WorldWideScience

Sample records for quantitative imaging biomarkers

  1. Quantitative imaging as cancer biomarker

    Science.gov (United States)

    Mankoff, David A.

    2015-03-01

    The ability to assay tumor biologic features and the impact of drugs on tumor biology is fundamental to drug development. Advances in our ability to measure genomics, gene expression, protein expression, and cellular biology have led to a host of new targets for anticancer drug therapy. In translating new drugs into clinical trials and clinical practice, these same assays serve to identify patients most likely to benefit from specific anticancer treatments. As cancer therapy becomes more individualized and targeted, there is an increasing need to characterize tumors and identify therapeutic targets to select therapy most likely to be successful in treating the individual patient's cancer. Thus far assays to identify cancer therapeutic targets or anticancer drug pharmacodynamics have been based upon in vitro assay of tissue or blood samples. Advances in molecular imaging, particularly PET, have led to the ability to perform quantitative non-invasive molecular assays. Imaging has traditionally relied on structural and anatomic features to detect cancer and determine its extent. More recently, imaging has expanded to include the ability to image regional biochemistry and molecular biology, often termed molecular imaging. Molecular imaging can be considered an in vivo assay technique, capable of measuring regional tumor biology without perturbing it. This makes molecular imaging a unique tool for cancer drug development, complementary to traditional assay methods, and a potentially powerful method for guiding targeted therapy in clinical trials and clinical practice. The ability to quantify, in absolute measures, regional in vivo biologic parameters strongly supports the use of molecular imaging as a tool to guide therapy. This review summarizes current and future applications of quantitative molecular imaging as a biomarker for cancer therapy, including the use of imaging to (1) identify patients whose tumors express a specific therapeutic target; (2) determine

  2. Metrology Standards for Quantitative Imaging Biomarkers.

    Science.gov (United States)

    Sullivan, Daniel C; Obuchowski, Nancy A; Kessler, Larry G; Raunig, David L; Gatsonis, Constantine; Huang, Erich P; Kondratovich, Marina; McShane, Lisa M; Reeves, Anthony P; Barboriak, Daniel P; Guimaraes, Alexander R; Wahl, Richard L

    2015-12-01

    Although investigators in the imaging community have been active in developing and evaluating quantitative imaging biomarkers (QIBs), the development and implementation of QIBs have been hampered by the inconsistent or incorrect use of terminology or methods for technical performance and statistical concepts. Technical performance is an assessment of how a test performs in reference objects or subjects under controlled conditions. In this article, some of the relevant statistical concepts are reviewed, methods that can be used for evaluating and comparing QIBs are described, and some of the technical performance issues related to imaging biomarkers are discussed. More consistent and correct use of terminology and study design principles will improve clinical research, advance regulatory science, and foster better care for patients who undergo imaging studies.

  3. Quantitative imaging biomarker ontology (QIBO) for knowledge representation of biomedical imaging biomarkers.

    Science.gov (United States)

    Buckler, Andrew J; Liu, Tiffany Ting; Savig, Erica; Suzek, Baris E; Ouellette, M; Danagoulian, J; Wernsing, G; Rubin, Daniel L; Paik, David

    2013-08-01

    A widening array of novel imaging biomarkers is being developed using ever more powerful clinical and preclinical imaging modalities. These biomarkers have demonstrated effectiveness in quantifying biological processes as they occur in vivo and in the early prediction of therapeutic outcomes. However, quantitative imaging biomarker data and knowledge are not standardized, representing a critical barrier to accumulating medical knowledge based on quantitative imaging data. We use an ontology to represent, integrate, and harmonize heterogeneous knowledge across the domain of imaging biomarkers. This advances the goal of developing applications to (1) improve precision and recall of storage and retrieval of quantitative imaging-related data using standardized terminology; (2) streamline the discovery and development of novel imaging biomarkers by normalizing knowledge across heterogeneous resources; (3) effectively annotate imaging experiments thus aiding comprehension, re-use, and reproducibility; and (4) provide validation frameworks through rigorous specification as a basis for testable hypotheses and compliance tests. We have developed the Quantitative Imaging Biomarker Ontology (QIBO), which currently consists of 488 terms spanning the following upper classes: experimental subject, biological intervention, imaging agent, imaging instrument, image post-processing algorithm, biological target, indicated biology, and biomarker application. We have demonstrated that QIBO can be used to annotate imaging experiments with standardized terms in the ontology and to generate hypotheses for novel imaging biomarker-disease associations. Our results established the utility of QIBO in enabling integrated analysis of quantitative imaging data.

  4. The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions.

    Science.gov (United States)

    Kessler, Larry G; Barnhart, Huiman X; Buckler, Andrew J; Choudhury, Kingshuk Roy; Kondratovich, Marina V; Toledano, Alicia; Guimaraes, Alexander R; Filice, Ross; Zhang, Zheng; Sullivan, Daniel C

    2015-02-01

    The development and implementation of quantitative imaging biomarkers has been hampered by the inconsistent and often incorrect use of terminology related to these markers. Sponsored by the Radiological Society of North America, an interdisciplinary group of radiologists, statisticians, physicists, and other researchers worked to develop a comprehensive terminology to serve as a foundation for quantitative imaging biomarker claims. Where possible, this working group adapted existing definitions derived from national or international standards bodies rather than invent new definitions for these terms. This terminology also serves as a foundation for the design of studies that evaluate the technical performance of quantitative imaging biomarkers and for studies of algorithms that generate the quantitative imaging biomarkers from clinical scans. This paper provides examples of research studies and quantitative imaging biomarker claims that use terminology consistent with these definitions as well as examples of the rampant confusion in this emerging field. We provide recommendations for appropriate use of quantitative imaging biomarker terminological concepts. It is hoped that this document will assist researchers and regulatory reviewers who examine quantitative imaging biomarkers and will also inform regulatory guidance. More consistent and correct use of terminology could advance regulatory science, improve clinical research, and provide better care for patients who undergo imaging studies. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. Semi-Quantitative Imaging Biomarkers of Knee Osteoarthritis Progression: Data from the FNIH OA Biomarkers Consortium

    Science.gov (United States)

    Collins, Jamie E.; Losina, Elena; Nevitt, Michael C.; Roemer, Frank W.; Guermazi, Ali; Lynch, John A.; Katz, Jeffrey N.; Kwoh, C. Kent; Kraus, Virginia B.; Hunter, David J.

    2017-01-01

    Objective To determine the association between changes in semi-quantitative knee MRI biomarkers over 24 months and radiographic and pain progression over 48 months in knees with mild to moderate osteoarthritis. Methods We undertook a nested case-control study as part of the Osteoarthritis Biomarkers Consortium Project. We built multivariable logistic regression models to examine the association between change over 24 months in semi-quantitative MR imaging markers and knee OA radiographic and pain progression. MRIs were read according to the MRI Osteoarthritis Knee Score (MOAKS) scoring system. We focused on changes in cartilage, osteophytes, meniscus, bone marrow lesions, Hoffa-synovitis, and synovitis-effusion. Results The most parsimonious model included changes in cartilage thickness and surface area, synovitis-effusion, Hoffa-synovitis, and meniscal morphology (C-statistic =0.740). Subjects with worsening cartilage thickness in 3+ subregions vs. no worsening had 2.8-fold (95% CI: 1.3 – 5.9) greater odds of being a case while subjects with worsening in cartilage surface area in 3+ subregions vs. no worsening had 2.4-fold (95% CI: 1.3 – 4.4) greater odds of being a case. Having worsening in any region in meniscal morphology was associated with a 2.2-fold (95%CI: 1.3 – 3.8) greater odds of being a case. Worsening synovitis-effusion (OR=2.7) and Hoffa-synovitis (OR=2.0) were also associated with greater odds of being a case. Conclusion Twenty-four-month change in cartilage thickness, cartilage surface area, synovitis-effusion, Hoffa-synovitis, and meniscal morphology were independently associated with OA progression, suggesting that they may serve as efficacy biomarkers in clinical trials of disease modifying interventions for knee OA. PMID:27111771

  6. Quantitative Imaging Biomarkers: A Review of Statistical Methods for Computer Algorithm Comparisons

    OpenAIRE

    2014-01-01

    Quantitative biomarkers from medical images are becoming important tools for clinical diagnosis, staging, monitoring, treatment planning, and development of new therapies. While there is a rich history of the development of quantitative imaging biomarker (QIB) techniques, little attention has been paid to the validation and comparison of the computer algorithms that implement the QIB measurements. In this paper we provide a framework for QIB algorithm comparisons. We first review and compare ...

  7. Quantitative imaging biomarkers: the application of advanced image processing and analysis to clinical and preclinical decision making.

    Science.gov (United States)

    Prescott, Jeffrey William

    2013-02-01

    The importance of medical imaging for clinical decision making has been steadily increasing over the last four decades. Recently, there has also been an emphasis on medical imaging for preclinical decision making, i.e., for use in pharamaceutical and medical device development. There is also a drive towards quantification of imaging findings by using quantitative imaging biomarkers, which can improve sensitivity, specificity, accuracy and reproducibility of imaged characteristics used for diagnostic and therapeutic decisions. An important component of the discovery, characterization, validation and application of quantitative imaging biomarkers is the extraction of information and meaning from images through image processing and subsequent analysis. However, many advanced image processing and analysis methods are not applied directly to questions of clinical interest, i.e., for diagnostic and therapeutic decision making, which is a consideration that should be closely linked to the development of such algorithms. This article is meant to address these concerns. First, quantitative imaging biomarkers are introduced by providing definitions and concepts. Then, potential applications of advanced image processing and analysis to areas of quantitative imaging biomarker research are described; specifically, research into osteoarthritis (OA), Alzheimer's disease (AD) and cancer is presented. Then, challenges in quantitative imaging biomarker research are discussed. Finally, a conceptual framework for integrating clinical and preclinical considerations into the development of quantitative imaging biomarkers and their computer-assisted methods of extraction is presented.

  8. Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment.

    Science.gov (United States)

    Raunig, David L; McShane, Lisa M; Pennello, Gene; Gatsonis, Constantine; Carson, Paul L; Voyvodic, James T; Wahl, Richard L; Kurland, Brenda F; Schwarz, Adam J; Gönen, Mithat; Zahlmann, Gudrun; Kondratovich, Marina V; O'Donnell, Kevin; Petrick, Nicholas; Cole, Patricia E; Garra, Brian; Sullivan, Daniel C

    2015-02-01

    Technological developments and greater rigor in the quantitative measurement of biological features in medical images have given rise to an increased interest in using quantitative imaging biomarkers to measure changes in these features. Critical to the performance of a quantitative imaging biomarker in preclinical or clinical settings are three primary metrology areas of interest: measurement linearity and bias, repeatability, and the ability to consistently reproduce equivalent results when conditions change, as would be expected in any clinical trial. Unfortunately, performance studies to date differ greatly in designs, analysis method, and metrics used to assess a quantitative imaging biomarker for clinical use. It is therefore difficult or not possible to integrate results from different studies or to use reported results to design studies. The Radiological Society of North America and the Quantitative Imaging Biomarker Alliance with technical, radiological, and statistical experts developed a set of technical performance analysis methods, metrics, and study designs that provide terminology, metrics, and methods consistent with widely accepted metrological standards. This document provides a consistent framework for the conduct and evaluation of quantitative imaging biomarker performance studies so that results from multiple studies can be compared, contrasted, or combined. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Quantitative imaging test approval and biomarker qualification: interrelated but distinct activities.

    Science.gov (United States)

    Buckler, Andrew J; Bresolin, Linda; Dunnick, N Reed; Sullivan, Daniel C; Aerts, Hugo J W L; Bendriem, Bernard; Bendtsen, Claus; Boellaard, Ronald; Boone, John M; Cole, Patricia E; Conklin, James J; Dorfman, Gary S; Douglas, Pamela S; Eidsaunet, Willy; Elsinger, Cathy; Frank, Richard A; Gatsonis, Constantine; Giger, Maryellen L; Gupta, Sandeep N; Gustafson, David; Hoekstra, Otto S; Jackson, Edward F; Karam, Lisa; Kelloff, Gary J; Kinahan, Paul E; McLennan, Geoffrey; Miller, Colin G; Mozley, P David; Muller, Keith E; Patt, Rick; Raunig, David; Rosen, Mark; Rupani, Haren; Schwartz, Lawrence H; Siegel, Barry A; Sorensen, A Gregory; Wahl, Richard L; Waterton, John C; Wolf, Walter; Zahlmann, Gudrun; Zimmerman, Brian

    2011-06-01

    Quantitative imaging biomarkers could speed the development of new treatments for unmet medical needs and improve routine clinical care. However, it is not clear how the various regulatory and nonregulatory (eg, reimbursement) processes (often referred to as pathways) relate, nor is it clear which data need to be collected to support these different pathways most efficiently, given the time- and cost-intensive nature of doing so. The purpose of this article is to describe current thinking regarding these pathways emerging from diverse stakeholders interested and active in the definition, validation, and qualification of quantitative imaging biomarkers and to propose processes to facilitate the development and use of quantitative imaging biomarkers. A flexible framework is described that may be adapted for each imaging application, providing mechanisms that can be used to develop, assess, and evaluate relevant biomarkers. From this framework, processes can be mapped that would be applicable to both imaging product development and to quantitative imaging biomarker development aimed at increasing the effectiveness and availability of quantitative imaging. http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.10100800/-/DC1. RSNA, 2011

  10. Imaging Biomarkers or Biomarker Imaging?

    Directory of Open Access Journals (Sweden)

    Markus Mitterhauser

    2014-06-01

    Full Text Available Since biomarker imaging is traditionally understood as imaging of molecular probes, we highly recommend to avoid any confusion with the previously defined term “imaging biomarkers” and, therefore, only use “molecular probe imaging (MPI” in that context. Molecular probes (MPs comprise all kinds of molecules administered to an organism which inherently carry a signalling moiety. This review highlights the basic concepts and differences of molecular probe imaging using specific biomarkers. In particular, PET radiopharmaceuticals are discussed in more detail. Specific radiochemical and radiopharmacological aspects as well as some legal issues are presented.

  11. Quantitative Imaging Biomarkers: A Review of Statistical Methods for Computer Algorithm Comparisons

    Science.gov (United States)

    2014-01-01

    Quantitative biomarkers from medical images are becoming important tools for clinical diagnosis, staging, monitoring, treatment planning, and development of new therapies. While there is a rich history of the development of quantitative imaging biomarker (QIB) techniques, little attention has been paid to the validation and comparison of the computer algorithms that implement the QIB measurements. In this paper we provide a framework for QIB algorithm comparisons. We first review and compare various study designs, including designs with the true value (e.g. phantoms, digital reference images, and zero-change studies), designs with a reference standard (e.g. studies testing equivalence with a reference standard), and designs without a reference standard (e.g. agreement studies and studies of algorithm precision). The statistical methods for comparing QIB algorithms are then presented for various study types using both aggregate and disaggregate approaches. We propose a series of steps for establishing the performance of a QIB algorithm, identify limitations in the current statistical literature, and suggest future directions for research. PMID:24919829

  12. Quantitative imaging biomarkers: a review of statistical methods for computer algorithm comparisons.

    Science.gov (United States)

    Obuchowski, Nancy A; Reeves, Anthony P; Huang, Erich P; Wang, Xiao-Feng; Buckler, Andrew J; Kim, Hyun J Grace; Barnhart, Huiman X; Jackson, Edward F; Giger, Maryellen L; Pennello, Gene; Toledano, Alicia Y; Kalpathy-Cramer, Jayashree; Apanasovich, Tatiyana V; Kinahan, Paul E; Myers, Kyle J; Goldgof, Dmitry B; Barboriak, Daniel P; Gillies, Robert J; Schwartz, Lawrence H; Sullivan, Daniel C

    2015-02-01

    Quantitative biomarkers from medical images are becoming important tools for clinical diagnosis, staging, monitoring, treatment planning, and development of new therapies. While there is a rich history of the development of quantitative imaging biomarker (QIB) techniques, little attention has been paid to the validation and comparison of the computer algorithms that implement the QIB measurements. In this paper we provide a framework for QIB algorithm comparisons. We first review and compare various study designs, including designs with the true value (e.g. phantoms, digital reference images, and zero-change studies), designs with a reference standard (e.g. studies testing equivalence with a reference standard), and designs without a reference standard (e.g. agreement studies and studies of algorithm precision). The statistical methods for comparing QIB algorithms are then presented for various study types using both aggregate and disaggregate approaches. We propose a series of steps for establishing the performance of a QIB algorithm, identify limitations in the current statistical literature, and suggest future directions for research. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Evaluation of chemotherapy response in ovarian cancer treatment using quantitative CT image biomarkers: a preliminary study

    Science.gov (United States)

    Qiu, Yuchen; Tan, Maxine; McMeekin, Scott; Thai, Theresa; Moore, Kathleen; Ding, Kai; Liu, Hong; Zheng, Bin

    2015-03-01

    The purpose of this study is to identify and apply quantitative image biomarkers for early prediction of the tumor response to the chemotherapy among the ovarian cancer patients participated in the clinical trials of testing new drugs. In the experiment, we retrospectively selected 30 cases from the patients who participated in Phase I clinical trials of new drug or drug agents for ovarian cancer treatment. Each case is composed of two sets of CT images acquired pre- and post-treatment (4-6 weeks after starting treatment). A computer-aided detection (CAD) scheme was developed to extract and analyze the quantitative image features of the metastatic tumors previously tracked by the radiologists using the standard Response Evaluation Criteria in Solid Tumors (RECIST) guideline. The CAD scheme first segmented 3-D tumor volumes from the background using a hybrid tumor segmentation scheme. Then, for each segmented tumor, CAD computed three quantitative image features including the change of tumor volume, tumor CT number (density) and density variance. The feature changes were calculated between the matched tumors tracked on the CT images acquired pre- and post-treatments. Finally, CAD predicted patient's 6-month progression-free survival (PFS) using a decision-tree based classifier. The performance of the CAD scheme was compared with the RECIST category. The result shows that the CAD scheme achieved a prediction accuracy of 76.7% (23/30 cases) with a Kappa coefficient of 0.493, which is significantly higher than the performance of RECIST prediction with a prediction accuracy and Kappa coefficient of 60% (17/30) and 0.062, respectively. This study demonstrated the feasibility of analyzing quantitative image features to improve the early predicting accuracy of the tumor response to the new testing drugs or therapeutic methods for the ovarian cancer patients.

  14. Statistical issues in the comparison of quantitative imaging biomarker algorithms using pulmonary nodule volume as an example.

    Science.gov (United States)

    Obuchowski, Nancy A; Barnhart, Huiman X; Buckler, Andrew J; Pennello, Gene; Wang, Xiao-Feng; Kalpathy-Cramer, Jayashree; Kim, Hyun J Grace; Reeves, Anthony P

    2015-02-01

    Quantitative imaging biomarkers are being used increasingly in medicine to diagnose and monitor patients' disease. The computer algorithms that measure quantitative imaging biomarkers have different technical performance characteristics. In this paper we illustrate the appropriate statistical methods for assessing and comparing the bias, precision, and agreement of computer algorithms. We use data from three studies of pulmonary nodules. The first study is a small phantom study used to illustrate metrics for assessing repeatability. The second study is a large phantom study allowing assessment of four algorithms' bias and reproducibility for measuring tumor volume and the change in tumor volume. The third study is a small clinical study of patients whose tumors were measured on two occasions. This study allows a direct assessment of six algorithms' performance for measuring tumor change. With these three examples we compare and contrast study designs and performance metrics, and we illustrate the advantages and limitations of various common statistical methods for quantitative imaging biomarker studies.

  15. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    KAUST Repository

    Marquet, P.

    2016-05-03

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  16. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    Science.gov (United States)

    Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, C.; Jourdain, P.; Magistretti, P. J.

    2016-03-01

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  17. Biomarkers and Surrogate Endpoints in Uveitis: The Impact of Quantitative Imaging.

    Science.gov (United States)

    Denniston, Alastair K; Keane, Pearse A; Srivastava, Sunil K

    2017-05-01

    Uveitis is a major cause of sight loss across the world. The reliable assessment of intraocular inflammation in uveitis ('disease activity') is essential in order to score disease severity and response to treatment. In this review, we describe how 'quantitative imaging', the approach of using automated analysis and measurement algorithms across both standard and emerging imaging modalities, can develop objective instrument-based measures of disease activity. This is a narrative review based on searches of the current world literature using terms related to quantitative imaging techniques in uveitis, supplemented by clinical trial registry data, and expert knowledge of surrogate endpoints and outcome measures in ophthalmology. Current measures of disease activity are largely based on subjective clinical estimation, and are relatively insensitive, with poor discrimination and reliability. The development of quantitative imaging in uveitis is most established in the use of optical coherence tomographic (OCT) measurement of central macular thickness (CMT) to measure severity of macular edema (ME). The transformative effect of CMT in clinical assessment of patients with ME provides a paradigm for the development and impact of other forms of quantitative imaging. Quantitative imaging approaches are now being developed and validated for other key inflammatory parameters such as anterior chamber cells, vitreous haze, retinovascular leakage, and chorioretinal infiltrates. As new forms of quantitative imaging in uveitis are proposed, the uveitis community will need to evaluate these tools against the current subjective clinical estimates and reach a new consensus for how disease activity in uveitis should be measured. The development, validation, and adoption of sensitive and discriminatory measures of disease activity is an unmet need that has the potential to transform both drug development and routine clinical care for the patient with uveitis.

  18. Quantitative Perfusion and Permeability Biomarkers in Brain Cancer from Tomographic CT and MR Images.

    Science.gov (United States)

    Eilaghi, Armin; Yeung, Timothy; d'Esterre, Christopher; Bauman, Glenn; Yartsev, Slav; Easaw, Jay; Fainardi, Enrico; Lee, Ting-Yim; Frayne, Richard

    2016-01-01

    Dynamic contrast-enhanced perfusion and permeability imaging, using computed tomography and magnetic resonance systems, are important techniques for assessing the vascular supply and hemodynamics of healthy brain parenchyma and tumors. These techniques can measure blood flow, blood volume, and blood-brain barrier permeability surface area product and, thus, may provide information complementary to clinical and pathological assessments. These have been used as biomarkers to enhance the treatment planning process, to optimize treatment decision-making, and to enable monitoring of the treatment noninvasively. In this review, the principles of magnetic resonance and computed tomography dynamic contrast-enhanced perfusion and permeability imaging are described (with an emphasis on their commonalities), and the potential values of these techniques for differentiating high-grade gliomas from other brain lesions, distinguishing true progression from posttreatment effects, and predicting survival after radiotherapy, chemotherapy, and antiangiogenic treatments are presented.

  19. Quantitative Perfusion and Permeability Biomarkers in Brain Cancer from Tomographic CT and MR Images

    Science.gov (United States)

    Eilaghi, Armin; Yeung, Timothy; d’Esterre, Christopher; Bauman, Glenn; Yartsev, Slav; Easaw, Jay; Fainardi, Enrico; Lee, Ting-Yim; Frayne, Richard

    2016-01-01

    Dynamic contrast-enhanced perfusion and permeability imaging, using computed tomography and magnetic resonance systems, are important techniques for assessing the vascular supply and hemodynamics of healthy brain parenchyma and tumors. These techniques can measure blood flow, blood volume, and blood–brain barrier permeability surface area product and, thus, may provide information complementary to clinical and pathological assessments. These have been used as biomarkers to enhance the treatment planning process, to optimize treatment decision-making, and to enable monitoring of the treatment noninvasively. In this review, the principles of magnetic resonance and computed tomography dynamic contrast-enhanced perfusion and permeability imaging are described (with an emphasis on their commonalities), and the potential values of these techniques for differentiating high-grade gliomas from other brain lesions, distinguishing true progression from posttreatment effects, and predicting survival after radiotherapy, chemotherapy, and antiangiogenic treatments are presented. PMID:27398030

  20. MR brain image analysis in dementia: From quantitative imaging biomarkers to ageing brain models and imaging genetics.

    Science.gov (United States)

    Niessen, Wiro J

    2016-10-01

    MR brain image analysis has constantly been a hot topic research area in medical image analysis over the past two decades. In this article, it is discussed how the field developed from the construction of tools for automatic quantification of brain morphology, function, connectivity and pathology, to creating models of the ageing brain in normal ageing and disease, and tools for integrated analysis of imaging and genetic data. The current and future role of the field in improved understanding of the development of neurodegenerative disease is discussed, and its potential for aiding in early and differential diagnosis and prognosis of different types of dementia. For the latter, the use of reference imaging data and reference models derived from large clinical and population imaging studies, and the application of machine learning techniques on these reference data, are expected to play a key role. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research.

    Science.gov (United States)

    Fedorov, Andriy; Clunie, David; Ulrich, Ethan; Bauer, Christian; Wahle, Andreas; Brown, Bartley; Onken, Michael; Riesmeier, Jörg; Pieper, Steve; Kikinis, Ron; Buatti, John; Beichel, Reinhard R

    2016-01-01

    Background. Imaging biomarkers hold tremendous promise for precision medicine clinical applications. Development of such biomarkers relies heavily on image post-processing tools for automated image quantitation. Their deployment in the context of clinical research necessitates interoperability with the clinical systems. Comparison with the established outcomes and evaluation tasks motivate integration of the clinical and imaging data, and the use of standardized approaches to support annotation and sharing of the analysis results and semantics. We developed the methodology and tools to support these tasks in Positron Emission Tomography and Computed Tomography (PET/CT) quantitative imaging (QI) biomarker development applied to head and neck cancer (HNC) treatment response assessment, using the Digital Imaging and Communications in Medicine (DICOM(®)) international standard and free open-source software. Methods. Quantitative analysis of PET/CT imaging data collected on patients undergoing treatment for HNC was conducted. Processing steps included Standardized Uptake Value (SUV) normalization of the images, segmentation of the tumor using manual and semi-automatic approaches, automatic segmentation of the reference regions, and extraction of the volumetric segmentation-based measurements. Suitable components of the DICOM standard were identified to model the various types of data produced by the analysis. A developer toolkit of conversion routines and an Application Programming Interface (API) were contributed and applied to create a standards-based representation of the data. Results. DICOM Real World Value Mapping, Segmentation and Structured Reporting objects were utilized for standards-compliant representation of the PET/CT QI analysis results and relevant clinical data. A number of correction proposals to the standard were developed. The open-source DICOM toolkit (DCMTK) was improved to simplify the task of DICOM encoding by introducing new API abstractions

  2. DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research

    Directory of Open Access Journals (Sweden)

    Andriy Fedorov

    2016-05-01

    Full Text Available Background. Imaging biomarkers hold tremendous promise for precision medicine clinical applications. Development of such biomarkers relies heavily on image post-processing tools for automated image quantitation. Their deployment in the context of clinical research necessitates interoperability with the clinical systems. Comparison with the established outcomes and evaluation tasks motivate integration of the clinical and imaging data, and the use of standardized approaches to support annotation and sharing of the analysis results and semantics. We developed the methodology and tools to support these tasks in Positron Emission Tomography and Computed Tomography (PET/CT quantitative imaging (QI biomarker development applied to head and neck cancer (HNC treatment response assessment, using the Digital Imaging and Communications in Medicine (DICOM® international standard and free open-source software. Methods. Quantitative analysis of PET/CT imaging data collected on patients undergoing treatment for HNC was conducted. Processing steps included Standardized Uptake Value (SUV normalization of the images, segmentation of the tumor using manual and semi-automatic approaches, automatic segmentation of the reference regions, and extraction of the volumetric segmentation-based measurements. Suitable components of the DICOM standard were identified to model the various types of data produced by the analysis. A developer toolkit of conversion routines and an Application Programming Interface (API were contributed and applied to create a standards-based representation of the data. Results. DICOM Real World Value Mapping, Segmentation and Structured Reporting objects were utilized for standards-compliant representation of the PET/CT QI analysis results and relevant clinical data. A number of correction proposals to the standard were developed. The open-source DICOM toolkit (DCMTK was improved to simplify the task of DICOM encoding by introducing new API

  3. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders

    KAUST Repository

    Marquet, Pierre

    2014-09-22

    Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed.

  4. Quantitative multiplex detection of pathogen biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I.; Martinez, Jennifer; Grace, Wynne K.

    2016-02-09

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  5. Quantitative multiplex detection of pathogen biomarkers

    Science.gov (United States)

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I; Martinez, Jennifer; Grace, Wynne K

    2014-10-14

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  6. Imaging biomarkers in primary brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lopci, Egesta; Chiti, Arturo [Humanitas Clinical and Research Center, Nuclear Medicine Department, Rozzano, MI (Italy); Franzese, Ciro; Navarria, Pierina; Scorsetti, Marta [Humanitas Clinical and Research Center, Radiosurgery and Radiotherapy, Rozzano, MI (Italy); Grimaldi, Marco [Humanitas Clinical and Research Center, Radiology, Rozzano, MI (Italy); Zucali, Paolo Andrea; Simonelli, Matteo [Humanitas Clinical and Research Center, Medical Oncology, Rozzano, MI (Italy); Bello, Lorenzo [Humanitas Clinical and Research Center, Neurosurgery, Rozzano, MI (Italy)

    2015-04-01

    We are getting used to referring to instrumentally detectable biological features in medical language as ''imaging biomarkers''. These two terms combined reflect the evolution of medical imaging during recent decades, and conceptually comprise the principle of noninvasive detection of internal processes that can become targets for supplementary therapeutic strategies. These targets in oncology include those biological pathways that are associated with several tumour features including independence from growth and growth-inhibitory signals, avoidance of apoptosis and immune system control, unlimited potential for replication, self-sufficiency in vascular supply and neoangiogenesis, acquired tissue invasiveness and metastatic diffusion. Concerning brain tumours, there have been major improvements in neurosurgical techniques and radiotherapy planning, and developments of novel target drugs, thus increasing the need for reproducible, noninvasive, quantitative imaging biomarkers. However, in this context, conventional radiological criteria may be inappropriate to determine the best therapeutic option and subsequently to assess response to therapy. Integration of molecular imaging for the evaluation of brain tumours has for this reason become necessary, and an important role in this setting is played by imaging biomarkers in PET and MRI. In the current review, we describe most relevant techniques and biomarkers used for imaging primary brain tumours in clinical practice, and discuss potential future developments from the experimental context. (orig.)

  7. Imaging Biomarkers for Adult Medulloblastomas

    DEFF Research Database (Denmark)

    Keil, V C; Warmuth-Metz, M; Reh, C

    2017-01-01

    in MR imaging biomarkers identified in pediatric medulloblastomas. MATERIALS AND METHODS: Eligible preoperative MRIs from 28 patients (11 women; 22-53 years of age) of the Multicenter Pilot-study for the Therapy of Medulloblastoma of Adults (NOA-7) cohort were assessed by 3 experienced neuroradiologists......BACKGROUND AND PURPOSE: The occurrence of medulloblastomas in adults is rare; nevertheless, these tumors can be subdivided into genetic and histologic entities each having distinct prognoses. This study aimed to identify MR imaging biomarkers to classify these entities and to uncover differences......-WNT/non-SHH medulloblastomas (in adults, Group 4), and histologic entities were correlated with the imaging criteria. These MR imaging biomarkers were compared with corresponding data from a pediatric study. RESULTS: There were 19 SHH TP53 wild type (69%), 4 WNT-activated (14%), and 5 Group 4 (17%) medulloblastomas. Six...

  8. Imaging Biomarkers for Adult Medulloblastomas

    DEFF Research Database (Denmark)

    Keil, V C; Warmuth-Metz, M; Reh, C

    2017-01-01

    . Lesions and perifocal edema were volumetrized and multiparametrically evaluated for classic morphologic characteristics, location, hydrocephalus, and Chang criteria. To identify MR imaging biomarkers, we correlated genetic entities sonic hedgehog (SHH) TP53 wild type, wingless (WNT), and non...... potential MR imaging biomarkers were identified, 3 of which, hydrocephalus (P = .03), intraventricular macrometastases (P = .02), and hemorrhage (P = .04), when combined, could identify WNT medulloblastoma with 100% sensitivity and 88.3% specificity (95% CI, 39.8%-100.0% and 62.6%-95.3%). WNT...

  9. Cerebrovascular reactivity by quantitative magnetic resonance angiography with a co{sub 2} challenge. Validation as a new imaging biomarker

    Energy Technology Data Exchange (ETDEWEB)

    Caputi, Luigi, E-mail: lcaputi@istituto-besta.it [Department of Cerebrovascular Diseases, Fondazione IRCCS Neurological Institute C. Besta, Via Celoria 11, 20133 Milan (Italy); Ghielmetti, Francesco, E-mail: Francesco.Ghielmetti@istituto-besta.it [Department of Neuroradiology, Fondazione IRCCS Neurological Institute C. Besta, Via Celoria 11, 20133 Milan (Italy); Faragò, Giuseppe, E-mail: Giuseppe.Farago@istituto-besta.it [Department of Neuroradiology, Fondazione IRCCS Neurological Institute C. Besta, Via Celoria 11, 20133 Milan (Italy); Longaretti, Fabio, E-mail: fabio.longaretti@libero.it [Department of Neuroradiology, Fondazione IRCCS Neurological Institute C. Besta, Via Celoria 11, 20133 Milan (Italy); Lamperti, Massimo, E-mail: docmassimomd@gmail.com [Department of Neuroanesthesia and Intensive Care, Fondazione IRCCS Neurological Institute C. Besta, Via Celoria 11, 20133 Milan (Italy); Anzola, Gian Paolo, E-mail: gpanzola@speedyposta.it [Service of Neurology, S. Orsola Hospital, Fondazione Poliambulanza, Via Vittorio Emanuele II 27, 25122 Brescia (Italy); Carriero, Maria Rita, E-mail: MariaRita.Carriero@istituto-besta.it [Department of Cerebrovascular Diseases, Fondazione IRCCS Neurological Institute C. Besta, Via Celoria 11, 20133 Milan (Italy); Charbel, Fady T., E-mail: fcharbel@uic.edu [Department of Neurosurgery, University of Illinois at Chicago College of Medicine, Chicago, IL 60612 (United States); Bruzzone, Maria Grazia, E-mail: Maria.Bruzzone@istituto-besta.it [Department of Neuroradiology, Fondazione IRCCS Neurological Institute C. Besta, Via Celoria 11, 20133 Milan (Italy); Parati, Eugenio, E-mail: Eugenio.Parati@istituto-besta.it [Department of Cerebrovascular Diseases, Fondazione IRCCS Neurological Institute C. Besta, Via Celoria 11, 20133 Milan (Italy); Ciceri, Elisa, E-mail: Elisa.Ciceri@istituto-besta.it [Department of Neuroradiology, Fondazione IRCCS Neurological Institute C. Besta, Via Celoria 11, 20133 Milan (Italy)

    2014-06-15

    Assessment of cerebrovascular reactivity (CVR) is essential in cerebrovascular diseases, as exhausted CVR may enhance the risk of cerebral ischemic events. Transcranial Doppler (TCD) with a vasodilatory stimulus is currently used for CVR evaluation. Scanty data are available for Quantitative Magnetic Resonance Angiography (QMRA), which supplies higher spatial resolution and quantitative cerebral blood flow values. Aims of our pilot study were: (a) to assess safety and feasibility of CO{sub 2} administration during QMRA, (b) evaluation of CVR under QMRA compared to TCD, and (c) quantitative evaluation of blood flow from the major intracranial arterial vessels both at rest and after CO{sub 2}. CVR during 5% CO{sub 2} air breathing was measured with TCD as a reference method and compared with QMRA. Fifteen healthy subjects (age 60.47 ± 2.24; male 11/15) were evaluated at rest and during CO{sub 2} challenge. Feasibility and safety of QMRA under CO{sub 2} were ensured in all subjects. CVR from middle cerebral artery territory was not statistically different between TCD and MRI (p > 0.05). Mean arterial pressure (MAP) and heart rate (HR) increased during QMRA and TCD (MAP p = 0.007 and p = 0.001; HR p = 0.043 and p = 0.068, respectively). Blood flow values from all intracranial vessels increased after CO{sub 2} inhalation (p < 0.001). CO{sub 2} administration during QMRA sessions is safe and feasible. Good correlation in terms of CVR was obtained comparing TCD and QMRA. Blood flow values significantly increased from all intracranial arterial vessels after CO{sub 2}. Studies regarding CVR in physiopathological conditions might consider the utilization of QMRA both in routine clinical settings and in research projects.

  10. [Integrating information about imaging biomarkers into structured radiology reports].

    Science.gov (United States)

    Pomar-Nadal, A; Pérez-Castillo, C; Alberich-Bayarri, A; García-Martí, G; Sanz Requena, R; Martí-Bonmatí, L

    2013-01-01

    Imaging biomarkers describe objective characteristics that are related to normal biological processes, diseases, or the response to treatment. They enable radiologists to incorporate into their reports data about structure, function, and tissue components. With the aim of taking maximum advantage of the quantification of medical images, we present a procedure to integrate imaging biomarkers into radiological reports, bringing the new paradigm of personal medicine closer to radiological workflow. In this manner, the results of quantification can complement traditional radiological diagnosis, improving accuracy and the evaluation of the efficacy of treatments. A more personalized, standardized, structured radiological report should include quantitative analyses to complement conventional qualitative reporting in selected cases.

  11. Quantitative Hyperspectral Reflectance Imaging

    Directory of Open Access Journals (Sweden)

    Ted A.G. Steemers

    2008-09-01

    Full Text Available Hyperspectral imaging is a non-destructive optical analysis technique that can for instance be used to obtain information from cultural heritage objects unavailable with conventional colour or multi-spectral photography. This technique can be used to distinguish and recognize materials, to enhance the visibility of faint or obscured features, to detect signs of degradation and study the effect of environmental conditions on the object. We describe the basic concept, working principles, construction and performance of a laboratory instrument specifically developed for the analysis of historical documents. The instrument measures calibrated spectral reflectance images at 70 wavelengths ranging from 365 to 1100 nm (near-ultraviolet, visible and near-infrared. By using a wavelength tunable narrow-bandwidth light-source, the light energy used to illuminate the measured object is minimal, so that any light-induced degradation can be excluded. Basic analysis of the hyperspectral data includes a qualitative comparison of the spectral images and the extraction of quantitative data such as mean spectral reflectance curves and statistical information from user-defined regions-of-interest. More sophisticated mathematical feature extraction and classification techniques can be used to map areas on the document, where different types of ink had been applied or where one ink shows various degrees of degradation. The developed quantitative hyperspectral imager is currently in use by the Nationaal Archief (National Archives of The Netherlands to study degradation effects of artificial samples and original documents, exposed in their permanent exhibition area or stored in their deposit rooms.

  12. Treatment assessment of radiotherapy using MR functional quantitative imaging

    Institute of Scientific and Technical Information of China (English)

    Zheng; Chang; Chunhao; Wang

    2015-01-01

    Recent developments in magnetic resonance(MR) functional quantitative imaging have made it a potentially powerful tool to assess treatment response in radiation therapy. With its abilities to capture functional information on underlying tissue characteristics, MR functional quantitative imaging can be valuable in assessing treatment response and as such to optimize therapeutic outcome. Various MR quantitative imaging techniques, including diffusion weighted imaging, diffusion tensor imaging, MR spectroscopy and dynamic contrastenhanced imaging, have been investigated and found useful for assessment of radiotherapy. However, various aspects including data reproducibility, interpretation of biomarkers, image quality and data analysis impose challenges on applications of MR functional quantitative imaging in radiotherapy assessment. All of these challenging issues shall be addressed to help us understand whether MR functional quantitative imaging is truly beneficial and contributes to future development of radiotherapy. It is evident that individualized therapy is the future direction of patient care. MR functional quantitative imaging might serves as an indispensable tool towards this promising direction.

  13. Quantitative luminescence imaging system

    Science.gov (United States)

    Batishko, C. R.; Stahl, K. A.; Fecht, B. A.

    The goal of the Measurement of Chemiluminescence project is to develop and deliver a suite of imaging radiometric instruments for measuring spatial distributions of chemiluminescence. Envisioned deliverables include instruments working at the microscopic, macroscopic, and life-sized scales. Both laboratory and field portable instruments are envisioned. The project also includes development of phantoms as enclosures for the diazoluminomelanin (DALM) chemiluminescent chemistry. A suite of either phantoms in a variety of typical poses, or phantoms that could be adjusted to a variety of poses, is envisioned. These are to include small mammals (rats), mid-sized mammals (monkeys), and human body parts. A complete human phantom that can be posed is a long-term goal of the development. Taken together, the chemistry and instrumentation provide a means for imaging rf dosimetry based on chemiluminescence induced by the heat resulting from rf energy absorption. The first delivered instrument, the Quantitative Luminescence Imaging System (QLIS), resulted in a patent, and an R&D Magazine 1991 R&D 100 award, recognizing it as one of the 100 most significant technological developments of 1991. The current status of the project is that three systems have been delivered, several related studies have been conducted, two preliminary human hand phantoms have been delivered, system upgrades have been implemented, and calibrations have been maintained. Current development includes sensitivity improvements to the microscope-based system; extension of the large-scale (potentially life-sized targets) system to field portable applications; extension of the 2-D large-scale system to 3-D measurement; imminent delivery of a more refined human hand phantom and a rat phantom; rf, thermal and imaging subsystem integration; and continued calibration and upgrade support.

  14. 3D-isotropic high-resolution morphological imaging and quantitative T2 mapping as biomarkers for gender related differences after matrix-associated autologous chondrocyte transplantation (MACT).

    Science.gov (United States)

    Pachowsky, Milena L; Werner, Sven; Marlovits, Stefan; Stelzeneder, David; Renner, Nina; Trattnig, Siegfried; Welsch, Goetz H

    2014-10-01

    The aim of this study was to determine in vivo high-resolution morphological and biochemical gender related differences in cartilage repair tissue (MACT). Forty patients were examined clinically and by MR scans at 3T-MRI (coronal 3D True-FISP sequence for morphologic assessment and multi-echo spin-echo T2-mapping for biochemical assessment of healthy cartilage and MACT cartilage). Mean T2 values in repair tissue in the deep zone showed significantly shorter T2 times in females (p = 0.009, female 43.5 ± 9.8 vs. male 48.2 ± 7.7 ms). The superficial zone showed higher T2 values than the deep zone in both the groups (female 48.5 ± 9.8, males 52.6 ± 11.0 ms) without significant difference between female and male patients. Native control cartilage showed no statistically significant differences for T2 between females and males. The subdivisions "structure of the repair tissue" and "subchondral bone" of the MOCART score showed statistically significant differences between females and males (p = 0.026 and p = 0.007) as well as the Lysholm score (p = 0.03). Our investigations revealed differences between female and male patients after MACT of the knee in clinical outcome and advanced morphological and biochemical MRI. The presented imaging biomarkers can depict subtle changes after cartilage regeneration procedures and might help to understand gender related differences after cartilage repair procedures. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Digital imaging biomarkers feed machine learning for melanoma screening.

    Science.gov (United States)

    Gareau, Daniel S; Correa da Rosa, Joel; Yagerman, Sarah; Carucci, John A; Gulati, Nicholas; Hueto, Ferran; DeFazio, Jennifer L; Suárez-Fariñas, Mayte; Marghoob, Ashfaq; Krueger, James G

    2017-07-01

    We developed an automated approach for generating quantitative image analysis metrics (imaging biomarkers) that are then analysed with a set of 13 machine learning algorithms to generate an overall risk score that is called a Q-score. These methods were applied to a set of 120 "difficult" dermoscopy images of dysplastic nevi and melanomas that were subsequently excised/classified. This approach yielded 98% sensitivity and 36% specificity for melanoma detection, approaching sensitivity/specificity of expert lesion evaluation. Importantly, we found strong spectral dependence of many imaging biomarkers in blue or red colour channels, suggesting the need to optimize spectral evaluation of pigmented lesions. © 2016 The Authors. Experimental Dermatology Published by John Wiley & Sons Ltd.

  16. Quantitative imaging features: extension of the oncology medical image database

    Science.gov (United States)

    Patel, M. N.; Looney, P. T.; Young, K. C.; Halling-Brown, M. D.

    2015-03-01

    Radiological imaging is fundamental within the healthcare industry and has become routinely adopted for diagnosis, disease monitoring and treatment planning. With the advent of digital imaging modalities and the rapid growth in both diagnostic and therapeutic imaging, the ability to be able to harness this large influx of data is of paramount importance. The Oncology Medical Image Database (OMI-DB) was created to provide a centralized, fully annotated dataset for research. The database contains both processed and unprocessed images, associated data, and annotations and where applicable expert determined ground truths describing features of interest. Medical imaging provides the ability to detect and localize many changes that are important to determine whether a disease is present or a therapy is effective by depicting alterations in anatomic, physiologic, biochemical or molecular processes. Quantitative imaging features are sensitive, specific, accurate and reproducible imaging measures of these changes. Here, we describe an extension to the OMI-DB whereby a range of imaging features and descriptors are pre-calculated using a high throughput approach. The ability to calculate multiple imaging features and data from the acquired images would be valuable and facilitate further research applications investigating detection, prognosis, and classification. The resultant data store contains more than 10 million quantitative features as well as features derived from CAD predictions. Theses data can be used to build predictive models to aid image classification, treatment response assessment as well as to identify prognostic imaging biomarkers.

  17. Cartilage repair surgery: outcome evaluation by using noninvasive cartilage biomarkers based on quantitative MRI techniques?

    Science.gov (United States)

    Jungmann, Pia M; Baum, Thomas; Bauer, Jan S; Karampinos, Dimitrios C; Erdle, Benjamin; Link, Thomas M; Li, Xiaojuan; Trattnig, Siegfried; Rummeny, Ernst J; Woertler, Klaus; Welsch, Goetz H

    2014-01-01

    New quantitative magnetic resonance imaging (MRI) techniques are increasingly applied as outcome measures after cartilage repair. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), and diffusion weighted imaging (DWI) are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair.

  18. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    Directory of Open Access Journals (Sweden)

    Pia M. Jungmann

    2014-01-01

    Full Text Available Background. New quantitative magnetic resonance imaging (MRI techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, and diffusion weighted imaging (DWI are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair.

  19. WONOEP appraisal: Imaging biomarkers in epilepsy.

    Science.gov (United States)

    van Vliet, Erwin A; Dedeurwaerdere, Stefanie; Cole, Andrew J; Friedman, Alon; Koepp, Matthias J; Potschka, Heidrun; Immonen, Riikka; Pitkänen, Asla; Federico, Paolo

    2017-03-01

    Neuroimaging offers a wide range of opportunities to obtain information about neuronal activity, brain inflammation, blood-brain barrier alterations, and various molecular alterations during epileptogenesis or for the prediction of pharmacoresponsiveness as well as postoperative outcome. Imaging biomarkers were examined during the XIII Workshop on Neurobiology of Epilepsy (XIII WONOEP) organized in 2015 by the Neurobiology Commission of the International League Against Epilepsy (ILAE). Here we present an extended summary of the discussed issues and provide an overview of the current state of knowledge regarding the biomarker potential of different neuroimaging approaches for epilepsy. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  20. Development of imaging biomarkers and generation of big data.

    Science.gov (United States)

    Alberich-Bayarri, Ángel; Hernández-Navarro, Rafael; Ruiz-Martínez, Enrique; García-Castro, Fabio; García-Juan, David; Martí-Bonmatí, Luis

    2017-02-21

    Several image processing algorithms have emerged to cover unmet clinical needs but their application to radiological routine with a clear clinical impact is still not straightforward. Moving from local to big infrastructures, such as Medical Imaging Biobanks (millions of studies), or even more, Federations of Medical Imaging Biobanks (in some cases totaling to hundreds of millions of studies) require the integration of automated pipelines for fast analysis of pooled data to extract clinically relevant conclusions, not uniquely linked to medical imaging, but in combination to other information such as genetic profiling. A general strategy for the development of imaging biomarkers and their integration in the cloud for the quantitative management and exploitation in large databases is herein presented. The proposed platform has been successfully launched and is being validated nowadays among the early adopters' community of radiologists, clinicians, and medical imaging researchers.

  1. Quantitative imaging methods in osteoporosis.

    Science.gov (United States)

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  2. Quantitative ultrasonic phased array imaging

    Science.gov (United States)

    Engle, Brady J.; Schmerr, Lester W., Jr.; Sedov, Alexander

    2014-02-01

    When imaging with ultrasonic phased arrays, what do we actually image? What quantitative information is contained in the image? Ad-hoc delay-and-sum methods such as the synthetic aperture focusing technique (SAFT) and the total focusing method (TFM) fail to answer these questions. We have shown that a new quantitative approach allows the formation of flaw images by explicitly inverting the Thompson-Gray measurement model. To examine the above questions, we have set up a software simulation test bed that considers a 2-D scalar scattering problem of a cylindrical inclusion with the method of separation of variables. It is shown that in SAFT types of imaging the only part of the flaw properly imaged is the front surface specular response of the flaw. Other responses (back surface reflections, creeping waves, etc.) are improperly imaged and form artifacts in the image. In the case of TFM-like imaging the quantity being properly imaged is an angular integration of the front surface reflectivity. The other, improperly imaged responses are also averaged, leading to a reduction in some of the artifacts present. Our results have strong implications for flaw sizing and flaw characterization with delay-and-sum images.

  3. Quantitative multiphoton imaging

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Breunig, Hans Georg; Uchugonova, Aisada

    2014-02-01

    Certified clinical multiphoton tomographs for label-free multidimensional high-resolution in vivo imaging have been introduced to the market several years ago. Novel tomographs include a flexible 360° scan head attached to a mechanooptical arm for autofluorescence and SHG imaging as well as a CARS module. Non-fluorescent lipids and water, mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged in vivo with submicron resolution in human skin. Sensitive and rapid detectors allow single photon counting and the construction of 3D maps where the number of detected photons per voxel is depicted. Intratissue concentration profiles from endogenous as well exogenous substances can be generated when the number of detected photons can be correlated with the number of molecules with respect to binding and scattering behavior. Furthermore, the skin ageing index SAAID based on the ratio elastin/collagen as well as the epidermis depth based on the onset of SHG generation can be determined.

  4. Quantitative phase imaging of arthropods

    Science.gov (United States)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-01-01

    Abstract. Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy. PMID:26334858

  5. Imaging biomarkers in Parkinson's disease.

    Science.gov (United States)

    Brooks, David J; Pavese, Nicola

    2011-12-01

    Parkinson's disease (PD) is characterized by a progressive loss of nigrostriatal dopaminergic neurons associated with intracellular Lewy inclusion bodies. The result is poverty of movement, increased muscle rigidity, and tremor at rest and on posture. Midbrain/nigral structural abnormalities can be demonstrated in vivo with both transcranial sonography (TCS) and diffusion tensor magnetic resonance imaging (DTI) while positron emission tomography (PET) and single photon emission computed tomography (SPECT) ligands exist to demonstrate dopamine terminal dysfunction. These radiotracers are markers of dopamine storage capacity, vesicular monoamine and dopamine transporter availability. While loss of putamen dopaminergic function leads to motor disability, Lewy bodies not only target dopamine neurons but have also been observed in serotoninergic, noradrenergic, and cholinergic neurons. As a consequence, non-dopaminergic neurotransmission is also impaired resulting in non-motor symptoms including sleep disturbance, fatigue, depression, dementia, and autonomic dysfunction. PET and SPECT ligands exist to interrogate the function of monoaminergic and cholinergic neurons. Cortical and limbic Lewy body disease is seen in more advanced PD and this can be detected with FDG PET as abnormal covariance between levels of resting brain metabolism in these regions. Additionally, widespread microglial activation can be detected in PD with PET. This review discusses the role of structural and functional imaging for understanding parkinsonian syndromes and aiding in their diagnosis and management.

  6. Automated Bone Scan Index as a quantitative imaging biomarker in metastatic castration-resistant prostate cancer patients being treated with enzalutamide.

    Science.gov (United States)

    Anand, Aseem; Morris, Michael J; Larson, Steven M; Minarik, David; Josefsson, Andreas; Helgstrand, John T; Oturai, Peter S; Edenbrandt, Lars; Røder, Martin Andreas; Bjartell, Anders

    2016-12-01

    Having performed analytical validation studies, we are now assessing the clinical utility of the upgraded automated Bone Scan Index (BSI) in metastatic castration-resistant prostate cancer (mCRPC). In the present study, we retrospectively evaluated the discriminatory strength of the automated BSI in predicting overall survival (OS) in mCRPC patients being treated with enzalutamide. Retrospectively, we included patients who received enzalutamide as a clinically approved therapy for mCRPC and had undergone bone scan prior to starting therapy. Automated BSI, prostate-specific antigen (PSA), hemoglobin (HgB), and alkaline phosphatase (ALP) were obtained at baseline. Change in automated BSI and PSA were obtained from patients who have had bone scan at week 12 of treatment follow-up. Automated BSI was obtained using the analytically validated EXINI Bone(BSI) version 2. Kendall's tau (τ) was used to assess the correlation of BSI with other blood-based biomarkers. Concordance index (C-index) was used to evaluate the discriminating strength of automated BSI in predicting OS. Eighty mCRPC patients with baseline bone scans were included in the study. There was a weak correlation of automated BSI with PSA (τ = 0.30), with HgB (τ = -0.17), and with ALP (τ = 0.56). At baseline, the automated BSI was observed to be predictive of OS (C-index 0.72, standard error (SE) 0.03). Adding automated BSI to the blood-based model significantly improved the C-index from 0.67 to 0.72, p = 0.017. Treatment follow-up bone scans were available from 62 patients. Both change in BSI and percent change in PSA were predictive of OS. However, the combined predictive model of percent PSA change and change in automated BSI (C-index 0.77) was significantly higher than that of percent PSA change alone (C-index 0.73), p = 0.041. The upgraded and analytically validated automated BSI was found to be a strong predictor of OS in mCRPC patients. Additionally, the change in automated BSI

  7. Quantitative ultrasound in cancer imaging.

    Science.gov (United States)

    Feleppa, Ernest J; Mamou, Jonathan; Porter, Christopher R; Machi, Junji

    2011-02-01

    Ultrasound is a relatively inexpensive, portable, and versatile imaging modality that has a broad range of clinical uses. It incorporates many imaging modes, such as conventional gray-scale "B-mode" imaging to display echo amplitude in a scanned plane; M-mode imaging to track motion at a given fixed location over time; duplex, color, and power Doppler imaging to display motion in a scanned plane; harmonic imaging to display nonlinear responses to incident ultrasound; elastographic imaging to display relative tissue stiffness; and contrast-agent imaging with simple contrast agents to display blood-filled spaces or with targeted agents to display specific agent-binding tissue types. These imaging modes have been well described in the scientific, engineering, and clinical literature. A less well-known ultrasonic imaging technology is based on quantitative ultrasound (QUS), which analyzes the distribution of power as a function of frequency in the original received echo signals from tissue and exploits the resulting spectral parameters to characterize and distinguish among tissues. This article discusses the attributes of QUS-based methods for imaging cancers and providing improved means of detecting and assessing tumors. The discussion will include applications to imaging primary prostate cancer and metastatic cancer in lymph nodes to illustrate the methods. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. GPC and quantitative phase imaging

    DEFF Research Database (Denmark)

    Palima, Darwin; Banas, Andrew Rafael; Villangca, Mark Jayson

    2016-01-01

    shaper followed by the potential of GPC for biomedical and multispectral applications where we experimentally demonstrate the active light shaping of a supercontinuum laser over most of the visible wavelength range. Finally, we discuss how GPC can be advantageously applied for Quantitative Phase Imaging...

  9. Imaging biomarkers in acute ischemic stroke trials: a systematic review.

    Science.gov (United States)

    Harston, G W J; Rane, N; Shaya, G; Thandeswaran, S; Cellerini, M; Sheerin, F; Kennedy, J

    2015-05-01

    Imaging biomarkers are increasingly used to provide a better understanding of the pathophysiology of acute ischemic stroke. However, this approach of routinely using imaging biomarkers to inform treatment decisions has yet to be translated into successful randomized trials. The aim of this study was to systematically review the use of imaging biomarkers in randomized controlled trials in patients with acute ischemic stroke, exploring the purposes for which the imaging biomarkers were used. We performed a systematic review of imaging biomarkers used in randomized controlled trials of acute ischemic stroke, in which a therapeutic intervention was trialed within 48 hours of symptom onset. Data bases searched included MEDLINE, EMBASE, strokecenter.org, and the Virtual International Stroke Trials Archive (1995-2014). Eighty-four studies met the criteria, of which 49 used imaging to select patients; 31, for subgroup analysis; and 49, as an outcome measure. Imaging biomarkers were broadly used for 8 purposes. There was marked heterogeneity in the definitions and uses of imaging biomarkers and significant publication bias among post hoc analyses. Imaging biomarkers offer the opportunity to refine the trial cohort by minimizing participant variation, to decrease sample size, and to personalize treatment approaches for those who stand to benefit most. However, within imaging modalities, there has been little consistency between stroke trials. Greater effort to prospectively use consistent imaging biomarkers should help improve the development of novel treatment strategies in acute stroke and improve comparison between studies. © 2015 by American Journal of Neuroradiology.

  10. Parkinson's disease biomarkers program brain imaging repository.

    Science.gov (United States)

    Ofori, Edward; Du, Guangwei; Babcock, Debra; Huang, Xuemei; Vaillancourt, David E

    2016-01-01

    The Parkinson's Disease Biomarkers Program (PDBP) is a multi-site study designed to identify Parkinson's disease (PD) biomarkers that can be used to improve the understanding of PD pathophysiology and to develop tools that provide novel measures to evaluate PD clinical trials. The PDBP consortium comprises numerous individual projects of which two are specifically geared to the development of brain imaging markers for diagnosis, progression, and prognosis of PD or related disorders. All study data from PD patients, atypical Parkinsonian patients, patients with essential tremor, and healthy controls collected from the sites are integrated in the PDBP database and will be publically available. All subjects are asked to submit blood samples, and undergo a battery of clinical evaluations that cover motor, cognitive, and other background information. In addition, a subset of subjects contributed cerebrospinal fluid samples. A restricted access, web-based Data Management Resource facilitates rapid sharing of data and biosamples across the entire PD research community. The PDBP consortium is a useful resource for research and collaboration aimed at the discovery of biomarkers and their use in understanding the pathophysiology of PD.

  11. Imaging biomarker roadmap for cancer studies

    Science.gov (United States)

    O’Connor, James P. B.; Aboagye, Eric O.; Adams, Judith E.; Aerts, Hugo J. W. L.; Barrington, Sally F.; Beer, Ambros J.; Boellaard, Ronald; Bohndiek, Sarah E.; Brady, Michael; Brown, Gina; Buckley, David L.; Chenevert, Thomas L.; Clarke, Laurence P.; Collette, Sandra; Cook, Gary J.; deSouza, Nandita M.; Dickson, John C.; Dive, Caroline; Evelhoch, Jeffrey L.; Faivre-Finn, Corinne; Gallagher, Ferdia A.; Gilbert, Fiona J.; Gillies, Robert J.; Goh, Vicky; Griffiths, John R.; Groves, Ashley M.; Halligan, Steve; Harris, Adrian L.; Hawkes, David J.; Hoekstra, Otto S.; Huang, Erich P.; Hutton, Brian F.; Jackson, Edward F.; Jayson, Gordon C.; Jones, Andrew; Koh, Dow-Mu; Lacombe, Denis; Lambin, Philippe; Lassau, Nathalie; Leach, Martin O.; Lee, Ting-Yim; Leen, Edward L.; Lewis, Jason S.; Liu, Yan; Lythgoe, Mark F.; Manoharan, Prakash; Maxwell, Ross J.; Miles, Kenneth A.; Morgan, Bruno; Morris, Steve; Ng, Tony; Padhani, Anwar R.; Parker, Geoff J. M.; Partridge, Mike; Pathak, Arvind P.; Peet, Andrew C.; Punwani, Shonit; Reynolds, Andrew R.; Robinson, Simon P.; Shankar, Lalitha K.; Sharma, Ricky A.; Soloviev, Dmitry; Stroobants, Sigrid; Sullivan, Daniel C.; Taylor, Stuart A.; Tofts, Paul S.; Tozer, Gillian M.; van Herk, Marcel; Walker-Samuel, Simon; Wason, James; Williams, Kaye J.; Workman, Paul; Yankeelov, Thomas E.; Brindle, Kevin M.; McShane, Lisa M.; Jackson, Alan; Waterton, John C.

    2017-01-01

    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing ‘translational gaps’ through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored ‘roadmap’. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use. PMID:27725679

  12. FDG PET/CT imaging as a biomarker in lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Meignan, Michel; Itti, Emmanuel [Hopitaux Universitaires Henri Mondor, Paris-Est Creteil University, LYSA Imaging, Department of Nuclear Medicine, Creteil (France); Gallamini, Andrea [Nice University, Research, Innovation and Statistic Department, Antoine Lacassagne Cancer Center, Nice (France); Scientific Research Committee, S. Croce Hospital, Cuneo (Italy); Younes, Anas [Memorial Sloan Kettering Cancer Center, Lymphoma Service, New York, NY (United States)

    2015-04-01

    FDG PET/CT has changed the management of FDG-avid lymphoma and is now recommended as the imaging technique of choice for staging and restaging. The need for tailoring therapy to reduce toxicity in patients with a favourable outcome and for improving treatment in those with high-risk factors requires accurate diagnostic methods and a new prognostic algorithm to identify different risk categories. New drugs are used in relapsed/refractory patients. The role of FDG PET/CT as a biomarker in this context is summarized in this review. New trends in FDG metabolic imaging in lymphoma are addressed including metabolic tumour volume measurement at staging and integrative PET which combines PET data with clinical and molecular markers or other imaging techniques. The quantitative approach for response assessment which is under investigation and is used in large ongoing trials is compared with visual criteria. The place of FDG in the era of targeted therapy is discussed. (orig.)

  13. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis.

    Science.gov (United States)

    Wen, Chengping; Zheng, Zhijun; Shao, Tiejuan; Liu, Lin; Xie, Zhijun; Le Chatelier, Emmanuelle; He, Zhixing; Zhong, Wendi; Fan, Yongsheng; Zhang, Linshuang; Li, Haichang; Wu, Chunyan; Hu, Changfeng; Xu, Qian; Zhou, Jia; Cai, Shunfeng; Wang, Dawei; Huang, Yun; Breban, Maxime; Qin, Nan; Ehrlich, Stanislav Dusko

    2017-07-27

    The assessment and characterization of the gut microbiome has become a focus of research in the area of human autoimmune diseases. Ankylosing spondylitis is an inflammatory autoimmune disease and evidence showed that ankylosing spondylitis may be a microbiome-driven disease. To investigate the relationship between the gut microbiome and ankylosing spondylitis, a quantitative metagenomics study based on deep shotgun sequencing was performed, using gut microbial DNA from 211 Chinese individuals. A total of 23,709 genes and 12 metagenomic species were shown to be differentially abundant between ankylosing spondylitis patients and healthy controls. Patients were characterized by a form of gut microbial dysbiosis that is more prominent than previously reported cases with inflammatory bowel disease. Specifically, the ankylosing spondylitis patients demonstrated increases in the abundance of Prevotella melaninogenica, Prevotella copri, and Prevotella sp. C561 and decreases in Bacteroides spp. It is noteworthy that the Bifidobacterium genus, which is commonly used in probiotics, accumulated in the ankylosing spondylitis patients. Diagnostic algorithms were established using a subset of these gut microbial biomarkers. Alterations of the gut microbiome are associated with development of ankylosing spondylitis. Our data suggest biomarkers identified in this study might participate in the pathogenesis or development process of ankylosing spondylitis, providing new leads for the development of new diagnostic tools and potential treatments.

  14. Quantitative electroencephalography as a biomarker for proneness toward developing psychosis.

    Science.gov (United States)

    Fuggetta, Giorgio; Bennett, Matthew A; Duke, Philip A; Young, Andrew M J

    2014-03-01

    The fully dimensional approach to the relationship between schizotypal personality traits and schizophrenia describes schizotypy as a continuum throughout the general population ranging from low schizotypy (LoS) and psychological health to high schizotypy (HiS) and psychosis-proneness. However, no biological markers have yet been discovered that reliably quantify an individual's degree of schizotypy and/or psychosis. This study aimed to evaluate quantitative electroencephalographic (qEEG) measures of power spectra as potential biomarkers of the proneness towards the development of psychosis in schizotypal individuals. The resting-state oscillatory brain dynamics under eyes-closed condition from 16 LoS and 16 HiS individuals were analysed for qEEG measures of background rhythm frequency, relative power in δ, θ, low-α, high-α, low-β, high-β and low-γ frequency bands, and the high-temporal cross-correlation of power spectra between low- and high-frequency bands observed by averaging signals from whole-head EEG electrodes. HiS individuals at rest locked the thalamocortical loop in the low-α band at a lower-frequency oscillation and displayed an abnormally high level of neural synchronisation. In addition, the high-α band was found to be positively correlated with both the high-β and low-γ bands unlike LoS individuals, indicating widespread thalamocortical resonance in HiS individuals. The increase of regional alpha oscillations in HiS individuals suggests abnormal high-level attention, whereas the pattern of correlation between frequency bands resembles the thalamocortical dysrhythmia phenomenon which underlies the symptomatology of a variety of neuropsychiatric disorders including schizophrenia. These qEEG biomarkers may aid clinicians in identifying HiS individuals with a high-risk of developing psychosis.

  15. Quantitative optical biomarkers of lung cancer based intrinsic two-photon excited fluorescence signal

    Science.gov (United States)

    Li, Jingwen; Zhan, Zhenlin; Lin, Hongxin; Zuo, Ning; Zhu, Xiaoqin; Xie, Shusen; Chen, Jianxin; Zhuo, Shuangmu

    2016-10-01

    Alterations in the elastic fibers have been implicated in lung cancer. However, the label-free, microscopic imaging of elastic fibers in situ remains a major challenge. Here, we present the use of intrinsic two-photon excited fluorescence (TPEF) signal as a novel means for quantification of the elastic fibers in intact fresh human lung tissues. We obtained the TPEF images of elastic fibers from ex vivo the human lung tissues. We found that three features, including the elastic fibers area, the elastic fibers orientation, the elastic fibers structure, provide the quantitative identification of lung cancer and the direct visual cues for cancer versus non-cancer areas. These results suggest that the TPEF signal can be used as the label-free optical biomarkers for rapid clinical lung diagnosis and instant image-guided surgery.

  16. Quantitative analysis of qualitative images

    Science.gov (United States)

    Hockney, David; Falco, Charles M.

    2005-03-01

    We show optical evidence that demonstrates artists as early as Jan van Eyck and Robert Campin (c1425) used optical projections as aids for producing their paintings. We also have found optical evidence within works by later artists, including Bermejo (c1475), Lotto (c1525), Caravaggio (c1600), de la Tour (c1650), Chardin (c1750) and Ingres (c1825), demonstrating a continuum in the use of optical projections by artists, along with an evolution in the sophistication of that use. However, even for paintings where we have been able to extract unambiguous, quantitative evidence of the direct use of optical projections for producing certain of the features, this does not mean that paintings are effectively photographs. Because the hand and mind of the artist are intimately involved in the creation process, understanding these complex images requires more than can be obtained from only applying the equations of geometrical optics.

  17. GPC and quantitative phase imaging

    Science.gov (United States)

    Palima, Darwin; Bañas, Andrew Rafael; Villangca, Mark Jayson; Glückstad, Jesper

    2016-03-01

    Generalized Phase Contrast (GPC) is a light efficient method for generating speckle-free contiguous optical distributions using binary-only or analog phase levels. It has been used in applications such as optical trapping and manipulation, active microscopy, structured illumination, optical security, parallel laser marking and labelling and recently in contemporary biophotonics applications such as for adaptive and parallel two-photon optogenetics and neurophotonics. We will present our most recent GPC developments geared towards these applications. We first show a very compact static light shaper followed by the potential of GPC for biomedical and multispectral applications where we experimentally demonstrate the active light shaping of a supercontinuum laser over most of the visible wavelength range. Finally, we discuss how GPC can be advantageously applied for Quantitative Phase Imaging (QPI).

  18. Quantitative imaging with fluorescent biosensors.

    Science.gov (United States)

    Okumoto, Sakiko; Jones, Alexander; Frommer, Wolf B

    2012-01-01

    Molecular activities are highly dynamic and can occur locally in subcellular domains or compartments. Neighboring cells in the same tissue can exist in different states. Therefore, quantitative information on the cellular and subcellular dynamics of ions, signaling molecules, and metabolites is critical for functional understanding of organisms. Mass spectrometry is generally used for monitoring ions and metabolites; however, its temporal and spatial resolution are limited. Fluorescent proteins have revolutionized many areas of biology-e.g., fluorescent proteins can report on gene expression or protein localization in real time-yet promoter-based reporters are often slow to report physiologically relevant changes such as calcium oscillations. Therefore, novel tools are required that can be deployed in specific cells and targeted to subcellular compartments in order to quantify target molecule dynamics directly. We require tools that can measure enzyme activities, protein dynamics, and biophysical processes (e.g., membrane potential or molecular tension) with subcellular resolution. Today, we have an extensive suite of tools at our disposal to address these challenges, including translocation sensors, fluorescence-intensity sensors, and Förster resonance energy transfer sensors. This review summarizes sensor design principles, provides a database of sensors for more than 70 different analytes/processes, and gives examples of applications in quantitative live cell imaging.

