin J.; Jones, Gary W.; Doyle, Sean

    2014-01-01

    A combined proteomics and metabolomics approach was utilised to advance the identification and characterisation of secondary metabolites in Aspergillus fumigatus. Here, implementation of a shotgun proteomic strategy led to the identification of non-redundant mycelial proteins (n = 414) from A. fumigatus including proteins typically under-represented in 2-D proteome maps: proteins with multiple transmembrane regions, hydrophobic proteins and proteins with extremes of molecular mass and pI. Indirect identification of secondary metabolite cluster expression was also achieved, with proteins (n = 18) from LaeA-regulated clusters detected, including GliT encoded within the gliotoxin biosynthetic cluster. Biochemical analysis then revealed that gliotoxin significantly attenuates H2O2-induced oxidative stress in A. fumigatus (p>0.0001), confirming observations from proteomics data. A complementary 2-D/LC-MS/MS approach further elucidated significantly increased abundance (pproteome and experimental strategies, plus mechanistic data pertaining to gliotoxin functionality in the organism. PMID:25198175

  11. Subnanogram proteomics: Impact of LC column selection, MS instrumentation and data analysis strategy on proteome coverage for trace samples

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ying; Zhao, Rui; Piehowski, Paul D.; Moore, Ronald J.; Lim, Sujung; Orphan, Victoria J.; Paša-Tolić, Ljiljana; Qian, Wei-Jun; Smith, Richard D.; Kelly, Ryan T.

    2018-04-01

    One of the greatest challenges for mass spectrometry (MS)-based proteomics is the limited ability to analyze small samples. Here we investigate the relative contributions of liquid chromatography (LC), MS instrumentation and data analysis methods with the aim of improving proteome coverage for sample sizes ranging from 0.5 ng to 50 ng. We show that the LC separations utilizing 30-µm-i.d. columns increase signal intensity by >3-fold relative to those using 75-µm-i.d. columns, leading to 32% increase in peptide identifications. The Orbitrap Fusion Lumos mass spectrometer significantly boosted both sensitivity and sequencing speed relative to earlier generation Orbitraps (e.g., LTQ-Orbitrap), leading to a ~3× increase in peptide identifications and 1.7× increase in identified protein groups for 2 ng tryptic digests of bacterial lysate. The Match Between Runs algorithm of open-source MaxQuant software further increased proteome coverage by ~ 95% for 0.5 ng samples and by ~42% for 2 ng samples. The present platform is capable of identifying >3000 protein groups from tryptic digestion of cell lysates equivalent to 50 HeLa cells and 100 THP-1 cells (~10 ng total proteins), respectively, and >950 proteins from subnanogram bacterial and archaeal cell lysates. The present ultrasensitive LC-MS platform is expected to enable deep proteome coverage for subnanogram samples, including single mammalian cells.

  12. In-Silico identification of peptides for the diagnostics of paratuberculosis

    DEFF Research Database (Denmark)

    Tang, Sheila Tuyet; Lund, Ole; Jungersen, Gregers

    Identification of bovine MHC class II reactive peptides that are specific/unique to paratuberculosis and conserved across pathogenic variations of the paratuberculosis proteome will be of high value for development of new vaccines and immune based diagnostics. Here, we present an in silico screen...... by statistical significance. BMC Bioinformatics, 2003. 4: p. 21. 2. Nielsen, M., et al., Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comput Biol, 2008. 4(7): p. e1000107....

  13. Correspondence between salivary proteomic pattern and clinical course in primary Sjögren syndrome and non-Hodgkin's lymphoma: a case report

    Directory of Open Access Journals (Sweden)

    Baldini Chiara

    2011-11-01

    Full Text Available Abstract Background In the last years human proteomic has represented a promising tool to promote the communication between basic and clinical science. Methods To explore the correspondence between salivary proteomic profile and clinical response, herein, we used a proteomic approach to analyse the whole saliva of a patient with primary Sjögren's Syndrome (pSS and non-Hodgkin's-MALT type parotid lymphoma before, during and after a standard treatment with cyclophosphamide (CTX and rituximab (RTX. To identify any discriminatory therapeutic salivary biomarker patient's whole saliva was collected at the baseline, after the fourth infusion of rituximab, and on remission and analysed combining two-dimensional electrophoresis (2DE and MALDI-TOF/TOF mass spectrometry. Results Proteomic results obtained from the comparison of salivary samples indicated several qualitative and quantitative modifications in the salivary expression of putative albumin, immunoglobulin J chain, Ig kappa chain C region, alpha-1-antitrypsin, haptoglobin and Ig alpha-1 chain C region. Conclusion This study suggests that clinical and functional changes of the salivary glands driven by autoimmune and lymphoproliferative processes might be reflected in patients' whole saliva proteins, shedding new light on the potential usefulness of salivary proteomic analysis in the identification of prognostic and therapeutic biomarkers for patients with pSS and non Hodgkin's lymphomas.

  14. Proteomic and metabolomic approaches to biomarker discovery

    CERN Document Server

    Issaq, Haleem J

    2013-01-01

    Proteomic and Metabolomic Approaches to Biomarker Discovery demonstrates how to leverage biomarkers to improve accuracy and reduce errors in research. Disease biomarker discovery is one of the most vibrant and important areas of research today, as the identification of reliable biomarkers has an enormous impact on disease diagnosis, selection of treatment regimens, and therapeutic monitoring. Various techniques are used in the biomarker discovery process, including techniques used in proteomics, the study of the proteins that make up an organism, and metabolomics, the study of chemical fingerprints created from cellular processes. Proteomic and Metabolomic Approaches to Biomarker Discovery is the only publication that covers techniques from both proteomics and metabolomics and includes all steps involved in biomarker discovery, from study design to study execution.  The book describes methods, and presents a standard operating procedure for sample selection, preparation, and storage, as well as data analysis...

  15. Characterization of individual mouse cerebrospinal fluid proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeffrey S.; Angel, Thomas E.; Chavkin, Charles; Orton, Daniel J.; Moore, Ronald J.; Smith, Richard D.

    2014-03-20

    Analysis of cerebrospinal fluid (CSF) offers key insight into the status of the central nervous system. Characterization of murine CSF proteomes can provide a valuable resource for studying central nervous system injury and disease in animal models. However, the small volume of CSF in mice has thus far limited individual mouse proteome characterization. Through non-terminal CSF extractions in C57Bl/6 mice and high-resolution liquid chromatography-mass spectrometry analysis of individual murine samples, we report the most comprehensive proteome characterization of individual murine CSF to date. Utilizing stringent protein inclusion criteria that required the identification of at least two unique peptides (1% false discovery rate at the peptide level) we identified a total of 566 unique proteins, including 128 proteins from three individual CSF samples that have been previously identified in brain tissue. Our methods and analysis provide a mechanism for individual murine CSF proteome analysis.

  16. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005.

    Directory of Open Access Journals (Sweden)

    Sabine Matallana-Surget

    Full Text Available The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation.

  17. Multiple testing corrections in quantitative proteomics: A useful but blunt tool.

    Science.gov (United States)

    Pascovici, Dana; Handler, David C L; Wu, Jemma X; Haynes, Paul A

    2016-09-01

    Multiple testing corrections are a useful tool for restricting the FDR, but can be blunt in the context of low power, as we demonstrate by a series of simple simulations. Unfortunately, in proteomics experiments low power can be common, driven by proteomics-specific issues like small effects due to ratio compression, and few replicates due to reagent high cost, instrument time availability and other issues; in such situations, most multiple testing corrections methods, if used with conventional thresholds, will fail to detect any true positives even when many exist. In this low power, medium scale situation, other methods such as effect size considerations or peptide-level calculations may be a more effective option, even if they do not offer the same theoretical guarantee of a low FDR. Thus, we aim to highlight in this article that proteomics presents some specific challenges to the standard multiple testing corrections methods, which should be employed as a useful tool but not be regarded as a required rubber stamp. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Optimization of mass spectrometric parameters improve the identification performance of capillary zone electrophoresis for single-shot bottom-up proteomics analysis.

    Science.gov (United States)

    Zhang, Zhenbin; Dovichi, Norman J

    2018-02-25

    The effects of MS1 injection time, MS2 injection time, dynamic exclusion time, intensity threshold, and isolation width were investigated on the numbers of peptide and protein identifications for single-shot bottom-up proteomics analysis using CZE-MS/MS analysis of a Xenopus laevis tryptic digest. An electrokinetically pumped nanospray interface was used to couple a linear-polyacrylamide coated capillary to a Q Exactive HF mass spectrometer. A sensitive method that used a 1.4 Th isolation width, 60,000 MS2 resolution, 110 ms MS2 injection time, and a top 7 fragmentation produced the largest number of identifications when the CZE loading amount was less than 100 ng. A programmable autogain control method (pAGC) that used a 1.4 Th isolation width, 15,000 MS2 resolution, 110 ms MS2 injection time, and top 10 fragmentation produced the largest number of identifications for CZE loading amounts greater than 100 ng; 7218 unique peptides and 1653 protein groups were identified from 200 ng by using the pAGC method. The effect of mass spectrometer conditions on the performance of UPLC-MS/MS was also investigated. A fast method that used a 1.4 Th isolation width, 30,000 MS2 resolution, 45 ms MS2 injection time, and top 12 fragmentation produced the largest number of identifications for 200 ng UPLC loading amount (6025 unique peptides and 1501 protein groups). This is the first report where the identification number for CZE surpasses that of the UPLC at the 200 ng loading level. However, more peptides (11476) and protein groups (2378) were identified by using UPLC-MS/MS when the sample loading amount was increased to 2 μg with the fast method. To exploit the fast scan speed of the Q-Exactive HF mass spectrometer, higher sample loading amounts are required for single-shot bottom-up proteomics analysis using CZE-MS/MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Qupe--a Rich Internet Application to take a step forward in the analysis of mass spectrometry-based quantitative proteomics experiments.

    Science.gov (United States)

    Albaum, Stefan P; Neuweger, Heiko; Fränzel, Benjamin; Lange, Sita; Mertens, Dominik; Trötschel, Christian; Wolters, Dirk; Kalinowski, Jörn; Nattkemper, Tim W; Goesmann, Alexander

    2009-12-01

    The goal of present -omics sciences is to understand biological systems as a whole in terms of interactions of the individual cellular components. One of the main building blocks in this field of study is proteomics where tandem mass spectrometry (LC-MS/MS) in combination with isotopic labelling techniques provides a common way to obtain a direct insight into regulation at the protein level. Methods to identify and quantify the peptides contained in a sample are well established, and their output usually results in lists of identified proteins and calculated relative abundance values. The next step is to move ahead from these abstract lists and apply statistical inference methods to compare measurements, to identify genes that are significantly up- or down-regulated, or to detect clusters of proteins with similar expression profiles. We introduce the Rich Internet Application (RIA) Qupe providing comprehensive data management and analysis functions for LC-MS/MS experiments. Starting with the import of mass spectra data the system guides the experimenter through the process of protein identification by database search, the calculation of protein abundance ratios, and in particular, the statistical evaluation of the quantification results including multivariate analysis methods such as analysis of variance or hierarchical cluster analysis. While a data model to store these results has been developed, a well-defined programming interface facilitates the integration of novel approaches. A compute cluster is utilized to distribute computationally intensive calculations, and a web service allows to interchange information with other -omics software applications. To demonstrate that Qupe represents a step forward in quantitative proteomics analysis an application study on Corynebacterium glutamicum has been carried out. Qupe is implemented in Java utilizing Hibernate, Echo2, R and the Spring framework. We encourage the usage of the RIA in the sense of the 'software as a

  20. Genomics and proteomics: Applications in autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Wolfgang Hueber

    2009-08-01

    Full Text Available Wolfgang Hueber1,2,3, William H Robinson1,21VA Palo Alto Health Care System, Palo Alto, CA, USA; 2Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA; 3Novartis Institutes of Biomedical Research, Novartis, Basle, SwitzerlandAbstract: Tremendous progress has been made over the past decade in the development and refinement of genomic and proteomic technologies for the identification of novel drug targets and molecular signatures associated with clinically important disease states, disease subsets, or differential responses to therapies. The rapid progress in high-throughput technologies has been preceded and paralleled by the elucidation of cytokine networks, followed by the stepwise clinical development of pathway-specific biological therapies that revolutionized the treatment of autoimmune diseases. Together, these advances provide opportunities for a long-anticipated personalized medicine approach to the treatment of autoimmune disease. The ever-increasing numbers of novel, innovative therapies will need to be harnessed wisely to achieve optimal long-term outcomes in as many patients as possible while complying with the demands of health authorities and health care providers for evidence-based, economically sound prescription of these expensive drugs. Genomic and proteomic profiling of patients with autoimmune diseases holds great promise in two major clinical areas: (1 rapid identification of new targets for the development of innovative therapies and (2 identification of patients who will experience optimal benefit and minimal risk from a specific (targeted therapy. In this review, we attempt to capture important recent developments in the application of genomic and proteomic technologies to translational research by discussing informative examples covering a diversity of autoimmune diseases.Keywords: proteomics, genomics, autoimmune diseases, antigen microarrays, 2-Dih, rheumatoid arthritis

  1. Proteomic characterisation of bovine and avian purified protein derivatives and identification of specific antigens for serodiagnosis of bovine tuberculosis

    OpenAIRE

    Infantes-Lorenzo, José Antonio; Moreno, Inmaculada; Risalde, María de los Ángeles; Roy, Álvaro; Villar, Margarita; Romero, Beatriz; Ibarrola, Nieves; de la Fuente, José; Puentes, Eugenia; de Juan, Lucía; Gortázar, Christian; Bezos, Javier; Domínguez, Lucas; Domínguez, Mercedes

    2017-01-01

    Background Bovine purified protein derivative (bPPD) and avian purified protein derivative (aPPD) are widely used for bovine tuberculosis diagnosis. However, little is known about their qualitative and quantitative characteristics, which makes their standardisation difficult. In addition, bPPD can give false-positive tuberculosis results because of sequence homology between Mycobacterium bovis (M. bovis) and M. avium proteins. Thus, the objective of this study was to carry out a proteomic cha...

  2. Proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xing [Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (China); Xu, Yanli [Fuyang People’s Hospital (China); Meng, Qian [Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (China); Zheng, Qingqing [Digestive Endoscopic Center, Shanghai Jiaotong University Affiliated Sixth People’s Hospital (China); Wu, Jianhong [Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (China); Wang, Chen; Jia, Weiping [Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital (China); Figeys, Daniel [Department of Biochemistry, Microbiology and Immunology, and Department of Chemistry and Biomolecular Sciences, University of Ottawa (Canada); Chang, Ying, E-mail: emulan@163.com [Digestive Endoscopic Center, Shanghai Jiaotong University Affiliated Sixth People’s Hospital (China); Zhou, Hu, E-mail: zhouhu@simm.ac.cn [Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (China)

    2016-08-05

    Colorectal cancer (CRC) is one of the most common types of malignant tumor worldwide. Currently, although many researchers have been devoting themselves in CRC studies, the process of locating biomarkers for CRC early diagnosis and prognostic is still very slow. Using a centrifugal proteomic reactor-based proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling, 2620 protein groups were quantified between cancer mucosa and adjacent normal colorectal mucosa. Of which, 403 protein groups were differentially expressed with statistic significance between cancer and normal tissues, including 195 up-regulated and 208 down-regulated proteins in cancer tissues. Three proteins (SOD3, PRELP and NGAL) were selected for further Western blot validation. And the resulting Western blot experimental results were consistent with the quantitative proteomic data. SOD3 and PRELP are down-regulated in CRC mucosa comparing to adjacent normal tissue, while NGAL is up-regulated in CRC mucosa. In conclusion, the centrifugal proteomic reactor-based label-free quantitative proteomic approach provides a highly sensitive and powerful tool for analyzing minute protein sample from tiny colorectal biopsies, which may facilitate CRC biomarkers discovery for diagnoses and prognoses. -- Highlights: •Minute amount of colonic biopsies by endoscopy is suitable for proteomic analysis. •Centrifugal proteomic reactor can be used for processing tiny clinic biopsy sample. •SOD3 and PRELP are down-regulated in CRC, while NGAL is up-regulated in CRC.

  3. Proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling

    International Nuclear Information System (INIS)

    Liu, Xing; Xu, Yanli; Meng, Qian; Zheng, Qingqing; Wu, Jianhong; Wang, Chen; Jia, Weiping; Figeys, Daniel; Chang, Ying; Zhou, Hu

    2016-01-01

    Colorectal cancer (CRC) is one of the most common types of malignant tumor worldwide. Currently, although many researchers have been devoting themselves in CRC studies, the process of locating biomarkers for CRC early diagnosis and prognostic is still very slow. Using a centrifugal proteomic reactor-based proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling, 2620 protein groups were quantified between cancer mucosa and adjacent normal colorectal mucosa. Of which, 403 protein groups were differentially expressed with statistic significance between cancer and normal tissues, including 195 up-regulated and 208 down-regulated proteins in cancer tissues. Three proteins (SOD3, PRELP and NGAL) were selected for further Western blot validation. And the resulting Western blot experimental results were consistent with the quantitative proteomic data. SOD3 and PRELP are down-regulated in CRC mucosa comparing to adjacent normal tissue, while NGAL is up-regulated in CRC mucosa. In conclusion, the centrifugal proteomic reactor-based label-free quantitative proteomic approach provides a highly sensitive and powerful tool for analyzing minute protein sample from tiny colorectal biopsies, which may facilitate CRC biomarkers discovery for diagnoses and prognoses. -- Highlights: •Minute amount of colonic biopsies by endoscopy is suitable for proteomic analysis. •Centrifugal proteomic reactor can be used for processing tiny clinic biopsy sample. •SOD3 and PRELP are down-regulated in CRC, while NGAL is up-regulated in CRC.

  4. The Seminal fluid proteome of the polyandrous Red junglefowl offers insights into the molecular basis of fertility, reproductive ageing and domestication.

    Science.gov (United States)

    Borziak, Kirill; Álvarez-Fernández, Aitor; L Karr, Timothy; Pizzari, Tommaso; Dorus, Steve

    2016-11-02

    Seminal fluid proteins (SFPs) are emerging as fundamental contributors to sexual selection given their role in post-mating reproductive events, particularly in polyandrous species where the ejaculates of different males compete for fertilisation. SFP identification however remains taxonomically limited and little is known about avian SFPs, despite extensive work on sexual selection in birds. We characterize the SF proteome of the polyandrous Red junglefowl, Gallus gallus, the wild species that gave rise to the domestic chicken. We identify 1,141 SFPs, including proteins involved in immunity and antimicrobial defences, sperm maturation, and fertilisation, revealing a functionally complex SF proteome. This includes a predominant contribution of blood plasma proteins that is conserved with human SF. By comparing the proteome of young and old males with fast or slow sperm velocity in a balanced design, we identify proteins associated with ageing and sperm velocity, and show that old males that retain high sperm velocity have distinct proteome characteristics. SFP comparisons with domestic chickens revealed both qualitative and quantitative differences likely associated with domestication and artificial selection. Collectively, these results shed light onto the functional complexity of avian SF, and provide a platform for molecular studies of fertility, reproductive ageing, and domestication.

  5. Identification of ginseng root using quantitative X-ray microtomography

    Directory of Open Access Journals (Sweden)

    Linlin Ye

    2017-07-01

    Conclusion: This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

  6. Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes.

    Science.gov (United States)

    Clark, David J; Fondrie, William E; Yang, Austin; Mao, Li

    2016-02-05

    Exosomes are 30-100 nm sized membrane vesicles released by cells into the extracellular space that mediate intercellular communication via transfer of proteins and other biological molecules. To better understand the role of these microvesicles in lung carcinogenesis, we employed a Triple SILAC quantitative proteomic strategy to examine the differential protein abundance between exosomes derived from an immortalized normal bronchial epithelial cell line and two non-small cell lung cancer (NSCLC) cell lines harboring distinct activating mutations in the cell signaling molecules: Kirsten rat sarcoma viral oncogene homolog (KRAS) or epidermal growth factor receptor (EGFR). In total, we were able to quantify 721 exosomal proteins derived from the three cell lines. Proteins associated with signal transduction, including EGFR, GRB2 and SRC, were enriched in NSCLC exosomes, and could actively regulate cell proliferation in recipient cells. This study's investigation of the NSCLC exosomal proteome has identified enriched protein cargo that can contribute to lung cancer progression, which may have potential clinical implications in biomarker development for patients with NSCLC. The high mortality associated with lung cancer is a result of late-stage diagnosis of the disease. Current screening techniques used for early detection of lung cancer lack the specificity for accurate diagnosis. Exosomes are nano-sized extracellular vesicles, and the increased abundance of select protein cargo in exosomes derived from cancer cells may be used for diagnostic purposes. In this paper, we applied quantitative proteomic analysis to elucidate abundance differences in exosomal protein cargo between two NSCLC cell lines with distinctive oncogene mutations and an immortalized normal bronchial epithelial cell line. This study revealed proteins associated with cell adhesion, the extracellular matrix, and a variety of signaling molecules were enriched in NSCLC exosomes. The present data reveals

  7. Advancing cell biology through proteomics in space and time (PROSPECTS)

    DEFF Research Database (Denmark)

    Lamond, A.I.; Uhlen, M.; Horning, S.

    2012-01-01

    a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU......-funded project that brings together leading European research groups, spanning from instrumentation to biomedicine, in a collaborative five year initiative to develop new methods and applications for the functional analysis of cellular proteins. This special issue of Molecular and Cellular Proteomics presents 16...... quantification of protein levels. Manuscripts in this issue exemplify approaches for performing quantitative measurements of cell proteomes and for studying their dynamic responses to perturbation, both during normal cellular responses and in disease mechanisms. Here we present a perspective on how...

  8. GO Explorer: A gene-ontology tool to aid in the interpretation of shotgun proteomics data

    Directory of Open Access Journals (Sweden)

    Domont Gilberto B

    2009-02-01

    Full Text Available Abstract Background Spectral counting is a shotgun proteomics approach comprising the identification and relative quantitation of thousands of proteins in complex mixtures. However, this strategy generates bewildering amounts of data whose biological interpretation is a challenge. Results Here we present a new algorithm, termed GO Explorer (GOEx, that leverages the gene ontology (GO to aid in the interpretation of proteomic data. GOEx stands out because it combines data from protein fold changes with GO over-representation statistics to help draw conclusions. Moreover, it is tightly integrated within the PatternLab for Proteomics project and, thus, lies within a complete computational environment that provides parsers and pattern recognition tools designed for spectral counting. GOEx offers three independent methods to query data: an interactive directed acyclic graph, a specialist mode where key words can be searched, and an automatic search. Its usefulness is demonstrated by applying it to help interpret the effects of perillyl alcohol, a natural chemotherapeutic agent, on glioblastoma multiform cell lines (A172. We used a new multi-surfactant shotgun proteomic strategy and identified more than 2600 proteins; GOEx pinpointed key sets of differentially expressed proteins related to cell cycle, alcohol catabolism, the Ras pathway, apoptosis, and stress response, to name a few. Conclusion GOEx facilitates organism-specific studies by leveraging GO and providing a rich graphical user interface. It is a simple to use tool, specialized for biologists who wish to analyze spectral counting data from shotgun proteomics. GOEx is available at http://pcarvalho.com/patternlab.

  9. Potential protein biomarkers for burning mouth syndrome discovered by quantitative proteomics.

    Science.gov (United States)

    Ji, Eoon Hye; Diep, Cynthia; Liu, Tong; Li, Hong; Merrill, Robert; Messadi, Diana; Hu, Shen

    2017-01-01

    Burning mouth syndrome (BMS) is a chronic pain disorder characterized by severe burning sensation in normal looking oral mucosa. Diagnosis of BMS remains to be a challenge to oral healthcare professionals because the method for definite diagnosis is still uncertain. In this study, a quantitative saliva proteomic analysis was performed in order to identify target proteins in BMS patients' saliva that may be used as biomarkers for simple, non-invasive detection of the disease. By using isobaric tags for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry to quantify 1130 saliva proteins between BMS patients and healthy control subjects, we found that 50 proteins were significantly changed in the BMS patients when compared to the healthy control subjects ( p ≤ 0.05, 39 up-regulated and 11 down-regulated). Four candidates, alpha-enolase, interleukin-18 (IL-18), kallikrein-13 (KLK13), and cathepsin G, were selected for further validation. Based on enzyme-linked immunosorbent assay measurements, three potential biomarkers, alpha-enolase, IL-18, and KLK13, were successfully validated. The fold changes for alpha-enolase, IL-18, and KLK13 were determined as 3.6, 2.9, and 2.2 (burning mouth syndrome vs. control), and corresponding receiver operating characteristic values were determined as 0.78, 0.83, and 0.68, respectively. Our findings indicate that testing of the identified protein biomarkers in saliva might be a valuable clinical tool for BMS detection. Further validation studies of the identified biomarkers or additional candidate biomarkers are needed to achieve a multi-marker prediction model for improved detection of BMS with high sensitivity and specificity.

