WorldWideScience

Sample records for quantitative diffusion tractography

  1. Quantitative diffusion tensor deterministic and probabilistic fiber tractography in relapsing-remitting multiple sclerosis

    International Nuclear Information System (INIS)

    Hu Bing; Ye Binbin; Yang Yang; Zhu Kangshun; Kang Zhuang; Kuang Sichi; Luo Lin; Shan Hong

    2011-01-01

    Purpose: Our aim was to study the quantitative fiber tractography variations and patterns in patients with relapsing-remitting multiple sclerosis (RRMS) and to assess the correlation between quantitative fiber tractography and Expanded Disability Status Scale (EDSS). Material and methods: Twenty-eight patients with RRMS and 28 age-matched healthy volunteers underwent a diffusion tensor MR imaging study. Quantitative deterministic and probabilistic fiber tractography were generated in all subjects. And mean numbers of tracked lines and fiber density were counted. Paired-samples t tests were used to compare tracked lines and fiber density in RRMS patients with those in controls. Bivariate linear regression model was used to determine the relationship between quantitative fiber tractography and EDSS in RRMS. Results: Both deterministic and probabilistic tractography's tracked lines and fiber density in RRMS patients were less than those in controls (P < .001). Both deterministic and probabilistic tractography's tracked lines and fiber density were found negative correlations with EDSS in RRMS (P < .001). The fiber tract disruptions and reductions in RRMS were directly visualized on fiber tractography. Conclusion: Changes of white matter tracts can be detected by quantitative diffusion tensor fiber tractography, and correlate with clinical impairment in RRMS.

  2. Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey

    DEFF Research Database (Denmark)

    Donahue, Chad J.; Sotiropoulos, Stamatios N.; Jbabdi, Saad

    2016-01-01

    of tractography for analyzing interareal corticocortical connectivity in nonhuman primates and a framework for assessing future tractography methodological refinements objectively. SIGNIFICANCE STATEMENT Tractography based on diffusion MRI has great potential for a variety of applications, including estimation......Tractography based on diffusion MRI offers the promise of characterizing many aspects of long-distance connectivity in the brain, but requires quantitative validation to assess its strengths and limitations. Here, we evaluate tractography's ability to estimate the presence and strength...... of connections between areas of macaque neocortex by comparing its results with published data from retrograde tracer injections. Probabilistic tractography was performed on high-quality postmortem diffusion imaging scans from two Old World monkey brains. Tractography connection weights were estimated using...

  3. Fiber architecture in remodeled myocardium revealed with a quantitative diffusion CMR tractography framework and histological validation.

    Science.gov (United States)

    Mekkaoui, Choukri; Huang, Shuning; Chen, Howard H; Dai, Guangping; Reese, Timothy G; Kostis, William J; Thiagalingam, Aravinda; Maurovich-Horvat, Pal; Ruskin, Jeremy N; Hoffmann, Udo; Jackowski, Marcel P; Sosnovik, David E

    2012-10-12

    The study of myofiber reorganization in the remote zone after myocardial infarction has been performed in 2D. Microstructural reorganization in remodeled hearts, however, can only be fully appreciated by considering myofibers as continuous 3D entities. The aim of this study was therefore to develop a technique for quantitative 3D diffusion CMR tractography of the heart, and to apply this method to quantify fiber architecture in the remote zone of remodeled hearts. Diffusion Tensor CMR of normal human, sheep, and rat hearts, as well as infarcted sheep hearts was performed ex vivo. Fiber tracts were generated with a fourth-order Runge-Kutta integration technique and classified statistically by the median, mean, maximum, or minimum helix angle (HA) along the tract. An index of tract coherence was derived from the relationship between these HA statistics. Histological validation was performed using phase-contrast microscopy. In normal hearts, the subendocardial and subepicardial myofibers had a positive and negative HA, respectively, forming a symmetric distribution around the midmyocardium. However, in the remote zone of the infarcted hearts, a significant positive shift in HA was observed. The ratio between negative and positive HA variance was reduced from 0.96 ± 0.16 in normal hearts to 0.22 ± 0.08 in the remote zone of the remodeled hearts (p layers of the myocardium. Tractography-based quantification, performed here for the first time in remodeled hearts, may provide a framework for assessing regional changes in the left ventricle following infarction.

  4. Fiber architecture in remodeled myocardium revealed with a quantitative diffusion CMR tractography framework and histological validation

    Directory of Open Access Journals (Sweden)

    Mekkaoui Choukri

    2012-10-01

    Full Text Available Abstract Background The study of myofiber reorganization in the remote zone after myocardial infarction has been performed in 2D. Microstructural reorganization in remodeled hearts, however, can only be fully appreciated by considering myofibers as continuous 3D entities. The aim of this study was therefore to develop a technique for quantitative 3D diffusion CMR tractography of the heart, and to apply this method to quantify fiber architecture in the remote zone of remodeled hearts. Methods Diffusion Tensor CMR of normal human, sheep, and rat hearts, as well as infarcted sheep hearts was performed ex vivo. Fiber tracts were generated with a fourth-order Runge-Kutta integration technique and classified statistically by the median, mean, maximum, or minimum helix angle (HA along the tract. An index of tract coherence was derived from the relationship between these HA statistics. Histological validation was performed using phase-contrast microscopy. Results In normal hearts, the subendocardial and subepicardial myofibers had a positive and negative HA, respectively, forming a symmetric distribution around the midmyocardium. However, in the remote zone of the infarcted hearts, a significant positive shift in HA was observed. The ratio between negative and positive HA variance was reduced from 0.96 ± 0.16 in normal hearts to 0.22 ± 0.08 in the remote zone of the remodeled hearts (p Conclusions A significant reorganization of the 3D fiber continuum is observed in the remote zone of remodeled hearts. The positive (rightward shift in HA in the remote zone is greatest in the subepicardium, but involves all layers of the myocardium. Tractography-based quantification, performed here for the first time in remodeled hearts, may provide a framework for assessing regional changes in the left ventricle following infarction.

  5. Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica.

    Science.gov (United States)

    Shi, Yin; Zong, Min; Xu, Xiaoquan; Zou, Yuefen; Feng, Yang; Liu, Wei; Wang, Chuanbing; Wang, Dehang

    2015-04-01

    To quantitatively evaluate nerve roots by measuring fractional anisotropy (FA) values in healthy volunteers and sciatica patients, visualize nerve roots by tractography, and compare the diagnostic efficacy between conventional magnetic resonance imaging (MRI) and DTI. Seventy-five sciatica patients and thirty-six healthy volunteers underwent MR imaging using DTI. FA values for L5-S1 lumbar nerve roots were calculated at three levels from DTI images. Tractography was performed on L3-S1 nerve roots. ROC analysis was performed for FA values. The lumbar nerve roots were visualized and FA values were calculated in all subjects. FA values decreased in compressed nerve roots and declined from proximal to distal along the compressed nerve tracts. Mean FA values were more sensitive and specific than MR imaging for differentiating compressed nerve roots, especially in the far lateral zone at distal nerves. DTI can quantitatively evaluate compressed nerve roots, and DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and localization of probable nerve compression. DTI has great potential utility for evaluating lumbar nerve compression in sciatica. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica

    International Nuclear Information System (INIS)

    Shi, Yin; Zong, Min; Xu, Xiaoquan; Zou, Yuefen; Feng, Yang; Liu, Wei; Wang, Chuanbing; Wang, Dehang

    2015-01-01

    Highlights: •In the present study, we first elected ROIs corresponding to the proximal, medial, and distal levels of the lumbar foraminal zone. •The ROC analysis for FA values of distal nerves indicated a high level of reliability in the diagnosis of sciatica. •The declining trend of FA values from proximal to distal along the nerve tract may correlate with the disparity of axonal regeneration at different levels. •DTI is able to quantitatively evaluate compressed nerve roots and has a higher sensitivity and specificity for diagnosing sciatica than conventional MR imaging. •DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and probable localization of nerve compression. -- Abstract: Objective: To quantitatively evaluate nerve roots by measuring fractional anisotropy (FA) values in healthy volunteers and sciatica patients, visualize nerve roots by tractography, and compare the diagnostic efficacy between conventional magnetic resonance imaging (MRI) and DTI. Materials and methods: Seventy-five sciatica patients and thirty-six healthy volunteers underwent MR imaging using DTI. FA values for L5–S1 lumbar nerve roots were calculated at three levels from DTI images. Tractography was performed on L3–S1 nerve roots. ROC analysis was performed for FA values. Results: The lumbar nerve roots were visualized and FA values were calculated in all subjects. FA values decreased in compressed nerve roots and declined from proximal to distal along the compressed nerve tracts. Mean FA values were more sensitive and specific than MR imaging for differentiating compressed nerve roots, especially in the far lateral zone at distal nerves. Conclusions: DTI can quantitatively evaluate compressed nerve roots, and DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and localization of probable nerve compression. DTI has great potential utility for evaluating lumbar nerve compression in sciatica

  7. Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yin; Zong, Min; Xu, Xiaoquan; Zou, Yuefen; Feng, Yang; Liu, Wei; Wang, Chuanbing; Wang, Dehang, E-mail: njmu_wangdehang@126.com

    2015-04-15

    Highlights: •In the present study, we first elected ROIs corresponding to the proximal, medial, and distal levels of the lumbar foraminal zone. •The ROC analysis for FA values of distal nerves indicated a high level of reliability in the diagnosis of sciatica. •The declining trend of FA values from proximal to distal along the nerve tract may correlate with the disparity of axonal regeneration at different levels. •DTI is able to quantitatively evaluate compressed nerve roots and has a higher sensitivity and specificity for diagnosing sciatica than conventional MR imaging. •DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and probable localization of nerve compression. -- Abstract: Objective: To quantitatively evaluate nerve roots by measuring fractional anisotropy (FA) values in healthy volunteers and sciatica patients, visualize nerve roots by tractography, and compare the diagnostic efficacy between conventional magnetic resonance imaging (MRI) and DTI. Materials and methods: Seventy-five sciatica patients and thirty-six healthy volunteers underwent MR imaging using DTI. FA values for L5–S1 lumbar nerve roots were calculated at three levels from DTI images. Tractography was performed on L3–S1 nerve roots. ROC analysis was performed for FA values. Results: The lumbar nerve roots were visualized and FA values were calculated in all subjects. FA values decreased in compressed nerve roots and declined from proximal to distal along the compressed nerve tracts. Mean FA values were more sensitive and specific than MR imaging for differentiating compressed nerve roots, especially in the far lateral zone at distal nerves. Conclusions: DTI can quantitatively evaluate compressed nerve roots, and DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and localization of probable nerve compression. DTI has great potential utility for evaluating lumbar nerve compression in sciatica.

  8. Impact of Gradient Number and Voxel Size on Diffusion Tensor Imaging Tractography for Resective Brain Surgery

    NARCIS (Netherlands)

    Hoefnagels, Friso W. A.; de Witt Hamer, Philip C.; Pouwels, Petra J. W.; Barkhof, Frederik; Vandertop, W. Peter

    2017-01-01

    To explore quantitatively and qualitatively how the number of gradient directions (NGD) and spatial resolution (SR) affect diffusion tensor imaging (DTI) tractography in patients planned for brain tumor surgery, using routine clinical magnetic resonance imaging protocols. Of 67 patients with

  9. Diffusion Tensor Tractography Imaging in a Case of Acute Brain Stem Infarct

    Directory of Open Access Journals (Sweden)

    Nilgül Yardımcı

    2009-03-01

    Full Text Available Diffusion tensor tractography enables graphical reconstruction of the white matter pathways in the brain and quantitative study of white matter integrity. With this method virtual dissection of the living human brain can be performed. This technique has many potential clinical applications in neurological disorders, including the investigation of stroke. We present tractography findings of a patient that had an acute ischemic infarct in the brain stem. We aimed to report the disintegration of the white matter tracts at the infarct location in vivo, as well as the associated clinical symptoms. The current use of tractography in neurological disorders shows that it has the potential to improve our understanding of the damage and recovery process in diseases of the brain and spinal cord. From a clinical point of view tractography might be used to test new hypotheses, and to provide important new insights into the organization of the brain and the effects of brain disorders

  10. Quantitative evaluation of the white matter tracts of the limbic system segmented by diffusion tensor tractography with schizophrenia. A preliminary study

    International Nuclear Information System (INIS)

    Aoki, Shigeki; Yamada, Haruyasu; Abe, Osamu

    2005-01-01

    In this study, the clinical feasibility of combined technique with diffusion tensor tractography (DTT) and fractional anisotropy (FA) analysis in patients with schizophrenia is evaluated. Fourteen patients with schizophrenia and 15 age-matched volunteers were studied on a 1.5 T MR imager. DTT of the fornix, anterior and posterior cingulum, and uncinate fasciculus were visualized by dTV (free software by Masutani Y, URL: http://www.ut-radiology.umin.jp/people/masutani/dTV.htm) and VOLUME-ONE. Region of interest (ROIs) were semi-automatically placed on the tracts and FA values were calculated. FA values on the anterior cingulum, fornix and uncinate fasciculus of the schizophrenia patients were significantly lower than those of the volunteers. This combined method may be useful in evaluating subtle changes in the white matter tracts in patients with schizophrenia. (author)

  11. Outcomes of Diffusion Tensor Tractography-Integrated Stereotactic Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Tomoyuki, E-mail: kouga-tky@umin.ac.jp [Department of Neurosurgery, University of Tokyo Hospital, Tokyo (Japan); Maruyama, Keisuke; Kamada, Kyousuke; Ota, Takahiro; Shin, Masahiro [Department of Neurosurgery, University of Tokyo Hospital, Tokyo (Japan); Itoh, Daisuke [Department of Radiology, University of Tokyo Hospital, Tokyo (Japan); Kunii, Naoto [Department of Neurosurgery, University of Tokyo Hospital, Tokyo (Japan); Ino, Kenji; Terahara, Atsuro; Aoki, Shigeki; Masutani, Yoshitaka [Department of Radiology, University of Tokyo Hospital, Tokyo (Japan); Saito, Nobuhito [Department of Neurosurgery, University of Tokyo Hospital, Tokyo (Japan)

    2012-02-01

    Purpose: To analyze the effect of use of tractography of the critical brain white matter fibers created from diffusion tensor magnetic resonance imaging on reduction of morbidity associated with radiosurgery. Methods and Materials: Tractography of the pyramidal tract has been integrated since February 2004 if lesions are adjacent to it, the optic radiation since May 2006, and the arcuate fasciculus since October 2007. By visually confirming the precise location of these fibers, the dose to these fiber tracts was optimized. One hundred forty-four consecutive patients with cerebral arteriovenous malformations who underwent radiosurgery with this technique between February 2004 and December 2009 were analyzed. Results: Tractography was prospectively integrated in 71 of 155 treatments for 144 patients. The pyramidal tract was visualized in 45, the optic radiation in 22, and the arcuate fasciculus in 13 (two tracts in 9). During the follow-up period of 3 to 72 months (median, 23 months) after the procedure, 1 patient showed permanent worsening of pre-existing dysesthesia, and another patient exhibited mild transient hemiparesis 12 months later but fully recovered after oral administration of corticosteroid agents. Two patients had transient speech disturbance before starting integration of the arcuate fasciculus tractography, but no patient thereafter. Conclusion: Integrating tractography helped prevent morbidity of radiosurgery in patients with brain arteriovenous malformations.

  12. Diffusion imaging and tractography of congenital brain malformations

    International Nuclear Information System (INIS)

    Wahl, Michael; Barkovich, A.J.; Mukherjee, Pratik

    2010-01-01

    Diffusion imaging is an MRI modality that measures the microscopic molecular motion of water in order to investigate white matter microstructure. The modality has been used extensively in recent years to investigate the neuroanatomical basis of congenital brain malformations. We review the basic principles of diffusion imaging and of specific techniques, including diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI). We show how DTI and HARDI, and their application to fiber tractography, has elucidated the aberrant connectivity underlying a number of congenital brain malformations. Finally, we discuss potential uses for diffusion imaging of developmental disorders in the clinical and research realms. (orig.)

  13. When tractography meets tracer injections: a systematic study of trends and variation sources of diffusion-based connectivity.

    Science.gov (United States)

    Aydogan, Dogu Baran; Jacobs, Russell; Dulawa, Stephanie; Thompson, Summer L; Francois, Maite Christi; Toga, Arthur W; Dong, Hongwei; Knowles, James A; Shi, Yonggang

    2018-04-16

    Tractography is a powerful technique capable of non-invasively reconstructing the structural connections in the brain using diffusion MRI images, but the validation of tractograms is challenging due to lack of ground truth. Owing to recent developments in mapping the mouse brain connectome, high-resolution tracer injection-based axonal projection maps have been created and quickly adopted for the validation of tractography. Previous studies using tracer injections mainly focused on investigating the match in projections and optimal tractography protocols. Being a complicated technique, however, tractography relies on multiple stages of operations and parameters. These factors introduce large variabilities in tractograms, hindering the optimization of protocols and making the interpretation of results difficult. Based on this observation, in contrast to previous studies, in this work we focused on quantifying and ranking the amount of performance variation introduced by these factors. For this purpose, we performed over a million tractography experiments and studied the variability across different subjects, injections, anatomical constraints and tractography parameters. By using N-way ANOVA analysis, we show that all tractography parameters are significant and importantly performance variations with respect to the differences in subjects are comparable to the variations due to tractography parameters, which strongly underlines the importance of fully documenting the tractography protocols in scientific experiments. We also quantitatively show that inclusion of anatomical constraints is the most significant factor for improving tractography performance. Although this critical factor helps reduce false positives, our analysis indicates that anatomy-informed tractography still fails to capture a large portion of axonal projections.