  19. Quantitative network measures as biomarkers for classifying prostate cancer disease states: a systems approach to diagnostic biomarkers.

    Directory of Open Access Journals (Sweden)

    Matthias Dehmer

    Full Text Available Identifying diagnostic biomarkers based on genomic features for an accurate disease classification is a problem of great importance for both, basic medical research and clinical practice. In this paper, we introduce quantitative network measures as structural biomarkers and investigate their ability for classifying disease states inferred from gene expression data from prostate cancer. We demonstrate the utility of our approach by using eigenvalue and entropy-based graph invariants and compare the results with a conventional biomarker analysis of the underlying gene expression data.

  20. High-resolution quantitative imaging of the substantia nigra.

    Science.gov (United States)

    Trujillo, Paula; Smith, Alex K; Summers, Paul E; Mainardi, Luca M; Cerutti, Sergio; Smith, Seth A; Costa, Antonella

    2015-01-01

    There is a growing interest in identifying neuroimaging-based biomarkers for Parkinson's disease (PD), a progressive neurodegenerative disorder in which the major pathologic substrate is the loss of pigmented dopaminergic neurons in the substantia nigra (SN). Recently, an MRI technique dubbed "neuromelanin-sensitive MRI" (NM-MRI), has been found to provide notable contrast between the SN and surrounding brain tissues with potential applications as biomarker of PD. The contrast in NM-MRI has been associated with magnetization transfer (MT) effects, and thus the goal of this study was to characterize the impact of MT on NM-MRI, and to demonstrate the feasibility of performing quantitative MT (qMT) imaging in human SN. The results of this study demonstrate that high-resolution rapid qMT imaging of the SN can be reliably obtained within reasonable scan times, thereby can be translatable into clinical practice.

  1. Assessment of quantitative cortical biomarkers in the developing brain of preterm infants

    Science.gov (United States)

    Moeskops, Pim; Benders, Manon J. N. L.; Pearlman, Paul C.; Kersbergen, Karina J.; Leemans, Alexander; Viergever, Max A.; Išgum, Ivana

    2013-02-01

    The cerebral cortex rapidly develops its folding during the second and third trimester of pregnancy. In preterm birth, this growth might be disrupted and influence neurodevelopment. The aim of this work is to extract quantitative biomarkers describing the cortex and evaluate them on a set of preterm infants without brain pathology. For this study, a set of 19 preterm - but otherwise healthy - infants scanned coronally with 3T MRI at the postmenstrual age of 30 weeks were selected. In ten patients (test set), the gray and white matter were manually annotated by an expert on the T2-weighted scans. Manual segmentations were used to extract cortical volume, surface area, thickness, and curvature using voxel-based methods. To compute these biomarkers per region in every patient, a template brain image has been generated by iterative registration and averaging of the scans of the remaining nine patients. This template has been manually divided in eight regions, and is transformed to every test image using elastic registration. In the results, gray and white matter volumes and cortical surface area appear symmetric between hemispheres, but small regional differences are visible. Cortical thickness seems slightly higher in the right parietal lobe than in other regions. The parietal lobes exhibit a higher global curvature, indicating more complex folding compared to other regions. The proposed approach can potentially - together with an automatic segmentation algorithm - be applied as a tool to assist in early diagnosis of abnormalities and prediction of the development of the cognitive abilities of these children.

  2. Informatics methods to enable sharing of quantitative imaging research data.

    Science.gov (United States)

    Levy, Mia A; Freymann, John B; Kirby, Justin S; Fedorov, Andriy; Fennessy, Fiona M; Eschrich, Steven A; Berglund, Anders E; Fenstermacher, David A; Tan, Yongqiang; Guo, Xiaotao; Casavant, Thomas L; Brown, Bartley J; Braun, Terry A; Dekker, Andre; Roelofs, Erik; Mountz, James M; Boada, Fernando; Laymon, Charles; Oborski, Matt; Rubin, Daniel L

    2012-11-01

    The National Cancer Institute Quantitative Research Network (QIN) is a collaborative research network whose goal is to share data, algorithms and research tools to accelerate quantitative imaging research. A challenge is the variability in tools and analysis platforms used in quantitative imaging. Our goal was to understand the extent of this variation and to develop an approach to enable sharing data and to promote reuse of quantitative imaging data in the community. We performed a survey of the current tools in use by the QIN member sites for representation and storage of their QIN research data including images, image meta-data and clinical data. We identified existing systems and standards for data sharing and their gaps for the QIN use case. We then proposed a system architecture to enable data sharing and collaborative experimentation within the QIN. There are a variety of tools currently used by each QIN institution. We developed a general information system architecture to support the QIN goals. We also describe the remaining architecture gaps we are developing to enable members to share research images and image meta-data across the network. As a research network, the QIN will stimulate quantitative imaging research by pooling data, algorithms and research tools. However, there are gaps in current functional requirements that will need to be met by future informatics development. Special attention must be given to the technical requirements needed to translate these methods into the clinical research workflow to enable validation and qualification of these novel imaging biomarkers. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    Science.gov (United States)

    Sinharay, Sanhita; Pagel, Mark D.

    2016-06-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.

  4. Surface plasmon resonance imaging for parallelized detection of protein biomarkers

    Science.gov (United States)

    Piliarik, Marek; Párová, Lucie; Vaisocherová, Hana; Homola, Jiří

    2009-05-01

    We report a novel high-throughput surface plasmon resonance (SPR) biosensor for rapid and parallelized detection of protein biomarkers. The biosensor is based on a high-performance SPR imaging sensor with polarization contrast and internal referencing which yields a considerably higher sensitivity and resolution than conventional SPR imaging systems (refractive index resolution 2 × 10-7 RIU). We combined the SPR imaging biosensor with microspotting to create an array of antibodies. DNA-directed protein immobilization was utilized for the spatially resolved attachment of antibodies. Using Human Chorionic Gonadotropin (hCG) as model protein biomarker, we demonstrated the potential for simultaneous detection of proteins in up to 100 channels.

  5. Parkinson’s Disease Biomarkers Program Brain Imaging Repository

    OpenAIRE

    Ofori, Edward; Du, Guangwei; Babcock, Debra; Huang, Xuemei; Vaillancourt, David E.

    2015-01-01

    The Parkinson’s Disease Biomarkers Program (PDBP) is a multi-site study designed to identify Parkinson’s Disease (PD) biomarkers that can be used to improve the understanding of PD pathophysiology and to develop tools that provide novel measures to evaluate PD clinical trials. The PDBP consortium comprises numerous individual projects of which two are specifically geared to the development of brain imaging markers for diagnosis, progression, and prognosis of PD or related disorders. All study...

  6. Quantitative multiplex detection of biomarkers on a waveguide-based biosensor using quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hongzhi [Los Alamos National Laboratory; Mukundan, Harshini [Los Alamos National Laboratory; Martinez, Jennifer S [Los Alamos National Laboratory; Swanson, Basil I [Los Alamos National Laboratory; Anderson, Aaron S [Los Alamos National Laboratory; Grace, Kevin [Los Alamos National Laboratory

    2009-01-01

    The quantitative, simultaneous detection of multiple biomarkers with high sensitivity and specificity is critical for biomedical diagnostics, drug discovery and biomarker characterization [Wilson 2006, Tok 2006, Straub 2005, Joos 2002, Jani 2000]. Detection systems relying on optical signal transduction are, in general, advantageous because they are fast, portable, inexpensive, sensitive, and have the potential for multiplex detection of analytes of interest. However, conventional immunoassays for the detection of biomarkers, such as the Enzyme Linked Immunosorbant Assays (ELISAs) are semi-quantitative, time consuming and insensitive. ELISA assays are also limited by high non-specific binding, especially when used with complex biological samples such as serum and urine (REF). Organic fluorophores that are commonly used in such applications lack photostability and possess a narrow Stoke's shift that makes simultaneous detection of multiple fluorophores with a single excitation source difficult, thereby restricting their use in multiplex assays. The above limitations with traditional assay platforms have resulted in the increased use of nanotechnology-based tools and techniques in the fields of medical imaging [ref], targeted drug delivery [Caruthers 2007, Liu 2007], and sensing [ref]. One such area of increasing interest is the use of semiconductor quantum dots (QDs) for biomedical research and diagnostics [Gao and Cui 2004, Voura 2004, Michalet 2005, Chan 2002, Jaiswal 2004, Gao 2005, Medintz 2005, So 2006 2006, Wu 2003]. Compared to organic dyes, QDs provide several advantages for use in immunoassay platforms, including broad absorption bands with high extinction coefficients, narrow and symmetric emission bands with high quantum yields, high photostablility, and a large Stokes shift [Michalet 2005, Gu 2002]. These features prompted the use of QDs as probes in biodetection [Michalet 2005, Medintz 2005]. For example, Jaiswal et al. reported long term multiple

  7. White-light Quantitative Phase Imaging Unit

    CERN Document Server

    Baek, YoonSeok; Yoon, Jonghee; Kim, Kyoohyun; Park, YongKeun

    2016-01-01

    We introduce the white light quantitative phase imaging unit (WQPIU) as a practical realization of quantitative phase imaging (QPI) on standard microscope platforms. The WQPIU is a compact stand-alone unit which measures sample induced phase delay under white-light illumination. It does not require any modification of the microscope or additional accessories for its use. The principle of the WQPIU based on lateral shearing interferometry and phase shifting interferometry provides a cost-effective and user-friendly use of QPI. The validity and capacity of the presented method are demonstrated by measuring quantitative phase images of polystyrene beads, human red blood cells, HeLa cells and mouse white blood cells. With speckle-free imaging capability due to the use of white-light illumination, the WQPIU is expected to expand the scope of QPI in biological sciences as a powerful but simple imaging tool.

  8. Quantitative histogram analysis of images

    Science.gov (United States)

    Holub, Oliver; Ferreira, Sérgio T.

    2006-11-01

    A routine for histogram analysis of images has been written in the object-oriented, graphical development environment LabVIEW. The program converts an RGB bitmap image into an intensity-linear greyscale image according to selectable conversion coefficients. This greyscale image is subsequently analysed by plots of the intensity histogram and probability distribution of brightness, and by calculation of various parameters, including average brightness, standard deviation, variance, minimal and maximal brightness, mode, skewness and kurtosis of the histogram and the median of the probability distribution. The program allows interactive selection of specific regions of interest (ROI) in the image and definition of lower and upper threshold levels (e.g., to permit the removal of a constant background signal). The results of the analysis of multiple images can be conveniently saved and exported for plotting in other programs, which allows fast analysis of relatively large sets of image data. The program file accompanies this manuscript together with a detailed description of two application examples: The analysis of fluorescence microscopy images, specifically of tau-immunofluorescence in primary cultures of rat cortical and hippocampal neurons, and the quantification of protein bands by Western-blot. The possibilities and limitations of this kind of analysis are discussed. Program summaryTitle of program: HAWGC Catalogue identifier: ADXG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXG_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computers: Mobile Intel Pentium III, AMD Duron Installations: No installation necessary—Executable file together with necessary files for LabVIEW Run-time engine Operating systems or monitors under which the program has been tested: WindowsME/2000/XP Programming language used: LabVIEW 7.0 Memory required to execute with typical data:˜16MB for starting and ˜160MB used for

  9. Cancer detection by quantitative fluorescence image analysis.

    Science.gov (United States)

    Parry, W L; Hemstreet, G P

    1988-02-01

    Quantitative fluorescence image analysis is a rapidly evolving biophysical cytochemical technology with the potential for multiple clinical and basic research applications. We report the application of this technique for bladder cancer detection and discuss its potential usefulness as an adjunct to methods used currently by urologists for the diagnosis and management of bladder cancer. Quantitative fluorescence image analysis is a cytological method that incorporates 2 diagnostic techniques, quantitation of nuclear deoxyribonucleic acid and morphometric analysis, in a single semiautomated system to facilitate the identification of rare events, that is individual cancer cells. When compared to routine cytopathology for detection of bladder cancer in symptomatic patients, quantitative fluorescence image analysis demonstrated greater sensitivity (76 versus 33 per cent) for the detection of low grade transitional cell carcinoma. The specificity of quantitative fluorescence image analysis in a small control group was 94 per cent and with the manual method for quantitation of absolute nuclear fluorescence intensity in the screening of high risk asymptomatic subjects the specificity was 96.7 per cent. The more familiar flow cytometry is another fluorescence technique for measurement of nuclear deoxyribonucleic acid. However, rather than identifying individual cancer cells, flow cytometry identifies cellular pattern distributions, that is the ratio of normal to abnormal cells. Numerous studies by others have shown that flow cytometry is a sensitive method to monitor patients with diagnosed urological disease. Based upon results in separate quantitative fluorescence image analysis and flow cytometry studies, it appears that these 2 fluorescence techniques may be complementary tools for urological screening, diagnosis and management, and that they also may be useful separately or in combination to elucidate the oncogenic process, determine the biological potential of tumors

  10. Regional variability of imaging biomarkers in autosomal dominant Alzheimer's disease.

    Science.gov (United States)

    Benzinger, Tammie L S; Blazey, Tyler; Jack, Clifford R; Koeppe, Robert A; Su, Yi; Xiong, Chengjie; Raichle, Marcus E; Snyder, Abraham Z; Ances, Beau M; Bateman, Randall J; Cairns, Nigel J; Fagan, Anne M; Goate, Alison; Marcus, Daniel S; Aisen, Paul S; Christensen, Jon J; Ercole, Lindsay; Hornbeck, Russ C; Farrar, Angela M; Aldea, Patricia; Jasielec, Mateusz S; Owen, Christopher J; Xie, Xianyun; Mayeux, Richard; Brickman, Adam; McDade, Eric; Klunk, William; Mathis, Chester A; Ringman, John; Thompson, Paul M; Ghetti, Bernardino; Saykin, Andrew J; Sperling, Reisa A; Johnson, Keith A; Salloway, Stephen; Correia, Stephen; Schofield, Peter R; Masters, Colin L; Rowe, Christopher; Villemagne, Victor L; Martins, Ralph; Ourselin, Sebastien; Rossor, Martin N; Fox, Nick C; Cash, David M; Weiner, Michael W; Holtzman, David M; Buckles, Virginia D; Moulder, Krista; Morris, John C

    2013-11-19

    Major imaging biomarkers of Alzheimer's disease include amyloid deposition [imaged with [(11)C]Pittsburgh compound B (PiB) PET], altered glucose metabolism (imaged with [(18)F]fluro-deoxyglucose PET), and structural atrophy (imaged by MRI). Recently we published the initial subset of imaging findings for specific regions in a cohort of individuals with autosomal dominant Alzheimer's disease. We now extend this work to include a larger cohort, whole-brain analyses integrating all three imaging modalities, and longitudinal data to examine regional differences in imaging biomarker dynamics. The anatomical distribution of imaging biomarkers is described in relation to estimated years from symptom onset. Autosomal dominant Alzheimer's disease mutation carrier individuals have elevated PiB levels in nearly every cortical region 15 y before the estimated age of onset. Reduced cortical glucose metabolism and cortical thinning in the medial and lateral parietal lobe appeared 10 and 5 y, respectively, before estimated age of onset. Importantly, however, a divergent pattern was observed subcortically. All subcortical gray-matter regions exhibited elevated PiB uptake, but despite this, only the hippocampus showed reduced glucose metabolism. Similarly, atrophy was not observed in the caudate and pallidum despite marked amyloid accumulation. Finally, before hypometabolism, a hypermetabolic phase was identified for some cortical regions, including the precuneus and posterior cingulate. Additional analyses of individuals in which longitudinal data were available suggested that an accelerated appearance of volumetric declines approximately coincides with the onset of the symptomatic phase of the disease.

  11. The role of biomarkers and imaging in Parkinson's disease.

    Science.gov (United States)

    Algarni, Musleh A; Stoessl, A Jon

    2016-01-01

    The diagnosis of Parkinson's disease (PD) currently relies on the appearance of certain clinical features. However, these features appear only years after the loss of nigral dopaminergic neurons. The progression of PD may be measured using clinical rating scales that are subjective and that have a variable inter-rater consistency. There is a growing need for a biomarker that will allow for early detection of the disease as well as provide a measure of disease progression. In this article, we review different biomarkers, with a focus on functional imaging techniques, which while imperfect, currently provide the best approach to this problem. We also discuss the use of structural imaging and emerging progress in other biochemical and molecular markers. While there is no single biomarker that will satisfy all requirements, a combination is likely to be of great use in identifying those subjects most likely to benefit from neuroprotective therapies, as well as in monitoring the effects of any interventions.

  12. A Mathematical Calculation Model Using Biomarkers to Quantitatively Determine the Relative Source Proportion of Mixed Oils

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It is difficult to identify the source(s) of mixed oils from multiple source rocks, and in particular the relative contribution of each source rock. Artificial mixing experiments using typical crude oils and ratios of different biomarkers show that the relative contribution changes are non-linear when two oils with different concentrations of biomarkers mix with each other. This may result in an incorrect conclusion if ratios of biomarkers and a simple binary linear equation are used to calculate the contribution proportion of each end-member to the mixed oil. The changes of biomarker ratios with the mixing proportion of end-member oils in the trinal mixing model are more complex than in the binary mixing model. When four or more oils mix, the contribution proportion of each end-member oil to the mixed oil cannot be calculated using biomarker ratios and a simple formula. Artificial mixing experiments on typical oils reveal that the absolute concentrations of biomarkers in the mixed oil cause a linear change with mixing proportion of each end-member. Mathematical inferences verify such linear changes. Some of the mathematical calculation methods using the absolute concentrations or ratios of biomarkers to quantitatively determine the proportion of each end-member in the mixed oils are deduced from the results of artificial experiments and by theoretical inference. Ratio of two biomarker compounds changes as a hyperbola with the mixing proportion in the binary mixing model,as a hyperboloid in the trinal mixing model, and as a hypersurface when mixing more than three endmembers. The mixing proportion of each end-member can be quantitatively determined with these mathematical models, using the absolute concentrations and the ratios of biomarkers. The mathematical calculation model is more economical, convenient, accurate and reliable than conventional artificial mixing methods.

  13. Quantitative Imaging in Cancer Clinical Trials.

    Science.gov (United States)

    Yankeelov, Thomas E; Mankoff, David A; Schwartz, Lawrence H; Lieberman, Frank S; Buatti, John M; Mountz, James M; Erickson, Bradley J; Fennessy, Fiona M M; Huang, Wei; Kalpathy-Cramer, Jayashree; Wahl, Richard L; Linden, Hannah M; Kinahan, Paul E; Zhao, Binsheng; Hylton, Nola M; Gillies, Robert J; Clarke, Laurence; Nordstrom, Robert; Rubin, Daniel L

    2016-01-15

    As anticancer therapies designed to target specific molecular pathways have been developed, it has become critical to develop methods to assess the response induced by such agents. Although traditional, anatomic CT, and MRI examinations are useful in many settings, increasing evidence suggests that these methods cannot answer the fundamental biologic and physiologic questions essential for assessment and, eventually, prediction of treatment response in the clinical trial setting, especially in the critical period soon after treatment is initiated. To optimally apply advances in quantitative imaging methods to trials of targeted cancer therapy, new infrastructure improvements are needed that incorporate these emerging techniques into the settings where they are most likely to have impact. In this review, we first elucidate the needs for therapeutic response assessment in the era of molecularly targeted therapy and describe how quantitative imaging can most effectively provide scientifically and clinically relevant data. We then describe the tools and methods required to apply quantitative imaging and provide concrete examples of work making these advances practically available for routine application in clinical trials. We conclude by proposing strategies to surmount barriers to wider incorporation of these quantitative imaging methods into clinical trials and, eventually, clinical practice. Our goal is to encourage and guide the oncology community to deploy standardized quantitative imaging techniques in clinical trials to further personalize care for cancer patients and to provide a more efficient path for the development of improved targeted therapies.

  14. Clinical applications of imaging biomarkers. Part 1. The neuroradiologist's perspective

    OpenAIRE

    Smith, E T S

    2011-01-01

    This article is concerned with the application and usage in clinical practice of techniques of detection and measurement of imaging biomarkers. Some commentaries in the article derive from a literature search and include summaries of recently published material compiled and linked to each other by extensive use of the text contained in the material examined.

  15. Quantitative imaging of turbulent and reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Paul, P.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.

  16. Development of Magnetic Resonance Imaging Biomarkers for Traumatic Brain Injury

    Science.gov (United States)

    2013-07-01

    lesion as 23 assessed by CT with an AUC of 0.79 [46]. 24 25 8 As a simple biofluid-based rapid diagnostic tool, serum biochemical markers offer...in a central laboratory 4 (Banyan Biomarkers, Alachua, FL) employing electro-chemiluminescent immunoassay 5 method (ECL-IA) for quantitative...used (9,12,20,22), in those methods, the meaningful values of the singularity regions in k-space are obtained through solving the com- plex cost

  17. Development of on-chip multi-imaging flow cytometry for identification of imaging biomarkers of clustered circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Hyonchol Kim

    Full Text Available An on-chip multi-imaging flow cytometry system has been developed to obtain morphometric parameters of cell clusters such as cell number, perimeter, total cross-sectional area, number of nuclei and size of clusters as "imaging biomarkers", with simultaneous acquisition and analysis of both bright-field (BF and fluorescent (FL images at 200 frames per second (fps; by using this system, we examined the effectiveness of using imaging biomarkers for the identification of clustered circulating tumor cells (CTCs. Sample blood of rats in which a prostate cancer cell line (MAT-LyLu had been pre-implanted was applied to a microchannel on a disposable microchip after staining the nuclei using fluorescent dye for their visualization, and the acquired images were measured and compared with those of healthy rats. In terms of the results, clustered cells having (1 cell area larger than 200 µm2 and (2 nucleus area larger than 90 µm2 were specifically observed in cancer cell-implanted blood, but were not observed in healthy rats. In addition, (3 clusters having more than 3 nuclei were specific for cancer-implanted blood and (4 a ratio between the actual perimeter and the perimeter calculated from the obtained area, which reflects a shape distorted from ideal roundness, of less than 0.90 was specific for all clusters having more than 3 nuclei and was also specific for cancer-implanted blood. The collected clusters larger than 300 µm2 were examined by quantitative gene copy number assay, and were identified as being CTCs. These results indicate the usefulness of the imaging biomarkers for characterizing clusters, and all of the four examined imaging biomarkers-cluster area, nuclei area, nuclei number, and ratio of perimeter-can identify clustered CTCs in blood with the same level of preciseness using multi-imaging cytometry.

  18. Quantitative and Qualitative Analysis of Biomarkers in Fusarium verticillioides

    Science.gov (United States)

    In this study, a combination HPLC-DART-TOF-MS system was utilized to identify and quantitatively analyze carbohydrates in wild type and mutant strains of Fusarium verticillioides. Carbohydrate fractions were isolated from F. verticillioides cellular extracts by HPLC using a cation-exchange size-excl...

  19. Quantitative Measurements using Ultrasound Vector Flow Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2016-01-01

    Duplex Vector Flow Imaging (VFI) imaging is introduced as a replacement for spectral Doppler, as it automatically can yield fully quantitative flow estimates without angle correction. Continuous VFI data over 9 s for 10 pulse cycles were acquired by a 3 MHz convex probe connected to the SARUS......L/stroke (true: 1.15 mL/stroke, bias: 12.2%). Measurements down to 160 mm were obtained with a relative standard deviation and bias of less than 10% for the lateral component for stationary, parabolic flow. The method can, thus, find quantitative velocities, angles, and volume flows at sites currently...

  20. Quantitative Imaging with a Mobile Phone Microscope

    Science.gov (United States)

    Skandarajah, Arunan; Reber, Clay D.; Switz, Neil A.; Fletcher, Daniel A.

    2014-01-01

    Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone–based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications. PMID:24824072

  1. Quantitative imaging with a mobile phone microscope.

    Directory of Open Access Journals (Sweden)

    Arunan Skandarajah

    Full Text Available Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone-based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications.

  2. Digital pathology and image analysis in tissue biomarker research.

    Science.gov (United States)

    Hamilton, Peter W; Bankhead, Peter; Wang, Yinhai; Hutchinson, Ryan; Kieran, Declan; McArt, Darragh G; James, Jacqueline; Salto-Tellez, Manuel

    2014-11-01

    Digital pathology and the adoption of image analysis have grown rapidly in the last few years. This is largely due to the implementation of whole slide scanning, advances in software and computer processing capacity and the increasing importance of tissue-based research for biomarker discovery and stratified medicine. This review sets out the key application areas for digital pathology and image analysis, with a particular focus on research and biomarker discovery. A variety of image analysis applications are reviewed including nuclear morphometry and tissue architecture analysis, but with emphasis on immunohistochemistry and fluorescence analysis of tissue biomarkers. Digital pathology and image analysis have important roles across the drug/companion diagnostic development pipeline including biobanking, molecular pathology, tissue microarray analysis, molecular profiling of tissue and these important developments are reviewed. Underpinning all of these important developments is the need for high quality tissue samples and the impact of pre-analytical variables on tissue research is discussed. This requirement is combined with practical advice on setting up and running a digital pathology laboratory. Finally, we discuss the need to integrate digital image analysis data with epidemiological, clinical and genomic data in order to fully understand the relationship between genotype and phenotype and to drive discovery and the delivery of personalized medicine.

  3. Quantitative imaging of bilirubin by photoacoustic microscopy

    Science.gov (United States)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2013-03-01

    Noninvasive detection of both bilirubin concentration and its distribution is important for disease diagnosis. Here we implemented photoacoustic microscopy (PAM) to detect bilirubin distribution. We first demonstrate that our PAM system can measure the absorption spectra of bilirubin and blood. We also image bilirubin distributions in tissuemimicking samples, both without and with blood mixed. Our results show that PAM has the potential to quantitatively image bilirubin in vivo for clinical applications.

  4. Quantitative image processing in fluid mechanics

    Science.gov (United States)

    Hesselink, Lambertus; Helman, James; Ning, Paul

    1992-01-01

    The current status of digital image processing in fluid flow research is reviewed. In particular, attention is given to a comprehensive approach to the extraction of quantitative data from multivariate databases and examples of recent developments. The discussion covers numerical simulations and experiments, data processing, generation and dissemination of knowledge, traditional image processing, hybrid processing, fluid flow vector field topology, and isosurface analysis using Marching Cubes.

  5. Quantitative Techniques in PET-CT Imaging

    NARCIS (Netherlands)

    Basu, Sandip; Zaidi, Habib; Holm, Soren; Alavi, Abass

    2011-01-01

    The appearance of hybrid PET/CT scanners has made quantitative whole body scanning of radioactive tracers feasible. This paper deals with the novel concepts for assessing global organ function and disease activity based on combined functional (PET) and structural (CT or MR) imaging techniques, their

  6. In vitro derby imaging of cancer biomarkers using quantum dots.

    Science.gov (United States)

    Ko, Mee Hyang; Kim, Soonhag; Kang, Won Jun; Lee, Jung Hwan; Kang, Hyungu; Moon, Sung Hwan; Hwang, Do Won; Ko, Hae Young; Lee, Dong Soo

    2009-05-01

    Semiconductor quantum dots (QDs), which have broad absorption with narrow emission spectra, are useful for multiplex imaging. Here, fluorescence derby imaging using dual color QDs conjugated by the AS1411 aptamer (targeting nucleolin) and the arginine-glycine-aspartic acid (targeting the integrin alpha(v)beta(3)) in cancer cells is reported. Simultaneous fluorescence imaging of cellular distribution of nucleolin and integrin alpha(v)beta(3) using QDs enables easy monitoring of separate targets in the cancer cells and the normal healthy cells. These results suggest the feasibility of a concurrent visualization of QD-based multiple cancer biomarkers using small molecules such as aptamer or peptide ligands.

  7. Magnetic Resonance Imaging as a Biomarker for Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Yan Wu

    2015-01-01

    Full Text Available As the most common neoplasm arising from the kidney, renal cell carcinoma (RCC continues to have a significant impact on global health. Conventional cross-sectional imaging has always served an important role in the staging of RCC. However, with recent advances in imaging techniques and postprocessing analysis, magnetic resonance imaging (MRI now has the capability to function as a diagnostic, therapeutic, and prognostic biomarker for RCC. For this narrative literature review, a PubMed search was conducted to collect the most relevant and impactful studies from our perspectives as urologic oncologists, radiologists, and computational imaging specialists. We seek to cover advanced MR imaging and image analysis techniques that may improve the management of patients with small renal mass or metastatic renal cell carcinoma.

  8. A collaborative enterprise for multi-stakeholder participation in the advancement of quantitative imaging.

    Science.gov (United States)

    Buckler, Andrew J; Bresolin, Linda; Dunnick, N Reed; Sullivan, Daniel C

    2011-03-01

    Medical imaging has seen substantial and rapid technical advances during the past decade, including advances in image acquisition devices, processing and analysis software, and agents to enhance specificity. Traditionally, medical imaging has defined anatomy, but increasingly newer, more advanced, imaging technologies provide biochemical and physiologic information based on both static and dynamic modalities. These advanced technologies are important not only for detecting disease but for characterizing and assessing change of disease with time or therapy. Because of the rapidity of these advances, research to determine the utility of quantitative imaging in either clinical research or clinical practice has not had time to mature. Methods to appropriately develop, assess, regulate, and reimburse must be established for these advanced technologies. Efficient and methodical processes that meet the needs of stakeholders in the biomedical research community, therapeutics developers, and health care delivery enterprises will ultimately benefit individual patients. To help address this, the authors formed a collaborative program-the Quantitative Imaging Biomarker Alliance. This program draws from the very successful precedent set by the Integrating the Healthcare Enterprise effort but is adapted to the needs of imaging science. Strategic guidance supporting the development, qualification, and deployment of quantitative imaging biomarkers will lead to improved standardization of imaging tests, proof of imaging test performance, and greater use of imaging to predict the biologic behavior of tissue and monitor therapy response. These, in turn, confer value to corporate stakeholders, providing incentives to bring new and innovative products to market.

  9. Manifold Learning for Biomarker Discovery in MR Imaging

    Science.gov (United States)

    Wolz, Robin; Aljabar, Paul; Hajnal, Joseph V.; Rueckert, Daniel

    We propose a framework for the extraction of biomarkers from low-dimensional manifolds representing inter- and intra-subject brain variation in MR image data. The coordinates of each image in such a low-dimensional space captures information about structural shape and appearance and, when a phenotype exists, about the subject's clinical state. A key contribution is that we propose a method for incorporating longitudinal image information in the learned manifold. In particular, we compare simultaneously embedding baseline and follow-up scans into a single manifold with the combination of separate manifold representations for inter-subject and intra-subject variation. We apply the proposed methods to 362 subjects enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and classify healthy controls, subjects with Alzheimer's disease (AD) and subjects with mild cognitive impairment (MCI). Learning manifolds based on both the appearance and temporal change of the hippocampus, leads to correct classification rates comparable with those provided by state-of-the-art automatic segmentation estimates of hippocampal volume and atrophy. The biomarkers identified with the proposed method are data-driven and represent a potential alternative to a-priori defined biomarkers derived from manual or automated segmentations.

  10. BIOMARKER QUANTITATION: ANALYTICAL CONSIDERATIONS FOR LIGAND BINDING ASSAY REGRESSION CURVES AND QUALITY CONTROL SAMPLES

    Directory of Open Access Journals (Sweden)

    Mark Dysinger

    2012-01-01

    Full Text Available As biomarkers grow in relevance for both the design and support of therapeutics and the clinical trials associated with them, there is an ever increasing need for accurate quantitation of these biochemical entities in biological matrices. While quantifying many biotherapeutics via ligand binding assay platforms can be fairly straightforward, biomarkers present some unique challenges that must be taken into account during assay development, validation and subsequent sample analysis. These challenges can be especially confounded by the relationship between two ligand binding assay tools: The regression curve and quality control samples. Due diligence must be performed to develop an assay that takes into account matrix vs. buffer effects and endogenous biomarker presence. Lack of diligence in these areas can lead to less than reliable results, thus potentially rendering the intended use of the assay moot.

  11. Quantitative image analysis of celiac disease.

    Science.gov (United States)

    Ciaccio, Edward J; Bhagat, Govind; Lewis, Suzanne K; Green, Peter H

    2015-03-07

    We outline the use of quantitative techniques that are currently used for analysis of celiac disease. Image processing techniques can be useful to statistically analyze the pixular data of endoscopic images that is acquired with standard or videocapsule endoscopy. It is shown how current techniques have evolved to become more useful for gastroenterologists who seek to understand celiac disease and to screen for it in suspected patients. New directions for focus in the development of methodology for diagnosis and treatment of this disease are suggested. It is evident that there are yet broad areas where there is potential to expand the use of quantitative techniques for improved analysis in suspected or known celiac disease patients.

  12. Quantitative image analysis of celiac disease

    Science.gov (United States)

    Ciaccio, Edward J; Bhagat, Govind; Lewis, Suzanne K; Green, Peter H

    2015-01-01

    We outline the use of quantitative techniques that are currently used for analysis of celiac disease. Image processing techniques can be useful to statistically analyze the pixular data of endoscopic images that is acquired with standard or videocapsule endoscopy. It is shown how current techniques have evolved to become more useful for gastroenterologists who seek to understand celiac disease and to screen for it in suspected patients. New directions for focus in the development of methodology for diagnosis and treatment of this disease are suggested. It is evident that there are yet broad areas where there is potential to expand the use of quantitative techniques for improved analysis in suspected or known celiac disease patients. PMID:25759524

  13. Quantitative analysis of gene expression in fixed colorectal carcinoma samples as a method for biomarker validation

    Science.gov (United States)

    OSTASIEWICZ, BEATA; OSTASIEWICZ, PAWEŁ; DUŚ-SZACHNIEWICZ, KAMILA; OSTASIEWICZ, KATARZYNA; ZIÓŁKOWSKI, PIOTR

    2016-01-01

    Biomarkers have been described as the future of oncology. Modern proteomics provide an invaluable tool for the near-whole proteome screening for proteins expressed differently in neoplastic vs. healthy tissues. However, in order to select the most promising biomarkers, an independent method of validation is required. The aim of the current study was to propose a methodology for the validation of biomarkers. Due to material availability the majority of large scale biomarker studies are performed using formalin-fixed paraffin-embedded (FFPE) tissues, therefore these were selected for use in the current study. A total of 10 genes were selected from what have been previously described as the most promising candidate biomarkers, and the expression levels were analyzed with reverse transcription-quantitative polymerase chain reaction (RT-qPCR) using calibrator normalized relative quantification with the efficiency correction. For 6/10 analyzed genes, the results were consistent with the proteomic data; for the remaining four genes, the results were inconclusive. The upregulation of karyopherin α 2 (KPNA2) and chromosome segregation 1-like (CSE1L) in colorectal carcinoma, in addition to downregulation of chloride channel accessory 1 (CLCA1), fatty acid binding protein 1 (FABP1), sodium channel, voltage gated, type VII α subunit (SCN7A) and solute carrier family 26 (anion exchanger), member 3 (SLC26A3) was confirmed. With the combined use of proteomic and genetic tools, it was reported, for the first time to the best of our knowledge, that SCN7A was downregulated in colorectal carcinoma at mRNA and protein levels. It had been previously suggested that the remaining five genes served an important role in colorectal carcinogenesis, however the current study provided strong evidence to support their use as biomarkers. Thus, it was concluded that combination of RT-qPCR with proteomics offers a powerful methodology for biomarker identification, which can be used to analyze

  14. Perspectives for multimodal neurochemical and imaging biomarkers in Alzheimer's disease.

    Science.gov (United States)

    Teipel, Stefan J; Sabri, Osama; Grothe, Michel; Barthel, Henryk; Prvulovic, David; Buerger, Katharina; Bokde, Arun L W; Ewers, Michael; Hoffmann, Wolfgang; Hampel, Harald

    2013-01-01

    The diagnosis of Alzheimer's disease (AD) is presently going through a paradigm shift from disease categories to dimensions and toward the implementation of biomarkers to support identification of predementia and even preclinical asymptomatic stages of the disease. We outline the methodological basis of presently available biomarkers and technological methodologies in AD, including exploratory and hypothesis-based plasma and blood candidates, cerebrospinal fluid markers of amyloid load and axonal destruction, and imaging markers of amyloid deposition, synaptic dysfunction, cortical functional and structural disconnection, and regional atrophy. We integrate biomarker findings into a comprehensive model of AD pathogenesis from healthy aging to cognitive decline, the resilience to cerebral amyloid load (RECAL) matrix. The RECAL framework integrates factors of risk and resilience to cerebral amyloid load for individual risk prediction. We show the clinical consequences when the RECAL matrix is operationalized into a diagnostic algorithm both for individual counseling of subjects and for the identification of at risk samples for primary and secondary preventive trials. We discuss the implication of biomarkers for the identification of prodromal AD for the primary care system that seems presently not even prepared to cope with the increasing number of subjects afflicted with late stage AD dementia, let alone future cohorts of subjects searching counseling or treatment of predementia and asymptomatic stages of AD. The paradigm shift in AD diagnosis and its operationalization into a diagnostic framework will have major implications for our understanding of disease pathogenesis. Now, for the first time, we have access to in vivo markers of key events in AD pathogenesis integrated into a heuristic framework that makes strong predictions on pattern of multimodal biomarkers in different stages of AD. Critical testing of these predictions will help us to modify or even falsify

  15. Quantitative biomarkers of colonic dysplasia based on intrinsic second-harmonic generation signal

    Science.gov (United States)

    Zhuo, Shuangmu; Zhu, Xiaoqin; Wu, Guizhu; Chen, Jianxin; Xie, Shusen

    2011-12-01

    Most colorectal cancers arise from dysplastic lesions, such as adenomatous polyps, and these lesions are difficult to be detected by the current endoscopic screening approaches. Here, we present the use of an intrinsic second-harmonic generation (SHG) signal as a novel means to differentiate between normal and dysplastic human colonic tissues. We find that the SHG signal can quantitatively identify collagen change associated with colonic dysplasia that is indiscernible by conventional pathologic techniques. By comparing normal with dysplastic mucosa, there were significant differences in collagen density and collagen fiber direction, providing substantial potential to become quantitative intrinsic biomarkers for in vivo clinical diagnosis of colonic dysplasia.

  16. Quantitative Analysis in Nuclear Medicine Imaging

    CERN Document Server

    2006-01-01

    This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable increase in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of radionuclides for diagnosis and therapy has origins dating back almost to the discovery of natural radioactivity itself, radionuclide therapy and, in particular, targeted radionuclide therapy has only recently emerged as a promising approach for therapy of cancer and, to a lesser extent, other diseases. As effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. ...

  17. NI-82DIFFUSION AND CONVENTIONAL MR IMAGING GENOMIC BIOMARKER SIGNATURE FOR EGFR MUTATION IDENTIFICATION IN GLIOBLASTOMA

    Science.gov (United States)

    Wassal, Eslam; Zinn, Pascal; Colen, Rivka

    2014-01-01

    PURPOSE: To create a diffusion and conventional MR imaging biomarker signature in order to identify those Glioblastoma (GBM) patients with EGFR mutation status. EGFR is the cell-surface receptor for members of the epidermal growth factor family(EGF-family)of extracellular protein ligands,a subfamily of receptor tyrosine kinases. EGFR gene expression is present in 40% of GBM patients.Identification of EGFR as an oncogene has led to the development of anticancer therapeutics directed against EGFR.Thus,a non-invasive imaging surrogate that predicts EGFR mutation status will help stratify patients into therapy and clinical trials. MATERIALS AND METHODS: We identified 80 treatment-naïve patients from TCGA who had both gene and microRNA expression profiles including the EGFR mutation status and pretreatment MRI from The Cancer Imaging Archive (TCIA). Qualitative VASARI imaging features for these 80 patients were assessed by 3 independent neuroradiologists and consensus was reached. Quantitative volumetric analysis was done in the 3D Slicer software 3.6 using segmentation module.Fluid Attenuated Inversion Recovery (FLAIR)was used for segmentation of the edema and post-contrast T1 weighted imaging(T1W1)for segmentation of enhancement and necrosis.Diffusion was analyzed in Olea Sphere 2.3 and Conventional FLAIR/post- contrast T1WI was registered to DWI/ADC maps. ADC, FLAIR, T1 Gadolinium enhancement values were measured using the ROI based method, in the perilesional edema/non-enhancing tumor and the enhancing tumor zones, dividing the perilesional edema/non-enhancing tumor into 3 zones each of 1 cm width, 3 ROI measurements were taken from each zone. Each quantitative feature was correlated to EGFR mutation status to create the imaging biomarker signature predictive of EGFR mutation status. Survival analysis was done in all cases. RESULTS: A diffusion and conventional MR imaging biomarker signature was created that predicted EGFR mutation status. CONCLUSIONS: EGFR

  18. Rationale and methods of the integrated biomarker and imaging study (IBIS): combining invasive and non-invasive imaging with biomarkers to detect subclinical atherosclerosis and assess coronary lesion biology.

    Science.gov (United States)

    Van Mieghem, Carlos A G; Bruining, Nico; Schaar, Johannes A; McFadden, Eugene; Mollet, Nico; Cademartiri, Filippo; Mastik, Frits; Ligthart, Jurgen M R; Granillo, Gaston A Rodriguez; Valgimigli, Marco; Sianos, Georgios; van der Giessen, Willem J; Backx, Bianca; Morel, Marie-Angele M; Van Es, Gerrit-Anne; Sawyer, Jonathon D; Kaplow, June; Zalewski, Andrew; van der Steen, Anton F W; de Feyter, Pim; Serruys, Patrick W

    2005-08-01

    Death or myocardial infarction, the most serious clinical consequences of atherosclerosis, often result from plaque rupture at non-flow limiting lesions. Current diagnostic imaging with coronary angiography only detects large plaques that already impinge on the lumen and cannot accurately identify those that have a propensity to cause unheralded events. Accurate evaluation of the composition or of the biomechanical characteristics of plaques with invasive or non-invasive methods, alone or in conjunction with assessment of circulating biomarkers, could help identify high-risk patients, thus providing the rationale for aggressive treatments in order to reduce future clinical events. The IBIS (Integrated Biomarker and Imaging Study) study is a prospective, single-center, non-randomized, observational study conducted in Rotterdam. The aim of the IBIS study is to evaluate both invasive (quantitative coronary angiography, intravascular ultrasound (IVUS) and palpography) and non-invasive (multislice spiral computed tomography) imaging techniques to characterize non-flow limiting coronary lesions. In addition, multiple classical and novel biomarkers will be measured and their levels correlated with the results of the different imaging techniques. A minimum of 85 patients up to a maximum of 120 patients will be included. This paper describes the study protocol and methodological solutions that have been devised for the purpose of comparisons among several imaging modalities. It outlines the analyses that will be performed to compare invasive and non-invasive imaging techniques in conjunction with multiple biomarkers to characterize non-flow limiting subclinical coronary lesions.

  19. Potential usefulness of a topic model-based categorization of lung cancers as quantitative CT biomarkers for predicting the recurrence risk after curative resection

    Science.gov (United States)

    Kawata, Y.; Niki, N.; Ohmatsu, H.; Satake, M.; Kusumoto, M.; Tsuchida, T.; Aokage, K.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2014-03-01

    In this work, we investigate a potential usefulness of a topic model-based categorization of lung cancers as quantitative CT biomarkers for predicting the recurrence risk after curative resection. The elucidation of the subcategorization of a pulmonary nodule type in CT images is an important preliminary step towards developing the nodule managements that are specific to each patient. We categorize lung cancers by analyzing volumetric distributions of CT values within lung cancers via a topic model such as latent Dirichlet allocation. Through applying our scheme to 3D CT images of nonsmall- cell lung cancer (maximum lesion size of 3 cm) , we demonstrate the potential usefulness of the topic model-based categorization of lung cancers as quantitative CT biomarkers.

  20. Potential protein biomarkers for burning mouth syndrome discovered by quantitative proteomics

    Science.gov (United States)

    Ji, Eoon Hye; Diep, Cynthia; Liu, Tong; Li, Hong; Merrill, Robert; Messadi, Diana

    2017-01-01

    Burning mouth syndrome (BMS) is a chronic pain disorder characterized by severe burning sensation in normal looking oral mucosa. Diagnosis of BMS remains to be a challenge to oral healthcare professionals because the method for definite diagnosis is still uncertain. In this study, a quantitative saliva proteomic analysis was performed in order to identify target proteins in BMS patients’ saliva that may be used as biomarkers for simple, non-invasive detection of the disease. By using isobaric tags for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry to quantify 1130 saliva proteins between BMS patients and healthy control subjects, we found that 50 proteins were significantly changed in the BMS patients when compared to the healthy control subjects (p ≤ 0.05, 39 up-regulated and 11 down-regulated). Four candidates, alpha-enolase, interleukin-18 (IL-18), kallikrein-13 (KLK13), and cathepsin G, were selected for further validation. Based on enzyme-linked immunosorbent assay measurements, three potential biomarkers, alpha-enolase, IL-18, and KLK13, were successfully validated. The fold changes for alpha-enolase, IL-18, and KLK13 were determined as 3.6, 2.9, and 2.2 (burning mouth syndrome vs. control), and corresponding receiver operating characteristic values were determined as 0.78, 0.83, and 0.68, respectively. Our findings indicate that testing of the identified protein biomarkers in saliva might be a valuable clinical tool for BMS detection. Further validation studies of the identified biomarkers or additional candidate biomarkers are needed to achieve a multi-marker prediction model for improved detection of BMS with high sensitivity and specificity.

  1. Quantitative phase imaging through scattering media

    Science.gov (United States)

    Kollárová, Vera; Colláková, Jana; Dostál, Zbynek; Slabý, Tomas; Veselý, Pavel; Chmelík, Radim

    2015-03-01

    Coherence-controlled holographic microscope (CCHM) is an off-axis holographic system. It enables observation of a sample and its quantitative phase imaging with coherent as well as with incoherent illumination. The spatial and temporal coherence can be modified and thus also the quality and type of the image information. The coherent illumination provides numerical refocusing in wide depth range similarly to a classic coherent-light digital holographic microscopy (HM). Incoherent-light HM is characterized by a high quality, coherence-noise-free imaging with up to twice higher resolution compared to coherent illumination. Owing to an independent, free of sample reference arm of the CCHM the low spatial light coherence induces coherence-gating effect. This makes possible to observe specimen also through scattering media. We have described theoretically and simulated numerically imaging of a two dimensional object through a scattering layer by CCHM using the linear systems theory. We have investigated both strongly and weakly scattering media characterized by different amount of ballistic and diffuse light. The influence of a scattering layer on the quality of a phase signal is discussed for both types of the scattering media. A strong dependence of the imaging process on the light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data gained with model samples, as well as real biologic objects particularly then by time-lapse observations of live cells reactions to substances producing optically turbid emulsion.

  2. Definitions and validation criteria for biomarkers and surrogate endpoints: development and testing of a quantitative hierarchical levels of evidence schema

    DEFF Research Database (Denmark)

    Lassere, Marissa N; Johnson, Kent R; Boers, Maarten

    2007-01-01

    of the National Institutes of Health definitions of biomarker, surrogate endpoint, and clinical endpoint was useful. CONCLUSION: Further development and application of this schema provides incentives and guidance for effective biomarker and surrogate endpoint research, and more efficient drug discovery...... endpoints, and leading indicators, a quantitative surrogate validation schema was developed and subsequently evaluated at a stakeholder workshop. RESULTS: The search identified several classification schema and definitions. Components of these were incorporated into a new quantitative surrogate validation...

  3. The future of imaging biomarkers in radiologic practice: proceedings of the thirteenth annual ACR Forum.

    Science.gov (United States)

    Krishnaraj, Arun; Weinreb, Jeffrey C; Ellenbogen, Paul H; Allen, Bibb; Norbash, Alexander; Kazerooni, Ella A

    2014-01-01

    The 2013 ACR Forum focused on the emerging field of imaging biomarkers and how best to integrate imaging biomarkers into clinical practice, promote research into imaging biomarkers, and leverage advances in bioinformatics. The recommendations generated from the Forum seek to inform ACR leadership on the best strategies to pursue to ensure that radiologists secure a preeminent role in the new era of precision and personalized medicine. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  4. Quantitative color analysis for capillaroscopy image segmentation.

    Science.gov (United States)

    Goffredo, Michela; Schmid, Maurizio; Conforto, Silvia; Amorosi, Beatrice; D'Alessio, Tommaso; Palma, Claudio

    2012-06-01

    This communication introduces a novel approach for quantitatively evaluating the role of color space decomposition in digital nailfold capillaroscopy analysis. It is clinically recognized that any alterations of the capillary pattern, at the periungual skin region, are directly related to dermatologic and rheumatic diseases. The proposed algorithm for the segmentation of digital capillaroscopy images is optimized with respect to the choice of the color space and the contrast variation. Since the color space is a critical factor for segmenting low-contrast images, an exhaustive comparison between different color channels is conducted and a novel color channel combination is presented. Results from images of 15 healthy subjects are compared with annotated data, i.e. selected images approved by clinicians. By comparison, a set of figures of merit, which highlights the algorithm capability to correctly segment capillaries, their shape and their number, is extracted. Experimental tests depict that the optimized procedure for capillaries segmentation, based on a novel color channel combination, presents values of average accuracy higher than 0.8, and extracts capillaries whose shape and granularity are acceptable. The obtained results are particularly encouraging for future developments on the classification of capillary patterns with respect to dermatologic and rheumatic diseases.

  5. Integration of co-localized glandular morphometry and protein biomarker expression in immunofluorescent images for prostate cancer prognosis

    Science.gov (United States)

    Scott, Richard; Khan, Faisal M.; Zeineh, Jack; Donovan, Michael; Fernandez, Gerardo

    2015-03-01

    Immunofluorescent (IF) image analysis of tissue pathology has proven to be extremely valuable and robust in developing prognostic assessments of disease, particularly in prostate cancer. There have been significant advances in the literature in quantitative biomarker expression as well as characterization of glandular architectures in discrete gland rings. However, while biomarker and glandular morphometric features have been combined as separate predictors in multivariate models, there is a lack of integrative features for biomarkers co-localized within specific morphological sub-types; for example the evaluation of androgen receptor (AR) expression within Gleason 3 glands only. In this work we propose a novel framework employing multiple techniques to generate integrated metrics of morphology and biomarker expression. We demonstrate the utility of the approaches in predicting clinical disease progression in images from 326 prostate biopsies and 373 prostatectomies. Our proposed integrative approaches yield significant improvements over existing IF image feature metrics. This work presents some of the first algorithms for generating innovative characteristics in tissue diagnostics that integrate co-localized morphometry and protein biomarker expression.

  6. A novel HPTLC method for quantitative estimation of biomarkers in polyherbal formulation

    Institute of Scientific and Technical Information of China (English)

    Zeeshan Ahmed Sheikh; Sadia Shakeel; Somia Gul; Aqib Zahoor; Saleha Suleman Khan; Faisal Haider Zaidi; Khan Usmanghani

    2015-01-01

    Objective:To explore the quantitative estimation of biomarkers gallic acid and berberine in polyherbal formulation Entoban syrup. Methods: High performance thin layer chromatography was performed to evaluate the presence of gallic acid and berberine employing toluene:ethyl acetate:formic acid:methanol 12:9:4:0.5 (v/v/v/v) and ethanol: water: formic acid 90:9:1 (v/v/v), as a mobile phase respectively. Results:The Rf values (0.58) for gallic acid and (0.76) for berberine in both sample and reference standard were found comparable under UV light at 273 nm and 366 nm respectively. The high performance thin layer chromatography method developed for quantization was simple, accurate and specific. Conclusions: The present standardization provides specific and accurate tool to develop qualifications for identity, transparency and reproducibility of biomarkers in Entoban syrup.

  7. A novel HPTLC method for quantitative estimation of biomarkers in polyherbal formulation

    Institute of Scientific and Technical Information of China (English)

    Zeeshan; Ahmed; Sheikh; Sadia; Shakeel; Somia; Gul; Aqib; Zahoor; Saleha; Suleman; Khan; Faisal; Haider; Zaidi; Khan; Usmanghani

    2015-01-01

    Objective: To explore the quantitative estimation of biomarkers gallic acid and berberine in polyherbal formulation Entoban syrup.Methods: High performance thin layer chromatography was performed to evaluate the presence of gallic acid and berberine employing toluene: ethyl acetate: formic acid:methanol 12:9:4:0.5(v/v/v/v) and ethanol: water: formic acid 90:9:1(v/v/v), as a mobile phase respectively.Results: The R f values(0.58) for gallic acid and(0.76) for berberine in both sample and reference standard were found comparable under UV light at 273 nm and 366 nm respectively. The high performance thin layer chromatography method developed for quantization was simple, accurate and specific.Conclusions: The present standardization provides specific and accurate tool to develop qualifications for identity, transparency and reproducibility of biomarkers in Entoban syrup.

  8. Towards a quantitative OCT image analysis.

    Directory of Open Access Journals (Sweden)

    Marina Garcia Garrido

    Full Text Available Optical coherence tomography (OCT is an invaluable diagnostic tool for the detection and follow-up of retinal pathology in patients and experimental disease models. However, as morphological structures and layering in health as well as their alterations in disease are complex, segmentation procedures have not yet reached a satisfactory level of performance. Therefore, raw images and qualitative data are commonly used in clinical and scientific reports. Here, we assess the value of OCT reflectivity profiles as a basis for a quantitative characterization of the retinal status in a cross-species comparative study.Spectral-Domain Optical Coherence Tomography (OCT, confocal Scanning-Laser Ophthalmoscopy (SLO, and Fluorescein Angiography (FA were performed in mice (Mus musculus, gerbils (Gerbillus perpadillus, and cynomolgus monkeys (Macaca fascicularis using the Heidelberg Engineering Spectralis system, and additional SLOs and FAs were obtained with the HRA I (same manufacturer. Reflectivity profiles were extracted from 8-bit greyscale OCT images using the ImageJ software package (http://rsb.info.nih.gov/ij/.Reflectivity profiles obtained from OCT scans of all three animal species correlated well with ex vivo histomorphometric data. Each of the retinal layers showed a typical pattern that varied in relative size and degree of reflectivity across species. In general, plexiform layers showed a higher level of reflectivity than nuclear layers. A comparison of reflectivity profiles from specialized retinal regions (e.g. visual streak in gerbils, fovea in non-human primates with respective regions of human retina revealed multiple similarities. In a model of Retinitis Pigmentosa (RP, the value of reflectivity profiles for the follow-up of therapeutic interventions was demonstrated.OCT reflectivity profiles provide a detailed, quantitative description of retinal layers and structures including specialized retinal regions. Our results highlight the

  9. Image Biomarkers and Precision Medicine: need for validation; Los biomarcadores de imagen y la Medicina de Precision: necesidad de validacion

    Energy Technology Data Exchange (ETDEWEB)

    Marti-Bonmati, L.; Alberich-Bayarri, A.; Garcia Castro, F.

    2016-08-01

    Personalized medicine aims to improve the diagnosis, classification and the best treatment for a particular patient. Today, radiologists are challenged to translate new biological discoveries, the different mechanisms of disease and advances in preclinical research, into a clinical reality through patients, images and their associated parameters. In this article we show how digital medical imaging and computational data processing extract numerous quantitative parameters from the obtained images as virtual biopsies. To be implemented in clinical practice, biomarkers should provide useful and relevant information, improving processes diagnostic, therapeutic and monitoring, for the benefit of patients. (Author)

  10. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis.

    Science.gov (United States)

    Bar-Klein, Guy; Lublinsky, Svetlana; Kamintsky, Lyn; Noyman, Iris; Veksler, Ronel; Dalipaj, Hotjensa; Senatorov, Vladimir V; Swissa, Evyatar; Rosenbach, Dror; Elazary, Netta; Milikovsky, Dan Z; Milk, Nadav; Kassirer, Michael; Rosman, Yossi; Serlin, Yonatan; Eisenkraft, Arik; Chassidim, Yoash; Parmet, Yisrael; Kaufer, Daniela; Friedman, Alon

    2017-06-01

    A biomarker that will enable the identification of patients at high-risk for developing post-injury epilepsy is critically required. Microvascular pathology and related blood-brain barrier dysfunction and neuroinflammation were shown to be associated with epileptogenesis after injury. Here we used prospective, longitudinal magnetic resonance imaging to quantitatively follow blood-brain barrier pathology in rats following status epilepticus, late electrocorticography to identify epileptic animals and post-mortem immunohistochemistry to confirm blood-brain barrier dysfunction and neuroinflammation. Finally, to test the pharmacodynamic relevance of the proposed biomarker, two anti-epileptogenic interventions were used; isoflurane anaesthesia and losartan. Our results show that early blood-brain barrier pathology in the piriform network is a sensitive and specific predictor (area under the curve of 0.96, P brain barrier pathology as a clinically relevant predictive, diagnostic and pharmaco!dynamics biomarker for acquired epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Quantitative imaging of coronary blood flow

    Directory of Open Access Journals (Sweden)

    Adam M. Alessio

    2010-04-01

    Full Text Available Adam M. Alessio received his PhD in Electrical Engineering from the University of Notre Dame in 2003. During his graduate studies he developed tomographic reconstruction methods for correlated data and helped construct a high-resolution PET system. He is currently a Research Assistant Professor in Radiology at the University of Washington. His research interests focus on improved data processing and reconstruction algorithms for PET/CT systems with an emphasis on quantitative imaging. Erik Butterworth recieved the BA degree in Mathematics from the University of Chicago in 1977. Between 1977 and 1987 he worked as a computer programmer/analyst for several small commercial software firms. Since 1988, he has worked as a software engineer on various research projects at the University of Washington. Between 1988 and 1993 he developed a real-time data aquisition for the analysis of estuarine sediment transport in the department of Geophysics. Between 1988 and 2002 he developed I4, a system for the display and analysis of cardic PET images in the department of Cardiology. Since 1993 he has worked on physiological simulation systems (XSIM from 1993 to 1999, JSim since 1999 at the National Simulation Resource Facility in Cirulatory Mass Transport and Exchange, in the Department of Bioengineering. His research interests include simulation systems and medical imaging. James H. Caldwell, MD, University of Missouri-Columbia 1970, is Professor of Medicine (Cardiology and Radiology and Adjunct Professor of Bioengineering at the University of Washington School of Medicine and Acting Head, Division of Cardiology and Director of Nuclear Cardiology for the University of Washington Hospitals, Seattle WA, USA. James B. Bassingthwaighte, MD, Toronto 1955, PhD Mayo Grad Sch Med 1964, was Professor of Physiology and of Medicine at Mayo Clinic until 1975 when he moved to the University of Washington to chair Bioengineering. He is Professor of Bioengineering and

  12. Quantitative bioluminescence imaging of mouse tumor models.

    Science.gov (United States)

    Tseng, Jen-Chieh; Kung, Andrew L

    2015-01-05

    Bioluminescence imaging (BLI) has become an essential technique for preclinical evaluation of anticancer therapeutics and provides sensitive and quantitative measurements of tumor burden in experimental cancer models. For light generation, a vector encoding firefly luciferase is introduced into human cancer cells that are grown as tumor xenografts in immunocompromised hosts, and the enzyme substrate luciferin is injected into the host. Alternatively, the reporter gene can be expressed in genetically engineered mouse models to determine the onset and progression of disease. In addition to expression of an ectopic luciferase enzyme, bioluminescence requires oxygen and ATP, thus only viable luciferase-expressing cells or tissues are capable of producing bioluminescence signals. Here, we summarize a BLI protocol that takes advantage of advances in hardware, especially the cooled charge-coupled device camera, to enable detection of bioluminescence in living animals with high sensitivity and a large dynamic range.

  13. Ultratrace level determination and quantitative analysis of kidney injury biomarkers in patient samples attained by zinc oxide nanorods

    Science.gov (United States)

    Singh, Manpreet; Alabanza, Anginelle; Gonzalez, Lorelis E.; Wang, Weiwei; Reeves, W. Brian; Hahm, Jong-In

    2016-02-01

    Determining ultratrace amounts of protein biomarkers in patient samples in a straightforward and quantitative manner is extremely important for early disease diagnosis and treatment. Here, we successfully demonstrate the novel use of zinc oxide nanorods (ZnO NRs) in the ultrasensitive and quantitative detection of two acute kidney injury (AKI)-related protein biomarkers, tumor necrosis factor (TNF)-α and interleukin (IL)-8, directly from patient samples. We first validate the ZnO NRs-based IL-8 results via comparison with those obtained from using a conventional enzyme-linked immunosorbent method in samples from 38 individuals. We further assess the full detection capability of the ZnO NRs-based technique by quantifying TNF-α, whose levels in human urine are often below the detection limits of conventional methods. Using the ZnO NR platforms, we determine the TNF-α concentrations of all 46 patient samples tested, down to the fg per mL level. Subsequently, we screen for TNF-α levels in approximately 50 additional samples collected from different patient groups in order to demonstrate a potential use of the ZnO NRs-based assay in assessing cytokine levels useful for further clinical monitoring. Our research efforts demonstrate that ZnO NRs can be straightforwardly employed in the rapid, ultrasensitive, quantitative, and simultaneous detection of multiple AKI-related biomarkers directly in patient urine samples, providing an unparalleled detection capability beyond those of conventional analysis methods. Additional key advantages of the ZnO NRs-based approach include a fast detection speed, low-volume assay condition, multiplexing ability, and easy automation/integration capability to existing fluorescence instrumentation. Therefore, we anticipate that our ZnO NRs-based detection method will be highly beneficial for overcoming the frequent challenges in early biomarker development and treatment assessment, pertaining to the facile and ultrasensitive quantification

  14. Quantitative lateral flow strip assays as User-Friendly Tools To Detect Biomarker Profiles For Leprosy

    Science.gov (United States)

    van Hooij, Anouk; Tjon Kon Fat, Elisa M.; Richardus, Renate; van den Eeden, Susan J. F.; Wilson, Louis; de Dood, Claudia J.; Faber, Roel; Alam, Korshed; Richardus, Jan Hendrik; Corstjens, Paul L. A. M.; Geluk, Annemieke

    2016-01-01

    Leprosy is a debilitating, infectious disease caused by Mycobacterium leprae. Despite the availability of multidrug therapy, transmission is unremitting. Thus, early identification of M. leprae infection is essential to reduce transmission. The immune response to M. leprae is determined by host genetics, resulting in paucibacillary (PB) and multibacillary (MB) leprosy associated with dominant cellular or humoral immunity, respectively. This spectral pathology of leprosy compels detection of immunity to M. leprae to be based on multiple, diverse biomarkers. In this study we have applied quantitative user friendly lateral flow assays (LFAs) for four immune markers (anti-PGL-I antibodies, IL-10, CCL4 and IP-10) for whole blood samples from a longitudinal BCG vaccination field-trial in Bangladesh. Different biomarker profiles, in contrast to single markers, distinguished M. leprae infected from non-infected test groups, patients from household contacts (HHC) and endemic controls (EC), or MB from PB patients. The test protocol presented in this study merging detection of innate, adaptive cellular as well as humoral immunity, thus provides a convenient tool to measure specific biomarker profiles for M. leprae infection and leprosy utilizing a field-friendly technology. PMID:27682181

  15. The role of quantitative mass spectrometry in the discovery of pancreatic cancer biomarkers for translational science.

    Science.gov (United States)

    Ansari, Daniel; Aronsson, Linus; Sasor, Agata; Welinder, Charlotte; Rezeli, Melinda; Marko-Varga, György; Andersson, Roland

    2014-04-05

    In the post-genomic era, it has become evident that genetic changes alone are not sufficient to understand most disease processes including pancreatic cancer. Genome sequencing has revealed a complex set of genetic alterations in pancreatic cancer such as point mutations, chromosomal losses, gene amplifications and telomere shortening that drive cancerous growth through specific signaling pathways. Proteome-based approaches are important complements to genomic data and provide crucial information of the target driver molecules and their post-translational modifications. By applying quantitative mass spectrometry, this is an alternative way to identify biomarkers for early diagnosis and personalized medicine. We review the current quantitative mass spectrometric technologies and analyses that have been developed and applied in the last decade in the context of pancreatic cancer. Examples of candidate biomarkers that have been identified from these pancreas studies include among others, asporin, CD9, CXC chemokine ligand 7, fibronectin 1, galectin-1, gelsolin, intercellular adhesion molecule 1, insulin-like growth factor binding protein 2, metalloproteinase inhibitor 1, stromal cell derived factor 4, and transforming growth factor beta-induced protein. Many of these proteins are involved in various steps in pancreatic tumor progression including cell proliferation, adhesion, migration, invasion, metastasis, immune response and angiogenesis. These new protein candidates may provide essential information for the development of protein diagnostics and targeted therapies. We further argue that new strategies must be advanced and established for the integration of proteomic, transcriptomic and genomic data, in order to enhance biomarker translation. Large scale studies with meta data processing will pave the way for novel and unexpected correlations within pancreatic cancer, that will benefit the patient, with targeted treatment.

  16. Low-frequency quantitative ultrasound imaging of cell death in vivo.

    Science.gov (United States)

    Sadeghi-Naini, Ali; Papanicolau, Naum; Falou, Omar; Tadayyon, Hadi; Lee, Justin; Zubovits, Judit; Sadeghian, Alireza; Karshafian, Raffi; Al-Mahrouki, Azza; Giles, Anoja; Kolios, Michael C; Czarnota, Gregory J

    2013-08-01

    Currently, no clinical imaging modality is used routinely to assess tumor response to cancer therapies within hours to days of the delivery of treatment. Here, the authors demonstrate the efficacy of ultrasound at a clinically relevant frequency to quantitatively detect changes in tumors in response to cancer therapies using preclinical mouse models. Conventional low-frequency and corresponding high-frequency ultrasound (ranging from 4 to 28 MHz) were used along with quantitative spectroscopic and signal envelope statistical analyses on data obtained from xenograft tumors treated with chemotherapy, x-ray radiation, as well as a novel vascular targeting microbubble therapy. Ultrasound-based spectroscopic biomarkers indicated significant changes in cell-death associated parameters in responsive tumors. Specifically changes in the midband fit, spectral slope, and 0-MHz intercept biomarkers were investigated for different types of treatment and demonstrated cell-death related changes. The midband fit and 0-MHz intercept biomarker derived from low-frequency data demonstrated increases ranging approximately from 0 to 6 dBr and 0 to 8 dBr, respectively, depending on treatments administrated. These data paralleled results observed for high-frequency ultrasound data. Statistical analysis of ultrasound signal envelope was performed as an alternative method to obtain histogram-based biomarkers and provided confirmatory results. Histological analysis of tumor specimens indicated up to 61% cell death present in the tumors depending on treatments administered, consistent with quantitative ultrasound findings indicating cell death. Ultrasound-based spectroscopic biomarkers demonstrated a good correlation with histological morphological findings indicative of cell death (r2=0.71, 0.82; p<0.001). In summary, the results provide preclinical evidence, for the first time, that quantitative ultrasound used at a clinically relevant frequency, in addition to high-frequency ultrasound

  17. Low-frequency quantitative ultrasound imaging of cell death in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi-Naini, Ali; Falou, Omar; Czarnota, Gregory J. [Imaging Research – Physical Science, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Papanicolau, Naum; Tadayyon, Hadi [Imaging Research – Physical Science, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Lee, Justin [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Zubovits, Judit [Department of Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Sadeghian, Alireza [Department of Computer Science, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Karshafian, Raffi [Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Al-Mahrouki, Azza; Giles, Anoja [Imaging Research – Physical Science, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Kolios, Michael C. [Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5, Canada and Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada)

    2013-08-15

    Purpose: Currently, no clinical imaging modality is used routinely to assess tumor response to cancer therapies within hours to days of the delivery of treatment. Here, the authors demonstrate the efficacy of ultrasound at a clinically relevant frequency to quantitatively detect changes in tumors in response to cancer therapies using preclinical mouse models.Methods: Conventional low-frequency and corresponding high-frequency ultrasound (ranging from 4 to 28 MHz) were used along with quantitative spectroscopic and signal envelope statistical analyses on data obtained from xenograft tumors treated with chemotherapy, x-ray radiation, as well as a novel vascular targeting microbubble therapy.Results: Ultrasound-based spectroscopic biomarkers indicated significant changes in cell-death associated parameters in responsive tumors. Specifically changes in the midband fit, spectral slope, and 0-MHz intercept biomarkers were investigated for different types of treatment and demonstrated cell-death related changes. The midband fit and 0-MHz intercept biomarker derived from low-frequency data demonstrated increases ranging approximately from 0 to 6 dBr and 0 to 8 dBr, respectively, depending on treatments administrated. These data paralleled results observed for high-frequency ultrasound data. Statistical analysis of ultrasound signal envelope was performed as an alternative method to obtain histogram-based biomarkers and provided confirmatory results. Histological analysis of tumor specimens indicated up to 61% cell death present in the tumors depending on treatments administered, consistent with quantitative ultrasound findings indicating cell death. Ultrasound-based spectroscopic biomarkers demonstrated a good correlation with histological morphological findings indicative of cell death (r{sup 2}= 0.71, 0.82; p < 0.001).Conclusions: In summary, the results provide preclinical evidence, for the first time, that quantitative ultrasound used at a clinically relevant frequency

  18. Definitions and validation criteria for biomarkers and surrogate endpoints: development and testing of a quantitative hierarchical levels of evidence schema

    DEFF Research Database (Denmark)

    Lassere, Marissa N; Johnson, Kent R; Boers, Maarten

    2007-01-01

    to develop a hierarchical schema that systematically evaluates and ranks the surrogacy status of biomarkers and surrogates; and to obtain feedback from stakeholders. METHODS: After a systematic search of Medline and Embase on biomarkers, surrogate (outcomes, endpoints, markers, indicators), intermediate...... endpoints, and leading indicators, a quantitative surrogate validation schema was developed and subsequently evaluated at a stakeholder workshop. RESULTS: The search identified several classification schema and definitions. Components of these were incorporated into a new quantitative surrogate validation...... of the National Institutes of Health definitions of biomarker, surrogate endpoint, and clinical endpoint was useful. CONCLUSION: Further development and application of this schema provides incentives and guidance for effective biomarker and surrogate endpoint research, and more efficient drug discovery...