  10. Quantitative Proteomic Analysis Reveals that Antioxidation Mechanisms Contribute to Cold Tolerance in Plantain (Musa paradisiaca L.; ABB Group) Seedlings*

    Science.gov (United States)

    Yang, Qiao-Song; Wu, Jun-Hua; Li, Chun-Yu; Wei, Yue-Rong; Sheng, Ou; Hu, Chun-Hua; Kuang, Rui-Bin; Huang, Yong-Hong; Peng, Xin-Xiang; McCardle, James A.; Chen, Wei; Yang, Yong; Rose, Jocelyn K. C.; Zhang, Sheng; Yi, Gan-Jun

    2012-01-01

    Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by

  11. Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB Group) seedlings.

    Science.gov (United States)

    Yang, Qiao-Song; Wu, Jun-Hua; Li, Chun-Yu; Wei, Yue-Rong; Sheng, Ou; Hu, Chun-Hua; Kuang, Rui-Bin; Huang, Yong-Hong; Peng, Xin-Xiang; McCardle, James A; Chen, Wei; Yang, Yong; Rose, Jocelyn K C; Zhang, Sheng; Yi, Gan-Jun

    2012-12-01

    Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by

  12. Deciphering of the Human Interferon-Regulated Proteome by Mass Spectrometry-Based Quantitative Analysis Reveals Extent and Dynamics of Protein Induction and Repression.

    Science.gov (United States)

    Megger, Dominik A; Philipp, Jos; Le-Trilling, Vu Thuy Khanh; Sitek, Barbara; Trilling, Mirko

    2017-01-01

    Interferons (IFNs) are pleotropic cytokines secreted upon encounter of pathogens and tumors. Applying their antipathogenic, antiproliferative, and immune stimulatory capacities, recombinant IFNs are frequently prescribed as drugs to treat different diseases. IFNs act by changing the gene expression profile of cells. Due to characteristics such as rapid gene induction and signaling, IFNs also represent prototypical model systems for various aspects of biomedical research (e.g., signal transduction). In regard to the signaling and activated promoters, IFNs can be subdivided into two groups. Here, alterations of the cellular proteome of human cells treated with IFNα and IFNγ were elucidated in a time-resolved manner by quantitative proteome analysis. The majority of protein regulations were strongly IFN type and time dependent. In addition to the expected upregulation of IFN-responsive proteins, an astonishing number of proteins became profoundly repressed especially by IFNγ. Thus, our comprehensive analysis revealed important insights into the human IFN-regulated proteome and its dynamics of protein induction and repression. Interestingly, the new class of IFN-repressed genes comprises known host factors for highly relevant pathogens such as HIV, dengue virus, and hepatitis C virus.

  13. Deciphering of the Human Interferon-Regulated Proteome by Mass Spectrometry-Based Quantitative Analysis Reveals Extent and Dynamics of Protein Induction and Repression

    Directory of Open Access Journals (Sweden)

    Dominik A. Megger

    2017-09-01

    Full Text Available Interferons (IFNs are pleotropic cytokines secreted upon encounter of pathogens and tumors. Applying their antipathogenic, antiproliferative, and immune stimulatory capacities, recombinant IFNs are frequently prescribed as drugs to treat different diseases. IFNs act by changing the gene expression profile of cells. Due to characteristics such as rapid gene induction and signaling, IFNs also represent prototypical model systems for various aspects of biomedical research (e.g., signal transduction. In regard to the signaling and activated promoters, IFNs can be subdivided into two groups. Here, alterations of the cellular proteome of human cells treated with IFNα and IFNγ were elucidated in a time-resolved manner by quantitative proteome analysis. The majority of protein regulations were strongly IFN type and time dependent. In addition to the expected upregulation of IFN-responsive proteins, an astonishing number of proteins became profoundly repressed especially by IFNγ. Thus, our comprehensive analysis revealed important insights into the human IFN-regulated proteome and its dynamics of protein induction and repression. Interestingly, the new class of IFN-repressed genes comprises known host factors for highly relevant pathogens such as HIV, dengue virus, and hepatitis C virus.

  14. Identification of BAG3 target proteins in anaplastic thyroid cancer cells by proteomic analysis.

    Science.gov (United States)

    Galdiero, Francesca; Bello, Anna Maria; Spina, Anna; Capiluongo, Anna; Liuu, Sophie; De Marco, Margot; Rosati, Alessandra; Capunzo, Mario; Napolitano, Maria; Vuttariello, Emilia; Monaco, Mario; Califano, Daniela; Turco, Maria Caterina; Chiappetta, Gennaro; Vinh, Joëlle; Chiappetta, Giovanni

    2018-01-30

    BAG3 protein is an apoptosis inhibitor and is highly expressed in Anaplastic Thyroid Cancer. We investigated the entire set of proteins modulated by BAG3 silencing in the human anaplastic thyroid 8505C cancer cells by using the Stable-Isotope Labeling by Amino acids in Cell culture strategy combined with mass spectrometry analysis. By this approach we identified 37 up-regulated and 54 down-regulated proteins in BAG3-silenced cells. Many of these proteins are reportedly involved in tumor progression, invasiveness and resistance to therapies. We focused our attention on an oncogenic protein, CAV1, and a tumor suppressor protein, SERPINB2, that had not previously been reported to be modulated by BAG3. Their expression levels in BAG3-silenced cells were confirmed by qRT-PCR and western blot analyses, disclosing two novel targets of BAG3 pro-tumor activity. We also examined the dataset of proteins obtained by the quantitative proteomics analysis using two tools, Downstream Effect Analysis and Upstream Regulator Analysis of the Ingenuity Pathways Analysis software. Our analyses confirm the association of the proteome profile observed in BAG3-silenced cells with an increase in cell survival and a decrease in cell proliferation and invasion, and highlight the possible involvement of four tumor suppressor miRNAs and TP53/63 proteins in BAG3 activity.

  15. Proteome profile of swine testicular cells infected with porcine transmissible gastroenteritis coronavirus.

    Directory of Open Access Journals (Sweden)

    Ruili Ma

    Full Text Available The interactions occurring between a virus and a host cell during a viral infection are complex. The purpose of this paper was to analyze altered cellular protein levels in porcine transmissible gastroenteritis coronavirus (TGEV-infected swine testicular (ST cells in order to determine potential virus-host interactions. A proteomic approach using isobaric tags for relative and absolute quantitation (iTRAQ-coupled two-dimensional liquid chromatography-tandem mass spectrometry identification was conducted on the TGEV-infected ST cells. The results showed that the 4-plex iTRAQ-based quantitative approach identified 4,112 proteins, 146 of which showed significant changes in expression 48 h after infection. At 64 h post infection, 219 of these proteins showed significant change, further indicating that a larger number of proteomic changes appear to occur during the later stages of infection. Gene ontology analysis of the altered proteins showed enrichment in multiple biological processes, including cell adhesion, response to stress, generation of precursor metabolites and energy, cell motility, protein complex assembly, growth, developmental maturation, immune system process, extracellular matrix organization, locomotion, cell-cell signaling, neurological system process, and cell junction organization. Changes in the expression levels of transforming growth factor beta 1 (TGF-β1, caspase-8, and heat shock protein 90 alpha (HSP90α were also verified by western blot analysis. To our knowledge, this study is the first time the response profile of ST host cells following TGEV infection has been analyzed using iTRAQ technology, and our description of the late proteomic changes that are occurring after the time of vigorous viral production are novel. Therefore, this study provides a solid foundation for further investigation, and will likely help us to better understand the mechanisms of TGEV infection and pathogenesis.

  16. Proteomics methods applied to malaria: Plasmodium falciparum

    International Nuclear Information System (INIS)

    Cuesta Astroz, Yesid; Segura Latorre, Cesar

    2012-01-01

    Malaria is a parasitic disease that has a high impact on public health in developing countries. The sequencing of the plasmodium falciparum genome and the development of proteomics have enabled a breakthrough in understanding the biology of the parasite. Proteomics have allowed to characterize qualitatively and quantitatively the parasite s expression of proteins and has provided information on protein expression under conditions of stress induced by antimalarial. Given the complexity of their life cycle, this takes place in the vertebrate host and mosquito vector. It has proven difficult to characterize the protein expression during each stage throughout the infection process in order to determine the proteome that mediates several metabolic, physiological and energetic processes. Two dimensional electrophoresis, liquid chromatography and mass spectrometry have been useful to assess the effects of antimalarial on parasite protein expression and to characterize the proteomic profile of different p. falciparum stages and organelles. The purpose of this review is to present state of the art tools and advances in proteomics applied to the study of malaria, and to present different experimental strategies used to study the parasite's proteome in order to show the advantages and disadvantages of each one.

  17. Proteomics in the investigation of HIV-1 interactions with host proteins.

    Science.gov (United States)

    Li, Ming

    2015-02-01

    Productive HIV-1 infection depends on host machinery, including a broad array of cellular proteins. Proteomics has played a significant role in the discovery of HIV-1 host proteins. In this review, after a brief survey of the HIV-1 host proteins that were discovered by proteomic analyses, I focus on analyzing the interactions between the virion and host proteins, as well as the technologies and strategies used in those proteomic studies. With the help of proteomics, the identification and characterization of HIV-1 host proteins can be translated into novel antiretroviral therapeutics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Detection of ROS Induced Proteomic Signatures by Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Brian McDonagh

    2017-07-01

    Full Text Available Reversible and irreversible post-translational modifications (PTMs induced by endogenously generated reactive oxygen species (ROS in regulatory enzymes and proteins plays an essential role in cellular signaling. Almost all cellular processes including metabolism, transcription, translation and degradation have been identified as containing redox regulated proteins. Specific redox modifications of key amino acids generated by ROS offers a dynamic and versatile means to rapidly alter the activity or functional structure of proteins in response to biochemical, environmental, genetic and pathological perturbations. How the proteome responds to these stimuli is of critical importance in oxidant physiology, as it can regulate the cell stress response by reversible and irreversible PTMs, affecting protein activity and protein-protein interactions. Due to the highly labile nature of many ROS species, applying redox proteomics can provide a signature footprint of the ROS species generated. Ideally redox proteomic approaches would allow; (1 the identification of the specific PTM, (2 identification of the amino acid residue that is modified and (3 the percentage of the protein containing the PTM. New developments in MS offer the opportunity of a more sensitive targeted proteomic approach and retrospective data analysis. Subsequent bioinformatics analysis can provide an insight into the biochemical and physiological pathways or cell signaling cascades that are affected by ROS generation. This mini-review will detail current redox proteomic approaches to identify and quantify ROS induced PTMs and the subsequent effects on cellular signaling.

  19. Quantitative Proteomics Analysis Identifies Mitochondria as Therapeutic Targets of Multidrug-Resistance in Ovarian Cancer

    Science.gov (United States)

    Chen, Xiulan; Wei, Shasha; Ma, Ying; Lu, Jie; Niu, Gang; Xue, Yanhong; Chen, Xiaoyuan; Yang, Fuquan

    2014-01-01

    Doxorubicin is a widely used chemotherapeutic agent for the treatment of a variety of solid tumors. However, resistance to this anticancer drug is a major obstacle to the effective treatment of tumors. As mitochondria play important roles in cell life and death, we anticipate that mitochondria may be related to drug resistance. Here, stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomic strategy was applied to compare mitochondrial protein expression in doxorubicin sensitive OVCAR8 cells and its doxorubicin-resistant variant NCI_ADR/RES cells. A total of 2085 proteins were quantified, of which 122 proteins displayed significant changes in the NCI_ADR/RES cells. These proteins participated in a variety of cell processes including cell apoptosis, substance metabolism, transport, detoxification and drug metabolism. Then qRT-PCR and western blot were applied to validate the differentially expressed proteins quantified by SILAC. Further functional studies with RNAi demonstrated TOP1MT, a mitochondrial protein participated in DNA repair, was involved in doxorubicin resistance in NCI_ADR/RES cells. Besides the proteomic study, electron microscopy and fluorescence analysis also observed that mitochondrial morphology and localization were greatly altered in NCI_ADR/RES cells. Mitochondrial membrane potential was also decreased in NCI_ADR/RES cells. All these results indicate that mitochondrial function is impaired in doxorubicin-resistant cells and mitochondria play an important role in doxorubicin resistance. This research provides some new information about doxorubicin resistance, indicating that mitochondria could be therapeutic targets of doxorubicin resistance in ovarian cancer cells. PMID:25285166

  20. PRIDE Inspector Toolsuite: Moving Toward a Universal Visualization Tool for Proteomics Data Standard Formats and Quality Assessment of ProteomeXchange Datasets.

    Science.gov (United States)

    Perez-Riverol, Yasset; Xu, Qing-Wei; Wang, Rui; Uszkoreit, Julian; Griss, Johannes; Sanchez, Aniel; Reisinger, Florian; Csordas, Attila; Ternent, Tobias; Del-Toro, Noemi; Dianes, Jose A; Eisenacher, Martin; Hermjakob, Henning; Vizcaíno, Juan Antonio

    2016-01-01

    The original PRIDE Inspector tool was developed as an open source standalone tool to enable the visualization and validation of mass-spectrometry (MS)-based proteomics data before data submission or already publicly available in the Proteomics Identifications (PRIDE) database. The initial implementation of the tool focused on visualizing PRIDE data by supporting the PRIDE XML format and a direct access to private (password protected) and public experiments in PRIDE.The ProteomeXchange (PX) Consortium has been set up to enable a better integration of existing public proteomics repositories, maximizing its benefit to the scientific community through the implementation of standard submission and dissemination pipelines. Within the Consortium, PRIDE is focused on supporting submissions of tandem MS data. The increasing use and popularity of the new Proteomics Standards Initiative (PSI) data standards such as mzIdentML and mzTab, and the diversity of workflows supported by the PX resources, prompted us to design and implement a new suite of algorithms and libraries that would build upon the success of the original PRIDE Inspector and would enable users to visualize and validate PX "complete" submissions. The PRIDE Inspector Toolsuite supports the handling and visualization of different experimental output files, ranging from spectra (mzML, mzXML, and the most popular peak lists formats) and peptide and protein identification results (mzIdentML, PRIDE XML, mzTab) to quantification data (mzTab, PRIDE XML), using a modular and extensible set of open-source, cross-platform libraries. We believe that the PRIDE Inspector Toolsuite represents a milestone in the visualization and quality assessment of proteomics data. It is freely available at http://github.com/PRIDE-Toolsuite/. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. iTRAQ-Based and Label-Free Proteomics Approaches for Studies of Human Adenovirus Infections

    OpenAIRE

    Trinh, Hung V.; Grossmann, Jonas; Gehrig, Peter; Roschitzki, Bernd; Schlapbach, Ralph; Greber, Urs F.; Hemmi, Silvio

    2013-01-01

    Both isobaric tags for relative and absolute quantitation (iTRAQ) and label-free methods are widely used for quantitative proteomics. Here, we provide a detailed evaluation of these proteomics approaches based on large datasets from biological samples. iTRAQ-label-based and label-free quantitations were compared using protein lysate samples from noninfected human lung epithelial A549 cells and from cells infected for 24 h with human adenovirus type 3 or type 5. Either iTRAQ-label-based or lab...

  2. Quantitative evaluation of the mitochondrial proteomes of Drosophila melanogaster adapted to extreme oxygen conditions.

    Directory of Open Access Journals (Sweden)

    Songyue Yin

    Full Text Available Mitochondria are the primary organelles that consume oxygen and provide energy for cellular activities. To investigate the mitochondrial mechanisms underlying adaptation to extreme oxygen conditions, we generated Drosophila strains that could survive in low- or high-oxygen environments (LOF or HOF, respectively, examined their mitochondria at the ultrastructural level via transmission electron microscopy, studied the activity of their respiratory chain complexes, and quantitatively analyzed the protein abundance responses of the mitochondrial proteomes using Isobaric tag for relative and absolute quantitation (iTRAQ. A total of 718 proteins were identified with high confidence, and 55 and 75 mitochondrial proteins displayed significant differences in abundance in LOF and HOF, respectively, compared with the control flies. Importantly, these differentially expressed mitochondrial proteins are primarily involved in respiration, calcium regulation, the oxidative response, and mitochondrial protein translation. A correlation analysis of the changes in the levels of the mRNAs corresponding to differentially regulated mitochondrial proteins revealed two sets of proteins with different modes of regulation (transcriptional vs. post-transcriptional in both LOF and HOF. We believe that these findings will not only enhance our understanding of the mechanisms underlying adaptation to extreme oxygen conditions in Drosophila but also provide a clue in studying human disease induced by altered oxygen tension in tissues and cells.

  3. Shotgun Proteomics and Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    W. Hayes McDonald

    2002-01-01

    Full Text Available Coupling large-scale sequencing projects with the amino acid sequence information that can be gleaned from tandem mass spectrometry (MS/MS has made it much easier to analyze complex mixtures of proteins. The limits of this “shotgun” approach, in which the protein mixture is proteolytically digested before separation, can be further expanded by separating the resulting mixture of peptides prior to MS/MS analysis. Both single dimensional high pressure liquid chromatography (LC and multidimensional LC (LC/LC can be directly interfaced with the mass spectrometer to allow for automated collection of tremendous quantities of data. While there is no single technique that addresses all proteomic challenges, the shotgun approaches, especially LC/LC-MS/MS-based techniques such as MudPIT (multidimensional protein identification technology, show advantages over gel-based techniques in speed, sensitivity, scope of analysis, and dynamic range. Advances in the ability to quantitate differences between samples and to detect for an array of post-translational modifications allow for the discovery of classes of protein biomarkers that were previously unassailable.

  4. Virtual Labs in proteomics: new E-learning tools.

    Science.gov (United States)

    Ray, Sandipan; Koshy, Nicole Rachel; Reddy, Panga Jaipal; Srivastava, Sanjeeva

    2012-05-17

    Web-based educational resources have gained enormous popularity recently and are increasingly becoming a part of modern educational systems. Virtual Labs are E-learning platforms where learners can gain the experience of practical experimentation without any direct physical involvement on real bench work. They use computerized simulations, models, videos, animations and other instructional technologies to create interactive content. Proteomics being one of the most rapidly growing fields of the biological sciences is now an important part of college and university curriculums. Consequently, many E-learning programs have started incorporating the theoretical and practical aspects of different proteomic techniques as an element of their course work in the form of Video Lectures and Virtual Labs. To this end, recently we have developed a Virtual Proteomics Lab at the Indian Institute of Technology Bombay, which demonstrates different proteomics techniques, including basic and advanced gel and MS-based protein separation and identification techniques, bioinformatics tools and molecular docking methods, and their applications in different biological samples. This Tutorial will discuss the prominent Virtual Labs featuring proteomics content, including the Virtual Proteomics Lab of IIT-Bombay, and E-resources available for proteomics study that are striving to make proteomic techniques and concepts available and accessible to the student and research community. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 14). Details can be found at: http://www.proteomicstutorials.org/. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Mass Spectrometry for Translational Proteomics: Progress and Clinical Implications

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Erin Shammel; Liu, Tao; Petyuk, Vladislav A.; Burnum-Johnson, Kristin E.; Ibrahim, Yehia M.; Anderson, Gordon A.; Smith, Richard D.

    2012-08-31

    Mass spectrometry (MS)-based proteomics measurements have become increasingly utilized in a wide range of biological and biomedical applications, and have significantly enhanced the understanding of the complex and dynamic nature of the proteome and its connections to biology and diseases. While some MS techniques such as those for targeted analysis are increasingly applied with great success, others such as global quantitative analysis (for e.g. biomarker discovery) are more challenging and continue to be developed and refined to provide the desired throughput, sensitivity and/ or specificity. New MS capabilities and proteomics-based pipelines/strategies also keep enhancing for the advancement of clinical proteomics applications such as protein biomarker discovery and validation. Herein, we provide a brief review to summarize the current state of MS-based proteomics with respect to its advantages and present limitations, while highlighting its potential in future clinical applications.

  6. Proteomics of Neisseria gonorrhoeae: the treasure hunt for countermeasures against an old disease

    Directory of Open Access Journals (Sweden)

    Benjamin I Baarda

    2015-10-01

    Full Text Available Neisseria gonorrhoeae is an exquisitely adapted, strictly human pathogen and the causative agent of the sexually transmitted infection gonorrhea. This ancient human disease remains a serious problem, occurring at high incidence globally and having a major impact on reproductive and neonatal health. N. gonorrhoeae is rapidly evolving into a superbug and no effective vaccine exists to prevent gonococcal infections. Untreated or inadequately treated gonorrhea can lead to severe sequelae, including pelvic inflammatory disease and infertility in women, epididymitis in men, and sight- threatening conjunctivitis in infants born to infected mothers. Therefore, there is an immediate need for accelerated research toward the identification of molecular targets for development of drugs with new mechanisms of action and preventive vaccine(s. Global proteomic approaches are ideally suited to guide these studies. Recent quantitative proteomics (SILAC, iTRAQ, and ICAT have illuminated the pathways utilized by N. gonorrhoeae to adapt to different lifestyles and micro-ecological niches within the host, while comparative 2D SDS-PAGE analysis has been used to elucidate spectinomycin resistance mechanisms. Further, high-throughput examinations of cell envelopes and naturally released membrane vesicles have unveiled the ubiquitous and differentially expressed proteins between temporally and geographically diverse N. gonorrhoeae isolates. This review will focus on these different approaches, emphasizing the role of proteomics in the search for vaccine candidates. Although our knowledge of N. gonorrhoeae has been expanded, still far less is known about this bacterium than the closely related N. meningitidis, where genomics- and proteomics-driven studies have led to the successful development of vaccines.

  7. Identification of ginseng root using quantitative X-ray microtomography.

    Science.gov (United States)

    Ye, Linlin; Xue, Yanling; Wang, Yudan; Qi, Juncheng; Xiao, Tiqiao

    2017-07-01

    The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ , and three-dimensional quantitative imaging properties. The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

  8. Comparative Proteomic Profiling of Mycobacterium bovis and BCG Vaccine Strains

    KAUST Repository

    Gao, Ge

    2013-01-01

    , Danish, Phipps and Birkhaug by Tandem Mass Tag® (TMT®)-labeling quantitative proteomic approach. In total, 420 proteins were identified and 377 of them were quantitated for their relative abundance. We reported the number and relationship of differential

  9. Time-resolved quantitative proteome profiling of host-pathogen interactions: the response of Staphylococcus aureus RN1HG to internalisation by human airway epithelial cells.

    Science.gov (United States)

    Schmidt, Frank; Scharf, Sandra S; Hildebrandt, Petra; Burian, Marc; Bernhardt, Jörg; Dhople, Vishnu; Kalinka, Julia; Gutjahr, Melanie; Hammer, Elke; Völker, Uwe

    2010-08-01

    Staphylococcus aureus is a versatile gram-positive pathogen that gains increasing importance due to the rapid spreading of resistances. Functional genomics technologies can provide new insights into the adaptational network of this bacterium and its response to environmental challenges. While functional genomics technologies, including proteomics, have been extensively used to study these phenomena in shake flask cultures, studies of bacteria from in vivo settings lack behind. Particularly for proteomics studies, the major bottleneck is the lack of sufficient proteomic coverage for low numbers of cells. In this study, we introduce a workflow that combines a pulse-chase stable isotope labelling by amino acids in cell culture approach with high capacity cell sorting, on-membrane digestion, and high-sensitivity MS to detect and quantitatively monitor several hundred S. aureus proteins from a few million internalised bacteria. This workflow has been used in a proof-of-principle experiment to reveal changes in levels of proteins with a function in protection against oxidative damage and adaptation of cell wall synthesis in strain RN1HG upon internalisation by S9 human bronchial epithelial cells.

  10. Review of application of mass spectrometry for analyses of anterior eye proteome

    Institute of Scientific and Technical Information of China (English)

    Sherif; Elsobky; Ashley; M; Crane; Michael; Margolis; Teresia; A; Carreon; Sanjoy; K; Bhattacharya

    2014-01-01

    Proteins have important functional roles in the body, which can be altered in disease states. The eye is a complex organ rich in proteins; in particular, the anterior eye is very sophisticated in function and is most commonly involved in ophthalmic diseases. Proteomics, the large scale study of proteins, has greatly impacted our knowledge and understanding of gene function in the post-genomic period. The most significant breakthrough in proteomics has been mass spectrometric identification of proteins, which extends analysis far beyond the mere display of proteins that classical techniques provide. Mass spectrometry functions as a "mass analyzer" which simplifies the identification and quantification of proteins extracted from biological tissue. Mass spectrometric analysis of the anterior eye proteome provides a differential display for protein comparison of normal and diseased tissue. In this article wepresent the key proteomic findings in the recent literature related to the cornea, aqueous humor, trabecular meshwork, iris, ciliary body and lens. Through this we identified unique proteins specific to diseases related to the anterior eye.

  11. Quantitative proteomic analysis of host--pathogen interactions: a study of Acinetobacter baumannii responses to host airways.