  14. Global tractography with embedded anatomical priors for quantitative connectivity analysis

    Directory of Open Access Journals (Sweden)

    Alia eLemkaddem

    2014-11-01

    Full Text Available The main assumption of fiber-tracking algorithms is that fiber trajectories are represented by paths of highest diffusion, which is usually accomplished by following the principal diffusion directions estimated in every voxel from the measured diffusion MRI data. The state-of-the-art approaches, known as global tractography, reconstruct all the fiber tracts of the whole brain simultaneously by solving a global energy minimization problem. The tractograms obtained with these algorithms outperform any previous technique but, unfortunately, the price to pay is an increased computational cost which is not suitable in many practical settings, both in terms of time and memory requirements. Furthermore, existing global tractography algorithms suffer from an important shortcoming that is crucial in the context of brain connectivity analyses. As no anatomical priors are used during in the reconstruction process, the recovered fiber tracts are not guaranteed to connect cortical regions and, as a matter of fact, most of them stop prematurely in the white matter. This does not only unnecessarily slow down the estimation procedure and potentially biases any subsequent analysis but also, most importantly, prevents the de facto quantification of brain connectivity. In this work, we propose a novel approach for global tractography that is specifically designed for connectivity analysis applications by explicitly enforcing anatomical priors of the tracts in the optimization and considering the effective contribution of each of them, i.e. volume, to the acquired diffusion MRI image. We evaluated our approach on both a realistic diffusion MRI phantom and in-vivo data, and also compared its performance to existing tractography aloprithms.

  15. Target identification for stereotactic thalamotomy using diffusion tractography.

    Directory of Open Access Journals (Sweden)

    Zsigmond Tamás Kincses

    Full Text Available BACKGROUND: Stereotactic targets for thalamotomy are usually derived from population-based coordinates. Individual anatomy is used only to scale the coordinates based on the location of some internal guide points. While on conventional MR imaging the thalamic nuclei are indistinguishable, recently it has become possible to identify individual thalamic nuclei using different connectivity profiles, as defined by MR diffusion tractography. METHODOLOGY AND PRINCIPAL FINDINGS: Here we investigated the inter-individual variation of the location of target nuclei for thalamotomy: the putative ventralis oralis posterior (Vop and the ventral intermedius (Vim nucleus as defined by probabilistic tractography. We showed that the mean inter-individual distance of the peak Vop location is 7.33 mm and 7.42 mm for Vim. The mean overlap between individual Vop nuclei was 40.2% and it was 31.8% for Vim nuclei. As a proof of concept, we also present a patient who underwent Vop thalamotomy for untreatable tremor caused by traumatic brain injury and another patient who underwent Vim thalamotomy for essential tremor. The probabilistic tractography indicated that the successful tremor control was achieved with lesions in the Vop and Vim respectively. CONCLUSIONS: Our data call attention to the need for a better appreciation of the individual anatomy when planning stereotactic functional neurosurgery.

  16. Diffusion tensor imaging and tractography in clinical neuro sciences

    International Nuclear Information System (INIS)

    Zarei, M.; Johansen-Berg, H.; Matthews, P.M.

    2003-01-01

    Rapidly evolving MR technology has allowed better understanding of structure and function of the human brain. Diffusion weighted MRI was developed two decades ago and it is now well established in diagnosis of acute ischaemia in patients with stroke. Diffusion tensor MRI uses the same principles but takes a step further allowing US to measure magnitude of the diffusion along different directions. This lead to the development of diffusion tensor tractography, a technique by which major neural pathways in the living brain can be visualized. There is a growing interest in exploring possible use of these techniques in clinical neurology and psychiatry. This article aims to review the principles of this technique and recent discoveries which may help US to better understand neurological and psychiatric disorders

  17. Impact of Gradient Number and Voxel Size on Diffusion Tensor Imaging Tractography for Resective Brain Surgery.

    Science.gov (United States)

    Hoefnagels, Friso W A; de Witt Hamer, Philip C; Pouwels, Petra J W; Barkhof, Frederik; Vandertop, W Peter

    2017-09-01

    To explore quantitatively and qualitatively how the number of gradient directions (NGD) and spatial resolution (SR) affect diffusion tensor imaging (DTI) tractography in patients planned for brain tumor surgery, using routine clinical magnetic resonance imaging protocols. Of 67 patients with intracerebral lesions who had 2 different DTI scans, 3 DTI series were reconstructed to compare the effects of NGD and SR. Tractographies for 4 clinically relevant tracts (corticospinal tract, superior longitudinal fasciculus, optic radiation, and inferior fronto-occipital fasciculus) were constructed with a probabilistic tracking algorithm and automated region of interest placement and compared for 3 quantitative measurements: tract volume, median fiber density, and mean fractional anisotropy, using linear mixed-effects models. The mean tractography volume and intersubject reliability were visually compared across scanning protocols, to assess the clinical relevance of the quantitative differences. Both NGD and SR significantly influenced tract volume, median fiber density, and mean fractional anisotropy, but not to the same extent. In particular, higher NGD increased tract volume and median fiber density. More importantly, these effects further increased when tracts were affected by disease. The effects were tract specific, but not dependent on threshold. The superior longitudinal fasciculus and inferior fronto-occipital fasciculus showed the most significant differences. Qualitative assessment showed larger tract volumes given a fixed confidence level, and better intersubject reliability for the higher NGD protocol. SR in the range we considered seemed less relevant than NGD. This study indicates that, under time constraints of clinical imaging, a higher number of diffusion gradients is more important than spatial resolution for superior DTI probabilistic tractography in patients undergoing brain tumor surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. MR diffusion histology and micro-tractography reveal mesoscale features of the human cerebellum.

    Science.gov (United States)

    Dell'Acqua, Flavio; Bodi, Istvan; Slater, David; Catani, Marco; Modo, Michel

    2013-12-01

    After 140 years from the discovery of Golgi's black reaction, the study of connectivity of the cerebellum remains a fascinating yet challenging task. Current histological techniques provide powerful methods for unravelling local axonal architecture, but the relatively low volume of data that can be acquired in a reasonable amount of time limits their application to small samples. State-of-the-art in vivo magnetic resonance imaging (MRI) methods, such as diffusion tractography techniques, can reveal trajectories of the major white matter pathways, but their correspondence with underlying anatomy is yet to be established. Hence, a significant gap exists between these two approaches as neither of them can adequately describe the three-dimensional complexity of fibre architecture at the level of the mesoscale (from a few millimetres to micrometres). In this study, we report the application of MR diffusion histology and micro-tractography methods to reveal the combined cytoarchitectural organisation and connectivity of the human cerebellum at a resolution of 100-μm (2 nl/voxel volume). Results show that the diffusion characteristics for each layer of the cerebellar cortex correctly reflect the known cellular composition and its architectural pattern. Micro-tractography also reveals details of the axonal connectivity of individual cerebellar folia and the intra-cortical organisation of the different cerebellar layers. The direct correspondence between MR diffusion histology and micro-tractography with immunohistochemistry indicates that these approaches have the potential to complement traditional histology techniques by providing a non-destructive, quantitative and three-dimensional description of the microstructural organisation of the healthy and pathological tissue.

  19. Mapping remodeling of thalamocortical projections in the living reeler mouse brain by diffusion tractography

    Science.gov (United States)

    Harsan, Laura-Adela; Dávid, Csaba; Reisert, Marco; Schnell, Susanne; Hennig, Jürgen; von Elverfeldt, Dominik; Staiger, Jochen F.

    2013-01-01

    A major challenge in neuroscience is to accurately decipher in vivo the entire brain circuitry (connectome) at a microscopic level. Currently, the only methodology providing a global noninvasive window into structural brain connectivity is diffusion tractography. The extent to which the reconstructed pathways reflect realistic neuronal networks depends, however, on data acquisition and postprocessing factors. Through a unique combination of approaches, we designed and evaluated herein a framework for reliable fiber tracking and mapping of the living mouse brain connectome. One important wiring scheme, connecting gray matter regions and passing fiber-crossing areas, was closely examined: the lemniscal thalamocortical (TC) pathway. We quantitatively validated the TC projections inferred from in vivo tractography with correlative histological axonal tracing in the same wild-type and reeler mutant mice. We demonstrated noninvasively that changes in patterning of the cortical sheet, such as highly disorganized cortical lamination in reeler, led to spectacular compensatory remodeling of the TC pathway. PMID:23610438

  20. Oculomotor nerve palsy evaluated by diffusion-tensor tractography

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Kei; Kizu, Osamu; Ito, Hirotoshi; Nishimura, Tsunehiko [Kyoto Prefectural University of Medicine, Department of Radiology, Kyoto (Japan); Shiga, Kensuke; Akiyama, Katsuhisa; Nakagawa, Masanori [Kyoto Prefectural University of Medicine, Department of Neurology, Kyoto (Japan)

    2006-06-15

    The aim of the study was to test the feasibility of the tractography technique based on diffusion-tensor imaging (DTI) for the assessment of small infarcts involving the brainstem. A patient who presented with an isolated left third cranial nerve palsy underwent magnetic resonance examination. Images were obtained by use of a whole-body, 1.5-T imager. Data were transferred to an off-line workstation for fiber tracking. The conventional diffusion-weighted imaging (DWI) performed using a 5 mm slice thickness could only depict an equivocal hyperintensity lesion located at the left paramedian midbrain. An additional thin-slice DTI was performed immediately after the initial DWI using a 3 mm slice thickness and was able to delineate the lesion more clearly. Image postprocessing of thin-slice DTI data revealed that the lesion location involved the course of the third cranial nerve tract, corresponding with the patient's clinical symptoms. The tractography technique can be applied to assess fine neuronal structures of the brainstem, enabling direct clinicoradiological correlation of small infarcts involving this region. (orig.)

  1. Oculomotor nerve palsy evaluated by diffusion-tensor tractography

    International Nuclear Information System (INIS)

    Yamada, Kei; Kizu, Osamu; Ito, Hirotoshi; Nishimura, Tsunehiko; Shiga, Kensuke; Akiyama, Katsuhisa; Nakagawa, Masanori

    2006-01-01

    The aim of the study was to test the feasibility of the tractography technique based on diffusion-tensor imaging (DTI) for the assessment of small infarcts involving the brainstem. A patient who presented with an isolated left third cranial nerve palsy underwent magnetic resonance examination. Images were obtained by use of a whole-body, 1.5-T imager. Data were transferred to an off-line workstation for fiber tracking. The conventional diffusion-weighted imaging (DWI) performed using a 5 mm slice thickness could only depict an equivocal hyperintensity lesion located at the left paramedian midbrain. An additional thin-slice DTI was performed immediately after the initial DWI using a 3 mm slice thickness and was able to delineate the lesion more clearly. Image postprocessing of thin-slice DTI data revealed that the lesion location involved the course of the third cranial nerve tract, corresponding with the patient's clinical symptoms. The tractography technique can be applied to assess fine neuronal structures of the brainstem, enabling direct clinicoradiological correlation of small infarcts involving this region. (orig.)

  2. Diffusion tensor tractography reveals muscle reconnection during axolotl limb regeneration.

    Directory of Open Access Journals (Sweden)

    Cheng-Han Wu

    Full Text Available Axolotls have amazing ability to regenerate their lost limbs. Our previous works showed that after amputation the remnant muscle ends remained at their original location whilst sending satellite cells into the regenerating parts to develop into early muscle fibers in the late differentiation stage. The parental and the newly formed muscle fibers were not connected until very late stage. The present study used non-invasive diffusion tensor imaging (DTI to monitor weekly axolotl upper arm muscles after amputation of their upper arms. DTI tractography showed that the regenerating muscle fibers became visible at 9-wpa (weeks post amputation, but a gap was observed between the regenerating and parental muscles. The gap was filled at 10-wpa, indicating reconnection of the fibers of both muscles. This was confirmed by histology. The DTI results indicate that 23% of the muscle fibers were reconnected at 10-wpa. In conclusion, DTI can be used to visualize axolotls' skeletal muscles and the results of muscle reconnection were in accordance with our previous findings. This non-invasive technique will allow researchers to identify the timeframe in which muscle fiber reconnection takes place and thus enable the study of the mechanisms underlying this reconnection.

  3. Probabilistic diffusion tractography reveals improvement of structural network in musicians.

    Directory of Open Access Journals (Sweden)

    Jianfu Li

    Full Text Available PURPOSE: Musicians experience a large amount of information transfer and integration of complex sensory, motor, and auditory processes when training and playing musical instruments. Therefore, musicians are a useful model in which to investigate neural adaptations in the brain. METHODS: Here, based on diffusion-weighted imaging, probabilistic tractography was used to determine the architecture of white matter anatomical networks in musicians and non-musicians. Furthermore, the features of the white matter networks were analyzed using graph theory. RESULTS: Small-world properties of the white matter network were observed in both groups. Compared with non-musicians, the musicians exhibited significantly increased connectivity strength in the left and right supplementary motor areas, the left calcarine fissure and surrounding cortex and the right caudate nucleus, as well as a significantly larger weighted clustering coefficient in the right olfactory cortex, the left medial superior frontal gyrus, the right gyrus rectus, the left lingual gyrus, the left supramarginal gyrus, and the right pallidum. Furthermore, there were differences in the node betweenness centrality in several regions. However, no significant differences in topological properties were observed at a global level. CONCLUSIONS: We illustrated preliminary findings to extend the network level understanding of white matter plasticity in musicians who have had long-term musical training. These structural, network-based findings may indicate that musicians have enhanced information transmission efficiencies in local white matter networks that are related to musical training.

  4. Diffusion tensor MRI and fiber tractography of the sacral plexus in children with spina bifida

    DEFF Research Database (Denmark)

    Haakma, Wieke; Dik, Pieter; ten Haken, Bennie

    2014-01-01

    anatomical and microstructural properties of the sacral plexus of patients with spina bifida using diffusion tensor imaging and fiber tractography. MATERIALS AND METHODS: Ten patients 8 to 16 years old with spina bifida underwent diffusion tensor imaging on a 3 Tesla magnetic resonance imaging system...... diffusivity values at S1-S3 were significantly lower in patients. CONCLUSIONS: To our knowledge this 3 Tesla magnetic resonance imaging study showed for the first time sacral plexus asymmetry and disorganization in 10 patients with spina bifida using diffusion tensor imaging and fiber tractography...

  5. The challenge of mapping the human connectome based on diffusion tractography.

    Science.gov (United States)

    Maier-Hein, Klaus H; Neher, Peter F; Houde, Jean-Christophe; Côté, Marc-Alexandre; Garyfallidis, Eleftherios; Zhong, Jidan; Chamberland, Maxime; Yeh, Fang-Cheng; Lin, Ying-Chia; Ji, Qing; Reddick, Wilburn E; Glass, John O; Chen, David Qixiang; Feng, Yuanjing; Gao, Chengfeng; Wu, Ye; Ma, Jieyan; Renjie, H; Li, Qiang; Westin, Carl-Fredrik; Deslauriers-Gauthier, Samuel; González, J Omar Ocegueda; Paquette, Michael; St-Jean, Samuel; Girard, Gabriel; Rheault, François; Sidhu, Jasmeen; Tax, Chantal M W; Guo, Fenghua; Mesri, Hamed Y; Dávid, Szabolcs; Froeling, Martijn; Heemskerk, Anneriet M; Leemans, Alexander; Boré, Arnaud; Pinsard, Basile; Bedetti, Christophe; Desrosiers, Matthieu; Brambati, Simona; Doyon, Julien; Sarica, Alessia; Vasta, Roberta; Cerasa, Antonio; Quattrone, Aldo; Yeatman, Jason; Khan, Ali R; Hodges, Wes; Alexander, Simon; Romascano, David; Barakovic, Muhamed; Auría, Anna; Esteban, Oscar; Lemkaddem, Alia; Thiran, Jean-Philippe; Cetingul, H Ertan; Odry, Benjamin L; Mailhe, Boris; Nadar, Mariappan S; Pizzagalli, Fabrizio; Prasad, Gautam; Villalon-Reina, Julio E; Galvis, Justin; Thompson, Paul M; Requejo, Francisco De Santiago; Laguna, Pedro Luque; Lacerda, Luis Miguel; Barrett, Rachel; Dell'Acqua, Flavio; Catani, Marco; Petit, Laurent; Caruyer, Emmanuel; Daducci, Alessandro; Dyrby, Tim B; Holland-Letz, Tim; Hilgetag, Claus C; Stieltjes, Bram; Descoteaux, Maxime

    2017-11-07

    Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. Here, we report the encouraging finding that most state-of-the-art algorithms produce tractograms containing 90% of the ground truth bundles (to at least some extent). However, the same tractograms contain many more invalid than valid bundles, and half of these invalid bundles occur systematically across research groups. Taken together, our results demonstrate and confirm fundamental ambiguities inherent in tract reconstruction based on orientation information alone, which need to be considered when interpreting tractography and connectivity results. Our approach provides a novel framework for estimating reliability of tractography and encourages innovation to address its current limitations.

  6. Investigating the tradeoffs between spatial resolution and diffusion sampling for brain mapping with diffusion tractography: time well spent?