  19. MO-C-BRB-06: Translating NIH / NIBIB funding to clinical reality in quantitative diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, E. [University of Wisconsin (United States)

    2015-06-15

    Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, and the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration

  20. Magnetic Resonance Spectroscopy: An In Vivo Molecular Imaging Biomarker for Parkinson’s Disease?

    Directory of Open Access Journals (Sweden)

    Rosella Ciurleo

    2014-01-01

    Full Text Available Parkinson’s disease (PD is a neurodegenerative disorder caused by selective loss of dopaminergic neurons in the substantia nigra pars compacta which leads to dysfunction of cerebral pathways critical for the control of movements. The diagnosis of PD is based on motor symptoms, such as bradykinesia, akinesia, muscular rigidity, postural instability, and resting tremor, which are evident only after the degeneration of a significant number of dopaminergic neurons. Currently, a marker for early diagnosis of PD is still not available. Consequently, also the development of disease-modifying therapies is a challenge. Magnetic resonance spectroscopy is a quantitative imaging technique that allows in vivo measurement of certain neurometabolites and may produce biomarkers that reflect metabolic dysfunctions and irreversible neuronal damage. This review summarizes the abnormalities of cerebral metabolites found in MRS studies performed in patients with PD and other forms of parkinsonism. In addition, we discuss the potential role of MRS as in vivo molecular imaging biomarker for early diagnosis of PD and for monitoring the efficacy of therapeutic interventions.

  1. Quantitative STIR MRI as prognostic imaging biomarker for nerve regeneration

    NARCIS (Netherlands)

    Viddeleer, Alain Robert

    2016-01-01

    A transection of a forearm nerve e.g., because of an accident, has tremendous impact on a patient's daily life, as a number of hand muscles is paralyzed and part of the hand will suffer from sensory loss. Despite advances in surgery many patients will have remaining loss of function. If nerve regene

  2. Quantitative phase imaging using hard x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, K.A.; Paganin, D.; Barnea, Z. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Cookson, D. F. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Gureyev, T.E. [Melbourne Univ., Parkville, VIC (Australia). School of Physics]|[CSIRO, Clayton, VIC (Australia). Div. of Forestry and Forest Products

    1997-06-01

    The quantitative imaging of a phase object using 16 keV x-rays is reported. The theoretical basis of the techniques is presented along with its implementation using a synchrotron x-ray source. It is found that the phase image is in quantitative agreement with independent measurements of the object. 13 refs., 5 figs.

  3. Data for chicken semen proteome and label free quantitative analyses displaying sperm quality biomarkers.

    Science.gov (United States)

    Labas, Valérie; Grasseau, Isabelle; Cahier, Karine; Gargaros, Audrey; Harichaux, Grégoire; Teixeira-Gomes, Ana-Paula; Alves, Sabine; Bourin, Marie; Gérard, Nadine; Blesbois, Elisabeth

    2014-12-01

    Understanding of biology of the avian male gamete is essential to improve the conservation of genetic resources and performances in farming. In this study, the semen proteome of the main domestic avian species (Gallus gallus) and evaluation of the molecular phenotype related to sperm quality were investigated using GeLC-MS/MS approach and label-free quantitative proteomic based on Spectral Counting (SC) and extracted ion chromatograms (XIC) methods. Here we describe in details the peptide/protein inventory of chicken ejaculated spermatozoa (SPZ) and seminal plasma (SP). We also show differential analyses of chicken semen (SPZ and corresponding SP) from 11 males demonstrating different levels of fertilizing capacity and sperm motility. The interpretation and description of these data can be found in a research article published by Labas and colleagues in the Journal of Proteomics in 2014 [1]. This is a new resource for exploring the molecular mechanisms involved in fertilizing capacity and to reveal new sets of fertility biomarkers.

  4. Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging.

    Science.gov (United States)

    McClatchy, David M; Rizzo, Elizabeth J; Wells, Wendy A; Cheney, Philip P; Hwang, Jeeseong C; Paulsen, Keith D; Pogue, Brian W; Kanick, Stephen C

    2016-06-20

    Localized measurements of scattering in biological tissue provide sensitivity to microstructural morphology but have limited utility to wide-field applications, such as surgical guidance. This study introduces sub-diffusive spatial frequency domain imaging (sd-SFDI), which uses high spatial frequency illumination to achieve wide-field sampling of localized reflectances. Model-based inversion recovers macroscopic variations in the reduced scattering coefficient [Formula: see text] and the phase function backscatter parameter (γ). Measurements in optical phantoms show quantitative imaging of user-tuned phase-function-based contrast with accurate decoupling of parameters that define both the density and the size-scale distribution of scatterers. Measurements of fresh ex vivo breast tissue samples revealed, for the first time, unique clustering of sub-diffusive scattering properties for different tissue types. The results support that sd-SFDI provides maps of microscopic structural biomarkers that cannot be obtained with diffuse wide-field imaging and characterizes spatial variations not resolved by point-based optical sampling.

  5. Quantitative analysis of biological tissues using Fourier transform-second-harmonic generation imaging

    Science.gov (United States)

    Ambekar Ramachandra Rao, Raghu; Mehta, Monal R.; Toussaint, Kimani C., Jr.

    2010-02-01

    We demonstrate the use of Fourier transform-second-harmonic generation (FT-SHG) imaging of collagen fibers as a means of performing quantitative analysis of obtained images of selected spatial regions in porcine trachea, ear, and cornea. Two quantitative markers, preferred orientation and maximum spatial frequency are proposed for differentiating structural information between various spatial regions of interest in the specimens. The ear shows consistent maximum spatial frequency and orientation as also observed in its real-space image. However, there are observable changes in the orientation and minimum feature size of fibers in the trachea indicating a more random organization. Finally, the analysis is applied to a 3D image stack of the cornea. It is shown that the standard deviation of the orientation is sensitive to the randomness in fiber orientation. Regions with variations in the maximum spatial frequency, but with relatively constant orientation, suggest that maximum spatial frequency is useful as an independent quantitative marker. We emphasize that FT-SHG is a simple, yet powerful, tool for extracting information from images that is not obvious in real space. This technique can be used as a quantitative biomarker to assess the structure of collagen fibers that may change due to damage from disease or physical injury.

  6. MO-DE-303-03: Session on quantitative imaging for assessment of tumor response to radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, S. [University of Washington, School of Medicine: PET/CT and SPECT/CT for Lung and Liver Radiation Therapy Response Assessment of Tumor and Normal Tissue (United States)

    2015-06-15

    This session will focus on quantitative imaging for assessment of tumor response to radiation therapy. This is a technically challenging method to translate to practice in radiation therapy. In the new era of precision medicine, however, delivering the right treatment, to the right patient, and at the right time, can positively impact treatment choices and patient outcomes. Quantitative imaging provides the spatial sensitivity required by radiation therapy for precision medicine that is not available by other means. In this Joint ESTRO -AAPM Symposium, three leading-edge investigators will present specific motivations for quantitative imaging biomarkers in radiation therapy of esophageal, head and neck, locally advanced non-small cell lung cancer, and hepatocellular carcinoma. Experiences with the use of dynamic contrast enhanced (DCE) MRI, diffusion- weighted (DW) MRI, PET/CT, and SPECT/CT will be presented. Issues covered will include: response prediction, dose-painting, timing between therapy and imaging, within-therapy biomarkers, confounding effects, normal tissue sparing, dose-response modeling, and association with clinical biomarkers and outcomes. Current information will be presented from investigational studies and clinical practice. Learning Objectives: Learn motivations for the use of quantitative imaging biomarkers for assessment of response to radiation therapy Review the potential areas of application in cancer therapy Examine the challenges for translation, including imaging confounds and paucity of evidence to date Compare exemplary examples of the current state of the art in DCE-MRI, DW-MRI, PET/CT and SPECT/CT imaging for assessment of response to radiation therapy Van der Heide: Research grants from the Dutch Cancer Society and the European Union (FP7) Bowen: RSNA Scholar grant.

  7. Quantitative photoacoustic image reconstruction improves accuracy in deep tissue structures.

    Science.gov (United States)

    Mastanduno, Michael A; Gambhir, Sanjiv S

    2016-10-01

    Photoacoustic imaging (PAI) is emerging as a potentially powerful imaging tool with multiple applications. Image reconstruction for PAI has been relatively limited because of limited or no modeling of light delivery to deep tissues. This work demonstrates a numerical approach to quantitative photoacoustic image reconstruction that minimizes depth and spectrally derived artifacts. We present the first time-domain quantitative photoacoustic image reconstruction algorithm that models optical sources through acoustic data to create quantitative images of absorption coefficients. We demonstrate quantitative accuracy of less than 5% error in large 3 cm diameter 2D geometries with multiple targets and within 22% error in the largest size quantitative photoacoustic studies to date (6cm diameter). We extend the algorithm to spectral data, reconstructing 6 varying chromophores to within 17% of the true values. This quantitiative PA tomography method was able to improve considerably on filtered-back projection from the standpoint of image quality, absolute, and relative quantification in all our simulation geometries. We characterize the effects of time step size, initial guess, and source configuration on final accuracy. This work could help to generate accurate quantitative images from both endogenous absorbers and exogenous photoacoustic dyes in both preclinical and clinical work, thereby increasing the information content obtained especially from deep-tissue photoacoustic imaging studies.

  8. CNTRICS Imaging Biomarkers Final Task Selection: Long-Term Memory and Reinforcement Learning

    OpenAIRE

    Ragland, John D.; Neal J Cohen; Cools, Roshan; Frank, Michael J.; Deborah E Hannula; Ranganath, Charan

    2011-01-01

    Functional imaging paradigms hold great promise as biomarkers for schizophrenia research as they can detect altered neural activity associated with the cognitive and emotional processing deficits that are so disabling to this patient population. In an attempt to identify the most promising functional imaging biomarkers for research on long-term memory (LTM), the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative selected “item encoding and ret...

  9. Exploring new quantitative CT image features to improve assessment of lung cancer prognosis

    Science.gov (United States)

    Emaminejad, Nastaran; Qian, Wei; Kang, Yan; Guan, Yubao; Lure, Fleming; Zheng, Bin

    2015-03-01

    Due to the promotion of lung cancer screening, more Stage I non-small-cell lung cancers (NSCLC) are currently detected, which usually have favorable prognosis. However, a high percentage of the patients have cancer recurrence after surgery, which reduces overall survival rate. To achieve optimal efficacy of treating and managing Stage I NSCLC patients, it is important to develop more accurate and reliable biomarkers or tools to predict cancer prognosis. The purpose of this study is to investigate a new quantitative image analysis method to predict the risk of lung cancer recurrence of Stage I NSCLC patients after the lung cancer surgery using the conventional chest computed tomography (CT) images and compare the prediction result with a popular genetic biomarker namely, protein expression of the excision repair cross-complementing 1 (ERCC1) genes. In this study, we developed and tested a new computer-aided detection (CAD) scheme to segment lung tumors and initially compute 35 tumor-related morphologic and texture features from CT images. By applying a machine learning based feature selection method, we identified a set of 8 effective and non-redundant image features. Using these features we trained a naïve Bayesian network based classifier to predict the risk of cancer recurrence. When applying to a test dataset with 79 Stage I NSCLC cases, the computed areas under ROC curves were 0.77±0.06 and 0.63±0.07 when using the quantitative image based classifier and ERCC1, respectively. The study results demonstrated the feasibility of improving accuracy of predicting cancer prognosis or recurrence risk using a CAD-based quantitative image analysis method.

  10. Quantitative photoacoustic imaging of nanoparticles in cells and tissues.

    Science.gov (United States)

    Cook, Jason R; Frey, Wolfgang; Emelianov, Stanislav

    2013-02-26

    Quantitative visualization of nanoparticles in cells and tissues, while preserving the spatial information, is very challenging. A photoacoustic imaging technique to depict the presence and quantity of nanoparticles is presented. This technique is based on the dependence of the photoacoustic signal on both the nanoparticle quantity and the laser fluence. Quantitative photoacoustic imaging is a robust technique that does not require knowledge of the local fluence, but a relative change in the fluence. This eliminates the need for sophisticated methods or models to determine the energy distribution of light in turbid media. Quantitative photoacoustic imaging was first applied to nanoparticle-loaded cells, and quantitation was validated by inductively coupled plasma mass spectrometry. Quantitative photoacoustic imaging was then extended to xenograft tumor tissue sections, and excellent agreement with traditional histopathological analysis was demonstrated. Our results suggest that quantitative photoacoustic imaging may be used in many applications including the determination of the efficiency and effectiveness of molecular targeting strategies for cell studies and animal models, the quantitative assessment of photoacoustic contrast agent biodistribution, and the validation of in vivo photoacoustic imaging.

  11. Ultrafast quantitative time-stretch imaging flow cytometry of phytoplankton

    Science.gov (United States)

    Lai, Queenie T. K.; Lau, Andy K. S.; Tang, Anson H. L.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2016-03-01

    Comprehensive quantification of phytoplankton abundance, sizes and other parameters, e.g. biomasses, has been an important, yet daunting task in aquatic sciences and biofuel research. It is primarily because of the lack of effective tool to image and thus accurately profile individual microalgae in a large population. The phytoplankton species are highly diversified and heterogeneous in terms of their sizes and the richness in morphological complexity. This fact makes time-stretch imaging, a new ultrafast real-time optical imaging technology, particularly suitable for ultralarge-scale taxonomic classification of phytoplankton together with quantitative image recognition and analysis. We here demonstrate quantitative imaging flow cytometry of single phytoplankton based on quantitative asymmetric-detection time-stretch optical microscopy (Q-ATOM) - a new time-stretch imaging modality for label-free quantitative phase imaging without interferometric implementations. Sharing the similar concept of Schlieren imaging, Q-ATOM accesses multiple phase-gradient contrasts of each single phytoplankton, from which the quantitative phase profile is computed. We employ such system to capture, at an imaging line-scan rate of 11.6 MHz, high-resolution images of two phytoplankton populations (scenedesmus and chlamydomonas) in ultrafast microfluidic flow (3 m/s). We further perform quantitative taxonomic screening analysis enabled by this technique. More importantly, the system can also generate quantitative phase images of single phytoplankton. This is especially useful for label-free quantification of biomasses (e.g. lipid droplets) of the particular species of interest - an important task adopted in biofuel applications. Combining machine learning for automated classification, Q-ATOM could be an attractive platform for continuous and real-time ultralarge-scale single-phytoplankton analysis.

  12. Qualitative and quantitative imaging in microgravity combustion

    Science.gov (United States)

    Weiland, Karen J.

    1995-01-01

    An overview of the imaging techniques implemented by researchers in the microgravity combustion program shows that for almost any system, imaging of the flame may be accomplished in a variety of ways. Standard and intensified video, high speed, and infrared cameras and fluorescence, laser schlieren, rainbow schlieren, soot volume fraction, and soot temperature imaging have all been used in the laboratory and many in reduced gravity to make the necessary experimental measurements.

  13. Quantitative Electroencephalographic Biomarkers in Preclinical and Human Studies of Huntington's Disease: Are They Fit-for-Purpose for Treatment Development?

    Science.gov (United States)

    Leuchter, Michael K; Donzis, Elissa J; Cepeda, Carlos; Hunter, Aimee M; Estrada-Sánchez, Ana María; Cook, Ian A; Levine, Michael S; Leuchter, Andrew F

    2017-01-01

    A major focus in development of novel therapies for Huntington's disease (HD) is identification of treatments that reduce the burden of mutant huntingtin (mHTT) protein in the brain. In order to identify and test the efficacy of such therapies, it is essential to have biomarkers that are sensitive to the effects of mHTT on brain function to determine whether the intervention has been effective at preventing toxicity in target brain systems before onset of clinical symptoms. Ideally, such biomarkers should have a plausible physiologic basis for detecting the effects of mHTT, be measureable both in preclinical models and human studies, be practical to measure serially in clinical trials, and be reliably measurable in HD gene expansion carriers (HDGECs), among other features. Quantitative electroencephalography (qEEG) fulfills many of these basic criteria of a "fit-for-purpose" biomarker. qEEG measures brain oscillatory activity that is regulated by the brain structures that are affected by mHTT in premanifest and early symptom individuals. The technology is practical to implement in the laboratory and is well tolerated by humans in clinical trials. The biomarkers are measureable across animal models and humans, with findings that appear to be detectable in HDGECs and translate across species. We review here the literature on recent developments in both preclinical and human studies of the use of qEEG biomarkers in HD, and the evidence for their usefulness as biomarkers to help guide development of novel mHTT lowering treatments.

  14. Model-based clustering for assessing the prognostic value of imaging biomarkers and mixed type tests.

    Science.gov (United States)

    Wang, Zheyu; Sebestyen, Krisztian; Monsell, Sarah E

    2017-09-01

    A model-based clustering method is proposed to address two research aims in Alzheimer's disease (AD): to evaluate the accuracy of imaging biomarkers in AD prognosis, and to integrate biomarker information and standard clinical test results into the diagnoses. One challenge in such biomarker studies is that it is often desired or necessary to conduct the evaluation without relying on clinical diagnoses or some other standard references. This is because (1) biomarkers may provide prognostic information long before any standard reference can be acquired; (2) these references are often based on or provide unfair advantage to standard tests. Therefore, they can mask the prognostic value of a useful biomarker, especially when the biomarker is much more accurate than the standard tests. In addition, the biomarkers and existing tests may be of mixed type and vastly different distributions. A model-based clustering method based on finite mixture modeling framework is introduced. The model allows for the inclusion of mixed typed manifest variables with possible differential covariates to evaluate the prognostic value of biomarkers in addition to standard tests without relying on potentially inaccurate reference diagnoses. Maximum likelihood parameter estimation is carried out via the EM algorithm. Accuracy measures and the ROC curves of the biomarkers are derived subsequently. Finally, the method is illustrated with a real example in AD.

  15. Quantitative methods for the analysis of electron microscope images

    DEFF Research Database (Denmark)

    Skands, Peter Ulrik Vallø

    1996-01-01

    The topic of this thesis is an general introduction to quantitative methods for the analysis of digital microscope images. The images presented are primarily been acquired from Scanning Electron Microscopes (SEM) and interfermeter microscopes (IFM). The topic is approached though several examples...... foundation of the thesis fall in the areas of: 1) Mathematical Morphology; 2) Distance transforms and applications; and 3) Fractal geometry. Image analysis opens in general the possibility of a quantitative and statistical well founded measurement of digital microscope images. Herein lies also the conditions...

  16. Quantitative real-time imaging of glutathione

    Science.gov (United States)

    Glutathione plays many important roles in biological processes; however, the dynamic changes of glutathione concentrations in living cells remain largely unknown. Here, we report a reversible reaction-based fluorescent probe—designated as RealThiol (RT)—that can quantitatively monitor the real-time ...

  17. Imaging plasma docosahexaenoic acid (dha incorporation into the brain in vivo, as a biomarker of brain DHA: Metabolism and neurotransmission

    Directory of Open Access Journals (Sweden)

    Rapoport Stanley I.

    2011-09-01

    Full Text Available Docosahexaenoic acid (DHA is critical for normal brain structure and function, and its brain concentration depends on dietary DHA content and hepatic conversion from its dietary derived n-3 precursor, a-linolenic acid (α-LNA. We developed an in vivo method in rats using quantitative autoradiography to image incorporation into brain of unesterified plasma DHA, and showed that the incorporation rate equals the rate of brain metabolic DHA consumption. Thus, quantitative imaging of DHA incorporation from plasma into brain can be used as a biomarker of brain DHA metabolism and neurotransmission. The method has been extended to humans with the use of positron emission tomography (PET. Furthermore, imaging in unanesthetized rats using DHA incorporation as a biomarker in response to N-methyl-D-aspartate (NMDA administration confirms that regional DHA signaling is independent of extracellular calcium, and likely mediated by a calcium-independent phospholipase A2 (iPLA2. Studies in mice in which iPLA2-VIA (β was knocked out confirmed that this enzyme is critical for baseline and muscarinic cholinergic signaling involving DHA.

  18. Computational Challenges and Collaborative Projects in the NCI Quantitative Imaging Network.

    Science.gov (United States)

    Farahani, Keyvan; Kalpathy-Cramer, Jayashree; Chenevert, Thomas L; Rubin, Daniel L; Sunderland, John J; Nordstrom, Robert J; Buatti, John; Hylton, Nola

    2016-12-01

    The Quantitative Imaging Network (QIN) of the National Cancer Institute (NCI) conducts research in development and validation of imaging tools and methods for predicting and evaluating clinical response to cancer therapy. Members of the network are involved in examining various imaging and image assessment parameters through network-wide cooperative projects. To more effectively use the cooperative power of the network in conducting computational challenges in benchmarking of tools and methods and collaborative projects in analytical assessment of imaging technologies, the QIN Challenge Task Force has developed policies and procedures to enhance the value of these activities by developing guidelines and leveraging NCI resources to help their administration and manage dissemination of results. Challenges and Collaborative Projects (CCPs) are further divided into technical and clinical CCPs. As the first NCI network to engage in CCPs, we anticipate a variety of CCPs to be conducted by QIN teams in the coming years. These will be aimed to benchmark advanced software tools for clinical decision support, explore new imaging biomarkers for therapeutic assessment, and establish consensus on a range of methods and protocols in support of the use of quantitative imaging to predict and assess response to cancer therapy.

  19. Chromatic Image Analysis For Quantitative Thermal Mapping

    Science.gov (United States)

    Buck, Gregory M.

    1995-01-01

    Chromatic image analysis system (CIAS) developed for use in noncontact measurements of temperatures on aerothermodynamic models in hypersonic wind tunnels. Based on concept of temperature coupled to shift in color spectrum for optical measurement. Video camera images fluorescence emitted by phosphor-coated model at two wavelengths. Temperature map of model then computed from relative brightnesses in video images of model at those wavelengths. Eliminates need for intrusive, time-consuming, contact temperature measurements by gauges, making it possible to map temperatures on complex surfaces in timely manner and at reduced cost.

  20. Cadmium phytotoxicity: Quantitative sensitivity relationships between classical endpoints and antioxidative enzyme biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Rosa Correa, Albertina Xavier da [Centro de Ciencias Tecnologicas da Terra e do Mar, Universidade do Vale do Itajai, Rua Uruguai, 458, 88302-202 Itajai SC (Brazil); Roerig, Leonardo Rubi [Centro de Ciencias Tecnologicas da Terra e do Mar, Universidade do Vale do Itajai, Rua Uruguai, 458, 88302-202 Itajai SC (Brazil); Verdinelli, Miguel A. [Centro de Ciencias Tecnologicas da Terra e do Mar, Universidade do Vale do Itajai, Rua Uruguai, 458, 88302-202 Itajai SC (Brazil); Cotelle, Sylvie [Centre des Sciences de l' Environnement, Universite de Metz, 57000 Metz (France); Ferard, Jean-Francois [Centre des Sciences de l' Environnement, Universite de Metz, 57000 Metz (France); Radetski, Claudemir Marcos [Centro de Ciencias Tecnologicas da Terra e do Mar, Universidade do Vale do Itajai, Rua Uruguai, 458, 88302-202 Itajai SC (Brazil)]. E-mail: radetski@univali.br

    2006-03-15

    In this work, cadmium phytotoxicity and quantitative sensitivity relationships between different hierarchical endpoints in plants cultivated in a contaminated soil were studied. Thus, germination rate, biomass growth and antioxidative enzyme activity (i.e. superoxide dismutase, peroxidase, catalase and glutathione reductase) in three terrestrial plants (Avena sativa L., Brassica campestris L. cv. Chinensis, Lactuca sativa L. cv. hanson) were analyzed. Plant growth tests were carried out according to an International Standard Organization method and the results were analyzed by ANOVA followed by Williams' test. The concentration of Cd{sup 2+} that had the smallest observed significant negative effect (LOEC) on plant biomass was 6.25, 12.5 and 50 mg Cd/kg dry soil for lettuce, oat and Chinese cabbage, respectively. Activity of all enzymes studied increased significantly compared to enzyme activity in plant controls. For lettuce, LOEC values (mg Cd/kg dry soil) for enzymic activity ranged from 0.05 (glutathione reductase) to 0.39 (catalase). For oat, LOEC values (mg Cd/kg dry soil) ranged from 0.19 (for superoxide dismutase and glutathione reductase) to 0.39 (for catalase and peroxidase). For Chinese cabbage, LOEC values (mg Cd/kg dry soil) ranged from 0.19 (peroxidase, catalase and glutathione reductase) to 0.39 (superoxide dismutase). Classical (i.e. germination and biomass) and biochemical (i.e. enzyme activity) endpoints were compared to establish a sensitivity ranking, which was: enzyme activity > biomass > germination rate. For cadmium-soil contamination, the determination of quantitative sensitivity relationships (QSR) between classical and antioxidative enzyme biomarkers showed that the most sensitive plant species have, generally, the lowest QSR values.

  1. Data for chicken semen proteome and label free quantitative analyses displaying sperm quality biomarkers

    Directory of Open Access Journals (Sweden)

    Valérie Labas

    2014-12-01

    Full Text Available Understanding of biology of the avian male gamete is essential to improve the conservation of genetic resources and performances in farming. In this study, the semen proteome of the main domestic avian species (Gallus gallus and evaluation of the molecular phenotype related to sperm quality were investigated using GeLC–MS/MS approach and label-free quantitative proteomic based on Spectral Counting (SC and extracted ion chromatograms (XIC methods. Here we describe in details the peptide/protein inventory of chicken ejaculated spermatozoa (SPZ and seminal plasma (SP. We also show differential analyses of chicken semen (SPZ and corresponding SP from 11 males demonstrating different levels of fertilizing capacity and sperm motility. The interpretation and description of these data can be found in a research article published by Labas and colleagues in the Journal of Proteomics in 2014 [1]. This is a new resource for exploring the molecular mechanisms involved in fertilizing capacity and to reveal new sets of fertility biomarkers.

  2. Quantitative analysis of four protein biomarkers: An automated microfluidic cartridge-based method and its comparison to colorimetric ELISA.

    Science.gov (United States)

    Dysinger, Mark; Marusov, Greg; Fraser, Stephanie

    2017-09-13

    Biomarker quantitation with ligand binding assays has matured greatly in recent years. This maturation has been partly in response to demands for more data points from fewer samples or less available sample volume. Multiplexing offers opportunities to acquire data for multiple analytes from single sample assay iterations, but has its own unique challenges and limitations. ProteinSimple has developed Simple Plex™, an automated immunoassay platform consisting of microfluidic cartridge-based assays run on the Ella instrument. Ella subverts traditional multiplexing challenges by rapidly performing triplicate measurements of up to four different analytes simultaneously, each in their own respective assay vessels and all from a single sample. Here we describe a comparison of the Simple Plex platform versus colorimetric ELISA and their respective abilities to quantitate four common biomarkers (MCP-1/CCL2, VEGF-A, TNF-α, and IL-6) from twenty-eight healthy individual donor plasma samples. Each biomarker was tested on the two platforms on each of two days. Ella analysis required significantly reduced sample volume, manual steps, and total time. Overall, Ella was able to quantify results for all twenty-eight samples for each of the four biomarkers. In contrast, ELISA was able to measure quantifiable results within respective calibration curve ranges for MCP-1/CCL2 (96% of samples) and VEGFA (7% of samples). For TNF-α and IL-6, ELISA was not sensitive enough to quantify any samples in the assay ranges. This stark difference in quantitative results underscores Ella's ability to multiplex without compromising sensitivity, and has far reaching potential for biomarker panel measurement in support of diagnosis, prognosis, and monitoring of disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Quantitative Morphological and Biochemical Studies on Human Downy Hairs using 3-D Quantitative Phase Imaging

    CERN Document Server

    Lee, SangYun; Lee, Yuhyun; Park, Sungjin; Shin, Heejae; Yang, Jongwon; Ko, Kwanhong; Park, HyunJoo; Park, YongKeun

    2015-01-01

    This study presents the morphological and biochemical findings on human downy arm hairs using 3-D quantitative phase imaging techniques. 3-D refractive index tomograms and high-resolution 2-D synthetic aperture images of individual downy arm hairs were measured using a Mach-Zehnder laser interferometric microscopy equipped with a two-axis galvanometer mirror. From the measured quantitative images, the biochemical and morphological parameters of downy hairs were non-invasively quantified including the mean refractive index, volume, cylinder, and effective radius of individual hairs. In addition, the effects of hydrogen peroxide on individual downy hairs were investigated.

  4. Partial Volume Correction in Quantitative Amyloid Imaging

    Science.gov (United States)

    Su, Yi; Blazey, Tyler M.; Snyder, Abraham Z.; Raichle, Marcus E.; Marcus, Daniel S.; Ances, Beau M.; Bateman, Randall J.; Cairns, Nigel J.; Aldea, Patricia; Cash, Lisa; Christensen, Jon J.; Friedrichsen, Karl; Hornbeck, Russ C.; Farrar, Angela M.; Owen, Christopher J.; Mayeux, Richard; Brickman, Adam M.; Klunk, William; Price, Julie C.; Thompson, Paul M.; Ghetti, Bernardino; Saykin, Andrew J.; Sperling, Reisa A.; Johnson, Keith A.; Schofield, Peter R.; Buckles, Virginia; Morris, John C.; Benzinger, Tammie. LS.

    2014-01-01

    Amyloid imaging is a valuable tool for research and diagnosis in dementing disorders. As positron emission tomography (PET) scanners have limited spatial resolution, measured signals are distorted by partial volume effects. Various techniques have been proposed for correcting partial volume effects, but there is no consensus as to whether these techniques are necessary in amyloid imaging, and, if so, how they should be implemented. We evaluated a two-component partial volume correction technique and a regional spread function technique using both simulated and human Pittsburgh compound B (PiB) PET imaging data. Both correction techniques compensated for partial volume effects and yielded improved detection of subtle changes in PiB retention. However, the regional spread function technique was more accurate in application to simulated data. Because PiB retention estimates depend on the correction technique, standardization is necessary to compare results across groups. Partial volume correction has sometimes been avoided because it increases the sensitivity to inaccuracy in image registration and segmentation. However, our results indicate that appropriate PVC may enhance our ability to detect changes in amyloid deposition. PMID:25485714

  5. Quantitative spectrally resolved imaging through a spectrograph

    NARCIS (Netherlands)

    Tolboom, RAL; Sijtsema, NM; ter Meulen, JJ; Dam, N.J.

    2003-01-01

    A grating spectrograph can be used for spectrally selective two-dimensional imaging if it is operated with a broad entrance slit. The resulting intensity distribution in its exit plane is a one-dimensional convolution of the spatial and spectral distributions of incident light. We present a dedicate

  6. Issues in Quantitative Analysis of Ultraviolet Imager (UV) Data: Airglow

    Science.gov (United States)

    Germany, G. A.; Richards, P. G.; Spann, J. F.; Brittnacher, M. J.; Parks, G. K.

    1999-01-01

    The GGS Ultraviolet Imager (UVI) has proven to be especially valuable in correlative substorm, auroral morphology, and extended statistical studies of the auroral regions. Such studies are based on knowledge of the location, spatial, and temporal behavior of auroral emissions. More quantitative studies, based on absolute radiometric intensities from UVI images, require a more intimate knowledge of the instrument behavior and data processing requirements and are inherently more difficult than studies based on relative knowledge of the oval location. In this study, UVI airglow observations are analyzed and compared with model predictions to illustrate issues that arise in quantitative analysis of UVI images. These issues include instrument calibration, long term changes in sensitivity, and imager flat field response as well as proper background correction. Airglow emissions are chosen for this study because of their relatively straightforward modeling requirements and because of their implications for thermospheric compositional studies. The analysis issues discussed here, however, are identical to those faced in quantitative auroral studies.

  7. Issues in Quantitative Analysis of Ultraviolet Imager (UV) Data: Airglow

    Science.gov (United States)

    Germany, G. A.; Richards, P. G.; Spann, J. F.; Brittnacher, M. J.; Parks, G. K.

    1999-01-01

    The GGS Ultraviolet Imager (UVI) has proven to be especially valuable in correlative substorm, auroral morphology, and extended statistical studies of the auroral regions. Such studies are based on knowledge of the location, spatial, and temporal behavior of auroral emissions. More quantitative studies, based on absolute radiometric intensities from UVI images, require a more intimate knowledge of the instrument behavior and data processing requirements and are inherently more difficult than studies based on relative knowledge of the oval location. In this study, UVI airglow observations are analyzed and compared with model predictions to illustrate issues that arise in quantitative analysis of UVI images. These issues include instrument calibration, long term changes in sensitivity, and imager flat field response as well as proper background correction. Airglow emissions are chosen for this study because of their relatively straightforward modeling requirements and because of their implications for thermospheric compositional studies. The analysis issues discussed here, however, are identical to those faced in quantitative auroral studies.

  8. Use of Diffusion Spectrum imaging in preliminary longitudinal evaluation of Amyotrophic Lateral Sclerosis: development of an imaging biomarker

    Directory of Open Access Journals (Sweden)

    Kumar eAbhinav

    2014-04-01

    Full Text Available Previous diffusion tensor imaging (DTI studies have shown white matter pathology in ALS, predominantly in the motor pathways. Further these studies have shown that DTI can be used longitudinally to track pathology over time, making white matter pathology a candidate as an outcome measure in future trials. DTI has demonstrated application in group studies, however its derived indices, for example fractional anisotropy, are susceptible to partial volume effects, making its role questionable in examining individual progression. We hypothesize that changes in the white matter are present in ALS beyond the motor tracts, and that the affected pathways and associated pattern of disease progression can be tracked longitudinally using automated diffusion connectometry analysis. Connectometry analysis is based on diffusion spectrum imaging (DSI and overcomes the limitations of a conventional tractography approach and DTI. The identified affected white matter tracts can then be assessed in a targeted fashion using High definition fiber tractography (a novel white matter MR imaging technique. Changes in quantitative and qualitative markers over time could then be correlated with clinical progression.We illustrate these principles towards developing an imaging biomarker for demonstrating individual progression, by presenting results for five ALS patients, including with longitudinal data in two. Preliminary analysis demonstrated a number of changes bilaterally and asymmetrically in motoric and extramotoric white matter pathways. Further the limbic system was also affected possibly explaining the cognitive symptoms in ALS. In the two longitudinal subjects, the white matter changes were less extensive at baseline, although there was evidence of disease progression in a frontal pattern with a relatively spared postcentral gyrus, consistent with the known pathology in ALS.

  9. Some selected quantitative methods of thermal image analysis in Matlab.

    Science.gov (United States)

    Koprowski, Robert

    2016-05-01

    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image.

  10. Imaging Performance of Quantitative Transmission Ultrasound

    Directory of Open Access Journals (Sweden)

    Mark W. Lenox

    2015-01-01

    Full Text Available Quantitative Transmission Ultrasound (QTUS is a tomographic transmission ultrasound modality that is capable of generating 3D speed-of-sound maps of objects in the field of view. It performs this measurement by propagating a plane wave through the medium from a transmitter on one side of a water tank to a high resolution receiver on the opposite side. This information is then used via inverse scattering to compute a speed map. In addition, the presence of reflection transducers allows the creation of a high resolution, spatially compounded reflection map that is natively coregistered to the speed map. A prototype QTUS system was evaluated for measurement and geometric accuracy as well as for the ability to correctly determine speed of sound.

  11. Systemic, local and imaging biomarkers of brain injury: more needed, and better use of those already established?

    Directory of Open Access Journals (Sweden)

    Keri Linda Carpenter

    2015-02-01

    Full Text Available Much progress has been made over the past two decades in the treatment of severe acute brain injury, including traumatic brain injury and subarachnoid haemorrhage, resulting in a higher proportion of patients surviving with better outcomes. This has arisen from a combination of factors. These include improvements in procedures at the scene (pre-hospital and in the hospital emergency department, advances in neuromonitoring in the intensive care unit, both continuously at the bedside and intermittently in scans, evolution and refinement of protocol-driven therapy for better management of patients, and advances in surgical procedures and rehabilitation. Nevertheless, many patients still experience varying degrees of long-term disabilities post-injury with consequent demands on carers and resources, and there is room for improvement. Biomarkers are a key aspect of neuromonitoring. A broad definition of a biomarker is any observable feature that can be used to inform on the state of the patient, e.g. a molecular species, a feature on a scan, or a monitoring characteristic e.g. cerebrovascular pressure reactivity index. Biomarkers are usually quantitative measures, which can be utilised in diagnosis and monitoring of response to treatment. They are thus crucial to the development of therapies and may be utilised as surrogate endpoints in Phase II clinical trials. To date, there is no specific drug treatment for acute brain injury, and many seemingly promising agents emerging from pre-clinical animal models have failed in clinical trials. Large Phase III studies of clinical outcomes are costly, consuming time and resources. It is therefore important that adequate Phase II clinical studies with informative surrogate endpoints are performed employing appropriate biomarkers. In this article we review some of the available systemic, local and imaging biomarkers and technologies relevant in acute brain injury patients, and highlight gaps in the current

  12. A risk management approach for imaging biomarker-driven clinical trials in oncology.

    Science.gov (United States)

    Liu, Yan; deSouza, Nandita M; Shankar, Lalitha K; Kauczor, Hans-Ulrich; Trattnig, Siegfried; Collette, Sandra; Chiti, Arturo

    2015-12-01

    Imaging has steadily evolved in clinical cancer research as a result of improved conventional imaging methods and the innovation of new functional and molecular imaging techniques. Despite this evolution, the design and data quality derived from imaging within clinical trials are not ideal and gaps exist with paucity of optimised methods, constraints of trial operational support, and scarce resources. Difficulties associated with integrating imaging biomarkers into trials have been neglected compared with inclusion of tissue and blood biomarkers, largely because of inherent challenges in the complexity of imaging technologies, safety issues related to new imaging contrast media, standardisation of image acquisition across multivendor platforms, and various postprocessing options available with advanced software. Ignorance of these pitfalls directly affects the quality of the imaging read-out, leading to trial failure, particularly when imaging is a primary endpoint. Therefore, we propose a practical risk-based framework and recommendations for trials driven by imaging biomarkers, which allow identification of risks at trial initiation to better allocate resources and prioritise key tasks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Quantitative Ultrasound Spectroscopic Imaging for Characterization of Disease Extent in Prostate Cancer Patients1

    Science.gov (United States)

    Sadeghi-Naini, Ali; Sofroni, Ervis; Papanicolau, Naum; Falou, Omar; Sugar, Linda; Morton, Gerard; Yaffe, Martin J.; Nam, Robert; Sadeghian, Alireza; Kolios, Michael C.; Chung, Hans T.; Czarnota, Gregory J.

    2015-01-01

    Three-dimensional quantitative ultrasound spectroscopic imaging of prostate was investigated clinically for the noninvasive detection and extent characterization of disease in cancer patients and compared to whole-mount, whole-gland histopathology of radical prostatectomy specimens. Fifteen patients with prostate cancer underwent a volumetric transrectal ultrasound scan before radical prostatectomy. Conventional-frequency (~ 5 MHz) ultrasound images and radiofrequency data were collected from patients. Normalized power spectra were used as the basis of quantitative ultrasound spectroscopy. Specifically, color-coded parametric maps of 0-MHz intercept, midband fit, and spectral slope were computed and used to characterize prostate tissue in ultrasound images. Areas of cancer were identified in whole-mount histopathology specimens, and disease extent was correlated to that estimated from quantitative ultrasound parametric images. Midband fit and 0-MHz intercept parameters were found to be best associated with the presence of disease as located on histopathology whole-mount sections. Obtained results indicated a correlation between disease extent estimated noninvasively based on midband fit parametric images and that identified histopathologically on prostatectomy specimens, with an r2 value of 0.71 (P < .0001). The 0-MHz intercept parameter demonstrated a lower level of correlation with histopathology. Spectral slope parametric maps offered no discrimination of disease. Multiple regression analysis produced a hybrid disease characterization model (r2 = 0.764, P < .05), implying that the midband fit biomarker had the greatest correlation with the histopathologic extent of disease. This work demonstrates that quantitative ultrasound spectroscopic imaging can be used for detecting prostate cancer and characterizing disease extent noninvasively, with corresponding gross three-dimensional histopathologic correlation. PMID:25749174

  14. Quantitative Ultrasound Spectroscopic Imaging for Characterization of Disease Extent in Prostate Cancer Patients

    Directory of Open Access Journals (Sweden)

    Ali Sadeghi-Naini

    2015-02-01

    Full Text Available Three-dimensional quantitative ultrasound spectroscopic imaging of prostate was investigated clinically for the noninvasive detection and extent characterization of disease in cancer patients and compared to whole-mount, whole-gland histopathology of radical prostatectomy specimens. Fifteen patients with prostate cancer underwent a volumetric transrectal ultrasound scan before radical prostatectomy. Conventional-frequency (~5 MHz ultrasound images and radiofrequency data were collected from patients. Normalized power spectra were used as the basis of quantitative ultrasound spectroscopy. Specifically, color-coded parametric maps of 0-MHz intercept, midband fit, and spectral slope were computed and used to characterize prostate tissue in ultrasound images. Areas of cancer were identified in whole-mount histopathology specimens, and disease extent was correlated to that estimated from quantitative ultrasound parametric images. Midband fit and 0-MHz intercept parameters were found to be best associated with the presence of disease as located on histopathology whole-mount sections. Obtained results indicated a correlation between disease extent estimated noninvasively based on midband fit parametric images and that identified histopathologically on prostatectomy specimens, with an r2 value of 0.71 (P < .0001. The 0-MHz intercept parameter demonstrated a lower level of correlation with histopathology. Spectral slope parametric maps offered no discrimination of disease. Multiple regression analysis produced a hybrid disease characterization model (r2 = 0.764, P < .05, implying that the midband fit biomarker had the greatest correlation with the histopathologic extent of disease. This work demonstrates that quantitative ultrasound spectroscopic imaging can be used for detecting prostate cancer and characterizing disease extent noninvasively, with corresponding gross three-dimensional histopathologic correlation.

  15. Quantitative ultrasound spectroscopic imaging for characterization of disease extent in prostate cancer patients.

    Science.gov (United States)

    Sadeghi-Naini, Ali; Sofroni, Ervis; Papanicolau, Naum; Falou, Omar; Sugar, Linda; Morton, Gerard; Yaffe, Martin J; Nam, Robert; Sadeghian, Alireza; Kolios, Michael C; Chung, Hans T; Czarnota, Gregory J

    2015-02-01

    Three-dimensional quantitative ultrasound spectroscopic imaging of prostate was investigated clinically for the noninvasive detection and extent characterization of disease in cancer patients and compared to whole-mount, whole-gland histopathology of radical prostatectomy specimens. Fifteen patients with prostate cancer underwent a volumetric transrectal ultrasound scan before radical prostatectomy. Conventional-frequency (~5MHz) ultrasound images and radiofrequency data were collected from patients. Normalized power spectra were used as the basis of quantitative ultrasound spectroscopy. Specifically, color-coded parametric maps of 0-MHz intercept, midband fit, and spectral slope were computed and used to characterize prostate tissue in ultrasound images. Areas of cancer were identified in whole-mount histopathology specimens, and disease extent was correlated to that estimated from quantitative ultrasound parametric images. Midband fit and 0-MHz intercept parameters were found to be best associated with the presence of disease as located on histopathology whole-mount sections. Obtained results indicated a correlation between disease extent estimated noninvasively based on midband fit parametric images and that identified histopathologically on prostatectomy specimens, with an r(2) value of 0.71 (P<.0001). The 0-MHz intercept parameter demonstrated a lower level of correlation with histopathology. Spectral slope parametric maps offered no discrimination of disease. Multiple regression analysis produced a hybrid disease characterization model (r(2)=0.764, P<.05), implying that the midband fit biomarker had the greatest correlation with the histopathologic extent of disease. This work demonstrates that quantitative ultrasound spectroscopic imaging can be used for detecting prostate cancer and characterizing disease extent noninvasively, with corresponding gross three-dimensional histopathologic correlation. Copyright © 2014 Neoplasia Press, Inc. Published by

  16. Imaging readouts as biomarkers or surrogate parameters for the assessment of therapeutic interventions

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, Markus [University of Zuerich/ETH Zuerich, Institute for Biomedical Engineering, Zuerich (Switzerland); University of Zuerich, Institute for Pharmacology and Toxicology, Zuerich (Switzerland)

    2007-10-15

    Surrogate markers and biomarkers based on imaging readouts providing predictive information on clinical outcome are of increasing importance in the preclinical and clinical evaluation of novel therapies. They are primarily used in studies designed to establish evidence that the therapeutic principle is valid in a representative patient population or in an individual. A critical step in the development of (imaging) surrogates is validation: correlation with established clinical endpoints must be demonstrated. Biomarkers must not fulfill such stringent validation criteria; however, they should provide insight into mechanistic aspects of the therapeutic intervention (proof-of-mechanism) or document therapy efficacy with prognostic quality with regard to the long-term clinical outcome (proof of concept). Currently used imaging biomarkers provide structural, physiological and metabolic information. Novel imaging approaches annotate structure with molecular signatures that are tightly linked to the pathophysiology or to the therapeutic principle. These cellular and molecular imaging methods yield information on drug biodistribution, receptor expression and occupancy, and/or intra- and intercellular signaling. The design of novel target-specific imaging probes is closely related to the development of the therapeutic agents and should be considered early in the discovery phase. Significant technical and regulatory hurdles have to be overcome to foster the use of imaging biomarkers for clinical drug evaluation. (orig.)

  17. Quantitative performance assessments for neuromagnetic imaging systems.

    Science.gov (United States)

    Koga, Ryo; Hiyama, Ei; Matsumoto, Takuya; Sekihara, Kensuke

    2013-01-01

    We have developed a Monte-Carlo simulation method to assess the performance of neuromagnetic imaging systems using two kinds of performance metrics: A-prime metric and spatial resolution. We compute these performance metrics for virtual sensor systems having 80, 160, 320, and 640 sensors, and discuss how the system performance is improved, depending on the number of sensors. We also compute these metrics for existing whole-head MEG systems, MEGvision™ (Yokogawa Electric Corporation, Tokyo, Japan) that uses axial-gradiometer sensors, and TRIUX™ (Elekta Corporate, Stockholm, Sweden) that uses planar-gradiometer and magnetometer sensors. We discuss performance comparisons between these significantly different systems.

  18. Quantitative OCT and MRI biomarkers for the differentiation of cartilage degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Nebelung, Sven [Aachen University Hospital, Department of Orthopaedics, Aachen (Germany); Institute of Anatomy and Cell Biology, RWTH, Aachen (Germany); Brill, Nicolai [Fraunhofer Institute for Production Technology, Aachen (Germany); Tingart, Markus; Jahr, Holger [Aachen University Hospital, Department of Orthopaedics, Aachen (Germany); Pufe, Thomas [Institute of Anatomy and Cell Biology, RWTH, Aachen (Germany); Kuhl, Christiane; Truhn, Daniel [Aachen University Hospital, Department of Diagnostic and Interventional Radiology, Aachen (Germany)

    2016-04-15

    To evaluate the usefulness of quantitative parameters obtained by optical coherence tomography (OCT) and magnetic resonance imaging (MRI) in the comprehensive assessment of human articular cartilage degeneration. Human osteochondral samples of variable degeneration (n = 45) were obtained from total knee replacements and assessed by MRI sequences measuring T1, T1ρ, T2 and T2* relaxivity and by OCT-based quantification of irregularity (OII, optical irregularity index), homogeneity (OHI, optical homogeneity index) and attenuation (OAI, optical attenuation index). Samples were also assessed macroscopically (Outerbridge classification) and histologically (Mankin classification) as grade-0 (Mankin scores 0-4)/grade-I (scores 5-8)/grade-II (scores 9-10)/grade-III (score 11-14). After data normalisation, differences between Mankin grades and correlations between imaging parameters were assessed using ANOVA and Tukey's post-hoc test and Spearman's correlation coefficients, respectively. Sensitivities and specificities in the detection of Mankin grade-0 were calculated. Significant degeneration-related increases were found for T2 and OII and decreases for OAI, while T1, T1ρ, T2* or OHI did not reveal significant changes in relation to degeneration. A number of significant correlations between imaging parameters and histological (sub)scores were found, in particular for T2 and OII. Sensitivities and specificities in the detection of Mankin grade-0 were highest for OHI/T1 and OII/T1ρ, respectively. Quantitative OCT and MRI techniques seem to complement each other in the comprehensive assessment of cartilage degeneration. Sufficiently large structural and compositional changes in the extracellular matrix may thus be parameterized and quantified, while the detection of early degeneration remains challenging. (orig.)

  19. The evolution of medical imaging from qualitative to quantitative: opportunities, challenges, and approaches (Conference Presentation)

    Science.gov (United States)

    Jackson, Edward F.

    2016-04-01

    Over the past decade, there has been an increasing focus on quantitative imaging biomarkers (QIBs), which are defined as "objectively measured characteristics derived from in vivo images as indicators of normal biological processes, pathogenic processes, or response to a therapeutic intervention"1. To evolve qualitative imaging assessments to the use of QIBs requires the development and standardization of data acquisition, data analysis, and data display techniques, as well as appropriate reporting structures. As such, successful implementation of QIB applications relies heavily on expertise from the fields of medical physics, radiology, statistics, and informatics as well as collaboration from vendors of imaging acquisition, analysis, and reporting systems. When successfully implemented, QIBs will provide image-derived metrics with known bias and variance that can be validated with anatomically and physiologically relevant measures, including treatment response (and the heterogeneity of that response) and outcome. Such non-invasive quantitative measures can then be used effectively in clinical and translational research and will contribute significantly to the goals of precision medicine. This presentation will focus on 1) outlining the opportunities for QIB applications, with examples to demonstrate applications in both research and patient care, 2) discussing key challenges in the implementation of QIB applications, and 3) providing overviews of efforts to address such challenges from federal, scientific, and professional organizations, including, but not limited to, the RSNA, NCI, FDA, and NIST. 1Sullivan, Obuchowski, Kessler, et al. Radiology, epub August 2015.

  20. Quantitative and qualitative analysis and interpretation of CT perfusion imaging.

    Science.gov (United States)

    Valdiviezo, Carolina; Ambrose, Marietta; Mehra, Vishal; Lardo, Albert C; Lima, Joao A C; George, Richard T

    2010-12-01

    Coronary artery disease (CAD) remains the leading cause of death in the United States. Rest and stress myocardial perfusion imaging has an important role in the non-invasive risk stratification of patients with CAD. However, diagnostic accuracies have been limited, which has led to the development of several myocardial perfusion imaging techniques. Among them, myocardial computed tomography perfusion imaging (CTP) is especially interesting as it has the unique capability of providing anatomic- as well as coronary stenosis-related functional data when combined with computed tomography angiography (CTA). The primary aim of this article is to review the qualitative, semi-quantitative, and quantitative analysis approaches to CTP imaging. In doing so, we will describe the image data required for each analysis and discuss the advantages and disadvantages of each approach.

  1. A Delphic consensus assessment: imaging and biomarkers in gastroenteropancreatic neuroendocrine tumor disease management

    Directory of Open Access Journals (Sweden)

    Kjell Oberg

    2016-09-01

    Full Text Available The complexity of the clinical management of neuroendocrine neoplasia (NEN is exacerbated by limitations in imaging modalities and a paucity of clinically useful biomarkers. Limitations in currently available imaging modalities reflect difficulties in measuring an intrinsically indolent disease, resolution inadequacies and inter-/intra-facility device variability and that RECIST (Response Evaluation Criteria in Solid Tumors criteria are not optimal for NEN. Limitations of currently used biomarkers are that they are secretory biomarkers (chromogranin A, serotonin, neuron-specific enolase and pancreastatin; monoanalyte measurements; and lack sensitivity, specificity and predictive capacity. None of them meet the NIH metrics for clinical usage. A multinational, multidisciplinary Delphi consensus meeting of NEN experts (n = 33 assessed current imaging strategies and biomarkers in NEN management. Consensus (>75% was achieved for 78% of the 142 questions. The panel concluded that morphological imaging has a diagnostic value. However, both imaging and current single-analyte biomarkers exhibit substantial limitations in measuring the disease status and predicting the therapeutic efficacy. RECIST remains suboptimal as a metric. A critical unmet need is the development of a clinico-biological tool to provide enhanced information regarding precise disease status and treatment response. The group considered that circulating RNA was better than current general NEN biomarkers and preliminary clinical data were considered promising. It was resolved that circulating multianalyte mRNA (NETest had clinical utility in both diagnosis and monitoring disease status and therapeutic efficacy. Overall, it was concluded that a combination of tumor spatial and functional imaging with circulating transcripts (mRNA would represent the future strategy for real-time monitoring of disease progress and therapeutic efficacy.

  2. Quantitative multimodality imaging in cancer research and therapy.

    Science.gov (United States)

    Yankeelov, Thomas E; Abramson, Richard G; Quarles, C Chad

    2014-11-01

    Advances in hardware and software have enabled the realization of clinically feasible, quantitative multimodality imaging of tissue pathophysiology. Earlier efforts relating to multimodality imaging of cancer have focused on the integration of anatomical and functional characteristics, such as PET-CT and single-photon emission CT (SPECT-CT), whereas more-recent advances and applications have involved the integration of multiple quantitative, functional measurements (for example, multiple PET tracers, varied MRI contrast mechanisms, and PET-MRI), thereby providing a more-comprehensive characterization of the tumour phenotype. The enormous amount of complementary quantitative data generated by such studies is beginning to offer unique insights into opportunities to optimize care for individual patients. Although important technical optimization and improved biological interpretation of multimodality imaging findings are needed, this approach can already be applied informatively in clinical trials of cancer therapeutics using existing tools. These concepts are discussed herein.

  3. Gastrointestinal stromal tumours: Correlation of modified NIH risk stratification with diffusion-weighted MR imaging as an imaging biomarker

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tae Wook [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Kim, Seong Hyun, E-mail: kshyun@skku.edu [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Jang, Kyung Mi; Choi, Dongil [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Ha, Sang Yun; Kim, Kyoung-Mee [Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Kang, Won Ki [Division of Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Kim, Min Ji [Biostatics Unit, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 135-710 (Korea, Republic of)

    2015-01-15

    Highlights: • Except size and necrosis, conventional MR findings of GISTs were not significantly different according to the modified NIH criteria. • The ADC values of GISTs were negatively correlated with the modified NIH criteria. • The ADC value can be helpful for the determination of intermediate or high-risk GISTs. - Abstract: Purpose: To evaluate the correlation of risk grade of gastrointestinal stromal tumours (GISTs) based on modified National Institutes of Health (NIH) criteria with conventional magnetic resonance (MR) imaging and diffusion-weighted (DW) imaging. Methods: We included 22 patients with histopathologically proven GISTs in the stomach or small bowel who underwent pre-operative gadoxetic acid-enhanced MR imaging and DW imaging. We retrospectively assessed correlations between morphologic findings, qualitative (signal intensity, consensus from two observers) and quantitative (degree of dynamic enhancement using signal intensity of tumour/muscle ratio and apparent diffusion coefficient [ADC]) values, and the modified NIH criteria for risk stratification. Spearman partial correlation analysis was used to control for tumour size as a confounding factor. The optimal cut-off level of ADC values for intermediate or high risk GISTs was analyzed using a receiver operating characteristic analysis. Results: Except tumour size and necrosis, conventional MR imaging findings, including the degree of dynamic enhancement, were not significantly different according to the modified NIH criteria (p > 0.05). Tumour ADC values were negatively correlated with the modified NIH criteria, before and after adjustment of tumour size (ρ = −0.754; p < 0.001 and ρ = −0.513; p = 0.017, respectively). The optimal cut-off value for the determination of intermediate or high-risk GISTs was 1.279 × 10{sup −3} mm{sup 2}/s (100% sensitivity, 69.2% specificity, 81.8% accuracy). Conclusion: Except tumour size and necrosis, conventional MR imaging findings did not

  4. Quantitative image quality evaluation for cardiac CT reconstructions

    Science.gov (United States)

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.; Balhorn, William; Okerlund, Darin R.

    2016-03-01

    Maintaining image quality in the presence of motion is always desirable and challenging in clinical Cardiac CT imaging. Different image-reconstruction algorithms are available on current commercial CT systems that attempt to achieve this goal. It is widely accepted that image-quality assessment should be task-based and involve specific tasks, observers, and associated figures of merits. In this work, we developed an observer model that performed the task of estimating the percentage of plaque in a vessel from CT images. We compared task performance of Cardiac CT image data reconstructed using a conventional FBP reconstruction algorithm and the SnapShot Freeze (SSF) algorithm, each at default and optimal reconstruction cardiac phases. The purpose of this work is to design an approach for quantitative image-quality evaluation of temporal resolution for Cardiac CT systems. To simulate heart motion, a moving coronary type phantom synchronized with an ECG signal was used. Three different percentage plaques embedded in a 3 mm vessel phantom were imaged multiple times under motion free, 60 bpm, and 80 bpm heart rates. Static (motion free) images of this phantom were taken as reference images for image template generation. Independent ROIs from the 60 bpm and 80 bpm images were generated by vessel tracking. The observer performed estimation tasks using these ROIs. Ensemble mean square error (EMSE) was used as the figure of merit. Results suggest that the quality of SSF images is superior to the quality of FBP images in higher heart-rate scans.

  5. Accuracy of Image Analysis in Quantitative Study of Cement Paste

    Directory of Open Access Journals (Sweden)

    Feng Shu-Xia

    2016-01-01

    Full Text Available Quantitative study on cement paste especially blended cement paste has been a hot and difficult issue over the years, and the technique of backscattered electron image analysis showed unique advantages in this field. This paper compared the test results of cement hydration degree, Ca(OH2 content and pore size distribution in pure pastes by image analysis and other methods. Then the accuracy of qualitative study by image analysis was analyzed. The results showed that image analysis technique had displayed higher accuracy in quantifying cement hydration degree and Ca(OH2 content than non-evaporable water test and thermal analysis respectively.

  6. Quantitative Pulmonary Imaging Using Computed Tomography and Magnetic Resonance Imaging

    Science.gov (United States)

    Washko, George R.; Parraga, Grace; Coxson, Harvey O.

    2011-01-01

    Measurements of lung function, including spirometry and body plethesmography, are easy to perform and are the current clinical standard for assessing disease severity. However, these lung functional techniques do not adequately explain the observed variability in clinical manifestations of disease and offer little insight into the relationship of lung structure and function. Lung imaging and the image based assessment of lung disease has matured to the extent that it is common for clinical, epidemiologic, and genetic investigation to have a component dedicated to image analysis. There are several exciting imaging modalities currently being used for the non-invasive study of lung anatomy and function. In this review we will focus on two of them, x-ray computed tomography and magnetic resonance imaging. Following a brief introduction of each method we detail some of the most recent work being done to characterize smoking-related lung disease and the clinical applications of such knowledge. PMID:22142490

  7. Objective breast tissue image classification using Quantitative Transmission ultrasound tomography

    Science.gov (United States)

    Malik, Bilal; Klock, John; Wiskin, James; Lenox, Mark

    2016-12-01

    Quantitative Transmission Ultrasound (QT) is a powerful and emerging imaging paradigm which has the potential to perform true three-dimensional image reconstruction of biological tissue. Breast imaging is an important application of QT and allows non-invasive, non-ionizing imaging of whole breasts in vivo. Here, we report the first demonstration of breast tissue image classification in QT imaging. We systematically assess the ability of the QT images’ features to differentiate between normal breast tissue types. The three QT features were used in Support Vector Machines (SVM) classifiers, and classification of breast tissue as either skin, fat, glands, ducts or connective tissue was demonstrated with an overall accuracy of greater than 90%. Finally, the classifier was validated on whole breast image volumes to provide a color-coded breast tissue volume. This study serves as a first step towards a computer-aided detection/diagnosis platform for QT.

  8. Prior image constrained compressed sensing: a quantitative performance evaluation

    Science.gov (United States)

    Thériault Lauzier, Pascal; Tang, Jie; Chen, Guang-Hong

    2012-03-01

    The appeal of compressed sensing (CS) in the context of medical imaging is undeniable. In MRI, it could enable shorter acquisition times while in CT, it has the potential to reduce the ionizing radiation dose imparted to patients. However, images reconstructed using a CS-based approach often show an unusual texture and a potential loss in spatial resolution. The prior image constrained compressed sensing (PICCS) algorithm has been shown to enable accurate image reconstruction at lower levels of sampling. This study systematically evaluates an implementation of PICCS applied to myocardial perfusion imaging with respect to two parameters of its objective function. The prior image parameter α was shown here to yield an optimal image quality in the range 0.4 to 0.5. A quantitative evaluation in terms of temporal resolution, spatial resolution, noise level, noise texture, and reconstruction accuracy was performed.

  9. Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features.

    Science.gov (United States)

    Gevaert, Olivier; Mitchell, Lex A; Achrol, Achal S; Xu, Jiajing; Echegaray, Sebastian; Steinberg, Gary K; Cheshier, Samuel H; Napel, Sandy; Zaharchuk, Greg; Plevritis, Sylvia K

    2014-10-01

    To derive quantitative image features from magnetic resonance (MR) images that characterize the radiographic phenotype of glioblastoma multiforme (GBM) lesions and to create radiogenomic maps associating these features with various molecular data. Clinical, molecular, and MR imaging data for GBMs in 55 patients were obtained from the Cancer Genome Atlas and the Cancer Imaging Archive after local ethics committee and institutional review board approval. Regions of interest (ROIs) corresponding to enhancing necrotic portions of tumor and peritumoral edema were drawn, and quantitative image features were derived from these ROIs. Robust quantitative image features were defined on the basis of an intraclass correlation coefficient of 0.6 for a digital algorithmic modification and a test-retest analysis. The robust features were visualized by using hierarchic clustering and were correlated with survival by using Cox proportional hazards modeling. Next, these robust image features were correlated with manual radiologist annotations from the Visually Accessible Rembrandt Images (VASARI) feature set and GBM molecular subgroups by using nonparametric statistical tests. A bioinformatic algorithm was used to create gene expression modules, defined as a set of coexpressed genes together with a multivariate model of cancer driver genes predictive of the module's expression pattern. Modules were correlated with robust image features by using the Spearman correlation test to create radiogenomic maps and to link robust image features with molecular pathways. Eighteen image features passed the robustness analysis and were further analyzed for the three types of ROIs, for a total of 54 image features. Three enhancement features were significantly correlated with survival, 77 significant correlations were found between robust quantitative features and the VASARI feature set, and seven image features were correlated with molecular subgroups (P < .05 for all). A radiogenomics map was

  10. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers

    Science.gov (United States)

    Sanjay, Sharma T.; Dou, Maowei; Sun, Jianjun; Li, Xiujun

    2016-07-01

    Enzyme linked immunosorbent assay (ELISA) is one of the most widely used laboratory disease diagnosis methods. However, performing ELISA in low-resource settings is limited by long incubation time, large volumes of precious reagents, and well-equipped laboratories. Herein, we developed a simple, miniaturized paper/PMMA (poly(methyl methacrylate)) hybrid microfluidic microplate for low-cost, high throughput, and point-of-care (POC) infectious disease diagnosis. The novel use of porous paper in flow-through microwells facilitates rapid antibody/antigen immobilization and efficient washing, avoiding complicated surface modifications. The top reagent delivery channels can simply transfer reagents to multiple microwells thus avoiding repeated manual pipetting and costly robots. Results of colorimetric ELISA can be observed within an hour by the naked eye. Quantitative analysis was achieved by calculating the brightness of images scanned by an office scanner. Immunoglobulin G (IgG) and Hepatitis B surface Antigen (HBsAg) were quantitatively analyzed with good reliability in human serum samples. Without using any specialized equipment, the limits of detection of 1.6 ng/mL for IgG and 1.3 ng/mL for HBsAg were achieved, which were comparable to commercial ELISA kits using specialized equipment. We envisage that this simple POC hybrid microplate can have broad applications in various bioassays, especially in resource-limited settings.

  11. Quantitative amyloid imaging using image-derived arterial input function.

    Directory of Open Access Journals (Sweden)

    Yi Su

    Full Text Available Amyloid PET imaging is an indispensable tool widely used in the investigation, diagnosis and monitoring of Alzheimer's disease (AD. Currently, a reference region based approach is used as the mainstream quantification technique for amyloid imaging. This approach assumes the reference region is amyloid free and has the same tracer influx and washout kinetics as the regions of interest. However, this assumption may not always be valid. The goal of this work is to evaluate an amyloid imaging quantification technique that uses arterial region of interest as the reference to avoid potential bias caused by specific binding in the reference region. 21 participants, age 58 and up, underwent Pittsburgh compound B (PiB PET imaging and MR imaging including a time-of-flight (TOF MR angiography (MRA scan and a structural scan. FreeSurfer based regional analysis was performed to quantify PiB PET data. Arterial input function was estimated based on coregistered TOF MRA using a modeling based technique. Regional distribution volume (VT was calculated using Logan graphical analysis with estimated arterial input function. Kinetic modeling was also performed using the estimated arterial input function as a way to evaluate PiB binding (DVRkinetic without a reference region. As a comparison, Logan graphical analysis was also performed with cerebellar cortex as reference to obtain DVRREF. Excellent agreement was observed between the two distribution volume ratio measurements (r>0.89, ICC>0.80. The estimated cerebellum VT was in line with literature reported values and the variability of cerebellum VT in the control group was comparable to reported variability using arterial sampling data. This study suggests that image-based arterial input function is a viable approach to quantify amyloid imaging data, without the need of arterial sampling or a reference region. This technique can be a valuable tool for amyloid imaging, particularly in population where reference

  12. Quantitative amyloid imaging using image-derived arterial input function.

    Science.gov (United States)

    Su, Yi; Blazey, Tyler M; Snyder, Abraham Z; Raichle, Marcus E; Hornbeck, Russ C; Aldea, Patricia; Morris, John C; Benzinger, Tammie L S

    2015-01-01

    Amyloid PET imaging is an indispensable tool widely used in the investigation, diagnosis and monitoring of Alzheimer's disease (AD). Currently, a reference region based approach is used as the mainstream quantification technique for amyloid imaging. This approach assumes the reference region is amyloid free and has the same tracer influx and washout kinetics as the regions of interest. However, this assumption may not always be valid. The goal of this work is to evaluate an amyloid imaging quantification technique that uses arterial region of interest as the reference to avoid potential bias caused by specific binding in the reference region. 21 participants, age 58 and up, underwent Pittsburgh compound B (PiB) PET imaging and MR imaging including a time-of-flight (TOF) MR angiography (MRA) scan and a structural scan. FreeSurfer based regional analysis was performed to quantify PiB PET data. Arterial input function was estimated based on coregistered TOF MRA using a modeling based technique. Regional distribution volume (VT) was calculated using Logan graphical analysis with estimated arterial input function. Kinetic modeling was also performed using the estimated arterial input function as a way to evaluate PiB binding (DVRkinetic) without a reference region. As a comparison, Logan graphical analysis was also performed with cerebellar cortex as reference to obtain DVRREF. Excellent agreement was observed between the two distribution volume ratio measurements (r>0.89, ICC>0.80). The estimated cerebellum VT was in line with literature reported values and the variability of cerebellum VT in the control group was comparable to reported variability using arterial sampling data. This study suggests that image-based arterial input function is a viable approach to quantify amyloid imaging data, without the need of arterial sampling or a reference region. This technique can be a valuable tool for amyloid imaging, particularly in population where reference normalization may

  13. Functional Imaging Biomarkers: Potential to Guide an Individualised Approach to Radiotherapy.

    Science.gov (United States)

    Prestwich, R J D; Vaidyanathan, S; Scarsbrook, A F

    2015-10-01

    The identification of robust prognostic and predictive biomarkers would transform the ability to implement an individualised approach to radiotherapy. In this regard, there has been a surge of interest in the use of functional imaging to assess key underlying biological processes within tumours and their response to therapy. Importantly, functional imaging biomarkers hold the potential to evaluate tumour heterogeneity/biology both spatially and temporally. An ever-increasing range of functional imaging techniques is now available primarily involving positron emission tomography and magnetic resonance imaging. Small-scale studies across multiple tumour types have consistently been able to correlate changes in functional imaging parameters during radiotherapy with disease outcomes. Considerable challenges remain before the implementation of functional imaging biomarkers into routine clinical practice, including the inherent temporal variability of biological processes within tumours, reproducibility of imaging, determination of optimal imaging technique/combinations, timing during treatment and design of appropriate validation studies. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  14. Role of Quantitative Magnetic Resonance Imaging Parameters in the Evaluation of Treatment Response in Malignant Tumors

    Institute of Scientific and Technical Information of China (English)

    Qing-Gang Xu; Jun-Fang Xian

    2015-01-01

    Objective:To elaborate the role of quantitative magnetic resonance imaging (MRI) parameters in the evaluation of treatment response in malignant tumors.Data Sources:Data cited in this review were obtained mainly from PubMed in English from 1999 to 2014,with keywords "dynamic contrast-enhanced (DCE)-MRI," "diffusion-weighted imaging (DWI)," "microcirculation," "apparent diffusion coefficient (ADC)," "treatment response" and "oncology."Study Selection:Articles regarding principles of DCE-MRI,principles of DWI,clinical applications as well as opportunity and aspiration were identified,retrieved and reviewed.Results:A significant correlation between ADC values and treatment response was reported in most DWI studies.Most quantitative DCE-MRI studies showed a significant correlation between K~s values and treatment response.However,in different tumors and studies,both high and low pretreatment ADC or K~s values were found to be associated with response rate.Both DCE-MRI and DWI demonstrated changes in their parameters hours to days after treatment,showing a decrease in K~ns or an increase in ADC associated with response in most cases.Conclusions:Combinations of quantitative MRI play an important role in the evaluation of treatment response of malignant tumors and hold promise for use as a cancer treatment response biomarker.However,validation is hampered by the lack of reproducibility and standardization.MRI acquisition protocols and quantitative image analysis approaches should be properly addressed prior to further testing the clinical use of quantitative MRI parameters in the assessment of treatments.