    Science.gov (United States)

    Méndez, Jose Antonio; Mateos, Jesús; Beceiro, Alejandro; Lopez, María; Tomás, María; Poza, Margarita; Bou, Germán

    2015-05-30

    Acinetobacter baumannii is a major health problem. The most common infection caused by A. baumannii is hospital acquired pneumonia, and the associated mortality rate is approximately 50%. Neither in vivo nor ex vivo expression profiling has been performed at the proteomic or transcriptomic level for pneumonia caused by A. baumannii. In this study, we characterized the proteome of A. baumannii under conditions that simulate those found in the airways, to gain some insight into how A. baumannii adapts to the host and to improve knowledge about the pathogenesis and virulence of this bacterium. A clinical strain of A. baumannii was grown under different conditions: in the presence of bronchoalveolar lavage fluid from infected rats, of RAW 264.7 cells to simulate conditions in the respiratory tract and in control conditions. We used iTRAQ labelling and LC-MALDI-TOF/TOF to investigate how A. baumannii responds on exposure to macrophages/BALF. 179 proteins showed differential expression. In both models, proteins involved in the following processes were over-expressed: (i) pathogenesis and virulence (OmpA, YjjK); (ii) cell wall/membrane/envelope biogenesis (MurC); (iii) energy production and conversion (acetyl-CoA hydrolase); and (iv) translation (50S ribosomal protein L9). Proteins involved in the following were under-expressed: (i) lipid metabolism (short-chain dehydrogenase); (ii) amino acid metabolism and transport (aspartate aminotransferase); (iii) unknown function (DNA-binding protein); and (iv) inorganic ion transport and metabolism (hydroperoxidase). We observed alterations in cell wall synthesis and identified 2 upregulated virulence-associated proteins with >15 peptides/protein in both ex vivo models (OmpA and YjjK), suggesting that these proteins are fundamental for pathogenesis and virulence in the airways. This study is the first comprehensive overview of the ex vivo proteome of A. baumannii and is an important step towards identification of diagnostic

  12. Advances in Proteomics of Mycobacterium leprae.

    Science.gov (United States)

    Parkash, O; Singh, B P

    2012-04-01

    Although Mycobacterium leprae was the first bacterial pathogen identified causing human disease, it remains one of the few that is non-cultivable. Understanding the biology of M. leprae is one of the primary challenges in current leprosy research. Genomics has been extremely valuable, nonetheless, functional proteins are ultimately responsible for controlling most aspects of cellular functions, which in turn could facilitate parasitizing the host. Furthermore, bacterial proteins provide targets for most of the vaccines and immunodiagnostic tools. Better understanding of the proteomics of M. leprae could also help in developing new drugs against M. leprae. During the past nearly 15 years, there have been several developments towards the identification of M. leprae proteins employing contemporary proteomics tools. In this review, we discuss the knowledge gained on the biology and pathogenesis of M. leprae from current proteomic studies. © 2012 The Authors. Scandinavian Journal of Immunology © 2012 Blackwell Publishing Ltd.

  13. PRIDE and "Database on Demand" as valuable tools for computational proteomics.

    Science.gov (United States)

    Vizcaíno, Juan Antonio; Reisinger, Florian; Côté, Richard; Martens, Lennart

    2011-01-01

    The Proteomics Identifications Database (PRIDE, http://www.ebi.ac.uk/pride ) provides users with the ability to explore and compare mass spectrometry-based proteomics experiments that reveal details of the protein expression found in a broad range of taxonomic groups, tissues, and disease states. A PRIDE experiment typically includes identifications of proteins, peptides, and protein modifications. Additionally, many of the submitted experiments also include the mass spectra that provide the evidence for these identifications. Finally, one of the strongest advantages of PRIDE in comparison with other proteomics repositories is the amount of metadata it contains, a key point to put the above-mentioned data in biological and/or technical context. Several informatics tools have been developed in support of the PRIDE database. The most recent one is called "Database on Demand" (DoD), which allows custom sequence databases to be built in order to optimize the results from search engines. We describe the use of DoD in this chapter. Additionally, in order to show the potential of PRIDE as a source for data mining, we also explore complex queries using federated BioMart queries to integrate PRIDE data with other resources, such as Ensembl, Reactome, or UniProt.

  14. Maillard Proteomics: Opening New Pages

    Directory of Open Access Journals (Sweden)

    Alena Soboleva

    2017-12-01

    Full Text Available Protein glycation is a ubiquitous non-enzymatic post-translational modification, formed by reaction of protein amino and guanidino groups with carbonyl compounds, presumably reducing sugars and α-dicarbonyls. Resulting advanced glycation end products (AGEs represent a highly heterogeneous group of compounds, deleterious in mammals due to their pro-inflammatory effect, and impact in pathogenesis of diabetes mellitus, Alzheimer’s disease and ageing. The body of information on the mechanisms and pathways of AGE formation, acquired during the last decades, clearly indicates a certain site-specificity of glycation. It makes characterization of individual glycation sites a critical pre-requisite for understanding in vivo mechanisms of AGE formation and developing adequate nutritional and therapeutic approaches to reduce it in humans. In this context, proteomics is the methodology of choice to address site-specific molecular changes related to protein glycation. Therefore, here we summarize the methods of Maillard proteomics, specifically focusing on the techniques providing comprehensive structural and quantitative characterization of glycated proteome. Further, we address the novel break-through areas, recently established in the field of Maillard research, i.e., in vitro models based on synthetic peptides, site-based diagnostics of metabolism-related diseases (e.g., diabetes mellitus, proteomics of anti-glycative defense, and dynamics of plant glycated proteome during ageing and response to environmental stress.

  15. Maximizing the sensitivity and reliability of peptide identification in large-scale proteomic experiments by harnessing multiple search engines.

    Science.gov (United States)

    Yu, Wen; Taylor, J Alex; Davis, Michael T; Bonilla, Leo E; Lee, Kimberly A; Auger, Paul L; Farnsworth, Chris C; Welcher, Andrew A; Patterson, Scott D

    2010-03-01

    Despite recent advances in qualitative proteomics, the automatic identification of peptides with optimal sensitivity and accuracy remains a difficult goal. To address this deficiency, a novel algorithm, Multiple Search Engines, Normalization and Consensus is described. The method employs six search engines and a re-scoring engine to search MS/MS spectra against protein and decoy sequences. After the peptide hits from each engine are normalized to error rates estimated from the decoy hits, peptide assignments are then deduced using a minimum consensus model. These assignments are produced in a series of progressively relaxed false-discovery rates, thus enabling a comprehensive interpretation of the data set. Additionally, the estimated false-discovery rate was found to have good concordance with the observed false-positive rate calculated from known identities. Benchmarking against standard proteins data sets (ISBv1, sPRG2006) and their published analysis, demonstrated that the Multiple Search Engines, Normalization and Consensus algorithm consistently achieved significantly higher sensitivity in peptide identifications, which led to increased or more robust protein identifications in all data sets compared with prior methods. The sensitivity and the false-positive rate of peptide identification exhibit an inverse-proportional and linear relationship with the number of participating search engines.

  16. Automation of dimethylation after guanidination labeling chemistry and its compatibility with common buffers and surfactants for mass spectrometry-based shotgun quantitative proteome analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Andy; Tang, Yanan; Chen, Lu; Li, Liang, E-mail: Liang.Li@ualberta.ca

    2013-07-25

    Graphical abstract: -- Highlights: •Dimethylation after guanidination (2MEGA) uses inexpensive reagents for isotopic labeling of peptides. •2MEGA can be optimized and automated for labeling peptides with high efficiency. •2MEGA is compatible with several commonly used cell lysis and protein solubilization reagents. •The automated 2MEGA labeling method can be used to handle a variety of protein samples for relative proteome quantification. -- Abstract: Isotope labeling liquid chromatography–mass spectrometry (LC–MS) is a major analytical platform for quantitative proteome analysis. Incorporation of isotopes used to distinguish samples plays a critical role in the success of this strategy. In this work, we optimized and automated a chemical derivatization protocol (dimethylation after guanidination, 2MEGA) to increase the labeling reproducibility and reduce human intervention. We also evaluated the reagent compatibility of this protocol to handle biological samples in different types of buffers and surfactants. A commercially available liquid handler was used for reagent dispensation to minimize analyst intervention and at least twenty protein digest samples could be prepared in a single run. Different front-end sample preparation methods for protein solubilization (SDS, urea, Rapigest™, and ProteaseMAX™) and two commercially available cell lysis buffers were evaluated for compatibility with the automated protocol. It was found that better than 94% desired labeling could be obtained in all conditions studied except urea, where the rate was reduced to about 92% due to carbamylation on the peptide amines. This work illustrates the automated 2MEGA labeling process can be used to handle a wide range of protein samples containing various reagents that are often encountered in protein sample preparation for quantitative proteome analysis.

  17. freeQuant: A Mass Spectrometry Label-Free Quantification Software Tool for Complex Proteome Analysis.

    Science.gov (United States)

    Deng, Ning; Li, Zhenye; Pan, Chao; Duan, Huilong

    2015-01-01

    Study of complex proteome brings forward higher request for the quantification method using mass spectrometry technology. In this paper, we present a mass spectrometry label-free quantification tool for complex proteomes, called freeQuant, which integrated quantification with functional analysis effectively. freeQuant consists of two well-integrated modules: label-free quantification and functional analysis with biomedical knowledge. freeQuant supports label-free quantitative analysis which makes full use of tandem mass spectrometry (MS/MS) spectral count, protein sequence length, shared peptides, and ion intensity. It adopts spectral count for quantitative analysis and builds a new method for shared peptides to accurately evaluate abundance of isoforms. For proteins with low abundance, MS/MS total ion count coupled with spectral count is included to ensure accurate protein quantification. Furthermore, freeQuant supports the large-scale functional annotations for complex proteomes. Mitochondrial proteomes from the mouse heart, the mouse liver, and the human heart were used to evaluate the usability and performance of freeQuant. The evaluation showed that the quantitative algorithms implemented in freeQuant can improve accuracy of quantification with better dynamic range.

  18. Streptococcus mutans Protein Synthesis during Mixed-Species Biofilm Development by High-Throughput Quantitative Proteomics

    Science.gov (United States)

    Klein, Marlise I.; Xiao, Jin; Lu, Bingwen; Delahunty, Claire M.; Yates, John R.; Koo, Hyun

    2012-01-01

    Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (Pmutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the presence of other

  19. A workflow for peptide-based proteomics in a poorly sequenced plant: A case study on the plasma membrane proteome of banana

    DEFF Research Database (Denmark)

    Vertommen, A.; Laurell Blom Møller, Anders; Cordewener, J. H. G.

    2011-01-01

    for membrane proteomics. However, their application in non-model plants demands special precautions to prevent false positive identification of proteins.In the current paper, a workflow for membrane proteomics in banana, a poorly sequenced plant, is proposed. The main steps of this workflow are (i......) optimization of the peptide separation, (ii) performing de novo sequencing to allow a sequence homology search and (iii) visualization of identified peptide–protein associations using Cytoscape to remove redundancy and wrongly assigned peptides, based on species-specific information. By applying this workflow...

  20. Identification and characterization of angiogenesis targets through proteomic profiling of endothelial cells in human cancer tissues.

    Directory of Open Access Journals (Sweden)

    Mehdi Mesri

    Full Text Available Genomic and proteomic analysis of normal and cancer tissues has yielded abundant molecular information for potential biomarker and therapeutic targets. Considering potential advantages in accessibility to pharmacological intervention, identification of targets resident on the vascular endothelium within tumors is particularly attractive. By employing mass spectrometry (MS as a tool to identify proteins that are over-expressed in tumor-associated endothelium relative to normal cells, we aimed to discover targets that could be utilized in tumor angiogenesis cancer therapy. We developed proteomic methods that allowed us to focus our studies on the discovery of cell surface/secreted proteins, as they represent key antibody therapeutic and biomarker opportunities. First, we isolated endothelial cells (ECs from human normal and kidney cancer tissues by FACS using CD146 as a marker. Additionally, dispersed human colon and lung cancer tissues and their corresponding normal tissues were cultured ex-vivo and their endothelial content were preferentially expanded, isolated and passaged. Cell surface proteins were then preferentially captured, digested with trypsin and subjected to MS-based proteomic analysis. Peptides were first quantified, and then the sequences of differentially expressed peptides were resolved by MS analysis. A total of 127 unique non-overlapped (157 total tumor endothelial cell over-expressed proteins identified from directly isolated kidney-associated ECs and those identified from ex-vivo cultured lung and colon tissues including known EC markers such as CD146, CD31, and VWF. The expression analyses of a panel of the identified targets were confirmed by immunohistochemistry (IHC including CD146, B7H3, Thy-1 and ATP1B3. To determine if the proteins identified mediate any functional role, we performed siRNA studies which led to previously unidentified functional dependency for B7H3 and ATP1B3.

  1. Evaluation of Proteomic Search Engines for the Analysis of Histone Modifications

    Science.gov (United States)

    2015-01-01

    Identification of histone post-translational modifications (PTMs) is challenging for proteomics search engines. Including many histone PTMs in one search increases the number of candidate peptides dramatically, leading to low search speed and fewer identified spectra. To evaluate database search engines on identifying histone PTMs, we present a method in which one kind of modification is searched each time, for example, unmodified, individually modified, and multimodified, each search result is filtered with false discovery rate less than 1%, and the identifications of multiple search engines are combined to obtain confident results. We apply this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001118. PMID:25167464

  2. Evaluation of proteomic search engines for the analysis of histone modifications.

    Science.gov (United States)

    Yuan, Zuo-Fei; Lin, Shu; Molden, Rosalynn C; Garcia, Benjamin A

    2014-10-03

    Identification of histone post-translational modifications (PTMs) is challenging for proteomics search engines. Including many histone PTMs in one search increases the number of candidate peptides dramatically, leading to low search speed and fewer identified spectra. To evaluate database search engines on identifying histone PTMs, we present a method in which one kind of modification is searched each time, for example, unmodified, individually modified, and multimodified, each search result is filtered with false discovery rate less than 1%, and the identifications of multiple search engines are combined to obtain confident results. We apply this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001118.

  3. Proteome reference map of Lactobacillus acidophilus NCFM and quantitative proteomics towards understanding the prebiotic action of lactitol

    DEFF Research Database (Denmark)

    Majumder, Avishek; Sultan, Abida; Jersie-Christensen, Rosa Rakownikow

    2011-01-01

    subunit, galactokinase, galactose‐1‐phosphate uridylyltransferase and UDP‐glucose‐4‐epimerase, which all are potentially involved in lactitol metabolism. This first comprehensive proteome analysis of L. acidophilus NCFM provides insights into protein abundance changes elicited by the prebiotic lactitol....

  4. Proteome stability analysis of snap frozen, RNAlater preserved, and formalin-fixed paraffin-embedded human colon mucosal biopsies

    DEFF Research Database (Denmark)

    Bennike, Tue Bjerg; Kastaniegaard, Kenneth; Padurariu, Simona

    2016-01-01

    Large repositories of well characterized RNAlater preserved samples and formalin-fixed, paraffin-embedded samples have been generated worldwide. However, the impact on the proteome of the preservation methods remain poorly described. Therefore, we analyzed the impact on the proteome of preserving...... throughput gel free quantitative proteomics. The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PRIDE: PXD002029....

  5. Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques

    LENUS (Irish Health Repository)

    Ohlendieck, Kay

    2011-02-01

    Abstract Background Skeletal muscle fibres represent one of the most abundant cell types in mammals. Their highly specialised contractile and metabolic functions depend on a large number of membrane-associated proteins with very high molecular masses, proteins with extensive posttranslational modifications and components that exist in highly complex supramolecular structures. This makes it extremely difficult to perform conventional biochemical studies of potential changes in protein clusters during physiological adaptations or pathological processes. Results Skeletal muscle proteomics attempts to establish the global identification and biochemical characterisation of all members of the muscle-associated protein complement. A considerable number of proteomic studies have employed large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography, and combined them with mass spectrometry as the method of choice for high-throughput protein identification. Muscle proteomics has been applied to the comprehensive biochemical profiling of developing, maturing and aging muscle, as well as the analysis of contractile tissues undergoing physiological adaptations seen in disuse atrophy, physical exercise and chronic muscle transformation. Biomedical investigations into proteome-wide alterations in skeletal muscle tissues were also used to establish novel biomarker signatures of neuromuscular disorders. Importantly, mass spectrometric studies have confirmed the enormous complexity of posttranslational modifications in skeletal muscle proteins. Conclusions This review critically examines the scientific impact of modern muscle proteomics and discusses its successful application for a better understanding of muscle biology, but also outlines its technical limitations and emerging techniques to establish new biomarker candidates.

  6. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database

    KAUST Repository

    Komatsu, Setsuko

    2017-05-10

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max ‘Enrei’). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. Biological significanceThe Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all

  7. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database.

    Science.gov (United States)

    Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi

    2017-06-23

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max 'Enrei'). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. The Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all predicted proteins from

  8. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database

    KAUST Repository

    Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi

    2017-01-01

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max ‘Enrei’). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. Biological significanceThe Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all

  9. Identification and quantitation of signal molecule-dependent protein phosphorylation

    KAUST Repository

    Groen, Arnoud J.

    2013-09-03

    Phosphoproteomics is a fast-growing field that aims at characterizing phosphorylated proteins in a cell or a tissue at a given time. Phosphorylation of proteins is an important regulatory mechanism in many cellular processes. Gel-free phosphoproteome technique involving enrichment of phosphopeptide coupled with mass spectrometry has proven to be invaluable to detect and characterize phosphorylated proteins. In this chapter, a gel-free quantitative approach involving 15N metabolic labelling in combination with phosphopeptide enrichment by titanium dioxide (TiO2) and their identification by MS is described. This workflow can be used to gain insights into the role of signalling molecules such as cyclic nucleotides on regulatory networks through the identification and quantification of responsive phospho(proteins). © Springer Science+Business Media New York 2013.

  10. Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits.

    Science.gov (United States)

    Wu, Hong-xia; Jia, Hui-min; Ma, Xiao-wei; Wang, Song-biao; Yao, Quan-sheng; Xu, Wen-tian; Zhou, Yi-gang; Gao, Zhong-shan; Zhan, Ru-lin

    2014-06-13

    Here we used Illumina RNA-seq technology for transcriptome sequencing of a mixed fruit sample from 'Zill' mango (Mangifera indica Linn) fruit pericarp and pulp during the development and ripening stages. RNA-seq generated 68,419,722 sequence reads that were assembled into 54,207 transcripts with a mean length of 858bp, including 26,413 clusters and 27,794 singletons. A total of 42,515(78.43%) transcripts were annotated using public protein databases, with a cut-off E-value above 10(-5), of which 35,198 and 14,619 transcripts were assigned to gene ontology terms and clusters of orthologous groups respectively. Functional annotation against the Kyoto Encyclopedia of Genes and Genomes database identified 23,741(43.79%) transcripts which were mapped to 128 pathways. These pathways revealed many previously unknown transcripts. We also applied mass spectrometry-based transcriptome data to characterize the proteome of ripe fruit. LC-MS/MS analysis of the mango fruit proteome was using tandem mass spectrometry (MS/MS) in an LTQ Orbitrap Velos (Thermo) coupled online to the HPLC. This approach enabled the identification of 7536 peptides that matched 2754 proteins. Our study provides a comprehensive sequence for a systemic view of transcriptome during mango fruit development and the most comprehensive fruit proteome to date, which are useful for further genomics research and proteomic studies. Our study provides a comprehensive sequence for a systemic view of both the transcriptome and proteome of mango fruit, and a valuable reference for further research on gene expression and protein identification. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The Proteomics Big Challenge for Biomarkers and New Drug-Targets Discovery

    Science.gov (United States)

    Savino, Rocco; Paduano, Sergio; Preianò, Mariaimmacolata; Terracciano, Rosa

    2012-01-01

    In the modern process of drug discovery, clinical, functional and chemical proteomics can converge and integrate synergies. Functional proteomics explores and elucidates the components of pathways and their interactions which, when deregulated, lead to a disease condition. This knowledge allows the design of strategies to target multiple pathways with combinations of pathway-specific drugs, which might increase chances of success and reduce the occurrence of drug resistance. Chemical proteomics, by analyzing the drug interactome, strongly contributes to accelerate the process of new druggable targets discovery. In the research area of clinical proteomics, proteome and peptidome mass spectrometry-profiling of human bodily fluid (plasma, serum, urine and so on), as well as of tissue and of cells, represents a promising tool for novel biomarker and eventually new druggable targets discovery. In the present review we provide a survey of current strategies of functional, chemical and clinical proteomics. Major issues will be presented for proteomic technologies used for the discovery of biomarkers for early disease diagnosis and identification of new drug targets. PMID:23203042

  12. The Use of Proteomics in Assisted Reproduction.

    Science.gov (United States)

    Kosteria, Ioanna; Anagnostopoulos, Athanasios K; Kanaka-Gantenbein, Christina; Chrousos, George P; Tsangaris, George T

    2017-01-01

    Despite the explosive increase in the use of Assisted Reproductive Technologies (ART) over the last 30 years, their success rates remain suboptimal. Proteomics is a rapidly-evolving technology-driven science that has already been widely applied in the exploration of human reproduction and fertility, providing useful insights into its physiology and leading to the identification of numerous proteins that may be potential biomarkers and/or treatment targets of a successful ART pregnancy. Here we present a brief overview of the techniques used in proteomic analyses and attempt a comprehensive presentation of recent data from mass spectrometry-based proteomic studies in humans, regarding all components of ARTs, including the male and female gamete, the derived zygote and embryo, the endometrium and, finally, the ART offspring both pre- and postnatally. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Using the Ubiquitin-modified Proteome to Monitor Distinct and Spatially Restricted Protein Homeostasis Dysfunction.

    Science.gov (United States)

    Gendron, Joshua M; Webb, Kristofor; Yang, Bing; Rising, Lisa; Zuzow, Nathan; Bennett, Eric J

    2016-08-01

    Protein homeostasis dysfunction has been implicated in the development and progression of aging related human pathologies. There is a need for the establishment of quantitative methods to evaluate global protein homoeostasis function. As the ubiquitin (ub) proteasome system plays a key role in regulating protein homeostasis, we applied quantitative proteomic methods to evaluate the sensitivity of site-specific ubiquitylation events as markers for protein homeostasis dysfunction. Here, we demonstrate that the ub-modified proteome can exceed the sensitivity of engineered fluorescent reporters as a marker for proteasome dysfunction and can provide unique signatures for distinct proteome challenges which is not possible with engineered reporters. We demonstrate that combining ub-proteomics with subcellular fractionation can effectively separate degradative and regulatory ubiquitylation events on distinct protein populations. Using a recently developed potent inhibitor of the critical protein homeostasis factor p97/VCP, we demonstrate that distinct insults to protein homeostasis function can elicit robust and largely unique alterations to the ub-modified proteome. Taken together, we demonstrate that proteomic approaches to monitor the ub-modified proteome can be used to evaluate global protein homeostasis and can be used to monitor distinct functional outcomes for spatially separated protein populations. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. LC-MS/MS-based proteome profiling in Daphnia pulex and Daphnia longicephala: the Daphnia pulex genome database as a key for high throughput proteomics in Daphnia

    Directory of Open Access Journals (Sweden)

    Mayr Tobias

    2009-04-01

    Full Text Available Abstract Background Daphniids, commonly known as waterfleas, serve as important model systems for ecology, evolution and the environmental sciences. The sequencing and annotation of the Daphnia pulex genome both open future avenues of research on this model organism. As proteomics is not only essential to our understanding of cell function, and is also a powerful validation tool for predicted genes in genome annotation projects, a first proteomic dataset is presented in this article. Results A comprehensive set of 701,274 peptide tandem-mass-spectra, derived from Daphnia pulex, was generated, which lead to the identification of 531 proteins. To measure the impact of the Daphnia pulex filtered models database for mass spectrometry based Daphnia protein identification, this result was compared with results obtained with the Swiss-Prot and the Drosophila melanogaster database. To further validate the utility of the Daphnia pulex database for research on other Daphnia species, additional 407,778 peptide tandem-mass-spectra, obtained from Daphnia longicephala, were generated and evaluated, leading to the identification of 317 proteins. Conclusion Peptides identified in our approach provide the first experimental evidence for the translation of a broad variety of predicted coding regions within the Daphnia genome. Furthermore it could be demonstrated that identification of Daphnia longicephala proteins using the Daphnia pulex protein database is feasible but shows a slightly reduced identification rate. Data provided in this article clearly demonstrates that the Daphnia genome database is the key for mass spectrometry based high throughput proteomics in Daphnia.

  15. Birth of plant proteomics in India: a new horizon.

    Science.gov (United States)

    Narula, Kanika; Pandey, Aarti; Gayali, Saurabh; Chakraborty, Niranjan; Chakraborty, Subhra

    2015-09-08

    In the post-genomic era, proteomics is acknowledged as the next frontier for biological research. Although India has a long and distinguished tradition in protein research, the initiation of proteomics studies was a new horizon. Protein research witnessed enormous progress in protein separation, high-resolution refinements, biochemical identification of the proteins, protein-protein interaction, and structure-function analysis. Plant proteomics research, in India, began its journey on investigation of the proteome profiling, complexity analysis, protein trafficking, and biochemical modeling. The research article by Bhushan et al. in 2006 marked the birth of the plant proteomics research in India. Since then plant proteomics studies expanded progressively and are now being carried out in various institutions spread across the country. The compilation presented here seeks to trace the history of development in the area during the past decade based on publications till date. In this review, we emphasize on outcomes of the field providing prospects on proteomic pathway analyses. Finally, we discuss the connotation of strategies and the potential that would provide the framework of plant proteome research. The past decades have seen rapidly growing number of sequenced plant genomes and associated genomic resources. To keep pace with this increasing body of data, India is in the provisional phase of proteomics research to develop a comparative hub for plant proteomes and protein families, but it requires a strong impetus from intellectuals, entrepreneurs, and government agencies. Here, we aim to provide an overview of past, present and future of Indian plant proteomics, which would serve as an evaluation platform for those seeking to incorporate proteomics into their research programs. This article is part of a Special Issue entitled: Proteomics in India. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Quantitative Phospho-proteomic Analysis of TNFα/NFκB Signaling Reveals a Role for RIPK1 Phosphorylation in Suppressing Necrotic Cell Death.