    Science.gov (United States)

    Calabrese, Evan; Badea, Alexandra; Coe, Christopher L; Lubach, Gabriele R; Styner, Martin A; Johnson, G Allan

    2014-11-01

    Interest in mapping white matter pathways in the brain has peaked with the recognition that altered brain connectivity may contribute to a variety of neurologic and psychiatric diseases. Diffusion tractography has emerged as a popular method for postmortem brain mapping initiatives, including the ex-vivo component of the human connectome project, yet it remains unclear to what extent computer-generated tracks fully reflect the actual underlying anatomy. Of particular concern is the fact that diffusion tractography results vary widely depending on the choice of acquisition protocol. The two major acquisition variables that consume scan time, spatial resolution, and diffusion sampling, can each have profound effects on the resulting tractography. In this analysis, we determined the effects of the temporal tradeoff between spatial resolution and diffusion sampling on tractography in the ex-vivo rhesus macaque brain, a close primate model for the human brain. We used the wealth of autoradiography-based connectivity data available for the rhesus macaque brain to assess the anatomic accuracy of six time-matched diffusion acquisition protocols with varying balance between spatial and diffusion sampling. We show that tractography results vary greatly, even when the subject and the total acquisition time are held constant. Further, we found that focusing on either spatial resolution or diffusion sampling at the expense of the other is counterproductive. A balanced consideration of both sampling domains produces the most anatomically accurate and consistent results. Copyright © 2014 Wiley Periodicals, Inc.

  7. Correlation of quantitative sensorimotor tractography with clinical grade of cerebral palsy

    International Nuclear Information System (INIS)

    Trivedi, Richa; Gupta, Rakesh K.; Agarwal, Shruti; Rathore, Ram K.S.; Shah, Vipul; Goyel, Puneet; Paliwal, Vimal K.

    2010-01-01

    The purpose of this study was to determine whether tract-specific diffusion tensor imaging measures in somatosensory and motor pathways correlate with clinical grades as defined using the Gross Motor Function Classification System (GMFCS) in cerebral palsy (CP) children. Quantitative diffusion tensor tractography was performed on 39 patients with spastic quadriparesis (mean age = 8 years) and 14 age/sex-matched controls. All patients were graded on the basis of GMFCS scale into grade II (n = 12), grade IV (n = 22), and grade V (n = 5) CP and quantitative analysis reconstruction of somatosensory and motor tracts performed. Significant inverse correlation between clinical grade and fractional anisotropy (FA) was observed in both right and left motor and sensory tracts. A significant direct correlation of mean diffusivity values from both motor and sensory tracts was also observed with clinical grades. Successive decrease in FA values was observed in all tracts except for left motor tracts moving from age/sex-matched controls to grade V through grades II and IV. We conclude that white matter tracts from both the somatosensory and the motor cortex play an important role in the pathophysiology of motor disability in patients with CP. (orig.)

  8. Correlation of quantitative sensorimotor tractography with clinical grade of cerebral palsy

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Richa; Gupta, Rakesh K. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Radiodiagnosis, Lucknow (India); Agarwal, Shruti; Rathore, Ram K.S. [Indian Institute of Technology, Department of Mathematics and Statistics, Kanpur (India); Shah, Vipul [Bhargava Nursing Home, Pediatric Orthopedic Surgery unit, Lucknow (India); Goyel, Puneet [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Anesthesiology, Lucknow (India); Paliwal, Vimal K. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Neurology, Lucknow (India)

    2010-08-15

    The purpose of this study was to determine whether tract-specific diffusion tensor imaging measures in somatosensory and motor pathways correlate with clinical grades as defined using the Gross Motor Function Classification System (GMFCS) in cerebral palsy (CP) children. Quantitative diffusion tensor tractography was performed on 39 patients with spastic quadriparesis (mean age = 8 years) and 14 age/sex-matched controls. All patients were graded on the basis of GMFCS scale into grade II (n = 12), grade IV (n = 22), and grade V (n = 5) CP and quantitative analysis reconstruction of somatosensory and motor tracts performed. Significant inverse correlation between clinical grade and fractional anisotropy (FA) was observed in both right and left motor and sensory tracts. A significant direct correlation of mean diffusivity values from both motor and sensory tracts was also observed with clinical grades. Successive decrease in FA values was observed in all tracts except for left motor tracts moving from age/sex-matched controls to grade V through grades II and IV. We conclude that white matter tracts from both the somatosensory and the motor cortex play an important role in the pathophysiology of motor disability in patients with CP. (orig.)

  9. Segmentation of the Canine Corpus Callosum using Diffusion Tensor Imaging Tractography

    Science.gov (United States)

    Pierce, T.T.; Calabrese, E.; White, L.E.; Chen, S.D.; Platt, S.R.; Provenzale, J.M.

    2014-01-01

    Background We set out to determine functional white matter (WM) connections passing through the canine corpus callosum useful for subsequent studies of canine brains that serve as models for human WM pathway disease. Based on prior studies, we anticipated that the anterior corpus callosum would send projections to the anterior cerebral cortex while progressively posterior segments would send projections to more posterior cortex. Methods A post mortem canine brain was imaged using a 7T MRI producing 100 micron isotropic resolution DTI analyzed by tractography. Using ROIs within cortical locations, which were confirmed by a Nissl stain that identified distinct cortical architecture, we successfully identified 6 important WM pathways. We also compared fractional anisotropy (FA), apparent diffusion coefficient (ADC), radial diffusivity (RD), and axial diffusivity (AD) in tracts passing through the genu and splenium. Results Callosal fibers were organized based upon cortical destination, i.e. fibers from the genu project to the frontal cortex. Histologic results identified the motor cortex based on cytoarchitectonic criteria that allowed placement of ROIs to discriminate between frontal and parietal lobes. We also identified cytoarchitecture typical of the orbital frontal, anterior frontal, and occipital regions and placed ROIs accordingly. FA, ADC, RD and AD values were all higher in posterior corpus callosum fiber tracts. Conclusions Using 6 cortical ROIs, we identified 6 major white matter tracts that reflect major functional divisions of the cerebral hemispheres and we derived quantitative values that can be used for study of canine models of human WM pathological states. PMID:24370161

  10. The challenge of mapping the human connectome based on diffusion tractography

    NARCIS (Netherlands)

    Maier-Hein, Klaus H; Neher, Peter F; Houde, Jean-Christophe; Côté, Marc-Alexandre; Garyfallidis, Eleftherios; Zhong, Jidan; Chamberland, Maxime; Yeh, Fang-Cheng; Lin, Ying-Chia; Ji, Qing; Reddick, Wilburn E; Glass, John O; Chen, David Qixiang; Feng, Yuanjing; Gao, Chengfeng; Wu, Ye; Ma, Jieyan; Renjie, H; Li, Qiang; Westin, Carl Fredrik; Deslauriers-Gauthier, Samuel; González, J Omar Ocegueda; Paquette, Michael; St-Jean, Samuel; Girard, Gabriel; Rheault, François; Sidhu, Jasmeen; Tax, Chantal M.W.; Guo, Fenghua; Mesri, Hamed Y.; Dávid, Szabolcs; Froeling, Martijn; Heemskerk, Anneriet M.; Leemans, Alexander; Boré, Arnaud; Pinsard, Basile; Bedetti, Christophe; Desrosiers, Matthieu; Brambati, Simona; Doyon, Julien; Sarica, Alessia; Vasta, Roberta; Cerasa, Antonio; Quattrone, Aldo; Yeatman, Jason; Khan, Ali R.; Hodges, Wes; Alexander, Simon; Romascano, David; Barakovic, Muhamed; Auría, Anna; Esteban, Oscar; Lemkaddem, Alia; Thiran, Jean-Philippe; Cetingul, H Ertan; Odry, Benjamin L; Mailhe, Boris; Nadar, Mariappan S; Pizzagalli, Fabrizio; Prasad, Gautam; Villalon-Reina, Julio E; Galvis, Justin; Thompson, Paul M.; Requejo, Francisco De Santiago; Laguna, Pedro Luque; Lacerda, Luis Miguel; Barrett, Rachel; Dell'Acqua, Flavio; Catani, Marco; Petit, Laurent; Caruyer, Emmanuel; Daducci, Alessandro; Dyrby, Tim B; Holland-Letz, Tim; Hilgetag, Claus C.; Stieltjes, Bram; Descoteaux, Maxime

    2017-01-01

    Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international

  11. The challenge of mapping the human connectome based on diffusion tractography

    DEFF Research Database (Denmark)

    Maier-Hein, Klaus H.; Neher, Peter F.; Houde, Jean-Christophe

    2017-01-01

    Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tra...

  12. Segmentation of the canine corpus callosum using diffusion-tensor imaging tractography.

    Science.gov (United States)

    Pierce, Theodore T; Calabrese, Evan; White, Leonard E; Chen, Steven D; Platt, Simon R; Provenzale, James M

    2014-01-01

    We set out to determine functional white matter (WM) connections passing through the canine corpus callosum; these WM connections would be useful for subsequent studies of canine brains that serve as models for human WM pathway disease. Based on prior studies, we anticipated that the anterior corpus callosum would send projections to the anterior cerebral cortex whereas progressively posterior segments would send projections to more posterior cortex. A postmortem canine brain was imaged using a 7-T MRI system producing 100-μm-isotropic-resolution diffusion-tensor imaging analyzed by tractography. Using regions of interest (ROIs) within cortical locations, which were confirmed by a Nissl stain that identified distinct cortical architecture, we successfully identified six important WM pathways. We also compared fractional anisotropy (FA), apparent diffusion coefficient (ADC), radial diffusivity, and axial diffusivity in tracts passing through the genu and splenium. Callosal fibers were organized on the basis of cortical destination (e.g., fibers from the genu project to the frontal cortex). Histologic results identified the motor cortex on the basis of cytoarchitectonic criteria that allowed placement of ROIs to discriminate between frontal and parietal lobes. We also identified cytoarchitecture typical of the orbital frontal, anterior frontal, and occipital regions and placed ROIs accordingly. FA, ADC, radial diffusivity, and axial diffusivity values were all higher in posterior corpus callosum fiber tracts. Using six cortical ROIs, we identified six major WM tracts that reflect major functional divisions of the cerebral hemispheres, and we derived quantitative values that can be used for study of canine models of human WM pathologic states.

  13. Migration Pathways of Thalamic Neurons and Development of Thalamocortical Connections in Humans Revealed by Diffusion MR Tractography.

    Science.gov (United States)

    Wilkinson, Molly; Kane, Tara; Wang, Rongpin; Takahashi, Emi

    2017-12-01

    The thalamus plays an important role in signal relays in the brain, with thalamocortical (TC) neuronal pathways linked to various sensory/cognitive functions. In this study, we aimed to see fetal and postnatal development of the thalamus including neuronal migration to the thalamus and the emergence/maturation of the TC pathways. Pathways from/to the thalami of human postmortem fetuses and in vivo subjects ranging from newborns to adults with no neurological histories were studied using high angular resolution diffusion MR imaging (HARDI) tractography. Pathways likely linked to neuronal migration from the ventricular zone and ganglionic eminence (GE) to the thalami were both successfully detected. Between the ventricular zone and thalami, more tractography pathways were found in anterior compared with posterior regions, which was well in agreement with postnatal observations that the anterior TC segment had more tract count and volume than the posterior segment. Three different pathways likely linked to neuronal migration from the GE to the thalami were detected. No hemispheric asymmetry of the TC pathways was quantitatively observed during development. These results suggest that HARDI tractography is useful to identify multiple differential neuronal migration pathways in human brains, and regional differences in brain development in fetal ages persisted in postnatal development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Feasibility of diffusion tensor imaging (DTI) with fibre tractography of the normal female pelvic floor

    International Nuclear Information System (INIS)

    Zijta, F.M.; Froeling, M.; Paardt, M.P. van der; Bipat, S.; Nederveen, A.J.; Stoker, J.; Lakeman, M.M.E.; Montauban van Swijndregt, A.D.; Strijkers, G.J.

    2011-01-01

    To prospectively determine the feasibility of diffusion tensor imaging (DTI) with fibre tractography as a tool for the three-dimensional (3D) visualisation of normal pelvic floor anatomy. Five young female nulliparous subjects (mean age 28 ± 3 years) underwent DTI at 3.0T. Two-dimensional diffusion-weighted axial spin-echo echo-planar (SP-EPI) pulse sequence of the pelvic floor was performed, with additional T2-TSE multiplanar sequences for anatomical reference. Fibre tractography for visualisation of predefined pelvic floor and pelvic wall muscles was performed offline by two observers, applying a consensus method. Three eigenvalues (λ1, λ2, λ3), fractional anisotropy (FA) and mean diffusivity (MD) were calculated from the fibre trajectories. In all subjects fibre tractography resulted in a satisfactory anatomical representation of the pubovisceral muscle, perineal body, anal - and urethral sphincter complex and internal obturator muscle. Mean FA values ranged from 0.23 ± 0.02 to 0.30 ± 0.04, MD values from 1.30 ± 0.08 to 1.73 ± 0.12 x 10- 3 mm 2 /s. Muscular structures in the superficial layer of the pelvic floor could not be satisfactorily identified. This study demonstrates the feasibility of visualising the complex three-dimensional pelvic floor architecture using 3T-DTI with fibre tractography. DTI of the deep female pelvic floor may provide new insights into pelvic floor disorders. (orig.)

  15. Feasibility of diffusion tensor imaging (DTI) with fibre tractography of the normal female pelvic floor

    Energy Technology Data Exchange (ETDEWEB)

    Zijta, F.M. [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); Onze Lieve Vrouwe Gasthuis, Department of Radiology, Amsterdam (Netherlands); Froeling, M. [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); Eindhoven University of Technology, Biomedical NMR, Department of Biomedical Engineering, Eindhoven (Netherlands); Paardt, M.P. van der; Bipat, S.; Nederveen, A.J.; Stoker, J. [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); Lakeman, M.M.E. [University of Amsterdam, Department of Gynaecology, Academic Medical Center, Amsterdam (Netherlands); Montauban van Swijndregt, A.D. [Onze Lieve Vrouwe Gasthuis, Department of Radiology, Amsterdam (Netherlands); Strijkers, G.J. [Eindhoven University of Technology, Biomedical NMR, Department of Biomedical Engineering, Eindhoven (Netherlands)

    2011-06-15

    To prospectively determine the feasibility of diffusion tensor imaging (DTI) with fibre tractography as a tool for the three-dimensional (3D) visualisation of normal pelvic floor anatomy. Five young female nulliparous subjects (mean age 28 {+-} 3 years) underwent DTI at 3.0T. Two-dimensional diffusion-weighted axial spin-echo echo-planar (SP-EPI) pulse sequence of the pelvic floor was performed, with additional T2-TSE multiplanar sequences for anatomical reference. Fibre tractography for visualisation of predefined pelvic floor and pelvic wall muscles was performed offline by two observers, applying a consensus method. Three eigenvalues ({lambda}1, {lambda}2, {lambda}3), fractional anisotropy (FA) and mean diffusivity (MD) were calculated from the fibre trajectories. In all subjects fibre tractography resulted in a satisfactory anatomical representation of the pubovisceral muscle, perineal body, anal - and urethral sphincter complex and internal obturator muscle. Mean FA values ranged from 0.23 {+-} 0.02 to 0.30 {+-} 0.04, MD values from 1.30 {+-} 0.08 to 1.73 {+-} 0.12 x 10-{sup 3} mm{sup 2}/s. Muscular structures in the superficial layer of the pelvic floor could not be satisfactorily identified. This study demonstrates the feasibility of visualising the complex three-dimensional pelvic floor architecture using 3T-DTI with fibre tractography. DTI of the deep female pelvic floor may provide new insights into pelvic floor disorders. (orig.)