  15. Generalized PSF modeling for optimized quantitation in PET imaging

    Science.gov (United States)

    Ashrafinia, Saeed; Mohy-ud-Din, Hassan; Karakatsanis, Nicolas A.; Jha, Abhinav K.; Casey, Michael E.; Kadrmas, Dan J.; Rahmim, Arman

    2017-06-01

    Point-spread function (PSF) modeling offers the ability to account for resolution degrading phenomena within the PET image generation framework. PSF modeling improves resolution and enhances contrast, but at the same time significantly alters image noise properties and induces edge overshoot effect. Thus, studying the effect of PSF modeling on quantitation task performance can be very important. Frameworks explored in the past involved a dichotomy of PSF versus no-PSF modeling. By contrast, the present work focuses on quantitative performance evaluation of standard uptake value (SUV) PET images, while incorporating a wide spectrum of PSF models, including those that under- and over-estimate the true PSF, for the potential of enhanced quantitation of SUVs. The developed framework first analytically models the true PSF, considering a range of resolution degradation phenomena (including photon non-collinearity, inter-crystal penetration and scattering) as present in data acquisitions with modern commercial PET systems. In the context of oncologic liver FDG PET imaging, we generated 200 noisy datasets per image-set (with clinically realistic noise levels) using an XCAT anthropomorphic phantom with liver tumours of varying sizes. These were subsequently reconstructed using the OS-EM algorithm with varying PSF modelled kernels. We focused on quantitation of both SUVmean and SUVmax, including assessment of contrast recovery coefficients, as well as noise-bias characteristics (including both image roughness and coefficient of-variability), for different tumours/iterations/PSF kernels. It was observed that overestimated PSF yielded more accurate contrast recovery for a range of tumours, and typically improved quantitative performance. For a clinically reasonable number of iterations, edge enhancement due to PSF modeling (especially due to over-estimated PSF) was in fact seen to lower SUVmean bias in small tumours. Overall, the results indicate that exactly matched PSF

  16. Quantitative Comparison of Y-90 and Ge-68 PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sangkeun; Kwak, Shin Hye; Lee, Jeong A; Song, Han Kyeol; Kang, Joo Hyun; Lim, Sang Moo; KIm, Kyeong Min [Korea Institute of Raiological and Medical Sciences, Seoul (Korea, Republic of); Jeong, Su Young [Sungkyunkwan Univ. School of Medicine, Seoul (Korea, Republic of)

    2014-05-15

    The purpose of this study was to assess statistical characteristics and to improve count rate of image for enhancing Y-90 image quality by using non-parametric bootstrap method. The results showed that Y-90 PET image can be improved using non-parametric bootstrap method. PET data was able to be improved using non-parametric bootstrap method and it was verified with showing improved prompts rate. Y-90 PET image quality was improved and bias indicated that the bootstrapped image was more similar to the gold standard than other images. The non-parametric bootstrap method will be useful tool for enhancing Y-90 PET image and it will be expected to reduce time for acquisition and to elevate performance for diagnosis and treatment. Yttrium-90 (Y-90) radioembolization is one of the treatment methods unrespectable stage of hepatocellular carcinoma (HCC) and metastatic colon cancer to the liver. However, Y-90 radioembolization is a catheter-based therapy that delivers internal radiation to tumors, it results in greater radiation exposure to the tumors than using external radiation. Also, unlike other current therapies for the treatment of unresectable liver tumors, Y-90 radioembolization is much less often associated with toxicities such as abdominal pain, fever, nausea, and vomiting. Therefore Y-90 has been received much interest and studied by many researchers. Imaging of Y-90 has been conducted using most commonly gamma camera but quantitative PET imaging is required due to low sensitivity and resolution. Y-90 imaging is generally performed with SPECT by Bremsstrahlung photons. Unfortunately, the low image quality due to the nature of the Bremsstrahlung photon limits the quantitative accuracy of Y-90 SPECT. To overcome this limitation in SPECT imaging, Y-90 PET has been suggested as an alternative.

  17. Analysis of biomarker expression in severe endometriosis and determination of possibilities for targeted intraoperative imaging

    NARCIS (Netherlands)

    van den Berg, Liseth L.; Crane, Lucia M. A.; van Oosten, Marleen; van Dam, Gooitzen M.; Simons, Arnold H. M.; Hofker, H. Sijbrand; Bart, Joost

    2013-01-01

    Objective: To evaluate the expression of biomarkers in endometriotic tissue in order to determine the most promising molecules for targeted intraoperative imaging. Methods: Tissue samples were obtained from 18 patients with endometriosis. The intensity and pattern of expression of the following biom

  18. CNTRICS imaging biomarkers final task selection: Long-term memory and reinforcement learning.

    NARCIS (Netherlands)

    Ragland, J.D.; Cohen, N.J.; Cools, R.; Frank, M.J.; Hannula, D.E.; Ranganath, C.

    2012-01-01

    Functional imaging paradigms hold great promise as biomarkers for schizophrenia research as they can detect altered neural activity associated with the cognitive and emotional processing deficits that are so disabling to this patient population. In an attempt to identify the most promising functiona

  19. Ultrasound introscopic image quantitative characteristics for medical diagnosis

    Science.gov (United States)

    Novoselets, Mikhail K.; Sarkisov, Sergey S.; Gridko, Alexander N.; Tcheban, Anatoliy K.

    1993-09-01

    The results on computer aided extraction of quantitative characteristics (QC) of ultrasound introscopic images for medical diagnosis are presented. Thyroid gland (TG) images of Chernobil Accident sufferers are considered. It is shown that TG diseases can be associated with some values of selected QCs of random echo distribution in the image. The possibility of these QCs usage for TG diseases recognition in accordance with calculated values is analyzed. The role of speckle noise elimination in the solution of the problem on TG diagnosis is considered too.

  20. Semiconductor defect metrology using laser-based quantitative phase imaging

    Science.gov (United States)

    Zhou, Renjie; Edwards, Chris; Popescu, Gabriel; Goddard, Lynford

    2015-03-01

    A highly sensitive laser-based quantitative phase imaging tool, using an epi-illumination diffraction phase microscope, has been developed for silicon wafer defect inspection. The first system used a 532 nm solid-state laser and detected 20 nm by 100 nm by 110 nm defects in a 22 nm node patterned silicon wafer. The second system, using a 405 nm diode laser, is more sensitive and has enabled detection of 15 nm by 90 nm by 35 nm defects in a 9 nm node densely patterned silicon wafer. In addition to imaging, wafer scanning and image-post processing are also crucial for defect detection.

  1. Multi-modal contrast of tissue anatomy enables correlative biomarker imaging

    Science.gov (United States)

    Garsha, Karl; Ventura, Franklin; Pestano, Gary; Otter, Michael; Nagy, Dea; Nagle, Ray B.; Roberts, Esteban; Barnes, Michael

    2015-03-01

    Optical imaging techniques are being developed that promise to increase the information content related to specific molecular reporters. Such modalities do not produce contrast in the structural context of the surrounding tissue, making it difficult to reconcile molecular information with morphological context. We report a solution that enables visualization of the tissue morphology on formalin-fixed, paraffin embedded sections prepared for analytical biomarker imaging. Our approach combines modes of transmitted darkfield and fluorescence contrast and computer visualization to produce 2-component image data analogous to the classical hematoxylin and eosin histological stain. An interferometric hyperspectral image capture mode enables measurement of multiplexed biomarkers in annotated anatomic regions. The system enables practical correlative analysis of molecular changes within areas of anatomic pathology.

  2. Quantitative magnetic resonance micro-imaging methods for pharmaceutical research.

    Science.gov (United States)

    Mantle, M D

    2011-09-30

    The use of magnetic resonance imaging (MRI) as a tool in pharmaceutical research is now well established and the current literature covers a multitude of different pharmaceutically relevant research areas. This review focuses on the use of quantitative magnetic resonance micro-imaging techniques and how they have been exploited to extract information that is of direct relevance to the pharmaceutical industry. The article is divided into two main areas. The first half outlines the theoretical aspects of magnetic resonance and deals with basic magnetic resonance theory, the effects of nuclear spin-lattice (T(1)), spin-spin (T(2)) relaxation and molecular diffusion upon image quantitation, and discusses the applications of rapid magnetic resonance imaging techniques. In addition to the theory, the review aims to provide some practical guidelines for the pharmaceutical researcher with an interest in MRI as to which MRI pulse sequences/protocols should be used and when. The second half of the article reviews the recent advances and developments that have appeared in the literature concerning the use of quantitative micro-imaging methods to pharmaceutically relevant research. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. CMOS APS detector characterization for quantitative X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Endrizzi, Marco, E-mail: m.endrizzi@ucl.ac.uk [Dipartimento di Fisica, Università di Siena, Via Roma 56, 53100 Siena (Italy); Istituto Nazionale di Fisica Nucleare INFN, sezione di Pisa, 56127 Pisa (Italy); Oliva, Piernicola [Dipartimento di Chimica e Farmacia, Università di Sassari, via Piandanna 4, 07100 Sassari (Italy); Istituto Nazionale di Fisica Nucleare INFN, Sezione di Cagliari, 09042 Cagliari (Italy); Golosio, Bruno [Sezione di Matematica, Fisica e Ingegneria dell' Informazione, Università di Sassari, via Piandanna 4, 07100 Sassari (Italy); Istituto Nazionale di Fisica Nucleare INFN, Sezione di Cagliari, 09042 Cagliari (Italy); Delogu, Pasquale [Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Istituto Nazionale di Fisica Nucleare INFN, sezione di Pisa, 56127 Pisa (Italy)

    2013-03-01

    An X-ray Imaging detector based on CMOS Active Pixel Sensor and structured scintillator is characterized for quantitative X-ray imaging in the energy range 11–30 keV. Linearity, dark noise, spatial resolution and flat-field correction are the characteristics of the detector subject of investigation. The detector response, in terms of mean Analog-to-Digital Unit and noise, is modeled as a function of the energy and intensity of the X-rays. The model is directly tested using monochromatic X-ray beams and it is also indirectly validated by means of polychromatic X-ray-tube spectra. Such a characterization is suitable for quantitative X-ray imaging and the model can be used in simulation studies that take into account the actual performance of the detector.

  4. Quantitative detection of liver-relevant biomarkers by SERS-immunolabeled gold nanoparticles

    Science.gov (United States)

    Payne, William Mark

    Lab-on-a-chip technology has the potential to rapidly change the way experiments are conducted in a variety of fields ranging from medicine to environmental science. Specifically, sensors, detectors, and monitoring devices are increasingly being miniaturized to perform many experiments or measurements on a single chip. In this research, we develop an immunolabeled gold nanoparticle complex capable of detecting liver organoid biomarkers intended for use in a microfluidic device. Human Serum Albumin (HSA) and alpha-Glutathione S-Transferase (alpha-GST) are liver biomarkers that indicate liver health and damage respectively. Herein we demonstrate detection of the liver organoid biomarkers at nanomolar concentrations. Through plasmonic coupling induced by aggregation in the presence of analyte, the SERS signal obtained from the nanoparticles is dramatically increased. Furthermore, detection is demonstrated in a simple fluidic device to show the feasibility of implementing an optimized SERS-immunolabeled nanoparticle for translational application.

  5. Evaluation of a web based informatics system with data mining tools for predicting outcomes with quantitative imaging features in stroke rehabilitation clinical trials

    Science.gov (United States)

    Wang, Ximing; Kim, Bokkyu; Park, Ji Hoon; Wang, Erik; Forsyth, Sydney; Lim, Cody; Ravi, Ragini; Karibyan, Sarkis; Sanchez, Alexander; Liu, Brent

    2017-03-01

    Quantitative imaging biomarkers are used widely in clinical trials for tracking and evaluation of medical interventions. Previously, we have presented a web based informatics system utilizing quantitative imaging features for predicting outcomes in stroke rehabilitation clinical trials. The system integrates imaging features extraction tools and a web-based statistical analysis tool. The tools include a generalized linear mixed model(GLMM) that can investigate potential significance and correlation based on features extracted from clinical data and quantitative biomarkers. The imaging features extraction tools allow the user to collect imaging features and the GLMM module allows the user to select clinical data and imaging features such as stroke lesion characteristics from the database as regressors and regressands. This paper discusses the application scenario and evaluation results of the system in a stroke rehabilitation clinical trial. The system was utilized to manage clinical data and extract imaging biomarkers including stroke lesion volume, location and ventricle/brain ratio. The GLMM module was validated and the efficiency of data analysis was also evaluated.

  6. Assessing the Reliability of Quantitative Imaging of Sm-153

    Science.gov (United States)

    Poh, Zijie; Dagan, Maáyan; Veldman, Jeanette; Trees, Brad

    2013-03-01

    Samarium-153 is used for palliation of and recently has been investigated for therapy for bone metastases. Patient specific dosing of Sm-153 is based on quantitative single-photon emission computed tomography (SPECT) and knowing the accuracy and precision of image-based estimates of the in vivo activity distribution. Physical phantom studies are useful for estimating these in simple objects, but do not model realistic activity distributions. We are using realistic Monte Carlo simulations combined with a realistic digital phantom modeling human anatomy to assess the accuracy and precision of Sm-153 SPECT. Preliminary data indicates that we can simulate projection images and reconstruct them with compensation for various physical image degrading factors, such as attenuation and scatter in the body as well as non-idealities in the imaging system, to provide realistic SPECT images.

  7. Quantitative computed tomography imaging of airway remodeling in severe asthma.

    Science.gov (United States)

    Grenier, Philippe A; Fetita, Catalin I; Brillet, Pierre-Yves

    2016-02-01

    Asthma is a heterogeneous condition and approximately 5-10% of asthmatic subjects have severe disease associated with structure changes of the airways (airway remodeling) that may develop over time or shortly after onset of disease. Quantitative computed tomography (QCT) imaging of the tracheobronchial tree and lung parenchyma has improved during the last 10 years, and has enabled investigators to study the large airway architecture in detail and assess indirectly the small airway structure. In severe asthmatics, morphologic changes in large airways, quantitatively assessed using 2D-3D airway registration and recent algorithms, are characterized by airway wall thickening, luminal narrowing and bronchial stenoses. Extent of expiratory gas trapping, quantitatively assessed using lung densitometry, may be used to assess indirectly small airway remodeling. Investigators have used these quantitative imaging techniques in order to attempt severity grading of asthma, and to identify clusters of asthmatic patients that differ in morphologic and functional characteristics. Although standardization of image analysis procedures needs to be improved, the identification of remodeling pattern in various phenotypes of severe asthma and the ability to relate airway structures to important clinical outcomes should help target treatment more effectively.

  8. Multiparametric Quantitative Ultrasound Imaging in Assessment of Chronic Kidney Disease.

    Science.gov (United States)

    Gao, Jing; Perlman, Alan; Kalache, Safa; Berman, Nathaniel; Seshan, Surya; Salvatore, Steven; Smith, Lindsey; Wehrli, Natasha; Waldron, Levi; Kodali, Hanish; Chevalier, James

    2017-04-13

    To evaluate the value of multiparametric quantitative ultrasound imaging in assessing chronic kidney disease (CKD) using kidney biopsy pathologic findings as reference standards. We prospectively measured multiparametric quantitative ultrasound markers with grayscale, spectral Doppler, and acoustic radiation force impulse imaging in 25 patients with CKD before kidney biopsy and 10 healthy volunteers. Based on all pathologic (glomerulosclerosis, interstitial fibrosis/tubular atrophy, arteriosclerosis, and edema) scores, the patients with CKD were classified into mild (no grade 3 and quantitative ultrasound parameters included kidney length, cortical thickness, pixel intensity, parenchymal shear wave velocity, intrarenal artery peak systolic velocity (PSV), end-diastolic velocity (EDV), and resistive index. We tested the difference in quantitative ultrasound parameters among mild CKD, moderate to severe CKD, and healthy controls using analysis of variance, analyzed correlations of quantitative ultrasound parameters with pathologic scores and the estimated glomerular filtration rate (GFR) using Pearson correlation coefficients, and examined the diagnostic performance of quantitative ultrasound parameters in determining moderate CKD and an estimated GFR of less than 60 mL/min/1.73 m(2) using receiver operating characteristic curve analysis. There were significant differences in cortical thickness, pixel intensity, PSV, and EDV among the 3 groups (all P quantitative ultrasound parameters, the top areas under the receiver operating characteristic curves for PSV and EDV were 0.88 and 0.97, respectively, for determining pathologic moderate to severe CKD, and 0.76 and 0.86 for estimated GFR of less than 60 mL/min/1.73 m(2) . Moderate to good correlations were found for PSV, EDV, and pixel intensity with pathologic scores and estimated GFR. The PSV, EDV, and pixel intensity are valuable in determining moderate to severe CKD. The value of shear wave velocity in

  9. Development of Magnetic Resonance Imaging Biomarkers for Traumatic Brain Injury

    Science.gov (United States)

    2012-07-01

    functional imaging of the brain: venous contributions to signal in motor cor- tex studies. NMR Biomed. 7, 54–62. Haacke, E.M., Lai, S., Yablonskiy, D.A., Lin...measurement using flow quantification in the neck (Haacke 2012). Although oxygen saturation can be measured using positron emis- sion tomography, it...Measurements in the Neck and the Poor Man’s Bulk Perfusion Measure Phase-contrast MR images are used for blood flow measurement in the neck and brain

  10. A Novel Imaging Biomarker Extracted from Fluorescence Microscopic Imaging of TRA-8/DR5 Oligomers Predicts TRA-8 Therapeutic Efficacy in Breast and Pancreatic Cancer Mouse Models.

    Science.gov (United States)

    Kim, Harrison; Buchsbaum, Donald J; Zinn, Kurt R

    2016-06-01

    The aim of the study was to develop a reliable quantitative imaging biomarker from fluorescence microscopic imaging of TRA-8/death receptor 5 (DR5) oligomer to predict TRA-8 therapeutic efficacy in human breast and pancreatic cancer mouse models. Two breast (2LMP, SUM159) and two pancreatic (MIA PaCa-2, PANC1) cancer cell lines were used. 10(5) cells per cell line were placed in a culture dish and treated with Cy5.5-labeled TRA-8 overnight in vitro. Three fluorescence microphotographs (×20) were acquired from randomly selected areas, and about 300 cells were analyzed per cell line. Two-dimensional (2D) fluorescence signal distribution of Cy5.5-TRA-8 on each cell was measured. Gaussian curve fitting to the distribution was determined by the least square regression method, and the coefficient of determination (R (2)) of the fitting was found. In addition, two features of the best fitting Gaussian curve such as peak amplitude and the volume under the curve (VUC) were retrieved. A novel image biomarker was extracted by correlating the combination of R (2) value, peak amplitude, and the VUC with the logarithmic values of the half maximal inhibitory concentrations (IC50) of TRA-8 for the four cell lines or the percentage of tumor growth inhibition (%TGI) at a week of TRA-8 treatment in animal models. Cy5.5-TRA-8 binding to DR5 receptors resulted in an oligomer on each cell membrane, and its fluorescence signal distribution followed Gaussian curve. Peak amplitude of fluorescence signal in the oligomeric region, R (2) value of the Gaussian fitting, and the VUC in TRA-8-sensitive cells were significantly higher than those in resistant cells (p TRA-8 may serve as a predictive biomarker of TRA-8 therapy for cancer patients.

  11. Multiplexed and quantitative study of biomarker expression in tumor specimens using quantum dots

    Science.gov (United States)

    Wu, Aileen; True, Lawrence; Gao, Xiaohu

    2006-02-01

    When conjugated with targeting molecules, quantum dots (QD) can be used as powerful cancer diagnostic tools providing the molecular profiles of cancer cases based on common clinical biopsies. Such personalized analyses will enable doctors to treat and manage the patients' diseases more effectively. The unique optical properties (e.g., size-tunable emission, simultaneous excitation, high brightness and photostability) of these nanoparticles make them superior to conventionally popular organic fluorophores 1-2. Polymer-encapsulated, antibody-tagged QDs were prepared and used to successfully stain both fixed and live cells as well as clinical formalin-fixed paraffin-embedded (FFPE) tissue sections. In the tissue staining study, QD bioconjugates targeting mutated p53 and early growth response protein (egr-1) were used to examine prostate cancer tissues. The tissue slides were then analyzed with a wavelength-resolved spectrometer to accurately quantify the protein expression levels. In comparison to traditional qualitatively based diagnostic procedures, quantum dot nanotechnology allows for a more quantitative, rigorous and objective analysis of tissue specimens in question. In addition, new developments in imaging instrumentation could automate spectroscopy measurements and data analysis.

  12. Quantitative analysis of in vivo confocal microscopy images: a review.

    Science.gov (United States)

    Patel, Dipika V; McGhee, Charles N

    2013-01-01

    In vivo confocal microscopy (IVCM) is a non-invasive method of examining the living human cornea. The recent trend towards quantitative studies using IVCM has led to the development of a variety of methods for quantifying image parameters. When selecting IVCM images for quantitative analysis, it is important to be consistent regarding the location, depth, and quality of images. All images should be de-identified, randomized, and calibrated prior to analysis. Numerous image analysis software are available, each with their own advantages and disadvantages. Criteria for analyzing corneal epithelium, sub-basal nerves, keratocytes, endothelium, and immune/inflammatory cells have been developed, although there is inconsistency among research groups regarding parameter definition. The quantification of stromal nerve parameters, however, remains a challenge. Most studies report lower inter-observer repeatability compared with intra-observer repeatability, and observer experience is known to be an important factor. Standardization of IVCM image analysis through the use of a reading center would be crucial for any future large, multi-centre clinical trials using IVCM.

  13. Development of Diagnostic Biomarkers for Detecting Diabetic Retinopathy at Early Stages Using Quantitative Proteomics

    Directory of Open Access Journals (Sweden)

    Jonghwa Jin

    2016-01-01

    Full Text Available Diabetic retinopathy (DR is a common microvascular complication caused by diabetes mellitus (DM and is a leading cause of vision impairment and loss among adults. Here, we performed a comprehensive proteomic analysis to discover biomarkers for DR. First, to identify biomarker candidates that are specifically expressed in human vitreous, we performed data-mining on both previously published DR-related studies and our experimental data; 96 proteins were then selected. To confirm and validate the selected biomarker candidates, candidates were selected, confirmed, and validated using plasma from diabetic patients without DR (No DR and diabetics with mild or moderate nonproliferative diabetic retinopathy (Mi or Mo NPDR using semiquantitative multiple reaction monitoring (SQ-MRM and stable-isotope dilution multiple reaction monitoring (SID-MRM. Additionally, we performed a multiplex assay using 15 biomarker candidates identified in the SID-MRM analysis, which resulted in merged AUC values of 0.99 (No DR versus Mo NPDR and 0.93 (No DR versus Mi and Mo NPDR. Although further validation with a larger sample size is needed, the 4-protein marker panel (APO4, C7, CLU, and ITIH2 could represent a useful multibiomarker model for detecting the early stages of DR.

  14. Summary of Quantitative Interpretation of Image Far Ultraviolet Auroral Data

    Science.gov (United States)

    Frey, H. U.; Immel, T. J.; Mende, S. B.; Gerard, J.-C.; Hubert, B.; Habraken, S.; Span, J.; Gladstone, G. R.; Bisikalo, D. V.; Shematovich, V. I.; hide

    2002-01-01

    Direct imaging of the magnetosphere by instruments on the IMAGE spacecraft is supplemented by simultaneous observations of the global aurora in three far ultraviolet (FUV) wavelength bands. The purpose of the multi-wavelength imaging is to study the global auroral particle and energy input from thc magnetosphere into the atmosphere. This paper describes provides the method for quantitative interpretation of FUV measurements. The Wide-Band Imaging Camera (WIC) provides broad band ultraviolet images of the aurora with maximum spatial and temporal resolution by imaging the nitrogen lines and bands between 140 and 180 nm wavelength. The Spectrographic Imager (SI), a dual wavelength monochromatic instrument, images both Doppler-shifted Lyman alpha emissions produced by precipitating protons, in the SI-12 channel and OI 135.6 nm emissions in the SI-13 channel. From the SI-12 Doppler shifted Lyman alpha images it is possible to obtain the precipitating proton flux provided assumptions are made regarding the mean energy of the protons. Knowledge of the proton (flux and energy) component allows the calculation of the contribution produced by protons in the WIC and SI-13 instruments. Comparison of the corrected WIC and SI-13 signals provides a measure of the electron mean energy, which can then be used to determine the electron energy fluxun-. To accomplish this reliable modeling emission modeling and instrument calibrations are required. In-flight calibration using early-type stars was used to validate the pre-flight laboratory calibrations and determine long-term trends in sensitivity. In general, very reasonable agreement is found between in-situ measurements and remote quantitative determinations.

  15. Quantitative label-free proteomics for discovery of biomarkers in cerebrospinal fluid: assessment of technical and inter-individual variation.

    Directory of Open Access Journals (Sweden)

    Richard J Perrin

    Full Text Available Biomarkers are required for pre-symptomatic diagnosis, treatment, and monitoring of neurodegenerative diseases such as Alzheimer's disease. Cerebrospinal fluid (CSF is a favored source because its proteome reflects the composition of the brain. Ideal biomarkers have low technical and inter-individual variability (subject variance among control subjects to minimize overlaps between clinical groups. This study evaluates a process of multi-affinity fractionation (MAF and quantitative label-free liquid chromatography tandem mass spectrometry (LC-MS/MS for CSF biomarker discovery by (1 identifying reparable sources of technical variability, (2 assessing subject variance and residual technical variability for numerous CSF proteins, and (3 testing its ability to segregate samples on the basis of desired biomarker characteristics.Fourteen aliquots of pooled CSF and two aliquots from six cognitively normal individuals were randomized, enriched for low-abundance proteins by MAF, digested endoproteolytically, randomized again, and analyzed by nano-LC-MS. Nano-LC-MS data were time and m/z aligned across samples for relative peptide quantification. Among 11,433 aligned charge groups, 1360 relatively abundant ones were annotated by MS2, yielding 823 unique peptides. Analyses, including Pearson correlations of annotated LC-MS ion chromatograms, performed for all pairwise sample comparisons, identified several sources of technical variability: i incomplete MAF and keratins; ii globally- or segmentally-decreased ion current in isolated LC-MS analyses; and iii oxidized methionine-containing peptides. Exclusion of these sources yielded 609 peptides representing 81 proteins. Most of these proteins showed very low coefficients of variation (CV<5% whether they were quantified from the mean of all or only the 2 most-abundant peptides. Unsupervised clustering, using only 24 proteins selected for high subject variance, yielded perfect segregation of pooled and

  16. Quantitative phase imaging with scanning holographic microscopy: an experimental assesment

    Directory of Open Access Journals (Sweden)

    Tada Yoshitaka

    2006-11-01

    Full Text Available Abstract This paper demonstrates experimentally how quantitative phase information can be obtained in scanning holographic microscopy. Scanning holography can operate in both coherent and incoherent modes, simultaneously if desired, with different detector geometries. A spatially integrating detector provides an incoherent hologram of the object's intensity distribution (absorption and/or fluorescence, for example, while a point detector in a conjugate plane of the pupil provides a coherent hologram of the object's complex amplitude, from which a quantitative measure of its phase distribution can be extracted. The possibility of capturing simultaneously holograms of three-dimensional specimens, leading to three-dimensional reconstructions with absorption contrast, reflectance contrast, fluorescence contrast, as was previously demonstrated, and quantitative phase contrast, as shown here for the first time, opens up new avenues for multimodal imaging in biological studies.

  17. The Quantitative Science of Evaluating Imaging Evidence.

    Science.gov (United States)

    Genders, Tessa S S; Ferket, Bart S; Hunink, M G Myriam

    2017-03-01

    Cardiovascular diagnostic imaging tests are increasingly used in everyday clinical practice, but are often imperfect, just like any other diagnostic test. The performance of a cardiovascular diagnostic imaging test is usually expressed in terms of sensitivity and specificity compared with the reference standard (gold standard) for diagnosing the disease. However, evidence-based application of a diagnostic test also requires knowledge about the pre-test probability of disease, the benefit of making a correct diagnosis, the harm caused by false-positive imaging test results, and potential adverse effects of performing the test itself. To assist in clinical decision making regarding appropriate use of cardiovascular diagnostic imaging tests, we reviewed quantitative concepts related to diagnostic performance (e.g., sensitivity, specificity, predictive values, likelihood ratios), as well as possible biases and solutions in diagnostic performance studies, Bayesian principles, and the threshold approach to decision making. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  18. 3D quantitative phase imaging of neural networks using WDT

    Science.gov (United States)

    Kim, Taewoo; Liu, S. C.; Iyer, Raj; Gillette, Martha U.; Popescu, Gabriel

    2015-03-01

    White-light diffraction tomography (WDT) is a recently developed 3D imaging technique based on a quantitative phase imaging system called spatial light interference microscopy (SLIM). The technique has achieved a sub-micron resolution in all three directions with high sensitivity granted by the low-coherence of a white-light source. Demonstrations of the technique on single cell imaging have been presented previously; however, imaging on any larger sample, including a cluster of cells, has not been demonstrated using the technique. Neurons in an animal body form a highly complex and spatially organized 3D structure, which can be characterized by neuronal networks or circuits. Currently, the most common method of studying the 3D structure of neuron networks is by using a confocal fluorescence microscope, which requires fluorescence tagging with either transient membrane dyes or after fixation of the cells. Therefore, studies on neurons are often limited to samples that are chemically treated and/or dead. WDT presents a solution for imaging live neuron networks with a high spatial and temporal resolution, because it is a 3D imaging method that is label-free and non-invasive. Using this method, a mouse or rat hippocampal neuron culture and a mouse dorsal root ganglion (DRG) neuron culture have been imaged in order to see the extension of processes between the cells in 3D. Furthermore, the tomogram is compared with a confocal fluorescence image in order to investigate the 3D structure at synapses.

  19. Novel method for ANA quantitation using IIF imaging system.

    Science.gov (United States)

    Peng, Xiaodong; Tang, Jiangtao; Wu, Yongkang; Yang, Bin; Hu, Jing

    2014-02-01

    A variety of antinuclear antibodies (ANAs) are found in the serum of patients with autoimmune diseases. The detection of abnormal ANA titers is a critical criterion for diagnosis of systemic lupus erythematosus (SLE) and other connective tissue diseases. Indirect immunofluorescence assay (IIF) on HEp-2 cells is the gold standard method to determine the presence of ANA and therefore provides information about the localization of autoantigens that are useful for diagnosis. However, its utility was limited in prognosing and monitoring of disease activity due to the lack of standardization in performing the technique, subjectivity in interpreting the results and the fact that it is only semi-quantitative. On the other hand, ELISA for the detection of ANA can quantitate ANA but could not provide further information about the localization of the autoantigens. It would be ideal to integrate both of the quantitative and qualitative methods. To address this issue, this study was conducted to quantitatively detect ANAs by using IIF imaging analysis system. Serum samples from patients with ANA positive (including speckled, homogeneous, nuclear mixture and cytoplasmic mixture patterns) and negative were detected for ANA titers by the classical IIF and analyzed by an image system, the image of each sample was acquired by the digital imaging system and the green fluorescence intensity was quantified by the Image-Pro plus software. A good correlation was found in between two methods and the correlation coefficients (R(2)) of various ANA patterns were 0.942 (speckled), 0.942 (homogeneous), 0.923 (nuclear mixture) and 0.760 (cytoplasmic mixture), respectively. The fluorescence density was linearly correlated with the log of ANA titers in various ANA patterns (R(2)>0.95). Moreover, the novel ANA quantitation method showed good reproducibility (F=0.091, p>0.05) with mean±SD and CV% of positive, and negative quality controls were equal to 126.4±9.6 and 7.6%, 10.4±1.25 and 12

  20. Quantitative imaging of complex samples by spiral phase contrast microscopy.

    Science.gov (United States)

    Bernet, Stefan; Jesacher, Alexander; Fürhapter, Severin; Maurer, Christian; Ritsch-Marte, Monika

    2006-05-01

    Recently a spatial spiral phase filter in a Fourier plane of a microscopic imaging setup has been demonstrated to produce edge enhancement and relief-like shadow formation of amplitude and phase samples. Here we demonstrate that a sequence of at least 3 spatially filtered images, which are recorded with different rotational orientations of the spiral phase plate, can be used to obtain a quantitative reconstruction of both, amplitude and phase information of a complex microscopic sample, i.e. an object consisting of mixed absorptive and refractive components. The method is demonstrated using a calibrated phase sample, and an epithelial cheek cell.

  1. Quantitative colorimetric-imaging analysis of nickel in iron meteorites.

    Science.gov (United States)

    Zamora, L Lahuerta; López, P Alemán; Fos, G M Antón; Algarra, R Martín; Romero, A M Mellado; Calatayud, J Martínez

    2011-02-15

    A quantitative analytical imaging approach for determining the nickel content of metallic meteorites is proposed. The approach uses a digital image of a series of standard solutions of the nickel-dimethylglyoxime coloured chelate and a meteorite sample solution subjected to the same treatment as the nickel standards for quantitation. The image is processed with suitable software to assign a colour-dependent numerical value (analytical signal) to each standard. Such a value is directly proportional to the analyte concentration, which facilitates construction of a calibration graph where the value for the unknown sample can be interpolated to calculate the nickel content of the meteorite. The results thus obtained were validated by comparison with the official, ISO-endorsed spectrophotometric method for nickel. The proposed method is fairly simple and inexpensive; in fact, it uses a commercially available digital camera as measuring instrument and the images it provides are processed with highly user-friendly public domain software (specifically, ImageJ, developed by the National Institutes of Health and freely available for download on the Internet). In a scenario dominated by increasingly sophisticated and expensive equipment, the proposed method provides a cost-effective alternative based on simple, robust hardware that is affordable and can be readily accessed worldwide. This can be especially advantageous for countries were available resources for analytical equipment investments are scant. The proposed method is essentially an adaptation of classical chemical analysis to current, straightforward, robust, cost-effective instrumentation. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Evaluation of Multimodal Imaging Biomarkers of Prostate Cancer

    Science.gov (United States)

    2013-09-01

    Molecular Imaging and Radiochemistry core would synthesize the FDHT agent needed for these studies using previously reported methods. Based on their...recommendation, rather than pursuing a new precursor synthesis we elected to purchase the FDHT precursor from the Radiochemistry & Molecular

  3. Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer.

    Science.gov (United States)

    Thiel, L; Rohner, D; Ganzhorn, M; Appel, P; Neu, E; Müller, B; Kleiner, R; Koelle, D; Maletinsky, P

    2016-08-01

    Microscopic studies of superconductors and their vortices play a pivotal role in understanding the mechanisms underlying superconductivity. Local measurements of penetration depths or magnetic stray fields enable access to fundamental aspects such as nanoscale variations in superfluid densities or the order parameter symmetry of superconductors. However, experimental tools that offer quantitative, nanoscale magnetometry and operate over large ranges of temperature and magnetic fields are still lacking. Here, we demonstrate the first operation of a cryogenic scanning quantum sensor in the form of a single nitrogen-vacancy electronic spin in diamond, which is capable of overcoming these existing limitations. To demonstrate the power of our approach, we perform quantitative, nanoscale magnetic imaging of Pearl vortices in the cuprate superconductor YBa2Cu3O7-δ. With a sensor-to-sample distance of ∼10 nm, we observe striking deviations from the prevalent monopole approximation in our vortex stray-field images, and find excellent quantitative agreement with Pearl's analytic model. Our experiments provide a non-invasive and unambiguous determination of the system's local penetration depth and are readily extended to higher temperatures and magnetic fields. These results demonstrate the potential of quantitative quantum sensors in benchmarking microscopic models of complex electronic systems and open the door for further exploration of strongly correlated electron physics using scanning nitrogen-vacancy magnetometry.

  4. Enrichment of MCI and early Alzheimer's disease treatment trials using neurochemical and imaging candidate biomarkers.

    LENUS (Irish Health Repository)

    Hampel, H

    2012-02-01

    In the earliest clinical stages of Alzheimer\\'s Disease (AD), when symptoms are mild, clinical diagnosis will still be difficult. AD related molecular mechanisms precede symptoms. Biological markers can serve as early diagnostic indicators, as markers of preclinical pathological change, e.g. underlying mechanisms of action (MoA). Hypothesis based candidates are derived from structural and functional neuroimaging as well as from cerebrospinal fluid (CSF) and plasma. Unbiased exploratory approaches e.g. proteome analysis or rater independent fully automated imaging post-processing methods yield novel candidates. Recent progress in the validation of core feasible imaging and neurochemical biomarkers for functions such as early detection, classification, progression and prediction of AD is summarized. Single core feasible biomarkers can already be used to enrich populations at risk for AD and may be further enhanced using distinct combinations. Some biomarkers are currently in the process of implementation as primary or secondary outcome variables into regulatory guideline documents, e.g. regarding phase II in drug development programs as outcome measures in proof of concept or dose finding studies. There are specific biomarkers available depending on the hypothesized mechanism of action of a medicinal product, e.g. impact on the amyloidogenic cascade or on tauhyperphosphorylation. Ongoing large-scale international controlled multi-center trials will provide further validation of selected core feasible imaging and CSF biomarker candidates as outcome measures in early AD for use in phase III clinical efficacy trials. There is a need of rigorous co-development of biological trait- and statemarker candidates facilitated through planned synergistic collaboration between academic, industrial and regulatory partners.

  5. Magnetic resonance imaging biomarkers in patients with progressive ataxia: current status and future direction.

    Science.gov (United States)

    Currie, Stuart; Hadjivassiliou, Marios; Craven, Ian J; Wilkinson, Iain D; Griffiths, Paul D; Hoggard, Nigel

    2013-04-01

    A diagnostic challenge commonly encountered in neurology is that of an adult patient presenting with ataxia. The differential is vast and clinical assessment alone may not be sufficient due to considerable overlap between different causes of ataxia. Magnetic resonance (MR)-based biomarkers such as voxel-based morphometry, MR spectroscopy, diffusion-weighted and diffusion-tensor imaging and functional MR imaging are gaining great attention for their potential as indicators of disease. A number of studies have reported correlation with clinical severity and underlying pathophysiology, and in some cases, MR imaging has been shown to allow differentiation of conditions causing ataxia. However, despite recent advances, their sensitivity and specificity vary. In addition, questions remain over their validity and reproducibility, especially when applied in routine clinical practice. This article extensively reviews the current literature regarding MR-based biomarkers for the patient with predominantly adult-onset ataxia. Imaging features characteristic of a particular ataxia are provided and features differentiating ataxia groups and subgroups are discussed. Finally, discussion will turn to the feasibility of applying these biomarkers in routine clinical practice.

  6. Quantitative 7T phase imaging in premanifest Huntington disease.

    Science.gov (United States)

    Apple, A C; Possin, K L; Satris, G; Johnson, E; Lupo, J M; Jakary, A; Wong, K; Kelley, D A C; Kang, G A; Sha, S J; Kramer, J H; Geschwind, M D; Nelson, S J; Hess, C P

    2014-09-01

    In vivo MR imaging and postmortem neuropathologic studies have demonstrated elevated iron concentration and atrophy within the striatum of patients with Huntington disease, implicating neuronal loss and iron accumulation in the pathogenesis of this neurodegenerative disorder. We used 7T MR imaging to determine whether quantitative phase, a measurement that reflects both iron content and tissue microstructure, is altered in subjects with premanifest Huntington disease. Local field shift, calculated from 7T MR phase images, was quantified in 13 subjects with premanifest Huntington disease and 13 age- and sex-matched controls. All participants underwent 3T and 7T MR imaging, including volumetric T1 and 7T gradient recalled-echo sequences. Local field shift maps were created from 7T phase data and registered to caudate ROIs automatically parcellated from the 3T T1 images. Huntington disease-specific disease burden and neurocognitive and motor evaluations were also performed and compared with local field shift. Subjects with premanifest Huntington disease had smaller caudate volume and higher local field shift than controls. A significant correlation between these measurements was not detected, and prediction accuracy for disease state improved with inclusion of both variables. A positive correlation between local field shift and genetic disease burden was also found, and there was a trend toward significant correlations between local field shift and neurocognitive tests of working memory and executive function. Subjects with premanifest Huntington disease exhibit differences in 7T MR imaging phase within the caudate nuclei that correlate with genetic disease burden and trend with neurocognitive assessments. Ultra-high-field MR imaging of quantitative phase may be a useful approach for monitoring neurodegeneration in premanifest Huntington disease. © 2014 by American Journal of Neuroradiology.

  7. Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease

    Science.gov (United States)

    Benzinger, Tammie L. S.; Blazey, Tyler; Jack, Clifford R.; Koeppe, Robert A.; Su, Yi; Xiong, Chengjie; Raichle, Marcus E.; Snyder, Abraham Z.; Ances, Beau M.; Bateman, Randall J.; Cairns, Nigel J.; Fagan, Anne M.; Goate, Alison; Marcus, Daniel S.; Aisen, Paul S.; Christensen, Jon J.; Ercole, Lindsay; Hornbeck, Russ C.; Farrar, Angela M.; Aldea, Patricia; Jasielec, Mateusz S.; Owen, Christopher J.; Xie, Xianyun; Mayeux, Richard; Brickman, Adam; McDade, Eric; Klunk, William; Mathis, Chester A.; Ringman, John; Thompson, Paul M.; Ghetti, Bernardino; Saykin, Andrew J.; Sperling, Reisa A.; Johnson, Keith A.; Salloway, Stephen; Correia, Stephen; Schofield, Peter R.; Masters, Colin L.; Rowe, Christopher; Villemagne, Victor L.; Martins, Ralph; Ourselin, Sebastien; Rossor, Martin N.; Fox, Nick C.; Cash, David M.; Weiner, Michael W.; Holtzman, David M.; Buckles, Virginia D.; Moulder, Krista; Morris, John C.

    2013-01-01

    Major imaging biomarkers of Alzheimer’s disease include amyloid deposition [imaged with [11C]Pittsburgh compound B (PiB) PET], altered glucose metabolism (imaged with [18F]fluro-deoxyglucose PET), and structural atrophy (imaged by MRI). Recently we published the initial subset of imaging findings for specific regions in a cohort of individuals with autosomal dominant Alzheimer’s disease. We now extend this work to include a larger cohort, whole-brain analyses integrating all three imaging modalities, and longitudinal data to examine regional differences in imaging biomarker dynamics. The anatomical distribution of imaging biomarkers is described in relation to estimated years from symptom onset. Autosomal dominant Alzheimer’s disease mutation carrier individuals have elevated PiB levels in nearly every cortical region 15 y before the estimated age of onset. Reduced cortical glucose metabolism and cortical thinning in the medial and lateral parietal lobe appeared 10 and 5 y, respectively, before estimated age of onset. Importantly, however, a divergent pattern was observed subcortically. All subcortical gray-matter regions exhibited elevated PiB uptake, but despite this, only the hippocampus showed reduced glucose metabolism. Similarly, atrophy was not observed in the caudate and pallidum despite marked amyloid accumulation. Finally, before hypometabolism, a hypermetabolic phase was identified for some cortical regions, including the precuneus and posterior cingulate. Additional analyses of individuals in which longitudinal data were available suggested that an accelerated appearance of volumetric declines approximately coincides with the onset of the symptomatic phase of the disease. PMID:24194552

  8. Motion tracking in infrared imaging for quantitative medical diagnostic applications

    Science.gov (United States)

    Cheng, Tze-Yuan; Herman, Cila

    2014-01-01

    In medical applications, infrared (IR) thermography is used to detect and examine the thermal signature of skin abnormalities by quantitatively analyzing skin temperature in steady state conditions or its evolution over time, captured in an image sequence. However, during the image acquisition period, the involuntary movements of the patient are unavoidable, and such movements will undermine the accuracy of temperature measurement for any particular location on the skin. In this study, a tracking approach using a template-based algorithm is proposed, to follow the involuntary motion of the subject in the IR image sequence. The motion tacking will allow to associate a temperature evolution to each spatial location on the body while the body moves relative to the image frame. The affine transformation model is adopted to estimate the motion parameters of the template image. The Lucas-Kanade algorithm is applied to search for the optimized parameters of the affine transformation. A weighting mask is incorporated into the algorithm to ensure its tracking robustness. To evaluate the feasibility of the tracking approach, two sets of IR image sequences with random in-plane motion were tested in our experiments. A steady-state (no heating or cooling) IR image sequence in which the skin temperature is in equilibrium with the environment was considered first. The thermal recovery IR image sequence, acquired when the skin is recovering from 60-s cooling, was the second case analyzed. By proper selection of the template image along with template update, satisfactory tracking results were obtained for both IR image sequences. The achieved tracking accuracies are promising in terms of satisfying the demands imposed by clinical applications of IR thermography.

  9. PCA-based groupwise image registration for quantitative MRI.

    Science.gov (United States)

    Huizinga, W; Poot, D H J; Guyader, J-M; Klaassen, R; Coolen, B F; van Kranenburg, M; van Geuns, R J M; Uitterdijk, A; Polfliet, M; Vandemeulebroucke, J; Leemans, A; Niessen, W J; Klein, S

    2016-04-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or at multiple time points after injection of a contrast agent) and by fitting a qMRI signal model to the image intensities. Image registration is often necessary to compensate for misalignments due to subject motion and/or geometric distortions caused by the acquisition. However, large differences in image appearance make accurate image registration challenging. In this work, we propose a groupwise image registration method for compensating misalignment in qMRI. The groupwise formulation of the method eliminates the requirement of choosing a reference image, thus avoiding a registration bias. The method minimizes a cost function that is based on principal component analysis (PCA), exploiting the fact that intensity changes in qMRI can be described by a low-dimensional signal model, but not requiring knowledge on the specific acquisition model. The method was evaluated on 4D CT data of the lungs, and both real and synthetic images of five different qMRI applications: T1 mapping in a porcine heart, combined T1 and T2 mapping in carotid arteries, ADC mapping in the abdomen, diffusion tensor mapping in the brain, and dynamic contrast-enhanced mapping in the abdomen. Each application is based on a different acquisition model. The method is compared to a mutual information-based pairwise registration method and four other state-of-the-art groupwise registration methods. Registration accuracy is evaluated in terms of the precision of the estimated qMRI parameters, overlap of segmented structures, distance between corresponding landmarks, and smoothness of the deformation. In all qMRI applications the proposed method performed better than or equally well as

  10. Image based quantitative reader for Lateral flow immunofluorescence assay.

    Science.gov (United States)

    Chowdhury, Kaushik Basak; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2015-08-01

    Fluorescence Lateral flow immunoassays (LFIA) have wide range of applications in point-of-care testing (POCT). An integrated, motion-free, accurate, reliable reader that performs automated quantitative analysis of LFIA is essential for POCT diagnosis. We demonstrate an image based quantitative method to read the lateral flow immunofluorescence test strips. The developed reader uses line laser diode module to illuminate the LFIA test strip having fluorescent dye. Fluorescence light coming from the region of interest (ROI) of the LFIA test strip was filtered using an emission filter and imaged using a camera following which images were processed in computer. A dedicated control program was developed that automated the entire process including illumination of the test strip using laser diode, capturing the ROI of the test strip, processing and analyzing the images and displaying of results. Reproducibility of the reader has been evaluated using few reference cartridges and HbA1c (Glycated haemoglobin) test cartridges. The proposed system can be upgraded to a compact reader for widespread testing of LFIA test strips.

  11. Correlations between diffusion-weighted imaging and breast cancer biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Martincich, Laura; Deantoni, Veronica; Bertotto, Ilaria; Liotti, Michele; Regge, Daniele [Unit of Radiology, Institute for Cancer Research and Treatment (IRCC), Candiolo, Turin (Italy); Redana, Stefania; Rossi, Valentina; Aglietta, Massimo; Montemurro, Filippo [Institute for Cancer Research and Treatment (IRCC), Division of Medical Oncology, Candiolo, Turin (Italy); Kubatzki, Franziska; Ponzone, Riccardo [Institute for Cancer Research and Treatment (IRCC), Division of Gynecological Oncology, Candiolo, Turin (Italy); Sarotto, Ivana [Unit of Pathology, Institute for Cancer Research and Treatment (IRCC), Candiolo, Turin (Italy)

    2012-07-15

    We evaluated whether the apparent diffusion coefficient (ADC) provided by diffusion-weighted imaging (DWI) varies according to biological features in breast cancer. DWI was performed in 190 patients undergoing dynamic contrast-enhanced magnetic resonance imaging (MRI) for local staging. For each of the 192 index cancers we studied the correlation between ADC and classical histopathological and immunohistochemical breast tumour features (size, histological type, grade, oestrogen receptor [ER] and Ki-67 expression, HER2 status). ADC was compared with immunohistochemical surrogates of the intrinsic subtypes (Luminal A; Luminal B; HER2-enriched; triple-negative). Correlations were analysed using the Mann-Whitney U and Kruskal-Wallis H tests. A weak, statistically significant correlation was observed between ADC values and the percentage of ER-positive cells (-0.168, P = 0.020). Median ADC values were significantly higher in ER-negative than in ER-positive tumours (1.110 vs 1.050 x 10{sup -3} mm{sup 2}/s, P = 0.015). HER2-enriched tumours had the highest median ADC value (1.190 x 10{sup -3} mm{sup 2}/s, range 0.950-2.090). Multiple comparisons showed that this value was significantly higher than that of Luminal A (1.025 x 10{sup -3} mm{sup 2}/s [0.700-1.340], P = 0.004) and Luminal B/HER2-negative (1.060 x 10{sup -3} mm{sup 2}/s [0.470-2.420], P = 0.008) tumours. A trend towards statistical significance (P = 0.018) was seen with Luminal B/HER2-positive tumours. ADC values vary significantly according to biological tumour features, suggesting that cancer heterogeneity influences imaging parameters. (orig.)

  12. Quantitative image cytometry measurements of lipids, DNA, CD45 and cytokeratin for circulating tumor cell identification in a model system

    Science.gov (United States)

    Futia, Gregory L.; Qamar, Lubna; Behbakht, Kian; Gibson, Emily A.

    2016-04-01

    Circulating tumor cell (CTC) identification has applications in both early detection and monitoring of solid cancers. The rarity of CTCs, expected at ~1-50 CTCs per million nucleated blood cells (WBCs), requires identifying methods based on biomarkers with high sensitivity and specificity for accurate identification. Discovery of biomarkers with ever higher sensitivity and specificity to CTCs is always desirable to potentially find more CTCs in cancer patients thus increasing their clinical utility. Here, we investigate quantitative image cytometry measurements of lipids with the biomarker panel of DNA, Cytokeratin (CK), and CD45 commonly used to identify CTCs. We engineered a device for labeling suspended cell samples with fluorescent antibodies and dyes. We used it to prepare samples for 4 channel confocal laser scanning microscopy. The total data acquired at high resolution from one sample is ~ 1.3 GB. We developed software to perform the automated segmentation of these images into regions of interest (ROIs) containing individual cells. We quantified image features of total signal, spatial second moment, spatial frequency second moment, and their product for each ROI. We performed measurements on pure WBCs, cancer cell line MCF7 and mixed samples. Multivariable regressions and feature selection were used to determine combination features that are more sensitive and specific than any individual feature separately. We also demonstrate that computation of spatial characteristics provides higher sensitivity and specificity than intensity alone. Statistical models allowed quantification of the required sensitivity and specificity for detecting small levels of CTCs in a human blood sample.

  13. Molecular Imaging Biomarkers of Resistance to Radiation Therapy for Spontaneous Nasal Tumors in Canines

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Tyler J. [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Bowen, Stephen R. [Departments of Radiation Oncology and Radiology, University of Washington, Seattle, Washington (United States); Deveau, Michael A. [Department of Small Animal Clinical Sciences, Texas A& M University, College Station, Texas (United States); Kubicek, Lyndsay [Angell Animal Medical Center, Boston, Massachusetts (United States); White, Pamela [Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin (United States); Bentzen, Søren M. [Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland (United States); Chappell, Richard J. [Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Forrest, Lisa J. [Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin (United States); Jeraj, Robert, E-mail: rjeraj@wisc.edu [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States)

    2015-03-15

    Purpose: Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy. Methods and Materials: Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapy and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUV{sub max}; SUV{sub mean}) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R{sup 2}. Results: The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUV{sub mean} (P=.018), and midtreatment FLT SUV{sub max} (P=.006). Large decreases in FLT SUV{sub mean} from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUV{sub max} (P=.022) in

  14. Quantitative perfusion imaging in magnetic resonance imaging; Quantitative Perfusionsbildgebung in der Magnetresonanztomographie

    Energy Technology Data Exchange (ETDEWEB)

    Zoellner, F.G.; Gaa, T.; Zimmer, F. [Universitaet Heidelberg, Computerunterstuetzte Klinische Medizin, Medizinische Fakultaet Mannheim, Mannheim (Germany); Ong, M.M.; Riffel, P.; Hausmann, D.; Schoenberg, S.O.; Weis, M. [Universitaet Heidelberg, Institut fuer Klinische Radiologie und Nuklearmedizin, Universitaetsmedizin Mannheim, Medizinische Fakultaet Mannheim, Mannheim (Germany)

    2016-02-15

    Magnetic resonance imaging (MRI) is recognized for its superior tissue contrast while being non-invasive and free of ionizing radiation. Due to the development of new scanner hardware and fast imaging techniques during the last decades, access to tissue and organ functions became possible. One of these functional imaging techniques is perfusion imaging with which tissue perfusion and capillary permeability can be determined from dynamic imaging data. Perfusion imaging by MRI can be performed by two approaches, arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) MRI. While the first method uses magnetically labelled water protons in arterial blood as an endogenous tracer, the latter involves the injection of a contrast agent, usually gadolinium (Gd), as a tracer for calculating hemodynamic parameters. Studies have demonstrated the potential of perfusion MRI for diagnostics and also for therapy monitoring. The utilization and application of perfusion MRI are still restricted to specialized centers, such as university hospitals. A broad application of the technique has not yet been implemented. The MRI perfusion technique is a valuable tool that might come broadly available after implementation of standards on European and international levels. Such efforts are being promoted by the respective professional bodies. (orig.) [German] Die Magnetresonanztomographie (MRT) zeichnet sich durch einen ueberlegenen Gewebekontrast aus, waehrend sie nichtinvasiv und frei von ionisierender Strahlung ist. Sie bietet Zugang zu Gewebe- und Organfunktion. Eine dieser funktionellen bildgebenden Verfahren ist die Perfusionsbildgebung. Mit dieser Technik koennen u. a. Gewebeperfusion und Kapillarpermeabilitaet aus dynamischen Bilddaten bestimmt werden. Perfusionsbildgebung mithilfe der MRT kann durch 2 Ansaetze, naemlich ''arterial spin labeling'' (ASL) und dynamische kontrastverstaerkte (DCE-)MRT durchgefuehrt werden. Waehrend die erste Methode magnetisch

  15. Quantitative imaging of heterogeneous dynamics in drying and aging paints.

    Science.gov (United States)

    van der Kooij, Hanne M; Fokkink, Remco; van der Gucht, Jasper; Sprakel, Joris

    2016-09-29

    Drying and aging paint dispersions display a wealth of complex phenomena that make their study fascinating yet challenging. To meet the growing demand for sustainable, high-quality paints, it is essential to unravel the microscopic mechanisms underlying these phenomena. Visualising the governing dynamics is, however, intrinsically difficult because the dynamics are typically heterogeneous and span a wide range of time scales. Moreover, the high turbidity of paints precludes conventional imaging techniques from reaching deep inside the paint. To address these challenges, we apply a scattering technique, Laser Speckle Imaging, as a versatile and quantitative tool to elucidate the internal dynamics, with microscopic resolution and spanning seven decades of time. We present a toolbox of data analysis and image processing methods that allows a tailored investigation of virtually any turbid dispersion, regardless of the geometry and substrate. Using these tools we watch a variety of paints dry and age with unprecedented detail.

  16. TU-C-12A-02: Development of a Multiparametric Statistical Response Map for Quantitative Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bosca, R [The University of Texas Graduate School of Biomedical Sciences, Houston, TX (United States); The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Mahajan, A; Brown, PD; Stafford, RJ [The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Johnson, VE [Texas A' M University, College Station, TX (United States); Dong, L [Scripps Proton Therapy Center, San Diego, CA (United States); Jackson, EF [University of Wisconsin, Madison, WI (United States)

    2014-06-15

    Purpose: Quantitative imaging biomarkers (QIB) are becoming increasingly utilized in early phase clinical trials as a means of non-invasively assessing treatment response and associated response heterogeneity. The aim of this study was to develop a flexible multiparametric statistical framework to predict voxel-by-voxel response of several potential MRI QIBs. Methods: Patients with histologically proven glioblastomas (n=11) were treated with chemoradiation (with/without bevacizumab) and underwent one baseline and two mid-treatment (3–4wks) MRIs. Dynamic contrast-enhanced (3D FSPGR, 6.3sec/phase, 0.1 mmol/kg Gd-DTPA), dynamic susceptibility contrast (2D GRE-EPI, 1.5sec/phase, 0.2mmol/kg Gd-DTPA), and diffusion tensor (2D DW-EPI, b=0, 1200 s/mm{sup 2}, 27 directions) imaging acquisitions were obtained during each study. Mid-treatment and pre-treatment images were rigidly aligned, and regions of partial response (PR), stable disease (SD), and progressive disease (PD) were contoured in consensus by two experienced radiation oncologists. Voxels in these categories were used to train ordinal (PRimaging biomarkers, as well as treatment type. Leave-one-out cross-validation was performed at the patient level to assess model prediction accuracy. Results: Ordinal regression resulted in model prediction accuracies of 60% (PR), 0% (SD), 81% (PD), and 69% (overall), with coefficients of variation (COV) of 9.4%, 9.6%, and 23.6%, respectively. Logistic regression resulted in accuracies of 82.0% (PR/SD), 46.2% (PD), and 76.2% (overall) with COVs of 22.4%, 45.7%, and 23.8%, respectively. Conclusion: Despite limited patient numbers, this feasibility pilot study demonstrates that ordinal and logistic regression models potentially provide a flexible statistical framework for incorporating longitudinal multiparametric

  17. Central benzodiazepine receptor imaging and quantitation with single photon emission computerised tomography

    DEFF Research Database (Denmark)

    Okocha, C I; Kapczinski, F; Lassen, N

    1995-01-01

    This review discusses the current use of single photon emission computerised tomography (SPECT) for central benzodiazepine receptor imaging and quantitation. The general principles underlying SPECT imaging and receptor quantitation methods such as the kinetic, pseudo-equilibrium and steady...

  18. Mri: Selected Topics in Quantitation and Image Processing.

    Science.gov (United States)

    Yi, Yun

    1990-10-01

    This research has focused on four areas of MRI with the objectives being a critical evaluation of the factors both visually and instrumentation that effect the quantitative indices of MRI. The following four areas of MRI were investigated:. Project #1. In both of the r.f. transmitter and receiver, many non-linearities exist which produce image distortions and loss of quantitative information. Key factors in spin echo (SE) imaging involve phase and gain adjustment of the quadrature phase detectors. To compensate for these nonlinearities, NMR spectroscopist developed techniques involving phase rolling of the rf pulses for dealing with one dimensional spectra. In this project, the effect of these nonlinearities were investigated for MR imaging on a 2.0T small bore system in respect to image uniformity and artifacts. Project #2. In the presence of surface coils, image artifacts are generated which oftentimes produce large signal intensities and suppress the image gray scale in clinically useful regions. In this study, eight image renormalization algorithms were evaluated for their effects on image contrast, suppression of artifacts, and texture. In addition, images were evaluated independently by four radiologists. Project #3. The use of MRI to follow and characterize serial changes in vertebral marrow, as a function of therapy, age or sex, has produced inconsistent results. Systematic examinations were made of the effects of RF tuning and tip angles as well as RF coil response on both T1 and T2 relaxation times. Using calibration phantoms, algorithms were developed which reduce the instrumental variation in MR signal to less than 10% from the cervical (C7) to the lumbar (L2) vertebral bodies. These algorithms were evaluated by use of serial MRI on volunteers and a few patients receiving radiation therapy (RT) of the chest and abdomen for lymphoma. Project #4. Evaluation of sensitivity of chemical shift RF pulse sequences for water/lipid separation were evaluated on a

  19. An approach for quantitative image quality analysis for CT

    Science.gov (United States)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  20. Automatic quantitative analysis of cardiac MR perfusion images

    Science.gov (United States)

    Breeuwer, Marcel M.; Spreeuwers, Luuk J.; Quist, Marcel J.

    2001-07-01

    Magnetic Resonance Imaging (MRI) is a powerful technique for imaging cardiovascular diseases. The introduction of cardiovascular MRI into clinical practice is however hampered by the lack of efficient and accurate image analysis methods. This paper focuses on the evaluation of blood perfusion in the myocardium (the heart muscle) from MR images, using contrast-enhanced ECG-triggered MRI. We have developed an automatic quantitative analysis method, which works as follows. First, image registration is used to compensate for translation and rotation of the myocardium over time. Next, the boundaries of the myocardium are detected and for each position within the myocardium a time-intensity profile is constructed. The time interval during which the contrast agent passes for the first time through the left ventricle and the myocardium is detected and various parameters are measured from the time-intensity profiles in this interval. The measured parameters are visualized as color overlays on the original images. Analysis results are stored, so that they can later on be compared for different stress levels of the heart. The method is described in detail in this paper and preliminary validation results are presented.

  1. CNTRICS imaging biomarkers final task selection: Long-term memory and reinforcement learning.

    Science.gov (United States)

    Ragland, John D; Cohen, Neal J; Cools, Roshan; Frank, Michael J; Hannula, Deborah E; Ranganath, Charan

    2012-01-01

    Functional imaging paradigms hold great promise as biomarkers for schizophrenia research as they can detect altered neural activity associated with the cognitive and emotional processing deficits that are so disabling to this patient population. In an attempt to identify the most promising functional imaging biomarkers for research on long-term memory (LTM), the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative selected "item encoding and retrieval," "relational encoding and retrieval," and "reinforcement learning" as key LTM constructs to guide the nomination process. This manuscript reports on the outcome of the third CNTRICS biomarkers meeting in which nominated paradigms in each of these domains were discussed by a review panel to arrive at a consensus on which of the nominated paradigms could be recommended for immediate translational development. After briefly describing this decision process, information is presented from the nominating authors describing the 4 functional imaging paradigms that were selected for immediate development. In addition to describing the tasks, information is provided on cognitive and neural construct validity, sensitivity to behavioral or pharmacological manipulations, availability of animal models, psychometric characteristics, effects of schizophrenia, and avenues for future development.

  2. Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients.

    Science.gov (United States)

    Nicolasjilwan, Manal; Hu, Ying; Yan, Chunhua; Meerzaman, Daoud; Holder, Chad A; Gutman, David; Jain, Rajan; Colen, Rivka; Rubin, Daniel L; Zinn, Pascal O; Hwang, Scott N; Raghavan, Prashant; Hammoud, Dima A; Scarpace, Lisa M; Mikkelsen, Tom; Chen, James; Gevaert, Olivier; Buetow, Kenneth; Freymann, John; Kirby, Justin; Flanders, Adam E; Wintermark, Max

    2015-07-01

    The purpose of our study was to assess whether a model combining clinical factors, MR imaging features, and genomics would better predict overall survival of patients with glioblastoma (GBM) than either individual data type. The study was conducted leveraging The Cancer Genome Atlas (TCGA) effort supported by the National Institutes of Health. Six neuroradiologists reviewed MRI images from The Cancer Imaging Archive (http://cancerimagingarchive.net) of 102 GBM patients using the VASARI scoring system. The patients' clinical and genetic data were obtained from the TCGA website (http://www.cancergenome.nih.gov/). Patient outcome was measured in terms of overall survival time. The association between different categories of biomarkers and survival was evaluated using Cox analysis. The features that were significantly associated with survival were: (1) clinical factors: chemotherapy; (2) imaging: proportion of tumor contrast enhancement on MRI; and (3) genomics: HRAS copy number variation. The combination of these three biomarkers resulted in an incremental increase in the strength of prediction of survival, with the model that included clinical, imaging, and genetic variables having the highest predictive accuracy (area under the curve 0.679±0.068, Akaike's information criterion 566.7, P<0.001). A combination of clinical factors, imaging features, and HRAS copy number variation best predicts survival of patients with GBM. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Addition of MR Imaging Features and Genetic Biomarkers Strengthen Glioblastoma Survival Prediction in TCGA Patients

    Science.gov (United States)

    Nicolasjilwan, Manal; Hu, Ying; Yan, Chunhua; Meerzaman, Daoud; Holder, Chad A.; Gutman, David; Jain, Rajan; Colen, Rivka; Rubin, Daniel L.; Zinn, Pascal O.; Hwang, Scott N.; Raghavan, Prashant; Hammoud, Dima A; Scarpace, Lisa M; Mikkelsen, Tom; Chen, James; Gevaert, Olivier; Buetow, Kenneth; Freymann, John; Kirby, Justin; Flanders, Adam E.; Wintermark, Max

    2017-01-01

    PURPOSE The purpose of our study was to assess whether a model combining clinical factors, MR imaging features, and genomics would better predict overall survival of patients with glioblastoma (GBM) than either individual data type. METHODS The study was conducted leveraging the Cancer Genome Atlas (TCGA) effort supported by the National Institutes of Health. Six neuroradiologists reviewed MRI images from The Cancer Imaging Archive (http://cancerimagingarchive.net) of 102 GBM patients using the VASARI scoring system. The patients’ clinical and genetic data were obtained from the TCGA website (http://www.cancergenome.nih.gov/). Patient outcome was measured in terms of overall survival time. The association between different categories of biomarkers and survival was evaluated using Cox analysis. RESULTS The features that were significantly associated with survival were: 1) clinical factors: chemotherapy; 2) imaging: proportion of tumor contrast enhancement on MRI, and 3) genomics: HRAS copy number variation. The combination of these three biomarkers resulted in an incremental increase in the strength of prediction of survival, with the model that included clinical, imaging, and genetic variables having the highest predictive accuracy (area under the curve 0.679 ± 0.068, Akaike’s information criterion 566.7, p < 0.001). CONCLUSION A combination of clinical factors, imaging features, and HRAS copy number variation best predicts survival of patients with GBM. PMID:24997477

  4. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods

    Directory of Open Access Journals (Sweden)

    Ahmed R

    2014-03-01

    Full Text Available Rafay Ahmed,1 Matthew J Oborski,2 Misun Hwang,1 Frank S Lieberman,3 James M Mountz11Department of Radiology, 2Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; 3Department of Neurology and Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USAAbstract: Malignant gliomas consist of glioblastomas, anaplastic astrocytomas, anaplastic oligodendrogliomas and anaplastic oligoastrocytomas, and some less common tumors such as anaplastic ependymomas and anaplastic gangliogliomas. Malignant gliomas have high morbidity and mortality. Even with optimal treatment, median survival is only 12–15 months for glioblastomas and 2–5 years for anaplastic gliomas. However, recent advances in imaging and quantitative analysis of image data have led to earlier diagnosis of tumors and tumor response to therapy, providing oncologists with a greater time window for therapy management. In addition, improved understanding of tumor biology, genetics, and resistance mechanisms has enhanced surgical techniques, chemotherapy methods, and radiotherapy administration. After proper diagnosis and institution of appropriate therapy, there is now a vital need for quantitative methods that can sensitively detect malignant glioma response to therapy at early follow-up times, when changes in management of nonresponders can have its greatest effect. Currently, response is largely evaluated by measuring magnetic resonance contrast and size change, but this approach does not take into account the key biologic steps that precede tumor size reduction. Molecular imaging is ideally suited to measuring early response by quantifying cellular metabolism, proliferation, and apoptosis, activities altered early in treatment. We expect that successful integration of quantitative imaging biomarker assessment into the early phase of clinical trials could provide a novel approach for testing new therapies

  5. Quantitative magnetic resonance imaging of cortical multiple sclerosis pathology

    DEFF Research Database (Denmark)

    Tardif, Christine L; Bedell, Barry J; Eskildsen, Simon Fristed

    2012-01-01

    pathology. The objective of this study was to characterize the MRI signature of CLs to help interpret the changes seen in vivo and elucidate the factors limiting their visualization. A quantitative 3D high-resolution (350 μm isotropic) MRI study at 3 Tesla of a fixed post mortem cerebral hemisphere from......Although significant improvements have been made regarding the visualization and characterization of cortical multiple sclerosis (MS) lesions using magnetic resonance imaging (MRI), cortical lesions (CL) continue to be under-detected in vivo, and we have a limited understanding of the causes of GM...... a patient with MS is presented in combination with matched immunohistochemistry. Type III subpial lesions are characterized by an increase in T1, T2 and M0, and a decrease in MTR in comparison to the normal appearing cortex (NAC). All quantitative MR parameters were associated with cortical GM myelin...