    Science.gov (United States)

    Mohideen, Firaz; Paulo, Joao A; Ordureau, Alban; Gygi, Steve P; Harper, J Wade

    2017-07-01

    TNFα is a potent inducer of inflammation due to its ability to promote gene expression, in part via the NFκB pathway. Moreover, in some contexts, TNFα promotes Caspase-dependent apoptosis or RIPK1/RIPK3/MLKL-dependent necrosis. Engagement of the TNF Receptor Signaling Complex (TNF-RSC), which contains multiple kinase activities, promotes phosphorylation of several downstream components, including TAK1, IKKα/IKKβ, IκBα, and NFκB. However, immediate downstream phosphorylation events occurring in response to TNFα signaling are poorly understood at a proteome-wide level. Here we use Tandem Mass Tagging-based proteomics to quantitatively characterize acute TNFα-mediated alterations in the proteome and phosphoproteome with or without inhibition of the cIAP-dependent survival arm of the pathway with a SMAC mimetic. We identify and quantify over 8,000 phosphorylated peptides, among which are numerous known sites in the TNF-RSC, NFκB, and MAP kinase signaling systems, as well as numerous previously unrecognized phosphorylation events. Functional analysis of S320 phosphorylation in RIPK1 demonstrates a role for this event in suppressing its kinase activity, association with CASPASE-8 and FADD proteins, and subsequent necrotic cell death during inflammatory TNFα stimulation. This study provides a resource for further elucidation of TNFα-dependent signaling pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Development and application of a quantitative multiplexed small GTPase activity assay using targeted proteomics.

    Science.gov (United States)

    Zhang, Cheng-Cheng; Li, Ru; Jiang, Honghui; Lin, Shujun; Rogalski, Jason C; Liu, Kate; Kast, Juergen

    2015-02-06

    Small GTPases are a family of key signaling molecules that are ubiquitously expressed in various types of cells. Their activity is often analyzed by western blot, which is limited by its multiplexing capability, the quality of isoform-specific antibodies, and the accuracy of quantification. To overcome these issues, a quantitative multiplexed small GTPase activity assay has been developed. Using four different binding domains, this assay allows the binding of up to 12 active small GTPase isoforms simultaneously in a single experiment. To accurately quantify the closely related small GTPase isoforms, a targeted proteomic approach, i.e., selected/multiple reaction monitoring, was developed, and its functionality and reproducibility were validated. This assay was successfully applied to human platelets and revealed time-resolved coactivation of multiple small GTPase isoforms in response to agonists and differential activation of these isoforms in response to inhibitor treatment. This widely applicable approach can be used for signaling pathway studies and inhibitor screening in many cellular systems.

  18. Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism.

    Science.gov (United States)

    George, Iniga S; Pascovici, Dana; Mirzaei, Mehdi; Haynes, Paul A

    2015-09-01

    Grapes (Vitis vinifera) are a valuable fruit crop and wine production is a major industry. Global warming and expanded range of cultivation will expose grapes to more temperature stresses in future. Our study investigated protein level responses to abiotic stresses, with particular reference to proteomic changes induced by the impact of four different temperature stress regimes, including both hot and cold temperatures, on cultured grape cells. Cabernet Sauvignon cell suspension cultures grown at 26°C were subjected to 14 h of exposure to 34 and 42°C for heat stress, and 18 and 10°C for cold stress. Cells from the five temperatures were harvested in biological triplicates and label-free quantitative shotgun proteomic analysis was performed. A total of 2042 non-redundant proteins were identified from the five temperature points. Fifty-five proteins were only detected in extreme heat stress conditions (42°C) and 53 proteins were only detected at extreme cold stress conditions (10°C). Gene Ontology (GO) annotations of differentially expressed proteins provided insights into the metabolic pathways that are involved in temperature stress in grape cells. Sugar metabolism displayed switching between alternative and classical pathways during temperature stresses. Additionally, nine proteins involved in the phenylpropanoid pathway were greatly increased in abundance at extreme cold stress, and were thus found to be cold-responsive proteins. All MS data have been deposited in the ProteomeXchange with identifier PXD000977 (http://proteomecentral.proteomexchange.org/dataset/PXD000977). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Qiao, Jianjun; Wang, Jiangxin; Chen, Lei; Tian, Xiaoxu; Huang, Siqiang; Ren, Xiaoyue; Zhang, Weiwen

    2012-11-02

    Recent progress in metabolic engineering has led to autotrophic production of ethanol in various cyanobacterial hosts. However, cyanobacteria are known to be sensitive to ethanol, which restricts further efforts to increase ethanol production levels in these renewable host systems. To understand the mechanisms of ethanol tolerance so that engineering more robust cyanobacterial hosts can be possible, in this study, the responses of model cyanobacterial Synechocystis sp. PCC 6803 to ethanol were determined using a quantitative proteomics approach with iTRAQ LC-MS/MS technologies. The resulting high-quality proteomic data set consisted of 24,887 unique peptides corresponding to 1509 identified proteins, a coverage of approximately 42% of the predicted proteins in the Synechocystis genome. Using a cutoff of 1.5-fold change and a p-value less than 0.05, 135 and 293 unique proteins with differential abundance levels were identified between control and ethanol-treated samples at 24 and 48 h, respectively. Functional analysis showed that the Synechocystis cells employed a combination of induced common stress response, modifications of cell membrane and envelope, and induction of multiple transporters and cell mobility-related proteins as protection mechanisms against ethanol toxicity. Interestingly, our proteomic analysis revealed that proteins related to multiple aspects of photosynthesis were up-regulated in the ethanol-treated Synechocystis cells, consistent with increased chlorophyll a concentration in the cells upon ethanol exposure. The study provided the first comprehensive view of the complicated molecular mechanisms against ethanol stress and also provided a list of potential gene targets for further engineering ethanol tolerance in Synechocystis PCC 6803.

  20. C4 photosynthetic machinery: insights from maize chloroplast proteomics

    Directory of Open Access Journals (Sweden)

    Qi eZhao

    2013-04-01

    Full Text Available C4 plants exhibit much higher CO2 assimilation rates than C3 plants. The specialized differentiation of mesophyll cell (M and bundle sheath cell (BS type chloroplasts is unique to C4 plants and improves photosynthesis efficiency. Maize (Zea mays is an important crop and model with C4 photosynthetic machinery. Current high-throughput quantitative proteomics approaches (e.g., 2DE, iTRAQ, and shotgun proteomics have been employed to investigate maize chloroplast structure and function. These proteomic studies have provided valuable information on C4 chloroplast protein components, photosynthesis, and other metabolic mechanisms underlying chloroplast biogenesis, stromal and membrane differentiation, as well as response to salinity, high/low temperature, and light stress. This review presents an overview of proteomics advances in maize chloroplast biology.

  1. Identification Of Protein Vaccine Candidates Using Comprehensive Proteomic Analysis Strategies

    National Research Council Canada - National Science Library

    Rohrbough, James G

    2007-01-01

    Presented in this dissertation are proteomic analysis studies focused on identifying proteins to be used as vaccine candidates against Coccidioidomycosis, a potentially fatal human pulmonary disease...

  2. Nanodroplet processing platform for deep and quantitative proteome profiling of 10-100 mammalian cells.

    Science.gov (United States)

    Zhu, Ying; Piehowski, Paul D; Zhao, Rui; Chen, Jing; Shen, Yufeng; Moore, Ronald J; Shukla, Anil K; Petyuk, Vladislav A; Campbell-Thompson, Martha; Mathews, Clayton E; Smith, Richard D; Qian, Wei-Jun; Kelly, Ryan T

    2018-02-28

    Nanoscale or single-cell technologies are critical for biomedical applications. However, current mass spectrometry (MS)-based proteomic approaches require samples comprising a minimum of thousands of cells to provide in-depth profiling. Here, we report the development of a nanoPOTS (nanodroplet processing in one pot for trace samples) platform for small cell population proteomics analysis. NanoPOTS enhances the efficiency and recovery of sample processing by downscaling processing volumes to 3000 proteins are consistently identified from as few as 10 cells. Furthermore, we demonstrate quantification of ~2400 proteins from single human pancreatic islet thin sections from type 1 diabetic and control donors, illustrating the application of nanoPOTS for spatially resolved proteome measurements from clinical tissues.

  3. A Proteomic Approach for the Identification of Up-Regulated Proteins Involved in the Metabolic Process of the Leiomyoma.

    Science.gov (United States)

    Ura, Blendi; Scrimin, Federica; Arrigoni, Giorgio; Franchin, Cinzia; Monasta, Lorenzo; Ricci, Giuseppe

    2016-04-09

    Uterine leiomyoma is the most common benign smooth muscle cell tumor of the uterus. Proteomics is a powerful tool for the analysis of complex mixtures of proteins. In our study, we focused on proteins that were upregulated in the leiomyoma compared to the myometrium. Paired samples of eight leiomyomas and adjacent myometrium were obtained and submitted to two-dimensional gel electrophoresis (2-DE) and mass spectrometry for protein identification and to Western blotting for 2-DE data validation. The comparison between the patterns revealed 24 significantly upregulated (p leiomyoma and not with the normal myometrium. The overexpression of seven proteins involved in the metabolic processes of the leiomyoma was further validated by Western blotting and 2D Western blotting. Four of these proteins have never been associated with the leiomyoma before. The 2-DE approach coupled with mass spectrometry, which is among the methods of choice for comparative proteomic studies, identified a number of proteins overexpressed in the leiomyoma and involved in several biological processes, including metabolic processes. A better understanding of the mechanism underlying the overexpression of these proteins may be important for therapeutic purposes.

  4. IBT-based quantitative proteomics identifies potential regulatory proteins involved in pigmentation of purple sea cucumber, Apostichopus japonicus.

    Science.gov (United States)

    Xing, Lili; Sun, Lina; Liu, Shilin; Li, Xiaoni; Zhang, Libin; Yang, Hongsheng

    2017-09-01

    Sea cucumbers are an important economic species and exhibit high yield value among aquaculture animals. Purple sea cucumbers are very rare and beautiful and have stable hereditary patterns. In this study, isobaric tags (IBT) were first used to reveal the molecular mechanism of pigmentation in the body wall of the purple sea cucumber. We analyzed the proteomes of purple sea cucumber in early pigmentation stage (Pa), mid pigmentation stage (Pb) and late pigmentation stage (Pc), resulting in the identification of 5580 proteins, including 1099 differentially expressed proteins in Pb: Pa and 339 differentially expressed proteins in Pc: Pb. GO and KEGG analyses revealed possible differentially expressed proteins, including"melanogenesis", "melanosome", "melanoma", "pigment-biosynthetic process", "Epidermis development", "Ras-signaling pathway", "Wnt-signaling pathway", "response to UV light", and "tyrosine metabolism", involved in pigment synthesis and regulation in purple sea cucumbers. The large number of differentially expressed proteins identified here should be highly useful in further elucidating the mechanisms underlying pigmentation in sea cucumbers. Furthermore, these results may also provide the base for further identification of proteins involved in resistance mechanisms against melanoma, albinism, UV damage, and other diseases in sea cucumbers. Copyright © 2017. Published by Elsevier Inc.

  5. P19-S Managing Proteomics Data from Data Generation and Data Warehousing to Central Data Repository and Journal Reviewing Processes

    Science.gov (United States)

    Thiele, H.; Glandorf, J.; Koerting, G.; Reidegeld, K.; Blüggel, M.; Meyer, H.; Stephan, C.

    2007-01-01

    In today’s proteomics research, various techniques and instrumentation bioinformatics tools are necessary to manage the large amount of heterogeneous data with an automatic quality control to produce reliable and comparable results. Therefore a data-processing pipeline is mandatory for data validation and comparison in a data-warehousing system. The proteome bioinformatics platform ProteinScape has been proven to cover these needs. The reprocessing of HUPO BPP participants’ MS data was done within ProteinScape. The reprocessed information was transferred into the global data repository PRIDE. ProteinScape as a data-warehousing system covers two main aspects: archiving relevant data of the proteomics workflow and information extraction functionality (protein identification, quantification and generation of biological knowledge). As a strategy for automatic data validation, different protein search engines are integrated. Result analysis is performed using a decoy database search strategy, which allows the measurement of the false-positive identification rate. Peptide identifications across different workflows, different MS techniques, and different search engines are merged to obtain a quality-controlled protein list. The proteomics identifications database (PRIDE), as a public data repository, is an archiving system where data are finally stored and no longer changed by further processing steps. Data submission to PRIDE is open to proteomics laboratories generating protein and peptide identifications. An export tool has been developed for transferring all relevant HUPO BPP data from ProteinScape into PRIDE using the PRIDE.xml format. The EU-funded ProDac project will coordinate the development of software tools covering international standards for the representation of proteomics data. The implementation of data submission pipelines and systematic data collection in public standards–compliant repositories will cover all aspects, from the generation of MS data

  6. Proteomic analysis of processing by-products from canned and fresh tuna: identification of potentially functional food proteins.

    Science.gov (United States)

    Sanmartín, Esther; Arboleya, Juan Carlos; Iloro, Ibon; Escuredo, Kepa; Elortza, Felix; Moreno, F Javier

    2012-09-15

    Proteomic approaches have been used to identify the main proteins present in processing by-products generated by the canning tuna-industry, as well as in by-products derived from filleting of skeletal red muscle of fresh tuna. Following fractionation by using an ammonium sulphate precipitation method, three proteins (tropomyosin, haemoglobin and the stress-shock protein ubiquitin) were identified in the highly heterogeneous and heat-treated material discarded by the canning-industry. Additionally, this fractionation method was successful to obtain tropomyosin of high purity from the heterogeneous starting material. By-products from skeletal red muscle of fresh tuna were efficiently fractionated to sarcoplasmic and myofibrillar fractions, prior to the identification based mainly on the combined searching of the peptide mass fingerprint (MALDI-TOF) and peptide fragment fingerprinting (MALDI LIFT-TOF/TOF) spectra of fifteen bands separated by 1D SDS-PAGE. Thus, the sarcoplasmic fraction contained myoglobin and several enzymes that are essential for efficient energy production, whereas the myofibrillar fraction had important contractile proteins, such as actin, tropomyosin, myosin or an isoform of the enzyme creatine kinase. Application of proteomic technologies has revealed new knowledge on the composition of important by-products from tuna species, enabling a better evaluation of their potential applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Urine sample preparation for proteomic analysis.

    Science.gov (United States)

    Olszowy, Pawel; Buszewski, Boguslaw

    2014-10-01

    Sample preparation for both environmental and more importantly biological matrices is a bottleneck of all kinds of analytical processes. In the case of proteomic analysis this element is even more important due to the amount of cross-reactions that should be taken into consideration. The incorporation of new post-translational modifications, protein hydrolysis, or even its degradation is possible as side effects of proteins sample processing. If protocols are evaluated appropriately, then identification of such proteins does not bring difficulties. However, if structural changes are provided without sufficient attention then protein sequence coverage will be reduced or even identification of such proteins could be impossible. This review summarizes obstacles and achievements in protein sample preparation of urine for proteome analysis using different tools for mass spectrometry analysis. The main aim is to present comprehensively the idea of urine application as a valuable matrix. This article is dedicated to sample preparation and application of urine mainly in novel cancer biomarkers discovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Christian Niehage

    Full Text Available Multipotent mesenchymal stromal cells (MSCs are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2% or high (10% serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention.

  9. Proteomic analysis of the Theileria annulata schizont

    Science.gov (United States)

    Witschi, M.; Xia, D.; Sanderson, S.; Baumgartner, M.; Wastling, J.M.; Dobbelaere, D.A.E.

    2013-01-01

    The apicomplexan parasite, Theileria annulata, is the causative agent of tropical theileriosis, a devastating lymphoproliferative disease of cattle. The schizont stage transforms bovine leukocytes and provides an intriguing model to study host/pathogen interactions. The genome of T. annulata has been sequenced and transcriptomic data are rapidly accumulating. In contrast, little is known about the proteome of the schizont, the pathogenic, transforming life cycle stage of the parasite. Using one-dimensional (1-D) gel LC-MS/MS, a proteomic analysis of purified T. annulata schizonts was carried out. In whole parasite lysates, 645 proteins were identified. Proteins with transmembrane domains (TMDs) were under-represented and no proteins with more than four TMDs could be detected. To tackle this problem, Triton X-114 treatment was applied, which facilitates the extraction of membrane proteins, followed by 1-D gel LC-MS/MS. This resulted in the identification of an additional 153 proteins. Half of those had one or more TMD and 30 proteins with more than four TMDs were identified. This demonstrates that Triton X-114 treatment can provide a valuable additional tool for the identification of new membrane proteins in proteomic studies. With two exceptions, all proteins involved in glycolysis and the citric acid cycle were identified. For at least 29% of identified proteins, the corresponding transcripts were not present in the existing expressed sequence tag databases. The proteomics data were integrated into the publicly accessible database resource at EuPathDB (www.eupathdb.org) so that mass spectrometry-based protein expression evidence for T. annulata can be queried alongside transcriptional and other genomics data available for these parasites. PMID:23178997

  10. Separomics applied to the proteomics and peptidomics of low-abundance proteins: Choice of methods and challenges - A review.

    Science.gov (United States)

    Baracat-Pereira, Maria Cristina; de Oliveira Barbosa, Meire; Magalhães, Marcos Jorge; Carrijo, Lanna Clicia; Games, Patrícia Dias; Almeida, Hebréia Oliveira; Sena Netto, José Fabiano; Pereira, Matheus Rodrigues; de Barros, Everaldo Gonçalves

    2012-06-01

    The enrichment and isolation of proteins are considered limiting steps in proteomic studies. Identification of proteins whose expression is transient, those that are of low-abundance, and of natural peptides not described in databases, is still a great challenge. Plant extracts are in general complex, and contaminants interfere with the identification of proteins involved in important physiological processes, such as plant defense against pathogens. This review discusses the challenges and strategies of separomics applied to the identification of low-abundance proteins and peptides in plants, especially in plants challenged by pathogens. Separomics is described as a group of methodological strategies for the separation of protein molecules for proteomics. Several tools have been used to remove highly abundant proteins from samples and also non-protein contaminants. The use of chromatographic techniques, the partition of the proteome into subproteomes, and an effort to isolate proteins in their native form have allowed the isolation and identification of rare proteins involved in different processes.

  11. Separomics applied to the proteomics and peptidomics of low-abundance proteins: choice of methods and challenges - a review

    Directory of Open Access Journals (Sweden)

    Maria Cristina Baracat-Pereira

    2012-01-01

    Full Text Available The enrichment and isolation of proteins are considered limiting steps in proteomic studies. Identification of proteins whose expression is transient, those that are of low-abundance, and of natural peptides not described in databases, is still a great challenge. Plant extracts are in general complex, and contaminants interfere with the identification of proteins involved in important physiological processes, such as plant defense against pathogens. This review discusses the challenges and strategies of separomics applied to the identification of low-abundance proteins and peptides in plants, especially in plants challenged by pathogens. Separomics is described as a group of methodological strategies for the separation of protein molecules for proteomics. Several tools have been used to remove highly abundant proteins from samples and also non-protein contaminants. The use of chromatographic techniques, the partition of the proteome into subproteomes, and an effort to isolate proteins in their native form have allowed the isolation and identification of rare proteins involved in different processes.

  12. Anthelmintic metabolism in parasitic helminths: proteomic insights.

    Science.gov (United States)

    Brophy, Peter M; MacKintosh, Neil; Morphew, Russell M

    2012-08-01

    Anthelmintics are the cornerstone of parasitic helminth control. Surprisingly, understanding of the biochemical pathways used by parasitic helminths to detoxify anthelmintics is fragmented, despite the increasing global threat of anthelmintic resistance within the ruminant and equine industries. Reductionist biochemistry has likely over-estimated the enzymatic role of glutathione transferases in anthelmintic metabolism and neglected the potential role of the cytochrome P-450 superfamily (CYPs). Proteomic technologies offers the opportunity to support genomics, reverse genetics and pharmacokinetics, and provide an integrated insight into both the cellular mechanisms underpinning response to anthelmintics and also the identification of biomarker panels for monitoring the development of anthelmintic resistance. To date, there have been limited attempts to include proteomics in anthelmintic metabolism studies. Optimisations of membrane, post-translational modification and interaction proteomic technologies in helminths are needed to especially study Phase I CYPs and Phase III ABC transporter pumps for anthelmintics and their metabolites.

  13. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): A revolutionary shift in clinical diagnostic microbiology.

    Science.gov (United States)

    Nomura, Fumio

    2015-06-01

    Rapid and accurate identification of microorganisms, a prerequisite for appropriate patient care and infection control, is a critical function of any clinical microbiology laboratory. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a quick and reliable method for identification of microorganisms, including bacteria, yeast, molds, and mycobacteria. Indeed, there has been a revolutionary shift in clinical diagnostic microbiology. In the present review, the state of the art and advantages of MALDI-TOF MS-based bacterial identification are described. The potential of this innovative technology for use in strain typing and detection of antibiotic resistance is also discussed. This article is part of a Special Issue entitled: Medical Proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Proteomic Investigation of Falciparum and Vivax Malaria for Identification of Surrogate Protein Markers

    Science.gov (United States)

    Ray, Sandipan; Renu, Durairaj; Srivastava, Rajneesh; Gollapalli, Kishore; Taur, Santosh; Jhaveri, Tulip; Dhali, Snigdha; Chennareddy, Srinivasarao; Potla, Ankit; Dikshit, Jyoti Bajpai; Srikanth, Rapole; Gogtay, Nithya; Thatte, Urmila; Patankar, Swati; Srivastava, Sanjeeva

    2012-01-01

    This study was conducted to analyze alterations in the human serum proteome as a consequence of infection by malaria parasites Plasmodium falciparum and P. vivax to obtain mechanistic insights about disease pathogenesis, host immune response, and identification of potential protein markers. Serum samples from patients diagnosed with falciparum malaria (FM) (n = 20), vivax malaria (VM) (n = 17) and healthy controls (HC) (n = 20) were investigated using multiple proteomic techniques and results were validated by employing immunoassay-based approaches. Specificity of the identified malaria related serum markers was evaluated by means of analysis of leptospirosis as a febrile control (FC). Compared to HC, 30 and 31 differentially expressed and statistically significant (p<0.05) serum proteins were identified in FM and VM respectively, and almost half (46.2%) of these proteins were commonly modulated due to both of the plasmodial infections. 13 proteins were found to be differentially expressed in FM compared to VM. Functional pathway analysis involving the identified proteins revealed the modulation of different vital physiological pathways, including acute phase response signaling, chemokine and cytokine signaling, complement cascades and blood coagulation in malaria. A panel of identified proteins consists of six candidates; serum amyloid A, hemopexin, apolipoprotein E, haptoglobin, retinol-binding protein and apolipoprotein A-I was used to build statistical sample class prediction models. By employing PLS-DA and other classification methods the clinical phenotypic classes (FM, VM, FC and HC) were predicted with over 95% prediction accuracy. Individual performance of three classifier proteins; haptoglobin, apolipoprotein A-I and retinol-binding protein in diagnosis of malaria was analyzed using receiver operating characteristic (ROC) curves. The discrimination of FM, VM, FC and HC groups on the basis of differentially expressed serum proteins demonstrates

  15. Proteomic investigation of falciparum and vivax malaria for identification of surrogate protein markers.

    Directory of Open Access Journals (Sweden)

    Sandipan Ray

    Full Text Available This study was conducted to analyze alterations in the human serum proteome as a consequence of infection by malaria parasites Plasmodium falciparum and P. vivax to obtain mechanistic insights about disease pathogenesis, host immune response, and identification of potential protein markers. Serum samples from patients diagnosed with falciparum malaria (FM (n = 20, vivax malaria (VM (n = 17 and healthy controls (HC (n = 20 were investigated using multiple proteomic techniques and results were validated by employing immunoassay-based approaches. Specificity of the identified malaria related serum markers was evaluated by means of analysis of leptospirosis as a febrile control (FC. Compared to HC, 30 and 31 differentially expressed and statistically significant (p<0.05 serum proteins were identified in FM and VM respectively, and almost half (46.2% of these proteins were commonly modulated due to both of the plasmodial infections. 13 proteins were found to be differentially expressed in FM compared to VM. Functional pathway analysis involving the identified proteins revealed the modulation of different vital physiological pathways, including acute phase response signaling, chemokine and cytokine signaling, complement cascades and blood coagulation in malaria. A panel of identified proteins consists of six candidates; serum amyloid A, hemopexin, apolipoprotein E, haptoglobin, retinol-binding protein and apolipoprotein A-I was used to build statistical sample class prediction models. By employing PLS-DA and other classification methods the clinical phenotypic classes (FM, VM, FC and HC were predicted with over 95% prediction accuracy. Individual performance of three classifier proteins; haptoglobin, apolipoprotein A-I and retinol-binding protein in diagnosis of malaria was analyzed using receiver operating characteristic (ROC curves. The discrimination of FM, VM, FC and HC groups on the basis of differentially expressed serum proteins demonstrates

  16. Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance

    Directory of Open Access Journals (Sweden)

    Kristina L Ford

    2011-09-01

    Full Text Available Using a series of multiplexed experiments we studied the quantitative changes in protein abundance of three Australian bread wheat cultivars (Triticum aestivum L. in response to a drought stress. Three cultivars differing in their ability to maintain grain yield during drought, Kukri (intolerant, Excalibur (tolerant and RAC875 (tolerant, were grown in the glasshouse with cyclic drought treatment that mimicked conditions in the field. Proteins were isolated from leaves of mature plants and isobaric tags were used to follow changes in the relative protein abundance of 159 proteins. This is the first shotgun proteomics study in wheat, providing important insights into protein responses to drought as well as identifying the largest number of wheat proteins (1,299 in a single study. The changes in the three cultivars at the different time points reflected their differing physiological responses to drought, with the two drought tolerant varieties (Excalibur and RAC875 differing in their protein responses. Excalibur lacked significant changes in proteins during the initial onset of the water deficit in contrast to RAC875 that had a large number of significant changes. All three cultivars had changes consistent with an increase in oxidative stress metabolism and ROS scavenging capacity seen through increases in superoxide dismutases and catalases as well as ROS avoidance through the decreases in proteins involved in photosynthesis and the Calvin cycle.