  16. Traumatic brain injury and the post-concussion syndrome: A diffusion tensor tractography study

    International Nuclear Information System (INIS)

    D’souza, Maria M; Trivedi, Richa; Singh, Kavita; Grover, Hemal; Choudhury, Ajay; Kaur, Prabhjot; Kumar, Pawan; Tripathi, Rajendra Prashad

    2015-01-01

    The aim of the present study is to evaluate diffusion tensor tractography (DTT) as a tool for detecting diffuse axonal injury in patients of acute, mild, and moderate traumatic brain injury (TBI), using two diffusion variables: Fractional anisotropy (FA) and mean diffusivity (MD). The correlation of these indices with the severity of post-concussive symptoms was also assessed. Nineteen patients with acute, mild, or moderate TBI and twelve age- and sex-matched healthy controls were recruited. Following Magnetic Resonance Imaging (MRI) on a 3.0-T scanner, DTT was performed using the ‘fiber assignment by continuous tracking’ (FACT) algorithm for fiber reconstruction. Appropriate statistical tools were used to see the difference in FA and MD values between the control and patient groups. In the latter group, the severity of post-concussive symptoms was assessed six months following trauma, using the Rivermead Postconcussion Symptoms Questionnaire (RPSQ). The patients displayed significant reduction in FA compared to the controls (P < 0.05) in several tracts, notably the corpus callosum, fornix, bilateral uncinate fasciculus, and bilateral superior thalamic radiations. Changes in MD were statistically significant in the left uncinate, inferior longitudinal fasciculus, and left posterior thalamic radiation. A strong correlation between these indices and the RPSQ scores was observed in several white matter tracts. Diffusion tensor imaging (DTI)-based quantitative analysis in acute, mild, and moderate TBI can identify axonal injury neuropathology, over and above that visualized on conventional MRI scans. Furthermore, the significant correlation observed between FA and MD indices and the severity of post-concussive symptoms could make it a useful predictor of the long-term outcome

  17. Diffusion tensor tractography-based analysis of the cingulum: clinical utility and findings in traumatic brain injury with chronic sequels

    International Nuclear Information System (INIS)

    Kurki, Timo; Himanen, Leena; Vuorinen, Elina; Myllyniemi, Anna; Saarenketo, Anna-Riitta; Kauko, Tommi; Brandstack, Nina; Tenovuo, Olli

    2014-01-01

    To evaluate the clinical utility of quantitative diffusion tensor tractography (DTT) and tractography-based core analysis (TBCA) of the cingulum by defining the reproducibility, normal values, and findings in traumatic brain injury (TBI). Eighty patients with TBI and normal routine MRI and 78 controls underwent MRI at 3T. To determine reproducibility, 12 subjects were scanned twice. Superior (SC) and inferior (IC) cingulum were analyzed separately by DTT (fractional anisotropy (FA) thresholds 0.15 and 0.30). TBCA was performed from volumes defined by tractography with gradually changed FA thresholds. FA values were correlated with clinical and neuropsychological data. The lowest coefficient of variation was obtained at DTT threshold 0.30 (2.0 and 2.4 % for SC and IC, respectively), but in proportion to standard deviations of normal controls, the reproducibility of TBCA was better in SC and similar to that of DTT in IC. In patients with TBI, volume reduction with loss of peripheral fibers was relatively common; mean FA was mostly normal in these tractograms. The frequency of FA reductions (>2 SD) was in DTT smaller than in TBCA, in which FA decrease was present in 42 (13.1 %) of the 320 measurements. Central FA values in SC predicted visuoperceptual ability, and those in left IC predicted cognitive speed, language, and communication ability (p < 0.05). Tractography-based measurements have sufficient reproducibility for demonstration of severe abnormalities of the cingulum. TBCA is preferential for clinical FA analysis, because it measures corresponding areas in patients and controls without inaccuracies due to trauma-induced structural changes. (orig.)

  18. Diffusion tensor tractography-based analysis of the cingulum: clinical utility and findings in traumatic brain injury with chronic sequels

    Energy Technology Data Exchange (ETDEWEB)

    Kurki, Timo [Turku University Hospital, Department of Radiology, Turku (Finland); MRI Unit, Terveystalo Pulssi Medical Centre, Turku (Finland); Himanen, Leena; Vuorinen, Elina; Myllyniemi, Anna; Saarenketo, Anna-Riitta [NeuTera Neuropsychologist Centre, Turku (Finland); Kauko, Tommi [University of Turku, Department of Biostatistics, Turku (Finland); Brandstack, Nina [Turku University Hospital, Department of Radiology, Turku (Finland); Helsinki University Hospital, Department of Radiology, Helsinki (Finland); Tenovuo, Olli [Turku University Hospital and University of Turku, Department of Rehabilitation and Brain Trauma, Turku (Finland)

    2014-10-15

    To evaluate the clinical utility of quantitative diffusion tensor tractography (DTT) and tractography-based core analysis (TBCA) of the cingulum by defining the reproducibility, normal values, and findings in traumatic brain injury (TBI). Eighty patients with TBI and normal routine MRI and 78 controls underwent MRI at 3T. To determine reproducibility, 12 subjects were scanned twice. Superior (SC) and inferior (IC) cingulum were analyzed separately by DTT (fractional anisotropy (FA) thresholds 0.15 and 0.30). TBCA was performed from volumes defined by tractography with gradually changed FA thresholds. FA values were correlated with clinical and neuropsychological data. The lowest coefficient of variation was obtained at DTT threshold 0.30 (2.0 and 2.4 % for SC and IC, respectively), but in proportion to standard deviations of normal controls, the reproducibility of TBCA was better in SC and similar to that of DTT in IC. In patients with TBI, volume reduction with loss of peripheral fibers was relatively common; mean FA was mostly normal in these tractograms. The frequency of FA reductions (>2 SD) was in DTT smaller than in TBCA, in which FA decrease was present in 42 (13.1 %) of the 320 measurements. Central FA values in SC predicted visuoperceptual ability, and those in left IC predicted cognitive speed, language, and communication ability (p < 0.05). Tractography-based measurements have sufficient reproducibility for demonstration of severe abnormalities of the cingulum. TBCA is preferential for clinical FA analysis, because it measures corresponding areas in patients and controls without inaccuracies due to trauma-induced structural changes. (orig.)

  19. Flexible ex vivo phantoms for validation of diffusion tensor tractography on a clinical scanner.

    Science.gov (United States)

    Watanabe, Makoto; Aoki, Shigeki; Masutani, Yoshitaka; Abe, Osamu; Hayashi, Naoto; Masumoto, Tomohiko; Mori, Harushi; Kabasawa, Hiroyuki; Ohtomo, Kuni

    2006-11-01

    The aim of this study was to develop ex vivo diffusion tensor (DT) flexible phantoms. Materials were bundles of textile threads of cotton, monofilament nylon, rayon, and polyester bunched with spiral wrapping bands and immersed in water. DT images were acquired on a 1.5-Tesla clinical magnetic resonance scanner using echo planar imaging sequences with 15 motion probing gradient directions. DT tractography with seeding and a line-tracking method was carried out by software originally developed on a PC-based workstation. We observed relatively high fractional anisotropy on the polyester phantom and were able to reconstruct tractography. Straight tracts along the bundle were displayed when it was arranged linearly. It was easy to bend arcuately or bifurcate at one end; and tracts followed the course of the bundle, whether it was curved or branched and had good agreement with direct visual observation. Tractography with the other fibers was unsuccessful. The polyester phantom revealed a diffusion anisotropic structure according to its shape and would be utilizable repeatedly under the same conditions, differently from living central neuronal system. It would be useful to validate DT sequences and to optimize an algorithm or parameters of DT tractography software. Additionally, the flexibility of the phantom would enable us to model human axonal projections.

  20. Flexible ex vivo phantoms for validation of diffusion tensor tractography on a clinical scanner

    International Nuclear Information System (INIS)

    Watanabe, Makoto; Aoki, Shigeki; Masutani, Yoshitaka; Abe, Osamu; Hayashi, Naoto; Masumoto, Tomohiko; Mori, Harushi; Kabasawa, Hiroyuki; Ohtomo, Kuni

    2006-01-01

    The aim of this study was to develop ex vivo diffusion tensor (DT) flexible phantoms. Materials were bundles of textile threads of cotton, monofilament nylon, rayon, and polyester bunched with spiral wrapping bands and immersed in water. DT images were acquired on a 1.5-Tesla clinical magnetic resonance scanner using echo planar imaging sequences with 15 motion probing gradient directions. DT tractography with seeding and a line-tracking method was carried out by software originally developed on a PC-based workstation. We observed relatively high fractional anisotropy on the polyester phantom and were able to reconstruct tractography. Straight tracts along the bundle were displayed when it was arranged linearly. It was easy to bend arcuately or bifurcate at one end; and tracts followed the course of the bundle, whether it was curved or branched and had good agreement with direct visual observation. Tractography with the other fibers was unsuccessful. The polyester phantom revealed a diffusion anisotropic structure according to its shape and would be utilizable repeatedly under the same conditions, differently from living central neuronal system. It would be useful to validate DT sequences and to optimize an algorithm or parameters of DT tractography software. Additionally, the flexibility of the phantom would enable us to model human axonal projections. (author)

  1. Preoperative Identification of Facial Nerve in Vestibular Schwannomas Surgery Using Diffusion Tensor Tractography

    OpenAIRE

    Choi, Kyung-Sik; Kim, Min-Su; Kwon, Hyeok-Gyu; Jang, Sung-Ho; Kim, Oh-Lyong

    2014-01-01

    Objective Facial nerve palsy is a common complication of treatment for vestibular schwannoma (VS), so preserving facial nerve function is important. The preoperative visualization of the course of facial nerve in relation to VS could help prevent injury to the nerve during the surgery. In this study, we evaluate the accuracy of diffusion tensor tractography (DTT) for preoperative identification of facial nerve. Methods We prospectively collected data from 11 patients with VS, who underwent pr...

  2. Corticospinal MRI tractography in space-occupying brain lesions by diffusion tensor and kurtosis imaging methods

    Energy Technology Data Exchange (ETDEWEB)

    Leote, Joao [epartment of Neurosurgery, Hospital Garcia de Orta, Almada (Portugal); Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon, Lisboa (Portugal); Nunes, Rita; Cerqueira, Luis; Ferreira, Hugo Alexandre [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon, Lisboa (Portugal)

    2015-05-18

    Recently, DKI-based tractography has been developed, showing improved crossing-fiber resolution in comparison to deterministic DTI-based tractography in healthy subjects. In this work, DTI and DKI-based tractography methods were compared regarding the assessment of the corticospinal tract in patients presenting space-occupying brain lesions near cortical motor areas. Nine patients (4 males) aged 23 to 62 years old, with space-occupying brain lesions (e.g. tumors) were studied for pre-surgical planning using a 1.5T MRI scanner and a 12-channel head coil. In 5 patients diffusion data was acquired along 64 directions and in 4 patients along 32 directions both with b-values 0, 1000 and 2000 s/mm2. Corticospinal tracts were estimated using deterministic DTI and DKI methods and also using probabilistic DTI. The superior cerebellar peduncles and the motor cortical areas, ipsilateral and contralateral to the lesions, were used as seed regions-of-interest for fiber tracking. Tracts courses and volumes were documented and compared between methods. Results showed that it was possible to estimate fiber tracts using deterministic DTI and DKI methods in 8/9 patients, and using the probabilistic DTI method in all patients. Overall, it was observed that DKI-based tractography showed more voluminous fiber tracts than when using deterministic DTI. The DKI method also showed curvilinear fibers mainly above lesions margins, which were not visible with deterministic DTI in 5 patients. Similar tracts were observed when using probabilistic DTI in 3 of those patients. Results suggest that the DKI method contribute with additional information about the corticospinal tract course in comparison with the DTI method, especially with subcortical lesions and near lesions’ margins. Therefore, this study suggests that DKI-based tractography could be useful in MRI and hybrid PET-MRI pre-surgical planning protocols for improved corticospinal tract evaluation.

  3. Age related diffusion and tractography changes in typically developing pediatric cervical and thoracic spinal cord

    Directory of Open Access Journals (Sweden)

    Mahdi Alizadeh

    DTT parameters. Results: An increase in FA (group A = 0.42 ± 0.097, group B = 0.49 ± 0.116, white matter tract density (group A = 368.01 ± 236.88, group B = 440.13 ± 245.24 and mean length of fiber tracts (group A = 48.16 ± 20.48 mm, group B = 60.28 ± 23.87 mm and a decrease in MD (group A = 1.06 ± 0.23 × 10−3 mm2/s, group B = 0.82 ± 0.24 × 10−3 mm2/s were observed with age along the entire spinal cord. Statistically significant increases have been shown in FA (p = 0.004, R2 = 0.57, tract density (p = 0.0004, R2 = 0.58, mean length of fiber tracts (p < 0.001, R2 = 0.5 and a significant decrease has been shown in MD (p = 0.002, R2 = 0.59 between group A and group B. Also, it has been shown DTI and DTT parameters vary along the spinal cord as a function of intervertebral disk and mid-vertebral body level. Conclusion: This study provides an initial understanding of age related changes of DTI values as well as DTT metrics of the spinal cord. The results show significant differences in DTI and DTT parameters which may result from decreasing water content, myelination of fiber tracts, and the thickening diameter of fiber tracts during the maturation process. Consequently, when quantitative DTI and DTT of the spinal cord is undertaken in the pediatric population an age and level matched normative dataset should be used to accurately interpret the quantitative results. Keywords: Diffusion tensor imaging, Fiber tractography, Age, Pediatric spinal cord

  4. Diffusion tensor imaging and fiber tractography in cervical compressive myelopathy: preliminary results

    International Nuclear Information System (INIS)

    Lee, Joon Woo; Kim, Jae Hyoung; Park, Jong Bin; Lee, Guen Young; Kang, Heung Sik; Park, Kun Woo; Yeom, Jin S.

    2011-01-01

    To assess diffusion tensor imaging (DTI) parameters in cervical compressive myelopathy (CCM) patients compared to normal volunteers, to relate them with myelopathy severity, and to relate tractography patterns with postoperative neurologic improvement. Twenty patients suffering from CCM were prospectively enrolled (M:F = 13:7, mean age, 49.6 years; range 22-67 years) from September 2009 to March 2010. Sensitivity encoding (SENSE) single-shot echo-planar imaging (EPI) was used for the sagittal DTI. Twenty sex- and age-matched normal volunteers underwent the same scanning procedure. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values in the spinal cord were compared between the patients and normal volunteers and were related to myelopathy severity based on Japanese Orthopedic Association (JOA) scores. Tractography patterns were related to myelopathy severity and postoperative improvement. There were significant differences between patients and normal volunteers in terms of FA (0.498 ± 0.114 vs. 0.604 ± 0.057; p = 0.001) and ADC (1.442 ± 0.389 vs. 1.169 ± 0.098; p = 0.001). DTI parameters and tractography patterns were not related to myelopathy severity. In ten patients in the neurologically worse group, postoperative neurologic improvement was seen in four of five patients with intact fiber tracts, but only one of five patients with interrupted fiber tracts exhibited neurologic improvement. DTI parameters in CCM patients were significantly different from those in normal volunteers but were not significantly related to myelopathy severity. The patterns of tractography appear to correlate with postoperative neurologic improvement. (orig.)

  5. Diffusion tensor magnetic resonance imaging and fiber tractography of the sacral plexus in children with spina bifida

    DEFF Research Database (Denmark)

    Haakma, Wieke; Dik, Pieter; ten Haken, Bennie

    2014-01-01

    anatomical and microstructural properties of the sacral plexus of patients with spina bifida using diffusion tensor imaging and fiber tractography. MATERIALS AND METHODS: Ten patients 8 to 16 years old with spina bifida underwent diffusion tensor imaging on a 3 Tesla magnetic resonance imaging system...... diffusivity values at S1-S3 were significantly lower in patients. CONCLUSIONS: To our knowledge this 3 Tesla magnetic resonance imaging study showed for the first time sacral plexus asymmetry and disorganization in 10 patients with spina bifida using diffusion tensor imaging and fiber tractography...

  6. Preoperative Quantitative MR Tractography Compared with Visual Tract Evaluation in Patients with Neuropathologically Confirmed Gliomas Grades II and III: A Prospective Cohort Study

    International Nuclear Information System (INIS)

    Delgado, Anna F.; Nilsson, Markus; Latini, Francesco; Mårtensson, Johanna; Zetterling, Maria; Berntsson, Shala G.; Alafuzoff, Irina; Lätt, Jimmy; Larsson, Elna-Marie

    2016-01-01

    Background and Purpose. Low-grade gliomas show infiltrative growth in white matter tracts. Diffusion tensor tractography can noninvasively assess white matter tracts. The aim was to preoperatively assess tumor growth in white matter tracts using quantitative MR tractography (3T). The hypothesis was that suspected infiltrated tracts would have altered diffusional properties in infiltrated tract segments compared to noninfiltrated tracts. Materials and Methods. Forty-eight patients with suspected low-grade glioma were included after written informed consent and underwent preoperative diffusion tensor imaging in this prospective review-board approved study. Major white matter tracts in both hemispheres were tracked, segmented, and visually assessed for tumor involvement in thirty-four patients with gliomas grade II or III (astrocytomas or oligodendrogliomas) on postoperative neuropathological evaluation. Relative fractional anisotropy (rFA) and mean diffusivity (rMD) in tract segments were calculated and compared with visual evaluation and neuropathological diagnosis. Results. Tract segment infiltration on visual evaluation was associated with a lower rFA and high rMD in a majority of evaluated tract segments (89% and 78%, resp.). Grade II and grade III gliomas had similar infiltrating behavior. Conclusion. Quantitative MR tractography corresponds to visual evaluation of suspected tract infiltration. It may be useful for an objective preoperative evaluation of tract segment involvement

  7. Disrupted topological organization of structural networks revealed by probabilistic diffusion tractography in Tourette syndrome children.

    Science.gov (United States)

    Wen, Hongwei; Liu, Yue; Rekik, Islem; Wang, Shengpei; Zhang, Jishui; Zhang, Yue; Peng, Yun; He, Huiguang

    2017-08-01

    Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. Although previous TS studies revealed structural abnormalities in distinct corticobasal ganglia circuits, the topological alterations of the whole-brain white matter (WM) structural networks remain poorly understood. Here, we used diffusion MRI probabilistic tractography and graph theoretical analysis to investigate the topological organization of WM networks in 44 drug-naive TS children and 41 age- and gender-matched healthy children. The WM networks were constructed by estimating inter-regional connectivity probability and the topological properties were characterized using graph theory. We found that both TS and control groups showed an efficient small-world organization in WM networks. However, compared to controls, TS children exhibited decreased global and local efficiency, increased shortest path length and small worldness, indicating a disrupted balance between local specialization and global integration in structural networks. Although both TS and control groups showed highly similar hub distributions, TS children exhibited significant decreased nodal efficiency, mainly distributed in the default mode, language, visual, and sensorimotor systems. Furthermore, two separate networks showing significantly decreased connectivity in TS group were identified using network-based statistical (NBS) analysis, primarily composed of the parieto-occipital cortex, precuneus, and paracentral lobule. Importantly, we combined support vector machine and multiple kernel learning frameworks to fuse multiple levels of network topological features for classification of individuals, achieving high accuracy of 86.47%. Together, our study revealed the disrupted topological organization of structural networks related to pathophysiology of TS, and the discriminative topological features for classification are potential quantitative neuroimaging biomarkers for clinical TS diagnosis. Hum Brain Mapp 38:3988-4008, 2017

  8. Quantifying diffusion MRI tractography of the corticospinal tract in brain tumors with deterministic and probabilistic methods.