  6. Quantitative damage imaging using Lamb wave diffraction tomography

    Science.gov (United States)

    Zhang, Hai-Yan; Ruan, Min; Zhu, Wen-Fa; Chai, Xiao-Dong

    2016-12-01

    In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb waves generated numerically. Finite element simulations are carried out to provide the scattered wave data. The validity of the finite element model is confirmed by the comparison of scattering directivity pattern (SDP) of circle blind hole damage between the finite element simulations and the analytical results. The imaging method is based on a theoretical relation between the one-dimensional (1D) Fourier transform of the scattered projection and two-dimensional (2D) spatial Fourier transform of the scattering object. A quantitative image of the damage is obtained by carrying out the 2D inverse Fourier transform of the scattering object. The proposed approach employs a circle transducer network containing forward and backward projections, which lead to so-called transmission mode (TMDT) and reflection mode diffraction tomography (RMDT), respectively. The reconstructed results of the two projections for a non-converted S0 scattered mode are investigated to illuminate the influence of the scattering field data. The results show that Lamb wave diffraction tomography using the combination of TMDT and RMDT improves the imaging effect compared with by using only the TMDT or RMDT. The scattered data of the converted A0 mode are also used to assess the performance of the diffraction tomography method. It is found that the circle and elliptical shaped damages can still be reasonably identified from the reconstructed images while the reconstructed results of other complex shaped damages like crisscross rectangles and racecourse are relatively poor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474195, 11274226, 11674214, and 51478258).

  7. Automated recognition of cell phenotypes in histology images based on membrane- and nuclei-targeting biomarkers

    Directory of Open Access Journals (Sweden)

    Tözeren Aydın

    2007-09-01

    Full Text Available Abstract Background Three-dimensional in vitro culture of cancer cells are used to predict the effects of prospective anti-cancer drugs in vivo. In this study, we present an automated image analysis protocol for detailed morphological protein marker profiling of tumoroid cross section images. Methods Histologic cross sections of breast tumoroids developed in co-culture suspensions of breast cancer cell lines, stained for E-cadherin and progesterone receptor, were digitized and pixels in these images were classified into five categories using k-means clustering. Automated segmentation was used to identify image regions composed of cells expressing a given biomarker. Synthesized images were created to check the accuracy of the image processing system. Results Accuracy of automated segmentation was over 95% in identifying regions of interest in synthesized images. Image analysis of adjacent histology slides stained, respectively, for Ecad and PR, accurately predicted regions of different cell phenotypes. Image analysis of tumoroid cross sections from different tumoroids obtained under the same co-culture conditions indicated the variation of cellular composition from one tumoroid to another. Variations in the compositions of cross sections obtained from the same tumoroid were established by parallel analysis of Ecad and PR-stained cross section images. Conclusion Proposed image analysis methods offer standardized high throughput profiling of molecular anatomy of tumoroids based on both membrane and nuclei markers that is suitable to rapid large scale investigations of anti-cancer compounds for drug development.

  8. Novel plasma and imaging biomarkers in heart failure with preserved ejection fraction

    Directory of Open Access Journals (Sweden)

    Prathap Kanagala

    2015-12-01

    Full Text Available Existing diagnostic guidelines for heart failure with preserved ejection fraction (HFPEF primarily comprise natriuretic peptides and echocardiographic assessment, highlighting the role of diastolic dysfunction. However, recent discoveries of novel plasma markers implicated in pathophysiology of heart failure and technological advances in imaging provide additional biomarkers which are potentially applicable to HFPEF. The evidence base for plasma extra-cellular matrix (ECM peptides, galectin-3, ST2, GDF-15 and pentraxin-3 is reviewed. Furthermore, the capabilities of novel imaging techniques to assess existing parameters (e.g. left ventricular ejection fraction, systolic & diastolic function, chamber size and additional derangements of the ECM, myocardial mechanics and ischaemia evaluation are addressed.

  9. Texture analysis of liver fibrosis microscopic images: a study on the effect of biomarkers

    Institute of Scientific and Technical Information of China (English)

    Amr Amin; Doaa Mahmoud-Ghoneim

    2011-01-01

    Chronic hepatic injury results in liver fibrosis with eventual progression to irreversible cirrhosis. Liver fibrogenesis involves the activation of the quiescent hepatic stellate cell into an activated myofibroblast that is characterized by α-smooth muscle actin (α-SMA) expression and the production of collagens (types Ⅰ and Ⅲ). In the present study,rats were randomly divided into three groups: (i) control group, where rats were only treated with a vehicle; (ii) fibrosis group, where rats were treated with carbon tetrachloride (CCl4) to induce liver fibrosis; and (iii) silymarin group,where rats were protected with silymarin during CCl4 treatment. Rats were sacrificed and sections of liver tissue were counterstained with hematoxylin and eosin and Masson's trichrome. Other sections were immunostained using collagens and α-SMA primary antibodies. Fibrosis was confirmed using serum marker measurements. Microscopic images of the stained sections were acquired and digitized.The Biomarker Index of Fibrosis (BIF) was calculated from the images by quantifying the percentage of stained fibers.Statistical methods of texture analysis (TA), namely cooccurrence and run-length matrices, were applied on the digital images followed by classification using agglomerative hierarchical clustering and linear discriminant analysis with cross validation. TA applied on different biomarkers was successful in discriminating between the groups,showing 100% sensitivity and specificity for classification between the control and fibrosis groups using any biomarker. Some classification attempts showed dependence on the biomarker used, especially for classification between the silymarin and fibrosis groups, which showed optimal results using Masson's trichrome. TA results were consistent with both BIF and serum marker measurements.

  10. Quantitative measure in image segmentation for skin lesion images: A preliminary study

    Science.gov (United States)

    Azmi, Nurulhuda Firdaus Mohd; Ibrahim, Mohd Hakimi Aiman; Keng, Lau Hui; Ibrahim, Nuzulha Khilwani; Sarkan, Haslina Md

    2014-12-01

    Automatic Skin Lesion Diagnosis (ASLD) allows skin lesion diagnosis by using a computer or mobile devices. The idea of using a computer to assist in diagnosis of skin lesions was first proposed in the literature around 1985. Images of skin lesions are analyzed by the computer to capture certain features thought to be characteristic of skin diseases. These features (expressed as numeric values) are then used to classify the image and report a diagnosis. Image segmentation is often a critical step in image analysis and it may use statistical classification, thresholding, edge detection, region detection, or any combination of these techniques. Nevertheless, image segmentation of skin lesion images is yet limited to superficial evaluations which merely display images of the segmentation results and appeal to the reader's intuition for evaluation. There is a consistent lack of quantitative measure, thus, it is difficult to know which segmentation present useful results and in which situations they do so. If segmentation is done well, then, all other stages in image analysis are made simpler. If significant features (that are crucial for diagnosis) are not extracted from images, it will affect the accuracy of the automated diagnosis. This paper explore the existing quantitative measure in image segmentation ranging in the application of pattern recognition for example hand writing, plat number, and colour. Selecting the most suitable segmentation measure is highly important so that as much relevant features can be identified and extracted.

  11. Quantitative volumetric Raman imaging of three dimensional cell cultures

    Science.gov (United States)

    Kallepitis, Charalambos; Bergholt, Mads S.; Mazo, Manuel M.; Leonardo, Vincent; Skaalure, Stacey C.; Maynard, Stephanie A.; Stevens, Molly M.

    2017-03-01

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell-material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  12. Quantitative blood flow velocity imaging using laser speckle flowmetry

    Science.gov (United States)

    Nadort, Annemarie; Kalkman, Koen; van Leeuwen, Ton G.; Faber, Dirk J.

    2016-04-01

    Laser speckle flowmetry suffers from a debated quantification of the inverse relation between decorrelation time (τc) and blood flow velocity (V), i.e. 1/τc = αV. Using a modified microcirculation imager (integrated sidestream dark field - laser speckle contrast imaging [SDF-LSCI]), we experimentally investigate on the influence of the optical properties of scatterers on α in vitro and in vivo. We found a good agreement to theoretical predictions within certain limits for scatterer size and multiple scattering. We present a practical model-based scaling factor to correct for multiple scattering in microcirculatory vessels. Our results show that SDF-LSCI offers a quantitative measure of flow velocity in addition to vessel morphology, enabling the quantification of the clinically relevant blood flow, velocity and tissue perfusion.

  13. Quantitative image analysis of WE43-T6 cracking behavior

    Science.gov (United States)

    Ahmad, A.; Yahya, Z.

    2013-06-01

    Environment-assisted cracking of WE43 cast magnesium (4.2 wt.% Yt, 2.3 wt.% Nd, 0.7% Zr, 0.8% HRE) in the T6 peak-aged condition was induced in ambient air in notched specimens. The mechanism of fracture was studied using electron backscatter diffraction, serial sectioning and in situ observations of crack propagation. The intermetallic (rare earthed-enriched divorced intermetallic retained at grain boundaries and predominantly at triple points) material was found to play a significant role in initiating cracks which leads to failure of this material. Quantitative measurements were required for this project. The populations of the intermetallic and clusters of intermetallic particles were analyzed using image analysis of metallographic images. This is part of the work to generate a theoretical model of the effect of notch geometry on the static fatigue strength of this material.

  14. Quantitative volumetric Raman imaging of three dimensional cell cultures

    KAUST Repository

    Kallepitis, Charalambos

    2017-03-22

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell–material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  15. A Quantitative Electrophysiological Biomarker of Duplication 15q11.2-q13.1 Syndrome

    Science.gov (United States)

    Frohlich, Joel; Senturk, Damla; Saravanapandian, Vidya; Golshani, Peyman; Reiter, Lawrence T.; Sankar, Raman; Thibert, Ronald L.; DiStefano, Charlotte; Huberty, Scott; Cook, Edwin H.; Jeste, Shafali S.

    2016-01-01

    Background Duplications of 15q11.2-q13.1 (Dup15q syndrome) are highly penetrant for autism spectrum disorder (ASD). A distinct electrophysiological (EEG) pattern characterized by excessive activity in the beta band has been noted in clinical reports. We asked whether EEG power in the beta band, as well as in other frequency bands, distinguished children with Dup15q syndrome from those with non-syndromic ASD and then examined the clinical correlates of this electrophysiological biomarker in Dup15q syndrome. Methods In the first study, we recorded spontaneous EEG from children with Dup15q syndrome (n = 11), age-and-IQ-matched children with ASD (n = 10) and age-matched typically developing (TD) children (n = 9) and computed relative power in 6 frequency bands for 9 regions of interest (ROIs). Group comparisons were made using a repeated measures analysis of variance. In the second study, we recorded spontaneous EEG from a larger cohort of individuals with Dup15q syndrome (n = 27) across two sites and examined age, epilepsy, and duplication type as predictors of beta power using simple linear regressions. Results In the first study, spontaneous beta1 (12–20 Hz) and beta2 (20–30 Hz) power were significantly higher in Dup15q syndrome compared with both comparison groups, while delta (1–4 Hz) was significantly lower than both comparison groups. Effect sizes in all three frequency bands were large (|d| > 1). In the second study, we found that beta2 power was significantly related to epilepsy diagnosis in Dup15q syndrome. Conclusions Here, we have identified an electrophysiological biomarker of Dup15q syndrome that may facilitate clinical stratification, treatment monitoring, and measurement of target engagement for future clinical trials. Future work will investigate the genetic and neural underpinnings of this electrophysiological signature as well as the functional consequences of excessive beta oscillations in Dup15q syndrome. PMID:27977700

  16. Quantitative analysis of brain magnetic resonance imaging for hepatic encephalopathy

    Science.gov (United States)

    Syh, Hon-Wei; Chu, Wei-Kom; Ong, Chin-Sing

    1992-06-01

    High intensity lesions around ventricles have recently been observed in T1-weighted brain magnetic resonance images for patients suffering hepatic encephalopathy. The exact etiology that causes magnetic resonance imaging (MRI) gray scale changes has not been totally understood. The objective of our study was to investigate, through quantitative means, (1) the amount of changes to brain white matter due to the disease process, and (2) the extent and distribution of these high intensity lesions, since it is believed that the abnormality may not be entirely limited to the white matter only. Eleven patients with proven haptic encephalopathy and three normal persons without any evidence of liver abnormality constituted our current data base. Trans-axial, sagittal, and coronal brain MRI were obtained on a 1.5 Tesla scanner. All processing was carried out on a microcomputer-based image analysis system in an off-line manner. Histograms were decomposed into regular brain tissues and lesions. Gray scale ranges coded as lesion were then brought back to original images to identify distribution of abnormality. Our results indicated the disease process involved pallidus, mesencephalon, and subthalamic regions.

  17. A Quantitative Method for Microtubule Analysis in Fluorescence Images.

    Science.gov (United States)

    Lan, Xiaodong; Li, Lingfei; Hu, Jiongyu; Zhang, Qiong; Dang, Yongming; Huang, Yuesheng

    2015-12-01

    Microtubule analysis is of significant value for a better understanding of normal and pathological cellular processes. Although immunofluorescence microscopic techniques have proven useful in the study of microtubules, comparative results commonly rely on a descriptive and subjective visual analysis. We developed an objective and quantitative method based on image processing and analysis of fluorescently labeled microtubular patterns in cultured cells. We used a multi-parameter approach by analyzing four quantifiable characteristics to compose our quantitative feature set. Then we interpreted specific changes in the parameters and revealed the contribution of each feature set using principal component analysis. In addition, we verified that different treatment groups could be clearly discriminated using principal components of the multi-parameter model. High predictive accuracy of four commonly used multi-classification methods confirmed our method. These results demonstrated the effectiveness and efficiency of our method in the analysis of microtubules in fluorescence images. Application of the analytical methods presented here provides information concerning the organization and modification of microtubules, and could aid in the further understanding of structural and functional aspects of microtubules under normal and pathological conditions.

  18. Alzheimer's disease imaging biomarkers using small-angle x-ray scattering

    Science.gov (United States)

    Choi, Mina; Alam, Nadia; Dahal, Eshan; Ghammraoui, Bahaa; Badano, Aldo

    2016-03-01

    There is a need for novel imaging techniques for the earlier detection of Alzheimer's disease (AD). Two hallmarks of AD are amyloid beta (Aβ) plaques and tau tangles that are formed in the brain. Well-characterized x-ray cross sections of Aβ and tau proteins in a variety of structural states could potentially be used as AD biomarkers for small-angle x-ray scattering (SAXS) imaging without the need for injectable probes or contrast agents. First, however, the protein structures must be controlled and measured to determine accurate biomarkers for SAXS imaging. Here we report SAXS measurements of Aβ42 and tau352 in a 50% dimethyl sulfoxide (DMSO) solution in which these proteins are believed to remain monomeric because of the stabilizing interaction of DMSO solution. Our SAXS analysis showed the aggregation of both proteins. In particular, we found that the aggregation of Aβ42 slowly progresses with time in comparison to tau352 that aggregates at a faster rate and reaches a steady-state. Furthermore, the measured signals were compared to the theoretical SAXS profiles of Aβ42 monomer, Aβ42 fibril, and tau352 that were computed from their respective protein data bank structures. We have begun the work to systematically control the structural states of these proteins in vitro using various solvent conditions. Our future work is to utilize the distinct SAXS profiles of various structural states of Aβ and tau to build a library of signals of interest for SAXS imaging in brain tissue.

  19. Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.

    Science.gov (United States)

    Rakvongthai, Yothin; El Fakhri, Georges

    2017-07-01

    Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Quantitative computed tomographic imaging-based clustering differentiates asthmatic subgroups with distinctive clinical phenotypes.

    Science.gov (United States)

    Choi, Sanghun; Hoffman, Eric A; Wenzel, Sally E; Castro, Mario; Fain, Sean; Jarjour, Nizar; Schiebler, Mark L; Chen, Kun; Lin, Ching-Long

    2017-09-01

    Imaging variables, including airway diameter, wall thickness, and air trapping, have been found to be important metrics when differentiating patients with severe asthma from those with nonsevere asthma and healthy subjects. The objective of this study was to identify imaging-based clusters and to explore the association of the clusters with existing clinical metrics. We performed an imaging-based cluster analysis using quantitative computed tomography-based structural and functional variables extracted from the respective inspiration and expiration scans of 248 asthmatic patients. The imaging-based metrics included a broader set of multiscale variables, such as inspiratory airway dimension, expiratory air trapping, and registration-based lung deformation (inspiration vs expiration). Asthma subgroups derived from a clustering method were associated with subject demographics, questionnaire results, medication history, and biomarker variables. Cluster 1 was composed of younger patients with early-onset nonsevere asthma and reversible airflow obstruction and normal airway structure. Cluster 2 was composed of patients with a mix of patients with nonsevere and severe asthma with marginal inflammation who exhibited airway luminal narrowing without wall thickening. Clusters 3 and 4 were dominated by patients with severe asthma. Cluster 3 patients were obese female patients with reversible airflow obstruction who exhibited airway wall thickening without airway narrowing. Cluster 4 patients were late-onset older male subjects with persistent airflow obstruction who exhibited significant air trapping and reduced regional deformation. Cluster 3 and 4 patients also showed decreased lymphocyte and increased neutrophil counts, respectively. Four image-based clusters were identified and shown to be correlated with clinical characteristics. Such clustering serves to differentiate asthma subgroups that can be used as a basis for the development of new therapies. Copyright © 2017

  1. Qualitative and quantitative interpretation of SEM image using digital image processing.

    Science.gov (United States)

    Saladra, Dawid; Kopernik, Magdalena

    2016-10-01

    The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  2. In vivo imaging and quantification of carbonic anhydrase IX expression as an endogenous biomarker of tumor hypoxia.

    Directory of Open Access Journals (Sweden)

    Bagna Bao

    Full Text Available Carbonic anhydrase IX (CA IX is a transmembrane protein that has been shown to be greatly upregulated under conditions of hypoxia in many tumor cell lines. Tumor hypoxia is associated with impaired efficacy of cancer therapies making CA IX a valuable target for preclinical and diagnostic imaging. We have developed a quantitative in vivo optical imaging method for detection of CA IX as a marker of tumor hypoxia based on a near-infrared (NIR fluorescent derivative of the CA IX inhibitor acetazolamide (AZ. The agent (HS680 showed single digit nanomolar inhibition of CA IX as well as selectivity over other CA isoforms and demonstrated up to 25-fold upregulation of fluorescent CA IX signal in hypoxic versus normoxic cells, which could be blocked by 60%-70% with unlabeled AZ. CA IX negative cell lines (HCT-116 and MDA-MB-231, as well as a non-binding control agent on CA IX positive cells, showed low fluorescent signal under both conditions. In vivo FMT imaging showed tumor accumulation and excellent tumor definition from 6-24 hours. In vivo selectivity was confirmed by pretreatment of the mice with unlabeled AZ resulting in >65% signal inhibition. HS680 tumor signal was further upregulated >2X in tumors by maintaining tumor-bearing mice in a low oxygen (8% atmosphere. Importantly, intravenously injected HS680 signal was co-localized specifically with both CA IX antibody and pimonidazole (Pimo, and was located away from non-hypoxic regions indicated by a Hoechst stain. Thus, we have established a spatial correlation of fluorescence signal obtained by non-invasive, tomographic imaging of HS680 with regions of hypoxia and CA IX expression. These results illustrate the potential of HS680 and combined with FMT imaging to non-invasively quantify CA IX expression as a hypoxia biomarker, crucial to the study of the underlying biology of hypoxic tumors and the development and monitoring of novel anti-cancer therapies.

  3. Real time blood testing using quantitative phase imaging.

    Directory of Open Access Journals (Sweden)

    Hoa V Pham

    Full Text Available We demonstrate a real-time blood testing system that can provide remote diagnosis with minimal human intervention in economically challenged areas. Our instrument combines novel advances in label-free optical imaging with parallel computing. Specifically, we use quantitative phase imaging for extracting red blood cell morphology with nanoscale sensitivity and NVIDIA's CUDA programming language to perform real time cellular-level analysis. While the blood smear is translated through focus, our system is able to segment and analyze all the cells in the one megapixel field of view, at a rate of 40 frames/s. The variety of diagnostic parameters measured from each cell (e.g., surface area, sphericity, and minimum cylindrical diameter are currently not available with current state of the art clinical instruments. In addition, we show that our instrument correctly recovers the red blood cell volume distribution, as evidenced by the excellent agreement with the cell counter results obtained on normal patients and those with microcytic and macrocytic anemia. The final data outputted by our instrument represent arrays of numbers associated with these morphological parameters and not images. Thus, the memory necessary to store these data is of the order of kilobytes, which allows for their remote transmission via, for example, the cellular network. We envision that such a system will dramatically increase access for blood testing and furthermore, may pave the way to digital hematology.

  4. Quantitative phase imaging for cell culture quality control.

    Science.gov (United States)

    Kastl, Lena; Isbach, Michael; Dirksen, Dieter; Schnekenburger, Jürgen; Kemper, Björn

    2017-05-01

    The potential of quantitative phase imaging (QPI) with digital holographic microscopy (DHM) for quantification of cell culture quality was explored. Label-free QPI of detached single cells in suspension was performed by Michelson interferometer-based self-interference DHM. Two pancreatic tumor cell lines were chosen as cellular model and analyzed for refractive index, volume, and dry mass under varying culture conditions. Firstly, adequate cell numbers for reliable statistics were identified. Then, to characterize the performance and reproducibility of the method, we compared results from independently repeated measurements and quantified the cellular response to osmolality changes of the cell culture medium. Finally, it was demonstrated that the evaluation of QPI images allows the extraction of absolute cell parameters which are related to cell layer confluence states. In summary, the results show that QPI enables label-free imaging cytometry, which provides novel complementary integral biophysical data sets for sophisticated quantification of cell culture quality with minimized sample preparation. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  5. Imaging biomarkers in prostate cancer: role of PET/CT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Picchio, M.; Mapelli, P.; Incerti, E.; Gianolli, L. [IRCCS San Raffaele Scientific Institute, Nuclear Medicine Unit, Milan (Italy); Panebianco, V.; Barchetti, F. [Sapienza University, Department of Radiological Sciences, Oncology and Pathology, Rome (Italy); Castellucci, P.; Nanni, C.; Fanti, S. [Policlinico S. Orsola Malpighi - University of Bologna, Nuclear Medicine Unit, Bologna (Italy); Briganti, A.; Gandaglia, G.; Montorsi, F. [Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan (Italy); Kirienko, M. [University of Milano-Bicocca, Milan (Italy)

    2015-04-01

    Prostate-specific antigen (PSA) is currently the most widely used biomarker of prostate cancer (PCa). PSA suggests the presence of primary tumour and disease relapse after treatment, but it is not able to provide a clear distinction between locoregional and distant disease. Molecular and functional imaging, that are able to provide a detailed and comprehensive overview of PCa extension, are more reliable tools for primary tumour detection and disease extension assessment both in staging and restaging. In the present review we evaluate the role of PET/CT and MRI in the diagnosis, staging and restaging of PCa, and the use of these imaging modalities in prognosis, treatment planning and response assessment. Innovative imaging strategies including new radiotracers and hybrid scanners such as PET/MRI are also discussed. (orig.)

  6. Qualitative and quantitative determination of human biomarkers by laser photoacoustic spectroscopy methods

    Science.gov (United States)

    Popa, C.; Bratu, A. M.; Matei, C.; Cernat, R.; Popescu, A.; Dumitras, D. C.

    2011-07-01

    The hypothesis that blood, urine and other body fluids and tissues can be sampled and analyzed to produce clinical information for disease diagnosis or therapy monitoring is the basis of modern clinical diagnosis and medical practice. The analysis of breath air has major advantages because it is a non-invasive method, represents minimal risk to personnel collecting the samples and can be often sampled. Breath air samples from the human subjects were collected using aluminized bags from QuinTron and analyzed using the laser photoacoustic spectroscopy (LPAS) technique. LPAS is used to detect traces of ethylene in breath air resulting from lipid peroxidation in lung epithelium following the radiotherapy and also traces of ammonia from patients subjected to hemodialysis for treatment of renal failure. In the case of patients affected by cancer and treated by external radiotherapy, all measurements were done at 10P(14) CO2 laser line, where the ethylene absorption coefficient has the largest value (30.4 cm-1 atm-1), whereas for patients affected by renal failure and treated by standard dialysis, all measurements were performed at 9R(30) CO2 laser line, where the ammonia absorption coefficient has the maximum value of 57 cm-1 atm-1. The levels of ethylene and ammonia in exhaled air, from patients with cancer and renal failure, respectively, were measured and compared with breath air contents from healthy humans. Human gas biomarkers were measured at sub-ppb (parts per billion) concentration sensitivities. It has been demonstrated that LPAS technique will play an important role in the future of exhaled breath air analysis. The key attributes of this technique are sensitivity, selectivity, fast and real time response, as well as its simplicity.

  7. Diffusion-Weighted Magnetic Resonance Imaging as a Cancer Biomarker: Consensus and Recommendations

    Directory of Open Access Journals (Sweden)

    Anwar R. Padhani

    2009-02-01

    Full Text Available On May 3, 2008, a National Cancer Institute (NCI-sponsored open consensus conference was held in Toronto, Ontario, Canada, during the 2008 International Society for Magnetic Resonance in Medicine Meeting. Approximately 100 experts and stakeholders summarized the current understanding of diffusion-weighted magnetic resonance imaging (DW-MRI and reached consensus on the use of DW-MRI as a cancer imaging biomarker. DW-MRI should be tested as an imaging biomarker in the context of well-defined clinical trials, by adding DW-MRI to existing NCI-sponsored trials, particularly those with tissue sampling or survival indicators. Where possible, DW-MRI measurements should be compared with histologic indices including cellularity and tissue response. There is a need for tissue equivalent diffusivity phantoms; meanwhile, simple fluid-filled phantoms should be used. Monoexponential assessments of apparent diffusion coefficient values should use two b values (> 100 and between 500 and 1000 mm2/sec depending on the application. Free breathing with multiple acquisitions is superior to complex gating techniques. Baseline patient reproducibility studies should be part of study designs. Both region of interest and histogram analysis of apparent diffusion coefficient measurements should be obtained. Standards for measurement, analysis, and display are needed. Annotated data from validation studies (along with outcome measures should be made publicly available. Magnetic resonance imaging vendors should be engaged in this process. The NCI should establish a task force of experts (physicists, radiologists, and oncologists to plan, organize technical aspects, and conduct pilot trials. The American College of Radiology Imaging Network infrastructure may be suitable for these purposes. There is an extraordinary opportunity for DW-MRI to evolve into a clinically valuable imaging tool, potentially important for drug development.

  8. Biomarkers for Musculoskeletal Pain Conditions: Use of Brain Imaging and Machine Learning.

    Science.gov (United States)

    Boissoneault, Jeff; Sevel, Landrew; Letzen, Janelle; Robinson, Michael; Staud, Roland

    2017-01-01

    Chronic musculoskeletal pain condition often shows poor correlations between tissue abnormalities and clinical pain. Therefore, classification of pain conditions like chronic low back pain, osteoarthritis, and fibromyalgia depends mostly on self report and less on objective findings like X-ray or magnetic resonance imaging (MRI) changes. However, recent advances in structural and functional brain imaging have identified brain abnormalities in chronic pain conditions that can be used for illness classification. Because the analysis of complex and multivariate brain imaging data is challenging, machine learning techniques have been increasingly utilized for this purpose. The goal of machine learning is to train specific classifiers to best identify variables of interest on brain MRIs (i.e., biomarkers). This report describes classification techniques capable of separating MRI-based brain biomarkers of chronic pain patients from healthy controls with high accuracy (70-92%) using machine learning, as well as critical scientific, practical, and ethical considerations related to their potential clinical application. Although self-report remains the gold standard for pain assessment, machine learning may aid in the classification of chronic pain disorders like chronic back pain and fibromyalgia as well as provide mechanistic information regarding their neural correlates.

  9. Three modality image registration of brain SPECT/CT and MR images for quantitative analysis of dopamine transporter imaging

    Science.gov (United States)

    Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi

    2016-03-01

    Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.

  10. Automatic labeling of molecular biomarkers on a cell-by-cell basis in immunohistochemistry images using convolutional neural networks

    Science.gov (United States)

    Sheikhzadeh, Fahime; Carraro, Anita; Korbelik, Jagoda; MacAulay, Calum; Guillaud, Martial; Ward, Rabab K.

    2016-03-01

    This paper addresses the problem of classifying cells expressing different biomarkers. A deep learning based method that can automatically localize and count the cells expressing each of the different biomarkers is proposed. To classify the cells, a Convolutional Neural Network (CNN) was employed. Images of Immunohistochemistry (IHC) stained slides that contain these cells were digitally scanned. The images were taken from digital scans of IHC stained cervical tissues, acquired for a clinical trial. More than 4,500 RGB images of cells were used to train the CNN. To evaluate our method, the cells were first manually labeled based on the expressing biomarkers. Then we performed the classification on 156 randomly selected images of cells that were not used in training the CNN. The accuracy of the classification was 92% in this preliminary data set. The results have shown that this method has a good potential in developing an automatic method for immunohistochemical analysis.

  11. Strategies for early detection of cardiotoxicities from anticancer therapy in adults: evolving imaging techniques and emerging serum biomarkers.

    Science.gov (United States)

    Akhter, Nausheen; Murtagh, Gillian; Yancy, Clyde

    2015-01-01

    Significant advances have been made in detecting cancer therapeutics-related cardiac dysfunction with serum biomarkers, cardiovascular MRI, echocardiography and multi-modality approaches. Serum biomarkers, notably cardiac troponins and natriuretic peptides, have been evaluated for their prognostic ability in predicting left ventricular dysfunction. Imaging modalities, such as cardiovascular MRI and echocardiography, have been used for cardiac surveillance of patients with cancer undergoing chemotherapy. Developments in imaging, specifically myocardial deformation imaging, also known as strain, have been shown to be sensitive tools in detecting early changes in cardiac function. This review aims to synthesize the evidence that supports emerging serum biomarkers and complementary imaging modalities that continue to enhance the detection of cancer therapeutics-related cardiac dysfunction.

  12. Quantitative description of electroluminescence images of polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Seeland, Marco; Roesch, Roland; Hoppe, Harald [Institute of Physics, Ilmenau University of Technology, Ilmenau (Germany)

    2011-07-01

    We present a quantitative description of electroluminescence images obtained on organic solar cells, which is based on a device modeling employing a network of interconnected microdiodes. The equivalent circuit network model takes interface and bulk resistances as well as the sheet resistance of the transparent electrode into account. The application of this model allows direct calculation of the lateral current and voltage distribution as well as determination of internal resistances and the sheet resistance of the higher resistive electrode. Furthermore, we have extended the microdiode-model to also describe and predict current voltage characteristics for devices under illumination. Finally the local nature of this description enables important conclusions concerning the geometry dependent performance of thin film solar cells.

  13. Realization of quantitative-grade fieldable snapshot imaging spectropolarimeter.

    Science.gov (United States)

    Jones, Stephen; Iannarilli, Frank; Kebabian, Paul

    2004-12-27

    We discuss achievement of a long-standing technology goal: the first practical realization of a quantitative-grade, field-worthy snapshot imaging spectropolarimeter. The instrument employs Polarimetric Spectral Intensity Modulation (PSIM), a technique that enables full Stokes instantaneous "snapshot" spectropolarimetry with perfect channel registration. This is achieved with conventional single beam optics and a single focal plane array (FPA). Simultaneity and perfect registration are obtained by encoding the polarimetry onto the spectrum via a novel optical arrangement which enables sensing from moving platforms against dynamic scenes. PSIM is feasible across the electro-optical sensing range (UV-LWIR). We present measurement results from a prototype sensor that operates in the visible and near infrared regime (450-900 nm). We discuss in some detail the calibration and Stokes spectrum inversion algorithms that are presently achieving 0.5% polarimetric accuracy.

  14. Quantitative thermo-acoustic imaging: An exact reconstruction formula

    CERN Document Server

    Ammari, Habib; Jing, Wenjia; Nguyen, Loc

    2012-01-01

    The quantitative thermo-acoustic imaging is considered in this paper. Given several data sets of electromagnetic data, we first establish an exact formula for the absorption coefficient, which involves derivatives of the given data up to the third order. However, because of the dependence of such derivatives, this formula is unstable in the sense that small measurement noises may cause large errors. Hence, with the presence of noise, the obtained formula, together with noise regularization, provides an initial guess for the true absorption coefficient. We next correct the errors by deriving a reconstruction formula based on the least square solution of an optimal control problem and show that this optimization step reduces the errors occurring.

  15. Quantitative surface evaluation by matching experimental and simulated ronchigram images

    Science.gov (United States)

    Kantún Montiel, Juana Rosaura; Cordero Dávila, Alberto; González García, Jorge

    2011-09-01

    To estimate qualitatively the surface errors with Ronchi test, the experimental and simulated ronchigrams are compared. Recently surface errors have been obtained quantitatively matching the intersection point coordinates of ronchigrama fringes with x-axis . In this case, gaussian fit must be done for each fringe, and interference orders are used in Malacara algorithm for the simulations. In order to evaluate surface errors, we added an error function in simulations, described with cubic splines, to the sagitta function of the ideal surface. We used the vectorial transversal aberration formula and a ruling with cosinusoidal transmittance, because these rulings reproduce better experimental ronchigram fringe profiles. Several error functions are tried until the whole experimental ronchigrama image is reproduced. The optimization process was done using genetic algorithms.

  16. Accuracy of quantitative reconstructions in SPECT/CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbinin, S; Celler, A [Department of Radiology, University of British Columbia, 366-828 West 10th Avenue, Vancouver BC, V5Z 1L8 (Canada); Belhocine, T; Vanderwerf, R; Driedger, A [Department of Nuclear Medicine, London Health Sciences Centre, 375 South Street, PO Box 5375, London ON, N6A 4G5 (Canada)], E-mail: shcher2@interchange.ubc.ca

    2008-09-07

    The goal of this study was to determine the quantitative accuracy of our OSEM-APDI reconstruction method based on SPECT/CT imaging for Tc-99m, In-111, I-123, and I-131 isotopes. Phantom studies were performed on a SPECT/low-dose multislice CT system (Infinia-Hawkeye-4 slice, GE Healthcare) using clinical acquisition protocols. Two radioactive sources were centrally and peripherally placed inside an anthropometric Thorax phantom filled with non-radioactive water. Corrections for attenuation, scatter, collimator blurring and collimator septal penetration were applied and their contribution to the overall accuracy of the reconstruction was evaluated. Reconstruction with the most comprehensive set of corrections resulted in activity estimation with error levels of 3-5% for all the isotopes.

  17. Quantitative Magnetic Resonance Imaging of Cortical Multiple Sclerosis Pathology

    Directory of Open Access Journals (Sweden)

    Christine L. Tardif

    2012-01-01

    Full Text Available Although significant improvements have been made regarding the visualization and characterization of cortical multiple sclerosis (MS lesions using magnetic resonance imaging (MRI, cortical lesions (CL continue to be under-detected in vivo, and we have a limited understanding of the causes of GM pathology. The objective of this study was to characterize the MRI signature of CLs to help interpret the changes seen in vivo and elucidate the factors limiting their visualization. A quantitative 3D high-resolution (350 μm isotropic MRI study at 3 Tesla of a fixed post mortem cerebral hemisphere from a patient with MS is presented in combination with matched immunohistochemistry. Type III subpial lesions are characterized by an increase in T1, T2 and M0, and a decrease in MTR in comparison to the normal appearing cortex (NAC. All quantitative MR parameters were associated with cortical GM myelin content, while T1 showed the strongest correlation. The histogram analysis showed extensive overlap between CL and NAC for all MR parameters and myelin content. This is due to the poor contrast in myelin content between CL and NAC in comparison to the variability in myelo-architecture throughout the healthy cortex. This latter comparison is highlighted by the representation of T1 times on cortical surfaces at several laminar depths.

  18. Reverse Phase Protein Arrays—Quantitative Assessment of Multiple Biomarkers in Biopsies for Clinical Use

    Directory of Open Access Journals (Sweden)

    Stefanie Boellner

    2015-03-01

    Full Text Available Reverse Phase Protein Arrays (RPPA represent a very promising sensitive and precise high-throughput technology for the quantitative measurement of hundreds of signaling proteins in biological and clinical samples. This array format allows quantification of one protein or phosphoprotein in multiple samples under the same experimental conditions at the same time. Moreover, it is suited for signal transduction profiling of small numbers of cultured cells or cells isolated from human biopsies, including formalin fixed and paraffin embedded (FFPE tissues. Owing to the much easier sample preparation, as compared to mass spectrometry based technologies, and the extraordinary sensitivity for the detection of low-abundance signaling proteins over a large linear range, RPPA have the potential for characterization of deregulated interconnecting protein pathways and networks in limited amounts of sample material in clinical routine settings. Current aspects of RPPA technology, including dilution curves, spotting, controls, signal detection, antibody validation, and calculation of protein levels are addressed.

  19. Quantitative ultrasound and photoacoustic imaging for the assessment of vascular parameters

    CERN Document Server

    Meiburger, Kristen M

    2017-01-01

    This book describes the development of quantitative techniques for ultrasound and photoacoustic imaging in the assessment of architectural and vascular parameters. It presents morphological vascular research based on the development of quantitative imaging techniques for the use of clinical B-mode ultrasound images, and preclinical architectural vascular investigations on quantitative imaging techniques for ultrasounds and photoacoustics. The book is divided into two main parts, the first of which focuses on the development and validation of quantitative techniques for the assessment of vascular morphological parameters that can be extracted from B-mode ultrasound longitudinal images of the common carotid artery. In turn, the second part highlights quantitative imaging techniques for assessing the architectural parameters of vasculature that can be extracted from 3D volumes, using both contrast-enhanced ultrasound (CEUS) imaging and photoacoustic imaging without the addition of any contrast agent. Sharing and...

  20. Quantitation of Protein Expression and Co-localization Using Multiplexed Immuno-histochemical Staining and Multispectral Imaging.

    Science.gov (United States)

    Bauman, Tyler M; Ricke, Emily A; Drew, Sally A; Huang, Wei; Ricke, William A

    2016-04-08

    Immunohistochemistry is a commonly used clinical and research lab detection technique for investigating protein expression and localization within tissues. Many semi-quantitative systems have been developed for scoring expression using immunohistochemistry, but inherent subjectivity limits reproducibility and accuracy of results. Furthermore, the investigation of spatially overlapping biomarkers such as nuclear transcription factors is difficult with current immunohistochemistry techniques. We have developed and optimized a system for simultaneous investigation of multiple proteins using high throughput methods of multiplexed immunohistochemistry and multispectral imaging. Multiplexed immunohistochemistry is performed by sequential application of primary antibodies with secondary antibodies conjugated to horseradish peroxidase or alkaline phosphatase. Different chromogens are used to detect each protein of interest. Stained slides are loaded into an automated slide scanner and a protocol is created for automated image acquisition. A spectral library is created by staining a set of slides with a single chromogen on each. A subset of representative stained images are imported into multispectral imaging software and an algorithm for distinguishing tissue type is created by defining tissue compartments on images. Subcellular compartments are segmented by using hematoxylin counterstain and adjusting the intrinsic algorithm. Thresholding is applied to determine positivity and protein co-localization. The final algorithm is then applied to the entire set of tissues. Resulting data allows the user to evaluate protein expression based on tissue type (ex. epithelia vs. stroma) and subcellular compartment (nucleus vs. cytoplasm vs. plasma membrane). Co-localization analysis allows for investigation of double-positive, double-negative, and single-positive cell types. Combining multispectral imaging with multiplexed immunohistochemistry and automated image acquisition is an

  1. Multimodal quantitative magnetic resonance imaging of thalamic development and aging across the human lifespan: implications to neurodegeneration in multiple sclerosis.

    Science.gov (United States)

    Hasan, Khader M; Walimuni, Indika S; Abid, Humaira; Frye, Richard E; Ewing-Cobbs, Linda; Wolinsky, Jerry S; Narayana, Ponnada A

    2011-11-16

    The human brain thalami play essential roles in integrating cognitive, sensory, and motor functions. In multiple sclerosis (MS), quantitative magnetic resonance imaging (qMRI) measurements of the thalami provide important biomarkers of disease progression, but late development and aging confound the interpretation of data collected from patients over a wide age range. Thalamic tissue volume loss due to natural aging and its interplay with lesion-driven pathology has not been investigated previously. In this work, we used standardized thalamic volumetry combined with diffusion tensor imaging, T2 relaxometry, and lesion mapping on large cohorts of controls (N = 255, age range = 6.2-69.1 years) and MS patients (N = 109, age range = 20.8-68.5 years) to demonstrate early age- and lesion-independent thalamic neurodegeneration.

  2. Quantitative Image Analysis Techniques with High-Speed Schlieren Photography

    Science.gov (United States)

    Pollard, Victoria J.; Herron, Andrew J.

    2017-01-01

    Optical flow visualization techniques such as schlieren and shadowgraph photography are essential to understanding fluid flow when interpreting acquired wind tunnel test data. Output of the standard implementations of these visualization techniques in test facilities are often limited only to qualitative interpretation of the resulting images. Although various quantitative optical techniques have been developed, these techniques often require special equipment or are focused on obtaining very precise and accurate data about the visualized flow. These systems are not practical in small, production wind tunnel test facilities. However, high-speed photography capability has become a common upgrade to many test facilities in order to better capture images of unsteady flow phenomena such as oscillating shocks and flow separation. This paper describes novel techniques utilized by the authors to analyze captured high-speed schlieren and shadowgraph imagery from wind tunnel testing for quantification of observed unsteady flow frequency content. Such techniques have applications in parametric geometry studies and in small facilities where more specialized equipment may not be available.

  3. Quantitative assessment of hip osteoarthritis based on image texture analysis.

    Science.gov (United States)

    Boniatis, I S; Costaridou, L I; Cavouras, D A; Panagiotopoulos, E C; Panayiotakis, G S

    2006-03-01

    A non-invasive method was developed to investigate the potential capacity of digital image texture analysis in evaluating the severity of hip osteoarthritis (OA) and in monitoring its progression. 19 textural features evaluating patterns of pixel intensity fluctuations were extracted from 64 images of radiographic hip joint spaces (HJS), corresponding to 32 patients with verified unilateral or bilateral OA. Images were enhanced employing custom developed software for the delineation of the articular margins on digitized pelvic radiographs. The severity of OA for each patient was assessed by expert orthopaedists employing the Kellgren and Lawrence (KL) scale. Additionally, an index expressing HJS-narrowing was computed considering patients from the unilateral OA-group. A textural feature that quantified pixel distribution non-uniformity (grey level non-uniformity, GLNU) demonstrated the strongest correlation with the HJS-narrowing index among all extracted features and utilized in further analysis. Classification rules employing GLNU feature were introduced to characterize a hip as normal or osteoarthritic and to assign it to one of three severity categories, formed in accordance with the KL scale. Application of the proposed rules resulted in relatively high classification accuracies in characterizing a hip as normal or osteoarthritic (90.6%) and in assigning it to the correct KL scale category (88.9%). Furthermore, the strong correlation between the HJS-narrowing index and the pathological GLNU (r = -0.9, p<0.001) was utilized to provide percentages quantifying hip OA-severity. Texture analysis may contribute in the quantitative assessment of OA-severity, in the monitoring of OA-progression and in the evaluation of a chondroprotective therapy.

  4. NIA-AA staging of preclinical Alzheimer disease: discordance and concordance of CSF and imaging biomarkers.

    Science.gov (United States)

    Vos, Stephanie J B; Gordon, Brian A; Su, Yi; Visser, Pieter Jelle; Holtzman, David M; Morris, John C; Fagan, Anne M; Benzinger, Tammie L S

    2016-08-01

    The National Institute of Aging and Alzheimer's Association (NIA-AA) criteria for Alzheimer disease (AD) treat neuroimaging and cerebrospinal fluid (CSF) markers of AD pathology as if they would be interchangeable. We tested this assumption in 212 cognitively normal participants who have both neuroimaging and CSF measures of β-amyloid (CSF Aβ1-42 and positron emission tomography imaging with Pittsburgh Compound B) and neuronal injury (CSF t-tau and p-tau and structural magnetic resonance imaging) with longitudinal clinical follow-up. Participants were classified in preclinical AD stage 1 (β-amyloidosis) or preclinical AD stage 2+ (β-amyloidosis and neuronal injury) using the NIA-AA criteria, or in the normal or suspected non-Alzheimer disease pathophysiology group (neuronal injury without β-amyloidosis). At baseline, 21% of participants had preclinical AD based on CSF and 28% based on neuroimaging. Between modalities, staging was concordant in only 47% of participants. Disagreement resulted from low concordance between biomarkers of neuronal injury. Still, individuals in stage 2+ using either criterion had an increased risk for clinical decline. This highlights the heterogeneity of the definition of neuronal injury and has important implications for clinical trials using biomarkers for enrollment or as surrogate end point measures. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. White matter biomarkers from fast protocols using axially symmetric diffusion kurtosis imaging

    CERN Document Server

    Hansen, Brian; Shemesh, Noam; Lund, Torben E; Sangill, Ryan; Østergaard, Leif; Jespersen, Sune N

    2016-01-01

    White matter tract integrity (WMTI) can be used to characterize tissue microstructure in areas with axisymmetric fiber bundles. Several WMTI biomarkers have now been validated against microscopy and provided promising results in studies of brain development and aging, as well as in a number of brain disorders. In a clinical setting, however, the diffusion kurtosis imaging (DKI) protocol utilized as part of WMTI imaging may be prohibitively long. Consequently, the diagnostic value of the WMTI parameters is rarely explored outside of dedicated animal studies and clinical studies of slowly progressing diseases. Here, we evaluate WMTI based on recently introduced axially symmetric DKI which has lower data demand than conventional DKI. We compare WMTI parameters derived from conventional DKI to those from axially symmetric DKI and to parameters calculated analytically from the axially symmetric tensors. We also assess the effect of the imposed symmetry on the kurtosis fractional anisotropy (KFA). We employ numeric...

  6. High-field magnetic resonance imaging of brain iron: birth of a biomarker?

    Science.gov (United States)

    Schenck, John F; Zimmerman, Earl A

    2004-11-01

    The brain has an unusually high concentration of iron, which is distributed in an unusual pattern unlike that in any other organ. The physiological role of this iron and the reasons for this pattern of distribution are not yet understood. There is increasing evidence that several neurodegenerative diseases are associated with altered brain iron metabolism. Understanding these dysmetabolic conditions may provide important information for their diagnosis and treatment. For many years the iron distribution in the human brain could be studied effectively only under postmortem conditions. This situation was changed dramatically by the finding that T2-weighted MR imaging at high field strength (initially 1.5 T) appears to demonstrate the pattern of iron distribution in normal brains and that this imaging technique can detect changes in brain iron concentrations associated with disease states. Up to the present time this imaging capability has been utilized in many research applications but it has not yet been widely applied in the routine diagnosis and management of neurodegenerative disorders. However, recent advances in the basic science of brain iron metabolism, the clinical understanding of neurodegenerative diseases and in MRI technology, particularly in the availability of clinical scanners operating at the higher field strength of 3 T, suggest that iron-dependent MR imaging may soon provide biomarkers capable of characterizing the presence and progression of important neurological disorders. Such biomarkers may be of crucial assistance in the development and utilization of effective new therapies for Alzheimer's and Parkinson's diseases, multiple sclerosis and other iron-related CNS disorders which are difficult to diagnose and treat.

  7. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner.

    Science.gov (United States)

    Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R; Badawi, Ramsey D; Qi, Jinyi

    2017-03-21

    The EXPLORER project aims to build a 2 meter long total-body PET scanner, which will provide extremely high sensitivity for imaging the entire human body. It will possess a range of capabilities currently unavailable to state-of-the-art clinical PET scanners with a limited axial field-of-view. The huge number of lines-of-response (LORs) of the EXPLORER poses a challenge to the data handling and image reconstruction. The objective of this study is to develop a quantitative image reconstruction method for the EXPLORER and compare its performance with current whole-body scanners. Fully 3D image reconstruction was performed using time-of-flight list-mode data with parallel computation. To recover the resolution loss caused by the parallax error between crystal pairs at a large axial ring difference or transaxial radial offset, we applied an image domain resolution model estimated from point source data. To evaluate the image quality, we conducted computer simulations using the SimSET Monte-Carlo toolkit and XCAT 2.0 anthropomorphic phantom to mimic a 20 min whole-body PET scan with an injection of 25 MBq (18)F-FDG. We compare the performance of the EXPLORER with a current clinical scanner that has an axial FOV of 22 cm. The comparison results demonstrated superior image quality from the EXPLORER with a 6.9-fold reduction in noise standard deviation comparing with multi-bed imaging using the clinical scanner.

  8. Brain imaging and electrophysiology biomarkers: is there a role in poverty and education outcome research?

    Science.gov (United States)

    Pavlakis, Alexandra E; Noble, Kimberly; Pavlakis, Steven G; Ali, Noorjahan; Frank, Yitzchak

    2015-04-01

    Prekindergarten educational interventions represent a popular approach to improving educational outcomes, especially in children from poor households. Children from lower socioeconomic groups are at increased risk for delays in cognitive development that are important for school success. These delays, which may stem from stress associated with poverty, often develop before kindergarten. Early interventions have been proposed, but there is a need for more information on effectiveness. By assessing socioeconomic differences in brain structure and function, we may better be able to track the neurobiologic basis underlying children's cognitive improvement. We conducted a review of the neuroimaging and electrophysiology literature to evaluate what is known about differences in brain structure and function as assessed by magnetic resonance imaging and electrophysiology and evoked response potentials among children from poor and nonpoor households. Differences in lower socioeconomic groups were found in functional magnetic resonance imaging, diffusion tensor imaging, and volumetric magnetic resonance imaging as well as electroencephalography and evoked response potentials compared with higher socioeconomic groups. The findings suggest a number of neurobiologic correlates for cognitive delays in children who are poor. Given this, we speculate that magnetic resonance imaging and electrophysiology parameters might be useful as biomarkers, after more research, for establishing the effectiveness of specific prekindergarten educational interventions. At the very least, we suggest that to level the playing field in educational outcomes, it may be helpful to foster communication and collaboration among all professionals involved in the care and education of children. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. In Vivo Imaging of Peripheral Benzodiazepine Receptors in Mouse Lungs: A Biomarker of Inflammation

    Directory of Open Access Journals (Sweden)

    Matthew J. Hardwick

    2005-10-01

    Full Text Available The ability to visualize the immune response with radioligands targeted to immune cells will enhance our understanding of cellular responses in inflammatory diseases. Peripheral benzodiazepine receptors (PBR are present in monocytes and neutrophils as well as in lung tissue. We used lipopolysaccharide (LPS as a model of inflammation to assess whether the PBR could be used as a noninvasive marker of inflammation in the lungs. Planar imaging of mice administrated 10 or 30 mg/kg LPS showed increased [123I]-(R-PK11195 radioactivity in the thorax 2 days after LPS treatment relative to control. Following imaging, lungs from control and LPS-treated mice were harvested for ex vivo gamma counting and showed significantly increased radioactivity above control levels. The specificity of the PBR response was determined using a blocking dose of nonradioactive PK11195 given 30 min prior to radiotracer injection. Static planar images of the thorax of nonradioactive PK11195 pretreated animals showed a significantly lower level of radiotracer accumulation in control and in LPS-treated animals (p < .05. These data show that LPS induces specific increases in PBR ligand binding in the lungs. We also used in vivo small-animal PET studies to demonstrate increased [11C]-(R-PK11195 accumulation in the lungs of LPS-treated mice. This study suggests that measuring PBR expression using in vivo imaging techniques may be a useful biomarker to image lung inflammation.

  10. Probing articular cartilage damage and disease by quantitative magnetic resonance imaging.

    Science.gov (United States)

    Chan, Deva D; Neu, Corey P

    2013-01-06

    Osteoarthritis (OA) is a debilitating disease that reflects a complex interplay of biochemical, biomechanical, metabolic and genetic factors, which are often triggered by injury, and mediated by inflammation, catabolic cytokines and enzymes. An unmet clinical need is the lack of reliable methods that are able to probe the pathogenesis of early OA when disease-rectifying therapies may be most effective. Non-invasive quantitative magnetic resonance imaging (qMRI) techniques have shown potential for characterizing the structural, biochemical and mechanical changes that occur with cartilage degeneration. In this paper, we review the background in articular cartilage and OA as it pertains to conventional MRI and qMRI techniques. We then discuss how conventional MRI and qMRI techniques are used in clinical and research environments to evaluate biochemical and mechanical changes associated with degeneration. Some qMRI techniques allow for the use of relaxometry values as indirect biomarkers for cartilage components. Direct characterization of mechanical behaviour of cartilage is possible via other specialized qMRI techniques. The combination of these qMRI techniques has the potential to fully characterize the biochemical and biomechanical states that represent the initial changes associated with cartilage degeneration. Additionally, knowledge of in vivo cartilage biochemistry and mechanical behaviour in healthy subjects and across a spectrum of osteoarthritic patients could lead to improvements in the detection, management and treatment of OA.

  11. Prediction of prostate cancer recurrence using quantitative phase imaging: Validation on a general population

    Science.gov (United States)

    Sridharan, Shamira; Macias, Virgilia; Tangella, Krishnarao; Melamed, Jonathan; Dube, Emily; Kong, Max Xiangtian; Kajdacsy-Balla, André; Popescu, Gabriel

    2016-09-01

    Prediction of biochemical recurrence risk of prostate cancer following radical prostatectomy is critical for determining whether the patient would benefit from adjuvant treatments. Various nomograms exist today for identifying individuals at higher risk for recurrence; however, an optimistic under-estimation of recurrence risk is a common problem associated with these methods. We previously showed that anisotropy of light scattering measured using quantitative phase imaging, in the stromal layer adjacent to cancerous glands, is predictive of recurrence. That nested-case controlled study consisted of specimens specifically chosen such that the current prognostic methods fail. Here we report on validating the utility of optical anisotropy for prediction of prostate cancer recurrence in a general population of 192 patients, with 17% probability of recurrence. Our results show that our method can identify recurrent cases with 73% sensitivity and 72% specificity, which is comparable to that of CAPRA-S, a current state of the art method, in the same population. However, our results show that optical anisotropy outperforms CAPRA-S for patients with Gleason grades 7–10. In essence, we demonstrate that anisotropy is a better biomarker for identifying high-risk cases, while Gleason grade is better suited for selecting non-recurrence. Therefore, we propose that anisotropy and current techniques be used together to maximize prediction accuracy.

  12. Quantitative evaluation of scintillation camera imaging characteristics of isotopes used in liver radioembolization

    National Research Council Canada - National Science Library

    Elschot, Mattijs; Nijsen, Johannes Franciscus Wilhelmus; Dam, Alida Johanna; de Jong, Hugo Wilhelmus Antonius Maria

    2011-01-01

    .... The aim of this study is to quantitatively evaluate and compare the imaging characteristics of these three isotopes, in order that imaging protocols can be optimized and RE studies with varying isotopes can be compared...

  13. Thermography as a quantitative imaging method for assessing postoperative inflammation

    Science.gov (United States)

    Christensen, J; Matzen, LH; Vaeth, M; Schou, S; Wenzel, A

    2012-01-01

    Objective To assess differences in skin temperature between the operated and control side of the face after mandibular third molar surgery using thermography. Methods 127 patients had 1 mandibular third molar removed. Before the surgery, standardized thermograms were taken of both sides of the patient's face using a Flir ThermaCam™ E320 (Precisions Teknik AB, Halmstad, Sweden). The imaging procedure was repeated 2 days and 7 days after surgery. A region of interest including the third molar region was marked on each image. The mean temperature within each region of interest was calculated. The difference between sides and over time were assessed using paired t-tests. Results No significant difference was found between the operated side and the control side either before or 7 days after surgery (p > 0.3). The temperature of the operated side (mean: 32.39 °C, range: 28.9–35.3 °C) was higher than that of the control side (mean: 32.06 °C, range: 28.5–35.0 °C) 2 days after surgery [0.33 °C, 95% confidence interval (CI): 0.22–0.44 °C, p 0.1). After 2 days, the operated side was not significantly different from the temperature pre-operatively (p = 0.12), whereas the control side had a lower temperature (0.57 °C, 95% CI: 0.29–0.86 °C, p < 0.001). Conclusions Thermography seems useful for quantitative assessment of inflammation between the intervention side and the control side after surgical removal of mandibular third molars. However, thermography cannot be used to assess absolute temperature changes due to normal variations in skin temperature over time. PMID:22752326

  14. In vivo fluorescence lifetime imaging monitors binding of specific probes to cancer biomarkers.

    Directory of Open Access Journals (Sweden)

    Yasaman Ardeshirpour

    Full Text Available One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the "image and treat" concept, especially for early evaluation of the efficacy of the therapy.

  15. Morphological, functional and metabolic imaging biomarkers: assessment of vascular-disrupting effect on rodent liver tumours

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huaijun; Li, Junjie; Keyzer, Frederik De; Yu, Jie; Feng, Yuanbo; Marchal, Guy; Ni, Yicheng [University Hospitals, University of Leuven, Department of Radiology, Leuven (Belgium); Chen, Feng [University Hospitals, University of Leuven, Department of Radiology, Leuven (Belgium); Southeast University, Department of Radiology, Zhongda Hospital, Nanjing (China); Nuyts, Johan [University Hospitals, University of Leuven, Department of Nuclear Medicine, Leuven (Belgium)

    2010-08-15

    To evaluate effects of a vascular-disrupting agent on rodent tumour models. Twenty rats with liver rhabdomyosarcomas received ZD6126 intravenously at 20 mg/kg, and 10 vehicle-treated rats were used as controls. Multiple sequences, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI (DCE-MRI) with the microvascular permeability constant (K), were acquired at baseline, 1 h, 24 h and 48 h post-treatment by using 1.5-T MRI. [{sup 18}F]fluorodeoxyglucose micro-positron emission tomography ({sup 18}F-FDG {mu}PET) was acquired pre- and post-treatment. The imaging biomarkers including tumour volume, enhancement ratio, necrosis ratio, apparent diffusion coefficient (ADC) and K from MRI, and maximal standardised uptake value (SUV{sub max}) from FDG {mu}PET were quantified and correlated with postmortem microangiography and histopathology. In the ZD6126-treated group, tumours grew slower with higher necrosis ratio at 48 h (P < 0.05), corresponding well to histopathology; tumour K decreased from 1 h until 24 h, and partially recovered at 48 h (P < 0.05), parallel to the evolving enhancement ratios (P < 0.05); ADCs varied with tumour viability and perfusion; and SUV{sub max} dropped at 24 h (P < 0.01). Relative K of tumour versus liver at 48 h correlated with relative vascular density on microangiography (r = 0.93, P < 0.05). The imaging biomarkers allowed morphological, functional and metabolic quantifications of vascular shutdown, necrosis formation and tumour relapse shortly after treatment. A single dose of ZD6126 significantly diminished tumour blood supply and growth until 48 h post-treatment. (orig.)

  16. Refining prognosis in patients with hepatocellular carcinoma through incorporation of metabolic imaging biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Satoshi [Hokkaido University Graduate School of Medicine, Department of Medical Oncology, Sapporo (Japan); The University of Texas MD Anderson Cancer Center, Department of Nuclear Medicine, Houston, TX (United States); Rohren, Eric M. [The University of Texas MD Anderson Cancer Center, Department of Nuclear Medicine, Houston, TX (United States); Baylor College of Medicine, Department of Radiology, Houston, TX (United States); Abdel-Wahab, Reham [The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Houston, TX (United States); Assiut University Hospital, Clinical Oncology Department, Assiut (Egypt); Xiao, Lianchun; Morris, Jeffrey S. [The University of Texas MD Anderson Cancer Center, Department of Biostatistics, Houston, TX (United States); Macapinlac, Homer A. [The University of Texas MD Anderson Cancer Center, Department of Nuclear Medicine, Houston, TX (United States); Hassan, Manal M. [Baylor College of Medicine, Department of Radiology, Houston, TX (United States); Kaseb, Ahmed O. [The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Houston, TX (United States)

    2017-06-15

    {sup 18}F-fluorodeoxyglucose positron emission tomopraphy/computed tomography (FDGPET/CT) has been proven to be useful for imaging many types of cancer; however, its role is not well defined in hepatocellular carcinoma (HCC). We assessed the prognostic value of metabolic imaging biomarkers as established by baseline pretreatment FDG PET/CT in patients with HCC. We retrospectively analyzed the records of patients with HCC who underwent FDG PET/CT before initial treatment from May 2013 through May 2014. Four PET/CT parameters were measured: maximum standardized uptake value (SUV{sub max}), total lesion glycolysis (TLG), metabolic tumor volume (MTV), and tumor-to-normal-liver SUV ratio (TNR). Optimal cut-off values for the PET/CT parameters to stratify patients in terms of overall survival (OS) were determined. Multivariate analysis was performed to determine whether the PET/CT parameters could add to the prognostic value of the Cancer of the Liver Italian Program (CLIP) scoring system and the Barcelona-Clinic Liver Cancer (BCLC) staging system. The analysis included 56 patients. Univariate analysis of the association between OS and continuous variables, including the PET/CT parameters SUV{sub max}, TLG, tumor size, total bilirubin level, and alkaline phosphatase level were significant predictors of OS. SUV{sub max} ≥ 11.7, TLG ≥ 1,341, MTV ≥ 230 mL, and TNR ≥ 4.8 were identified as cut-off values. Multivariate analysis revealed that SUV{sub max} ≥ 11.7 and TNR ≥ 4.8 were independent factors predicting a poor prognosis in both the CLIP scoring system and the BCLC staging system, as was TLG in the BCLC staging system. Pretreatment FDG PET/CT in patients with HCC can add to the prognostic value of standard clinical measures. Incorporation of imaging biomarkers derived from FDG PET/CT into HCC staging systems should be considered. (orig.)

  17. Quantitative image analysis of HIV-1 infection in lymphoid tissue

    Energy Technology Data Exchange (ETDEWEB)

    Haase, A.T.; Zupancic, M.; Cavert, W. [Univ. of Minnesota Medical School, Minneapolis, MN (United States)] [and others

    1996-11-08

    Tracking human immunodeficiency virus-type 1 (HIV-1) infection at the cellular level in tissue reservoirs provides opportunities to better understand the pathogenesis of infection and to rationally design and monitor therapy. A quantitative technique was developed to determine viral burden in two important cellular compartments in lymphoid developed to determine viral burden in two important cellular compartments in lymphoid tissues. Image analysis and in situ hybridization were combined to show that in the presymptomatic stages of infection there is a large, relatively stable pool of virions on the surfaces of follicular dendritic cells and a smaller pool of productivity infected cells. Despite evidence of constraints on HIV-1 replication in the infected cell population in lymphoid tissues, estimates of the numbers of these cells and the virus they could produce are consistent with the quantities of virus that have been detected in the bloodstream. The cellular sources of virus production and storage in lymphoid tissues can now be studied with this approach over the course of infection and treatment. 22 refs., 2 figs., 2 tabs.

  18. Scatter rejection in quantitative thermal and cold neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA 94720 (United States); Kardjilov, N; Dawson, M; Strobl, M.; Manke, I. [Helmholtz-Zentrum Berlin, 14109 Berlin (Germany); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA 94720 (United States); Feller, W.B. [Nova Scientific, Inc., 10 Picker Road, Sturbridge, MA 01566 (United States)

    2011-09-21

    The accuracy of quantitative neutron transmission radiography can be substantially decreased if highly scattering materials, such as water or plastics, exist in the sample. There are currently two main solutions to this problem: either performing experiments at a large distance between the detector and the sample or employ some numerical correction techniques. In the former case, the spatial resolution is substantially reduced by the limited beam divergence, while the latter correction requires a priori information about the sample and is limited to distances of above {approx}2 cm. We demonstrate the feasibility of another technique, namely the possibility to remove the scattered neutron component from the transmitted neutron beam by a very compact polycapillary collimator. These {approx}1 mm thick devices can be placed between the sample and the detector and remove most of the neutrons scattered at angles larger than the acceptance angle of the collimator (typically 1{sup o}). No image distortions above {approx}10 {mu}m scales are introduced by these collimators. The neutron transmission of highly scattering samples (water and plexiglass) is measured in our experiments with and without scatter rejection. In the latter case, the accuracy of measured transmission coefficient was substantially improved by our collimators.

  19. Quantitating subcellular metabolism with multi-isotope imaging mass spectrometry

    Science.gov (United States)

    Steinhauser, Matthew L.; Bailey, Andrew; Senyo, Samuel E.; Guillermier, Christelle; Perlstein, Todd S.; Gould, Alex P.; Lee, Richard T.; Lechene, Claude P.

    2011-01-01

    Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter1,2 but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with sub-micron resolution3,4. Here we apply MIMS to diverse organisms, including Drosophila, mice, and humans. We test the “immortal strand hypothesis,” which predicts that during asymmetric stem cell division chromosomes containing older template DNA are segregated to the daughter destined to remain a stem cell, thus insuring lifetime genetic stability. After labeling mice with 15N-thymidine from gestation through post-natal week 8, we find no 15N label retention by dividing small intestinal crypt cells after 4wk chase. In adult mice administered 15N-thymidine pulse-chase, we find that proliferating crypt cells dilute label consistent with random strand segregation. We demonstrate the broad utility of MIMS with proof-of-principle studies of lipid turnover in Drosophila and translation to the human hematopoietic system. These studies show that MIMS provides high-resolution quantitation of stable isotope labels that cannot be obtained using other techniques and that is broadly applicable to biological and medical research. PMID:22246326

  20. Using image analysis as a tool for assessment of prognostic and predictive biomarkers for breast cancer: How reliable is it?