  17. Individual variability in the venom proteome of juvenile Bothrops jararaca specimens.

    Science.gov (United States)

    Dias, Gabriela S; Kitano, Eduardo S; Pagotto, Ana H; Sant'anna, Sávio S; Rocha, Marisa M T; Zelanis, André; Serrano, Solange M T

    2013-10-04

    Snake venom proteomes/peptidomes are highly complex and subject to ontogenetic changes. Individual variation in the venom proteome of juvenile snakes is poorly known. We report the proteomic analysis of venoms from 21 juvenile specimens of Bothrops jararaca of different geographical origins and correlate it with the evaluation of important venom features. Individual venoms showed similar caseinolytic activities; however, their amidolytic activities were significantly different. Rather intriguingly, plasma coagulant activity showed remarkable variability among the venoms but not the prothrombin-activating activity. LC-MS analysis showed significant differences between venoms; however, an interesting finding was the ubiquitous presence of the tripeptide ZKW, an endogenous inhibitor of metalloproteinases. Electrophoretic profiles of proteins submitted to reduction showed significant variability in total proteins, glycoproteins, and in the subproteomes of proteinases. Moreover, identification of differential bands revealed variation in most B. jararaca toxin classes. Profiles of venoms analyzed under nonreducing conditions showed less individual variability and identification of proteins in a conserved band revealed the presence of metalloproteinases and l-amino acid oxidase as common components of these venoms. Taken together, our findings suggest that individual venom proteome variability in B. jararaca exists from a very early animal age and is not a result of ontogenetic and diet changes.

  18. Proteomics of Pyrococcus furiosus (Pfu): Identification of Extracted Proteins by Three Independent Methods.

    Science.gov (United States)

    Wong, Catherine C L; Cociorva, Daniel; Miller, Christine A; Schmidt, Alexander; Monell, Craig; Aebersold, Ruedi; Yates, John R

    2013-02-01

    Pyrococcus furiosus (Pfu) is an excellent organism to generate reference samples for proteomics laboratories because of its moderately sized genome and very little sequence duplication within the genome. We demonstrated a stable and consistent method to prepare proteins in bulk that eliminates growth and preparation as a source of uncertainty in the standard. We performed several proteomic studies in different laboratories using each laboratory's specific workflow as well as separate and integrated data analysis. This study demonstrated that a Pfu whole cell lysate provides suitable protein sample complexity to not only validate proteomic methods, work flows, and benchmark new instruments but also to facilitate comparison of experimental data generated over time and across instruments or laboratories.

  19. Analysis of Peanut Leaf Proteome

    DEFF Research Database (Denmark)

    Ramesh, R.; Suravajhala, Prashanth; Pechan, T.

    2010-01-01

    Peanut (Arachis hypogaea) is one of the most important sources of plant protein. Current selection of genotypes requires molecular characterization of available populations. Peanut genome database has several EST cDNAs which can be used to analyze gene expression. Analysis of proteins is a direct...... approach to define function of their associated genes. Proteome analysis linked to genome sequence information is critical for functional genomics. However, the available protein expression data is extremely inadequate. Proteome analysis of peanut leaf was conducted using two-dimensional gel...... electrophoresis in combination with sequence identification using MALDI/TOF to determine their identity and function related to growth, development and responses to stresses. Peanut leaf proteins were resolved into 300 polypeptides with pI values between 3.5 and 8.0 and relative molecular masses from 12 to 100 k...

  20. Clinical proteomics: Current status, challenges, and future perspectives

    Directory of Open Access Journals (Sweden)

    Shyh-Horng Chiou

    2011-01-01

    Full Text Available This account will give an overview and evaluation of the current advances in mass spectrometry (MS-based proteomics platforms and technology. A general review of some background information concerning the application of these methods in the characterization of molecular sizes and related protein expression profiles associated with different types of cells under varied experimental conditions will be presented. It is intended to provide a concise and succinct overview to those clinical researchers first exposed to this foremost powerful methodology in modern life sciences of postgenomic era. Proteomic characterization using highly sophisticated and expensive instrumentation of MS has been used to characterize biological samples of complex protein mixtures with vastly different protein structure and composition. These systems are then used to highlight the versatility and potential of the MS-based proteomic strategies for facilitating protein expression analysis of various disease-related organisms or tissues of interest. Major MS-based strategies reviewed herein include (1 matrix-assisted laser desorption ionization-MS and electron-spray ionization proteomics; (2 one-dimensional or two-dimensional gel-based proteomics; (3 gel-free shotgun proteomics in conjunction with liquid chromatography/tandem MS; (4 Multiple reaction monitoring coupled tandem MS quantitative proteomics and; (5 Phosphoproteomics based on immobilized metal affinity chromatography and liquid chromatography-MS/MS.

  1. Proteomics of Trypanosoma evansi infection in rodents.

    Science.gov (United States)

    Roy, Nainita; Nageshan, Rishi Kumar; Pallavi, Rani; Chakravarthy, Harshini; Chandran, Syama; Kumar, Rajender; Gupta, Ashok Kumar; Singh, Raj Kumar; Yadav, Suresh Chandra; Tatu, Utpal

    2010-03-22

    Trypanosoma evansi infections, commonly called 'surra', cause significant economic losses to livestock industry. While this infection is mainly restricted to large animals such as camels, donkeys and equines, recent reports indicate their ability to infect humans. There are no World Animal Health Organization (WAHO) prescribed diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity. There is an urgent need to develop improved methods of diagnosis and control measures for this disease. Unlike its related human parasites T. brucei and T. cruzi whose genomes have been fully sequenced T. evansi genome sequence remains unavailable and very little efforts are being made to develop improved methods of prevention, diagnosis and treatment. With a view to identify potential diagnostic markers and drug targets we have studied the clinical proteome of T. evansi infection using mass spectrometry (MS). Using shot-gun proteomic approach involving nano-lc Quadrupole Time Of Flight (QTOF) mass spectrometry we have identified over 160 proteins expressed by T. evansi in mice infected with camel isolate. Homology driven searches for protein identification from MS/MS data led to most of the matches arising from related Trypanosoma species. Proteins identified belonged to various functional categories including metabolic enzymes; DNA metabolism; transcription; translation as well as cell-cell communication and signal transduction. TCA cycle enzymes were strikingly missing, possibly suggesting their low abundances. The clinical proteome revealed the presence of known and potential drug targets such as oligopeptidases, kinases, cysteine proteases and more. Previous proteomic studies on Trypanosomal infections, including human parasites T. brucei and T. cruzi, have been carried out from lab grown cultures. For T. evansi infection this is indeed the first ever proteomic study reported thus far. In addition to providing a glimpse into the

  2. Proteomics of Trypanosoma evansi infection in rodents.

    Directory of Open Access Journals (Sweden)

    Nainita Roy

    2010-03-01

    Full Text Available Trypanosoma evansi infections, commonly called 'surra', cause significant economic losses to livestock industry. While this infection is mainly restricted to large animals such as camels, donkeys and equines, recent reports indicate their ability to infect humans. There are no World Animal Health Organization (WAHO prescribed diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity. There is an urgent need to develop improved methods of diagnosis and control measures for this disease. Unlike its related human parasites T. brucei and T. cruzi whose genomes have been fully sequenced T. evansi genome sequence remains unavailable and very little efforts are being made to develop improved methods of prevention, diagnosis and treatment. With a view to identify potential diagnostic markers and drug targets we have studied the clinical proteome of T. evansi infection using mass spectrometry (MS.Using shot-gun proteomic approach involving nano-lc Quadrupole Time Of Flight (QTOF mass spectrometry we have identified over 160 proteins expressed by T. evansi in mice infected with camel isolate. Homology driven searches for protein identification from MS/MS data led to most of the matches arising from related Trypanosoma species. Proteins identified belonged to various functional categories including metabolic enzymes; DNA metabolism; transcription; translation as well as cell-cell communication and signal transduction. TCA cycle enzymes were strikingly missing, possibly suggesting their low abundances. The clinical proteome revealed the presence of known and potential drug targets such as oligopeptidases, kinases, cysteine proteases and more.Previous proteomic studies on Trypanosomal infections, including human parasites T. brucei and T. cruzi, have been carried out from lab grown cultures. For T. evansi infection this is indeed the first ever proteomic study reported thus far. In addition to providing a

  3. Reconciling proteomics with next generation sequencing

    NARCIS (Netherlands)

    Low, Teck Yew; Heck, Albert Jr

    2015-01-01

    Both genomics and proteomics technologies have matured in the last decade to a level where they are able to deliver system-wide data on the qualitative and quantitative abundance of their respective molecular entities, that is DNA/RNA and proteins. A next logical step is the collective use of these

  4. Complete solubilization of formalin-fixed, paraffin-embedded tissue may improve proteomic studies.

    Science.gov (United States)

    Shi, Shan-Rong; Taylor, Clive R; Fowler, Carol B; Mason, Jeffrey T

    2013-04-01

    Tissue-based proteomic approaches (tissue proteomics) are essential for discovering and evaluating biomarkers for personalized medicine. In any proteomics study, the most critical issue is sample extraction and preparation. This problem is especially difficult when recovering proteins from formalin-fixed, paraffin-embedded (FFPE) tissue sections. However, improving and standardizing protein extraction from FFPE tissue is a critical need because of the millions of archival FFPE tissues available in tissue banks worldwide. Recent progress in the application of heat-induced antigen retrieval principles for protein extraction from FFPE tissue has resulted in a number of published FFPE tissue proteomics studies. However, there is currently no consensus on the optimal protocol for protein extraction from FFPE tissue or accepted standards for quantitative evaluation of the extracts. Standardization is critical to ensure the accurate evaluation of FFPE protein extracts by proteomic methods such as reverse phase protein arrays, which is now in clinical use. In our view, complete solubilization of FFPE tissue samples is the best way to achieve the goal of standardizing the recovery of proteins from FFPE tissues. However, further studies are recommended to develop standardized protein extraction methods to ensure quantitative and qualitative reproducibility in the recovery of proteins from FFPE tissues. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Elucidating Host-Pathogen Interactions Based on Post-Translational Modifications Using Proteomics Approaches

    DEFF Research Database (Denmark)

    Ravikumar, Vaishnavi; Jers, Carsten; Mijakovic, Ivan

    2015-01-01

    can be efficiently applied to gain an insight into the molecular mechanisms involved. The measurement of the proteome and post-translationally modified proteome dynamics using mass spectrometry, results in a wide array of information, such as significant changes in protein expression, protein...... display host specificity through a complex network of molecular interactions that aid their survival and propagation. Co-infection states further lead to complications by increasing the microbial burden and risk factors. Quantitative proteomics based approaches and post-translational modification analysis...... pathogen interactions....

  6. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    KAUST Repository

    Liu, Peng

    2015-02-27

    Accumulation of reactive oxygen species (ROS) is one of the early defense responses against pathogen infection in plants. The mechanism about the initial and direct regulation of the defense signaling pathway by ROS remains elusive. Perturbation of cellular redox homeostasis by ROS is believed to alter functions of redox-sensitive proteins through their oxidative modifications. Here we report an OxiTRAQ-based proteomic study in identifying proteins whose cysteines underwent oxidative modifications in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional regulation, chromatin remodeling, RNA processing, post-translational modifications, and nucleocytoplasmic shuttling. The identification of the salicylate-/flg22-responsive redox-sensitive proteins provides a foundation from which further study can be conducted toward understanding biological significance of their oxidative modifications during the plant defense response.

  7. Plant plasma membrane proteomics for improving cold tolerance

    Directory of Open Access Journals (Sweden)

    Daisuke eTakahashi

    2013-04-01

    Full Text Available Plants are always exposed to various stresses. We have focused on freezing stress, which causes serious problems for agricultural management. When plants suffer freeze-induced damage, the plasma membrane is thought to be the primary site of injury because of its central role in regulation of various cellular processes. Cold tolerant species, however, adapt to such freezing conditions by modifying cellular components and functions (cold acclimation. One of the most important adaptation mechanisms to freezing is alteration of plasma membrane compositions and functions. Advanced proteomic technologies have succeeded in identification of many candidates that may play roles in adaptation of the plasma membrane to freezing stress. Proteomics results suggest that adaptations of plasma membrane functions to low temperature are associated with alterations of protein compositions during cold acclimation. Some of proteins identified by proteomic approaches have been verified their functional roles in freezing tolerance mechanisms further. Thus, accumulation of proteomic results in the plasma membrane is of importance for application to molecular breeding efforts to increase cold tolerance in crops.

  8. A comprehensive proteomics study on platelet concentrates: Platelet proteome, storage time and Mirasol pathogen reduction technology.

    Science.gov (United States)

    Salunkhe, Vishal; De Cuyper, Iris M; Papadopoulos, Petros; van der Meer, Pieter F; Daal, Brunette B; Villa-Fajardo, María; de Korte, Dirk; van den Berg, Timo K; Gutiérrez, Laura

    2018-03-19

    Platelet concentrates (PCs) represent a blood transfusion product with a major concern for safety as their storage temperature (20-24°C) allows bacterial growth, and their maximum storage time period (less than a week) precludes complete microbiological testing. Pathogen inactivation technologies (PITs) provide an additional layer of safety to the blood transfusion products from known and unknown pathogens such as bacteria, viruses, and parasites. In this context, PITs, such as Mirasol Pathogen Reduction Technology (PRT), have been developed and are implemented in many countries. However, several studies have shown in vitro that Mirasol PRT induces a certain level of platelet shape change, hyperactivation, basal degranulation, and increased oxidative damage during storage. It has been suggested that Mirasol PRT might accelerate what has been described as the platelet storage lesion (PSL), but supportive molecular signatures have not been obtained. We aimed at dissecting the influence of both variables, that is, Mirasol PRT and storage time, at the proteome level. We present comprehensive proteomics data analysis of Control PCs and PCs treated with Mirasol PRT at storage days 1, 2, 6, and 8. Our workflow was set to perform proteomics analysis using a gel-free and label-free quantification (LFQ) approach. Semi-quantification was based on LFQ signal intensities of identified proteins using MaxQuant/Perseus software platform. Data are available via ProteomeXchange with identifier PXD008119. We identified marginal differences between Mirasol PRT and Control PCs during storage. However, those significant changes at the proteome level were specifically related to the functional aspects previously described to affect platelets upon Mirasol PRT. In addition, the effect of Mirasol PRT on the platelet proteome appeared not to be exclusively due to an accelerated or enhanced PSL. In summary, semi-quantitative proteomics allows to discern between proteome changes due to

  9. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes

    DEFF Research Database (Denmark)

    Zhang, Yanling; Zhang, Yong; Adachi, Jun

    2007-01-01

    and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at http......://www.mapuproteome.com using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic...... annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools....

  10. On-Beads Digestion in Conjunction with Data-Dependent Mass Spectrometry: A Shortcut to Quantitative and Dynamic Interaction Proteomics

    Directory of Open Access Journals (Sweden)

    Benedetta Turriziani

    2014-04-01

    Full Text Available With the advent of the “-omics” era, biological research has shifted from functionally analyzing single proteins to understanding how entire protein networks connect and adapt to environmental cues. Frequently, pathological processes are initiated by a malfunctioning protein network rather than a single protein. It is therefore crucial to investigate the regulation of proteins in the context of a pathway first and signaling network second. In this study, we demonstrate that a quantitative interaction proteomic approach, combining immunoprecipitation, in-solution digestion and label-free quantification mass spectrometry, provides data of high accuracy and depth. This protocol is applicable, both to tagged, exogenous and untagged, endogenous proteins. Furthermore, it is fast, reliable and, due to a label-free quantitation approach, allows the comparison of multiple conditions. We further show that we are able to generate data in a medium throughput fashion and that we can quantify dynamic interaction changes in signaling pathways in response to mitogenic stimuli, making our approach a suitable method to generate data for system biology approaches.

  11. Proteomic identification of rhythmic proteins in rice seedlings.

    Science.gov (United States)

    Hwang, Heeyoun; Cho, Man-Ho; Hahn, Bum-Soo; Lim, Hyemin; Kwon, Yong-Kook; Hahn, Tae-Ryong; Bhoo, Seong Hee

    2011-04-01

    Many aspects of plant metabolism that are involved in plant growth and development are influenced by light-regulated diurnal rhythms as well as endogenous clock-regulated circadian rhythms. To identify the rhythmic proteins in rice, periodically grown (12h light/12h dark cycle) seedlings were harvested for three days at six-hour intervals. Continuous dark-adapted plants were also harvested for two days. Among approximately 3000 reproducible protein spots on each gel, proteomic analysis ascertained 354 spots (~12%) as light-regulated rhythmic proteins, in which 53 spots showed prolonged rhythm under continuous dark conditions. Of these 354 ascertained rhythmic protein spots, 74 diurnal spots and 10 prolonged rhythmic spots under continuous dark were identified by MALDI-TOF MS analysis. The rhythmic proteins were functionally classified into photosynthesis, central metabolism, protein synthesis, nitrogen metabolism, stress resistance, signal transduction and unknown. Comparative analysis of our proteomic data with the public microarray database (the Plant DIURNAL Project) and RT-PCR analysis of rhythmic proteins showed differences in rhythmic expression phases between mRNA and protein, suggesting that the clock-regulated proteins in rice are modulated by not only transcriptional but also post-transcriptional, translational, and/or post-translational processes. 2011 Elsevier B.V. All rights reserved.

  12. Stressor-induced proteome alterations in zebrafish: A meta-analysis of response patterns

    Energy Technology Data Exchange (ETDEWEB)

    Groh, Ksenia J., E-mail: ksenia.groh@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf (Switzerland); ETH Zürich, Swiss Federal Institute of Technology, Department of Chemistry and Applied Biosciences, 8093 Zürich (Switzerland); Suter, Marc J.-F. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf (Switzerland); ETH Zürich, Swiss Federal Institute of Technology, Department of Environmental Systems Science, 8092 Zürich (Switzerland)

    2015-02-15

    Highlights: • We compared reported proteome changes induced by various stressors in zebrafish. • Several proteins groups frequently responding to diverse stressors were identified. • These included energy metabolism enzymes, heat shock and cytoskeletal proteins. • Insufficient proteome coverage impedes identification of more specific responses. • Further research needs for proteomics in ecotoxicology are discussed. - Abstract: Proteomics approaches are being increasingly applied in ecotoxicology on the premise that the identification of specific protein expression changes in response to a particular chemical would allow elucidation of the underlying molecular pathways leading to an adverse effect. This in turn is expected to promote the development of focused testing strategies for specific groups of toxicants. Although both gel-based and gel-free global characterization techniques provide limited proteome coverage, the conclusions regarding the cellular processes affected are still being drawn based on the few changes detected. To investigate how specific the detected responses are, we analyzed a set of studies that characterized proteome alterations induced by various physiological, chemical and biological stressors in zebrafish, a popular model organism. Our analysis highlights several proteins and protein groups, including heat shock and oxidative stress defense proteins, energy metabolism enzymes and cytoskeletal proteins, to be most frequently identified as responding to diverse stressors. In contrast, other potentially more specifically responding protein groups are detected much less frequently. Thus, zebrafish proteome responses to stress reported by different studies appear to depend mostly on the level of stress rather than on the specific stressor itself. This suggests that the most broadly used current proteomics technologies do not provide sufficient proteome coverage to allow in-depth investigation of specific mechanisms of toxicant action

  13. Stressor-induced proteome alterations in zebrafish: A meta-analysis of response patterns

    International Nuclear Information System (INIS)

    Groh, Ksenia J.; Suter, Marc J.-F.

    2015-01-01

    Highlights: • We compared reported proteome changes induced by various stressors in zebrafish. • Several proteins groups frequently responding to diverse stressors were identified. • These included energy metabolism enzymes, heat shock and cytoskeletal proteins. • Insufficient proteome coverage impedes identification of more specific responses. • Further research needs for proteomics in ecotoxicology are discussed. - Abstract: Proteomics approaches are being increasingly applied in ecotoxicology on the premise that the identification of specific protein expression changes in response to a particular chemical would allow elucidation of the underlying molecular pathways leading to an adverse effect. This in turn is expected to promote the development of focused testing strategies for specific groups of toxicants. Although both gel-based and gel-free global characterization techniques provide limited proteome coverage, the conclusions regarding the cellular processes affected are still being drawn based on the few changes detected. To investigate how specific the detected responses are, we analyzed a set of studies that characterized proteome alterations induced by various physiological, chemical and biological stressors in zebrafish, a popular model organism. Our analysis highlights several proteins and protein groups, including heat shock and oxidative stress defense proteins, energy metabolism enzymes and cytoskeletal proteins, to be most frequently identified as responding to diverse stressors. In contrast, other potentially more specifically responding protein groups are detected much less frequently. Thus, zebrafish proteome responses to stress reported by different studies appear to depend mostly on the level of stress rather than on the specific stressor itself. This suggests that the most broadly used current proteomics technologies do not provide sufficient proteome coverage to allow in-depth investigation of specific mechanisms of toxicant action

  14. Separomics applied to the proteomics and peptidomics of low-abundance proteins: Choice of methods and challenges – A review

    Science.gov (United States)

    Baracat-Pereira, Maria Cristina; de Oliveira Barbosa, Meire; Magalhães, Marcos Jorge; Carrijo, Lanna Clicia; Games, Patrícia Dias; Almeida, Hebréia Oliveira; Sena Netto, José Fabiano; Pereira, Matheus Rodrigues; de Barros, Everaldo Gonçalves

    2012-01-01

    The enrichment and isolation of proteins are considered limiting steps in proteomic studies. Identification of proteins whose expression is transient, those that are of low-abundance, and of natural peptides not described in databases, is still a great challenge. Plant extracts are in general complex, and contaminants interfere with the identification of proteins involved in important physiological processes, such as plant defense against pathogens. This review discusses the challenges and strategies of separomics applied to the identification of low-abundance proteins and peptides in plants, especially in plants challenged by pathogens. Separomics is described as a group of methodological strategies for the separation of protein molecules for proteomics. Several tools have been used to remove highly abundant proteins from samples and also non-protein contaminants. The use of chromatographic techniques, the partition of the proteome into subproteomes, and an effort to isolate proteins in their native form have allowed the isolation and identification of rare proteins involved in different processes. PMID:22802713

  15. Proteomics and Metabolomics: two emerging areas for legume improvement

    Directory of Open Access Journals (Sweden)

    Abirami eRamalingam

    2015-12-01

    Full Text Available The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important source of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signalling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signalling in legumes. In

  16. Comprehensive quantitative comparison of the membrane proteome, phosphoproteome, and sialiome of human embryonic and neural stem cells

    DEFF Research Database (Denmark)

    Melo-Braga, Marcella Nunes; Schulz, Melanie; Liu, Qiuyue

    2014-01-01

    Human embryonic stem cells (hESCs) can differentiate into neural stem cells (NSCs), which can further be differentiated into neurons and glia cells. Therefore, these cells have huge potential as source for treatment of neurological diseases. Membrane-associated proteins are very important......ESCs and NSCs as well as to investigate potential new markers for these two cell stages, we performed large-scale quantitative membrane-proteomic of hESCs and NSCs. This approach employed membrane purification followed by peptide dimethyl labeling and peptide enrichment to study the membrane subproteome as well...... in which 78% of phosphopeptides were identified with ≥99% confidence in site assignment and 1810 unique formerly sialylated N-linked glycopeptides. Several proteins were identified as significantly regulated in hESCs and NSC, including proteins involved in the early embryonic and neural development...