    Science.gov (United States)

    Bucci, Monica; Mandelli, Maria Luisa; Berman, Jeffrey I; Amirbekian, Bagrat; Nguyen, Christopher; Berger, Mitchel S; Henry, Roland G

    2013-01-01

    Diffusion MRI tractography has been increasingly used to delineate white matter pathways in vivo for which the leading clinical application is presurgical mapping of eloquent regions. However, there is rare opportunity to quantify the accuracy or sensitivity of these approaches to delineate white matter fiber pathways in vivo due to the lack of a gold standard. Intraoperative electrical stimulation (IES) provides a gold standard for the location and existence of functional motor pathways that can be used to determine the accuracy and sensitivity of fiber tracking algorithms. In this study we used intraoperative stimulation from brain tumor patients as a gold standard to estimate the sensitivity and accuracy of diffusion tensor MRI (DTI) and q-ball models of diffusion with deterministic and probabilistic fiber tracking algorithms for delineation of motor pathways. We used preoperative high angular resolution diffusion MRI (HARDI) data (55 directions, b = 2000 s/mm(2)) acquired in a clinically feasible time frame from 12 patients who underwent a craniotomy for resection of a cerebral glioma. The corticospinal fiber tracts were delineated with DTI and q-ball models using deterministic and probabilistic algorithms. We used cortical and white matter IES sites as a gold standard for the presence and location of functional motor pathways. Sensitivity was defined as the true positive rate of delineating fiber pathways based on cortical IES stimulation sites. For accuracy and precision of the course of the fiber tracts, we measured the distance between the subcortical stimulation sites and the tractography result. Positive predictive rate of the delineated tracts was assessed by comparison of subcortical IES motor function (upper extremity, lower extremity, face) with the connection of the tractography pathway in the motor cortex. We obtained 21 cortical and 8 subcortical IES sites from intraoperative mapping of motor pathways. Probabilistic q-ball had the best

  9. Diffusion Tensor Tractography Reveals Disrupted Structural Connectivity during Brain Aging

    Science.gov (United States)

    Lin, Lan; Tian, Miao; Wang, Qi; Wu, Shuicai

    2017-10-01

    Brain aging is one of the most crucial biological processes that entail many physical, biological, chemical, and psychological changes, and also a major risk factor for most common neurodegenerative diseases. To improve the quality of life for the elderly, it is important to understand how the brain is changed during the normal aging process. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 75 healthy old subjects by using graph theory metrics to describe the anatomical networks and connectivity patterns, and network-based statistic (NBS) analysis was used to identify pairs of regions with altered structural connectivity. The NBS analysis revealed a significant network comprising nine distinct fiber bundles linking 10 different brain regions showed altered white matter structures in young-old group compare with middle-aged group (p < .05, family-wise error-corrected). Our results might guide future studies and help to gain a better understanding of brain aging.

  10. Measuring Connectivity in the Primary Visual Pathway in Human Albinism Using Diffusion Tensor Imaging and Tractography.

    Science.gov (United States)

    Grigorian, Anahit; McKetton, Larissa; Schneider, Keith A

    2016-08-11

    In albinism, the number of ipsilaterally projecting retinal ganglion cells (RGCs) is significantly reduced. The retina and optic chiasm have been proposed as candidate sites for misrouting. Since a correlation between the number of lateral geniculate nucleus (LGN) relay neurons and LGN size has been shown, and based on previously reported reductions in LGN volumes in human albinism, we suggest that fiber projections from LGN to the primary visual cortex (V1) are also reduced. Studying structural differences in the visual system of albinism can improve the understanding of the mechanism of misrouting and subsequent clinical applications. Diffusion data and tractography are useful for mapping the OR (optic radiation). This manuscript describes two algorithms for OR reconstruction in order to compare brain connectivity in albinism and controls.An MRI scanner with a 32-channel head coil was used to acquire structural scans. A T1-weighted 3D-MPRAGE sequence with 1 mm(3) isotropic voxel size was used to generate high-resolution images for V1 segmentation. Multiple proton density (PD) weighted images were acquired coronally for right and left LGN localization. Diffusion tensor imaging (DTI) scans were acquired with 64 diffusion directions. Both deterministic and probabilistic tracking methods were run and compared, with LGN as the seed mask and V1 as the target mask. Though DTI provides relatively poor spatial resolution, and accurate delineation of OR may be challenging due to its low fiber density, tractography has been shown to be advantageous both in research and clinically. Tract based spatial statistics (TBSS) revealed areas of significantly reduced white matter integrity within the OR in patients with albinism compared to controls. Pairwise comparisons revealed a significant reduction in LGN to V1 connectivity in albinism compared to controls. Comparing both tracking algorithms revealed common findings, strengthening the reliability of the technique.

  11. The Safe Area in the Parieto-Occipital Lobe in the Human Brain: Diffusion Tensor Tractography.

    Science.gov (United States)

    Jang, Sung Ho; Kim, Seong Ho; Kwon, Hyeok Gyu

    2015-06-01

    A recent study reported on the relatively safe area in the frontal lobe for performance of neurological interventions; however, no study on the posterior safe area has been reported. In this study, using diffusion tensor tractography, we attempted to identify the safe area in the parieto-occipital lobe in healthy subjects. A total of 47 healthy subjects were recruited for this study. Eleven neural tracts were reconstructed in and around the parieto-occipital area of the brain using diffusion tensor tractography. The safe area, which is free from any trajectory of 10 neural tracts, was measured anteriorly and medially from the line of the most posterior and lateral margin of the brain at 5 axial levels (from the cerebral cortex to the corona radiata). The anterior boundaries of the safe area in the upper cerebral cortex, lower cerebral cortex, centrum semiovale, upper corona radiata, and lower corona radiata levels were located at 31.0, 32.6, 32.7, 35.1, and 35.2 mm anteriorly from the line of the most posterior margin of the brain, respectively, and the medial boundaries were located at an average of 34.7, 38.1, 39.2, 36.1, and 33.6 mm medially from the line of the most lateral margin of the brain, respectively. According to our findings, the safe area was located in the posterolateral portion of the parieto-occipital lobe in the shape of a triangle. However, we found no safe area in the deep white matter around the lateral ventricle. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Spinal diffusion tensor tractography for differentiation of intramedullary tumor-suspected lesions

    Energy Technology Data Exchange (ETDEWEB)

    Egger, K., E-mail: karl.egger@uniklinik-freiburg.de [Department of Neuroradiology, University Medical Center Freiburg, Breisacher Straße 64, 79106 Freiburg (Germany); Hohenhaus, M. [Department of Neurosurgery, University Medical Center Freiburg, Breisacher Straße 64, 79106 Freiburg (Germany); Van Velthoven, V. [Department of Neurosurgery, UZ Brussel, Laarbeeklaan 101, 1090 Brussel (Belgium); Heil, S.; Urbach, H. [Department of Neuroradiology, University Medical Center Freiburg, Breisacher Straße 64, 79106 Freiburg (Germany)

    2016-12-15

    Background and purpose: Primary MRI diagnosis of spinal intramedullary tumor-suspected lesions can be challenging and often requires spinal biopsy or resection with a substantial risk of neurological deficits. We evaluated whether Diffusion Tensor Imaging (DTI) tractography can facilitate the differential diagnosis. Materials and methods: Twenty-five consecutive patients with an intramedullary tumor-suspected lesion considered for spinal surgery were studied with a Diffusion-weighted multi-shot read out segmented EPI sequence (RESOLVE). White matter tracts (“streamlines”) were calculated using the FACT algorithm and visually co-registered to a T2-weighted 3D sequence. The fused images were assessed concerning spinal streamline appearance as normal, displaced or terminated. Definite diagnosis was verified by histological analysis or further clinical work-up. Results: All patients with normal appearing streamlines (n = 6) showed an acute inflammatory demyelinating pathology in the further clinical work-up. In 10 patients streamline displacing lesions were found from which 5 patients underwent a surgical treatment with histologically confirmed low-grade tumors like ependymomas and pilocytic astrocytomas. In nine patients streamlines were terminated, from which 6 patients received a histology proven diagnoses with a more heterogenous spectrum (3 cases of high grade tumor, 1 case of low grade tumor with intralesional hemorrhage and 2 cases with gliosis but no tumor cells). Conclusion: Using multi-shot DTI spinal tractography acute inflammatory lesions can be differentiated from other tumorous intramedullary lesions. The entity diagnosis of spinal tumors seems to be more challenging, primarily due to the variety of factors like invasivity, expansion or intralesional hemorrhage.

  13. Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction - initial results

    Energy Technology Data Exchange (ETDEWEB)

    Hueper, Katja; Gutberlet, M.; Rodt, T.; Wacker, F.; Galanski, M.; Hartung, D. [Institute for Diagnostic and Interventional Radiology, Hannover Medical School - Germany, Hannover (Germany); Gwinner, W. [Clinic for Nephrology, Hannover Medical School - Germany, Hannover (Germany); Lehner, F. [Clinic for General, Abdominal and Transplant Surgery, Hannover Medical School - Germany, Hannover (Germany)

    2011-11-15

    To evaluate MR diffusion tensor imaging (DTI) as non-invasive diagnostic tool for detection of acute and chronic allograft dysfunction and changes of organ microstructure. 15 kidney transplanted patients with allograft dysfunction and 14 healthy volunteers were examined using a fat-saturated echo-planar DTI-sequence at 1.5 T (6 diffusion directions, b = 0, 600 s/mm{sup 2}). Mean apparent diffusion coefficient (ADC) and mean fractional anisotropy (FA) were calculated separately for the cortex and for the medulla and compared between healthy and transplanted kidneys. Furthermore, the correlation between diffusion parameters and estimated GFR was determined. The ADC in the cortex and in the medulla were lower in transplanted than in healthy kidneys (p < 0.01). Differences were more distinct for FA, especially in the renal medulla, with a significant reduction in allografts (p < 0.001). Furthermore, in transplanted patients a correlation between mean FA in the medulla and estimated GFR was observed (r = 0.72, p < 0.01). Tractography visualized changes in renal microstructure in patients with impaired allograft function. Changes in allograft function and microstructure can be detected and quantified using DTI. However, to prove the value of DTI for standard clinical application especially correlation of imaging findings and biopsy results is necessary. (orig.)

  14. MR tractography

    International Nuclear Information System (INIS)

    Kinosada, Yasutomi; Okuda, Yasuyuki; Ono, Mototsugu

    1993-01-01

    We developed a new noninvasive technique to visualize the anatomical structure of the nerve fiber system in vivo, and named this technique magnetic resonance (MR) tractography and the acquired image an MR tractogram. MR tractography has two steps. One is to obtain diffusion-weighted images sensitized along axes appropriate for depicting the intended nerve fibers with anisotropic water diffusion MR imaging. The other is to extract the anatomical structure of the nerve fiber system from a series of diffusion-weighted images by the maximum intensity projection method. To examine the clinical usefulness of the proposed technique, many contiguous, thin (3 mm) coronal two-dimensional sections of the brain were acquired sequentially in normal volunteers and selected patients with paralyses, on a 1.5 Tesla MR system (Signa, GE) with an ECG-gated Stejskal-Tanner pulse sequence. The structure of the nerve fiber system of normal volunteers was almost the same as the anatomy. The tractograms of patients with paralyses clearly showed the degeneration of nerve fibers and were correlated with clinical symptoms. MR tractography showed great promise for the study of neuroanatomy and neuroradiology. (author)

  15. Correlation between language function and the left arcuate fasciculus detected by diffusion tensor imaging tractography after brain tumor surgery.

    Science.gov (United States)

    Hayashi, Yutaka; Kinoshita, Masashi; Nakada, Mitsutoshi; Hamada, Jun-ichiro

    2012-11-01

    Disturbance of the arcuate fasciculus in the dominant hemisphere is thought to be associated with language-processing disorders, including conduction aphasia. Although the arcuate fasciculus can be visualized in vivo with diffusion tensor imaging (DTI) tractography, its involvement in functional processes associated with language has not been shown dynamically using DTI tractography. In the present study, to clarify the participation of the arcuate fasciculus in language functions, postoperative changes in the arcuate fasciculus detected by DTI tractography were evaluated chronologically in relation to postoperative changes in language function after brain tumor surgery. Preoperative and postoperative arcuate fasciculus area and language function were examined in 7 right-handed patients with a brain tumor in the left hemisphere located in proximity to part of the arcuate fasciculus. The arcuate fasciculus was depicted, and its area was calculated using DTI tractography. Language functions were measured using the Western Aphasia Battery (WAB). After tumor resection, visualization of the arcuate fasciculus was increased in 5 of the 7 patients, and the total WAB score improved in 6 of the 7 patients. The relative ratio of postoperative visualized area of the arcuate fasciculus to preoperative visualized area of the arcuate fasciculus was increased in association with an improvement in postoperative language function (p = 0.0039). The role of the left arcuate fasciculus in language functions can be evaluated chronologically in vivo by DTI tractography after brain tumor surgery. Because increased postoperative visualization of the fasciculus was significantly associated with postoperative improvement in language functions, the arcuate fasciculus may play an important role in language function, as previously thought. In addition, postoperative changes in the arcuate fasciculus detected by DTI tractography could represent a predicting factor for postoperative language

  16. Quantitative Tractography and Volumetric MRI in Blast and Blunt Force TBI: Predictors of Neurocognitive and Behavioral Outcome

    Science.gov (United States)

    2016-10-01

    no conflicts of interest. Funding This work was supported by grants awarded by the Veterans Affairs: a Career Development Award to D.S. (2–065-10S...Benner, T., Soensen, A. G., & Wedeen, V. J. (2007). Diffusion toolkit : a software package for diffusion imaging data processing and tractography. Proc Intl...by the Veterans Affairs ( Career Development Awards [CDA]: LD-W, DS; Merit Award, LD-W) as well as the Department of Defense (Investigator-Initiated

  17. Diffusion tensor imaging (DTI) and tractography of the brachial plexus: feasibility and initial experience in neoplastic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Maria Isabel; Nguyen, Duy; Delavelle, Jacqueline [Geneva University Hospital, Department of Neuroradiology, DISIM, Geneve 14 (Switzerland); Viallon, Magalie [Geneva University Hospital and University of Geneva, Radiology, Geneva (Switzerland); Becker, Minerva [Geneva University Hospital and University of Geneva, Unit of Head and Neck Radiology, Geneva (Switzerland)

    2010-03-15

    The objective of this study was to assess the feasibility and potential clinical applications of diffusion tensor imaging (DTI) and tractography in the normal and pathologic brachial plexus prospectively. Six asymptomatic volunteers and 12 patients with symptoms related to the brachial plexus underwent DTI on a 1.5T system in addition to the routine anatomic plexus imaging protocol. Maps of the apparent diffusion coefficient (ADC) and of fractional anisotropy (FA), as well as tractography of the brachial plexus were obtained. Images were evaluated by two experienced neuroradiologists in a prospective fashion. Three patients underwent surgery, and nine patients underwent conservative medical treatment. Reconstructed DTI (17/18) were of good quality (one case could not be reconstructed due to artifacts). In all volunteers and in 11 patients, the roots and the trunks were clearly delineated with tractography. Mean FA and mean ADC values were as follows: 0.30{+-}0.079 and 1.70{+-}0.35 mm{sup 2}/s in normal fibers, 0.22{+-}0.04 and 1.49{+-}0.49 mm{sup 2}/s in benign neurogenic tumors, and 0.24{+-}0.08 and 1.51{+-}0.52 mm{sup 2}/s in malignant tumors, respectively. Although there was no statistically significant difference in FA and ADC values of normal fibers and fibers at the level of pathology, tractography revealed major differences regarding fiber architecture. In benign neurogenic tumors (n=4), tractography revealed fiber displacement alone (n=2) or fiber displacement and encasement by the tumor (n=2), whereas in the malignant tumors, either fiber disruption/destruction with complete disorganization (n=6) or fiber displacement (n=1) were seen. In patients with fiber displacement alone, surgery confirmed the tractography findings, and excision was successful without sequelae. Our preliminary data suggest that DTI with tractography is feasible in a clinical routine setting. DTI may demonstrate normal tracts, tract displacement, deformation, infiltration, disruption

  18. Diffusion tensor imaging (DTI) and tractography of the brachial plexus: feasibility and initial experience in neoplastic conditions

    International Nuclear Information System (INIS)

    Vargas, Maria Isabel; Nguyen, Duy; Delavelle, Jacqueline; Viallon, Magalie; Becker, Minerva