    Directory of Open Access Journals (Sweden)

    Mark C Lloyd

    2010-01-01

    Full Text Available Background : Estrogen receptor (ER, progesterone receptor (PR and human epidermal growth factor receptor-2 (HER2 are important and well-established prognostic and predictive biomarkers for breast cancers and routinely tested on patient′s tumor samples by immunohistochemical (IHC study. The accuracy of these test results has substantial impact on patient management. A critical factor that contributes to the result is the interpretation (scoring of IHC. This study investigates how computerized image analysis can play a role in a reliable scoring, and identifies potential pitfalls with common methods. Materials and Methods : Whole slide images of 33 invasive ductal carcinoma (IDC (10 ER and 23 HER2 were scored by pathologist under the light microscope and confirmed by another pathologist. The HER2 results were additionally confirmed by fluorescence in situ hybridization (FISH. The scoring criteria were adherent to the guidelines recommended by the American Society of Clinical Oncology/College of American Pathologists. Whole slide stains were then scored by commercially available image analysis algorithms from Definiens (Munich, Germany and Aperio Technologies (Vista, CA, USA. Each algorithm was modified specifically for each marker and tissue. The results were compared with the semi-quantitative manual scoring, which was considered the gold standard in this study. Results : For HER2 positive group, each algorithm scored 23/23 cases within the range established by the pathologist. For ER, both algorithms scored 10/10 cases within range. The performance of each algorithm varies somewhat from the percentage of staining as compared to the pathologist′s reading. Conclusions : Commercially available computerized image analysis can be useful in the evaluation of ER and HER2 IHC results. In order to achieve accurate results either manual pathologist region selection is necessary, or an automated region selection tool must be employed. Specificity can

  1. Structural-functional relationships between eye orbital imaging biomarkers and clinical visual assessments

    Science.gov (United States)

    Yao, Xiuya; Chaganti, Shikha; Nabar, Kunal P.; Nelson, Katrina; Plassard, Andrew; Harrigan, Rob L.; Mawn, Louise A.; Landman, Bennett A.

    2017-02-01

    Eye diseases and visual impairment affect millions of Americans and induce billions of dollars in annual economic burdens. Expounding upon existing knowledge of eye diseases could lead to improved treatment and disease prevention. This research investigated the relationship between structural metrics of the eye orbit and visual function measurements in a cohort of 470 patients from a retrospective study of ophthalmology records for patients (with thyroid eye disease, orbital inflammation, optic nerve edema, glaucoma, intrinsic optic nerve disease), clinical imaging, and visual function assessments. Orbital magnetic resonance imaging (MRI) and computed tomography (CT) images were retrieved and labeled in 3D using multi-atlas label fusion. Based on the 3D structures, both traditional radiology measures (e.g., Barrett index, volumetric crowding index, optic nerve length) and novel volumetric metrics were computed. Using stepwise regression, the associations between structural metrics and visual field scores (visual acuity, functional acuity, visual field, functional field, and functional vision) were assessed. Across all models, the explained variance was reasonable (R2 0.1-0.2) but highly significant (p < 0.001). Instead of analyzing a specific pathology, this study aimed to analyze data across a variety of pathologies. This approach yielded a general model for the connection between orbital structural imaging biomarkers and visual function.

  2. Prognostic Metabolite Biomarkers for Soft Tissue Sarcomas Discovered by Mass Spectrometry Imaging

    Science.gov (United States)

    Lou, Sha; Balluff, Benjamin; Cleven, Arjen H. G.; Bovée, Judith V. M. G.; McDonnell, Liam A.

    2017-02-01

    Metabolites can be an important read-out of disease. The identification and validation of biomarkers in the cancer metabolome that can stratify high-risk patients is one of the main current research aspects. Mass spectrometry has become the technique of choice for metabolomics studies, and mass spectrometry imaging (MSI) enables their visualization in patient tissues. In this study, we used MSI to identify prognostic metabolite biomarkers in high grade sarcomas; 33 high grade sarcoma patients, comprising osteosarcoma, leiomyosarcoma, myxofibrosarcoma, and undifferentiated pleomorphic sarcoma were analyzed. Metabolite MSI data were obtained from sections of fresh frozen tissue specimens with matrix-assisted laser/desorption ionization (MALDI) MSI in negative polarity using 9-aminoarcridine as matrix. Subsequent annotation of tumor regions by expert pathologists resulted in tumor-specific metabolite signatures, which were then tested for association with patient survival. Metabolite signals with significant clinical value were further validated and identified by high mass resolution Fourier transform ion cyclotron resonance (FTICR) MSI. Three metabolite signals were found to correlate with overall survival ( m/z 180.9436 and 241.0118) and metastasis-free survival ( m/z 160.8417). FTICR-MSI identified m/z 241.0118 as inositol cyclic phosphate and m/z 160.8417 as carnitine.

  3. Definitions and validation criteria for biomarkers and surrogate endpoints: development and testing of a quantitative hierarchical levels of evidence schema

    DEFF Research Database (Denmark)

    Lassere, Marissa N; Johnson, Kent R; Boers, Maarten

    2007-01-01

    OBJECTIVE: There are clear advantages to using biomarkers and surrogate endpoints, but concerns about clinical and statistical validity and systematic methods to evaluate these aspects hinder their efficient application. Our objective was to review the literature on biomarkers and surrogates to d...

  4. MRI-Derived Cellularity Index as a Potential Noninvasive Imaging Biomarker of Prostate Cancer

    Science.gov (United States)

    2016-12-01

    Research. clincancerres.aacrjournals.org Downloaded from targeted treatments or procedures, such as MRI-guided fusion biopsies . With this novel technology ...these techniques increase our ability to detect extraprostatic extension, improve accuracy of targeted biopsies and we show that our quantitative...2015) 3) RSI imaging has also been implemented as part of the work flow for defining tumor regions of interest for targeted biopsy using Dynacad

  5. Rapid and High-Throughput Detection and Quantitation of Radiation Biomarkers in Human and Nonhuman Primates by Differential Mobility Spectrometry-Mass Spectrometry

    Science.gov (United States)

    Chen, Zhidan; Coy, Stephen L.; Pannkuk, Evan L.; Laiakis, Evagelia C.; Hall, Adam B.; Fornace, Albert J.; Vouros, Paul

    2016-10-01

    Radiation exposure is an important public health issue due to a range of accidental and intentional threats. Prompt and effective large-scale screening and appropriate use of medical countermeasures (MCM) to mitigate radiation injury requires rapid methods for determining the radiation dose. In a number of studies, metabolomics has identified small-molecule biomarkers responding to the radiation dose. Differential mobility spectrometry-mass spectrometry (DMS-MS) has been used for similar compounds for high-throughput small-molecule detection and quantitation. In this study, we show that DMS-MS can detect and quantify two radiation biomarkers, trimethyl-L-lysine (TML) and hypoxanthine. Hypoxanthine is a human and nonhuman primate (NHP) radiation biomarker and metabolic intermediate, whereas TML is a radiation biomarker in humans but not in NHP, which is involved in carnitine synthesis. They have been analyzed by DMS-MS from urine samples after a simple strong cation exchange-solid phase extraction (SCX-SPE). The dramatic suppression of background and chemical noise provided by DMS-MS results in an approximately 10-fold reduction in time, including sample pretreatment time, compared with liquid chromatography-mass spectrometry (LC-MS). DMS-MS quantitation accuracy has been verified by validation testing for each biomarker. Human samples are not yet available, but for hypoxanthine, selected NHP urine samples (pre- and 7-d-post 10 Gy exposure) were analyzed, resulting in a mean change in concentration essentially identical to that obtained by LC-MS (fold-change 2.76 versus 2.59). These results confirm the potential of DMS-MS for field or clinical first-level rapid screening for radiation exposure.

  6. Quantitative magnetic resonance imaging in limb-girdle muscular dystrophy 2I

    DEFF Research Database (Denmark)

    Willis, Tracey A; Hollingsworth, Kieren G; Coombs, Anna

    2014-01-01

    -related protein (FKRP) gene were recruited. In each patient, T1-weighted (T1w) imaging was assessed by qualitative grading for 15 individual lower limb muscles and quantitative Dixon imaging was analysed on 14 individual lower limb muscles by region of interest analysis. We described the pattern and appearance......) that the quantitative Dixon technique is an objective quantitative marker of disease and (ii) new observations of gender specific patterns of muscle involvement in LGMD2I....

  7. Imaging biomarkers of dementia: recommended visual rating scales with teaching cases.

    Science.gov (United States)

    Wahlund, Lars-Olof; Westman, Eric; van Westen, Danielle; Wallin, Anders; Shams, Sara; Cavallin, Lena; Larsson, Elna-Marie

    2017-02-01

    The diagnostic work up of dementia may benefit from structured reporting of CT and/or MRI and the use of standardised visual rating scales. We advocate a more widespread use of standardised scales as part of the workflow in clinical and research evaluation of dementia. We propose routine clinical use of rating scales for medial temporal atrophy (MTA), global cortical atrophy (GCA) and white matter hyperintensities (WMH). These scales can be used for evaluation of both CT and MRI and are efficient in routine imaging assessment in dementia, and may improve the accuracy of diagnosis. Our review provides detailed imaging examples of rating increments in each of these scales and a separate teaching file. The radiologist should relate visual ratings to the clinical assessment and other biomarkers to assist the clinician in the diagnostic decision. • Clinical dementia diagnostics would benefit from structured radiological reporting. • Standardised rating scales should be used in dementia assessment. • It is important to relate imaging findings to the clinically suspected diagnosis.

  8. Dental panoramic image analysis for enhancement biomarker of mandibular condyle for osteoporosis early detection

    Science.gov (United States)

    Suprijanto; Azhari; Juliastuti, E.; Septyvergy, A.; Setyagar, N. P. P.

    2016-03-01

    Osteoporosis is a degenerative disease characterized by low Bone Mineral Density (BMD). Currently, a BMD level is determined by Dual Energy X-ray Absorptiometry (DXA) at the lumbar vertebrae and femur. Previous studies reported that dental panoramic radiography image has potential information for early osteoporosis detection. This work reported alternative scheme, that consists of the determination of the Region of Interest (ROI) the condyle mandibular in the image as biomarker and feature extraction from ROI and classification of bone conditions. The minimum value of intensity in the cavity area is used to compensate an offset on the ROI. For feature extraction, the fraction of intensity values in the ROI that represent high bone density and the ROI total area is perfomed. The classification will be evaluated from the ability of each feature and its combinations for the BMD detection in 2 classes (normal and abnormal), with the artificial neural network method. The evaluation system used 105 panoramic image data from menopause women which consist of 36 training data and 69 test data that were divided into 2 classes. The 2 classes of classification obtained 88.0% accuracy rate and 88.0% sensitivity rate.

  9. From multislice CT to whole-body biomarker imaging in lymphoma patients

    Energy Technology Data Exchange (ETDEWEB)

    Bazelaire, Cedric de; Kerviler, Eric de [Service de Radiologie, Hopital Saint-Louis, APHP, Paris cedex 10 (France); Universite Paris Diderot, Paris (France)

    2011-03-15

    Until recently, only nuclear medicine techniques allowed combining whole-body anatomical and functional information. Now, diffusion-weighted imaging seeks to compete with these techniques in the field of oncology, providing assessment of tumour spread, characterizing lesions and evaluating therapeutic response. The first issue has been widely evaluated since the first published whole-body diffusion-weighted images looking like scintigraphy. Optimal background suppression and diffusion weighting highlighted tumours with restricted diffusion. For the two latter issues, ADC seems to represent the key element; it should allow differentiation between benign and malignant tissue, and active from inactive lesions after treatment. This is of paramount importance for the monitoring of lymphomas treated with chemotherapy alone, or for solid tumors treated by neoadjuvant therapies. However, imaging protocols still differ between studies, and there is considerable overlap in ADC values between healthy and neoplastic tissues. Despite this difficulty to identify a clinically reliable threshold for malignancy, there is no doubt that ADC will represent as a reliable biomarker in the future for some malignancies, and lymphomas represent a helpful model for this purpose. (orig.)

  10. Time-resolved quantitative multiphase interferometric imaging of a highly focused ultrasound pulse

    CERN Document Server

    Souris, Fabien; Jacquier, Philippe; Dupont-Roc, Jacques; Arvengas, Arnaud; Caupin, Frédéric; 10.1364/AO.49.006127

    2010-01-01

    Interferometric imaging is a well established method to image phase objects by mixing the image wavefront with a reference one on a CCD camera. It has also been applied to fast transient phenomena, mostly through the analysis of single interferograms. It is shown that for repetitive phenomena multiphase acquisition brings significant advantages. A 1 MHz focused sound field emitted by a hemispherical piezotransducer in water is imaged as an example. Quantitative image analysis provides high resolution sound field profiles. Pressure at focus determined by this method agrees with measurements from a fiber-optic probe hydrophone. This confirms that multiphase interferometric imaging can indeed provide quantitative measurements.

  11. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2015-07-01

    Full Text Available Magnetic resonance imaging (MRI of glioblastoma multiforme (GBM with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA3 agent, a scrambled-Tris-(Gd-DOTA3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA3 agent over time compared to the non-specific contrast agent currently in clinical use.

  12. Prospects and challenges of quantitative phase imaging in tumor cell biology

    Science.gov (United States)

    Kemper, Björn; Götte, Martin; Greve, Burkhard; Ketelhut, Steffi

    2016-03-01

    Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.

  13. Graphics processing unit-based quantitative second-harmonic generation imaging.

    Science.gov (United States)

    Kabir, Mohammad Mahfuzul; Jonayat, A S M; Patel, Sanjay; Toussaint, Kimani C

    2014-09-01

    We adapt a graphics processing unit (GPU) to dynamic quantitative second-harmonic generation imaging. We demonstrate the temporal advantage of the GPU-based approach by computing the number of frames analyzed per second from SHG image videos showing varying fiber orientations. In comparison to our previously reported CPU-based approach, our GPU-based image analysis results in ∼10× improvement in computational time. This work can be adapted to other quantitative, nonlinear imaging techniques and provides a significant step toward obtaining quantitative information from fast in vivo biological processes.

  14. ADC texture—An imaging biomarker for high-grade glioma?

    Energy Technology Data Exchange (ETDEWEB)

    Brynolfsson, Patrik; Hauksson, Jón; Karlsson, Mikael; Garpebring, Anders; Nyholm, Tufve, E-mail: tufve.nyholm@radfys.umu.se [Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå SE-901 87 (Sweden); Nilsson, David; Trygg, Johan [Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå SE-901 87 (Sweden); Henriksson, Roger [Department of Radiation Sciences, Oncology, Umeå University, Umeå SE-901 87, Sweden and Regionalt Cancercentrum Stockholm, Karolinska Universitetssjukhuset, Solna, Stockholm SE-102 39 (Sweden); Birgander, Richard [Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå SE-901 87 (Sweden); Asklund, Thomas [Department of Radiation Sciences, Oncology, Umeå University, Umeå SE-901 87 (Sweden)

    2014-10-15

    Purpose: Survival for high-grade gliomas is poor, at least partly explained by intratumoral heterogeneity contributing to treatment resistance. Radiological evaluation of treatment response is in most cases limited to assessment of tumor size months after the initiation of therapy. Diffusion-weighted magnetic resonance imaging (MRI) and its estimate of the apparent diffusion coefficient (ADC) has been widely investigated, as it reflects tumor cellularity and proliferation. The aim of this study was to investigate texture analysis of ADC images in conjunction with multivariate image analysis as a means for identification of pretreatment imaging biomarkers. Methods: Twenty-three consecutive high-grade glioma patients were treated with radiotherapy (2 Gy/60 Gy) with concomitant and adjuvant temozolomide. ADC maps and T1-weighted anatomical images with and without contrast enhancement were collected prior to treatment, and (residual) tumor contrast enhancement was delineated. A gray-level co-occurrence matrix analysis was performed on the ADC maps in a cuboid encapsulating the tumor in coronal, sagittal, and transversal planes, giving a total of 60 textural descriptors for each tumor. In addition, similar examinations and analyses were performed at day 1, week 2, and week 6 into treatment. Principal component analysis (PCA) was applied to reduce dimensionality of the data, and the five largest components (scores) were used in subsequent analyses. MRI assessment three months after completion of radiochemotherapy was used for classifying tumor progression or regression. Results: The score scatter plots revealed that the first, third, and fifth components of the pretreatment examinations exhibited a pattern that strongly correlated to survival. Two groups could be identified: one with a median survival after diagnosis of 1099 days and one with 345 days, p = 0.0001. Conclusions: By combining PCA and texture analysis, ADC texture characteristics were identified, which seems

  15. Quantitative imaging of selenoprotein with multi-isotope imaging mass spectrometry (MIMS).

    Science.gov (United States)

    Tang, Shiow-Shih; Guillermier, Christelle; Wang, Mei; Poczatek, Joseph Collin; Suzuki, Noriyuki; Loscalzo, Joseph; Lechene, Claude

    2014-11-01

    Multi-isotope imaging mass spectrometry (MIMS) allows high resolution quantitative imaging of protein and nucleic acid synthesis at the level of a single cell using stable isotope labels. We employed MIMS to determine the compartmental localization of selenoproteins tagged with stable isotope selenium compounds in human aortic endothelial cells (HAEC), and to compare the efficiency of labeling (to determine the ideal selenium source) from these compounds: [(82)Se]-selenite, [(77)Se]-seleno-methionine, and [(76)Se]-methyl-selenocysteine. We found that all three selenium sources appear to be localized in the nucleus as well as in the cytoplasm in HAEC. Seleno-methionine appears to be a better source for (seleno)protein synthesis. For MIMS detection, we compared freeze-drying to thin layer vs. thin sectioning for sample preparation. MIMS provides a unique and novel way to dissect selenoprotein synthesis in cells.

  16. Quantitative measurement of holographic image quality using Adobe Photoshop

    Science.gov (United States)

    Wesly, E.

    2013-02-01

    Measurement of the characteristics of image holograms in regards to diffraction efficiency and signal to noise ratio are demonstrated, using readily available digital cameras and image editing software. Illustrations and case studies, using currently available holographic recording materials, are presented.

  17. Quantitative approach on SEM images of microstructure of clay soils

    Institute of Scientific and Technical Information of China (English)

    施斌; 李生林; M.Tolkachev

    1995-01-01

    The working principles of Videolab Image Processing System (VIPS), the examining methods of orientation of microstructural units of clay soils and analysing results on SEM images of some typical microstructures of clay soils using the VIPS are introduced.

  18. Magnetic Resonance Imaging Features of the Nigrostriatal System: Biomarkers of Parkinson's Disease Stages?

    Directory of Open Access Journals (Sweden)

    Lucie Hopes

    Full Text Available Magnetic resonance imaging (MRI can be used to identify biomarkers in Parkinson's disease (PD; R2* values reflect iron content related to high levels of oxidative stress, whereas volume and/or shape changes reflect neuronal death. We sought to assess iron overload in the nigrostriatal system and characterize its relationship with focal and overall atrophy of the striatum in the pivotal stages of PD.Twenty controls and 70 PD patients at different disease stages (untreated de novo patients, treated early-stage patients and advanced-stage patients with L-dopa-related motor complications were included in the study. We determined the R2* values in the substantia nigra, putamen and caudate nucleus, together with striatal volume and shape analysis. We also measured R2* in an acute MPTP mouse model and in a longitudinal follow-up two years later in the early-stage PD patients.The R2* values in the substantia nigra, putamen and caudate nucleus were significantly higher in de novo PD patients than in controls. Early-stage patients displayed significantly higher R2* values in the substantia nigra (with changes in striatal shape, relative to de novo patients. Measurements after a two-year follow-up in early-stage patients and characterization of the acute MPTP mouse model confirmed that R2* changed rapidly with disease progression. Advanced-stage patients displayed significant atrophy of striatum, relative to earlier disease stages.Each pivotal stage in PD appears to be characterized by putative nigrostriatal MRI biomarkers: iron overload at the de novo stage, striatal shape changes at early-stage disease and generalized striatal atrophy at advanced disease.

  19. Biomarker, Molecular, and Technologic Advances in Urologic Pathology, Oncology, and Imaging.

    Science.gov (United States)

    Ellis, Carla L; Harik, Lara R; Cohen, Cynthia; Osunkoya, Adeboye O

    2017-04-01

    Urologic pathology is evolving rapidly. Emerging trends include the expanded diagnostic utility of biomarkers and molecular testing, as well as adapting to the plethora of technical advances occurring in genitourinary oncology, surgical practice, and imaging. We illustrate those trends by highlighting our approach to the diagnostic workup of a few selected disease entities that pathologists may encounter, including newly recognized subtypes of renal cell carcinoma, pheochromocytoma, and prostate cancer, some of which harbor a distinctive chromosomal translocation, gene loss, or mutation. We illustrate applications of immunohistochemistry for differential diagnosis of needle core renal biopsies, intraductal carcinoma of the prostate, and amyloidosis and cite encouraging results from early studies using targeted gene expression panels to predict recurrence after prostate cancer surgery. At our institution, pathologists are working closely with urologic surgeons and interventional radiologists to explore the use of intraoperative frozen sections for margins and nerve sparing during robotic prostatectomy, to pioneer minimally invasive videoscopic inguinal lymphadenectomy, and to refine image-guided needle core biopsies and cryotherapy of prostate cancer as well as blue-light/fluorescence cystoscopy. This collaborative, multidisciplinary approach enhances clinical management and research, and optimizes the care of patients with urologic disorders.

  20. Lipid fingerprint image accurately conveys human colon cell pathophysiologic state: A solid candidate as biomarker.

    Science.gov (United States)

    Bestard-Escalas, Joan; Garate, Jone; Maimó-Barceló, Albert; Fernández, Roberto; Lopez, Daniel Horacio; Lage, Sergio; Reigada, Rebeca; Khorrami, Sam; Ginard, Daniel; Reyes, José; Amengual, Isabel; Fernández, José A; Barceló-Coblijn, Gwendolyn

    2016-12-01

    Membrane lipids are gaining increasing attention in the clinical biomarker field, as they are associated with different pathologic processes such as cancer or neurodegenerative diseases. Analyzing human colonoscopic sections by matrix assisted laser/desorption ionization (MALDI) mass spectrometry imaging techniques, we identified a defined number of lipid species changing concomitant to the colonocyte differentiation and according to a quite simple mathematical expression. These species felt into two lipid families tightly associated in signaling: phosphatidylinositols and arachidonic acid-containing lipids. On the other hand, an opposed pattern was observed in lamina propria for AA-containing lipids, coinciding with the physiological distribution of the immunological response cells in this tissue. Importantly, the lipid gradient was accompanied by a gradient in expression of enzymes involved in lipid mobilization. Finally, both lipid and protein gradients were lost in adenomatous polyps. The latter allowed us to assess how different a single lipid species is handled in a pathological context depending on the cell type. The strict patterns of distribution in lipid species and lipid enzymes described here unveil the existence of fine regulatory mechanisms orchestrating the lipidome according to the physiological state of the cell. In addition, these results provide solid evidence that the cell lipid fingerprint image can be used to predict precisely the physiological and pathological status of a cell, reinforcing its translational impact in clinical research.

  1. Automatic quantitative analysis of cardiac MR perfusion images

    NARCIS (Netherlands)

    Breeuwer, Marcel; Spreeuwers, Luuk; Quist, Marcel

    2001-01-01

    Magnetic Resonance Imaging (MRI) is a powerful technique for imaging cardiovascular diseases. The introduction of cardiovascular MRI into clinical practice is however hampered by the lack of efficient and accurate image analysis methods. This paper focuses on the evaluation of blood perfusion in the

  2. Quantitative imaging through a spectrograph. 1. Principles and theory.

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, J.J. ter; Mooij, J.M.; Maassen, J.D.M.

    2004-01-01

    Laser-based optical diagnostics, such as planar laser-induced fluorescence and, especially, Raman imaging, often require selective spectral filtering. We advocate the use of an imaging spectrograph with a broad entrance slit as a spectral filter for two-dimensional imaging. A spectrograph in this mo

  3. Quantitative imaging through a spectrograph. 1. Principles and theory.

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, J.J. ter; Mooij, J.M.; Maassen, J.D.M.

    2004-01-01

    Laser-based optical diagnostics, such as planar laser-induced fluorescence and, especially, Raman imaging, often require selective spectral filtering. We advocate the use of an imaging spectrograph with a broad entrance slit as a spectral filter for two-dimensional imaging. A spectrograph in this mo

  4. Childhood white matter disorders : quantitative MR imaging and spectroscopy

    NARCIS (Netherlands)

    van der Voorn, J Patrick; Pouwels, Petra J W; Hart, Augustinus A M; Serrarens, Judith; Willemsen, Michèl A A P; Kremer, Hubertus P H; Barkhof, Frederik; van der Knaap, Marjo S

    2006-01-01

    PURPOSE: To prospectively investigate whether quantitative magnetic resonance (MR) parameters, including magnetization transfer ratio (MTR), apparent diffusion coefficient (ADC), fractional anisotropy (FA), and MR spectroscopic metabolite concentrations, allow for discrimination between different ty

  5. Childhood white matter disorders: quantitative MR imaging and spectroscopy.

    NARCIS (Netherlands)

    Voorn, J.P. van der; Pouwels, P.J.; Hart, A.A.M.; Serrarens, J.; Willemsen, M.A.A.P.; Kremer, H.P.H.; Barkhof, F.; Knaap, M.S. van der

    2006-01-01

    PURPOSE: To prospectively investigate whether quantitative magnetic resonance (MR) parameters, including magnetization transfer ratio (MTR), apparent diffusion coefficient (ADC), fractional anisotropy (FA), and MR spectroscopic metabolite concentrations, allow for discrimination between different ty

  6. Quantitative imaging of a non-combusting diesel spray using structured laser illumination planar imaging

    Science.gov (United States)

    Berrocal, E.; Kristensson, E.; Hottenbach, P.; Aldén, M.; Grünefeld, G.

    2012-12-01

    Due to its transient nature, high atomization process, and rapid generation of fine evaporating droplets, diesel sprays have been, and still remain, one of the most challenging sprays to be fully analyzed and understood by means of non-intrusive diagnostics. The main limitation of laser techniques for quantitative measurements of diesel sprays concerns the detection of the multiple light scattering resulting from the high optical density of such a scattering medium. A second limitation is the extinction of the incident laser radiation as it crosses the spray, as well as the attenuation of the signal which is to be detected. All these issues have strongly motivated, during the past decade, the use of X-ray instead of visible light for dense spray diagnostics. However, we demonstrate in this paper that based on an affordable Nd:YAG laser system, structured laser illumination planar imaging (SLIPI) can provide accurate quantitative description of a non-reacting diesel spray injected at 1,100 bar within a room temperature vessel pressurized at 18.6 bar. The technique is used at λ = 355 nm excitation wavelength with 1.0 mol% TMPD dye concentration, for simultaneous LIF/Mie imaging. Furthermore, a novel dual-SLIPI configuration is tested with Mie scattering detection only. The results confirm that a mapping of both the droplet Sauter mean diameter and extinction coefficient can be obtained by such complementary approaches. These new insights are provided in this article at late times after injection start. It is demonstrated that the application of SLIPI to diesel sprays provides valuable quantitative information which was not previously accessible.

  7. Quantitative PET imaging with the 3T MR-BrainPET

    Energy Technology Data Exchange (ETDEWEB)

    Weirich, C., E-mail: c.weirich@fz-juelich.de [Forschungszentrum Jülich, Institute of Neuroscience and Medicine – 4, Juelich (Germany); Scheins, J.; Lohmann, P.; Tellmann, L. [Forschungszentrum Jülich, Institute of Neuroscience and Medicine – 4, Juelich (Germany); Byars, L.; Michel, C. [Siemens Healthcare, Molecular Imaging, Knoxville, TN (United States); Rota Kops, E.; Brenner, D.; Herzog, H.; Shah, N.J. [Forschungszentrum Jülich, Institute of Neuroscience and Medicine – 4, Juelich (Germany)

    2013-02-21

    The new hybrid imaging technology of MR-PET allows for simultaneous acquisition of versatile MRI contrasts and the quantitative metabolic imaging with PET. In order to achieve the quantification of PET images with minimal residual error the application of several corrections is crucial. In this work we present our results on quantification with the 3T MR BrainPET scanner.

  8. Segmentation and learning in the quantitative analysis of microscopy images

    Science.gov (United States)

    Ruggiero, Christy; Ross, Amy; Porter, Reid

    2015-02-01

    In material science and bio-medical domains the quantity and quality of microscopy images is rapidly increasing and there is a great need to automatically detect, delineate and quantify particles, grains, cells, neurons and other functional "objects" within these images. These are challenging problems for image processing because of the variability in object appearance that inevitably arises in real world image acquisition and analysis. One of the most promising (and practical) ways to address these challenges is interactive image segmentation. These algorithms are designed to incorporate input from a human operator to tailor the segmentation method to the image at hand. Interactive image segmentation is now a key tool in a wide range of applications in microscopy and elsewhere. Historically, interactive image segmentation algorithms have tailored segmentation on an image-by-image basis, and information derived from operator input is not transferred between images. But recently there has been increasing interest to use machine learning in segmentation to provide interactive tools that accumulate and learn from the operator input over longer periods of time. These new learning algorithms reduce the need for operator input over time, and can potentially provide a more dynamic balance between customization and automation for different applications. This paper reviews the state of the art in this area, provides a unified view of these algorithms, and compares the segmentation performance of various design choices.

  9. Identification and localization of trauma-related biomarkers using matrix assisted laser desorption/ionization imaging mass spectrometry

    Science.gov (United States)

    Jones, Kirstin; Reilly, Matthew A.; Glickman, Randolph D.

    2017-02-01

    Current treatments for ocular and optic nerve trauma are largely ineffective and may have adverse side effects; therefore, new approaches are needed to understand trauma mechanisms. Identification of trauma-related biomarkers may yield insights into the molecular aspects of tissue trauma that can contribute to the development of better diagnostics and treatments. The conventional approach for protein biomarker measurement largely relies on immunoaffinity methods that typically can only be applied to analytes for which antibodies or other targeting means are available. Matrix assisted laser-assisted desorption/ionization imaging mass spectrometry (MALDI-IMS) is a specialized application of mass spectrometry that not only is well suited to the discovery of novel or unanticipated biomarkers, but also provides information about the spatial localization of biomarkers in tissue. We have been using MALDI-IMS to find traumarelated protein biomarkers in retina and optic nerve tissue from animal models subjected to ocular injury produced by either blast overpressure or mechanical torsion. Work to date by our group, using MALDI-IMS, found that the pattern of protein expression is modified in the injured ocular tissue as soon as 24 hr post-injury, compared to controls. Specific proteins may be up- or down-regulated by trauma, suggesting different tissue responses to a given injury. Ongoing work is directed at identifying the proteins affected and mapping their expression in the ocular tissue, anticipating that systematic analysis can be used to identify targets for prospective therapies for ocular trauma.

  10. (18)F-FDG PET image biomarkers improve prediction of late radiation-induced xerostomia.

    Science.gov (United States)

    van Dijk, Lisanne V; Noordzij, Walter; Brouwer, Charlotte L; Boellaard, Ronald; Burgerhof, Johannes G M; Langendijk, Johannes A; Sijtsema, Nanna M; Steenbakkers, Roel J H M

    2017-09-23

    Current prediction of radiation-induced xerostomia 12months after radiotherapy (Xer12m) is based on mean parotid gland dose and baseline xerostomia (Xerbaseline) scores. The hypothesis of this study was that prediction of Xer12m is improved with patient-specific characteristics extracted from (18)F-FDG PET images, quantified in PET image biomarkers (PET-IBMs). Intensity and textural PET-IBMs of the parotid gland were collected from pre-treatment (18)F-FDG PET images of 161 head and neck cancer patients. Patient-rated toxicity was prospectively collected. Multivariable logistic regression models resulting from step-wise forward selection and Lasso regularisation were internally validated by bootstrapping. The reference model with parotid gland dose and Xerbaseline was compared with the resulting PET-IBM models. High values of the intensity PET-IBM (90th percentile (P90)) and textural PET-IBM (Long Run High Grey-level Emphasis 3 (LRHG3E)) were significantly associated with lower risk of Xer12m. Both PET-IBMs significantly added in the prediction of Xer12m to the reference model. The AUC increased from 0.73 (0.65-0.81) (reference model) to 0.77 (0.70-0.84) (P90) and 0.77 (0.69-0.84) (LRHG3E). Prediction of Xer12m was significantly improved with pre-treatment PET-IBMs, indicating that high metabolic parotid gland activity is associated with lower risk of developing late xerostomia. This study highlights the potential of incorporating patient-specific PET-derived functional characteristics into NTCP model development. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Mammographic quantitative image analysis and biologic image composition for breast lesion characterization and classification

    Energy Technology Data Exchange (ETDEWEB)

    Drukker, Karen, E-mail: kdrukker@uchicago.edu; Giger, Maryellen L.; Li, Hui [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Duewer, Fred; Malkov, Serghei; Joe, Bonnie; Kerlikowske, Karla; Shepherd, John A. [Radiology Department, University of California, San Francisco, California 94143 (United States); Flowers, Chris I. [Department of Radiology, University of South Florida, Tampa, Florida 33612 (United States); Drukteinis, Jennifer S. [Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612 (United States)

    2014-03-15

    Purpose: To investigate whether biologic image composition of mammographic lesions can improve upon existing mammographic quantitative image analysis (QIA) in estimating the probability of malignancy. Methods: The study population consisted of 45 breast lesions imaged with dual-energy mammography prior to breast biopsy with final diagnosis resulting in 10 invasive ductal carcinomas, 5 ductal carcinomain situ, 11 fibroadenomas, and 19 other benign diagnoses. Analysis was threefold: (1) The raw low-energy mammographic images were analyzed with an established in-house QIA method, “QIA alone,” (2) the three-compartment breast (3CB) composition measure—derived from the dual-energy mammography—of water, lipid, and protein thickness were assessed, “3CB alone”, and (3) information from QIA and 3CB was combined, “QIA + 3CB.” Analysis was initiated from radiologist-indicated lesion centers and was otherwise fully automated. Steps of the QIA and 3CB methods were lesion segmentation, characterization, and subsequent classification for malignancy in leave-one-case-out cross-validation. Performance assessment included box plots, Bland–Altman plots, and Receiver Operating Characteristic (ROC) analysis. Results: The area under the ROC curve (AUC) for distinguishing between benign and malignant lesions (invasive and DCIS) was 0.81 (standard error 0.07) for the “QIA alone” method, 0.72 (0.07) for “3CB alone” method, and 0.86 (0.04) for “QIA+3CB” combined. The difference in AUC was 0.043 between “QIA + 3CB” and “QIA alone” but failed to reach statistical significance (95% confidence interval [–0.17 to + 0.26]). Conclusions: In this pilot study analyzing the new 3CB imaging modality, knowledge of the composition of breast lesions and their periphery appeared additive in combination with existing mammographic QIA methods for the distinction between different benign and malignant lesion types.

  12. Prognostic value of molecular and imaging biomarkers in patients with supratentorial glioma

    Energy Technology Data Exchange (ETDEWEB)

    Lopci, Egesta [Humanitas Clinical and Research Hospital, Nuclear Medicine, Humanitas Cancer Center, Rozzano, MI (Italy); Riva, Marco; Raneri, Fabio; Pessina, Federico [Humanitas Clinical and Research Hospital, Neurosurgery, Rozzano, Milan (Italy); Olivari, Laura; Rossi, Marco; Alfieri, Tommaso [Universita degli Studi di Milano, Milan (Italy); Soffietti, Riccardo; Ruda, Roberta [University and City of Health and Science Hospital, Neuro-Oncology, Turin (Italy); Piccardo, Arnoldo [Galliera Hospital, Nuclear Medicine, Genova (Italy); Bizzi, Alberto [Fondazione IRCCS Istituto Neurologico Carlo Besta, Neuroradiology, Milan (Italy); Navarria, Pierina; Ascolese, Anna Maria [Humanitas Clinical and Research Hospital, Radiosurgery and Radiotherapy, Rozzano, Milan (Italy); Fernandes, Bethania [Humanitas Clinical and Research Hospital, Pathology, Rozzano, Milan (Italy); Grimaldi, Marco [Humanitas Clinical and Research Hospital, Medical Oncology, Rozzano, Milan (Italy); Simonelli, Matteo; Zucali, Paolo Andrea [Humanitas Clinical and Research Hospital, Radiology Department, Rozzano, Milan (Italy); Scorsetti, Marta [Humanitas Clinical and Research Hospital, Pathology, Rozzano, Milan (Italy); Humanitas University, Rozzano, Milan (Italy); Bello, Lorenzo [Humanitas Clinical and Research Hospital, Neurosurgery, Rozzano, Milan (Italy); Universita degli Studi di Milano, Milan (Italy); Chiti, Arturo [Humanitas Clinical and Research Hospital, Nuclear Medicine, Humanitas Cancer Center, Rozzano, MI (Italy); Humanitas University, Rozzano, Milan (Italy)

    2017-07-15

    We evaluated the relationship between {sup 11}C-methionine PET ({sup 11}C-METH PET) findings and molecular biomarkers in patients with supratentorial glioma who underwent surgery. A consecutive series of 109 patients with pathologically proven glioma (64 men, 45 women; median age 43 years) referred to our Institution from March 2012 to January 2015 for tumour resection and who underwent preoperative {sup 11}C-METH PET were analysed. Semiquantitative evaluation of the {sup 11}C-METH PET images included SUVmax, region of interest-to-normal brain SUV ratio (SUVratio) and metabolic tumour volume (MTV). Imaging findings were correlated with disease outcome in terms of progression-free survival (PFS), and compared with other clinical biological data, including IDH1 mutation status, 1p/19q codeletion and MGMT promoter methylation. The patients were monitored for a mean period of 16.7 months (median 13 months). In all patients, the tumour was identified on {sup 11}C-METH PET. Significant differences in SUVmax, SUVratio and MTV were observed in relation to tumour grade (p < 0.001). IDH1 mutation was found in 49 patients, 1p/19q codeletion in 58 patients and MGMT promoter methylation in 74 patients. SUVmax and SUVratio were significantly inversely correlated with the presence of IDH1 mutation (p < 0.001). Using the 2016 WHO classification, SUVmax and SUVratio were significantly higher in patients with primary glioblastoma (IDH1-negative) than in those with other diffuse gliomas (p < 0.001). Relapse or progression was documented in 48 patients (median PFS 8.7 months). Cox regression analysis showed that SUVmax and SUVratio, tumour grade, tumour type on 2016 WHO classification, IDH1 mutation status, 1p/19q codeletion and MGMT promoter methylation were significantly associated with PFS. None of these factors was found to be an independent prognostic factor in multivariate analysis. {sup 11}C-METH PET parameters are significantly correlated with histological grade and IDH1

  13. A critical insight into the development pipeline of microfluidic immunoassay devices for the sensitive quantitation of protein biomarkers at the point of care.

    Science.gov (United States)

    Barbosa, Ana I; Reis, Nuno M

    2017-03-13

    The latest clinical procedures for the timely and cost-effective diagnosis of chronic and acute clinical conditions, such as cardiovascular diseases, cancer, chronic respiratory diseases, diabetes or sepsis (i.e. the biggest causes of death worldwide), involve the quantitation of specific protein biomarkers released into the blood stream or other physiological fluids (e.g. urine or saliva). The clinical thresholds are usually in the femtomolar to picolomar range, and consequently the measurement of these protein biomarkers heavily relies on highly sophisticated, bulky and automated equipment in centralised pathology laboratories. The first microfluidic devices capable of measuring protein biomarkers in miniaturised immunoassays were presented nearly two decades ago and promised to revolutionise point-of-care (POC) testing by offering unmatched sensitivity and automation in a compact POC format; however, the development and adoption of microfluidic protein biomarker tests has fallen behind expectations. This review presents a detailed critical overview into the pipeline of microfluidic devices developed in the period 2005-2016 capable of measuring protein biomarkers from the pM to fM range in formats compatible with POC testing, with a particular focus on the use of affordable microfluidic materials and compact low-cost signal interrogation. The integration of these two important features (essential unique selling points for the successful microfluidic diagnostic products) has been missed in previous review articles and explain the poor adoption of microfluidic technologies in this field. Most current miniaturised devices compromise either on the affordability, compactness and/or performance of the test, making current tests unsuitable for the POC measurement of protein biomarkers. Seven core technical areas, including (i) the selected strategy for antibody immobilisation, (ii) the surface area and surface-area-to-volume ratio, (iii) surface passivation, (iv) the

  14. MR imaging of renal cortical tumours: qualitative and quantitative chemical shift imaging parameters.

    Science.gov (United States)

    Karlo, Christoph A; Donati, Olivio F; Burger, Irene A; Zheng, Junting; Moskowitz, Chaya S; Hricak, Hedvig; Akin, Oguz

    2013-06-01

    To assess qualitative and quantitative chemical shift MRI parameters of renal cortical tumours. A total of 251 consecutive patients underwent 1.5-T MRI before nephrectomy. Two readers (R1, R2) independently evaluated all tumours visually for a decrease in signal intensity (SI) on opposed- compared with in-phase chemical shift images. In addition, SI was measured on in- and opposed-phase images (SI(IP), SI(OP)) and the chemical shift index was calculated as a measure of percentage SI change. Histopathology served as the standard of reference. A visual decrease in SI was identified significantly more often in clear cell renal cell carcinoma (RCCs) (R1, 73 %; R2, 64 %) and angiomyolipomas (both, 80 %) than in oncocytomas (29 %, 12 %), papillary (29 %, 17 %) and chromophobe RCCs (13 %, 9 %; all, P chemical shift index was significantly greater in clear cell RCC and angiomyolipoma than in the other histological subtypes (both, P analysis (concordance correlation coefficient, 0.80). A decrease in SI on opposed-phase chemical shift images is not an identifying feature of clear cell RCCs or angiomyolipomas, but can also be observed in oncocytomas, papillary and chromophobe RCCs. After excluding angiomyolipomas, a decrease in SI of more than 25 % was diagnostic for clear cell RCCs. • Chemical shift MRI offers new information about fat within renal tumours. • Opposed-phase signal decrease can be observed in all renal cortical tumours. • A greater than 25 % decrease in signal appears to be diagnostic for clear cell RCCs.

  15. Quantitative image analysis in the assessment of diffuse large B-cell lymphoma.

    Science.gov (United States)

    Chabot-Richards, Devon S; Martin, David R; Myers, Orrin B; Czuchlewski, David R; Hunt, Kristin E

    2011-12-01

    Proliferation rates in diffuse large B-cell lymphoma have been associated with conflicting outcomes in the literature, more often with high proliferation associated with poor prognosis. In most studies, the proliferation rate was estimated by a pathologist using an immunohistochemical stain for the monoclonal antibody Ki-67. We hypothesized that a quantitative image analysis algorithm would give a more accurate estimate of the proliferation rate, leading to better associations with survival. In all, 84 cases of diffuse large B-cell lymphoma were selected according to the World Health Organization criteria. Ki-67 percentage positivity estimated by the pathologist was recorded from the original report. The same slides were then scanned using an Aperio ImageScope, and Ki-67 percentage positivity was calculated using a computer-based quantitative immunohistochemistry nuclear algorithm. In addition, chart review was performed and survival time was recorded. The Ki-67 percentage estimated by the pathologist from the original report versus quantitative image analysis was significantly correlated (Pquantitative image analysis (P=0.021). There was less agreement at lower Ki-67 percentages. Comparison of Ki-67 percentage positivity versus survival did not show significant association either with pathologist estimate or quantitative image analysis. However, although not significant, there was a trend of worse survival at higher proliferation rates detected by the pathologist but not by quantitative image analysis. Interestingly, our data suggest that the Ki-67 percentage positivity as assessed by the pathologist may be more closely associated with survival outcome than that identified by quantitative image analysis. This may indicate that pathologists are better at selecting appropriate areas of the slide. More cases are needed to assess whether this finding would be statistically significant. Due to the good correlation between pathologist estimate and quantitative image

  16. TU-AB-BRA-05: Repeatability of [F-18]-NaF PET Imaging Biomarkers for Bone Lesions: A Multicenter Study

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C; Bradshaw, T; Perk, T; Harmon, S; Jeraj, R [University of Wisconsin - Madison, School of Medicine and Public Health, Madison, WI (United States); Liu, G

    2015-06-15

    Purpose: Quantifying the repeatability of imaging biomarkers is critical for assessing therapeutic response. While therapeutic efficacy has been traditionally quantified by SUV metrics, imaging texture features have shown potential for use as quantitative biomarkers. In this study we evaluated the repeatability of quantitative {sup 18}F-NaF PET-derived SUV metrics and texture features in bone lesions from patients in a multicenter study. Methods: Twenty-nine metastatic castrate-resistant prostate cancer patients received whole-body test-retest NaF PET/CT scans from one of three harmonized imaging centers. Bone lesions of volume greater than 1.5 cm{sup 3} were identified and automatically segmented using a SUV>15 threshold. From each lesion, 55 NaF PET-derived texture features (including first-order, co-occurrence, grey-level run-length, neighbor gray-level, and neighbor gray-tone difference matrix) were extracted. The test-retest repeatability of each SUV metric and texture feature was assessed with Bland-Altman analysis. Results: A total of 315 bone lesions were evaluated. Of the traditional SUV metrics, the repeatability coefficient (RC) was 12.6 SUV for SUVmax, 2.5 SUV for SUVmean, and 4.3 cm{sup 3} for volume. Their respective intralesion coefficients of variation (COVs) were 12%, 17%, and 6%. Of the texture features, COV was lowest for entropy (0.03%) and highest for kurtosis (105%). Lesion intraclass correlation coefficient (ICC) was lowest for maximum correlation coefficient (ICC=0.848), and highest for entropy (ICC=0.985). Across imaging centers, repeatability of texture features and SUV varied. For example, across imaging centers, COV for SUVmax ranged between 11–23%. Conclusion: Many NaF PET-derived SUV metrics and texture features for bone lesions demonstrated high repeatability, such as SUVmax, entropy, and volume. Several imaging texture features demonstrated poor repeatability, such as SUVtotal and SUVstd. These results can be used to establish

  17. Quantitative iTRAQ-Based Proteomic Identification of Candidate Biomarkers for Diabetic Nephropathy in Plasma of Type 1 Diabetic Patients

    DEFF Research Database (Denmark)

    Overgaard, Anne Julie; Thingholm, Tine Engberg; Larsen, Martin R

    2010-01-01

    INTRODUCTION: As part of a clinical proteomics programme focused on diabetes and its complications, it was our goal to investigate the proteome of plasma in order to find improved candidate biomarkers to predict diabetic nephropathy. METHODS: Proteins derived from plasma from a cross...... immunoassay confirmed the overall protein expression patterns observed by the iTRAQ analysis. CONCLUSION: The candidate biomarkers discovered in this cross-sectional cohort may turn out to be progression biomarkers and might have several clinical applications in the treatment and monitoring of diabetic......-sectional cohort of 123 type 1 diabetic patients previously diagnosed as normoalbuminuric, microalbuminuric or macroalbuminuric were enriched with hexapeptide library beads and subsequently pooled within three groups. Proteins from the three groups were compared by online liquid chromatography and tandem mass...

  18. Mass Spectrometry Applications for the Identification and Quantitation of Biomarkers Resulting from Human Exposure to Chemical Warfare Agents

    Science.gov (United States)

    Smith, J. Richard; Capacio, Benedict R.

    In recent years, a number of analytical methods using biomedical samples such as blood and urine have been developed for the verification of exposure to chemical warfare agents. The majority of methods utilize gas or liquid chromatography in conjunction with mass spectrometry. In a small number of cases of suspected human exposure to chemical warfare agents, biomedical specimens have been made available for testing. This chapter provides an overview of biomarkers that have been verified in human biomedical samples, details of the exposure incidents, the methods utilized for analysis, and the biomarker concentration levels determined in the blood and/or urine.

  19. Single-exposure quantitative phase imaging in color-coded LED microscopy (Conference Presentation)

    Science.gov (United States)

    Lee, Wonchan; Jung, Daeseong; Joo, Chulmin

    2017-02-01

    Quantitative phase-gradient or phase imaging in LED microscopy has been recently demonstrated. The methods enable measurement of phase distribution of transparent specimens in a simple and cost-effective manner, but require multiple image acquisitions with different source or pupil configurations to improve phase accuracy. Here, we demonstrate a strategy for single-shot quantitative phase imaging in color-coded LED microscopy. We employ a circular LED illumination pattern that is trisected into subregions with equal area, assigned to red, green and blue colors, respectively. Additional color filter is also employed to mitigate the color leakage of light into different color channels of the image sensor. Image acquisition with a color image sensor and subsequent computation based on the weak object transfer function allow for quantitative amplitude and phase measurements of a specimen. We describe computational model and single-shot quantitative phase imaging capability of our method by presenting phase images of calibrated phase sample and dynamics of cells. Phase measurement accuracy is validated with pre-characterized phase plate, and single-shot phase imaging capability is demonstrated with time-lapse imaging of cells acquired at 30 Hz.

  20. Quantitative imaging of collective cell migration during Drosophila gastrulation: multiphoton microscopy and computational analysis

    OpenAIRE

    Supatto, Willy; McMahon, Amy; Fraser, Scott E.; Stathopoulos, Angelike

    2009-01-01

    This protocol describes imaging and computational tools to collect and analyze live imaging data of embryonic cell migration. Our five-step protocol requires a few weeks to move through embryo preparation and four-dimensional (4D) live imaging using multiphoton microscopy, to 3D cell tracking using image processing, registration of tracking data and their quantitative analysis using computational tools. It uses commercially available equipment and requires expertise in microscopy and progr...

  1. Modeling quantitative phase image formation under tilted illuminations.

    Science.gov (United States)

    Bon, Pierre; Wattellier, Benoit; Monneret, Serge

    2012-05-15

    A generalized product-of-convolution model for simulation of quantitative phase microscopy of thick heterogeneous specimen under tilted plane-wave illumination is presented. Actual simulations are checked against a much more time-consuming commercial finite-difference time-domain method. Then modeled data are compared with experimental measurements that were made with a quadriwave lateral shearing interferometer.

  2. The reproducibility of quantitative measurements in lumbar magnetic resonance imaging of children from the general population

    DEFF Research Database (Denmark)

    Masharawi, Y; Kjær, Per; Bendix, T

    2008-01-01

    STUDY DESIGN: Quantitative lumbar magnetic resonance imaging (MRI) measurements in children were taken twice and analyzed for intra- and intertester reproducibility. OBJECTIVE: To evaluate the reproducibility of a variety of lumbar quantitative measurements taken from MRIs of children from the ge...

  3. Quantitative image analysis of microstructure development during pressure sintering of CoO

    Energy Technology Data Exchange (ETDEWEB)

    Miro, A; Notis, M R

    1979-01-01

    An automatic system for quantitative image analysis was developed to study the transition from intermediate to final stage pore structure in pressure-sintered CoO. One of the significant results from this study indicates that the projected length is a good parameter to observe the transition from open cylindrical to closed porosity. Quantitative image analysis indicates that the Zener relationship (r/G approx. P) is obeyed through the entire sintering process.

  4. [Biomarkers in rheumatology. Biomarkers and imaging for the diagnosis and stratification of rheumatoid arthritis and spondylarthritis in the ArthroMark network funded by the Federal Ministry of Education and Research].

    Science.gov (United States)

    Häupl, T; Appel, H; Backhaus, M; Burkhardt, H; Grünke, M; Grützkau, A; Hoppe, B; Listing, J; Ostendorf, B; Rudwaleit, M; Sieper, J; Skapenko, A; Skriner, K; Sörensen, T; Stuhlmüller, B; Zink, A; Schulze-Koops, H; Burmester, G-R

    2012-06-01

    The introduction of biologics has continuously increased the demand for biomarkers for early diagnosis and therapeutic stratification. ArthroMark, a research network funded by the Federal Ministry of Education and Research, aims to establish such biomarkers for rheumatoid arthritis and spondyloarthritides. Biobanks and previous work on genotyping, gene expression and autoreactivity profiling build the basis. Bioinformatic networks will help to harmonize the investigations and a clinical study with modern imaging techniques to characterize the functional relevance of the new biomarkers as effectively as possible. To validate the markers for diagnostic application the network aims to expand gradually.

  5. State of the science: use of biomarkers and imaging in diagnosis and management of Alzheimer disease.

    Science.gov (United States)

    Fraller, Deirdre Brett

    2013-04-01

    Alzheimer disease (AD) is a significant health problem with increasing costs to patients, families, and society. Historically, AD has been diagnosed clinically in living patients using patient history and cognitive testing, approaches with limited sensitivity and specificity. Definitive diagnosis becomes possible only after the patient's death, when physical evidence of the disease process is found upon autopsy. By the time signs and symptoms are sufficient for clinical diagnosis, brain pathology is often quite advanced, limiting benefits of treatment. New techniques have been developed in recent years allowing clinicians to see evidence of the AD pathophysiological process in vivo, allowing more definitive diagnosis while the patient is still alive. In vivo methods able to identify AD in its earliest stages, before the development of the cognitive impairment that allows clinical diagnosis, could enable treatment to begin before pathology is advanced. In 2011, the U.S. NIH National Institute on Aging and the Alzheimer's Association issued new diagnostic guidelines for AD allowing use of biomarker and imaging techniques in addition to clinical criteria. This article describes these new techniques and discusses how they might be used in the diagnosis and management of AD.

  6. Semiautomated volumetric response evaluation as an imaging biomarker in superior sulcus tumors

    Energy Technology Data Exchange (ETDEWEB)

    Vos, C.G.; Paul, M.A. [VU University Medical Center, Departments of Surgery, Amsterdam (Netherlands); Dahele, M.; Soernsen de Koste, J.R. van; Senan, S. [VU University Medical Center, Departments of Radiation Oncology, Amsterdam (Netherlands); Bahce, I.; Smit, E.F. [VU University Medical Center, Departments of Pulmonary Diseases, Amsterdam (Netherlands); Thunnissen, E. [VU University Medical Center, Departments of Pathology, Amsterdam (Netherlands); Hartemink, K.J. [VU University Medical Center, Departments of Surgery, Amsterdam (Netherlands); Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL), Department of Surgery, Amsterdam (Netherlands)

    2014-02-15

    Volumetric response to therapy has been suggested as a biomarker for patient-centered outcomes. The primary aim of this pilot study was to investigate whether the volumetric response to induction chemoradiotherapy was associated with pathological complete response (pCR) or survival in patients with superior sulcus tumors managed with trimodality therapy. The secondary aim was to evaluate a semiautomated method for serial volume assessment. In this retrospective study, treatment outcomes were obtained from a departmental database. The tumor was delineated on the computed tomography (CT) scan used for radiotherapy planning, which was typically performed during the first cycle of chemotherapy. These contours were transferred to the post-chemoradiotherapy diagnostic CT scan using deformable image registration (DIR) with/without manual editing. CT scans from 30 eligible patients were analyzed. Median follow-up was 51 months. Neither absolute nor relative reduction in tumor volume following chemoradiotherapy correlated with pCR or 2-year survival. The tumor volumes determined by DIR alone and DIR + manual editing correlated to a high degree (R{sup 2} = 0.99, P < 0.01). Volumetric response to induction chemoradiotherapy was not correlated with pCR or survival in patients with superior sulcus tumors managed with trimodality therapy. DIR-based contour propagation merits further evaluation as a tool for serial volumetric assessment. (orig.)

  7. Registration of whole immunohistochemical slide images: an efficient way to characterize biomarker colocalization.

    Science.gov (United States)

    Moles Lopez, Xavier; Barbot, Paul; Van Eycke, Yves-Rémi; Verset, Laurine; Trépant, Anne-Laure; Larbanoix, Lionel; Salmon, Isabelle; Decaestecker, Christine

    2015-01-01

    Extracting accurate information from complex biological processes involved in diseases, such as cancers, requires the simultaneous targeting of multiple proteins and locating their respective expression in tissue samples. This information can be collected by imaging and registering adjacent sections from the same tissue sample and stained by immunohistochemistry (IHC). Registration accuracy should be on the scale of a few cells to enable protein colocalization to be assessed. We propose a simple and efficient method based on the open-source elastix framework to register virtual slides of adjacent sections from the same tissue sample. We characterize registration accuracies for different types of tissue and IHC staining. Our results indicate that this technique is suitable for the evaluation of the colocalization of biomarkers on the scale of a few cells. We also show that using this technique in conjunction with a sequential IHC labeling and erasing technique offers improved registration accuracies. Brightfield IHC enables to address the problem of large series of tissue samples, which are usually required in clinical research. However, this approach, which is simple at the tissue processing level, requires challenging image analysis processes, such as accurate registration, to view and extract the protein colocalization information. The method proposed in this work enables accurate registration (on the scale of a few cells) of virtual slides of adjacent tissue sections on which the expression of different proteins is evidenced by standard IHC. Furthermore, combining our method with a sequential labeling and erasing technique enables cell-scale colocalization. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.comFor numbered affiliations see end of article.

  8. Quantification of heterogeneity as a biomarker in tumor imaging: a systematic review.

    Directory of Open Access Journals (Sweden)

    Lejla Alic

    Full Text Available BACKGROUND: Many techniques are proposed for the quantification of tumor heterogeneity as an imaging biomarker for differentiation between tumor types, tumor grading, response monitoring and outcome prediction. However, in clinical practice these methods are barely used. This study evaluates the reported performance of the described methods and identifies barriers to their implementation in clinical practice. METHODOLOGY: The Ovid, Embase, and Cochrane Central databases were searched up to 20 September 2013. Heterogeneity analysis methods were classified into four categories, i.e., non-spatial methods (NSM, spatial grey level methods (SGLM, fractal analysis (FA methods, and filters and transforms (F&T. The performance of the different methods was compared. PRINCIPAL FINDINGS: Of the 7351 potentially relevant publications, 209 were included. Of these studies, 58% reported the use of NSM, 49% SGLM, 10% FA, and 28% F&T. Differentiation between tumor types, tumor grading and/or outcome prediction was the goal in 87% of the studies. Overall, the reported area under the curve (AUC ranged from 0.5 to 1 (median 0.87. No relation was found between the performance and the quantification methods used, or between the performance and the imaging modality. A negative correlation was found between the tumor-feature ratio and the AUC, which is presumably caused by overfitting in small datasets. Cross-validation was reported in 63% of the classification studies. Retrospective analyses were conducted in 57% of the studies without a clear description. CONCLUSIONS: In a research setting, heterogeneity quantification methods can differentiate between tumor types, grade tumors, and predict outcome and monitor treatment effects. To translate these methods to clinical practice, more prospective studies are required that use external datasets for validation: these datasets should be made available to the community to facilitate the development of new and improved

  9. Quantitative appraisal of ventricular cerebrospinal fluid biomarkers in neuropathologically diagnosed Parkinson's disease cases lacking Alzheimer's disease pathology.

    Science.gov (United States)

    Maarouf, Chera L; Beach, Thomas G; Adler, Charles H; Malek-Ahmadi, Michael; Kokjohn, Tyler A; Dugger, Brittany N; Walker, Douglas G; Shill, Holly A; Jacobson, Sandra A; Sabbagh, Marwan N; Roher, Alex E

    2013-01-01

    Identifying biomarkers that distinguish Parkinson's disease (PD) from normal control (NC) individuals has the potential to increase diagnostic sensitivity for the detection of early-stage PD. A previous proteomic study identified potential biomarkers in postmortem ventricular cerebrospinal fluid (V-CSF) from neuropathologically diagnosed PD subjects lacking Alzheimer's disease (AD) neuropathology. In the present study, we assessed these biomarkers as well as p-tau(181), Aβ42, and S100B by ELISA in PD (n = 43) and NC (n = 49) cases. The p-tau(181)/Aβ42 ratio and ApoA-1 showed statistically significant differences between groups. Multiple regression analysis demonstrated that p-tau(181)/Aβ42 had a significant odds ratio: OR = 1.42 (95% confidence interval [CI], 1.12-1.84), P = 0.006. Among the molecules investigated, intriguing correlations were observed that require further investigation. Our results suggest coexistent AD CSF biomarkers within the PD group notwithstanding that it was selected to minimize AD neuropathological lesions.

  10. Differential hydrogen isotopic ratios of Sphagnum and vascular plant biomarkers in ombrotrophic peatlands as a quantitative proxy for precipitation—evaporation balance

    Science.gov (United States)

    Nichols, Jonathan; Booth, Robert K.; Jackson, Stephen T.; Pendall, Elise G.; Huang, Yongsong

    2010-02-01

    We have developed a new approach to quantitatively reconstruct past changes in evaporation based on compound-specific hydrogen isotope ratios of vascular plant and Sphagnum biomarkers in ombrotrophic peatland sediments. We show that the contrast in H isotopic ratios of water available to living Sphagnum (top 20 cm) and in the rooting zone of peatland vascular plants can be used to estimate "ƒ"—the fraction of water remaining after evaporation. Vascular plant leaf waxes record H isotopic ratios of acrotelm water, which carries the D/H ratio signature of precipitation and is little affected by evaporation, whereas the Sphagnum biomarker, C 23n-alkane, records H isotopic ratios of the water inside its cells and between its leaves, which is strongly affected by evaporation at the bog surface. Evaporation changes can then be deduced by comparing H isotopic ratios of the two types of biomarkers. We calibrated D/H ratios of C 23n-alkane to source water with lab-grown Sphagnum. We also tested our isotopic model using modern surface samples from 18 ombrotrophic peatlands in the Midwestern United States. Finally, we generated a 3000-year downcore reconstruction from Minden Bog, Michigan, USA. Our new record is consistent with records of other parameters from the same peatland derived from different proxies and allows us to differentiate precipitation supply and evaporative loss.

  11. Perfluorocarbon nanoemulsions for quantitative molecular imaging and targeted therapeutics.

    Science.gov (United States)

    Kaneda, Megan M; Caruthers, Shelton; Lanza, Gregory M; Wickline, Samuel A

    2009-10-01

    A broad array of nanomaterials is available for use as contrast agents for molecular imaging and drug delivery. Due to the lack of endogenous background signal in vivo and the high NMR sensitivity of the (19)F atom, liquid perfluorocarbon nanoemulsions make ideal agents for cellular and magnetic resonance molecular imaging. The perfluorocarbon core material is surrounded by a lipid monolayer which can be functionalized with a variety of agents including targeting ligands, imaging agents and drugs either individually or in combination. Multiple copies of targeting ligands (approximately 20-40 monoclonal antibodies or 200-400 small molecule ligands) serve to enhance avidity through multivalent interactions while the composition of the particle's perfluorocarbon core results in high local concentrations of (19)F. Additionally, lipophilic drugs contained within molecularly targeted nanoemulsions can result in contact facilitated drug delivery to target cells. Ultimately, the dual use of perfluorocarbon nanoparticles for both site targeted drug delivery and molecular imaging may provide both imaging of disease states as well as conclusive evidence that drug delivery is localized to the area of interest. This review will focus on liquid perfluorocarbon nanoparticles as (19)F molecular imaging agents and for targeted drug delivery in cancer and cardiovascular disease.

  12. Quantitative Imaging in Radiation Oncology: An Emerging Science and Clinical Service.

    Science.gov (United States)

    Jaffray, David Anthony; Chung, Caroline; Coolens, Catherine; Foltz, Warren; Keller, Harald; Menard, Cynthia; Milosevic, Michael; Publicover, Julia; Yeung, Ivan

    2015-10-01

    Radiation oncology has long required quantitative imaging approaches for the safe and effective delivery of radiation therapy. The past 10 years has seen a remarkable expansion in the variety of novel imaging signals and analyses that are starting to contribute to the prescription and design of the radiation treatment plan. These include a rapid increase in the use of magnetic resonance imaging, development of contrast-enhanced imaging techniques, integration of fluorinated deoxyglucose-positron emission tomography, evaluation of hypoxia imaging techniques, and numerous others. These are reviewed with an effort to highlight challenges related to quantification and reproducibility. In addition, several of the emerging applications of these imaging approaches are also highlighted. Finally, the growing community of support for establishing quantitative imaging approaches as we move toward clinical evaluation is summarized and the need for a clinical service in support of the clinical science and delivery of care is proposed. Copyright © 2015. Published by Elsevier Inc.

  13. Automatic segmentation method of striatum regions in quantitative susceptibility mapping images

    Science.gov (United States)

    Murakawa, Saki; Uchiyama, Yoshikazu; Hirai, Toshinori

    2015-03-01

    Abnormal accumulation of brain iron has been detected in various neurodegenerative diseases. Quantitative susceptibility mapping (QSM) is a novel contrast mechanism in magnetic resonance (MR) imaging and enables the quantitative analysis of local tissue susceptibility property. Therefore, automatic segmentation tools of brain regions on QSM images would be helpful for radiologists' quantitative analysis in various neurodegenerative diseases. The purpose of this study was to develop an automatic segmentation and classification method of striatum regions on QSM images. Our image database consisted of 22 QSM images obtained from healthy volunteers. These images were acquired on a 3.0 T MR scanner. The voxel size was 0.9×0.9×2 mm. The matrix size of each slice image was 256×256 pixels. In our computerized method, a template mating technique was first used for the detection of a slice image containing striatum regions. An image registration technique was subsequently employed for the classification of striatum regions in consideration of the anatomical knowledge. After the image registration, the voxels in the target image which correspond with striatum regions in the reference image were classified into three striatum regions, i.e., head of the caudate nucleus, putamen, and globus pallidus. The experimental results indicated that 100% (21/21) of the slice images containing striatum regions were detected accurately. The subjective evaluation of the classification results indicated that 20 (95.2%) of 21 showed good or adequate quality. Our computerized method would be useful for the quantitative analysis of Parkinson diseases in QSM images.

  14. Quantitative Computed Tomography and image analysis for advanced muscle assessment

    Directory of Open Access Journals (Sweden)

    Kyle Joseph Edmunds

    2016-06-01

    Full Text Available Medical imaging is of particular interest in the field of translational myology, as extant literature describes the utilization of a wide variety of techniques to non-invasively recapitulate and quantity various internal and external tissue morphologies. In the clinical context, medical imaging remains a vital tool for diagnostics and investigative assessment. This review outlines the results from several investigations on the use of computed tomography (CT and image analysis techniques to assess muscle conditions and degenerative process due to aging or pathological conditions. Herein, we detail the acquisition of spiral CT images and the use of advanced image analysis tools to characterize muscles in 2D and 3D. Results from these studies recapitulate changes in tissue composition within muscles, as visualized by the association of tissue types to specified Hounsfield Unit (HU values for fat, loose connective tissue or atrophic muscle, and normal muscle, including fascia and tendon. We show how results from these analyses can be presented as both average HU values and compositions with respect to total muscle volumes, demonstrating the reliability of these tools to monitor, assess and characterize muscle degeneration.

  15. Quantitative imaging and measurement of cell-substrate surface deformation by digital holography

    Science.gov (United States)

    Yu, Xiao; Cross, Michael; Liu, Changgeng; Clark, David C.; Haynie, Donald T.; Kim, Myung K.

    2012-10-01

    Quantitative phase microscopy by digital holography (DH-QPM) is introduced to study the cell-substrate interactions and migratory behavior of adhesive cells. A non-wrinkling elastic substrate, collagen-coated polyacrylamide (PAA) has been employed and its surface deformation due to cell adhesion and motility has been visualized as certain tangential and vertical displacement and distortion. The surface deformation on substrates of different elasticity and thickness has been quantitatively imaged and the corresponding cellular traction force of motile fibroblasts has been measured from phase profiles by DH-QPM. DH-QPM is able to yield quantitative measures directly and provide efficient and versatile means for quantitatively analyzing cellular motility.

  16. Photoacoustic molecular imaging for in vivo liver iron quantitation

    Science.gov (United States)

    Maccarinelli, Federica; Carmona, Fernando; Regoni, Maria; Arosio, Paolo

    2016-05-01

    A recent study showed that ferritin is a suitable endogenous contrast agent for photoacoustic molecular imaging in cultured mammalian cells. We have therefore tested whether this imaging technique can be used for in vivo quantification of iron in mouse livers. To verify this hypothesis, we used multispectral optoacoustic tomography (MSOT) to image albino CD1 mice before and after experimental iron loading. Postmortem assays showed that the iron treatment caused a 15-fold increase in liver iron and a 40-fold increase in liver ferritin levels, while in vivo longitudinal analysis using MSOT revealed just a 1.6-fold increase in the ferritin/iron photoacoustic signal in the same animals. We conclude that MSOT can monitor changes in ferritin/iron levels in vivo, but its sensitivity is much lower than that of ex vivo iron assays.

  17. EF5 PET of Tumor Hypoxia: A Predictive Imaging Biomarker of Response to Stereotactic Ablative Radiotherapy (SABR) for Early Lung Cancer

    Science.gov (United States)

    2016-09-01

    Award Number: W81XWH-12-1-0236 TITLE: : EF5 PET of Tumor Hypoxia: A Predictive Imaging Biomarker of Response to Stereotactic Ablative...2. REPORT TYPE Annual 3. DATES COVERED 15Aug2015 - 14Aug2016 4. TITLE AND SUBTITLE EF5 PET of Tumor Hypoxia: A Predictive Imaging Biomarker of 5a...comorbidities that increase surgical risk. Tumor hypoxia is a major known mechanism of radiation resistance and is especially expected to affect very short

  18. Quantitative image analysis for the detection of motion artefacts in coronary artery computed tomography

    NARCIS (Netherlands)

    Kristanto, Wisnumurti; van Ooijen, Peter M.; Dikkers, Riksta; Greuter, Marcel J.; Zijlstra, Felix; Oudkerk, Matthijs

    2010-01-01

    Multi detector-row CT (MDCT), the current preferred method for coronary artery disease assessment, is still affected by motion artefacts. To rule out motion artefacts, qualitative image analysis is usually performed. Our study aimed to develop a quantitative image analysis for motion artefacts detec

  19. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET.