  17. Open source libraries and frameworks for mass spectrometry based proteomics: a developer's perspective.

    Science.gov (United States)

    Perez-Riverol, Yasset; Wang, Rui; Hermjakob, Henning; Müller, Markus; Vesada, Vladimir; Vizcaíno, Juan Antonio

    2014-01-01

    Data processing, management and visualization are central and critical components of a state of the art high-throughput mass spectrometry (MS)-based proteomics experiment, and are often some of the most time-consuming steps, especially for labs without much bioinformatics support. The growing interest in the field of proteomics has triggered an increase in the development of new software libraries, including freely available and open-source software. From database search analysis to post-processing of the identification results, even though the objectives of these libraries and packages can vary significantly, they usually share a number of features. Common use cases include the handling of protein and peptide sequences, the parsing of results from various proteomics search engines output files, and the visualization of MS-related information (including mass spectra and chromatograms). In this review, we provide an overview of the existing software libraries, open-source frameworks and also, we give information on some of the freely available applications which make use of them. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Open source libraries and frameworks for mass spectrometry based proteomics: A developer's perspective☆

    Science.gov (United States)

    Perez-Riverol, Yasset; Wang, Rui; Hermjakob, Henning; Müller, Markus; Vesada, Vladimir; Vizcaíno, Juan Antonio

    2014-01-01

    Data processing, management and visualization are central and critical components of a state of the art high-throughput mass spectrometry (MS)-based proteomics experiment, and are often some of the most time-consuming steps, especially for labs without much bioinformatics support. The growing interest in the field of proteomics has triggered an increase in the development of new software libraries, including freely available and open-source software. From database search analysis to post-processing of the identification results, even though the objectives of these libraries and packages can vary significantly, they usually share a number of features. Common use cases include the handling of protein and peptide sequences, the parsing of results from various proteomics search engines output files, and the visualization of MS-related information (including mass spectra and chromatograms). In this review, we provide an overview of the existing software libraries, open-source frameworks and also, we give information on some of the freely available applications which make use of them. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. PMID:23467006

  19. ExSTA: External Standard Addition Method for Accurate High-Throughput Quantitation in Targeted Proteomics Experiments.

    Science.gov (United States)

    Mohammed, Yassene; Pan, Jingxi; Zhang, Suping; Han, Jun; Borchers, Christoph H

    2018-03-01

    Targeted proteomics using MRM with stable-isotope-labeled internal-standard (SIS) peptides is the current method of choice for protein quantitation in complex biological matrices. Better quantitation can be achieved with the internal standard-addition method, where successive increments of synthesized natural form (NAT) of the endogenous analyte are added to each sample, a response curve is generated, and the endogenous concentration is determined at the x-intercept. Internal NAT-addition, however, requires multiple analyses of each sample, resulting in increased sample consumption and analysis time. To compare the following three methods, an MRM assay for 34 high-to-moderate abundance human plasma proteins is used: classical internal SIS-addition, internal NAT-addition, and external NAT-addition-generated in buffer using NAT and SIS peptides. Using endogenous-free chicken plasma, the accuracy is also evaluated. The internal NAT-addition outperforms the other two in precision and accuracy. However, the curves derived by internal vs. external NAT-addition differ by only ≈3.8% in slope, providing comparable accuracies and precision with good CV values. While the internal NAT-addition method may be "ideal", this new external NAT-addition can be used to determine the concentration of high-to-moderate abundance endogenous plasma proteins, providing a robust and cost-effective alternative for clinical analyses or other high-throughput applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis.

    Science.gov (United States)

    Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A

    2015-01-13

    The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy. © 2014 The Authors.

  1. A systematic evaluation of normalization methods in quantitative label-free proteomics.

    Science.gov (United States)

    Välikangas, Tommi; Suomi, Tomi; Elo, Laura L

    2018-01-01

    To date, mass spectrometry (MS) data remain inherently biased as a result of reasons ranging from sample handling to differences caused by the instrumentation. Normalization is the process that aims to account for the bias and make samples more comparable. The selection of a proper normalization method is a pivotal task for the reliability of the downstream analysis and results. Many normalization methods commonly used in proteomics have been adapted from the DNA microarray techniques. Previous studies comparing normalization methods in proteomics have focused mainly on intragroup variation. In this study, several popular and widely used normalization methods representing different strategies in normalization are evaluated using three spike-in and one experimental mouse label-free proteomic data sets. The normalization methods are evaluated in terms of their ability to reduce variation between technical replicates, their effect on differential expression analysis and their effect on the estimation of logarithmic fold changes. Additionally, we examined whether normalizing the whole data globally or in segments for the differential expression analysis has an effect on the performance of the normalization methods. We found that variance stabilization normalization (Vsn) reduced variation the most between technical replicates in all examined data sets. Vsn also performed consistently well in the differential expression analysis. Linear regression normalization and local regression normalization performed also systematically well. Finally, we discuss the choice of a normalization method and some qualities of a suitable normalization method in the light of the results of our evaluation. © The Author 2016. Published by Oxford University Press.

  2. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes.

    Science.gov (United States)

    Zhang, Yanling; Zhang, Yong; Adachi, Jun; Olsen, Jesper V; Shi, Rong; de Souza, Gustavo; Pasini, Erica; Foster, Leonard J; Macek, Boris; Zougman, Alexandre; Kumar, Chanchal; Wisniewski, Jacek R; Jun, Wang; Mann, Matthias

    2007-01-01

    Mass spectrometry (MS)-based proteomics has become a powerful technology to map the protein composition of organelles, cell types and tissues. In our department, a large-scale effort to map these proteomes is complemented by the Max-Planck Unified (MAPU) proteome database. MAPU contains several body fluid proteomes; including plasma, urine, and cerebrospinal fluid. Cell lines have been mapped to a depth of several thousand proteins and the red blood cell proteome has also been analyzed in depth. The liver proteome is represented with 3200 proteins. By employing high resolution MS and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at http://www.mapuproteome.com using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools.

  3. Identification and quantitation of anhydrosugars in biomass pyrolytic oils using carbon-13 NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Castola, V.; Bighelli, A. [Universite de Corse, Equipe Chimie et Biomasse, Ajaccio (France); Conti, L.; Scano, G.; Mascia, S. [Universita di Sassari, Dipartimento di Chimica, Sassari (Italy); Casanova, J. [Universite de Corse, Equipe Chimie et Biomasse, Ajaccio (France)

    2000-07-01

    We described a method which allowed identification and quantitation of anhydrosugars in biomass pyrolysis liquids using carbon-13 NMR spectroscopy. The quantitative procedure was checked and validated (accuracy, precision and response linearity) with pure compounds and artificial mixtures. This method was then applied to the analysis of the glucidic fraction obtained after a simple and rapid fractionation of the bio oil. (author)

  4. Proteomic identification of host and parasite biomarkers in saliva from patients with uncomplicated Plasmodium falciparum malaria

    Directory of Open Access Journals (Sweden)

    Huang Honglei

    2012-05-01

    Full Text Available Abstract Background Malaria cases attributed to Plasmodium falciparum account for approximately 600,000 deaths yearly, mainly in African children. The gold standard method to diagnose malaria requires the visualization of the parasite in blood. The role of non-invasive diagnostic methods to diagnose malaria remains unclear. Methods A protocol was optimized to deplete highly abundant proteins from saliva to improve the dynamic range of the proteins identified and assess their suitability as candidate biomarkers of malaria infection. A starch-based amylase depletion strategy was used in combination with four different lectins to deplete glycoproteins (Concanavalin A and Aleuria aurantia for N-linked glycoproteins; jacalin and peanut agglutinin for O-linked glycoproteins. A proteomic analysis of depleted saliva samples was performed in 17 children with fever and a positive–malaria slide and compared with that of 17 malaria-negative children with fever. Results The proteomic signature of malaria-positive patients revealed a strong up-regulation of erythrocyte-derived and inflammatory proteins. Three P. falciparum proteins, PFL0480w, PF08_0054 and PFI0875w, were identified in malaria patients and not in controls. Aleuria aurantia and jacalin showed the best results for parasite protein identification. Conclusions This study shows that saliva is a suitable clinical specimen for biomarker discovery. Parasite proteins and several potential biomarkers were identified in patients with malaria but not in patients with other causes of fever. The diagnostic performance of these markers should be addressed prospectively.

  5. Integrated Proteomic Pipeline Using Multiple Search Engines for a Proteogenomic Study with a Controlled Protein False Discovery Rate.

    Science.gov (United States)

    Park, Gun Wook; Hwang, Heeyoun; Kim, Kwang Hoe; Lee, Ju Yeon; Lee, Hyun Kyoung; Park, Ji Yeong; Ji, Eun Sun; Park, Sung-Kyu Robin; Yates, John R; Kwon, Kyung-Hoon; Park, Young Mok; Lee, Hyoung-Joo; Paik, Young-Ki; Kim, Jin Young; Yoo, Jong Shin

    2016-11-04

    In the Chromosome-Centric Human Proteome Project (C-HPP), false-positive identification by peptide spectrum matches (PSMs) after database searches is a major issue for proteogenomic studies using liquid-chromatography and mass-spectrometry-based large proteomic profiling. Here we developed a simple strategy for protein identification, with a controlled false discovery rate (FDR) at the protein level, using an integrated proteomic pipeline (IPP) that consists of four engrailed steps as follows. First, using three different search engines, SEQUEST, MASCOT, and MS-GF+, individual proteomic searches were performed against the neXtProt database. Second, the search results from the PSMs were combined using statistical evaluation tools including DTASelect and Percolator. Third, the peptide search scores were converted into E-scores normalized using an in-house program. Last, ProteinInferencer was used to filter the proteins containing two or more peptides with a controlled FDR of 1.0% at the protein level. Finally, we compared the performance of the IPP to a conventional proteomic pipeline (CPP) for protein identification using a controlled FDR of <1% at the protein level. Using the IPP, a total of 5756 proteins (vs 4453 using the CPP) including 477 alternative splicing variants (vs 182 using the CPP) were identified from human hippocampal tissue. In addition, a total of 10 missing proteins (vs 7 using the CPP) were identified with two or more unique peptides, and their tryptic peptides were validated using MS/MS spectral pattern from a repository database or their corresponding synthetic peptides. This study shows that the IPP effectively improved the identification of proteins, including alternative splicing variants and missing proteins, in human hippocampal tissues for the C-HPP. All RAW files used in this study were deposited in ProteomeXchange (PXD000395).

  6. Identification of Novel STAT6-Regulated Proteins in Mouse B Cells by Comparative Transcriptome and Proteome Analysis.

    Science.gov (United States)

    Mokada-Gopal, Lavanya; Boeser, Alexander; Lehmann, Christian H K; Drepper, Friedel; Dudziak, Diana; Warscheid, Bettina; Voehringer, David

    2017-05-01

    The transcription factor STAT6 plays a key role in mediating signaling downstream of the receptors for IL-4 and IL-13. In B cells, STAT6 is required for class switch recombination to IgE and for germinal center formation during type 2 immune responses directed against allergens or helminths. In this study, we compared the transcriptomes and proteomes of primary mouse B cells from wild-type and STAT6-deficient mice cultured for 4 d in the presence or absence of IL-4. Microarray analysis revealed that 214 mRNAs were upregulated and 149 were downregulated >3-fold by IL-4 in a STAT6-dependent manner. Across all samples, ∼5000 proteins were identified by label-free quantitative liquid chromatography/mass spectrometry. A total of 149 proteins was found to be differentially expressed >3-fold between IL-4-stimulated wild-type and STAT6 -/- B cells (75 upregulated and 74 downregulated). Comparative analysis of the proteome and transcriptome revealed that expression of these proteins was mainly regulated at the transcriptional level, which argues against a major role for posttranscriptional mechanisms that modulate the STAT6-dependent proteome. Nine proteins were selected for confirmation by flow cytometry or Western blot. We show that CD30, CD79b, SLP-76, DEC205, IL-5Rα, STAT5, and Thy1 are induced by IL-4 in a STAT6-dependent manner. In contrast, Syk and Fc receptor-like 1 were downregulated. This dataset provides a framework for further functional analysis of newly identified IL-4-regulated proteins in B cells that may contribute to germinal center formation and IgE switching in type 2 immunity. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. An efficient proteomic approach to analyze agriculture crop biomass

    Czech Academy of Sciences Publication Activity Database

    Flodrová, Dana; Bobálová, Janette

    2013-01-01

    Roč. 32, č. 5 (2013), s. 365-372 ISSN 1572-3887 R&D Projects: GA MŠk 1M0570 Institutional support: RVO:68081715 Keywords : MALDI * biomass * proteomics * identification * hemicellulases Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.039, year: 2013

  8. Quantitative proteomics and systems analysis of cultured H9C2 cardiomyoblasts during differentiation over time supports a 'function follows form' model of differentiation.

    Science.gov (United States)

    Kankeu, Cynthia; Clarke, Kylie; Van Haver, Delphi; Gevaert, Kris; Impens, Francis; Dittrich, Anna; Roderick, H Llewelyn; Passante, Egle; Huber, Heinrich J

    2018-05-17

    The rat cardiomyoblast cell line H9C2 has emerged as a valuable tool for studying cardiac development, mechanisms of disease and toxicology. We present here a rigorous proteomic analysis that monitored the changes in protein expression during differentiation of H9C2 cells into cardiomyocyte-like cells over time. Quantitative mass spectrometry followed by gene ontology (GO) enrichment analysis revealed that early changes in H9C2 differentiation are related to protein pathways of cardiac muscle morphogenesis and sphingolipid synthesis. These changes in the proteome were followed later in the differentiation time-course by alterations in the expression of proteins involved in cation transport and beta-oxidation. Studying the temporal profile of the H9C2 proteome during differentiation in further detail revealed eight clusters of co-regulated proteins that can be associated with early, late, continuous and transient up- and downregulation. Subsequent reactome pathway analysis based on these eight clusters further corroborated and detailed the results of the GO analysis. Specifically, this analysis confirmed that proteins related to pathways in muscle contraction are upregulated early and transiently, and proteins relevant to extracellular matrix organization are downregulated early. In contrast, upregulation of proteins related to cardiac metabolism occurs at later time points. Finally, independent validation of the proteomics results by immunoblotting confirmed hereto unknown regulators of cardiac structure and ionic metabolism. Our results are consistent with a 'function follows form' model of differentiation, whereby early and transient alterations of structural proteins enable subsequent changes that are relevant to the characteristic physiology of cardiomyocytes.

  9. Quantitative Proteomic Analysis of Mouse Embryonic Fibroblasts and Induced Pluripotent Stem Cells Using 16O /18O labeling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xin; Tian, Changhai; Liu, Miao; Wang, Yongxiang; Tolmachev, Aleksey V.; Sharma, Seema; Yu, Fang; Fu, Kai; Zheng, Jialin; Ding, Shi-Jian

    2012-04-06

    Induced pluripotent stem cells (iPSC) hold great promise for regenerative medicine as well as for investigations into the pathogenesis and treatment of various diseases. Understanding of key intracellular signaling pathways and protein targets that control development of iPSC from somatic cells is essential for designing new approaches to improve reprogramming efficiency. Here we report the development and application of an integrated quantitative proteomics platform for investigating differences in protein expressions between mouse embryonic fibroblasts (MEF) and MEF-derived iPSC. This platform consists of 16O/18O labeling, multidimensional peptide separation coupled with tandem mass spectrometry, and data analysis with UNiquant software. Using this platform a total of 2,481 proteins were identified and quantified from the 16O/18O-labeled MEF-iPSC proteome mixtures with a false discovery rate of 0.01. Among them, 218 proteins were significantly upregulated, while 247 proteins were significantly downregulated in iPSC compared to MEF. Many nuclear proteins, including Hdac1, Dnmt1, Pcna, Ccnd1, Smarcc1, and subunits in DNA replication and RNA polymerase II complex were found to be enhanced in iPSC. Protein network analysis revealed that Pcna functions as a hub orchestrating complicated mechanisms including DNA replication, epigenetic inheritance (Dnmt1) and chromatin remodeling (Smarcc1) to reprogram MEF and maintain stemness of iPSC.

  10. Protein content and functional characteristics of serum-purified exosomes from patients with colorectal cancer revealed by quantitative proteomics.

    Science.gov (United States)

    Chen, Yanyu; Xie, Yong; Xu, Lai; Zhan, Shaohua; Xiao, Yi; Gao, Yanpan; Wu, Bin; Ge, Wei

    2017-02-15

    Tumor cells of colorectal cancer (CRC) release exosomes into the circulation. These exosomes can mediate communication between cells and affect various tumor-related processes in their target cells. We present a quantitative proteomics analysis of the exosomes purified from serum of patients with CRC and normal volunteers; data are available via ProteomeXchange with identifier PXD003875. We identified 918 proteins with an overlap of 725 Gene IDs in the Exocarta proteins list. Compared with the serum-purified exosomes (SPEs) of normal volunteers, we found 36 proteins upregulated and 22 proteins downregulated in the SPEs of CRC patients. Bioinformatics analysis revealed that upregulated proteins are involved in processes that modulate the pretumorigenic microenvironment for metastasis. In contrast, differentially expressed proteins (DEPs) that play critical roles in tumor growth and cell survival were principally downregulated. Our study demonstrates that SPEs of CRC patients play a pivotal role in promoting the tumor invasiveness, but have minimal influence on putative alterations in tumor survival or proliferation. According to bioinformatics analysis, we speculate that the protein contents of exosomes might be associated with whether they are involved in premetastatic niche establishment or growth and survival of metastatic tumor cells. This information will be helpful in elucidating the pathophysiological functions of tumor-derived exosomes, and aid in the development of CRC diagnostics and therapeutics. © 2016 UICC.

  11. Implementation of statistical process control for proteomic experiments via LC MS/MS.

    Science.gov (United States)

    Bereman, Michael S; Johnson, Richard; Bollinger, James; Boss, Yuval; Shulman, Nick; MacLean, Brendan; Hoofnagle, Andrew N; MacCoss, Michael J

    2014-04-01

    Statistical process control (SPC) is a robust set of tools that aids in the visualization, detection, and identification of assignable causes of variation in any process that creates products, services, or information. A tool has been developed termed Statistical Process Control in Proteomics (SProCoP) which implements aspects of SPC (e.g., control charts and Pareto analysis) into the Skyline proteomics software. It monitors five quality control metrics in a shotgun or targeted proteomic workflow. None of these metrics require peptide identification. The source code, written in the R statistical language, runs directly from the Skyline interface, which supports the use of raw data files from several of the mass spectrometry vendors. It provides real time evaluation of the chromatographic performance (e.g., retention time reproducibility, peak asymmetry, and resolution), and mass spectrometric performance (targeted peptide ion intensity and mass measurement accuracy for high resolving power instruments) via control charts. Thresholds are experiment- and instrument-specific and are determined empirically from user-defined quality control standards that enable the separation of random noise and systematic error. Finally, Pareto analysis provides a summary of performance metrics and guides the user to metrics with high variance. The utility of these charts to evaluate proteomic experiments is illustrated in two case studies.

  12. Proteomic analysis of purified coronavirus infectious bronchitis virus particles

    Directory of Open Access Journals (Sweden)

    Shu Dingming

    2010-06-01

    Full Text Available Abstract Background Infectious bronchitis virus (IBV is the coronavirus of domestic chickens causing major economic losses to the poultry industry. Because of the complexity of the IBV life cycle and the small number of viral structural proteins, important virus-host relationships likely remain to be discovered. Toward this goal, we performed two-dimensional gel electrophoresis fractionation coupled to mass spectrometry identification approaches to perform a comprehensive proteomic analysis of purified IBV particles. Results Apart from the virus-encoded structural proteins, we detected 60 host proteins in the purified virions which can be grouped into several functional categories including intracellular trafficking proteins (20%, molecular chaperone (18%, macromolcular biosynthesis proteins (17%, cytoskeletal proteins (15%, signal transport proteins (15%, protein degradation (8%, chromosome associated proteins (2%, ribosomal proteins (2%, and other function proteins (3%. Interestingly, 21 of the total host proteins have not been reported to be present in virions of other virus families, such as major vault protein, TENP protein, ovalbumin, and scavenger receptor protein. Following identification of the host proteins by proteomic methods, the presence of 4 proteins in the purified IBV preparation was verified by western blotting and immunogold labeling detection. Conclusions The results present the first standard proteomic profile of IBV and may facilitate the understanding of the pathogenic mechanisms.

  13. Quantitative proteomic profiling for clarification of the crucial roles of lysosomes in microbial infections.

    Science.gov (United States)

    Xu, Benhong; Gao, Yanpan; Zhan, Shaohua; Ge, Wei

    2017-07-01

    Lysosomes play vital roles in both innate and adaptive immunity. It is widely accepted that lysosomes do not function exclusively as a digestive organelle. It is also involved in the process of immune cells against pathogens. However, the changes in the lysosomal proteome caused by infection with various microbes are still largely unknown, and our understanding of the proteome of the purified lysosome is another obstacle that needs to be resolved. Here, we performed a proteomic study on lysosomes enriched from THP1 cells after infection with Listeria monocytogenes (L.m), Herpes Simplex Virus 1 (HSV-1) and Vesicular Stomatitis Virus (VSV). In combination with the gene ontology (GO) analysis, we identified 284 lysosomal-related proteins from a total of 4560 proteins. We also constructed the protein-protein interaction networks for the differentially expressed proteins and revealed the core lysosomal proteins, including SRC in the L. m treated group, SRC, GLB1, HEXA and HEXB in the HSV-1 treated group and GLB1, CTSA, CTSB, HEXA and HEXB in the VSV treated group, which are involved in responding to diverse microbial infections. This study not only reveals variable lysosome responses depending on the bacterial or virus infection, but also provides the evidence based on which we propose a novel approach to proteome research for investigation of the function of the enriched organelles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A mighty small heart: the cardiac proteome of adult Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Anthony Cammarato

    2011-04-01

    Full Text Available Drosophila melanogaster is emerging as a powerful model system for the study of cardiac disease. Establishing peptide and protein maps of the Drosophila heart is central to implementation of protein network studies that will allow us to assess the hallmarks of Drosophila heart pathogenesis and gauge the degree of conservation with human disease mechanisms on a systems level. Using a gel-LC-MS/MS approach, we identified 1228 protein clusters from 145 dissected adult fly hearts. Contractile, cytostructural and mitochondrial proteins were most abundant consistent with electron micrographs of the Drosophila cardiac tube. Functional/Ontological enrichment analysis further showed that proteins involved in glycolysis, Ca(2+-binding, redox, and G-protein signaling, among other processes, are also over-represented. Comparison with a mouse heart proteome revealed conservation at the level of molecular function, biological processes and cellular components. The subsisting peptidome encompassed 5169 distinct heart-associated peptides, of which 1293 (25% had not been identified in a recent Drosophila peptide compendium. PeptideClassifier analysis was further used to map peptides to specific gene-models. 1872 peptides provide valuable information about protein isoform groups whereas a further 3112 uniquely identify specific protein isoforms and may be used as a heart-associated peptide resource for quantitative proteomic approaches based on multiple-reaction monitoring. In summary, identification of excitation-contraction protein landmarks, orthologues of proteins associated with cardiovascular defects, and conservation of protein ontologies, provides testimony to the heart-like character of the Drosophila cardiac tube and to the utility of proteomics as a complement to the power of genetics in this growing model of human heart disease.

  15. Proteomics with Mass Spectrometry Imaging: Beyond Amyloid Typing.

    Science.gov (United States)

    Lavatelli, Francesca; Merlini, Giampaolo

    2018-04-01

    Detection and typing of amyloid deposits in tissues are two crucial steps in the management of systemic amyloidoses. The presence of amyloid deposits is routinely evaluated through Congo red staining, whereas proteomics is now a mainstay in the identification of the deposited proteins. In article number 1700236, Winter et al. [Proteomics 2017, 17, Issue 22] describe a novel method based on MALDI-MS imaging coupled to ion mobility separation and peptide filtering, to detect the presence of amyloid in histology samples and to identify its composition, while preserving the spatial distribution of proteins in tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Data Generated by Quantitative Liquid Chromatography-Mass Spectrometry Proteomics Are Only the Start and Not the Endpoint: Optimization of Quantitative Concatemer-Based Measurement of Hepatic Uridine-5'-Diphosphate-Glucuronosyltransferase Enzymes with Reference to Catalytic Activity.