    2010-01-01

    The objective of this study was to assess the feasibility and potential clinical applications of diffusion tensor imaging (DTI) and tractography in the normal and pathologic brachial plexus prospectively. Six asymptomatic volunteers and 12 patients with symptoms related to the brachial plexus underwent DTI on a 1.5T system in addition to the routine anatomic plexus imaging protocol. Maps of the apparent diffusion coefficient (ADC) and of fractional anisotropy (FA), as well as tractography of the brachial plexus were obtained. Images were evaluated by two experienced neuroradiologists in a prospective fashion. Three patients underwent surgery, and nine patients underwent conservative medical treatment. Reconstructed DTI (17/18) were of good quality (one case could not be reconstructed due to artifacts). In all volunteers and in 11 patients, the roots and the trunks were clearly delineated with tractography. Mean FA and mean ADC values were as follows: 0.30±0.079 and 1.70±0.35 mm 2 /s in normal fibers, 0.22±0.04 and 1.49±0.49 mm 2 /s in benign neurogenic tumors, and 0.24±0.08 and 1.51±0.52 mm 2 /s in malignant tumors, respectively. Although there was no statistically significant difference in FA and ADC values of normal fibers and fibers at the level of pathology, tractography revealed major differences regarding fiber architecture. In benign neurogenic tumors (n=4), tractography revealed fiber displacement alone (n=2) or fiber displacement and encasement by the tumor (n=2), whereas in the malignant tumors, either fiber disruption/destruction with complete disorganization (n=6) or fiber displacement (n=1) were seen. In patients with fiber displacement alone, surgery confirmed the tractography findings, and excision was successful without sequelae. Our preliminary data suggest that DTI with tractography is feasible in a clinical routine setting. DTI may demonstrate normal tracts, tract displacement, deformation, infiltration, disruption, and disorganization of

  19. A Review of Traumatic Axonal Injury following Whiplash Injury As Demonstrated by Diffusion Tensor Tractography

    Directory of Open Access Journals (Sweden)

    Sung Ho Jang

    2018-02-01

    Full Text Available Whiplash is a bony or soft tissue injury resulting from an acceleration–deceleration energy transfer in the neck. Although patients with whiplash injury often complain of cerebral symptoms, and previous studies have reported evidence indicating brain injury, such an association has not been clearly elucidated. Traumatic axonal injury (TAI is tearing of axons due to indirect shearing forces during acceleration, deceleration, and rotation of the brain or to direct head trauma. Diffusion tensor imaging (DTI has a unique advantage to detect TAI in patients whose conventional brain CT or magnetic resonance imaging (MRI results were negative following head trauma. Since the introduction of DTI, six studies using diffusion tensor tractography (DTT based on DTI data have reported TAI in patients with whiplash injury, even though conventional brain CT or MRI results were negative. A precise TAI diagnosis in whiplash patients is clinically important for proper management and prognosis. Among the methods employed to diagnose TAI in the six previous studies, the common diagnostic approach for neural tract TAI in individual patients with whiplash injury were (1 whiplash injury history due to car accident; (2 development of new clinical symptoms and signs after whiplash injury; (3 evidence of neural tract TAI in DTT results, mainly via configurational analysis; and (4 coincidence of newly developed clinical manifestations and the function of injured neural tracts. All six studies were individual patient case studies; therefore, further prospective studies involving larger number of subjects should be encouraged.

  20. A diffusion tensor imaging tractography algorithm based on Navier-Stokes fluid mechanics.

    Science.gov (United States)

    Hageman, Nathan S; Toga, Arthur W; Narr, Katherine L; Shattuck, David W

    2009-03-01

    We introduce a fluid mechanics based tractography method for estimating the most likely connection paths between points in diffusion tensor imaging (DTI) volumes. We customize the Navier-Stokes equations to include information from the diffusion tensor and simulate an artificial fluid flow through the DTI image volume. We then estimate the most likely connection paths between points in the DTI volume using a metric derived from the fluid velocity vector field. We validate our algorithm using digital DTI phantoms based on a helical shape. Our method segmented the structure of the phantom with less distortion than was produced using implementations of heat-based partial differential equation (PDE) and streamline based methods. In addition, our method was able to successfully segment divergent and crossing fiber geometries, closely following the ideal path through a digital helical phantom in the presence of multiple crossing tracts. To assess the performance of our algorithm on anatomical data, we applied our method to DTI volumes from normal human subjects. Our method produced paths that were consistent with both known anatomy and directionally encoded color images of the DTI dataset.

  1. Combining diffusion magnetic resonance tractography with stereology highlights increased cross-cortical integration in primates.

    Science.gov (United States)

    Charvet, Christine J; Hof, Patrick R; Raghanti, Mary Ann; Van Der Kouwe, Andre J; Sherwood, Chet C; Takahashi, Emi

    2017-04-01

    The isocortex of primates is disproportionately expanded relative to many other mammals, yet little is known about what the expansion of the isocortex entails for differences in cellular composition and connectivity patterns in primates. Across the depth of the isocortex, neurons exhibit stereotypical patterns of projections. Upper-layer neurons (i.e., layers II-IV) project within and across cortical areas, whereas many lower-layer pyramidal neurons (i.e., layers V-VI) favor connections to subcortical regions. To identify evolutionary changes in connectivity patterns, we quantified upper (i.e., layers II-IV)- and lower (i.e., layers V-VI)-layer neuron numbers in primates and other mammals such as rodents and carnivores. We also used MR tractography based on high-angular resolution diffusion imaging and diffusion spectrum imaging to compare anterior-to-posterior corticocortical tracts between primates and other mammals. We found that primates possess disproportionately more upper-layer neurons as well as an expansion of anterior-to-posterior corticocortical tracts compared with other mammals. Taken together, these findings demonstrate that primates deviate from other mammals in exhibiting increased cross-cortical connectivity. J. Comp. Neurol. 525:1075-1093, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Reproducibility of corticospinal diffusion tensor tractography in normal subjects and hemiparetic stroke patients

    International Nuclear Information System (INIS)

    Lin, Chao-Chun; Tsai, Miao-Yu; Lo, Yu-Chien; Liu, Yi-Jui; Tsai, Po-Pang; Wu, Chiao-Ying; Lin, Chia-Wei; Shen, Wu-Chung; Chung, Hsiao-Wen

    2013-01-01

    Purpose: The reproducibility of corticospinal diffusion tensor tractography (DTT) for a guideline is important before longitudinal monitoring of the therapy effects in stroke patients. This study aimed to establish the reproducibility of corticospinal DTT indices in healthy subjects and chronic hemiparetic stroke patients. Materials and methods: Written informed consents were obtained from 10 healthy subjects (mean age 25.8 ± 6.8 years), who underwent two scans in one session plus the third scan one week later, and from 15 patients (mean age 47.5 ± 9.1 years, 6–60 months after the onset of stroke, NIHSS scores between 9 and 20) who were scanned thrice on separate days within one month. Diffusion-tensor imaging was performed at 3 T with 25 diffusion directions. Corticospinal tracts were reconstructed using fiber assignment by continuous tracking without and with motion/eddy-current corrections. Intra- and inter-rater as well as intra- and inter-session variations of the DTT derived indices (fiber number, apparent diffusion coefficient (ADC), and fractional anisotropy (FA)) were assessed. Results: Intra-session and inter-session coefficients of variations (CVs) are small for FA (1.13–2.09%) and ADC (0.45–1.64%), but much larger for fiber number (8.05–22.4%). Inter-session CVs in the stroke side of patients (22.4%) are higher than those in the normal sides (18.0%) and in the normal subjects (14.7%). Motion/eddy-current correction improved inter-session reproducibility only for the fiber number of the infarcted corticospinal tract (CV reduced from 22.4% to 14.1%). Conclusion: The fiber number derived from corticospinal DTT shows substantially lower precision than ADC and FA, with infarcted tracts showing lower reproducibility than the healthy tissues

  3. MR neurography of the median nerve at 3.0 T: Optimization of diffusion tensor imaging and fiber tractography

    International Nuclear Information System (INIS)

    Guggenberger, Roman; Eppenberger, Patrick; Markovic, Daniel; Nanz, Daniel; Chhabra, Avneesh; Pruessmann, Klaas P.; Andreisek, Gustav

    2012-01-01

    Objectives: The purpose of this study was to systematically assess the optimal b-value and reconstruction parameters for DTI and fiber tractography of the median nerve at 3.0 T. Methods: Local ethical board approved study with 45 healthy volunteers (15 men, 30 women; mean age, 41 ± 3.4 years) who underwent DTI of the right wrist at 3.0 T. A single-shot echo-planar-imaging sequence (TR/TE 10123/40 ms) was acquired at four different b-values (800, 1000, 1200, and 1400 s/mm 2 ). Two independent readers performed post processing and fiber-tractography. Fractional anisotropy (FA) maps were calculated. Fiber tracts of the median nerve were generated using four different algorithms containing different FA thresholds and different angulation tolerances. Data were evaluated quantitatively and qualitatively. Results: Tracking algorithms using a minimum FA threshold of 0.2 and a maximum angulation of 10° were significantly better than other algorithms. Fiber tractography generated significantly longer fibers in DTI acquisitions with higher b-values (1200 and 1400 s/mm 2 versus 800 s/mm 2 ; p 2 (p 2 for DTI of the median nerve at 3.0 T. Optimal reconstruction parameters for fiber tractography should encompass a minimum FA threshold of 0.2 and a maximum angulation tolerance of 10.

  4. MR tractography; Visualization of structure of nerve fiber system from diffusion weighted images with maximum intensity projection method

    Energy Technology Data Exchange (ETDEWEB)

    Kinosada, Yasutomi; Okuda, Yasuyuki (Mie Univ., Tsu (Japan). School of Medicine); Ono, Mototsugu (and others)

    1993-02-01

    We developed a new noninvasive technique to visualize the anatomical structure of the nerve fiber system in vivo, and named this technique magnetic resonance (MR) tractography and the acquired image an MR tractogram. MR tractography has two steps. One is to obtain diffusion-weighted images sensitized along axes appropriate for depicting the intended nerve fibers with anisotropic water diffusion MR imaging. The other is to extract the anatomical structure of the nerve fiber system from a series of diffusion-weighted images by the maximum intensity projection method. To examine the clinical usefulness of the proposed technique, many contiguous, thin (3 mm) coronal two-dimensional sections of the brain were acquired sequentially in normal volunteers and selected patients with paralyses, on a 1.5 Tesla MR system (Signa, GE) with an ECG-gated Stejskal-Tanner pulse sequence. The structure of the nerve fiber system of normal volunteers was almost the same as the anatomy. The tractograms of patients with paralyses clearly showed the degeneration of nerve fibers and were correlated with clinical symptoms. MR tractography showed great promise for the study of neuroanatomy and neuroradiology. (author).

  5. The optimal trackability threshold of fractional anisotropy for diffusion tensor tractography of the corticospinal tract

    International Nuclear Information System (INIS)

    Kunimatsu, Akira; Aoki, Shigeki; Masutani, Yoshitaka; Abe, Osamu; Hayashi, Naoto; Mori, Harushi; Masumoto, Tomohiko; Ohtomo, Kuni

    2004-01-01

    In order to ensure that three-dimensional diffusion tensor tractography (3D-DTT) of the corticospinal tract (CST), is performed accurately and efficiently, we set out to find the optimal lower threshold of fractional anisotropy (FA) below which tract elongation is terminated (trackability threshold). Thirteen patients with acute or early subacute ischemic stroke causing motor deficits were enrolled in this study. We performed 3D-DTT of the CST with diffusion tensor MR (magnetic resonance) imaging. We segmented the CST and established a cross-section of the CST in a transaxial plane as a region of interest. Thus, we selectively measured the FA values of the right and left corticospinal tracts at the level of the cerebral peduncle, the posterior limb of the internal capsule, and the centrum semiovale. The FA values of the CST were also measured on the affected side at the level where the clinically relevant infarction was present in isotropic diffusion-weighted imaging. 3D-DTT allowed us to selectively measure the FA values of the CST. Among the 267 regions of interest we measured, the minimum FA value was 0.22. The FA values of the CST were smaller and more variable in the centrum semiovale than in the other regions. The mean minus twice the standard deviation of the FA values of the CST in the centrum semiovale was calculated at 0.22 on the normal unaffected side and 0.16 on the affected side. An FA value of about 0.20 was found to be the optimal trackability threshold. (author)

  6. Testing the connections within face processing circuitry in Capgras delusion with diffusion imaging tractography

    Directory of Open Access Journals (Sweden)

    Maria A. Bobes

    2016-01-01

    Full Text Available Although Capgras delusion (CD patients are capable of recognizing familiar faces, they present a delusional belief that some relatives have been replaced by impostors. CD has been explained as a selective disruption of a pathway processing affective values of familiar faces. To test the integrity of connections within face processing circuitry, diffusion tensor imaging was performed in a CD patient and 10 age-matched controls. Voxel-based morphometry indicated gray matter damage in right frontal areas. Tractography was used to examine two important tracts of the face processing circuitry: the inferior fronto-occipital fasciculus (IFOF and the inferior longitudinal (ILF. The superior longitudinal fasciculus (SLF and commissural tracts were also assessed. CD patient did not differ from controls in the commissural fibers, or the SLF. Right and left ILF, and right IFOF were also equivalent to those of controls. However, the left IFOF was significantly reduced respect to controls, also showing a significant dissociation with the ILF, which represents a selective impairment in the fiber-tract connecting occipital and frontal areas. This suggests a possible involvement of the IFOF in affective processing of faces in typical observers and in covert recognition in some cases with prosopagnosia.

  7. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    Directory of Open Access Journals (Sweden)

    Ni Shu

    2015-01-01

    Full Text Available The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain.

  8. Diffusion Tensor Imaging Tractography in Pure Neuritic Leprosy: First Experience Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Michele R. Colonna

    2016-01-01

    Full Text Available Five years after both right ulnar and median nerve decompression for paraesthesias and palsy, a patient, coming from Nigeria but living in Italy, came to our unit claiming to have persistent pain and combined median and ulnar palsy. Under suspicion of leprosy, skin and left sural nerve biopsy were performed. Skin tests were negative, but Schwann cells resulted as positive for acid-fast bacilli (AFB, leading to the diagnosis of Pure Neuritic Leprosy (PNL. The patient was given PB multidrug therapy and recovered from pain in two months. After nine months both High Resolution Ultrasonography (HRUS and Magnetic Resonance Imaging (MRI were performed, revealing thickening of the nerves. Since demyelination is common in PNL, the Authors started to use Diffusion Tensor Imaging Tractography (DTIT to get better morphological and functional data about myelination than does the traditional imaging. DTIT proved successful in showing myelin discontinuity, reorganization, and myelination, and the Authors suggest that it can give more information about the evolution of the disease, as well as further indications for surgery (nerve decompression, nerve transfers, and babysitting for distal effector protection, and should be added to traditional imaging tools in leprosy.

  9. Limb apraxia in a patient with cerebral infarct: diffusion tensor tractography study.

    Science.gov (United States)

    Hong, Ji Heon; Lee, Jun; Cho, Yoon Woo; Byun, Woo Mok; Cho, Hee Kyung; Son, Su Min; Jang, Sung Ho

    2012-01-01

    We report on a patient with ideomotor apraxia (IMA) and limb-kinetic apraxia (LKA) following cerebral infarct, which demonstrated neural tract injuries by diffusion tensor tractography (DTT). A 67-year-old male was diagnosed as cerebral infarct in the left frontal cortex (anterior portion of the precentral gyrus and prefrontal cortex) and centrum semiovale. The patient presented with severe paralysis of the right upper extremity and mild weakness of the right lower extremity at onset. At the time of DTT scanning (5 months after onset), the patient was able to move all joint muscles of the right upper extremity against gravity, except for the finger extensors, which he could extend partially against gravity. The patient showed intact ideational plan for motor performance; however, his movements were slow, clumsy, and mutilated when executing grasp-release movements of his affected hand. The patient's score on the ideomotor apraxia test was 20 (cut-off score < 32). DTTs for premotor cortex fibers, supplementary motor area fibers, and superior longitudinal fasciculus of the left hemisphere showed partial injuries, compared with those of the right side, and these injuries appeared to be responsible for IMA and LKA in this patient.

  10. Utility of diffusion tensor imaging tractography in decision making for extratemporal resective epilepsy surgery.

    Science.gov (United States)

    Radhakrishnan, Ashalatha; James, Jija S; Kesavadas, Chandrasekharan; Thomas, Bejoy; Bahuleyan, Biji; Abraham, Mathew; Radhakrishnan, Kurupath

    2011-11-01

    To assess the utility of diffusion tensor imaging tractography (DTIT) in decision making in patients considered for extratemporal resective epilepsy surgery. We subjected 49 patients with drug-resistant focal seizures due to lesions located in frontal, parietal and occipital lobes to DTIT to map the white matter fiber anatomy in relation to the planned resection zone, in addition to routine presurgical evaluation. We stratified our patients preoperatively into different grades of risk for anticipated neurological deficits as judged by the distance of the white matter tracts from the resection zones and functional cortical areas. Thirty-seven patients underwent surgery; surgery was abandoned in 12 (24.5%) patients because of the high risk of postoperative neurological deficit. DTIT helped us to modify the surgical procedures in one-fourth of occipital, one-third of frontal, and two-thirds of parietal and multilobar resections. Overall, DTIT assisted us in surgical decision making in two-thirds of our patients. DTIT is a noninvasive imaging strategy that can be used effectively in planning resection of epileptogenic lesions at or close to eloquent cortical areas. DTIT helps in predicting postoperative neurological outcome and thereby assists in surgical decision making and in preoperative counseling of patients with extratemporal focal epilepsies. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Altered brain structural connectivity in post-traumatic stress disorder: a diffusion tensor imaging tractography study.