    Science.gov (United States)

    Ahn, Sangtae; Ross, Steven G; Asma, Evren; Miao, Jun; Jin, Xiao; Cheng, Lishui; Wollenweber, Scott D; Manjeshwar, Ravindra M

    2015-08-07

    Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs.

  20. Quantitative 3-D imaging topogrammetry for telemedicine applications

    Science.gov (United States)

    Altschuler, Bruce R.

    1994-01-01

    The technology to reliably transmit high-resolution visual imagery over short to medium distances in real time has led to the serious considerations of the use of telemedicine, telepresence, and telerobotics in the delivery of health care. These concepts may involve, and evolve toward: consultation from remote expert teaching centers; diagnosis; triage; real-time remote advice to the surgeon; and real-time remote surgical instrument manipulation (telerobotics with virtual reality). Further extrapolation leads to teledesign and telereplication of spare surgical parts through quantitative teleimaging of 3-D surfaces tied to CAD/CAM devices and an artificially intelligent archival data base of 'normal' shapes. The ability to generate 'topogrames' or 3-D surface numerical tables of coordinate values capable of creating computer-generated virtual holographic-like displays, machine part replication, and statistical diagnostic shape assessment is critical to the progression of telemedicine. Any virtual reality simulation will remain in 'video-game' realm until realistic dimensional and spatial relational inputs from real measurements in vivo during surgeries are added to an ever-growing statistical data archive. The challenges of managing and interpreting this 3-D data base, which would include radiographic and surface quantitative data, are considerable. As technology drives toward dynamic and continuous 3-D surface measurements, presenting millions of X, Y, Z data points per second of flexing, stretching, moving human organs, the knowledge base and interpretive capabilities of 'brilliant robots' to work as a surgeon's tireless assistants becomes imaginable. The brilliant robot would 'see' what the surgeon sees--and more, for the robot could quantify its 3-D sensing and would 'see' in a wider spectral range than humans, and could zoom its 'eyes' from the macro world to long-distance microscopy. Unerring robot hands could rapidly perform machine-aided suturing with

  1. Quantitative assessment of brain perfusion with magnetic resonance imaging

    NARCIS (Netherlands)

    Bleeker, Egbert Jan Willem

    2011-01-01

    This thesis focuses on assessing blood supply to brain tissue using MRI. For Dynamic Susceptibility Contrast-MRI a series of images is acquired during the passage of a bolus contrast agent through the brain up to the point that the contrast agent is equally mixed within the total blood pool. The tis

  2. Ultrasound imaging for quantitative measurement of immersed plastic waste particles

    NARCIS (Netherlands)

    Sanaee, S.A.; Bakker, M.C.M.

    2012-01-01

    Ultrasound imaging techniques are proposed for measuring the shape and thickness of immersed waste particles (10-20 mm size) using a linear sensor array from a fixed position. For these purposes both the front and back surface of a particle needs to be reconstructed. Raw ultrasound pulse-echo and pl

  3. Rapid quantitative pharmacodynamic imaging by a novel method: theory, simulation testing and proof of principle

    Directory of Open Access Journals (Sweden)

    Kevin J. Black

    2013-08-01

    Full Text Available Pharmacological challenge imaging has mapped, but rarely quantified, the sensitivity of a biological system to a given drug. We describe a novel method called rapid quantitative pharmacodynamic imaging. This method combines pharmacokinetic-pharmacodynamic modeling, repeated small doses of a challenge drug over a short time scale, and functional imaging to rapidly provide quantitative estimates of drug sensitivity including EC50 (the concentration of drug that produces half the maximum possible effect. We first test the method with simulated data, assuming a typical sigmoidal dose-response curve and assuming imperfect imaging that includes artifactual baseline signal drift and random error. With these few assumptions, rapid quantitative pharmacodynamic imaging reliably estimates EC50 from the simulated data, except when noise overwhelms the drug effect or when the effect occurs only at high doses. In preliminary fMRI studies of primate brain using a dopamine agonist, the observed noise level is modest compared with observed drug effects, and a quantitative EC50 can be obtained from some regional time-signal curves. Taken together, these results suggest that research and clinical applications for rapid quantitative pharmacodynamic imaging are realistic.

  4. Generalized eikonal of partially coherent beams and its use in quantitative imaging.

    Science.gov (United States)

    Gureyev, T E; Paganin, D M; Stevenson, A W; Mayo, S C; Wilkins, S W

    2004-08-06

    The generalized eikonal of a partially coherent paraxial wave is introduced via a differential equation describing the evolution of the time-averaged intensity. The theoretical formalism provides an analytical tool for the study of partially coherent imaging systems. It also makes possible quantitative phase retrieval and compositional mapping of weakly absorbing samples using phase-contrast imaging with broadband polychromatic radiation of known spectral distribution. An experimental demonstration is presented of the quantitative reconstruction of the projected thickness of a sample, given a phase-contrast image obtained using a polychromatic microfocus x-ray source.

  5. Quantitative appraisal for noise reduction in digital holographic phase imaging.

    Science.gov (United States)

    Montresor, Silvio; Picart, Pascal

    2016-06-27

    This paper discusses on a quantitative comparison of the performances of different advanced algorithms for phase data de-noising. In order to quantify the performances, several criteria are proposed: the gain in the signal-to-noise ratio, the Q index, the standard deviation of the phase error, and the signal to distortion ratio. The proposed methodology to investigate de-noising algorithms is based on the use of a realistic simulation of noise-corrupted phase data. A database including 25 fringe patterns divided into 5 patterns and 5 different signal-to-noise ratios was generated to evaluate the selected de-noising algorithms. A total of 34 algorithms divided into different families were evaluated. Quantitative appraisal leads to ranking within the considered criteria. A fairly good correlation between the signal-to-noise ratio gain and the quality index has been observed. There exists an anti-correlation between the phase error and the quality index which indicates that the phase errors are mainly structural distortions in the fringe pattern. Experimental results are thoroughly discussed in the paper.

  6. Real Time Imaging of Biomarkers in the Parkinson's Brain Using Mini-Implantable Biosensors. II. Pharmaceutical Therapy with Bromocriptine

    Directory of Open Access Journals (Sweden)

    Patricia A. Broderick

    2009-12-01

    Full Text Available We used Neuromolecular Imaging (NMI and trademarked BRODERICK PROBE® mini-implantable biosensors, to selectively and separately detect neurotransmitters in vivo, on line, within seconds in the dorsal striatal brain of the Parkinson’s Disease (PD animal model. We directly compared our results derived from PD to the normal striatal brain of the non-Parkinson’s Disease (non-PD animal. This advanced biotechnology enabled the imaging of dopamine (DA, serotonin (5-HT, homovanillic acid (HVA a metabolite of DA, L-tryptophan (L-TP a precursor to 5-HT and peptides, dynorphin A 1-17 (Dyn A and somatostatin (somatostatin releasing inhibitory factor (SRIF. Each neurotransmitter and neurochemical was imaged at a signature electroactive oxidation/half-wave potential in dorsal striatum of the PD as compared with the non-PD animal. Both endogenous and bromocriptine-treated neurochemical profiles in PD and non-PD were imaged using the same experimental paradigm and detection sensitivities. Results showed that we have found significant neurotransmitter peptide biomarkers in the dorsal striatal brain of endogenous and bromocriptine-treated PD animals. The peptide biomarkers were not imaged in dorsal striatal brain of non-PD animals, either endogenously or bromocriptine-treated. These findings provide new pharmacotherapeutic strategies for PD patients. Thus, our findings are highly applicable to the clinical treatment of PD.

  7. Differential diagnosis of breast cancer using quantitative, label-free and molecular vibrational imaging.

    Science.gov (United States)

    Yang, Yaliang; Li, Fuhai; Gao, Liang; Wang, Zhiyong; Thrall, Michael J; Shen, Steven S; Wong, Kelvin K; Wong, Stephen T C

    2011-08-01

    We present a label-free, chemically-selective, quantitative imaging strategy to identify breast cancer and differentiate its subtypes using coherent anti-Stokes Raman scattering (CARS) microscopy. Human normal breast tissue, benign proliferative, as well as in situ and invasive carcinomas, were imaged ex vivo. Simply by visualizing cellular and tissue features appearing on CARS images, cancerous lesions can be readily separated from normal tissue and benign proliferative lesion. To further distinguish cancer subtypes, quantitative disease-related features, describing the geometry and distribution of cancer cell nuclei, were extracted and applied to a computerized classification system. The results show that in situ carcinoma was successfully distinguished from invasive carcinoma, while invasive ductal carcinoma (IDC) and invasive lobular carcinoma were also distinguished from each other. Furthermore, 80% of intermediate-grade IDC and 85% of high-grade IDC were correctly distinguished from each other. The proposed quantitative CARS imaging method has the potential to enable rapid diagnosis of breast cancer.

  8. Assessment of MRI Parameters as Imaging Biomarkers for Radiation Necrosis in the Rat Brain

    Energy Technology Data Exchange (ETDEWEB)

    Wang Silun [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Tryggestad, Erik [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Zhou Tingting [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Armour, Michael [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Wen Zhibo [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong (China); Fu Dexue [Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Ford, Eric [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Zijl, Peter C.M. van [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland (United States); Zhou Jinyuan, E-mail: jzhou@mri.jhu.edu [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland (United States)

    2012-07-01

    Purpose: Radiation necrosis is a major complication of radiation therapy. We explore the features of radiation-induced brain necrosis in the rat, using multiple MRI approaches, including T{sub 1}, T{sub 2}, apparent diffusion constant (ADC), cerebral blood flow (CBF), magnetization transfer ratio (MTR), and amide proton transfer (APT) of endogenous mobile proteins and peptides. Methods and Materials: Adult rats (Fischer 344; n = 15) were irradiated with a single, well-collimated X-ray beam (40 Gy; 10 Multiplication-Sign 10 mm{sup 2}) in the left brain hemisphere. MRI was acquired on a 4.7-T animal scanner at {approx}25 weeks' postradiation. The MRI signals of necrotic cores and perinecrotic regions were assessed with a one-way analysis of variance. Histological evaluation was accomplished with hematoxylin and eosin staining. Results: ADC and CBF MRI could separate perinecrotic and contralateral normal brain tissue (p < 0.01 and < 0.05, respectively), whereas T{sub 1}, T{sub 2}, MTR, and APT could not. MRI signal intensities were significantly lower in the necrotic core than in normal brain for CBF (p < 0.001) and APT (p < 0.01) and insignificantly higher or lower for T{sub 1}, T{sub 2}, MTR, and ADC. Histological results demonstrated coagulative necrosis within the necrotic core and reactive astrogliosis and vascular damage within the perinecrotic region. Conclusion: ADC and CBF are promising imaging biomarkers for identifying perinecrotic regions, whereas CBF and APT are promising for identifying necrotic cores.

  9. Neuro-imaging the serotonin 2A receptor as a valid biomarker for canine behavioural disorders.

    Science.gov (United States)

    Vermeire, Simon; Audenaert, Kurt; De Meester, Rudy; Vandermeulen, Eva; Waelbers, Tim; De Spiegeleer, Bart; Eersels, Jos; Dobbeleir, André; Peremans, Kathelijne

    2011-12-01

    The serotonergic system is disturbed in different mood and affective disorders, with especially the serotonin (5-HT) 2A receptor involved in impulsive aggressiveness and anxiety. The aim of the study was to evaluate the involvement of the brain 5-HT 2A receptor in dogs with different behavioural disorders. Three groups of drug naive dogs were studied: 22 dogs showing impulsive aggressive behaviour, 22 showing normal behaviour, and 22 showing anxious behaviour. The serotonin 2A receptor was evaluated with Single Photon Emission Computed Tomography (SPECT) and the serotonin 2A receptor-selective radiopharmaceutical (123)I-R91150. A serotonin 2A receptor binding index (BI), proportional to the cortical receptor density, was calculated. A receiver operating characteristic (ROC) analysis was performed to determine cut-off values at which optimal sensitivity and specificity are achieved and to evaluate the general performance of the BI in reflecting the state of the dog, i.e., impulsive aggressive, normal or anxious. Significantly (Pdogs behaving abnormally, with consistently increased BI in impulsive aggressive dogs and decreased BI in anxious dogs. These results provide clear evidence for a disturbed serotonergic balance in canine impulsive aggression and anxiety disorders. A right frontal cut-off value of ≥1.92 with 86.4% sensitivity and 2.3% (1-specificity) was obtained for the impulsive aggressive dogs. Differentiating the anxious dogs from the rest of the population was possible with a cut-off value of ≤1.73 with 86.4% sensitivity and 18.2% (1-specificity). We conclude that SPECT imaging with the radioligand (123)I-R91150 can be a helpful tool in evaluating the involvement of the serotonin 2A receptor in the complex mechanisms of impulsive aggressive and anxious behaviour. The 5HT-2A binding index of the right frontal cortex appears to be a valid biomarker in differentiating the studied canine behavioural disorders.

  10. Off-axis quantitative phase imaging processing using CUDA: toward real-time applications.

    Science.gov (United States)

    Pham, Hoa; Ding, Huafeng; Sobh, Nahil; Do, Minh; Patel, Sanjay; Popescu, Gabriel

    2011-07-01

    We demonstrate real time off-axis Quantitative Phase Imaging (QPI) using a phase reconstruction algorithm based on NVIDIA's CUDA programming model. The phase unwrapping component is based on Goldstein's algorithm. By mapping the process of extracting phase information and unwrapping to GPU, we are able to speed up the whole procedure by more than 18.8× with respect to CPU processing and ultimately achieve video rate for mega-pixel images. Our CUDA implementation also supports processing of multiple images simultaneously. This enables our imaging system to support high speed, high throughput, and real-time image acquisition and visualization.

  11. Statistical Methods for Quantitatively Detecting Fungal Disease from Fruits’ Images

    OpenAIRE

    Jagadeesh D. Pujari; Yakkundimath, Rajesh Siddaramayya; Byadgi, Abdulmunaf Syedhusain

    2013-01-01

    In this paper we have proposed statistical methods for detecting fungal disease and classifying based on disease severity levels.  Most fruits diseases are caused by bacteria, fungi, virus, etc of which fungi are responsible for a large number of diseases in fruits. In this study images of fruits, affected by different fungal symptoms are collected and categorized based on disease severity. Statistical features like block wise, gray level co-occurrence matrix (GLCM), gray level runlength matr...

  12. Quantitative imaging of excised osteoarthritic cartilage using spectral CT

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Kishore; Bateman, Christopher J.; Younis, Raja Aamir; De Ruiter, Niels J.A.; Ramyar, Mohsen; Anderson, Nigel G. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); Loebker, Caroline [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); University of Twente, Department of Developmental BioEngineering, Enschede (Netherlands); Schon, Benjamin S.; Hooper, Gary J.; Woodfield, Tim B.F. [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); Chernoglazov, Alex I. [University of Canterbury, Human Interface Technology Laboratory New Zealand, Christchurch (New Zealand); Butler, Anthony P.H. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); European Organisation for Nuclear Research (CERN), Geneva (Switzerland); MARS Bioimaging, Christchurch (New Zealand)

    2017-01-15

    To quantify iodine uptake in articular cartilage as a marker of glycosaminoglycan (GAG) content using multi-energy spectral CT. We incubated a 25-mm strip of excised osteoarthritic human tibial plateau in 50 % ionic iodine contrast and imaged it using a small-animal spectral scanner with a cadmium telluride photon-processing detector to quantify the iodine through the thickness of the articular cartilage. We imaged both spectroscopic phantoms and osteoarthritic tibial plateau samples. The iodine distribution as an inverse marker of GAG content was presented in the form of 2D and 3D images after applying a basis material decomposition technique to separate iodine in cartilage from bone. We compared this result with a histological section stained for GAG. The iodine in cartilage could be distinguished from subchondral bone and quantified using multi-energy CT. The articular cartilage showed variation in iodine concentration throughout its thickness which appeared to be inversely related to GAG distribution observed in histological sections. Multi-energy CT can quantify ionic iodine contrast (as a marker of GAG content) within articular cartilage and distinguish it from bone by exploiting the energy-specific attenuation profiles of the associated materials. (orig.)

  13. Schlieren imaging of microthruster exhausts for qualitative and quantitative analysis

    Science.gov (United States)

    Lekholm, Ville; Palmer, Kristoffer; Thornell, Greger

    2012-08-01

    Schlieren imaging is a method used to visualize differences in refractive index within a medium. It is a powerful and straightforward tool for sensitive and high-resolution visualization of, e.g., gas flows. Here, heated cold gas microthrusters were studied with this technique. The thrusters are manufactured using microelectromechanical systems technology and measure 22 × 22 × 0.85 mm3. The nozzles are approximately 20 µm wide at the throat and 350 µm wide at the exit. Through these studies, verification of the functionality of the thrusters and direct visualization of the thruster exhausts were possible. At atmospheric pressure, slipping of the exhaust was observed, due to severe overexpansion of the nozzle. In vacuum (3 kPa), the exhaust was imaged while feed pressure was varied from 100 to 450 kPa. The nozzle was overexpanded, and the flow was seen to be supersonic. The shock cell period, ranging from 320 to 610 µm, was linearly dependent on feed pressure. With activated heaters, the shock cell separation increased. The effect of the heaters was more prominent at low feed pressure, and an increase in specific impulse of 20% was calculated. It was also shown that schlieren imaging can be used to detect leaks, making it a valuable, safe and noninvasive aid in quality control of the thrusters.

  14. Segmentation of vascular structures and hematopoietic cells in 3D microscopy images and quantitative analysis

    Science.gov (United States)

    Mu, Jian; Yang, Lin; Kamocka, Malgorzata M.; Zollman, Amy L.; Carlesso, Nadia; Chen, Danny Z.

    2015-03-01

    In this paper, we present image processing methods for quantitative study of how the bone marrow microenvironment changes (characterized by altered vascular structure and hematopoietic cell distribution) caused by diseases or various factors. We develop algorithms that automatically segment vascular structures and hematopoietic cells in 3-D microscopy images, perform quantitative analysis of the properties of the segmented vascular structures and cells, and examine how such properties change. In processing images, we apply local thresholding to segment vessels, and add post-processing steps to deal with imaging artifacts. We propose an improved watershed algorithm that relies on both intensity and shape information and can separate multiple overlapping cells better than common watershed methods. We then quantitatively compute various features of the vascular structures and hematopoietic cells, such as the branches and sizes of vessels and the distribution of cells. In analyzing vascular properties, we provide algorithms for pruning fake vessel segments and branches based on vessel skeletons. Our algorithms can segment vascular structures and hematopoietic cells with good quality. We use our methods to quantitatively examine the changes in the bone marrow microenvironment caused by the deletion of Notch pathway. Our quantitative analysis reveals property changes in samples with deleted Notch pathway. Our tool is useful for biologists to quantitatively measure changes in the bone marrow microenvironment, for developing possible therapeutic strategies to help the bone marrow microenvironment recovery.

  15. Total lesion glycolysis (TLG) as an imaging biomarker in metastatic colorectal cancer patients treated with regorafenib

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yoojoo; Lee, Kyung-Hun [Seoul National University Hospital, Department of Internal Medicine, 101 Daehang-ro, Jongno-gu, Seoul (Korea, Republic of); Bang, Ji-In; Paeng, Jin Chul [Seoul National University Hospital, Department of Nuclear Medicine, 101 Daehang-ro, Jongno-gu, Seoul (Korea, Republic of); Han, Sae-Won [Seoul National University Hospital, Department of Internal Medicine, 101 Daehang-ro, Jongno-gu, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Kim, Jee Hyun [Seoul National University Bundang Hospital, Department of Internal Medicine, Geyonggi-do (Korea, Republic of); Kang, Gyeong Hoon [Seoul National University Hospital, Department of Pathology, Seoul (Korea, Republic of); Jeong, Seung-Yong; Park, Kyu Joo [Seoul National University Hospital, Department of Surgery, Seoul (Korea, Republic of); Kim, Tae-You [Seoul National University Hospital, Department of Internal Medicine, 101 Daehang-ro, Jongno-gu, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of)

    2017-05-15

    This study was performed to evaluate whether fluorine-18 fluorodeoxyglucose positron-emission tomography/computed tomography (FDG PET/CT) could predict treatment outcome of regorafenib in metastatic colorectal cancer (mCRC). Previously treated refractory mCRC patients were enrolled into a prospective biomarker study of regorafenib. For this sub-study, the results of FDG PET/CT scans at baseline and after two cycles of treatment were analyzed. Various metabolic parameters obtained from PET images were analyzed in relation to treatment outcome. A total of 40 patients were evaluable for PET image analysis. Among various PET parameters, total lesion glycolysis (TLG) measured in the same target lesions for RECIST 1.1 analysis were the most significant in predicting prognosis, with the lowest p-value observed in TLG calculated using the margin threshold of 40 % (TLG{sub 40} {sub %}). Further analysis using TLG{sub 40} {sub %} showed significantly longer overall survival (OS) in patients with lower baseline TLG{sub 40} {sub %} (<151.8) (p = 0.003, median 14.2 vs. 9.1 months in <151.8 and ≥151.8, respectively). Patients showing higher decrease in TLG{sub 40} {sub %} after treatment showed significantly longer progression-free survival (PFS) (p = 0.001, median 8.0 vs. 2.4 months in % ΔTLG{sub 40} {sub %} < -9.6 % and ≥ -9.6 %, respectively) and OS (p = 0.002, median 16.4 vs. 9.1 months in % ΔTLG{sub 40} {sub %} < -9.6 % and ≥ -9.6 %, respectively). The same cutoff could discriminate patients with longer survival among the patients who were under the stable disease category according to RECIST 1.1 (median PFS 8.4 vs. 6.8 months, p = 0.020; median OS 18.3 vs. 11.5 months, p = 0.049). Measurement of TLG can predict treatment outcome of regorafenib in mCRC. (orig.)

  16. Identification of phosphorylated MYL12B as a potential plasma biomarker for septic acute kidney injury using a quantitative proteomic approach

    Science.gov (United States)

    Wu, Fan; Dong, Xiu-Juan; Li, Yan-Yan; Zhao, Yan; Xu, Qiu-Lin; Su, Lei

    2015-01-01

    Acute kidney injury (AKI) is a common and increasingly encountered complication in hospitalized patients with critical illness in intensive care units (ICU). According to the etiology, Sepsis-induced AKI (SAKI) is a leading contributor to AKI and significantly has very poor prognosis, which might be related to the late detection when the elevation of BUN and serum creatinine (SCr) is used. Many genes are up-regulated in the damaged kidney with the corresponding protein products appearing in plasma and urine. Some of these are candidate biomarkers for more timely diagnosis of SAKI. Therefore, extensive research efforts over this past decade have been directed at the discovery and validation of novel SAKI biomarkers to detect injury prior to changes in kidney function, a number of serum and urinary proteins, including NGAL, KIM-1, cystatin-C, IL-18, and L-FABP, have been identified for predicting SAKI before a rise in BUN and serum creatinine in several experimental and clinical trainings. Unfortunately, an ideal biomarker of SAKI with highly sensitivity and specificity has not been identified yet. Recent progresses in quantitative proteomics have offered opportunities to discover biomarkers for SAKI. In the present study, kidney tissue samples from SAKI mice were analyzed by two-dimensional differential gel electrophoresis (2D-DIGE), and 4 up-regulated proteins, which were actin (ACTB), myosin regulatory light chain 12B (MYL12B), myosin regulatory light polypeptide 9 (MYL9), and myosin regulatory light chain 12A (MYL12A) were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS). Among all the varied proteins, MYL12B was validated by western blot. Interestingly, there was no change between the SAKI and control kidney tissues, however, phosphorylated MYL12B was detected to be consistent with the proteomics data. Furthermore, phosphorylated MYL12B was found similarly to be increased in SAKI plasma

  17. EMerging BiomARKers in Inflammatory Bowel Disease (EMBARK) study identifies fecal calprotectin, serum MMP9, and serum IL-22 as a novel combination of biomarkers for Crohn's disease activity: role of cross-sectional imaging.

    Science.gov (United States)

    Faubion, William A; Fletcher, Joel G; O'Byrne, Sharon; Feagan, Brian G; de Villiers, Willem Js; Salzberg, Bruce; Plevy, Scott; Proctor, Deborah D; Valentine, John F; Higgins, Peter D; Harris, Jeffrey M; Diehl, Lauri; Wright, Lilyan; Tew, Gaik Wei; Luca, Diana; Basu, Karen; Keir, Mary E

    2013-12-01

    In Crohn's disease (CD), clinical symptoms correspond poorly to inflammatory disease activity. Biomarkers reflective of mucosal and bowel wall inflammation would be useful to monitor disease activity. The EMBARK study evaluated disease activity in patients with ulcerative colitis (UC) and CD, and used endoscopy with or without cross-sectional imaging for biomarker discovery. UC (n=107) and CD (n=157) patients were characterized and underwent ileocolonoscopy (ICO). A subset of CD patients (n=66) also underwent computed tomography enterography (CTE). ICO and CTE were scored by a gastroenterologist and radiologist who incorporated findings of inflammation into a single score (ICO-CTE) for patients that underwent both procedures. Serum and fecal biomarkers were evaluated for association with the Mayo Clinic endoscopy score in UC patients and with ICO alone or ICO-CTE in CD patients. Individual biomarkers with a moderate degree of correlation (P≤0.3) were evaluated using multivariate analysis with model selection using a stepwise procedure. In UC, ordinal logistic regression using Mayo Clinic endoscopy subscore selected the combination of fecal calprotectin and serum matrix metalloproteinase 9 (MMP9; pseudo R(2)=0.353). In CD, we found that use of the ICO-CTE increased specificity of known biomarkers. Using ICO-CTE as the dependent variable for biomarker discovery, the selected biomarkers were the combination of fecal calprotectin, serum MMP9, and serum IL-22 (r=0.699). Incorporation of both ICO and CTE into a single measure increased biomarker performance in CD. Combinations of fecal calprotectin and serum MMP9 for UC, and combinations of fecal calprotectin, serum MMP9, and serum interleukin-22 in CD, demonstrated the strongest association with imaging/endoscopy-defined inflammation.

  18. Quantitative imaging of protein targets in the human brain with PET

    Science.gov (United States)

    Gunn, Roger N.; Slifstein, Mark; Searle, Graham E.; Price, Julie C.

    2015-11-01

    PET imaging of proteins in the human brain with high affinity radiolabelled molecules has a history stretching back over 30 years. During this period the portfolio of protein targets that can be imaged has increased significantly through successes in radioligand discovery and development. This portfolio now spans six major categories of proteins; G-protein coupled receptors, membrane transporters, ligand gated ion channels, enzymes, misfolded proteins and tryptophan-rich sensory proteins. In parallel to these achievements in radiochemical sciences there have also been significant advances in the quantitative analysis and interpretation of the imaging data including the development of methods for image registration, image segmentation, tracer compartmental modeling, reference tissue kinetic analysis and partial volume correction. In this review, we analyze the activity of the field around each of the protein targets in order to give a perspective on the historical focus and the possible future trajectory of the field. The important neurobiology and pharmacology is introduced for each of the six protein classes and we present established radioligands for each that have successfully transitioned to quantitative imaging in humans. We present a standard quantitative analysis workflow for these radioligands which takes the dynamic PET data, associated blood and anatomical MRI data as the inputs to a series of image processing and bio-mathematical modeling steps before outputting the outcome measure of interest on either a regional or parametric image basis. The quantitative outcome measures are then used in a range of different imaging studies including tracer discovery and development studies, cross sectional studies, classification studies, intervention studies and longitudinal studies. Finally we consider some of the confounds, challenges and subtleties that arise in practice when trying to quantify and interpret PET neuroimaging data including motion artifacts

  19. Advanced quantitative imaging of musculoskeletal disorders (Conference Presentation)

    Science.gov (United States)

    Chaudhary, Rajeev; Halanski, Matthew; Campagnola, Paul J.

    2017-03-01

    Previous studies have shown that bone growth acceleration can occur in many animal species after periosteal resection (removal of a strip of periosteum) with minimum morbidity. This has numerous clinical applications, including treatment of limb length differences. Here we use Second Harmonic Generation (SHG) imaging microscopy to evaluate changes in collagen architecture reflective of the different strains the periosteum may encounter during bone growth. Specifically, we image rabbit tibial periosteum strips at -20%, 0%, 5%, and 10% strains. We first quantify these changes using the SHG creation ratio (Forward/Backward) or the initially emitted SHG directionality to provide information on the fibril level of assembly. The in situ (i.e. physiological) strain had the highest creation ratio compared to the non-in situ strains of -20%, 5%, and 10%, which were shown to be significantly different via RCBD statistical analysis. These trends are consistent with SHG phasematching considerations, where more organized fibrils/fibers result in primarily forward emitted components, which here is the physiological strain. We further use the relative SHG conversion efficiency to assess the tissue structure under strain, where this results from the combination of collagen concentration and organization. The 0% strain SHG conversion efficiency was significantly higher than all other strains, where this is expected as the fibers have the highest local density and organization, and is consistent with the emission directionality results. Importantly, due to the underlying physical process, the label-free SHG imaging modality can non-invasively monitor the effect of treatments for bone growth and other orthopedic disorders.

  20. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, M.; Beck, R.N.

    1992-06-01

    This report describes three studies aimed at using radiolabeled pharmaceuticals to explore brain function and anatomy. The first section describes the chemical preparation of (F18)fluorinated benzamides (dopamine D-2 receptor tracers), (F18)fluorinated benzazepines (dopamine D-1 receptor tracers), and tissue distribution of (F18)-fluoxetine (serotonin reuptake site tracer). The second section relates pharmacological and behavioral studies of amphetamines. The third section reports on progress made with processing of brain images from CT, MRI and PET/SPECT with regards to brain metabolism of glucose during mental tasks.

  1. Schlieren Imaging of Microthruster Exhausts for Qualitative and Quantitative Analysis

    OpenAIRE

    Lekholm, Ville; Palmer, Kristoffer; Thornell, Greger

    2012-01-01

    Abstract. Schlieren imaging is a method used to visualize differences in refractiveindex within a medium. It is a powerful and straightforward tool for sensitiveand high-resolution visualization of, e.g., gas flows. Here, heated cold gasmicrothrusters were studied with this technique. The thrusters are manufacturedusing microelectromechanical systems technology, and measure 22×22×0.85 mm. Thenozzles are approximately 20 µm wide at the throat, and 350 µm wide at the exit.Through these studies, v...

  2. Quantitative imaging of tumor vasculature using multispectral optoacoustic tomography (MSOT)

    Science.gov (United States)

    Tomaszewski, Michal R.; Quiros-Gonzalez, Isabel; Joseph, James; Bohndiek, Sarah E.

    2017-03-01

    The ability to evaluate tumor oxygenation in the clinic could indicate prognosis and enable treatment monitoring, since oxygen deficient cancer cells are often more resistant to chemotherapy and radiotherapy. MultiSpectral Optoacoustic Tomography (MSOT) is a hybrid technique combining the high contrast of optical imaging with spatial resolution and penetration depth similar to ultrasound. We hypothesized that MSOT could reveal both tumor vascular density and function based on modulation of blood oxygenation. We performed MSOT on nude mice (n=8) bearing subcutaneous xenograft PC3 tumors using an inVision 256 (iThera Medical). The mice were maintained under inhalation anesthesia during imaging and respired oxygen content was modified from 21% to 100% and back. After imaging, Hoechst 33348 was injected to indicate vascular perfusion and permeability. Tumors were then extracted for histopathological analysis and fluorescence microscopy. The acquired data was analyzed to extract a bulk measurement of blood oxygenation (SO2MSOT) from the whole tumor using different approaches. The tumors were also automatically segmented into 5 regions to investigate the effect of depth on SO2MSOT. Baseline SO2MSOT values at 21% and 100% oxygen breathing showed no relationship with ex vivo measures of vascular density or function, while the change in SO2MSOT showed a strong negative correlation to Hoechst intensity (r=- 0.92, p=0.0016). Tumor voxels responding to oxygen challenge were spatially heterogeneous. We observed a significant drop in SO2 MSOT value with tumor depth following a switch of respiratory gas from air to oxygen (0.323+/-0.017 vs. 0.11+/-0.05, p=0.009 between 0 and 1.5mm depth), but no such effect for air breathing (0.265+/-0.013 vs. 0.19+/-0.04, p=0.14 between 0 and 1.5mm depth). Our results indicate that in subcutaneous prostate tumors, baseline SO2MSOT levels do not correlate to tumor vascular density or function while the magnitude of the response to oxygen

  3. Genetic algorithm based image binarization approach and its quantitative evaluation via pooling

    Science.gov (United States)

    Hu, Huijun; Liu, Ya; Liu, Maofu

    2015-12-01

    The binarized image is very critical to image visual feature extraction, especially shape feature, and the image binarization approaches have been attracted more attentions in the past decades. In this paper, the genetic algorithm is applied to optimizing the binarization threshold of the strip steel defect image. In order to evaluate our genetic algorithm based image binarization approach in terms of quantity, we propose the novel pooling based evaluation metric, motivated by information retrieval community, to avoid the lack of ground-truth binary image. Experimental results show that our genetic algorithm based binarization approach is effective and efficiency in the strip steel defect images and our quantitative evaluation metric on image binarization via pooling is also feasible and practical.

  4. Quantitative contrast-enhanced MR imaging of the optic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J.H. [Depts. of Radiology, Univ. of Colorado Health Sciences Center, Denver, CO (United States)]|[Iowa Univ., Iowa City, IA (United States); Rubinstein, D. [Depts. of Radiology, Univ. of Colorado Health Sciences Center, Denver, CO (United States)]|[Iowa Univ., Iowa City, IA (United States); Brown, M. [Depts. of Radiology, Univ. of Colorado Health Sciences Center, Denver, CO (United States)]|[Iowa Univ., Iowa City, IA (United States); Yuh, W. [Depts. of Radiology, Univ. of Colorado Health Sciences Center, Denver, CO (United States)]|[Iowa Univ., Iowa City, IA (United States); Birch-Iensen, M. [Depts. of Radiology, Univ. of Colorado Health Sciences Center, Denver, CO (United States)]|[Iowa Univ., Iowa City, IA (United States); Szumowski, J. [Depts. of Radiology, Univ. of Colorado Health Sciences Center, Denver, CO (United States)]|[Iowa Univ., Iowa City, IA (United States); Stears, J. [Depts. of Radiology, Univ. of Colorado Health Sciences Center, Denver, CO (United States)]|[Iowa Univ., Iowa City, IA (United States)

    1994-11-01

    During the acute stages of optic neuritis damage to the blood-optic nerve barrier can be detected using i.v. paramagnetic contrast-enhanced MR imaging. Quantification of the enhancement pattern of the optic nerve, intraorbital fat and muscle was determined in 15 normal subjects using 3 fat-suppression MR imaging methods: T1-weighted spin-echo and spoiled gradient-echo sequences preceded by a flat-frequency selective pulse (FATSAT+SE and FATSAT+SPGR, respectively) and a pulse sequence combining CHOPPER fat suppression with a fat-frequency selective preparation pulse (HYBRID). Pre- and postcontrast-enhanced studies were acquired for FATSAT+SE and FATSAT+SPGR. There was no significant enhancement of the optic nerve by either method (mean increase of 0.96% and 5.3%, respectively), while there was significant enhancement in muscle (mean 118.2% and 108.2%, respectively; p<0.005) and fat (mean increase of 13% and 37%, respectively; p<0.05). Postcontrast optic nerve/muscle signal intensity ratios (mean, SD) were 0.51 (0.07), 0.58 (0.05) and 0.75 (0.05) for FATSAT+SE, FATSAT+SPGR and HYBRID, respectively. These results suggest a practical methodology and range of values for normal signal intensity increases and ratios of tissue signal that can be used as objective measures of optic neuritis for natural history studies and treatment trials. (orig.).

  5. Quantitative photothermal phase imaging of red blood cells using digital holographic photothermal microscope.

    Science.gov (United States)

    Vasudevan, Srivathsan; Chen, George C K; Lin, Zhiping; Ng, Beng Koon

    2015-05-10

    Photothermal microscopy (PTM), a noninvasive pump-probe high-resolution microscopy, has been applied as a bioimaging tool in many biomedical studies. PTM utilizes a conventional phase contrast microscope to obtain highly resolved photothermal images. However, phase information cannot be extracted from these photothermal images, as they are not quantitative. Moreover, the problem of halos inherent in conventional phase contrast microscopy needs to be tackled. Hence, a digital holographic photothermal microscopy technique is proposed as a solution to obtain quantitative phase images. The proposed technique is demonstrated by extracting phase values of red blood cells from their photothermal images. These phase values can potentially be used to determine the temperature distribution of the photothermal images, which is an important study in live cell monitoring applications.

  6. Current and emerging quantitative magnetic resonance imaging methods for assessing and predicting the response of breast cancer to neoadjuvant therapy

    Directory of Open Access Journals (Sweden)

    Abramson RG

    2012-10-01

    Full Text Available Richard G Abramson,1,2,9 Lori R Arlinghaus,1,2 Jared A Weis,1,2 Xia Li,1,2 Adrienne N Dula,1,2 Eduard Y Chekmenev,1–4,9 Seth A Smith,1–3,5 Michael I Miga,1–3,6 Vandana G Abramson,7,9 Thomas E Yankeelov1–3,5,8,91Institute of Imaging Science, 2Department of Radiology and Radiological Sciences, 3Department of Biomedical Engineering, 4Department of Biochemistry, 5Department of Physics, 6Department of Neurosurgery, 7Department of Medical Oncology, 8Department of Cancer Biology, 9Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville,TN, USAAbstract: Reliable early assessment of breast cancer response to neoadjuvant therapy (NAT would provide considerable benefit to patient care and ongoing research efforts, and demand for accurate and noninvasive early-response biomarkers is likely to increase. Response assessment techniques derived from quantitative magnetic resonance imaging (MRI hold great potential for integration into treatment algorithms and clinical trials. Quantitative MRI techniques already available for assessing breast cancer response to neoadjuvant therapy include lesion size measurement, dynamic contrast-enhanced MRI, diffusion-weighted MRI, and proton magnetic resonance spectroscopy. Emerging yet promising techniques include magnetization transfer MRI, chemical exchange saturation transfer MRI, magnetic resonance elastography, and hyperpolarized MR. Translating and incorporating these techniques into the clinical setting will require close attention to statistical validation methods, standardization and reproducibility of technique, and scanning protocol design.Keywords: treatment response, presurgical treatment, neoadjuvant chemotherapy

  7. Dependence of quantitative accuracy of CT perfusion imaging on system parameters

    Science.gov (United States)

    Li, Ke; Chen, Guang-Hong

    2017-03-01

    Deconvolution is a popular method to calculate parametric perfusion parameters from four dimensional CT perfusion (CTP) source images. During the deconvolution process, the four dimensional space is squeezed into three-dimensional space by removing the temporal dimension, and a prior knowledge is often used to suppress noise associated with the process. These additional complexities confound the understanding about deconvolution-based CTP imaging system and how its quantitative accuracy depends on parameters and sub-operations involved in the image formation process. Meanwhile, there has been a strong clinical need in answering this question, as physicians often rely heavily on the quantitative values of perfusion parameters to make diagnostic decisions, particularly during an emergent clinical situation (e.g. diagnosis of acute ischemic stroke). The purpose of this work was to develop a theoretical framework that quantitatively relates the quantification accuracy of parametric perfusion parameters with CTP acquisition and post-processing parameters. This goal was achieved with the help of a cascaded systems analysis for deconvolution-based CTP imaging systems. Based on the cascaded systems analysis, the quantitative relationship between regularization strength, source image noise, arterial input function, and the quantification accuracy of perfusion parameters was established. The theory could potentially be used to guide developments of CTP imaging technology for better quantification accuracy and lower radiation dose.

  8. Imaging and Quantitation Techniques for Tracking Cargo along Endosome-to-Golgi Transport Pathways

    Directory of Open Access Journals (Sweden)

    Paul A. Gleeson

    2013-02-01

    Full Text Available Recent improvements in the resolution of light microscopy, coupled with the development of a range of fluorescent-based probes, have provided new approaches to dissecting membrane domains and the regulation of membrane trafficking. Here, we review these advances, as well as highlight developments in quantitative image analysis and novel unbiased analytical approaches to quantitate protein localization. The application of these approaches to endosomal sorting and endosome-to-Golgi transport is discussed.

  9. The use of the lumbosacral enlargement as an intrinsic imaging biomarker: feasibility of grey matter and white matter cross-sectional area measurements using MRI at 3T.

    Directory of Open Access Journals (Sweden)

    Marios C Yiannakas

    Full Text Available Histopathological studies have demonstrated the involvement of spinal cord grey matter (GM and white matter (WM in several diseases and recent research has suggested the use of magnetic resonance imaging (MRI as a promising tool for in vivo assessment of the upper spinal cord. However, many neurological conditions would benefit from quantitative assessment of tissue integrity at different levels and relatively little work has been done, mainly due to technical challenges associated with imaging the lower spinal cord. In this study, the value of the lumbosacral enlargement (LSE as an intrinsic imaging biomarker was determined by exploring the feasibility of obtaining within it reliable GM and WM cross-sectional area (CSA measurements by means of a commercially available MRI system at 3 tesla (T. 10 healthy volunteers (mean age 27.5 years, 6 female gave written informed consent and high resolution images of the LSE were acquired and analysed using an optimised MRI acquisition and analysis protocol. GM and WM mean CSA measurements were obtained from a 15 mm section at the level of the LSE and the reproducibility of the measurements was determined by means of scan-rescan, intra- and inter-observer assessments. Mean (±SD LSE cross-sectional area (LSE-CSA was 62.3 (±4.1 mm2 and mean (±SD LSE grey matter cross-sectional area (LSE-GM-CSA was 19.8 (±3.3 mm2. The mean scan-rescan, intra- and inter-observer % coefficient of variation (COV for measuring the LSE-CSA were 2%, 2% and 2.5%, respectively and for measuring the LSE-GM-CSA were 7.8%, 8% and 8.6%, respectively. This study has shown that the LSE can be used reliably as an intrinsic imaging biomarker. The method presented here can be potentially extended to study the LSE in the diseased state and could provide a solid foundation for subsequent multi-parametric MRI investigations.

  10. Quantitative assessment of renal function with magnetic resonance imaging; Quantitative Erfassung der renalen Funktion mit der Magnetresonanztomographie

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, S.O.; Bock, M.; Aumann, S.; Essig, M.; Floemer, F.; Knopp, M.V.; Kaick, G. van [Deutsches Krebsforschungszentrum Heidelberg (Germany). Abt. Radiologische Diagnostik und Therapie; Just, A. [Heidelberg Univ. (Germany). 1. Physiologisches Inst.

    2000-10-01

    Aim. To show the potential of various methods in magnetic resonance imaging for the evaluation of renal function. Material and Methods. A combined assessment of renal morphology, renal hemodynamics and function is proposed. Various techniques are explained, including multiphasic 3D gadolinium MR angiography, MR phase-contrast flow measurements, quantitative perfusion measurements with intravascular contrast agents, and MR renography and MR urography. The use of these techniques is demonstrated for renovascular diseases. Results. The combined use of these techniques allows renal artery stenosis to be accurately detected and evaluation of renal blood flow, perfusion, glomerular filtration rate, and renal excretion. Based on true quantitative parameters, the hemodynamic and functional significance of the stenosis can be assessed. Renovascular diseases can be differentiated from renoparenchymal disease. Conclusion. For the assessment of renal function, functional magnetic resonance imaging techniques are an important alternative to nuclear medicine. The predictive value regarding the effect of revascularization is currently under investigation. (orig.) [German] Fragestellung. Verschiedene Methoden der Magnetresonanztomographie zur quantitativen Erfassung der Nierenfunktion sollen aufgezeigt werden. Methodik. Es werden MR-Techniken zur kombinierten Beurteilung der renalen Morphologie, Haemodynamik und Funktion der Niere vorgestellt. Zur Anwendung kommen hierbei die multiphasische 3-D-Gadolinium-MR-Angiographie, die MR-Phasenkontrastflussmessung, die quantitative Perfusionsmessung mit intravasalen Kontrastmitteln sowie die MR-Renographie/MR-Urographie. Die Methoden werden exemplarisch am Beispiel renovaskulaerer Erkrankungen demonstriert. Ergebnisse. Mit den vorgestellten Methoden lassen sich Nierenarterienstenosen akkurat detektieren sowie Aenderungen des renalen Blutflusses, der Nierenperfusion, der Filtrationsleistung sowie der renalen Ausscheidung erfassen. Auf der

  11. Quantitative Evaluation of Scintillation Camera Imaging Characteristics of Isotopes Used in Liver Radioembolization

    OpenAIRE

    Mattijs Elschot; Johannes Franciscus Wilhelmus Nijsen; Alida Johanna Dam; Hugo Wilhelmus Antonius Maria de Jong

    2011-01-01

    BACKGROUND: Scintillation camera imaging is used for treatment planning and post-treatment dosimetry in liver radioembolization (RE). In yttrium-90 (90Y) RE, scintigraphic images of technetium-99m (99mTc) are used for treatment planning, while 90Y Bremsstrahlung images are used for post-treatment dosimetry. In holmium-166 (166Ho) RE, scintigraphic images of 166Ho can be used for both treatment planning and post-treatment dosimetry. The aim of this study is to quantitatively evaluate and compa...

  12. Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography.

    Science.gov (United States)

    Paturzo, Melania; Finizio, Andrea; Memmolo, Pasquale; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea; Ferraro, Pietro

    2012-09-07

    We show that sharp imaging and quantitative phase-contrast microcopy is possible in microfluidics in flowing turbid media by digital holography. In fact, in flowing liquids with suspended colloidal particles, clear vision is hindered and cannot be recovered by any other microscopic imaging technique. On the contrary, using digital holography, clear imaging is possible thanks to the Doppler frequency shift experienced by the photons scattered by the flowing colloidal particles, which do not contribute to the interference process, i.e. the recorded hologram. The method is illustrated and imaging results are demonstrated for pure phase objects, i.e. biological cells in microfluidic channels.

  13. Bone Scan Index as an Imaging Biomarker in Metastatic Castration-resistant Prostate Cancer: A Multicentre Study Based on Patients Treated with Abiraterone Acetate (Zytiga) in Clinical Practice.

    Science.gov (United States)

    Reza, Mariana; Ohlsson, Mattias; Kaboteh, Reza; Anand, Aseem; Franck-Lissbrant, Ingela; Damber, Jan-Erik; Widmark, Anders; Thellenberg-Karlsson, Camilla; Budäus, Lars; Steuber, Thomas; Eichenauer, Till; Wollmer, Per; Edenbrandt, Lars; Trägårdh, Elin; Bjartell, Anders

    2016-12-01

    Abiraterone acetate (AA) prolongs survival in metastatic castration-resistant prostate cancer (mCRPC) patients. To measure treatment response accurately in bone, quantitative methods are needed. The Bone Scan Index (BSI), a prognostic imaging biomarker, reflects the tumour burden in bone as a percentage of the total skeletal mass calculated from bone scintigraphy. To evaluate the value of BSI as a biomarker for outcome evaluation in mCRPC patients on treatment with AA according to clinical routine. We retrospectively studied 104 mCRPC patients who received AA following disease progression after chemotherapy. All patients underwent whole-body bone scintigraphy before and during AA treatment. Baseline and follow-up BSI data were obtained using EXINI Bone(BSI) software (EXINI Diagnostics AB, Lund, Sweden). Associations between change in BSI, clinical parameters at follow-up, and overall survival (OS) were evaluated using the Cox proportional hazards regression models and Kaplan-Meier estimates. Discrimination between variables was assessed using the concordance index (C-index). Patients with an increase in BSI at follow-up of at most 0.30 (n=54) had a significantly longer median survival time than those with an increase of BSI >0.30 (n=50) (median: 16 vs 10 mo; p=0.001). BSI change was also associated with OS in a multivariate Cox analysis including commonly used clinical parameters for prognosis (C-index=0.7; hazard ratio: 1.1; p=0.03). The retrospective design was a limitation. Change in BSI was significantly associated with OS in mCRPC patients undergoing AA treatment following disease progression in a postchemotherapy setting. BSI may be a useful imaging biomarker for outcome evaluation in this group of patients, and it could be a valuable complementary tool in monitoring patients with mCRPC on second-line therapies. Bone Scan Index (BSI) change is related to survival time in metastatic castration-resistant prostate cancer (mCRPC) patients on abiraterone acetate

  14. Quantitative Characterization of Super-Resolution Infrared Imaging Based on Time-Varying Focal Plane Coding

    Science.gov (United States)

    Wang, X.; Yuan, Y.; Zhang, J.; Chen, Y.; Cheng, Y.

    2014-10-01

    High resolution infrared image has been the goal of an infrared imaging system. In this paper, a super-resolution infrared imaging method using time-varying coded mask is proposed based on focal plane coding and compressed sensing theory. The basic idea of this method is to set a coded mask on the focal plane of the optical system, and the same scene could be sampled many times repeatedly by using time-varying control coding strategy, the super-resolution image is further reconstructed by sparse optimization algorithm. The results of simulation are quantitatively evaluated by introducing the Peak Signal-to-Noise Ratio (PSNR) and Modulation Transfer Function (MTF), which illustrate that the effect of compressed measurement coefficient r and coded mask resolution m on the reconstructed image quality. Research results show that the proposed method will promote infrared imaging quality effectively, which will be helpful for the practical design of new type of high resolution ! infrared imaging systems.

  15. High resolution quantitative phase imaging of live cells with constrained optimization approach

    Science.gov (United States)

    Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu

    2016-03-01

    Quantitative phase imaging (QPI) aims at studying weakly scattering and absorbing biological specimens with subwavelength accuracy without any external staining mechanisms. Use of a reference beam at an angle is one of the necessary criteria for recording of high resolution holograms in most of the interferometric methods used for quantitative phase imaging. The spatial separation of the dc and twin images is decided by the reference beam angle and Fourier-filtered reconstructed image will have a very poor resolution if hologram is recorded below a minimum reference angle condition. However, it is always inconvenient to have a large reference beam angle while performing high resolution microscopy of live cells and biological specimens with nanometric features. In this paper, we treat reconstruction of digital holographic microscopy images as a constrained optimization problem with smoothness constraint in order to recover only complex object field in hologram plane even with overlapping dc and twin image terms. We solve this optimization problem by gradient descent approach iteratively and the smoothness constraint is implemented by spatial averaging with appropriate size. This approach will give excellent high resolution image recovery compared to Fourier filtering while keeping a very small reference angle. We demonstrate this approach on digital holographic microscopy of live cells by recovering the quantitative phase of live cells from a hologram recorded with nearly zero reference angle.

  16. Quantitative assessment of p-glycoprotein expression and function using confocal image analysis.

    Science.gov (United States)

    Hamrang, Zahra; Arthanari, Yamini; Clarke, David; Pluen, Alain

    2014-10-01

    P-glycoprotein is implicated in clinical drug resistance; thus, rapid quantitative analysis of its expression and activity is of paramout importance to the design and success of novel therapeutics. The scope for the application of quantitative imaging and image analysis tools in this field is reported here at "proof of concept" level. P-glycoprotein expression was utilized as a model for quantitative immunofluorescence and subsequent spatial intensity distribution analysis (SpIDA). Following expression studies, p-glycoprotein inhibition as a function of verapamil concentration was assessed in two cell lines using live cell imaging of intracellular Calcein retention and a routine monolayer fluorescence assay. Intercellular and sub-cellular distributions in the expression of the p-glycoprotein transporter between parent and MDR1-transfected Madin-Derby Canine Kidney cell lines were examined. We have demonstrated that quantitative imaging can provide dose-response parameters while permitting direct microscopic analysis of intracellular fluorophore distributions in live and fixed samples. Analysis with SpIDA offers the ability to detect heterogeniety in the distribution of labeled species, and in conjunction with live cell imaging and immunofluorescence staining may be applied to the determination of pharmacological parameters or analysis of biopsies providing a rapid prognostic tool.

  17. Rapid and Quantitative Assessment of Cancer Treatment Response Using In Vivo Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2000-01-01

    Full Text Available Current assessment of orthotopic tumor models in animals utilizes survival as the primary therapeutic end point. In vivo bioluminescence imaging (BLI is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating antineoplastic therapies [1 ]. Using human tumor cell lines constitutively expressing luciferase, the kinetics of tumor growth and response to therapy have been assessed in intraperitoneal [2], subcutaneous, and intravascular [3] cancer models. However, use of this approach for evaluating orthotopic tumor models has not been demonstrated. In this report, the ability of BLI to noninvasively quantitate the growth and therapeuticinduced cell kill of orthotopic rat brain tumors derived from 9L gliosarcoma cells genetically engineered to stably express firefly luciferase (9LLuc was investigated. Intracerebral tumor burden was monitored over time by quantitation of photon emission and tumor volume using a cryogenically cooled CCD camera and magnetic resonance imaging (MRI, respectively. There was excellent correlation (r=0.91 between detected photons and tumor volume. A quantitative comparison of tumor cell kill determined from serial MRI volume measurements and BLI photon counts following 1,3-bis(2-chloroethyl-1-nitrosourea (BCNU treatment revealed that both imaging modalities yielded statistically similar cell kill values (P=.951. These results provide direct validation of BLI imaging as a powerful and quantitative tool for the assessment of antineoplastic therapies in living animals.

  18. Objective evaluation of reconstruction methods for quantitative SPECT imaging in the absence of ground truth

    Science.gov (United States)

    Jha, Abhinav K.; Song, Na; Caffo, Brian; Frey, Eric C.

    2015-03-01

    Quantitative single-photon emission computed tomography (SPECT) imaging is emerging as an important tool in clinical studies and biomedical research. There is thus a need for optimization and evaluation of systems and algorithms that are being developed for quantitative SPECT imaging. An appropriate objective method to evaluate these systems is by comparing their performance in the end task that is required in quantitative SPECT imaging, such as estimating the mean activity concentration in a volume of interest (VOI) in a patient image. This objective evaluation can be performed if the true value of the estimated parameter is known, i.e. we have a gold standard. However, very rarely is this gold standard known in human studies. Thus, no-gold-standard techniques to optimize and evaluate systems and algorithms in the absence of gold standard are required. In this work, we developed a no-gold-standard technique to objectively evaluate reconstruction methods used in quantitative SPECT when the parameter to be estimated is the mean activity concentration in a VOI. We studied the performance of the technique with realistic simulated image data generated from an object database consisting of five phantom anatomies with all possible combinations of five sets of organ uptakes, where each anatomy consisted of eight different organ VOIs. Results indicate that the method pro- vided accurate ranking of the reconstruction methods. We also demonstrated the application of consistency checks to test the no-gold-standard output.

  19. Alarmin S100A8/S100A9 as a biomarker for molecular imaging of local inflammatory activity

    Science.gov (United States)

    Vogl, Thomas; Eisenblätter, Michel; Völler, Tom; Zenker, Stefanie; Hermann, Sven; van Lent, Peter; Faust, Andreas; Geyer, Christiane; Petersen, Beatrix; Roebrock, Kirsten; Schäfers, Michael; Bremer, Christoph; Roth, Johannes

    2014-01-01

    Inflammation has a key role in the pathogenesis of various human diseases. The early detection, localization and monitoring of inflammation are crucial for tailoring individual therapies. However, reliable biomarkers to detect local inflammatory activities and to predict disease outcome are still missing. Alarmins, which are locally released during cellular stress, are early amplifiers of inflammation. Here, using optical molecular imaging, we demonstrate that the alarmin S100A8/S100A9 serves as a sensitive local and systemic marker for the detection of even sub-clinical disease activity in inflammatory and immunological processes like irritative and allergic contact dermatitis. In a model of collagen-induced arthritis, we use S100A8/S100A9 imaging to predict the development of disease activity. Furthermore, S100A8/S100A9 can act as a very early and sensitive biomarker in experimental leishmaniasis for phagocyte activation linked to an effective Th1-response. In conclusion, the alarmin S100A8/S100A9 is a valuable and sensitive molecular target for novel imaging approaches to monitor clinically relevant inflammatory disorders on a molecular level. PMID:25098555

  20. Quantitative imaging of basic functions in renal (patho)physiology.

    Science.gov (United States)

    Kang, Jung Julie; Toma, Ildiko; Sipos, Arnold; McCulloch, Fiona; Peti-Peterdi, Janos

    2006-08-01

    Multiphoton fluorescence microscopy offers the advantages of deep optical sectioning of living tissue with minimal phototoxicity and high optical resolution. More importantly, dynamic processes and multiple functions of an intact organ can be visualized in real time using noninvasive methods, and quantified. These studies aimed to extend existing methods of multiphoton fluorescence imaging to directly observe and quantify basic physiological parameters of the kidney including glomerular filtration rate (GFR) and permeability, blood flow, urinary concentration/dilution, renin content and release, as well as more integrated and complex functions like the tubuloglomerular feedback (TGF)-mediated oscillations in glomerular filtration and tubular flow. Streptozotocin-induced diabetes significantly increased single-nephron GFR (SNGFR) from 32.4 +/- 0.4 to 59.5 +/- 2.5 nl/min and glomerular permeability to a 70-kDa fluorophore approximately eightfold. The loop diuretic furosemide 2-fold diluted and increased approximately 10-fold the volume of distal tubular fluid, while also causing the release of 20% of juxtaglomerular renin content. Significantly higher speeds of individual red blood cells were measured in intraglomerular capillaries (16.7 +/- 0.4 mm/s) compared with peritubular vessels (4.7 +/- 0.2 mm/s). Regular periods of glomerular contraction-relaxation were observed, resulting in oscillations of filtration and tubular flow rate. Oscillations in proximal and distal tubular flow showed similar cycle times ( approximately 45 s) to glomerular filtration, with a delay of approximately 5-10 and 25-30 s, respectively. These innovative technologies provide the most complex, immediate, and dynamic portrayal of renal function, clearly depicting the components and mechanisms involved in normal physiology and pathophysiology.

  1. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    Science.gov (United States)

    Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.

    2015-08-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as 1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.

  2. Analysis of vaginal microbicide film hydration kinetics by quantitative imaging refractometry.

    Science.gov (United States)

    Rinehart, Matthew; Grab, Sheila; Rohan, Lisa; Katz, David; Wax, Adam

    2014-01-01

    We have developed a quantitative imaging refractometry technique, based on holographic phase microscopy, as a tool for investigating microscopic structural changes in water-soluble polymeric materials. Here we apply the approach to analyze the structural degradation of vaginal topical microbicide films due to water uptake. We implemented transmission imaging of 1-mm diameter film samples loaded into a flow chamber with a 1.5×2 mm field of view. After water was flooded into the chamber, interference images were captured and analyzed to obtain high resolution maps of the local refractive index and subsequently the volume fraction and mass density of film material at each spatial location. Here, we compare the hydration dynamics of a panel of films with varying thicknesses and polymer compositions, demonstrating that quantitative imaging refractometry can be an effective tool for evaluating and characterizing the performance of candidate microbicide film designs for anti-HIV drug delivery.

  3. Analysis of vaginal microbicide film hydration kinetics by quantitative imaging refractometry.

    Directory of Open Access Journals (Sweden)

    Matthew Rinehart

    Full Text Available We have developed a quantitative imaging refractometry technique, based on holographic phase microscopy, as a tool for investigating microscopic structural changes in water-soluble polymeric materials. Here we apply the approach to analyze the structural degradation of vaginal topical microbicide films due to water uptake. We implemented transmission imaging of 1-mm diameter film samples loaded into a flow chamber with a 1.5×2 mm field of view. After water was flooded into the chamber, interference images were captured and analyzed to obtain high resolution maps of the local refractive index and subsequently the volume fraction and mass density of film material at each spatial location. Here, we compare the hydration dynamics of a panel of films with varying thicknesses and polymer compositions, demonstrating that quantitative imaging refractometry can be an effective tool for evaluating and characterizing the performance of candidate microbicide film designs for anti-HIV drug delivery.

  4. In-depth cDNA Library Sequencing Provides Quantitative Gene Expression Profiling in Cancer Biomarker Discovery

    Institute of Scientific and Technical Information of China (English)

    Wanling Yang; Dingge Ying; Yu-Lung Lau

    2009-01-01

    procedures may allow detection of many expres-sion features for less abundant gene variants. With the reduction of sequencing cost and the emerging of new generation sequencing technology, in-depth sequencing of cDNA pools or libraries may represent a better and powerful tool in gene expression profiling and cancer biomarker detection. We also propose using sequence-specific subtraction to remove hundreds of the most abundant housekeeping genes to in-crease sequencing depth without affecting relative expression ratio of other genes, as transcripts from as few as 300 most abundantly expressed genes constitute about 20% of the total transcriptome. In-depth sequencing also represents a unique ad-vantage of detecting unknown forms of transcripts, such as alternative splicing variants, fusion genes, and regulatory RNAs, as well as detecting mutations and polymorphisms that may play important roles in disease pathogenesis.

  5. Image thresholding techniques for localization of sub-resolution fluorescent biomarkers.

    Science.gov (United States)

    Ghaye, Julien; Kamat, Madhura Avinash; Corbino-Giunta, Linda; Silacci, Paolo; Vergères, Guy; De Micheli, Giovanni; Carrara, Sandro

    2013-11-01

    In this article, we explore adaptive global and local segmentation techniques for a lab-on-chip nutrition monitoring system (NutriChip). The experimental setup consists of Caco-2 intestinal cells that can be artificially stimulated to trigger an immune response. The eventual response is optically monitored using immunofluoresence techniques targeting toll-like receptor 2 (TLR2). Two problems of interest need to be addressed by means of image processing. First, a new cell sample must be properly classified as stimulated or not. Second, the location of the stained TLR2 must be recovered in case the sample has been stimulated. The algorithmic approach to solving these problems is based on the ability of a segmentation technique to properly segment fluorescent spots. The sample classification is based on the amount and intensity of the segmented pixels, while the various segmenting blobs provide an approximate localization of TLR2. A novel local thresholding algorithm and three well-known spot segmentation techniques are compared in this study. Quantitative assessment of these techniques based on real and synthesized data demonstrates the improved segmentation capabilities of the proposed algorithm.

  6. Multi-institutional Quantitative Evaluation and Clinical Validation of Smart Probabilistic Image Contouring Engine (SPICE) Autosegmentation of Target Structures and Normal Tissues on Computer Tomography Images in the Head and Neck, Thorax, Liver, and Male Pelvis Areas

    DEFF Research Database (Denmark)

    Zhu, Mingyao; Bzdusek, Karl; Brink, Carsten

    2013-01-01

    Clinical validation and quantitative evaluation of computed tomography (CT) image autosegmentation using Smart Probabilistic Image Contouring Engine (SPICE).......Clinical validation and quantitative evaluation of computed tomography (CT) image autosegmentation using Smart Probabilistic Image Contouring Engine (SPICE)....

  7. Analysis of Vaginal Microbicide Film Hydration Kinetics by Quantitative Imaging Refractometry

    OpenAIRE

    Matthew Rinehart; Sheila Grab; Lisa Rohan; David Katz; Adam Wax

    2014-01-01

    We have developed a quantitative imaging refractometry technique, based on holographic phase microscopy, as a tool for investigating microscopic structural changes in water-soluble polymeric materials. Here we apply the approach to analyze the structural degradation of vaginal topical microbicide films due to water uptake. We implemented transmission imaging of 1-mm diameter film samples loaded into a flow chamber with a 1.5×2 mm field of view. After water was flooded into the chamber, interf...

  8. White matter biomarkers from fast protocols using axially symmetric diffusion kurtosis imaging

    DEFF Research Database (Denmark)

    Hansen, Brian; Khan, Ahmad R; Shemesh, Noam

    2017-01-01

    White matter tract integrity (WMTI) can be used to characterize tissue microstructure in areas with axisymmetric fiber bundles. Several WMTI biomarkers have now been validated against microscopy and provided promising results in studies of brain development and aging, as well as in a number of br...

  9. New Imaging Frontiers in Cardiology: Fast and Quantitative Maps from Raw Data.

    Science.gov (United States)

    Santarelli, Maria Filomena; Vanello, Nicola; Scipioni, Michele; Valvano, Giuseppe; Landini, Luigi

    2017-03-28

    Among the novelties in the field of cardiovascular imaging, the construction of quantitative maps in a fast and efficient way is one of the most interesting aspects of the clinical research. Quantitative parametric maps are typically obtained by post processing dynamic images, that is, sets of images usually acquired in different temporal intervals, where several images with different contrasts are obtained. Magnetic resonance (MR) imaging, and emission tomography (positron emission and single photon emission) are the imaging techniques best suited for the formation of quantitative maps. In this review article we present several methods that can be used for obtaining parametric maps, in a fast way, starting from the acquired raw data. We describe both methods commonly used in clinical research, and more innovative methods that build maps directly from the raw data, without going through the image reconstruction. We briefly described recently developed methods in magnetic resonance (MR) imaging that accelerate further the MR raw data generation, based on appropriate sub-sampling of k-space; then, we described recently developed methods for generating MR parametric maps. With regard to the emission tomography techniques, we gave an overview of both conventional methods, and more recently developed direct estimation algorithms for parametric image reconstruction from dynamic positron emission tomography data. We have provided an overview of the possible approaches that can be followed to realize useful parametric maps from imaging raw data. We moved from the conventional approaches to more recent and efficient methods for accelerating the raw data generation and the of parametric maps formation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT: Theoretical Models and Current Implementation

    Directory of Open Access Journals (Sweden)

    G. J. Pelgrim

    2016-01-01

    Full Text Available Technological advances in magnetic resonance imaging (MRI and computed tomography (CT, including higher spatial and temporal resolution, have made the prospect of performing absolute myocardial perfusion quantification possible, previously only achievable with positron emission tomography (PET. This could facilitate integration of myocardial perfusion biomarkers into the current workup for coronary artery disease (CAD, as MRI and CT systems are more widely available than PET scanners. Cardiac PET scanning remains expensive and is restricted by the requirement of a nearby cyclotron. Clinical evidence is needed to demonstrate that MRI and CT have similar accuracy for myocardial perfusion quantification as PET. However, lack of standardization of acquisition protocols and tracer kinetic model selection complicates comparison between different studies and modalities. The aim of this overview is to provide insight into the different tracer kinetic models for quantitative myocardial perfusion analysis and to address typical implementation issues in MRI and CT. We compare different models based on their theoretical derivations and present the respective consequences for MRI and CT acquisition parameters, highlighting the interplay between tracer kinetic modeling and acquisition settings.

  11. Quantitative imaging of glutathione in live cells using a reversible reaction-based ratiometric fluorescent probe

    Science.gov (United States)

    Glutathione (GSH) plays an important role in maintaining redox homeostasis inside cells. Currently, there are no methods available to quantitatively assess the GSH concentration in live cells. Live cell fluorescence imaging revolutionized the understanding of cell biology and has become an indispens...

  12. A critical evaluation of the current state-of-the-art in quantitative imaging mass spectrometry.

    NARCIS (Netherlands)

    Ellis, S.R.; Bruinen, A.L.; Heeren, R.M.A.|info:eu-repo/dai/nl/105188476

    2014-01-01

    Mass spectrometry imaging (MSI) has evolved into a valuable tool across many fields of chemistry, biology, and medicine. However, arguably its greatest disadvantage is the difficulty in acquiring quantitative data regarding the surface concentration of the analyte(s) of interest. These difficulties

  13. Quantitative planar Raman imaging through a spectrograph: visualisation of a supersonic wedge flow

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, J.J. ter; Bakker, P.G.

    2005-01-01

    Planar Raman imaging through a spectrograph is demonstrated as a diagnostic tool for quantitative flow visualisation of internal supersonic wedge flow. A dedicated Bayesian deconvolution filter is used to remove the spectral structure that is introduced by the spectrograph. The 2D density field is d

  14. Assessment of quantitative hypertrophy scores in hypertrophic cardiomyopathy : Magnetic resonance imaging versus echocardiography

    NARCIS (Netherlands)

    Posma, JL; Blanksma, PK; vanderWall, EE; Hamer, HPM; Mooyaart, EL; Lie, KI

    1996-01-01

    To compare the diagnostic value of spin-echo magnetic resonance (MR) imaging and transthoracic echocardiography in quantitative assessment of the extent of hypertrophy in patients with hypertrophic cardiomyopathy (HCM), we examined 52 consecutive patients with HCM. The Spirito-Maron and Wigle hypert

  15. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    Science.gov (United States)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  16. FURTHER EVALUATION OF QUANTITATIVE NUCLEAR IMAGE FEATURES FOR CLASSIFICATION OF LUNG CARCINOMAS

    NARCIS (Netherlands)

    THUNNISSEN, FBJM; DIEGENBACH, PC; VANHATTUM, AH; TOLBOOM, J; VANDERSLUIS, DM; SCHAAFSMA, W; HOUTHOFF, HJ; BAAK, JPA

    1992-01-01

    The usefulness of quantitative nuclear image features (QNI) for the histological classification of lung carcinomas was investigated. As no clear distinction could be established between the distributions of these features for the nuclei of squamous cell, adenocarcinoma, and large cell carcinoma, the

  17. Assessment of quantitative hypertrophy scores in hypertrophic cardiomyopathy : Magnetic resonance imaging versus echocardiography

    NARCIS (Netherlands)

    Posma, JL; Blanksma, PK; vanderWall, EE; Hamer, HPM; Mooyaart, EL; Lie, KI

    1996-01-01

    To compare the diagnostic value of spin-echo magnetic resonance (MR) imaging and transthoracic echocardiography in quantitative assessment of the extent of hypertrophy in patients with hypertrophic cardiomyopathy (HCM), we examined 52 consecutive patients with HCM. The Spirito-Maron and Wigle hypert

  18. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design

    Science.gov (United States)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M.