    Science.gov (United States)

    Achour, Brahim; Dantonio, Alyssa; Niosi, Mark; Novak, Jonathan J; Al-Majdoub, Zubida M; Goosen, Theunis C; Rostami-Hodjegan, Amin; Barber, Jill

    2018-06-01

    Quantitative proteomic methods require optimization at several stages, including sample preparation, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and data analysis, with the final analysis stage being less widely appreciated by end-users. Previously reported measurement of eight uridine-5'-diphospho-glucuronosyltransferases (UGT) generated by two laboratories [using stable isotope-labeled (SIL) peptides or quantitative concatemer (QconCAT)] reflected significant disparity between proteomic methods. Initial analysis of QconCAT data showed lack of correlation with catalytic activity for several UGTs (1A4, 1A6, 1A9, 2B15) and moderate correlations for UGTs 1A1, 1A3, and 2B7 ( R s = 0.40-0.79, P data analysis, starting from unprocessed LC-MS/MS data, was undertaken, with the aim of improving accuracy, defined by correlation against activity. Three main criteria were found to be important: choice of monitored peptides and fragments, correction for isotope-label incorporation, and abundance normalization using fractional protein mass. Upon optimization, abundance-activity correlations improved significantly for six UGTs ( R s = 0.53-0.87, P data analysis strategy and indicates, using examples, the significance of systematic data processing following acquisition. The proposed strategy offers significant improvement on existing guidelines applicable to clinically relevant proteins quantified using QconCAT. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Halobacterium salinarum NRC-1 PeptideAtlas: strategies for targeted proteomics

    Science.gov (United States)

    Van, Phu T.; Schmid, Amy K.; King, Nichole L.; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T.; Goo, Young-Ah; Deutsch, Eric W.; Reiss, David J.; Mallick, Parag; Baliga, Nitin S.

    2009-01-01

    The relatively small numbers of proteins and fewer possible posttranslational modifications in microbes provides a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a Peptide Atlas (PA) for 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636,000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has helped highlight plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics. PMID:18652504

  18. Non-biased enrichment does not improve quantitative proteomic delineation of reovirus T3D-infected HeLa cell protein alterations

    Directory of Open Access Journals (Sweden)

    Jieyuan eJiang

    2012-09-01

    Full Text Available Mass spectrometry-based methods have allowed elucidation of alterations in complex proteomes, such as eukaryotic cells. Such studies have identified and measured relative abundances of thousands of host proteins after cells are infected with a virus. One of the potential limitations in such studies is that generally only the most abundant proteins are identified, leaving the deep richness of the cellular proteome largely unexplored. We differentially labeled HeLa cells with light and heavy stable isotopic forms of lysine and arginine (SILAC and infected cells with reovirus strain T3D. Cells were harvested at 24 hours post-infection. Heavy-labeled infected and light-labeled mock-infected cells were mixed together 1:1. Cells were then divided into cytosol and nuclear fractions and each fraction analyzed, both by standard 2D-HPLC/MS, and also after each fraction had been reacted with a random hexapeptide library (Proteominer® beads to attempt to enrich for low-abundance cellular proteins. A total of 2736 proteins were identified by 2 or more peptides at >99% confidence, of which 66 were significantly up-regulated and 67 were significantly down-regulated. Up-regulated proteins included those involved in antimicrobial and antiviral responses, GTPase activity, nucleotide binding, interferon signaling, and enzymes associated with energy generation. Down-regulated proteins included those involved in cell and biological adhesion, regulation of cell proliferation, structural molecule activity, and numerous molecular binding activities. Comparisons of the r2 correlations, degree of dataset overlap, and numbers of peptides detected suggest that non-biased enrichment approaches may not provide additional data to allow deeper quantitative and comparative mining of complex proteomes.

  19. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    Science.gov (United States)

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  20. Quantitative proteomics reveals differential biological processes in healthy neonatal cord neutrophils and adult neutrophils

    KAUST Repository

    Zhu, Jiang; Zhang, Huoming; Guo, Tiannan; Li, Wenying; Li, Huiyu; Zhu, Yi; Huang, Shiang

    2014-01-01

    Neonatal neutrophils are characterized by the immaturity of bactericidal mechanisms that contributes largely to neonatal mortality. However, underlying molecular mechanism associated with the immaturity remains incompletely understood. In this study, we performed comparative proteomic analysis on neonatal neutrophils derived from human cord blood and adult peripheral neutrophils. A total of 1332 proteins were identified and quantified, and 127 proteins were characterized as differentially expressed between adult and cord neutrophils. The differentially expressed proteins are mapped in KEGG pathways into five clusters and indicated impaired functions of neonatal neutrophils in proteasome, lysosome, phagosome, and leukocyte transendothelial migration. In particular, many proteins associated with NETosis, a critical mechanism for antimicrobial process and auto-clearance, were also found to be downregulated in cord neutrophils. This study represents a first comparative proteome profiling of neonatal and adult neutrophils, and provides a global view of differentially expressed proteome for enhancing our understanding of their various functional difference. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Quantitative proteomics reveals differential biological processes in healthy neonatal cord neutrophils and adult neutrophils

    KAUST Repository

    Zhu, Jiang

    2014-06-11

    Neonatal neutrophils are characterized by the immaturity of bactericidal mechanisms that contributes largely to neonatal mortality. However, underlying molecular mechanism associated with the immaturity remains incompletely understood. In this study, we performed comparative proteomic analysis on neonatal neutrophils derived from human cord blood and adult peripheral neutrophils. A total of 1332 proteins were identified and quantified, and 127 proteins were characterized as differentially expressed between adult and cord neutrophils. The differentially expressed proteins are mapped in KEGG pathways into five clusters and indicated impaired functions of neonatal neutrophils in proteasome, lysosome, phagosome, and leukocyte transendothelial migration. In particular, many proteins associated with NETosis, a critical mechanism for antimicrobial process and auto-clearance, were also found to be downregulated in cord neutrophils. This study represents a first comparative proteome profiling of neonatal and adult neutrophils, and provides a global view of differentially expressed proteome for enhancing our understanding of their various functional difference. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Spermatogenesis in mammals: proteomic insights.

    Science.gov (United States)

    Chocu, Sophie; Calvel, Pierre; Rolland, Antoine D; Pineau, Charles

    2012-08-01

    Spermatogenesis is a highly sophisticated process involved in the transmission of genetic heritage. It includes halving ploidy, repackaging of the chromatin for transport, and the equipment of developing spermatids and eventually spermatozoa with the advanced apparatus (e.g., tightly packed mitochondrial sheat in the mid piece, elongating of the tail, reduction of cytoplasmic volume) to elicit motility once they reach the epididymis. Mammalian spermatogenesis is divided into three phases. In the first the primitive germ cells or spermatogonia undergo a series of mitotic divisions. In the second the spermatocytes undergo two consecutive divisions in meiosis to produce haploid spermatids. In the third the spermatids differentiate into spermatozoa in a process called spermiogenesis. Paracrine, autocrine, juxtacrine, and endocrine pathways all contribute to the regulation of the process. The array of structural elements and chemical factors modulating somatic and germ cell activity is such that the network linking the various cellular activities during spermatogenesis is unimaginably complex. Over the past two decades, advances in genomics have greatly improved our knowledge of spermatogenesis, by identifying numerous genes essential for the development of functional male gametes. Large-scale analyses of testicular function have deepened our insight into normal and pathological spermatogenesis. Progress in genome sequencing and microarray technology have been exploited for genome-wide expression studies, leading to the identification of hundreds of genes differentially expressed within the testis. However, although proteomics has now come of age, the proteomics-based investigation of spermatogenesis remains in its infancy. Here, we review the state-of-the-art of large-scale proteomic analyses of spermatogenesis, from germ cell development during sex determination to spermatogenesis in the adult. Indeed, a few laboratories have undertaken differential protein profiling

  3. Optimized method for identification of the proteomes secreted by cardiac cells

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Van Eyk, J.E.

    2013-01-01

    Roč. 1005, č. 1005 (2013), s. 225-235 ISSN 1940 -6029 Institutional support: RVO:68081715 Keywords : cardiac cells * secreted proteins * proteomic technology Subject RIV: CB - Analytical Chemistry, Separation

  4. Optimized method for identification of the proteomes secreted by cardiac cells

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Van Eyk, J.E.

    2013-01-01

    Roč. 1005, č. 1005 (2013), s. 225-235 ISSN 1940-6029 Institutional support: RVO:68081715 Keywords : cardiac cells * secreted proteins * proteomic technology Subject RIV: CB - Analytical Chemistry, Separation

  5. A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Juan D Chavez

    Full Text Available Chemical cross-linking mass spectrometry (XL-MS provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.

  6. Clinical proteomic analysis of scrub typhus infection.

    Science.gov (United States)

    Park, Edmond Changkyun; Lee, Sang-Yeop; Yun, Sung Ho; Choi, Chi-Won; Lee, Hayoung; Song, Hyun Seok; Jun, Sangmi; Kim, Gun-Hwa; Lee, Chang-Seop; Kim, Seung Il

    2018-01-01

    Scrub typhus is an acute and febrile infectious disease caused by the Gram-negative α-proteobacterium Orientia tsutsugamushi from the family Rickettsiaceae that is widely distributed in Northern, Southern and Eastern Asia. In the present study, we analysed the serum proteome of scrub typhus patients to investigate specific clinical protein patterns in an attempt to explain pathophysiology and discover potential biomarkers of infection. Serum samples were collected from three patients (before and after treatment with antibiotics) and three healthy subjects. One-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis followed by liquid chromatography-tandem mass spectrometry was performed to identify differentially abundant proteins using quantitative proteomic approaches. Bioinformatic analysis was then performed using Ingenuity Pathway Analysis. Proteomic analysis identified 236 serum proteins, of which 32 were differentially expressed in normal subjects, naive scrub typhus patients and patients treated with antibiotics. Comparative bioinformatic analysis of the identified proteins revealed up-regulation of proteins involved in immune responses, especially complement system, following infection with O. tsutsugamushi , and normal expression was largely rescued by antibiotic treatment. This is the first proteomic study of clinical serum samples from scrub typhus patients. Proteomic analysis identified changes in protein expression upon infection with O. tsutsugamushi and following antibiotic treatment. Our results provide valuable information for further investigation of scrub typhus therapy and diagnosis.

  7. Changes to the Aqueous Humor Proteome during Glaucoma.

    Science.gov (United States)

    Kaeslin, Martha Andrea; Killer, Hanspeter Ezriel; Fuhrer, Cyril Adrian; Zeleny, Nauke; Huber, Andreas Robert; Neutzner, Albert

    2016-01-01

    To investigate the aqueous humor proteome in patients with glaucoma and a control group. Aqueous humor was obtained from five human donors diagnosed with primary open angle glaucoma (POAG) and five age- and sex-matched controls undergoing cataract surgery. Quantitative proteome analysis of the aqueous humor by hyper reaction monitoring mass spectrometry (HRM-MS) based on SWATH technology was performed. Expression levels of 87 proteins were found to be different between glaucomatous and control aqueous humor. Of the 87 proteins, 34 were significantly upregulated, whereas 53 proteins were downregulated in the aqueous humor from glaucoma patients compared to controls. Differentially expressed proteins were found to be involved in cholesterol-related, inflammatory, metabolic, antioxidant as well as proteolysis-related processes. Glaucoma leads to profound changes to the aqueous humor proteome consistent with an altered metabolic state, an inflammatory response and impaired antioxidant defense.

  8. Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture

    Science.gov (United States)

    Galieni, Angelica; Stagnari, Fabio; Bonas, Urbana; Speca, Stefano; Faccini, Andrea; Pisante, Michele; Marmiroli, Nelson

    2016-01-01

    Nitrogen management in combination with sustainable agronomic techniques can have a great impact on the wheat grain proteome influencing its technological quality. In this study, proteomic analyses were used to document changes in the proportion of prolamins in mature grains of the newly released Italian durum wheat cv Achille. Such an approach was applied to wheat fertilized with urea (UREA) and calcium nitrate (NITRATE), during the transition to no-till Conservation Agriculture (CA) practice in a Mediterranean environment. Results obtained in a two-years field experiment study suggest low molecular weight glutenins (LMW-GS) as the fraction particularly inducible regardless of the N-form. Quantitative analyses of LMW-GS by 2D-GE followed by protein identification by LC-ESI-MS/MS showed that the stable increase was principally due to C-type LMW-GS. The highest accumulation resulted from a physiologically healthier state of plants treated with UREA and NITRATE. Proteomic analysis on the total protein fraction during the active phase of grain filling was also performed. For both N treatments, but at different extent, an up-regulation of different classes of proteins was observed: i) enzymes involved in glycolysis and citric acid cycles which contribute to an enhanced source of energy and carbohydrates, ii) stress proteins like heat shock proteins (HSPs) and antioxidant enzymes, such as peroxidases and superoxide dismutase which protect the grain from abiotic stress during starch and storage protein synthesis. In conclusion N inputs, which combined rate with N form gave high yield and improved quality traits in the selected durum wheat cultivar. The specific up-regulation of some HSPs, antioxidant enzymes and defense proteins in the early stages of grain development and physiological indicators related to fitness traits, could be useful bio-indicators, for wheat genotype screening under more sustainable agronomic conditions, like transition phase to no-till CA in

  9. Comparative proteomics of cucurbit phloem indicates both unique and shared sets of proteins.

    Science.gov (United States)

    Lopez-Cobollo, Rosa M; Filippis, Ioannis; Bennett, Mark H; Turnbull, Colin G N

    2016-11-01

    Cucurbits are well-studied models for phloem biology but unusually possess both fascicular phloem (FP) within vascular bundles and additional extrafascicular phloem (EFP). Although the functional differences between the two systems are not yet clear, sugar analysis and limited protein profiling have established that FP and EFP have divergent compositions. Here we report a detailed comparative proteomics study of FP and EFP in two cucurbits, pumpkin and cucumber. We re-examined the sites of exudation by video microscopy, and confirmed that in both species, the spontaneous exudate following tissue cutting derives almost exclusively from EFP. Comparative gel electrophoresis and mass spectrometry-based proteomics of exudates, sieve element contents and microdissected stem tissues established that EFP and FP profiles are highly dissimilar, and that there are also species differences. Searches against cucurbit databases enabled identification of more than 300 FP proteins from each species. Few of the detected proteins (about 10%) were shared between the sieve element contents of FP and EFP, and enriched Gene Ontology categories also differed. To explore quantitative differences in the proteomes, we developed multiple reaction monitoring methods for cucumber proteins that are representative markers for FP or EFP and assessed exudate composition at different times after tissue cutting. Based on failure to detect FP markers in exudate samples, we conclude that FP is blocked very rapidly and therefore makes a minimal contribution to the exudates. Overall, the highly divergent contents of FP and EFP indicate that they are substantially independent vascular compartments. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  10. Yeast expression proteomics by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Walther, Tobias C; Olsen, Jesper Velgaard; Mann, Matthias

    2010-01-01

    -translational controls contribute majorly to regulation of protein abundance, for example in heat shock stress response. The development of new sample preparation methods, high-resolution mass spectrometry and novel bioinfomatic tools close this gap and allow the global quantitation of the yeast proteome under different...

  11. On the Reproducibility of Label-Free Quantitative Cross-Linking/Mass Spectrometry

    Science.gov (United States)

    Müller, Fränze; Fischer, Lutz; Chen, Zhuo Angel; Auchynnikava, Tania; Rappsilber, Juri

    2018-02-01

    Quantitative cross-linking/mass spectrometry (QCLMS) is an emerging approach to study conformational changes of proteins and multi-subunit complexes. Distinguishing protein conformations requires reproducibly identifying and quantifying cross-linked peptides. Here we analyzed the variation between multiple cross-linking reactions using bis[sulfosuccinimidyl] suberate (BS3)-cross-linked human serum albumin (HSA) and evaluated how reproducible cross-linked peptides can be identified and quantified by LC-MS analysis. To make QCLMS accessible to a broader research community, we developed a workflow that integrates the established software tools MaxQuant for spectra preprocessing, Xi for cross-linked peptide identification, and finally Skyline for quantification (MS1 filtering). Out of the 221 unique residue pairs identified in our sample, 124 were subsequently quantified across 10 analyses with coefficient of variation (CV) values of 14% (injection replica) and 32% (reaction replica). Thus our results demonstrate that the reproducibility of QCLMS is in line with the reproducibility of general quantitative proteomics and we establish a robust workflow for MS1-based quantitation of cross-linked peptides.

  12. Informed-Proteomics: open-source software package for top-down proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jungkap; Piehowski, Paul D.; Wilkins, Christopher; Zhou, Mowei; Mendoza, Joshua; Fujimoto, Grant M.; Gibbons, Bryson C.; Shaw, Jared B.; Shen, Yufeng; Shukla, Anil K.; Moore, Ronald J.; Liu, Tao; Petyuk, Vladislav A.; Tolić, Nikola; Paša-Tolić, Ljiljana; Smith, Richard D.; Payne, Samuel H.; Kim, Sangtae

    2017-08-07

    Top-down proteomics involves the analysis of intact proteins. This approach is very attractive as it allows for analyzing proteins in their endogenous form without proteolysis, preserving valuable information about post-translation modifications, isoforms, proteolytic processing or their combinations collectively called proteoforms. Moreover, the quality of the top-down LC-MS/MS datasets is rapidly increasing due to advances in the liquid chromatography and mass spectrometry instrumentation and sample processing protocols. However, the top-down mass spectra are substantially more complex compare to the more conventional bottom-up data. To take full advantage of the increasing quality of the top-down LC-MS/MS datasets there is an urgent need to develop algorithms and software tools for confident proteoform identification and quantification. In this study we present a new open source software suite for top-down proteomics analysis consisting of an LC-MS feature finding algorithm, a database search algorithm, and an interactive results viewer. The presented tool along with several other popular tools were evaluated using human-in-mouse xenograft luminal and basal breast tumor samples that are known to have significant differences in protein abundance based on bottom-up analysis.

  13. Diagnosis of major depressive disorder by combining multimodal information from heart rate dynamics and serum proteomics using machine-learning algorithm.

    Science.gov (United States)

    Kim, Eun Young; Lee, Min Young; Kim, Se Hyun; Ha, Kyooseob; Kim, Kwang Pyo; Ahn, Yong Min

    2017-06-02

    Major depressive disorder (MDD) is a systemic and multifactorial disorder that involves abnormalities in multiple biochemical pathways and the autonomic nervous system. This study applied a machine-learning method to classify MDD and control groups by incorporating data from serum proteomic analysis and heart rate variability (HRV) analysis for the identification of novel peripheral biomarkers. The study subjects consisted of 25 drug-free female MDD patients and 25 age- and sex-matched healthy controls. First, quantitative serum proteome profiles were analyzed by liquid chromatography-tandem mass spectrometry using pooled serum samples from 10 patients and 10 controls. Next, candidate proteins were quantified with multiple reaction monitoring (MRM) in 50 subjects. We also analyzed 22 linear and nonlinear HRV parameters in 50 subjects. Finally, we identified a combined biomarker panel consisting of proteins and HRV indexes using a support vector machine with recursive feature elimination. A separation between MDD and control groups was achieved using five parameters (apolipoprotein B, group-specific component, ceruloplasmin, RMSSD, and SampEn) at 80.1% classification accuracy. A combination of HRV and proteomic data achieved better classification accuracy. A high classification accuracy can be achieved by combining multimodal information from heart rate dynamics and serum proteomics in MDD. Our approach can be helpful for accurate clinical diagnosis of MDD. Further studies using larger, independent cohorts are needed to verify the role of these candidate biomarkers for MDD diagnosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Comparative and quantitative proteomics reveal the adaptive strategies of oyster larvae to ocean acidification

    KAUST Repository

    Dineshram, R.

    2015-10-28

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Decreasing pH due to anthropogenic CO2 inputs, called ocean acidification (OA), can make coastal environments unfavorable for oysters. This is a serious socioeconomical issue for China which supplies >70% of the world\\'s edible oysters. Here, we present an iTRAQ-based protein profiling approach for the detection and quantification of proteome changes under OA in the early life stage of a commercially important oyster, Crassostrea hongkongensis. Availability of complete genome sequence for the pacific oyster (Crassostrea gigas) enabled us to confidently quantify over 1500 proteins in larval oysters. Over 7% of the proteome was altered in response to OA at pHNBS 7.6. Analysis of differentially expressed proteins and their associated functional pathways showed an upregulation of proteins involved in calcification, metabolic processes, and oxidative stress, each of which may be important in physiological adaptation of this species to OA. The downregulation of cytoskeletal and signal transduction proteins, on the other hand, might have impaired cellular dynamics and organelle development under OA. However, there were no significant detrimental effects in developmental processes such as metamorphic success. Implications of the differentially expressed proteins and metabolic pathways in the development of OA resistance in oyster larvae are discussed. The MS proteomics data have been deposited to the ProteomeXchange with identifiers PXD002138 (http://proteomecentral.proteomexchange.org/dataset/PXD002138).

  15. Comparative and quantitative proteomics reveal the adaptive strategies of oyster larvae to ocean acidification

    KAUST Repository

    Dineshram, R.; Q., Quan; Sharma, Rakesh; Chandramouli, Kondethimmanahalli; Yalamanchili, Hari Krishna; Chu, Ivan; Thiyagarajan, Vengatesen

    2015-01-01

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Decreasing pH due to anthropogenic CO2 inputs, called ocean acidification (OA), can make coastal environments unfavorable for oysters. This is a serious socioeconomical issue for China which supplies >70% of the world's edible oysters. Here, we present an iTRAQ-based protein profiling approach for the detection and quantification of proteome changes under OA in the early life stage of a commercially important oyster, Crassostrea hongkongensis. Availability of complete genome sequence for the pacific oyster (Crassostrea gigas) enabled us to confidently quantify over 1500 proteins in larval oysters. Over 7% of the proteome was altered in response to OA at pHNBS 7.6. Analysis of differentially expressed proteins and their associated functional pathways showed an upregulation of proteins involved in calcification, metabolic processes, and oxidative stress, each of which may be important in physiological adaptation of this species to OA. The downregulation of cytoskeletal and signal transduction proteins, on the other hand, might have impaired cellular dynamics and organelle development under OA. However, there were no significant detrimental effects in developmental processes such as metamorphic success. Implications of the differentially expressed proteins and metabolic pathways in the development of OA resistance in oyster larvae are discussed. The MS proteomics data have been deposited to the ProteomeXchange with identifiers PXD002138 (http://proteomecentral.proteomexchange.org/dataset/PXD002138).

  16. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    OpenAIRE

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Ba...

  17. Systems toxicology: applications of toxicogenomics, transcriptomics, proteomics and metabolomics in toxicology

    NARCIS (Netherlands)

    Heijne, W.H.M.; Kienhuis, A.S.; Ommen, van B.; Stierum, R.; Groten, J.P.

    2005-01-01

    Toxicogenomics can facilitate the identification and characterization of toxicity, as illustrated in this review. Toxicogenomics, the application of the functional genomics technologies (transcriptomics, proteomics and metabolomics) in toxicology enables the study of adverse effects of xenobiotic

  18. Quantitative Proteomics Reveals the Regulatory Networks of Circular RNA CDR1as in Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Yang, Xue; Xiong, Qian; Wu, Ying; Li, Siting; Ge, Feng

    2017-10-06

    Circular RNAs (circRNAs), a class of widespread endogenous RNAs, play crucial roles in diverse biological processes and are potential biomarkers in diverse human diseases and cancers. Cerebellar-degeneration-related protein 1 antisense RNA (CDR1as), an oncogenic circRNA, is involved in human tumorigenesis and is dysregulated in hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying CDR1as functions in HCC remain unclear. Here we explored the functions of CDR1as and searched for CDR1as-regulated proteins in HCC cells. A quantitative proteomics strategy was employed to globally identify CDR1as-regulated proteins in HCC cells. In total, we identified 330 differentially expressed proteins (DEPs) upon enhanced CDR1as expression in HepG2 cells, indicating that they could be proteins regulated by CDR1as. Bioinformatic analysis revealed that many DEPs were involved in cell proliferation and the cell cycle. Further functional studies of epidermal growth factor receptor (EGFR) found that CDR1as exerts its effects on cell proliferation at least in part through the regulation of EGFR expression. We further confirmed that CDR1as could inhibit the expression of microRNA-7 (miR-7). EGFR is a validated target of miR-7; therefore, CDR1as may exert its function by regulating EGFR expression via targeting miR-7 in HCC cells. Taken together, we revealed novel functions and underlying mechanisms of CDR1as in HCC cells. This study serves as the first proteome-wide analysis of a circRNA-regulated protein in cells and provides a reliable and highly efficient method for globally identifying circRNA-regulated proteins.

  19. A Review: Proteomics in Retinal Artery Occlusion, Retinal Vein Occlusion, Diabetic Retinopathy and Acquired Macular Disorders.

    Science.gov (United States)

    Cehofski, Lasse Jørgensen; Honoré, Bent; Vorum, Henrik

    2017-04-28

    Retinal artery occlusion (RAO), retinal vein occlusion (RVO), diabetic retinopathy (DR) and age-related macular degeneration (AMD) are frequent ocular diseases with potentially sight-threatening outcomes. In the present review we discuss major findings of proteomic studies of RAO, RVO, DR and AMD, including an overview of ocular proteome changes associated with anti-vascular endothelial growth factor (VEGF) treatments. Despite the severe outcomes of RAO, the proteome of the disease remains largely unstudied. There is also limited knowledge about the proteome of RVO, but proteomic studies suggest that RVO is associated with remodeling of the extracellular matrix and adhesion processes. Proteomic studies of DR have resulted in the identification of potential therapeutic targets such as carbonic anhydrase-I. Proliferative diabetic retinopathy is the most intensively studied stage of DR. Proteomic studies have established VEGF, pigment epithelium-derived factor (PEDF) and complement components as key factors associated with AMD. The aim of this review is to highlight the major milestones in proteomics in RAO, RVO, DR and AMD. Through large-scale protein analyses, proteomics is bringing new important insights into these complex pathological conditions.