    Science.gov (United States)

    Long, Zhiliang; Duan, Xujun; Xie, Bing; Du, Handan; Li, Rong; Xu, Qiang; Wei, Luqing; Zhang, Shao-xiang; Wu, Yi; Gao, Qing; Chen, Huafu

    2013-09-25

    Post-traumatic stress disorder (PTSD) is characterized by dysfunction of several discrete brain regions such as medial prefrontal gyrus with hypoactivation and amygdala with hyperactivation. However, alterations of large-scale whole brain topological organization of structural networks remain unclear. Seventeen patients with PTSD in motor vehicle accident survivors and 15 normal controls were enrolled in our study. Large-scale structural connectivity network (SCN) was constructed using diffusion tensor tractography, followed by thresholding the mean factional anisotropy matrix of 90 brain regions. Graph theory analysis was then employed to investigate their aberrant topological properties. Both patient and control group showed small-world topology in their SCNs. However, patients with PTSD exhibited abnormal global properties characterized by significantly decreased characteristic shortest path length and normalized characteristic shortest path length. Furthermore, the patient group showed enhanced nodal centralities predominately in salience network including bilateral anterior cingulate and pallidum, and hippocampus/parahippocamus gyrus, and decreased nodal centralities mainly in medial orbital part of superior frontal gyrus. The main limitation of this study is the small sample of PTSD patients, which may lead to decrease the statistic power. Consequently, this study should be considered an exploratory analysis. These results are consistent with the notion that PTSD can be understood by investigating the dysfunction of large-scale, spatially distributed neural networks, and also provide structural evidences for further exploration of neurocircuitry models in PTSD. © 2013 Elsevier B.V. All rights reserved.

  12. Prediction of motor outcomes and activities of daily living function using diffusion tensor tractography in acute hemiparetic stroke patients.

    Science.gov (United States)

    Imura, Takeshi; Nagasawa, Yuki; Inagawa, Tetsuji; Imada, Naoki; Izumi, Hiroaki; Emoto, Katsuya; Tani, Itaru; Yamasaki, Hiroyuki; Ota, Yuichiro; Oki, Shuichi; Maeda, Tadanori; Araki, Osamu

    2015-05-01

    [Purpose] The efficacy of diffusion tensor imaging in the prediction of motor outcomes and activities of daily living function remains unclear. We evaluated the most appropriate diffusion tensor parameters and methodology to determine whether the region of interest- or tractography-based method was more useful for predicting motor outcomes and activities of daily living function in stroke patients. [Subjects and Methods] Diffusion tensor imaging data within 10 days after stroke onset were collected and analyzed for 25 patients. The corticospinal tract was analyzed. Fractional anisotropy, number of fibers, and apparent diffusion coefficient were used as diffusion tensor parameters. Motor outcomes and activities of daily living function were evaluated on the same day as diffusion tensor imaging and at 1 month post-onset. [Results] The fractional anisotropy value of the affected corticospinal tract significantly correlated with the motor outcome and activities of daily living function within 10 days post-onset and at 1 month post-onset. Tthere were no significant correlations between other diffusion tensor parameters and motor outcomes or activities of daily living function. [Conclusion] The fractional anisotropy value of the affected corticospinal tract obtained using the tractography-based method was useful for predicting motor outcomes and activities of daily living function in stroke patients.

  13. Three-dimensional white matter tractography by diffusion tensor imaging in ischaemic stroke involving the corticospinal tract

    International Nuclear Information System (INIS)

    Kunimatsu, A.; Aoki, S.; Masutani, Y.; Abe, O.; Mori, H.; Ohtomo, K.

    2003-01-01

    Diffusion tensor MR imaging (DTI) provides information on diffusion anisotropy, which can be expressed with three-dimensional (3D) white matter tractography. We used 3D white matter tractography to show the corticospinal tract in eight patients with acute or early subacute ischaemic stroke involving the posterior limb of the internal capsule or corona radiata and to assess involvement of the tract. Infarcts and the tract were shown simultaneously, providing information on their spatial relationships. In five of the eight patients, 3D fibre tract maps showed the corticospinal tract in close proximity to the infarct but not to pass through it. All these patients recovered well, with maximum improvement from the lowest score on manual muscle testing (MMT) up to the full score through rehabilitation. In the other three patients the corticospinal tract was shown running through the infarct; reduction in MMT did not necessarily improve favourably or last longer, other than in one patient. As 3D white matter tractography can show spatial relationships between the corticospinal tract and an infarct, it might be helpful in prognosis of gross motor function. (orig.)

  14. Three-dimensional white matter tractography by diffusion tensor imaging in ischaemic stroke involving the corticospinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Kunimatsu, A.; Aoki, S.; Masutani, Y.; Abe, O.; Mori, H.; Ohtomo, K. [Department of Radiology, Graduate School of Medicine, Tokyo University, 7-3-1 Hongo, Bunkyo-ku, 113-8655, Tokyo (Japan)

    2003-08-01

    Diffusion tensor MR imaging (DTI) provides information on diffusion anisotropy, which can be expressed with three-dimensional (3D) white matter tractography. We used 3D white matter tractography to show the corticospinal tract in eight patients with acute or early subacute ischaemic stroke involving the posterior limb of the internal capsule or corona radiata and to assess involvement of the tract. Infarcts and the tract were shown simultaneously, providing information on their spatial relationships. In five of the eight patients, 3D fibre tract maps showed the corticospinal tract in close proximity to the infarct but not to pass through it. All these patients recovered well, with maximum improvement from the lowest score on manual muscle testing (MMT) up to the full score through rehabilitation. In the other three patients the corticospinal tract was shown running through the infarct; reduction in MMT did not necessarily improve favourably or last longer, other than in one patient. As 3D white matter tractography can show spatial relationships between the corticospinal tract and an infarct, it might be helpful in prognosis of gross motor function. (orig.)

  15. Diffusion tensor tractography of the arcuate fasciculus in patients with brain tumors: Comparison between deterministic and probabilistic models.

    Science.gov (United States)

    Li, Zhixi; Peck, Kyung K; Brennan, Nicole P; Jenabi, Mehrnaz; Hsu, Meier; Zhang, Zhigang; Holodny, Andrei I; Young, Robert J

    2013-02-01

    The purpose of this study was to compare the deterministic and probabilistic tracking methods of diffusion tensor white matter fiber tractography in patients with brain tumors. We identified 29 patients with left brain tumors probabilistic method based on an extended Monte Carlo Random Walk algorithm. Tracking was controlled using two ROIs corresponding to Broca's and Wernicke's areas. Tracts in tumoraffected hemispheres were examined for extension between Broca's and Wernicke's areas, anterior-posterior length and volume, and compared with the normal contralateral tracts. Probabilistic tracts displayed more complete anterior extension to Broca's area than did FACT tracts on the tumor-affected and normal sides (p probabilistic tracts than FACT tracts (p probabilistic tracts than FACT tracts (p = 0.01). Probabilistic tractography reconstructs the arcuate fasciculus more completely and performs better through areas of tumor and/or edema. The FACT algorithm tends to underestimate the anterior-most fibers of the arcuate fasciculus, which are crossed by primary motor fibers.

  16. Somatotopic location of corticospinal tract at pons in human brain: a diffusion tensor tractography study.

    Science.gov (United States)

    Hong, Ji Heon; Son, Su Min; Jang, Sung Ho

    2010-07-01

    No diffusion tensor tractography (DTT) study has yet investigated the somatotopic location of the corticospinal tract (CST) at the pons. In the current study, we used DTT to investigate the somatotopic location of the CST at the pons in the human brain. We recruited 25 healthy volunteers for this study. Diffusion tensor images (DTIs) were scanned using 1.5-T; CSTs for the hand and leg were obtained using FMRIB software. Normalized DTT was reconstructed using the Montreal Neurological Institute echo-planar imaging template supplied with the SPM. Individual DTI data were calculated as a pixel unit at the upper and lower pons. Relative average location of the highest probability point of the CST for the hand was 47.70%, with the standard from the midline to the most lateral point of the upper pons, and 35.87% at the lower pons. For the leg, the CST was located at 56.82% at the upper pons and 40.63% at the lower pons. For the anteroposterior direction from the most anterior point of the pons to the most anterior point of the fourth ventricle, the CST for the hand was located at 42.30% at the upper pons and 36.18% at the lower pons. For the leg, the CST was located at 45.68% and 39.01%, respectively. We found that the hand somatotopy of the CST was located at the antero-medial portion at the pons and that the leg somatotopy of the CST was located postero-laterally to the hand somatotopy of the CST. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Correlation between pennation angle and image quality of skeletal muscle fibre tractography using deterministic diffusion tensor imaging.

    Science.gov (United States)

    Okamoto, Yoshikazu; Okamoto, Toru; Yuka, Kujiraoka; Hirano, Yuji; Isobe, Tomonori; Minami, Manabu

    2012-12-01

    The aim of this study was to ascertain whether a correlation existed between muscle pennation angle and the ability to successfully perform tractography of the lower leg muscle fibres with deterministic diffusion tensor imaging (DTI) in normal volunteers. Fourteen volunteers aged 20-39 (mean 28.2 years old) were recruited. All volunteers were scanned using DTI, and six fibre tractographs were constructed from one lower leg of each volunteer, and the 'fibre density' was calculated in each of the tractographs. The pennation angle is the angle formed by the muscle fibre and the aponeurosis. The average pennation angle (AVPA) and standard deviation of the pennation angle (SDPA) were also measured for each muscle by ultrasonography in the same region as the MRI scan. For all 84 tractography images, the correlation coefficient between the fibre density and AVPA or SDPA was calculated. Fibre density and AVPA showed a moderate negative correlation (R = -0.72), and fibre density and SDPA showed a weak negative correlation (R = -0.47). With respect to comparisons within each muscle, AVPA and fibre density showed a moderate negative correlation in the gastrocnemius lateralis muscle (R = -0.57). Our data suggest that a larger, more variable pennation angle resulted in worse skeletal muscle tractography using deterministic DTI. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  18. Tractography of the brainstem in major depressive disorder using diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Yun Ju C Song

    Full Text Available BACKGROUND: The brainstem is the main region that innervates neurotransmitter release to the Hypothalamic-Pituitary Adrenal (HPA axis and fronto-limbic circuits, two key brain circuits found to be dysfunctional in Major Depressive Disorder (MDD. However, the brainstem's role in MDD has only been evaluated in limited reports. Using Diffusion Tensor Imaging (DTI, we investigated whether major brainstem white matter tracts that relate to these two circuits differ in MDD patients compared to healthy controls. METHODS: MDD patients (n = 95 and age- and gender-matched controls (n = 34 were assessed using probabilistic tractography of DTI to delineate three distinct brainstem tracts: the nigrostriatal tract (connecting brainstem to striatum, solitary tract (connecting brainstem to amygdala and corticospinal tract (connecting brainstem to precentral cortex. Fractional anisotropy (FA was used to measure the white matter integrity of these tracts, and measures were compared between MDD and control participants. RESULTS: MDD participants were characterized by a significant and specific decrease in white matter integrity of the right solitary tract (p<0.009 using independent t-test, which is a "bottom up" afferent pathway that connects the brainstem to the amygdala. This decrease was not related to symptom severity. CONCLUSIONS: The results provide new evidence to suggest that structural connectivity between the brainstem and the amygdala is altered in MDD. These results are interesting in light of predominant theories regarding amygdala-mediated emotional reactivity observed in functional imaging studies of MDD. The characterization of altered white matter integrity in the solitary tract in MDD supports the possibility of dysfunctional brainstem-amygdala connectivity impacting vulnerable circuits in MDD.

  19. Periventricular Nodular Heterotopia: Detection of Abnormal Microanatomic Fiber Structures with Whole-Brain Diffusion MR Imaging Tractography.

    Science.gov (United States)

    Farquharson, Shawna; Tournier, J-Donald; Calamante, Fernando; Mandelstam, Simone; Burgess, Rosemary; Schneider, Michal E; Berkovic, Samuel F; Scheffer, Ingrid E; Jackson, Graeme D; Connelly, Alan

    2016-12-01

    Purpose To investigate whether it is possible in patients with periventricular nodular heterotopia (PVNH) to detect abnormal fiber projections that have only previously been reported in the histopathology literature. Materials and Methods Whole-brain diffusion-weighted (DW) imaging data from 14 patients with bilateral PVNH and 14 age- and sex-matched healthy control subjects were prospectively acquired by using 3.0-T magnetic resonance (MR) imaging between August 1, 2008, and December 5, 2012. All participants provided written informed consent. The DW imaging data were processed to generate whole-brain constrained spherical deconvolution (CSD)-based tractography data and super-resolution track-density imaging (TDI) maps. The tractography data were overlaid on coregistered three-dimensional T1-weighted images to visually assess regions of heterotopia. A panel of MR imaging researchers independently assessed each case and indicated numerically (no = 1, yes = 2) as to the presence of abnormal fiber tracks in nodular tissue. The Fleiss κ statistical measure was applied to assess the reader agreement. Results Abnormal fiber tracks emanating from one or more regions of heterotopia were reported by all four readers in all 14 patients with PVNH (Fleiss κ = 1). These abnormal structures were not visible on the tractography data from any of the control subjects and were not discernable on the conventional T1-weighted images of the patients with PVNH. Conclusion Whole-brain CSD-based fiber tractography and super-resolution TDI mapping reveals abnormal fiber projections in nodular tissue suggestive of abnormal organization of white matter (with abnormal fibers both within nodules and projecting to the surrounding white matter) in patients with bilateral PVNH. © RSNA, 2016.

  20. Comparing a diffusion tensor and non-tensor approach to white matter fiber tractography in chronic stroke.

    Science.gov (United States)

    Auriat, A M; Borich, M R; Snow, N J; Wadden, K P; Boyd, L A

    2015-01-01

    Diffusion tensor imaging (DTI)-based tractography has been used to demonstrate functionally relevant differences in white matter pathway status after stroke. However, it is now known that the tensor model is insensitive to the complex fiber architectures found in the vast majority of voxels in the human brain. The inability to resolve intra-voxel fiber orientations may have important implications for the utility of standard DTI-based tract reconstruction methods. Intra-voxel fiber orientations can now be identified using novel, tensor-free approaches. Constrained spherical deconvolution (CSD) is one approach to characterize intra-voxel diffusion behavior. In the current study, we performed DTI- and CSD-based tract reconstruction of the corticospinal tract (CST) and corpus callosum (CC) to test the hypothesis that characterization of complex fiber orientations may improve the robustness of fiber tract reconstruction and increase the sensitivity to identify functionally relevant white matter abnormalities in individuals with chronic stroke. Diffusion weighted magnetic resonance imaging was performed in 27 chronic post-stroke participants and 12 healthy controls. Transcallosal pathways and the CST bilaterally were reconstructed using DTI- and CSD-based tractography. Mean fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial diffusivity (AD), and radial diffusivity (RD) were calculated across the tracts of interest. The total number and volume of reconstructed tracts was also determined. Diffusion measures were compared between groups (Stroke, Control) and methods (CSD, DTI). The relationship between post-stroke motor behavior and diffusion measures was evaluated. Overall, CSD methods identified more tracts than the DTI-based approach for both CC and CST pathways. Mean FA, ADC, and RD differed between DTI and CSD for CC-mediated tracts. In these tracts, we discovered a difference in FA for the CC between stroke and healthy control groups using CSD but

  1. Comparing a diffusion tensor and non-tensor approach to white matter fiber tractography in chronic stroke

    Directory of Open Access Journals (Sweden)

    A.M. Auriat

    2015-01-01

    Full Text Available Diffusion tensor imaging (DTI-based tractography has been used to demonstrate functionally relevant differences in white matter pathway status after stroke. However, it is now known that the tensor model is insensitive to the complex fiber architectures found in the vast majority of voxels in the human brain. The inability to resolve intra-voxel fiber orientations may have important implications for the utility of standard DTI-based tract reconstruction methods. Intra-voxel fiber orientations can now be identified using novel, tensor-free approaches. Constrained spherical deconvolution (CSD is one approach to characterize intra-voxel diffusion behavior. In the current study, we performed DTI- and CSD-based tract reconstruction of the corticospinal tract (CST and corpus callosum (CC to test the hypothesis that characterization of complex fiber orientations may improve the robustness of fiber tract reconstruction and increase the sensitivity to identify functionally relevant white matter abnormalities in individuals with chronic stroke. Diffusion weighted magnetic resonance imaging was performed in 27 chronic post-stroke participants and 12 healthy controls. Transcallosal pathways and the CST bilaterally were reconstructed using DTI- and CSD-based tractography. Mean fractional anisotropy (FA, apparent diffusion coefficient (ADC, axial diffusivity (AD, and radial diffusivity (RD were calculated across the tracts of interest. The total number and volume of reconstructed tracts was also determined. Diffusion measures were compared between groups (Stroke, Control and methods (CSD, DTI. The relationship between post-stroke motor behavior and diffusion measures was evaluated. Overall, CSD methods identified more tracts than the DTI-based approach for both CC and CST pathways. Mean FA, ADC, and RD differed between DTI and CSD for CC-mediated tracts. In these tracts, we discovered a difference in FA for the CC between stroke and healthy control groups

  2. New insights into the developing rabbit brain using diffusion tensor tractography and generalized q-sampling MRI.

    Directory of Open Access Journals (Sweden)

    Seong Yong Lim

    Full Text Available The use of modern neuroimaging methods to characterize the complex anatomy of brain development at different stages reveals an enormous wealth of information in understanding this highly ordered process and provides clues to detect neurological and neurobehavioral disorders that have their origin in early structural and functional cerebral maturation. Non-invasive diffusion tensor magnetic resonance imaging (DTI is able to distinguish cerebral microscopic structures, especially in the white matter regions. However, DTI is unable to resolve the complicated neural structure, i.e., the fiber crossing that is frequently observed during the maturation process. To overcome this limitation, several methods have been proposed. One such method, generalized q-sampling imaging (GQI, can be applied to a variety of datasets, including the single shell, multi-shell or grid sampling schemes that are believed to be able to resolve the complicated crossing fibers. Rabbits have been widely used for neurodevelopment research because they exhibit human-like timing of perinatal brain white matter maturation. Here, we present a longitudinal study using both DTI and GQI to demonstrate the changes in cerebral maturation of in vivo developing rabbit brains over a period of 40 weeks. Fractional anisotropy (FA of DTI and generalized fractional anisotropy (GFA of GQI indices demonstrated that the white matter anisotropy increased with age, with GFA exhibiting an increase in the hippocampus as well. Normalized quantitative anisotropy (NQA of GQI also revealed an increase in the hippocampus, allowing us to observe the changes in gray matter as well. Regional and whole brain DTI tractography also demonstrated refinement in fiber pathway architecture with maturation. We concluded that DTI and GQI results were able to characterize the white matter anisotropy changes, whereas GQI provided further information about the gray matter hippocampus area. This developing rabbit brain

  3. [Assessment of motor and sensory pathways of the brain using diffusion-tensor tractography in children with cerebral palsy].