    2016-05-01

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  19. A critical evaluation of the current state-of-the-art in quantitative imaging mass spectrometry.

    NARCIS (Netherlands)

    Ellis, S.R.; Bruinen, A.L.; Heeren, R.M.A.

    2014-01-01

    Mass spectrometry imaging (MSI) has evolved into a valuable tool across many fields of chemistry, biology, and medicine. However, arguably its greatest disadvantage is the difficulty in acquiring quantitative data regarding the surface concentration of the analyte(s) of interest. These difficulties

  20. PET quantitation and imaging of the non-pure positron-emitting iodine isotope 124I.

    Science.gov (United States)

    Herzog, H; Tellman, L; Qaim, S M; Spellerberg, S; Schmid, A; Coenen, H H

    2002-05-01

    A series of PET studies using phantoms is presented to characterize the imaging and quantitative performance of the positron-emitting iodine isotope 124I. Measurements were performed on the 2D-PET scanner GE 4096+ as well as on the Siemens PET scanner HRR+ operated in both 2D and 3D modes. No specific correction was applied for the gamma-rays emitted together with the positrons. As compared to 18F, in studies with 124I there is a small loss of image resolution and contrast, and an increase in background. The quantitative results varied between different scanners and various acquisition as well as reconstruction modes, with an average relative difference of -6 +/- 13% (mean+/-SD) in respect of the phantom radioactivity as measured with gamma-ray spectroscopy. We conclude that quantitation of a radiopharmaceutical labelled with 124I is feasible and may be improved by the development of specific corrections.

  1. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging.

    Science.gov (United States)

    Jung, Jae-Hwang; Jang, Jaeduck; Park, Yongkeun

    2013-11-05

    We present a novel spectroscopic quantitative phase imaging technique with a wavelength swept-source, referred to as swept-source diffraction phase microscopy (ssDPM), for quantifying the optical dispersion of microscopic individual samples. Employing the swept-source and the principle of common-path interferometry, ssDPM measures the multispectral full-field quantitative phase imaging and spectroscopic microrefractometry of transparent microscopic samples in the visible spectrum with a wavelength range of 450-750 nm and a spectral resolution of less than 8 nm. With unprecedented precision and sensitivity, we demonstrate the quantitative spectroscopic microrefractometry of individual polystyrene beads, 30% bovine serum albumin solution, and healthy human red blood cells.

  2. Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma using Quantitative Image Analysis.

    Science.gov (United States)

    Zheng, Jian; Chakraborty, Jayasree; Chapman, William C; Gerst, Scott; Gonen, Mithat; Pak, Linda M; Jarnagin, William R; DeMatteo, Ronald P; Do, Richard Kg; Simpson, Amber L; Allen, Peter J; Balachandran, Vinod P; D'Angelica, Michael I; Kingham, T Peter; Vachharajani, Neeta

    2017-09-20

    Microvascular invasion (MVI) is a significant risk factor for early recurrence after resection or transplantation for hepatocellular carcinoma (HCC). Knowledge of MVI status would help guide treatment recommendations but is generally identified after surgery. This study aims to predict MVI preoperatively using quantitative image analysis. From 2 institutions, 120 patients submitted to resection of HCC from 2003 to 2015 were included. The largest tumor from preoperative CT was subjected to quantitative image analysis, which uses an automated computer algorithm to capture regional variation in CT enhancement patterns. Quantitative imaging features by automatic analysis, qualitative radiographic descriptors by 2 radiologists, and preoperative clinical variables were included in multivariate analysis to predict histologic MVI. Histologic MVI was identified in 19 (37%) patients with tumors ≤ 5 cm and 34 (49%) patients with tumors > 5 cm. Among patients with ≤ 5 cm tumors, none of clinical findings or radiographic descriptors was associated with MVI; however, quantitative feature based on angle co-occurrence matrix predicted MVI with area under curve (AUC) 0.80, positive predictive value (PPV) 63% and negative predictive value (NPV) 85%. In patients with > 5 cm tumors, higher α-fetoprotein (AFP) level, larger tumor size, and viral hepatitis history were associated with MVI, whereas radiographic descriptors did not. However, a multivariate model combining AFP, tumor size, hepatitis status, and quantitative feature based on local binary pattern predicted MVI with AUC 0.88, PPV 72% and NPV 96%. This study reveals the potential importance of quantitative image analysis as a predictor of MVI. Copyright © 2017. Published by Elsevier Inc.

  3. Quantitative annular dark-field imaging of single-layer graphene-II: atomic-resolution image contrast.

    Science.gov (United States)

    Yamashita, Shunsuke; Koshiya, Shogo; Nagai, Takuro; Kikkawa, Jun; Ishizuka, Kazuo; Kimoto, Koji

    2015-12-01

    We have investigated how accurately atomic-resolution annular dark-field (ADF) images match between experiments and simulations to conduct more reliable crystal structure analyses. Quantitative ADF imaging, in which the ADF intensity at each pixel represents the fraction of the incident probe current, allows us to perform direct comparisons with simulations without the use of fitting parameters. Although the conventional comparison suffers from experimental uncertainties such as an amorphous surface layer and specimen thickness, in this study we eliminated such uncertainties by using a single-layer graphene as a specimen. Furthermore, to reduce image distortion and shot noises in experimental images, multiple acquisitions with drift correction were performed, and the atomic ADF contrast was quantitatively acquired. To reproduce the experimental ADF contrast, we used three distribution functions as the effective source distribution in simulations. The optimum distribution function and its full-width at half-maximum were evaluated by measuring the residuals between the experimental and simulated images. It was found that the experimental images could be explained well by a linear combination of a Gaussian function and a Lorentzian function with a longer tail than the Gaussian function.

  4. Evaluation of environmental impact on natural populations of the mediterranean killifish aphanius fasciatus by quantitative RNA biomarkers

    OpenAIRE

    Kessabi, Kaouthar; Navarro, Anna; Casado, Marta; Saïd, Khaled; Messaoudi, Imed; Piña, Benjamin

    2010-01-01

    Abstract The Mediterranean killifish, Aphanius fasciatus (Valenciennes, 1821) represents an excellent sentinel species for analysis of environmental impact in coastal areas. Quantitative changes on liver mRNA levels of five stress-related genes - metallothionein (metal exposure), vitellogenin, (estrogenic effects), cytochrome P4501A (CYP1A, dioxin-like compounds), superoxide dismutase (oxidative stress) and HSP70 (general stress)- were tested as markers of exposure to pollutants bo...

  5. In vitro and in vivo imaging of peptide-encapsulated polymer nanoparticles for cancer biomarker activated drug delivery.

    Science.gov (United States)

    Kulsharova, Gulsim K; Lee, Matthew B; Cheng, Felice; Haque, Munima; Choi, Hyungsoo; Kim, Kyekyoon; O'Brien, William D; Liu, G Logan

    2013-12-01

    Gelatin nanoparticles coated with Cathepsin D-specific peptides were developed as a vehicle for the targeted delivery of the cancer drug doxorubicin (DOX) to treat breast malignancy. Cathepsin D, a breast cancer cell secretion enzyme, triggered the release of DOX by digesting the protective peptide-coating layer of nanoparticles. Fabricated nanoparticles were successfully detected with ultrasound imaging in both in vitro conditions and in vivo mouse cancer models. Cell viability experiments were conducted to determine the efficacy of biomarker activation specific to breast cancer cell lines. These experimental results were compared with the outcome of a viability experiment conducted on noncancerous cells. Viability decreased in human MCF7 mammary adenocarcinoma and mouse 4T1 mammary carcinoma cells, while that of noncancerous 3T3 fibroblast cells remained unaffected. Next, a real-time video of nanoparticle flow in mouse models was obtained using in vivo ultrasound imaging. The fluorescent profile of DOX was used as a means to examine nanoparticle localization in vivo. Results show the distribution of nanoparticles concentrated primarily within bladder and tumor sites of subject mice bodies. These findings support the use of biomarker coated nanoparticles in target specific therapy for breast cancer treatment.

  6. Quantitative comparisons of radar image, scatterometer, and surface roughness data from Pisgah Crater, CA

    Science.gov (United States)

    Farr, T. G.; Engheta, N.

    1983-01-01

    The relationships between radar image brightness and backscatter coefficient, between the backscatter coefficient and surface roughness, and between surface roughness and geology, must be established in order to satisfy criteria for the quantitative use of radar images. Attention is presently given to the merits of calibrated radar images and scatterometers as sources of the backscatter coefficient, theories that yield the coefficient on the basis of known surface roughness (and vice versa), and the geologic interpretation of surface roughness and backscatter signatures. These considerations are discussed in the case of the Pisgah Crater and lava field in the Mojave Desert of California.

  7. Application of quantitative proteomic analysis using tandem mass tags for discovery and identification of novel biomarkers in periodontal disease.

    Science.gov (United States)

    Tsuchida, Sachio; Satoh, Mamoru; Kawashima, Yusuke; Sogawa, Kazuyuki; Kado, Sayaka; Sawai, Setsu; Nishimura, Motoi; Ogita, Mayumi; Takeuchi, Yasuo; Kobyashi, Hiroaki; Aoki, Akira; Kodera, Yoshio; Matsushita, Kazuyuki; Izumi, Yuichi; Nomura, Fumio

    2013-08-01

    Periodontal disease is a bacterial infection that destroys the gingiva and surrounding tissues of the oral cavity. Gingival crevicular fluid (GCF) is extracted from the gingival sulcus and pocket. Analysis of biochemical markers in GCF, which predict the progression of periodontal disease, may facilitate disease diagnosis. However, no useful GCF biochemical markers with high sensitivity for detecting periodontal disease have been identified. Thus, the search for biochemical markers of periodontal disease is of continued interest in experimental and clinical periodontal disease research. Using tandem mass tag (TMT) labeling, we analyzed GCF samples from healthy subjects and patients with periodontal disease, and identified a total of 619 GCF proteins based on proteomic analysis. Of these, we focused on two proteins, matrix metalloproteinase (MMP)-9 and neutrophil gelatinase-associated lipocalin (LCN2), which are involved in the progression of periodontal disease. Western blot analysis revealed that the levels of MMP-9 and LCN2 were significantly higher in patients with periodontal disease than in healthy subjects. In addition, ELISA also detected significantly higher levels of LCN2 in patients with periodontal disease than in healthy subjects. Thus, LC-MS/MS analyses of GCF using TMT labeling led to the identification of LCN2, which may be a promising GCF biomarker for the detection of periodontal disease.

  8. Ultrashort echo time magnetization transfer (UTE-MT) imaging and modeling: magic angle independent biomarkers of tissue properties.

    Science.gov (United States)

    Ma, Ya-Jun; Shao, Hongda; Du, Jiang; Chang, Eric Y

    2016-11-01

    MRI biomarkers such as T2 , T2 * and T1rho have been widely used, but are confounded by the magic angle effect. The purpose of this study is to investigate the use of the two-dimensional ultrashort echo time magnetization transfer (UTE-MT) sequence for potential magic angle independent MR biomarkers. Magnetization transfer was investigated in cadaveric Achilles tendon samples using the UTE-MT sequence at five MT powers and five frequency offsets ranging from 2 to 50 kHz. The protocol was applied at five sample orientations ranging from 0 to 90° relative to the B0 field. The results were analyzed with a two-pool quantitative MT model. Multiple TE data were also acquired and mono-exponential T2 * was calculated for each orientation. Macromolecular proton fractions and exchange rates derived from UTE-MT modeling did not appreciably change between the various orientations, whereas the T2 * relaxation time demonstrated up to a sixfold increase from 0° to 55°. The UTE-MT technique with two-pool modeling shows promise as a clinically compatible technique that is resistant to the magic angle effect. This method provides information on the macromolecular proton pool that cannot be directly obtained by other methods, including regular UTE techniques. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Monitoring and quantitative assessment of tumor burden using in vivo bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-C. [Cancer Research Division, National Health Research Institute, Miaoli 350, Taiwan (China); Hwang, Jeng-Jong [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China)]. E-mail: jjhwang@ym.edu.tw; Ting, G. [Cancer Research Division, National Health Research Institute, Miaoli 350, Taiwan (China); Tseng, Y.-L. [Taiwan Liposome Company, Taipei 115, Taiwan (China); Wang, S.-J. [Department of Nuclear Medicine, Veterans General Hospital, Taipei 112, Taiwan (China); Whang-Peng, J. [Cancer Research Division, National Health Research Institute, Miaoli 350, Taiwan (China)

    2007-02-01

    In vivo bioluminescence imaging (BLI) is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating tumor growth. In this study, the kinetic of tumor growth has been assessed in C26 colon carcinoma bearing BALB/c mouse model. The ability of BLI to noninvasively quantitate the growth of subcutaneous tumors transplanted with C26 cells genetically engineered to stably express firefly luciferase and herpes simplex virus type-1 thymidine kinase (C26/tk-luc). A good correlation (R {sup 2}=0.998) of photon emission to the cell number was found in vitro. Tumor burden and tumor volume were monitored in vivo over time by quantitation of photon emission using Xenogen IVIS 50 and standard external caliper measurement, respectively. At various time intervals, tumor-bearing mice were imaged to determine the correlation of in vivo BLI to tumor volume. However, a correlation of BLI to tumor volume was observed when tumor volume was smaller than 1000 mm{sup 3} (R {sup 2}=0.907). {gamma} Scintigraphy combined with [{sup 131}I]FIAU was another imaging modality used for verifying the previous results. In conclusion, this study showed that bioluminescence imaging is a powerful and quantitative tool for the direct assay to monitor tumor growth in vivo. The dual reporter genes transfected tumor-bearing animal model can be applied in the evaluation of the efficacy of new developed anti-cancer drugs.

  10. A method for improved clustering and classification of microscopy images using quantitative co-localization coefficients

    LENUS (Irish Health Repository)

    Singan, Vasanth R

    2012-06-08

    AbstractBackgroundThe localization of proteins to specific subcellular structures in eukaryotic cells provides important information with respect to their function. Fluorescence microscopy approaches to determine localization distribution have proved to be an essential tool in the characterization of unknown proteins, and are now particularly pertinent as a result of the wide availability of fluorescently-tagged constructs and antibodies. However, there are currently very few image analysis options able to effectively discriminate proteins with apparently similar distributions in cells, despite this information being important for protein characterization.FindingsWe have developed a novel method for combining two existing image analysis approaches, which results in highly efficient and accurate discrimination of proteins with seemingly similar distributions. We have combined image texture-based analysis with quantitative co-localization coefficients, a method that has traditionally only been used to study the spatial overlap between two populations of molecules. Here we describe and present a novel application for quantitative co-localization, as applied to the study of Rab family small GTP binding proteins localizing to the endomembrane system of cultured cells.ConclusionsWe show how quantitative co-localization can be used alongside texture feature analysis, resulting in improved clustering of microscopy images. The use of co-localization as an additional clustering parameter is non-biased and highly applicable to high-throughput image data sets.

  11. Delayed 18F-fluorodeoxyglucose PET/CT imaging improves quantitation of atherosclerotic plaque inflammation

    DEFF Research Database (Denmark)

    Blomberg, Björn Alexander; Thomassen, Anders; Takx, Richard A P

    2014-01-01

    BACKGROUND: This study aimed to determine if delayed (18)F-fluorodeoxyglucose ((18)FDG) PET/CT imaging improves quantitation of atherosclerotic plaque inflammation. Blood-pool activity can disturb the arterial (18)FDG signal. With time, blood-pool activity declines. Therefore, delayed imaging can...... potentially improve quantitation of vascular inflammation. METHODS AND RESULTS: 40 subjects were prospectively assessed by dual-time-point PET/CT imaging at approximately 90 and 180 minutes after (18)FDG administration. For both time-points, global uptake of (18)FDG was determined in the carotid arteries...... and thoracic aorta by calculating the blood-pool corrected maximum standardized uptake value (cSUVMAX). A target-to-background ratio (TBR) was calculated to determine the contrast resolution at 90 and 180 minutes. Furthermore, we assessed whether the acquisition time-point affected the relation between c...

  12. Quantitative magnetic resonance imaging of the fetal brain in utero: Methods and applications

    Institute of Scientific and Technical Information of China (English)

    Anat; Biegon; Chen; Hoffmann

    2014-01-01

    Application of modern magnetic resonance imaging(MRI) techniques to the live fetus in utero is a relatively recent endeavor. The relative advantages and disadvantages of clinical MRI relative to the widely used and accepted ultrasonographic approach are the subject of a continuing debate; however the focus of this review is on the even younger field of quantitative MRI as applied to non-invasive studies of fetal brain development. The techniques covered under this header include structural MRI when followed by quan-titative(e.g., volumetric) analysis, as well as quantita-tive analyses of diffusion weighted imaging, diffusion tensor imaging, magnetic resonance spectroscopy and functional MRI. The majority of the published work re-viewed here reflects information gathered from normal fetuses scanned during the 3rd trimester, with relatively smaller number of studies of pathological samples including common congenital pathologies such as ven-triculomegaly and viral infection.

  13. Perfusion Imaging with SPECT in the Era of Pathophysiology-Based Biomarkers for Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Markus Weih

    2010-01-01

    Full Text Available SPECT allows registration of regional cerebral blood flow (rCBF which is altered in a characteristic temporoparietal pattern in Alzheimer's Dementia. Numerous studies have shown the diagnostic value of reduced cerebral blood flow and metabolic changes using perfusion SPECT and FDG-PEPT in AD diagnosis as well as in differential diagnosis against frontotemporal dementia, dementia with Lewy bodies and vascular disease. Recently more pathophysiology-based biomarkers in CSF and Amyloid-PET tracers have been developed that probably have a higher diagnostic accuracy than the more indirect rCBF changes seen in perfusion SPECT. In the paper review, we describe recent advances in AD biomarkers as well as improvements in the SPECT technique.

  14. Quantitative Analysis of Micro-CT Imaging and Histopathological Signatures of Experimental Arthritis in Rats

    Directory of Open Access Journals (Sweden)

    Matthew D. Silva

    2004-10-01

    Full Text Available Micro-computed tomographic (micro-CT imaging provides a unique opportunity to capture 3-D architectural information in bone samples. In this study of pathological joint changes in a rat model of adjuvant-induced arthritis (AA, quantitative analysis of bone volume and roughness were performed by micro-CT imaging and compared with histopathology methods and paw swelling measurement. Micro-CT imaging of excised rat hind paws (n = 10 stored in formalin consisted of approximately 600 30-μm slices acquired on a 512 × 512 image matrix with isotropic resolution. Following imaging, the joints were scored from H&E stained sections for cartilage/bone erosion, pannus development, inflammation, and synovial hyperplasia. From micro-CT images, quantitative analysis of absolute bone volumes and bone roughness was performed. Bone erosion in the rat AA model is substantial, leading to a significant decline in tarsal volume (27%. The result of the custom bone roughness measurement indicated a 55% increase in surface roughness. Histological and paw volume analyses also demonstrated severe arthritic disease as compared to controls. Statistical analyses indicate correlations among bone volume, roughness, histology, and paw volume. These data demonstrate that the destructive progression of disease in a rat AA model can be quantified using 3-D micro-CT image analysis, which allows assessment of arthritic disease status and efficacy of experimental therapeutic agents.

  15. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain.

    Science.gov (United States)

    Liu, Chunlei; Li, Wei; Tong, Karen A; Yeom, Kristen W; Kuzminski, Samuel

    2015-07-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging.

  16. MR Imaging Biomarkers to Monitor Early Response to Hypoxia-Activated Prodrug TH-302 in Pancreatic Cancer Xenografts.

    Directory of Open Access Journals (Sweden)

    Xiaomeng Zhang

    Full Text Available TH-302 is a hypoxia-activated prodrug known to activate selectively under the hypoxic conditions commonly found in solid tumors. It is currently being evaluated in clinical trials, including two trials in Pancreatic Ductal Adenocarcinomas (PDAC. The current study was undertaken to evaluate imaging biomarkers for prediction and response monitoring of TH-302 efficacy in xenograft models of PDAC. Dynamic contrast-enhanced (DCE and diffusion weighted (DW magnetic resonance imaging (MRI were used to monitor acute effects on tumor vasculature and cellularity, respectively. Three human PDAC xenografts with known differential responses to TH-302 were imaged prior to, and at 24 h and 48 hours following a single dose of TH-302 or vehicle to determine if imaging changes presaged changes in tumor volumes. DW-MRI was performed at five b-values to generate apparent diffusion coefficient of water (ADC maps. For DCE-MRI, a standard clinically available contrast reagent, Gd-DTPA, was used to determine blood flow into the tumor region of interest. TH-302 induced a dramatic decrease in the DCE transfer constant (Ktrans within 48 hours after treatment in the sensitive tumors, Hs766t and Mia PaCa-2, whereas TH-302 had no effect on the perfusion behavior of resistant SU.86.86 tumors. Tumor cellularity, estimated from ADC, was significantly increased 24 and 48 hours after treatment in Hs766t, but was not observed in the Mia PaCa-2 and SU.86.86 groups. Notably, growth inhibition of Hs766t was observed immediately (day 3 following initiation of treatment, but was not observed in MiaPaCa-2 tumors until 8 days after initiation of treatment. Based on these preclinical findings, DCE-MRI measures of vascular perfusion dynamics and ADC measures of cell density are suggested as potential TH-302 response biomarkers in clinical trials.

  17. CT perfusion imaging as an early biomarker of differential response to stereotactic radiosurgery in C6 rat gliomas.

    Directory of Open Access Journals (Sweden)

    Timothy Pok Chi Yeung

    Full Text Available BACKGROUND: The therapeutic efficacy of stereotactic radiosurgery for glioblastoma is not well understood, and there needs to be an effective biomarker to identify patients who might benefit from this treatment. This study investigated the efficacy of computed tomography (CT perfusion imaging as an early imaging biomarker of response to stereotactic radiosurgery in a malignant rat glioma model. METHODS: Rats with orthotopic C6 glioma tumors received either mock irradiation (controls, N = 8 or stereotactic radiosurgery (N = 25, 12 Gy in one fraction delivered by Helical Tomotherapy. Twelve irradiated animals were sacrificed four days after stereotactic radiosurgery to assess acute CT perfusion and histological changes, and 13 irradiated animals were used to study survival. Irradiated animals with survival >15 days were designated as responders while those with survival ≤15 days were non-responders. Longitudinal CT perfusion imaging was performed at baseline and regularly for eight weeks post-baseline. RESULTS: Early signs of radiation-induced injury were observed on histology. There was an overall survival benefit following stereotactic radiosurgery when compared to the controls (log-rank P<0.04. Responders to stereotactic radiosurgery showed lower relative blood volume (rBV, and permeability-surface area (PS product on day 7 post-stereotactic radiosurgery when compared to controls and non-responders (P<0.05. rBV and PS on day 7 showed correlations with overall survival (P<0.05, and were predictive of survival with 92% accuracy. CONCLUSIONS: Response to stereotactic radiosurgery was heterogeneous, and early selection of responders and non-responders was possible using CT perfusion imaging. Validation of CT perfusion indices for response assessment is necessary before clinical implementation.

  18. Discovery of Hyperpolarized Molecular Imaging Biomarkers in a Novel Prostate Tissue Slice Culture Model

    Science.gov (United States)

    2013-06-01

    compatible bioreactor optimized in year 1 to identify hyperpolarized metabolic biomarkers of prostate cancer presence and aggressiveness. To...accomplish this goal my group finished the engineering of a 5 mm bioreactor and acquired hyperpolarized [1-13C]pyruvate data indicating that similar signal...to noise and quality data can be achieved with 4 to 5 prostate tissue slices in the 5 mm bioreactor as was acquired from 30-40 tissue slices in the

  19. A custom-built PET phantom design for quantitative imaging of printed distributions

    Energy Technology Data Exchange (ETDEWEB)

    Markiewicz, P J; Angelis, G I; Kotasidis, F; Green, M; Matthews, J C [School of Cancer and Enabling Sciences, MAHSC, University of Manchester, Wolfson Molecular Imaging Centre, Manchester (United Kingdom); Lionheart, W R [School of Mathematics, Alan Turing Building, The University of Manchester (United Kingdom); Reader, A J, E-mail: p.markiewicz@manchester.ac.uk [Montreal Neurological Institute, McGill University, Montreal (Canada)

    2011-11-07

    This note presents a practical approach to a custom-made design of PET phantoms enabling the use of digital radioactive distributions with high quantitative accuracy and spatial resolution. The phantom design allows planar sources of any radioactivity distribution to be imaged in transaxial and axial (sagittal or coronal) planes. Although the design presented here is specially adapted to the high-resolution research tomograph (HRRT), the presented methods can be adapted to almost any PET scanner. Although the presented phantom design has many advantages, a number of practical issues had to be overcome such as positioning of the printed source, calibration, uniformity and reproducibility of printing. A well counter (WC) was used in the calibration procedure to find the nonlinear relationship between digital voxel intensities and the actual measured radioactive concentrations. Repeated printing together with WC measurements and computed radiography (CR) using phosphor imaging plates (IP) were used to evaluate the reproducibility and uniformity of such printing. Results show satisfactory printing uniformity and reproducibility; however, calibration is dependent on the printing mode and the physical state of the cartridge. As a demonstration of the utility of using printed phantoms, the image resolution and quantitative accuracy of reconstructed HRRT images are assessed. There is very good quantitative agreement in the calibration procedure between HRRT, CR and WC measurements. However, the high resolution of CR and its quantitative accuracy supported by WC measurements made it possible to show the degraded resolution of HRRT brain images caused by the partial-volume effect and the limits of iterative image reconstruction. (note)

  20. Review of imaging solutions for integrated quantitative immunohistochemistry in the Pathology daily practice.

    Directory of Open Access Journals (Sweden)

    Marcial GarcĂ­a Rojo

    2010-02-01

    Full Text Available Immunohistochemistry (IHC plays an essential role in Pathology. In order to improve reproducibility and standardization of the results interpretation, IHC quantification methods have been developed. IHC interpretation based in whole slide imaging or virtual microscopy is of special interest. The objective of this work is to review the different computer-based programs for automatic immunohistochemistry and Fluorescence In Situ Hybridization (FISH evaluation. Scanning solutions and image analysis software in immunohistochemistry were studied, focusing especially on systems based in virtual slides. Integrated scanning and image analysis systems are available (Bacus TMAScore, Dako ACIS III, Genetix Ariol, Aperio Image Analysis, 3DHistech Mirax HistoQuant, Bioimagene Pathiam. Other image analysis software systems (Definiens TissueMap, SlidePath Tissue Image Analysis can be applied to several virtual slide formats. Fluorescence is the preferred approach in HistoRx AQUA, since it allows for a better compartmentalization of signals. Multispectral imaging using CRi Nuance allows multiple antibodies immunohistochemistry, and different stain unmixing. Most current popular automated image analysis solutions are aimed to brightfield immunohistochemistry, but fluorescence and FISH solutions may become more important in the near future. Automated quantitative tissue microarrays (TMA analysis is essential to provide high-throughput analysis. Medical informatics standards in images (DICOM and workflow (IHE under development will foster the use of image analysis in Pathology Departments.

  1. TU-CD-BRB-08: Radiomic Analysis of FDG-PET Identifies Novel Prognostic Imaging Biomarkers in Locally Advanced Pancreatic Cancer Patients Treated with SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Y; Shirato, H [Hokkaido University, Global Institute for Collaborative Research and Educat, Sapporo, Hokkaido (Japan); Song, J; Pollom, E; Chang, D; Koong, A [Stanford University, Palo Alto, CA (United States); Li, R [Hokkaido University, Global Institute for Collaborative Research and Educat, Sapporo, Hokkaido (Japan); Stanford University, Palo Alto, CA (United States)

    2015-06-15

    Purpose: This study aims to identify novel prognostic imaging biomarkers in locally advanced pancreatic cancer (LAPC) using quantitative, high-throughput image analysis. Methods: 86 patients with LAPC receiving chemotherapy followed by SBRT were retrospectively studied. All patients had a baseline FDG-PET scan prior to SBRT. For each patient, we extracted 435 PET imaging features of five types: statistical, morphological, textural, histogram, and wavelet. These features went through redundancy checks, robustness analysis, as well as a prescreening process based on their concordance indices with respect to the relevant outcomes. We then performed principle component analysis on the remaining features (number ranged from 10 to 16), and fitted a Cox proportional hazard regression model using the first 3 principle components. Kaplan-Meier analysis was used to assess the ability to distinguish high versus low-risk patients separated by median predicted survival. To avoid overfitting, all evaluations were based on leave-one-out cross validation (LOOCV), in which each holdout patient was assigned to a risk group according to the model obtained from a separate training set. Results: For predicting overall survival (OS), the most dominant imaging features were wavelet coefficients. There was a statistically significant difference in OS between patients with predicted high and low-risk based on LOOCV (hazard ratio: 2.26, p<0.001). Similar imaging features were also strongly associated with local progression-free survival (LPFS) (hazard ratio: 1.53, p=0.026) on LOOCV. In comparison, neither SUVmax nor TLG was associated with LPFS (p=0.103, p=0.433) (Table 1). Results for progression-free survival and distant progression-free survival showed similar trends. Conclusion: Radiomic analysis identified novel imaging features that showed improved prognostic value over conventional methods. These features characterize the degree of intra-tumor heterogeneity reflected on FDG

  2. Quantitative Chemically-Specific Coherent Diffractive Imaging of Buried Interfaces using a Tabletop EUV Nanoscope

    CERN Document Server

    Shanblatt, Elisabeth R; Gardner, Dennis F; Mancini, Giulia F; Karl, Robert M; Tanksalvala, Michael D; Bevis, Charles S; Vartanian, Victor H; Kapteyn, Henry C; Adams, Daniel E; Murnane, Margaret M

    2016-01-01

    Characterizing buried layers and interfaces is critical for a host of applications in nanoscience and nano-manufacturing. Here we demonstrate non-invasive, non-destructive imaging of buried interfaces using a tabletop, extreme ultraviolet (EUV), coherent diffractive imaging (CDI) nanoscope. Copper nanostructures inlaid in SiO2 are coated with 100 nm of aluminum, which is opaque to visible light and thick enough that neither optical microscopy nor atomic force microscopy can image the buried interfaces. Short wavelength (29 nm) high harmonic light can penetrate the aluminum layer, yielding high-contrast images of the buried structures. Moreover, differences in the absolute reflectivity of the interfaces before and after coating reveal the formation of interstitial diffusion and oxidation layers at the Al-Cu and Al-SiO2 boundaries. Finally, we show that EUV CDI provides a unique capability for quantitative, chemically-specific imaging of buried structures, and the material evolution that occurs at these buried ...

  3. Real time quantitative imaging for semiconductor crystal growth, control and characterization

    Science.gov (United States)

    Wargo, Michael J.

    1991-01-01

    A quantitative real time image processing system has been developed which can be software-reconfigured for semiconductor processing and characterization tasks. In thermal imager mode, 2D temperature distributions of semiconductor melt surfaces (900-1600 C) can be obtained with temperature and spatial resolutions better than 0.5 C and 0.5 mm, respectively, as demonstrated by analysis of melt surface thermal distributions. Temporal and spatial image processing techniques and multitasking computational capabilities convert such thermal imaging into a multimode sensor for crystal growth control. A second configuration of the image processing engine in conjunction with bright and dark field transmission optics is used to nonintrusively determine the microdistribution of free charge carriers and submicron sized crystalline defects in semiconductors. The IR absorption characteristics of wafers are determined with 10-micron spatial resolution and, after calibration, are converted into charge carrier density.

  4. Real time quantitative imaging for semiconductor crystal growth, control and characterization

    Science.gov (United States)

    Wargo, Michael J.

    1991-01-01

    A quantitative real time image processing system has been developed which can be software-reconfigured for semiconductor processing and characterization tasks. In thermal imager mode, 2D temperature distributions of semiconductor melt surfaces (900-1600 C) can be obtained with temperature and spatial resolutions better than 0.5 C and 0.5 mm, respectively, as demonstrated by analysis of melt surface thermal distributions. Temporal and spatial image processing techniques and multitasking computational capabilities convert such thermal imaging into a multimode sensor for crystal growth control. A second configuration of the image processing engine in conjunction with bright and dark field transmission optics is used to nonintrusively determine the microdistribution of free charge carriers and submicron sized crystalline defects in semiconductors. The IR absorption characteristics of wafers are determined with 10-micron spatial resolution and, after calibration, are converted into charge carrier density.

  5. Quantitative comparison of fuel spray images obtained using ultrafast coherent and incoherent double-pulsed illumination

    CERN Document Server

    Purwar, Harsh; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard; Ménard, Thibault

    2015-01-01

    We present a quantitative comparison between the high-pressure fuel spray images obtained experimentally using classical imaging with coherent and incoherent ultrafast illuminations recorded using a compatible CMOS camera. The ultrafast, incoherent illumination source was extracted from the supercontinuum generated by tightly focusing the femtosecond laser pulses in water. The average velocity maps computed using time-correlated image-pairs and spray edge complexity computed using the average curvature scale space maps are compared for the spray images obtained with the two illumination techniques and also for the numerically simulated spray using the coupled volume of fluid and level set method for interface tracking (direct numerical simulation or DNS). The spray images obtained with supercontinuum-derived, incoherent, ultrafast illumination are clearer, since the artifacts arising due to laser speckles and multiple diffraction effects are largely reduced and show a better correlation with the DNS results.

  6. Study on microscope hyperspectral medical imaging method for biomedical quantitative analysis

    Institute of Scientific and Technical Information of China (English)

    LI QingLi; XUE YongQi; XIAO GongHai; ZHANG JingFa

    2008-01-01

    A microscopic pushbroom hyperspectral imaging system was developed based on the microscopic technology and spectral imaging technology according to the principle of spectral imager in remote sensing. The basic principle and key technologies of this system were presented and the system per-formance was also analyzed. Some methods and algorithms were proposed to preprocess and nor-malize the microscopic hyperspectral data and retrieve the transmittance spectrum of samples. As a case study, the microscopic hyperspectral imaging system was used to image the retina sections of different rats and get some significant results. Experiment results show that the system can be used for the quantitative assessment and evaluating the effect of medication in biomedical research.

  7. Fluorescence Image Analyzer - FLIMA: software for quantitative analysis of fluorescence in situ hybridization.

    Science.gov (United States)

    Silva, H C M; Martins-Júnior, M M C; Ribeiro, L B; Matoso, D A

    2017-03-30

    The Fluorescence Image Analyzer (FLIMA) software was developed for the quantitative analysis of images generated by fluorescence in situ hybridization (FISH). Currently, the images of FISH are examined without a coefficient that enables a comparison between them. Through GD Graphics Library, the FLIMA software calculates the amount of pixels on image and recognizes each present color. The coefficient generated by the algorithm shows the percentage of marks (probes) hybridized on the chromosomes. This software can be used for any type of image generated by a fluorescence microscope and is able to quantify digoxigenin probes exhibiting a red color, biotin probes exhibiting a green color, and double-FISH probes (digoxigenin and biotin used together), where the white color is displayed.

  8. Visual and quantitative evaluation of selected image combination schemes in ultrasound spatial compound scanning

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Jensen, M.S.; Jespersen, S.K.

    2004-01-01

    Multi-angle spatial compound images are normally generated by averaging the recorded single-angle images (SAIs). To exploit possible advantages associated with alternative combination schemes, this paper investigates both the effect of number of angles (Ntheta) as well as operator (mean, median......, mean-excluding-maximum (mem), root-mean-square (rms), geometric mean and maximum) on image quality (tissue delineation and artifacts), speckle signal-to-noise ratio (SNRs) and contrast. The evaluation is based on in vitro SAI (+/-21degrees in steps of Deltatheta = 7degrees) of formalin fixed porcine...... tissue containing adipose, connective and muscular tissue. Image quality increased with number of angles up to +/-14degrees after which the improvements became debatable. The mem and median operators, which try to render the images more quantitatively correct by suppressing strong echoes from specular...

  9. The identification of novel potential injury mechanisms and candidate biomarkers in renal allograft rejection by quantitative proteomics.

    Science.gov (United States)

    Sigdel, Tara K; Salomonis, Nathan; Nicora, Carrie D; Ryu, Soyoung; He, Jintang; Dinh, Van; Orton, Daniel J; Moore, Ronald J; Hsieh, Szu-Chuan; Dai, Hong; Thien-Vu, Minh; Xiao, Wenzhong; Smith, Richard D; Qian, Wei-Jun; Camp, David G; Sarwal, Minnie M

    2014-02-01

    Early transplant dysfunction and failure because of immunological and nonimmunological factors still presents a significant clinical problem for transplant recipients. A critical unmet need is the noninvasive detection and prediction of immune injury such that acute injury can be reversed by proactive immunosuppression titration. In this study, we used iTRAQ -based proteomic discovery and targeted ELISA validation to discover and validate candidate urine protein biomarkers from 262 renal allograft recipients with biopsy-confirmed allograft injury. Urine samples were randomly split into a training set of 108 patients and an independent validation set of 154 patients, which comprised the clinical biopsy-confirmed phenotypes of acute rejection (AR) (n = 74), stable graft (STA) (n = 74), chronic allograft injury (CAI) (n = 58), BK virus nephritis (BKVN) (n = 38), nephrotic syndrome (NS) (n = 8), and healthy, normal control (HC) (n = 10). A total of 389 proteins were measured that displayed differential abundances across urine specimens of the injury types (p 1.5) from all other transplant categories (HLA class II protein HLA-DRB1, KRT14, HIST1H4B, FGG, ACTB, FGB, FGA, KRT7, DPP4). Increased levels of three of these proteins, fibrinogen beta (FGB; p = 0.04), fibrinogen gamma (FGG; p = 0.03), and HLA DRB1 (p = 0.003) were validated by ELISA in AR using an independent sample set. The fibrinogen proteins further segregated AR from BK virus nephritis (FGB p = 0.03, FGG p = 0.02), a finding that supports the utility of monitoring these urinary proteins for the specific and sensitive noninvasive diagnosis of acute renal allograft rejection.

  10. Image evaluation of HIV encephalopathy: a multimodal approach using quantitative MR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Paulo T.C.; Escorsi-Rosset, Sara [University of Sao Paulo, Radiology Section, Internal Medicine Department, Ribeirao Preto School of Medicine, Sao Paulo (Brazil); Cervi, Maria C. [University of Sao Paulo, Department of Pediatrics, Ribeirao Preto School of Medicine, Sao Paulo (Brazil); Santos, Antonio Carlos [University of Sao Paulo, Radiology Section, Internal Medicine Department, Ribeirao Preto School of Medicine, Sao Paulo (Brazil); Hospital das Clinicas da FMRP-USP, Ribeirao Preto, SP (Brazil)

    2011-11-15

    A multimodal approach of the human immunodeficiency virus (HIV) encephalopathy using quantitative magnetic resonance (MR) techniques can demonstrate brain changes not detectable only with conventional magnetic resonance imaging (MRI). The aim of this study was to compare conventional MRI and MR quantitative techniques, such as magnetic resonance spectroscopy (MRS) and relaxometry and to determine whether quantitative techniques are more sensitive than conventional imaging for brain changes caused by HIV infection. We studied prospectively nine HIV positive children (mean age 6 years, from 5 to 8 years old) and nine controls (mean age 7.3 years; from 3 to 10 years), using MRS and relaxometry. Examinations were carried on 1.5-T equipment. HIV-positive patients presented with only minor findings and all control patients had normal conventional MR findings. MRS findings showed an increase in choline to creatine (CHO/CRE) ratios bilaterally in both frontal gray and white matter, in the left parietal white matter, and in total CHO/CRE ratio. In contrast, N-acetylaspartate to creatine (NAA/CRE) ratios did not present with any significant difference between both groups. Relaxometry showed significant bilateral abnormalities, with lengthening of the relaxation time in HIV positive in many regions. Conventional MRI is not sensitive for early brain changes caused by HIV infection. Quantitative techniques such as MRS and relaxometry appear as valuable tools in the diagnosis of these early changes. Therefore, a multimodal quantitative study can be useful in demonstrating and understanding the physiopathology of the disease. (orig.)

  11. Spatial Quantitation of Drugs in tissues using Liquid Extraction Surface Analysis Mass Spectrometry Imaging

    Science.gov (United States)

    Swales, John G.; Strittmatter, Nicole; Tucker, James W.; Clench, Malcolm R.; Webborn, Peter J. H.; Goodwin, Richard J. A.

    2016-11-01

    Liquid extraction surface analysis mass spectrometry imaging (LESA-MSI) has been shown to be an effective tissue profiling and imaging technique, producing robust and reliable qualitative distribution images of an analyte or analytes in tissue sections. Here, we expand the use of LESA-MSI beyond qualitative analysis to a quantitative analytical technique by employing a mimetic tissue model previously shown to be applicable for MALDI-MSI quantitation. Liver homogenate was used to generate a viable and molecularly relevant control matrix for spiked drug standards which can be frozen, sectioned and subsequently analyzed for the generation of calibration curves to quantify unknown tissue section samples. The effects of extraction solvent composition, tissue thickness and solvent/tissue contact time were explored prior to any quantitative studies in order to optimize the LESA-MSI method across several different chemical entities. The use of a internal standard to normalize regional differences in ionization response across tissue sections was also investigated. Data are presented comparing quantitative results generated by LESA-MSI to LC-MS/MS. Subsequent analysis of adjacent tissue sections using DESI-MSI is also reported.

  12. Spatial Quantitation of Drugs in tissues using Liquid Extraction Surface Analysis Mass Spectrometry Imaging.

    Science.gov (United States)

    Swales, John G; Strittmatter, Nicole; Tucker, James W; Clench, Malcolm R; Webborn, Peter J H; Goodwin, Richard J A

    2016-11-24

    Liquid extraction surface analysis mass spectrometry imaging (LESA-MSI) has been shown to be an effective tissue profiling and imaging technique, producing robust and reliable qualitative distribution images of an analyte or analytes in tissue sections. Here, we expand the use of LESA-MSI beyond qualitative analysis to a quantitative analytical technique by employing a mimetic tissue model previously shown to be applicable for MALDI-MSI quantitation. Liver homogenate was used to generate a viable and molecularly relevant control matrix for spiked drug standards which can be frozen, sectioned and subsequently analyzed for the generation of calibration curves to quantify unknown tissue section samples. The effects of extraction solvent composition, tissue thickness and solvent/tissue contact time were explored prior to any quantitative studies in order to optimize the LESA-MSI method across several different chemical entities. The use of a internal standard to normalize regional differences in ionization response across tissue sections was also investigated. Data are presented comparing quantitative results generated by LESA-MSI to LC-MS/MS. Subsequent analysis of adjacent tissue sections using DESI-MSI is also reported.

  13. A comparison of phase imaging and quantitative susceptibility mapping in the imaging of multiple sclerosis lesions at ultrahigh field

    OpenAIRE

    Cronin, Matthew John; Wharton, Samuel; Al-Radaideh, Ali; Constantinescu, Chris; Evangelou, Nikos; Bowtell, Richard W.; Gowland, Penny A.

    2016-01-01

    Objective\\ud \\ud The aim of this study was to compare the use of high-resolution phase and QSM images acquired at ultra-high field in the investigation of multiple sclerosis (MS) lesions with peripheral rings, and to discuss their usefulness for drawing inferences about underlying tissue composition.\\ud \\ud Materials and methods\\ud \\ud Thirty-nine Subjects were scanned at 7 T, using 3D T2*-weighted and T1-weighted sequences. Phase images were then unwrapped and filtered, and quantitative susc...

  14. Quantitative estimation of brain atrophy and function with PET and MRI two-dimensional projection images

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Reiko; Uemura, Koji; Uchiyama, Akihiko [Waseda Univ., Tokyo (Japan). School of Science and Engineering; Toyama, Hinako; Ishii, Kenji; Senda, Michio

    2001-05-01

    The purpose of this paper is to estimate the extent of atrophy and the decline in brain function objectively and quantitatively. Two-dimensional (2D) projection images of three-dimensional (3D) transaxial images of positron emission tomography (PET) and magnetic resonance imaging (MRI) were made by means of the Mollweide method which keeps the area of the brain surface. A correlation image was generated between 2D projection images of MRI and cerebral blood flow (CBF) or {sup 18}F-fluorodeoxyglucose (FDG) PET images and the sulcus was extracted from the correlation image clustered by K-means method. Furthermore, the extent of atrophy was evaluated from the extracted sulcus on 2D-projection MRI and the cerebral cortical function such as blood flow or glucose metabolic rate was assessed in the cortex excluding sulcus on 2D-projection PET image, and then the relationship between the cerebral atrophy and function was evaluated. This method was applied to the two groups, the young and the aged normal subjects, and the relationship between the age and the rate of atrophy or the cerebral blood flow was investigated. This method was also applied to FDG-PET and MRI studies in the normal controls and in patients with corticobasal degeneration. The mean rate of atrophy in the aged group was found to be higher than that in the young. The mean value and the variance of the cerebral blood flow for the young are greater than those of the aged. The sulci were similarly extracted using either CBF or FDG PET images. The purposed method using 2-D projection images of MRI and PET is clinically useful for quantitative assessment of atrophic change and functional disorder of cerebral cortex. (author)

  15. A method for normalizing pathology images to improve feature extraction for quantitative pathology

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Allison [Stanford Institutes of Medical Research Program, Stanford University School of Medicine, Stanford, California 94305 (United States); Barker, Jocelyn [Department of Radiology, Stanford University School of Medicine, Stanford, California 94305 (United States); Rubin, Daniel [Department of Radiology, Stanford University School of Medicine, Stanford, California 94305 and Department of Medicine (Biomedical Informatics Research), Stanford University School of Medicine, Stanford, California 94305 (United States)

    2016-01-15

    Purpose: With the advent of digital slide scanning technologies and the potential proliferation of large repositories of digital pathology images, many research studies can leverage these data for biomedical discovery and to develop clinical applications. However, quantitative analysis of digital pathology images is impeded by batch effects generated by varied staining protocols and staining conditions of pathological slides. Methods: To overcome this problem, this paper proposes a novel, fully automated stain normalization method to reduce batch effects and thus aid research in digital pathology applications. Their method, intensity centering and histogram equalization (ICHE), normalizes a diverse set of pathology images by first scaling the centroids of the intensity histograms to a common point and then applying a modified version of contrast-limited adaptive histogram equalization. Normalization was performed on two datasets of digitized hematoxylin and eosin (H&E) slides of different tissue slices from the same lung tumor, and one immunohistochemistry dataset of digitized slides created by restaining one of the H&E datasets. Results: The ICHE method was evaluated based on image intensity values, quantitative features, and the effect on downstream applications, such as a computer aided diagnosis. For comparison, three methods from the literature were reimplemented and evaluated using the same criteria. The authors found that ICHE not only improved performance compared with un-normalized images, but in most cases showed improvement compared with previous methods for correcting batch effects in the literature. Conclusions: ICHE may be a useful preprocessing step a digital pathology image processing pipeline.

  16. Activated sludge characterization through microscopy: A review on quantitative image analysis and chemometric techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Daniela P. [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Amaral, A. Luís [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra (Portugal); Ferreira, Eugénio C., E-mail: ecferreira@deb.uminho.pt [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2013-11-13

    Graphical abstract: -- Highlights: •Quantitative image analysis shows potential to monitor activated sludge systems. •Staining techniques increase the potential for detection of operational problems. •Chemometrics combined with quantitative image analysis is valuable for process monitoring. -- Abstract: In wastewater treatment processes, and particularly in activated sludge systems, efficiency is quite dependent on the operating conditions, and a number of problems may arise due to sludge structure and proliferation of specific microorganisms. In fact, bacterial communities and protozoa identification by microscopy inspection is already routinely employed in a considerable number of cases. Furthermore, quantitative image analysis techniques have been increasingly used throughout the years for the assessment of aggregates and filamentous bacteria properties. These procedures are able to provide an ever growing amount of data for wastewater treatment processes in which chemometric techniques can be a valuable tool. However, the determination of microbial communities’ properties remains a current challenge in spite of the great diversity of microscopy techniques applied. In this review, activated sludge characterization is discussed highlighting the aggregates structure and filamentous bacteria determination by image analysis on bright-field, phase-contrast, and fluorescence microscopy. An in-depth analysis is performed to summarize the many new findings that have been obtained, and future developments for these biological processes are further discussed.

  17. Quantitative morphologic evaluation of magnetic resonance imaging during and after treatment of childhood leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Reddick, Wilburn E.; Glass, John O. [St. Jude Children' s Research Hospital, Division of Translational Imaging Research (MS 210), Department of Radiological Sciences, Memphis, TN (United States); Laningham, Fred H. [St. Jude Children' s Research Hospital, Division of Diagnostic Imaging, Memphis, TN (United States); Pui, Ching-Hon [St. Jude Children' s Research Hospital, Department of Oncology, Memphis, TN (United States)

    2007-11-15

    Medical advances over the last several decades, including CNS prophylaxis, have greatly increased survival in children with leukemia. As survival rates have increased, clinicians and scientists have been afforded the opportunity to further develop treatments to improve the quality of life of survivors by minimizing the long-term adverse effects. When evaluating the effect of antileukemia therapy on the developing brain, magnetic resonance (MR) imaging has been the preferred modality because it quantifies morphologic changes objectively and noninvasively. Computer-aided detection of changes on neuroimages enables us to objectively differentiate leukoencephalopathy from normal maturation of the developing brain. Quantitative tissue segmentation algorithms and relaxometry measures have been used to determine the prevalence, extent, and intensity of white matter changes that occur during therapy. More recently, diffusion tensor imaging has been used to quantify microstructural changes in the integrity of the white matter fiber tracts. MR perfusion imaging can be used to noninvasively monitor vascular changes during therapy. Changes in quantitative MR measures have been associated, to some degree, with changes in neurocognitive function during and after treatment. In this review, we present recent advances in quantitative evaluation of MR imaging and discuss how these methods hold the promise to further elucidate the pathophysiologic effects of treatment for childhood leukemia. (orig.)

  18. Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy.

    Science.gov (United States)

    Jiang, Huaidong; Song, Changyong; Chen, Chien-Chun; Xu, Rui; Raines, Kevin S; Fahimian, Benjamin P; Lu, Chien-Hung; Lee, Ting-Kuo; Nakashima, Akio; Urano, Jun; Ishikawa, Tetsuya; Tamanoi, Fuyuhiko; Miao, Jianwei

    2010-06-22

    Microscopy has greatly advanced our understanding of biology. Although significant progress has recently been made in optical microscopy to break the diffraction-limit barrier, reliance of such techniques on fluorescent labeling technologies prohibits quantitative 3D imaging of the entire contents of cells. Cryoelectron microscopy can image pleomorphic structures at a resolution of 3-5 nm, but is only applicable to thin or sectioned specimens. Here, we report quantitative 3D imaging of a whole, unstained cell at a resolution of 50-60 nm by X-ray diffraction microscopy. We identified the 3D morphology and structure of cellular organelles including cell wall, vacuole, endoplasmic reticulum, mitochondria, granules, nucleus, and nucleolus inside a yeast spore cell. Furthermore, we observed a 3D structure protruding from the reconstructed yeast spore, suggesting the spore germination process. Using cryogenic technologies, a 3D resolution of 5-10 nm should be achievable by X-ray diffraction microscopy. This work hence paves a way for quantitative 3D imaging of a wide range of biological specimens at nanometer-scale resolutions that are too thick for electron microscopy.

  19. Identification of imaging biomarkers for the assessment of tumour response to different treatments in a preclinical glioma model

    Energy Technology Data Exchange (ETDEWEB)

    Lo Dico, A.; Martelli, C. [University of Milan, Department of Pathophysiology and Transplantation, Milan (Italy); University of Milan, Centre of Molecular and Cellular Imaging-IMAGO, Milan (Italy); Valtorta, S.; Belloli, S. [National Researches Council (CNR), Institute of Molecular Bioimaging and Physiology (IBFM), Segrate, MI (Italy); IRCCS San Raffaele Scientific Institute, Experimental Imaging Center, Milan (Italy); Raccagni, I.; Moresco, R.M. [IRCCS San Raffaele Scientific Institute, Experimental Imaging Center, Milan (Italy); University of Milano-Bicocca, Department of Health Sciences, Monza (Italy); Diceglie, C. [University of Milan, Department of Pathophysiology and Transplantation, Milan (Italy); University of Milan, Doctorate School of Molecular Medicine, Milan (Italy); Gianelli, U.; Bosari, S. [University of Milan, Department of Pathophysiology and Transplantation, Milan (Italy); Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Division of Pathology, Milan (Italy); Vaira, V. [Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Division of Pathology, Milan (Italy); Istituto Nazionale Genetica Molecolare ' ' Romeo ed Enrica Invernizzi' ' (INGM), Milan (Italy); Politi, L.S. [IRCCS San Raffaele Scientific Institute, Neuroradiology Department and Neuroradiology Research Group, Milan (Italy); Lucignani, G. [University of Milan, Centre of Molecular and Cellular Imaging-IMAGO, Milan (Italy); University of Milan, Department of Health Sciences, Milan (Italy); San Paolo Hospital, Department of Diagnostic Services, Unit of Nuclear Medicine, Milan (Italy); Ottobrini, L. [University of Milan, Department of Pathophysiology and Transplantation, Milan (Italy); University of Milan, Centre of Molecular and Cellular Imaging-IMAGO, Milan (Italy); National Researches Council (CNR), Institute of Molecular Bioimaging and Physiology (IBFM), Segrate, MI (Italy)

    2015-03-27

    Hypoxia-inducible factor 1α (HIF-1α) activity is one of the major players in hypoxia-mediated glioma progression and resistance to therapies, and therefore the focus of this study was the evaluation of HIF-1α modulation in relation to tumour response with the purpose of identifying imaging biomarkers able to document tumour response to treatment in a murine glioma model. U251-HRE-mCherry cells expressing Luciferase under the control of a hypoxia responsive element (HRE) and mCherry under the control of a constitutive promoter were used to assess HIF-1α activity and cell survival after treatment, both in vitro and in vivo, by optical, MRI and positron emission tomography imaging. This cell model can be used to monitor HIF-1α activity after treatment with different drugs modulating transduction pathways involved in its regulation. After temozolomide (TMZ) treatment, HIF-1α activity is early reduced, preceding cell cytotoxicity. Optical imaging allowed monitoring of this process in vivo, and carbonic anhydrase IX (CAIX) expression was identified as a translatable non-invasive biomarker with potential clinical significance. A preliminary in vitro evaluation showed that reduction of HIF-1α activity after TMZ treatment was comparable to the effect of an Hsp90 inhibitor, opening the way for further elucidation of its mechanism of action. The results of this study suggest that the U251-HRE-mCherry cell model can be used for the monitoring of HIF-1α activity through luciferase and CAIX expression. These cells can become a useful tool for the assessment and improvement of new targeted tracers for potential theranostic procedures. (orig.)

  20. WE-G-207-05: Relationship Between CT Image Quality, Segmentation Performance, and Quantitative Image Feature Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J; Nishikawa, R [University of Pittsburgh, Pittsburgh, PA (United States); Reiser, I [The University of Chicago, Chicago, IL (United States); Boone, J [UC Davis Medical Center, Sacramento, CA (United States)

    2015-06-15

    Purpose: Segmentation quality can affect quantitative image feature analysis. The objective of this study is to examine the relationship between computed tomography (CT) image quality, segmentation performance, and quantitative image feature analysis. Methods: A total of 90 pathology proven breast lesions in 87 dedicated breast CT images were considered. An iterative image reconstruction (IIR) algorithm was used to obtain CT images with different quality. With different combinations of 4 variables in the algorithm, this study obtained a total of 28 different qualities of CT images. Two imaging tasks/objectives were considered: 1) segmentation and 2) classification of the lesion as benign or malignant. Twenty-three image features were extracted after segmentation using a semi-automated algorithm and 5 of them were selected via a feature selection technique. Logistic regression was trained and tested using leave-one-out-cross-validation and its area under the ROC curve (AUC) was recorded. The standard deviation of a homogeneous portion and the gradient of a parenchymal portion of an example breast were used as an estimate of image noise and sharpness. The DICE coefficient was computed using a radiologist’s drawing on the lesion. Mean DICE and AUC were used as performance metrics for each of the 28 reconstructions. The relationship between segmentation and classification performance under different reconstructions were compared. Distributions (median, 95% confidence interval) of DICE and AUC for each reconstruction were also compared. Results: Moderate correlation (Pearson’s rho = 0.43, p-value = 0.02) between DICE and AUC values was found. However, the variation between DICE and AUC values for each reconstruction increased as the image sharpness increased. There was a combination of IIR parameters that resulted in the best segmentation with the worst classification performance. Conclusion: There are certain images that yield better segmentation or classification

  1. Versatile quantitative phase imaging system applied to high-speed, low noise and multimodal imaging (Conference Presentation)

    Science.gov (United States)

    Federici, Antoine; Aknoun, Sherazade; Savatier, Julien; Wattellier, Benoit F.

    2017-02-01

    Quadriwave lateral shearing interferometry (QWLSI) is a well-established quantitative phase imaging (QPI) technique based on the analysis of interference patterns of four diffraction orders by an optical grating set in front of an array detector [1]. As a QPI modality, this is a non-invasive imaging technique which allow to measure the optical path difference (OPD) of semi-transparent samples. We present a system enabling QWLSI with high-performance sCMOS cameras [2] and apply it to perform high-speed imaging, low noise as well as multimodal imaging. This modified QWLSI system contains a versatile optomechanical device which images the optical grating near the detector plane. Such a device is coupled with any kind of camera by varying its magnification. In this paper, we study the use of a sCMOS Zyla5.5 camera from Andor along with our modified QWLSI system. We will present high-speed live cell imaging, up to 200Hz frame rate, in order to follow intracellular fast motions while measuring the quantitative phase information. The structural and density information extracted from the OPD signal is complementary to the specific and localized fluorescence signal [2]. In addition, QPI detects cells even when the fluorophore is not expressed. This is very useful to follow a protein expression with time. The 10 µm spatial pixel resolution of our modified QWLSI associated to the high sensitivity of the Zyla5.5 enabling to perform high quality fluorescence imaging, we have carried out multimodal imaging revealing fine structures cells, like actin filaments, merged with the morphological information of the phase. References [1]. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, "Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells," Opt. Express, vol. 17, pp. 13080-13094, 2009. [2] P. Bon, S. Lécart, E. Fort and S. Lévêque-Fort, "Fast label-free cytoskeletal network imaging in living mammalian cells," Biophysical journal, 106

  2. Quantitative wavelength analysis and image classification for intraoperative cancer diagnosis with hyperspectral imaging

    Science.gov (United States)

    Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2015-03-01

    Complete surgical removal of tumor tissue is essential for postoperative prognosis after surgery. Intraoperative tumor imaging and visualization are an important step in aiding surgeons to evaluate and resect tumor tissue in real time, thus enabling more complete resection of diseased tissue and better conservation of healthy tissue. As an emerging modality, hyperspectral imaging (HSI) holds great potential for comprehensive and objective intraoperative cancer assessment. In this paper, we explored the possibility of intraoperative tumor detection and visualization during surgery using HSI in the wavelength range of 450 nm - 900 nm in an animal experiment. We proposed a new algorithm for glare removal and cancer detection on surgical hyperspectral images, and detected the tumor margins in five mice with an average sensitivity and specificity of 94.4% and 98.3%, respectively. The hyperspectral imaging and quantification method have the potential to provide an innovative tool for image-guided surgery.

  3. Quantitative influenza follow-up testing (QIFT--a novel biomarker for the monitoring of disease activity at the point-of-care.

    Directory of Open Access Journals (Sweden)

    Xi Chen

    Full Text Available BACKGROUND: Influenza infections induce considerable disease burden in young children. Biomarkers for the monitoring of disease activity at the point-of-care (POC are currently lacking. Recent methodologies for fluorescence-based rapid testing have been developed to provide improved sensitivities with the initial diagnosis. The present study aims to explore the utility of second-generation rapid testing during longitudinal follow-up of influenza patients (Rapid Influenza Follow-up Testing = RIFT. Signal/control fluorescent readouts (Quantitative Influenza Follow-up Testing = QIFT are evaluated as a potential biomarker for the monitoring of disease activity at the POC. METHODS AND FINDINGS: RIFT (SOFIA and QIFT were performed at the POC and compared to blinded RT-PCR at the National Reference Centre for Influenza. From 10/2011-4/2013, a total of 2048 paediatric cases were studied prospectively; 273 cases were PCR-confirmed for influenza. During follow-up, RIFT results turned negative either prior to PCR (68%, or simultaneously (30%. The first negative RIFT occurred after a median of 8 days with a median virus load (VL of 5.6×10∧3 copies/ml and cycle threshold of 37, with no evidence of viral rebound. Binning analysis revealed that QIFT differentiated accurately between patients with low, medium and high viral titres. QIFT increase/decrease showed 88% agreement (sensitivity = 52%, specificity = 95% with VL increase/decrease, respectively. QIFT-based viral clearance estimates showed similar values compared to PCR-based estimates. Variations in viral clearance rates were lower in treated compared to untreated patients. The study was limited by use of non-invasive, semi-quantitative nasopharyngeal samples. VL measurements below the limit of detection could not be quantified reliably. CONCLUSIONS: During follow-up, RIFT provides a first surrogate measure for influenza disease activity. A "switch" from positive to negative values may

  4. The Young Brain and Concussion: Imaging as a Biomarker for Diagnosis and Prognosis

    Science.gov (United States)

    Toledo, E.; Lebel, A.; Becerra, L.; Minster, A.; Linnman, C; Maleki, N; Dodick, D.W.; Borsook, D.

    2012-01-01

    Concussion (mild traumatic brain injury (mTBI)) is a significant pediatric public health concern. Despite increased awareness, a comprehensive understanding of the acute and chronic effects of concussion on central nervous system structure and function remains incomplete. Here we review the definition, epidemiology, and sequelae of concussion within the developing brain, during childhood and adolescence, with current data derived from studies of pathophysiology and neuroimaging. These findings may contribute to a better understanding of the neurological consequences of traumatic brain injuries, which in turn, may lead to the development of brain biomarkers to improve identification, management and prognosis of pediatric patients suffering from concussion. PMID:22476089

  5. Evaluation of antiangiogenic efficacy in advanced hepatocellular carcinoma: Biomarkers and functional imaging

    Institute of Scientific and Technical Information of China (English)

    Mohamed; Bouattour; Audrey; Payancé; Johanna; Wassermann

    2015-01-01

    Many years after therapeutic wilderness, sorafenib finally showed a clinical benefit in patients with advanced hepatocellular carcinoma. After the primary general enthusiasm worldwide, some disappointments emerged particularly since no new treatment could exceed or at least match sorafenib in this setting. Without these new drugs, research focused on optimi-zing care of patients treated with sorafenib. One challenging research approach deals with identifying prognostic and predictive biomarkers of sorafenib in this population. The task still seems difficult; however appropriate investigations could resolve this dilemma, as observed for some malignancies where other drugs were used.

  6. Quantitative Assessment of Breast Parenchymal Uptake on 18F-FDG PET/CT: Correlation with Age, Background Parenchymal Enhancement, and Amount of Fibroglandular Tissue on MRI.

    Science.gov (United States)

    Leithner, Doris; Baltzer, Pascal A; Magometschnigg, Heinrich F; Wengert, Georg J; Karanikas, Georgios; Helbich, Thomas H; Weber, Michael; Wadsak, Wolfgang; Pinker, Katja

    2016-10-01

    Background parenchymal enhancement (BPE), and the amount of fibroglandular tissue (FGT) assessed with MRI have been implicated as sensitive imaging biomarkers for breast cancer. The purpose of this study was to quantitatively assess breast parenchymal uptake (BPU) on (18)F-FDG PET/CT as another valuable imaging biomarker and examine its correlation with BPE, FGT, and age.

  7. Quantitative fractography under light microscopy: A digital image processing approach; Quantitative Fraktographie mittels Lichtmikroskopie: Naeherung durch digitale Bildverarbeitung

    Energy Technology Data Exchange (ETDEWEB)

    Horovistiz, A.L.; Ribeiro, L.M.F.; Campos, K.A.; Jesuino, G.A.; Guimaraes, V.A.; Hein, L.R.O. [UNESP, Guaratingueta, SP (Brazil)

    2003-02-01

    This work is an example of the improvement on quantitative fractography by means of digital image processing and light microscopy. Two techniques are presented to investigate the quantitative fracture behavior of Ti-4Al-4V heat-treated alloy specimens, under Charpy impact testing. The first technique is the Minkowski method for fractal dimension measurement from surface profiles, revealing the multifractal character of Ti-4Al-4V fracture. It was not observed a clear positive correlation of fractal values against Charpy energies for Ti-4Al-4V alloy specimens, due to their ductility, microstructural heterogeneities and the dynamic loading characteristics at region near the V-notch. The second technique provides an entire elevation map of fracture surface by extracting in-focus regions for each picture from a stack of images acquired at successive focus positions, then computing the surface roughness. Extended-focus reconstruction has been used to explain the behavior along fracture surface. Since these techniques are based on light microscopy, their inherent low cost is very interesting for failure investigations. (orig.) [German] Diese Arbeit ist ein Beispiel fuer die Verbesserung der quantitativen Fraktographie mittels digitaler Bildverarbeitung und Lichtmikroskopie. Zur Untersuchung des quantitativen Bruchverhaltens von waermebehandelten Ti-4Al-4V-Proben im Charpy-Kerbschlagversuch werden zwei Techniken vorgestellt. Die erste Technik ist die Minkowski-Methode zur Messung der fraktalen Dimensionen aus Oberflaechenprofilen, welche den multifraktalen Charakter des Bruches von Ti-4Al-4V ergibt. Es wurde keine eindeutige positive Korrelation zwischen den fraktalen Werten und den Charpyenergien der Ti-4Al-4V-Proben aufgrund deren Duktilitaet, Gefuegeheterogenitaeten und dynamischen Belastungscharakteristiken im Bereich um den V-Kerb beobachtet. Die zweite Methode bietet eine vollstaendige Erhoehungsabbildung der Bruchoberflaeche durch Extraktion der Fokusierungsbereiche

  8. A narrative review of new trends in the diagnosis of myofascial trigger points: diagnostic ultrasound imaging and biomarkers

    Science.gov (United States)

    Srbely, John Z; Kumbhare, Dinesh; Grosman-Rimon, Liza

    2016-01-01

    Myofascial pain syndrome (MPS) is one of the most common conditions of chronic musculoskeletal pain encountered by primary healthcare practitioners on a daily basis. It is generally accepted amongst the broad profile of healthcare practitioners treating MPS that the presence of discrete, palpable and tender nodules within the muscle, known as myofascial trigger points (MTrP), is necessary to confirm the diagnosis of MPS. Manual palpation is currently the most common technique used to detect MTrP, however, previous research has shown that the reliability of manual palpation for detecting MTrP is poor, and in our opinion unacceptably poor, leading to inconsistent diagnosis of MPS and poor patient outcomes. There are currently no objective accepted diagnostic criteria for the clinical detection of MTrP, nor are there standardized diagnostic criteria for MPS. Two promising areas of research with potential for enhancing the diagnosis of MPS include the use of diagnostic ultrasound and biomarkers. Further research is needed to advance the development of composite diagnostic criteria employing ultrasound imaging, biomarker assessments and physical assessment to enhance the accuracy and objectivity of MTrP detection and diagnosis of chronic MPS disorder. PMID:27713577

  9. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    Science.gov (United States)

    Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-05-01

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50% when imaging with iodine-125, and up to 25% when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30%, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50%) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the use of resolution

  10. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Joint Graduate Group in Bioengineering, University of California, San Francisco and University of California, Berkeley; Department of Radiology, University of California; Gullberg, Grant T; Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-02-15

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50percent when imaging with iodine-125, and up to 25percent when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30percent, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50percent) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the

  11. Quantitative myocardial perfusion PET parametric imaging at the voxel-level.