  20. A single lysis solution for the analysis of tissue samples by different proteomic technologies

    DEFF Research Database (Denmark)

    Gromov, P.; Celis, J.E.; Gromova, I.

    2008-01-01

    -based proteomics (reverse-phase lysate arrays or direct antibody arrays), allowing the direct comparison of qualitative and quantitative data yielded by these technologies when applied to the same samples. The usefulness of the CLB1 solution for gel-based proteomics was further established by 2D PAGE analysis...... dissease, is driving scientists to increasingly use clinically relevant samples for biomarker and target discovery. Tissues are heterogeneous and as a result optimization of sample preparation is critical for generating accurate, representative, and highly reproducible quantitative data. Although a large...... number of protocols for preparation of tissue lysates has been published, so far no single recipe is able to provide a "one-size fits all" solubilization procedure that can be used to analyse the same lysate using different proteomics technologies. Here we present evidence showing that cell lysis buffer...

  1. Mitotic spindle proteomics in Chinese hamster ovary cells.

    Directory of Open Access Journals (Sweden)

    Mary Kate Bonner

    Full Text Available Mitosis is a fundamental process in the development of all organisms. The mitotic spindle guides the cell through mitosis as it mediates the segregation of chromosomes, the orientation of the cleavage furrow, and the progression of cell division. Birth defects and tissue-specific cancers often result from abnormalities in mitotic events. Here, we report a proteomic study of the mitotic spindle from Chinese Hamster Ovary (CHO cells. Four different isolations of metaphase spindles were subjected to Multi-dimensional Protein Identification Technology (MudPIT analysis and tandem mass spectrometry. We identified 1155 proteins and used Gene Ontology (GO analysis to categorize proteins into cellular component groups. We then compared our data to the previously published CHO midbody proteome and identified proteins that are unique to the CHO spindle. Our data represent the first mitotic spindle proteome in CHO cells, which augments the list of mitotic spindle components from mammalian cells.

  2. Comparative proteomics analysis of oral cancer cell lines: identification of cancer associated proteins

    Science.gov (United States)

    2014-01-01

    Background A limiting factor in performing proteomics analysis on cancerous cells is the difficulty in obtaining sufficient amounts of starting material. Cell lines can be used as a simplified model system for studying changes that accompany tumorigenesis. This study used two-dimensional gel electrophoresis (2DE) to compare the whole cell proteome of oral cancer cell lines vs normal cells in an attempt to identify cancer associated proteins. Results Three primary cell cultures of normal cells with a limited lifespan without hTERT immortalization have been successfully established. 2DE was used to compare the whole cell proteome of these cells with that of three oral cancer cell lines. Twenty four protein spots were found to have changed in abundance. MALDI TOF/TOF was then used to determine the identity of these proteins. Identified proteins were classified into seven functional categories – structural proteins, enzymes, regulatory proteins, chaperones and others. IPA core analysis predicted that 18 proteins were related to cancer with involvements in hyperplasia, metastasis, invasion, growth and tumorigenesis. The mRNA expressions of two proteins – 14-3-3 protein sigma and Stress-induced-phosphoprotein 1 – were found to correlate with the corresponding proteins’ abundance. Conclusions The outcome of this analysis demonstrated that a comparative study of whole cell proteome of cancer versus normal cell lines can be used to identify cancer associated proteins. PMID:24422745

  3. A proteomic approach to investigating gene cluster expression and secondary metabolite functionality in Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Rebecca A Owens

    Full Text Available A combined proteomics and metabolomics approach was utilised to advance the identification and characterisation of secondary metabolites in Aspergillus fumigatus. Here, implementation of a shotgun proteomic strategy led to the identification of non-redundant mycelial proteins (n = 414 from A. fumigatus including proteins typically under-represented in 2-D proteome maps: proteins with multiple transmembrane regions, hydrophobic proteins and proteins with extremes of molecular mass and pI. Indirect identification of secondary metabolite cluster expression was also achieved, with proteins (n = 18 from LaeA-regulated clusters detected, including GliT encoded within the gliotoxin biosynthetic cluster. Biochemical analysis then revealed that gliotoxin significantly attenuates H2O2-induced oxidative stress in A. fumigatus (p>0.0001, confirming observations from proteomics data. A complementary 2-D/LC-MS/MS approach further elucidated significantly increased abundance (p<0.05 of proliferating cell nuclear antigen (PCNA, NADH-quinone oxidoreductase and the gliotoxin oxidoreductase GliT, along with significantly attenuated abundance (p<0.05 of a heat shock protein, an oxidative stress protein and an autolysis-associated chitinase, when gliotoxin and H2O2 were present, compared to H2O2 alone. Moreover, gliotoxin exposure significantly reduced the abundance of selected proteins (p<0.05 involved in de novo purine biosynthesis. Significantly elevated abundance (p<0.05 of a key enzyme, xanthine-guanine phosphoribosyl transferase Xpt1, utilised in purine salvage, was observed in the presence of H2O2 and gliotoxin. This work provides new insights into the A. fumigatus proteome and experimental strategies, plus mechanistic data pertaining to gliotoxin functionality in the organism.

  4. Sample handling for mass spectrometric proteomic investigations of human sera.

    NARCIS (Netherlands)

    West-Nielsen, M.; Hogdall, E.V.; Marchiori, E.; Hogdall, C.K.; Schou, C.; Heegaard, N.H.H.

    2005-01-01

    Proteomic investigations of sera are potentially of value for diagnosis, prognosis, choice of therapy, and disease activity assessment by virtue of discovering new biomarkers and biomarker patterns. Much debate focuses on the biological relevance and the need for identification of such biomarkers

  5. Identification of Biomarkers for Endometriosis Using Clinical Proteomics

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2015-01-01

    Full Text Available Background: We investigated possible biomarkers for endometriosis (EM using the ClinProt technique and proteomics methods. Methods: We enrolled 50 patients with EM, 34 with benign ovarian neoplasms and 40 healthy volunteers in this study. Serum proteomic spectra were generated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS combined with weak cationic exchange (WCX magnetic beads. Possible biomarkers were analyzed by a random and repeat pattern model-validation method that we designed, and ClinProtools software, results were refined using online liquid chromatography-tandem MS. Results: We found a cluster of 5 peptides (4210, 5264, 2660, 5635, and 5904 Da, using 3 peptides (4210, 5904, 2660 Da to discriminate EM patients from healthy volunteers, with 96.67% sensitivity and 100% specificity. We selected 4210 and 5904 m/z, which differed most between patients with EM and controls, and identified them as fragments of ATP1B4, and the fibrinogen alpha (FGA isoform 1/2 of the FGA chain precursor, respectively. Conclusions: ClinProt can identify EM biomarkers, which - most notably - distinguish even early-stage or minimal disease. We found 5 stable peaks at 4210, 5264, 2660, 5635, and 5904 Da as potential EM biomarkers, the strongest of which were associated with ATP1B4 (4210 Da and FGA (5904 Da; this indicates that ATP1B4 and FGA are associated with EM pathogenesis.

  6. Generation of accurate peptide retention data for targeted and data independent quantitative LC-MS analysis: Chromatographic lessons in proteomics.

    Science.gov (United States)

    Krokhin, Oleg V; Spicer, Vic

    2016-12-01

    The emergence of data-independent quantitative LC-MS/MS analysis protocols further highlights the importance of high-quality reproducible chromatographic procedures. Knowing, controlling and being able to predict the effect of multiple factors that alter peptide RP-HPLC separation selectivity is critical for successful data collection for the construction of ion libraries. Proteomic researchers have often regarded RP-HPLC as a "black box", while vast amount of research on peptide separation is readily available. In addition to obvious parameters, such as the type of ion-pairing modifier, stationary phase and column temperature, we describe the "mysterious" effects of gradient slope, column size and flow rate on peptide separation selectivity. Retention time variations due to these parameters are governed by the linear solvent strength (LSS) theory on a peptide level by the value of its slope S in the basic LSS equation-a parameter that can be accurately predicted. Thus, the application of shallower gradients, higher flow rates, or smaller columns will each increases the relative retention of peptides with higher S-values (long species with multiple positively charged groups). Simultaneous changes to these parameters that each drive shifts in separation selectivity in the same direction should be avoided. The unification of terminology represents another pressing issue in this field of applied proteomics that should be addressed to facilitate further progress. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Comparative proteomic assessment of matrisome enrichment methodologies

    Science.gov (United States)

    Krasny, Lukas; Paul, Angela; Wai, Patty; Howard, Beatrice A.; Natrajan, Rachael C.; Huang, Paul H.

    2016-01-01

    The matrisome is a complex and heterogeneous collection of extracellular matrix (ECM) and ECM-associated proteins that play important roles in tissue development and homeostasis. While several strategies for matrisome enrichment have been developed, it is currently unknown how the performance of these different methodologies compares in the proteomic identification of matrisome components across multiple tissue types. In the present study, we perform a comparative proteomic assessment of two widely used decellularisation protocols and two extraction methods to characterise the matrisome in four murine organs (heart, mammary gland, lung and liver). We undertook a systematic evaluation of the performance of the individual methods on protein yield, matrisome enrichment capability and the ability to isolate core matrisome and matrisome-associated components. Our data find that sodium dodecyl sulphate (SDS) decellularisation leads to the highest matrisome enrichment efficiency, while the extraction protocol that comprises chemical and trypsin digestion of the ECM fraction consistently identifies the highest number of matrisomal proteins across all types of tissue examined. Matrisome enrichment had a clear benefit over non-enriched tissue for the comprehensive identification of matrisomal components in murine liver and heart. Strikingly, we find that all four matrisome enrichment methods led to significant losses in the soluble matrisome-associated proteins across all organs. Our findings highlight the multiple factors (including tissue type, matrisome class of interest and desired enrichment purity) that influence the choice of enrichment methodology, and we anticipate that these data will serve as a useful guide for the design of future proteomic studies of the matrisome. PMID:27589945

  8. Mass spectrometry based proteomics in cell biology and signaling research

    International Nuclear Information System (INIS)

    Mann, M.; Andersen, J.; Ishihama, Y.; Rappsilber, J.; Ong, S.; Foster, L.; Blagoev, B.; Kratchmarova, I.; Lasonder, E.

    2002-01-01

    Full text: Proteomics is one of the most powerful post-genomics technologies. Recently accomplishments include large scale protein-protein interaction mapping, large scale mapping of phosphorylation sites and the cloning of key signaling molecules. In this talk, current state of the art of the technology will be reviewed. Applications of proteomics to the mapping of multiprotein complexes will be illustrated with recent work on the spliceosome and the nucleolus. More than 300 proteins have been mapped to each of these complexes. Quantitative techniques are becoming more and more essential in proteomics. They are usually performed by the incorporation of stable isotopes - a light form in cell state 'A' and a heavy form in cell state 'E' - and subsequent comparison of mass spectrometric peak heights. A new technique called, SILAC for Stable isotope Incorporation by Amino acids in Cell culture, has been applied to studying cell differentiation and mapping secreted proteins from adipocytes. A number of known and novel proteins important in adipocyte differentiation have been identified by this technique. Some of these proved to be upregulated at the 1 mRNA level, too, whereas others appear to be regulated post-translationally. We have also applied the SILAC method to protein-protein interaction mapping. For example, we compared immunoprecipitates from stimulated and non-stimulated cells to find binding partners recruited to the bait due to the stimulus. Several novel substrates in the EGF pathway were found in this way. An important application of proteomics in the signaling field is the mapping of post-translational modifications. In particular, there are a number of techniques for phosphotyrosine phosphorylation mapping which have proven very useful. Making use of the mass deficiency of the phosphogroup, 'parent ion scans' con be performed, which selectively reveal phosphotyrosine peptides from complex peptides mixtures. This technique has been used to clone several

  9. Changes to the Aqueous Humor Proteome during Glaucoma.

    Directory of Open Access Journals (Sweden)

    Martha Andrea Kaeslin

    Full Text Available To investigate the aqueous humor proteome in patients with glaucoma and a control group.Aqueous humor was obtained from five human donors diagnosed with primary open angle glaucoma (POAG and five age- and sex-matched controls undergoing cataract surgery. Quantitative proteome analysis of the aqueous humor by hyper reaction monitoring mass spectrometry (HRM-MS based on SWATH technology was performed.Expression levels of 87 proteins were found to be different between glaucomatous and control aqueous humor. Of the 87 proteins, 34 were significantly upregulated, whereas 53 proteins were downregulated in the aqueous humor from glaucoma patients compared to controls. Differentially expressed proteins were found to be involved in cholesterol-related, inflammatory, metabolic, antioxidant as well as proteolysis-related processes.Glaucoma leads to profound changes to the aqueous humor proteome consistent with an altered metabolic state, an inflammatory response and impaired antioxidant defense.

  10. Proteomic Analysis of Pathogenic Fungi Reveals Highly Expressed Conserved Cell Wall Proteins

    Directory of Open Access Journals (Sweden)

    Jackson Champer

    2016-01-01

    Full Text Available We are presenting a quantitative proteomics tally of the most commonly expressed conserved fungal proteins of the cytosol, the cell wall, and the secretome. It was our goal to identify fungi-typical proteins that do not share significant homology with human proteins. Such fungal proteins are of interest to the development of vaccines or drug targets. Protein samples were derived from 13 fungal species, cultured in rich or in minimal media; these included clinical isolates of Aspergillus, Candida, Mucor, Cryptococcus, and Coccidioides species. Proteomes were analyzed by quantitative MSE (Mass Spectrometry—Elevated Collision Energy. Several thousand proteins were identified and quantified in total across all fractions and culture conditions. The 42 most abundant proteins identified in fungal cell walls or supernatants shared no to very little homology with human proteins. In contrast, all but five of the 50 most abundant cytosolic proteins had human homologs with sequence identity averaging 59%. Proteomic comparisons of the secreted or surface localized fungal proteins highlighted conserved homologs of the Aspergillus fumigatus proteins 1,3-β-glucanosyltransferases (Bgt1, Gel1-4, Crf1, Ecm33, EglC, and others. The fact that Crf1 and Gel1 were previously shown to be promising vaccine candidates, underlines the value of the proteomics data presented here.

  11. Proteomic characterization of hempseed (Cannabis sativa L.).

    Science.gov (United States)

    Aiello, Gilda; Fasoli, Elisa; Boschin, Giovanna; Lammi, Carmen; Zanoni, Chiara; Citterio, Attilio; Arnoldi, Anna

    2016-09-16

    This paper presents an investigation on hempseed proteome. The experimental approach, based on combinatorial peptide ligand libraries (CPLLs), SDS-PAGE separation, nLC-ESI-MS/MS identification, and database search, permitted identifying in total 181 expressed proteins. This very large number of identifications was achieved by searching in two databases: Cannabis sativa L. (56 gene products identified) and Arabidopsis thaliana (125 gene products identified). By performing a protein-protein association network analysis using the STRING software, it was possible to build the first interactomic map of all detected proteins, characterized by 137 nodes and 410 interactions. Finally, a Gene Ontology analysis of the identified species permitted to classify their molecular functions: the great majority is involved in the seed metabolic processes (41%), responses to stimulus (8%), and biological process (7%). Hempseed is an underexploited non-legume protein-rich seed. Although its protein is well known for its digestibility, essential amino acid composition, and useful techno-functional properties, a comprehensive proteome characterization is still lacking. The objective of this work was to fill this knowledge gap and provide information useful for a better exploitation of this seed in different food products. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Combining Search Engines for Comparative Proteomics

    Science.gov (United States)

    Tabb, David

    2012-01-01

    Many proteomics laboratories have found spectral counting to be an ideal way to recognize biomarkers that differentiate cohorts of samples. This approach assumes that proteins that differ in quantity between samples will generate different numbers of identifiable tandem mass spectra. Increasingly, researchers are employing multiple search engines to maximize the identifications generated from data collections. This talk evaluates four strategies to combine information from multiple search engines in comparative proteomics. The “Count Sum” model pools the spectra across search engines. The “Vote Counting” model combines the judgments from each search engine by protein. Two other models employ parametric and non-parametric analyses of protein-specific p-values from different search engines. We evaluated the four strategies in two different data sets. The ABRF iPRG 2009 study generated five LC-MS/MS analyses of “red” E. coli and five analyses of “yellow” E. coli. NCI CPTAC Study 6 generated five concentrations of Sigma UPS1 spiked into a yeast background. All data were identified with X!Tandem, Sequest, MyriMatch, and TagRecon. For both sample types, “Vote Counting” appeared to manage the diverse identification sets most effectively, yielding heightened discrimination as more search engines were added.

  13. Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin.

    Science.gov (United States)

    Simon, Oliver; Klaiber, Iris; Huber, Armin; Pfannstiel, Jens

    2014-09-23

    Understanding of the molecular response of bacteria to precursors, products and environmental conditions applied in bioconversions is essential for optimizing whole-cell biocatalysis. To investigate the molecular response of the potential biocatalyst Pseudomonas putida KT2440 to the flavor compound vanillin we applied complementary gel- and LC-MS-based quantitative proteomics approaches. Our comprehensive proteomics survey included cytoplasmic and membrane proteins and led to the identification and quantification of 1614 proteins, corresponding to 30% of the total KT2440 proteome. 662 proteins were altered in abundance during growth on vanillin as sole carbon source as compared to growth on glucose. The proteome response entailed an increased abundance of enzymes involved in vanillin degradation, significant changes in central energy metabolism and an activation of solvent tolerance mechanisms. With respect to vanillin metabolism, particularly enzymes belonging to the β-ketoadipate pathway including a transcriptional regulator and porins specific for vanillin uptake increased in abundance. However, catabolism of vanillin was not dependent on vanillin dehydrogenase (Vdh), as shown by quantitative proteome analysis of a Vdh-deficient KT2440 mutant (GN235). Other aldehyde dehydrogenases that were significantly increased in abundance in response to vanillin may replace Vdh and thus may represent interesting targets for improving vanillin production in P. putida KT2440. The high demand for the flavor compound vanillin by the food and fragrance industry makes natural vanillin from vanilla pods a scarce and expensive resource rendering its biotechnological production economically attractive. Pseudomonas bacteria are metabolically very versatile and accept a broad range of hydrocarbons as carbon source making them suitable candidates for bioconversion processes. This work describes the impact of vanillin on the metabolism of the reference strain P. putida KT2440 on a

  14. Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology

    Directory of Open Access Journals (Sweden)

    Atul S. Deshmukh

    2016-02-01

    Full Text Available Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence, of altered protein expressions profiles and/or their posttranslational modifications (PTMs. Mass spectrometry (MS-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle proteomics are challenging. This review describes the technical limitations of skeletal muscle proteomics as well as emerging developments in proteomics workflow with respect to samples preparation, liquid chromatography (LC, MS and computational analysis. These technologies have not yet been fully exploited in the field of skeletal muscle proteomics. Future studies that involve state-of-the-art proteomics technology will broaden our understanding of exercise-induced adaptations as well as molecular pathogenesis of insulin resistance. This could lead to the identification of new therapeutic targets.

  15. Clinical proteomics-driven precision medicine for targeted cancer therapy: current overview and future perspectives.

    Science.gov (United States)

    Zhou, Li; Wang, Kui; Li, Qifu; Nice, Edouard C; Zhang, Haiyuan; Huang, Canhua

    2016-01-01

    Cancer is a common disease that is a leading cause of death worldwide. Currently, early detection and novel therapeutic strategies are urgently needed for more effective management of cancer. Importantly, protein profiling using clinical proteomic strategies, with spectacular sensitivity and precision, offer excellent promise for the identification of potential biomarkers that would direct the development of targeted therapeutic anticancer drugs for precision medicine. In particular, clinical sample sources, including tumor tissues and body fluids (blood, feces, urine and saliva), have been widely investigated using modern high-throughput mass spectrometry-based proteomic approaches combined with bioinformatic analysis, to pursue the possibilities of precision medicine for targeted cancer therapy. Discussed in this review are the current advantages and limitations of clinical proteomics, the available strategies of clinical proteomics for the management of precision medicine, as well as the challenges and future perspectives of clinical proteomics-driven precision medicine for targeted cancer therapy.

  16. Comparative proteomic analysis of human malignant ascitic fluids for the development of gastric cancer biomarkers.

    Science.gov (United States)

    Jin, Jonghwa; Son, Minsoo; Kim, Hyeyoon; Kim, Hyeyeon; Kong, Seong-Ho; Kim, Hark Kyun; Kim, Youngsoo; Han, Dohyun

    2018-04-11

    Malignant ascites is a sign of peritoneal seeding, which is one of the most frequent forms of incurable distant metastasis. Because the development of malignant ascites is associated with an extremely poor prognosis, determining whether it resulted from peritoneal seeding has critical clinical implications in diagnosis, choice of treatment, and active surveillance. At present, the molecular characterizations of malignant ascites are especially limited in case of gastric cancer. We aimed to identify malignant ascites-specific proteins that may contribute to the development of alternative methods for diagnosis and therapeutic monitoring and also increase our understanding of the pathophysiology of peritoneal seeding. First, comprehensive proteomic strategies were employed to construct an in-depth proteome of ascitic fluids. Label-free quantitative proteomic analysis was subsequently performed to identify candidates that can differentiate between malignant ascitic fluilds of gastric cancer patients from benign ascitic fluids. Finally, two candidate proteins were verified by ELISA in 84 samples with gastric cancer or liver cirrhosis. Comprehensive proteome profiling resulted in the identification of 5347 ascites proteins. Using label-free quantification, we identified 299 proteins that were differentially expressed in ascitic fluids between liver cirrhosis and stage IV gastric cancer patients. In addition, we identified 645 proteins that were significantly expressed in ascitic fluids between liver cirrhosis and gastric cancer patients with peritoneal seeding. Finally, Gastriscin and Periostin that can distinguish malignant ascites from benign ascites were verified by ELISA. This study identified and verified protein markers that can distinguish malignant ascites with or without peritoneal seeding from benign ascites. Consequently, our results could be a significant resource for gastric cancer research and biomarker discovery in the diagnosis of malignant ascites

  17. Vacuum-assisted breast biopsy of suspected mammographic breast diagnoses: predictive value of serum proteomic profile

    International Nuclear Information System (INIS)

    Schittulli, F.; Ventrella, V.

    2009-01-01

    The project planned a series of actions oriented to different scientific questions: to complete the prospective collection of serum samples for serum proteomic analysis according to SOPs needed for the Italy-USA program; the identification of different mammographic signs for prediction of histological diagnosis of breast lesions through mammotone; the analysis of relationship between serum proteomic profile and micro histology characteristics of breast lesions

  18. iTRAQ quantitative proteomics-based identification of cell adhesion as a dominant phenotypic modulation in thrombin-stimulated human aortic endothelial cells.

    Science.gov (United States)

    Wang, Huang-Joe; Chen, Sung-Fang; Lo, Wan-Yu

    2015-05-01

    The phenotypic changes in thrombin-stimulated endothelial cells include alterations in permeability, cell shape, vasomotor tone, leukocyte trafficking, migration, proliferation, and angiogenesis. Previous studies regarding the pleotropic effects of thrombin on the endothelium used human umbilical vein endothelial cells (HUVECs)-cells derived from fetal tissue that does not exist in adults. Only a few groups have used screening approaches such as microarrays to profile the global effects of thrombin on endothelial cells. Moreover, the proteomic changes of thrombin-stimulated human aortic endothelial cells (HAECs) have not been elucidated. HAECs were stimulated with 2 units/mL thrombin for 5h and their proteome was investigated using isobaric tags for the relative and absolute quantification (iTRAQ) and the MetaCore(TM) software. A total of 627 (experiment A) and 622 proteins (experiment B) were quantified in the duplicated iTRAQ analyses. MetaCore(TM) pathway analysis identified cell adhesion as a dominant phenotype in thrombin-stimulated HAECs. Replicated iTRAQ data revealed that "Cell adhesion_Chemokines and adhesion," "Cell adhesion_Histamine H1 receptor signaling in the interruption of cell barrier integrity," and "Cell adhesion_Integrin-mediated cell adhesion and migration" were among the top 10 statistically significant pathways. The cell adhesion phenotype was verified by increased THP-1 adhesion to thrombin-stimulated HAECs. In addition, the expression of ICAM-1, VCAM-1, and SELE was significantly upregulated in thrombin-stimulated HAECs. Several regulatory pathways are altered in thrombin-stimulated HAECs, with cell adhesion being the dominant altered phenotype. Our findings show the feasibility of the iTRAQ technique for evaluating cellular responses to acute stimulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  20. Proteomics Analyses of Human Optic Nerve Head Astrocytes Following Biomechanical Strain*

    OpenAIRE

    Rogers, Ronan S.; Dharsee, Moyez; Ackloo, Suzanne; Sivak, Jeremy M.; Flanagan, John G.

    2011-01-01

    We investigate the role of glial cell activation in the human optic nerve caused by raised intraocular pressure, and their potential role in the development of glaucomatous optic neuropathy. To do this we present a proteomics study of the response of cultured, optic nerve head astrocytes to biomechanical strain, the magnitude and mode of strain based on previously published quantitative models. In this case, astrocytes were subjected to 3 and 12% stretches for either 2 h or 24 h. Proteomic me...