    Science.gov (United States)

    Memedyarov, A M; Namazova-Baranova, L S; Ermolina, Y V; Anikin, A V; Maslova, O I; Karkashadze, M Z; Klochkova, O A

    2014-01-01

    Diffusion tensor tractography--a new method of magnetic resonance imaging, that allows to visualize the pathways of the brain and to study their structural-functional state. The authors investigated the changes in motor and sensory pathways of brain in children with cerebral palsy using routine magnetic resonance imaging and diffusion-tensor tractography. The main group consisted of 26 patients with various forms of cerebral palsy and the comparison group was 25 people with normal psychomotor development (aged 2 to 6 years) and MR-picture of the brain. Magnetic resonance imaging was performed on the scanner with the induction of a magnetic field of 1,5 Tesla. Coefficients of fractional anisotropy and average diffusion coefficient estimated in regions of the brain containing the motor and sensory pathways: precentral gyrus, posterior limb of the internal capsule, thalamus, posterior thalamic radiation and corpus callosum. Statistically significant differences (p cerebral palsy in relation to the comparison group. All investigated regions, the coefficients of fractional anisotropy in children with cerebral palsy were significantly lower, and the average diffusion coefficient, respectively, higher. These changes indicate a lower degree of ordering of the white matter tracts associated with damage and subsequent development of gliosis of varying severity in children with cerebral palsy. It is shown that microstructural damage localized in both motor and sensory tracts that plays a leading role in the development of the clinical picture of cerebral palsy.

  4. Diffusion tensor tractography of the mammillothalamic tract in the human brain using a high spatial resolution DTI technique.

    Science.gov (United States)

    Kamali, Arash; Zhang, Caroline C; Riascos, Roy F; Tandon, Nitin; Bonafante-Mejia, Eliana E; Patel, Rajan; Lincoln, John A; Rabiei, Pejman; Ocasio, Laura; Younes, Kyan; Hasan, Khader M

    2018-03-27

    The mammillary bodies as part of the hypothalamic nuclei are in the central limbic circuitry of the human brain. The mammillary bodies are shown to be directly or indirectly connected to the amygdala, hippocampus, and thalami as the major gray matter structures of the human limbic system. Although it is not primarily considered as part of the human limbic system, the thalamus is shown to be involved in many limbic functions of the human brain. The major direct connection of the thalami with the hypothalamic nuclei is known to be through the mammillothalamic tract. Given the crucial role of the mammillothalamic tracts in memory functions, diffusion tensor imaging may be helpful in better visualizing the surgical anatomy of this pathway noninvasively. This study aimed to investigate the utility of high spatial resolution diffusion tensor tractography for mapping the trajectory of the mammillothalamic tract in the human brain. Fifteen healthy adults were studied after obtaining written informed consent. We used high spatial resolution diffusion tensor imaging data at 3.0 T. We delineated, for the first time, the detailed trajectory of the mammillothalamic tract of the human brain using deterministic diffusion tensor tractography.

  5. Longitudinal study on diffusion tensor imaging and diffusion tensor tractography following spinal cord contusion injury in rats.

    Science.gov (United States)

    Zhao, Can; Rao, Jia-Sheng; Pei, Xiao-Jiao; Lei, Jian-Feng; Wang, Zhan-Jing; Yang, Zhao-Yang; Li, Xiao-Guang

    2016-06-01

    Diffusion tensor imaging (DTI) as a potential technology has been used in spinal cord injury (SCI) studies, but the longitudinal evaluation of DTI parameters after SCI, and the correlation between DTI parameters and locomotor outcomes need to be defined. Adult Wistar rats (n = 6) underwent traumatic thoracic cord contusion by an NYU impactor. DTI and Basso-Beattie-Bresnahan datasets were collected pre-SCI and 1, 3, 7, 14, and 84 days post-SCI. Diffusion tensor tractography (DTT) of the spinal cord was also generated. Fractional anisotropy (FA) and connection rate of fibers at the injury epicenter and at 5 mm rostral/caudal to the epicenter were calculated. The variations of these parameters after SCI were observed by one-way analysis of variance and the correlations between these parameters and motor function were explored by Pearson's correlation. FA at the epicenter decreased most remarkably on day 1 post-SCI (from 0.780 ± 0.012 to 0.330 ± 0.015), and continued to decrease slightly by day 3 post-SCI (0.313 ± 0.015), while other parameters decreased significantly over the first 3 days after SCI. DTT showed residual fibers concentrated on ventral and ventrolateral sides of the cord. Moreover, FA at the epicenter exhibited the strongest correlation (r = 0.887, p = 0.000) with the locomotion performance. FA was sensitive to degeneration in white matter and DTT could directly reflect the distribution of the residual white matter. Moreover, days 1 to 3 post-SCI may be the optimal time window for SCI examination and therapy.

  6. Diffusion tractography imaging-guided frameless linear accelerator stereotactic radiosurgical thalamotomy for tremor: case report.

    Science.gov (United States)

    Kim, Won; Sharim, Justin; Tenn, Stephen; Kaprealian, Tania; Bordelon, Yvette; Agazaryan, Nzhde; Pouratian, Nader

    2018-01-01

    Essential tremor and Parkinson's disease-associated tremor are extremely prevalent within the field of movement disorders. The ventral intermediate (VIM) nucleus of the thalamus has been commonly used as both a neuromodulatory and neuroablative target for the treatment of these forms of tremor. With both deep brain stimulation and Gamma Knife radiosurgery, there is an abundance of literature regarding the surgical planning, targeting, and outcomes of these methodologies. To date, there have been no reports of frameless, linear accelerator (LINAC)-based thalomotomies for tremor. The authors report the case of a patient with tremor-dominant Parkinson's disease, with poor tremor improvement with medication, who was offered LINAC-based thalamotomy. High-resolution 0.9-mm isotropic MR images were obtained, and simulation was performed via CT with 1.5-mm contiguous slices. The VIM thalamic nucleus was determined using diffusion tensor imaging (DTI)-based segmentation on FSL using probabilistic tractography. The supplemental motor and premotor areas were the cortical target masks. The authors centered their isocenter within the region of the DTI-determined target and treated the patient with 140 Gy in a single fraction. The DTI-determined target had coordinates of 14.2 mm lateral and 8.36 mm anterior to the posterior commissure (PC), and 3 mm superior to the anterior commissure (AC)-PC line, which differed by 3.30 mm from the original target determined by anatomical considerations (15.5 mm lateral and 7 mm anterior to the PC, and 0 mm superior to the AC-PC line). There was faint radiographic evidence of lesioning at the 3-month follow-up within the target zone, which continued to consolidate on subsequent scans. The patient experienced continued right upper-extremity resting tremor improvement starting at 10 months until it was completely resolved at 22 months of follow-up. Frameless LINAC-based thalamotomy guided by DTI-based thalamic segmentation is a feasible method

  7. Regional variation of white matter development in the cat brain revealed by ex vivo diffusion MR tractography.

    Science.gov (United States)

    Dai, Guangping; Das, Avilash; Hayashi, Emiko; Chen, Qin; Takahashi, Emi

    2016-11-01

    Three-dimensional reconstruction of developing fiber pathways is essential to assessing the developmental course of fiber pathways in the whole brain. We applied diffusion spectrum imaging (DSI) tractography to five juvenile ex vivo cat brains at postnatal day (P) 35, when the degree of myelination varies across brain regions. We quantified diffusion properties (fractional anisotropy [FA] and apparent diffusion coefficient [ADC]) and other measurements (number, volume, and voxel count) on reconstructed pathways for projection (cortico-spinal and thalamo-cortical), corpus callosal, limbic (cingulum and fornix), and association (cortico-cortical) pathways, and characterized regional differences in maturation patterns by assessing diffusion properties. FA values were significantly higher in cortico-cortical pathways within the right hemisphere compared to those within the left hemisphere, while the other measurements for the cortico-cortical pathways within the hemisphere did not show asymmetry. ADC values were not asymmetric in both types of pathways. Interestingly, tract count and volume were significantly larger in the left thalamo-cortical pathways compared to the right thalamo-cortical pathways. The bilateral thalamo-cortical pathways showed high FA values compared to the other fiber pathways. On the other hand, ADC values did not show any differences across pathways studied. These results demonstrate that DSI tractography successfully depicted regional variations of white matter tracts during development when myelination is incomplete. Low FA and high ADC values in the cingulum bundle suggest that the cingulum bundle is less mature than the others at this developmental stage. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  8. Abnormal brain connectivity in first-episode psychosis: A diffusion MRI tractography study of the corpus callosum

    Science.gov (United States)

    Price, Gary; Cercignani, Mara; Parker, Geoffrey J.M.; Altmann, Daniel R.; Barnes, Thomas R.E.; Barker, Gareth J.; Joyce, Eileen M.; Ron, Maria A.

    2007-01-01

    A model of disconnectivity involving abnormalities in the cortex and connecting white matter pathways may explain the clinical manifestations of schizophrenia. Recently, diffusion imaging tractography has made it possible to study white matter pathways in detail and we present here a study of patients with first-episode psychosis using this technique. We selected the corpus callosum for this study because there is evidence that it is abnormal in schizophrenia. In addition, the topographical organization of its fibers makes it possible to relate focal abnormalities to specific cortical regions. Eighteen patients with first-episode psychosis and 21 healthy subjects took part in the study. A probabilistic tractography algorithm (PICo) was used to study fractional anisotropy (FA). Seed regions were placed in the genu and splenium to track fiber tracts traversing these regions, and a multi-threshold approach to study the probability of connection was used. Multiple linear regressions were used to explore group differences. FA, a measure of tract coherence, was reduced in tracts crossing the genu, and to a lesser degree the splenium, in patients compared with controls. FA was also lower in the genu in females across both groups, but there was no gender-by-group interaction. The FA reduction in patients may be due to aberrant myelination or axonal abnormalities, but the similar tract volumes in the two groups suggest that severe axonal loss is unlikely at this stage of the illness. PMID:17275337

  9. The Value of Neurosurgical and Intraoperative Magnetic Resonance Imaging and Diffusion Tensor Imaging Tractography in Clinically Integrated Neuroanatomy Modules: A Cross-Sectional Study

    Science.gov (United States)

    Familiari, Giuseppe; Relucenti, Michela; Heyn, Rosemarie; Baldini, Rossella; D'Andrea, Giancarlo; Familiari, Pietro; Bozzao, Alessandro; Raco, Antonino

    2013-01-01

    Neuroanatomy is considered to be one of the most difficult anatomical subjects for students. To provide motivation and improve learning outcomes in this area, clinical cases and neurosurgical images from diffusion tensor imaging (DTI) tractographies produced using an intraoperative magnetic resonance imaging apparatus (MRI/DTI) were presented and…

  10. Evaluation of diffusion-tensor imaging-based global search and tractography for tumor surgery close to the language system.

    Directory of Open Access Journals (Sweden)

    Mirco Richter

    Full Text Available Pre-operative planning and intra-operative guidance in neurosurgery require detailed information about the location of functional areas and their anatomo-functional connectivity. In particular, regarding the language system, post-operative deficits such as aphasia can be avoided. By combining functional magnetic resonance imaging and diffusion tensor imaging, the connectivity between functional areas can be reconstructed by tractography techniques that need to cope with limitations such as limited resolution and low anisotropic diffusion close to functional areas. Tumors pose particular challenges because of edema, displacement effects on brain tissue and infiltration of white matter. Under these conditions, standard fiber tracking methods reconstruct pathways of insufficient quality. Therefore, robust global or probabilistic approaches are required. In this study, two commonly used standard fiber tracking algorithms, streamline propagation and tensor deflection, were compared with a previously published global search, Gibbs tracking and a connection-oriented probabilistic tractography approach. All methods were applied to reconstruct neuronal pathways of the language system of patients undergoing brain tumor surgery, and control subjects. Connections between Broca and Wernicke areas via the arcuate fasciculus (AF and the inferior fronto-occipital fasciculus (IFOF were validated by a clinical expert to ensure anatomical feasibility, and compared using distance- and diffusion-based similarity metrics to evaluate their agreement on pathway locations. For both patients and controls, a strong agreement between all methods was observed regarding the location of the AF. In case of the IFOF however, standard fiber tracking and Gibbs tracking predominantly identified the inferior longitudinal fasciculus that plays a secondary role in semantic language processing. In contrast, global search resolved connections in almost every case via the IFOF which

  11. MARCHIAFAVA-BIGNAMI DISEASE (MBD AND DIFFUSION TENSOR IMAGE (DTI TRACTOGRAPHY

    Directory of Open Access Journals (Sweden)

    Priscilla Chukwueke

    2015-06-01

    Full Text Available Marchiafava-Bignami Disease (MBD is a rare central nervous system (CNS disease characterized by demyelination of the corpus callosum. It is mostly found in men with alcohol use disorder and malnutrition with cases reported worldwide across all races. The onset of the disease may be sudden presenting with stupor, coma or seizures while some may present with gait abnormality (spasticity, psychiatric problems, hemiparesis, aphasia, apraxia and incontinence with a resultant high morbidity and mortality rates. Case description: patient is a 30 year old left handed African-American, who presented with c/o altered mental status, urinary incontinence, slurred speech and left-sided weakness. The diagnosis of MBD was confirmed with DTI Tractography which showed significantly diminished commissural fibers extending to the right central semiovale lesion, near absent or significantly diminished commissural fiber extending through the corpus callosum indicating demyelination. Discussion: MBD is often an incidental diagnosis with high morbidity and mortality. This is different from previous casas because of earlier onset as opposed to onset around age 45, rapid recovery and minimal disability as he could walk independently before discharge from hospital. This case also shows added benefit of the DTI tractography in the diagnosis of MBD.

  12. Diffusion tensor tractography of normal and compressed spinal cord: a preliminary study at 3.0 T MR

    International Nuclear Information System (INIS)

    Wang Wei; Chang Shixin; Hao Nanxin; Du Yushan; Wang Yibin; Zong Genlin; Cao Kaiming; Lu Jianping; Zhao Cheng; Qin Wen

    2007-01-01

    Objective: To study the feasibility and clinical values of diffusion tensor tractography (DTT) in the spinal cord at 3.0 T MR. Methods: Forty patients with spinal cord compression including cervical cord herniation and cervical spondylosis (30 cases), tumors in spinal canal (9 cases) and old injury in cervical vertebrae (1 cases) and 20 healthy volunteers participated in this study. Single-shot spin- echo echo-planar diffusion tensor sequence for tractography of the spinal cord was performed. The fibers of spinal cord were visualized by using fiber tracking software. Results: On the DTT maps, the normal spinal cord was depicted as a fiber tract showing color-encoded cephalocaudally, which indicated anisotropy in the cephalocaudal direction. By setting two ROI, the main spinal cord fiber tracts, such as corticospinal or spinothalamic tract, were visualized. The tracts from two sides of the brain did not completely cross. It was asymmetric in the number of tracts on the two sides in most normal subjects (8/10). The tracts of all patients with cord compression were seen oppressed or damaged in different degrees. The DTT in patients with cervical spondylosis and extramedullary-intradural neurolemmoma demonstrated that tracts were oppressed but not damaged. The DTT in one ependymoma showed that tract was markedly compressed and slightly damaged. Conclusion: DTT is a promising tool for demonstrating the spinal cord tracts and abnormalities, can provide useful information for the localization of compression and evaluation of the impairment extent on the white matter tracts of the spinal cord. (authors)

  13. Injury of the inferior cerebellar peduncle in patients with mild traumatic brain injury: A diffusion tensor tractography study.

    Science.gov (United States)

    Jang, Sung Ho; Yi, Ji Hyun; Kwon, Hyeok Gyu

    2016-01-01

    No study on injury of the inferior cerebellar peduncle (ICP) in patients with mild traumatic brain injury (mTBI) has been reported. This study, using diffusion tensor tractography (DTT), attempted to demonstrate injury of the ICP in patients with mTBI. Three patients with mTBI resulting from a car accident and 18 normal healthy control subjects were enrolled in this study. Diffusion tensor imaging data were acquired at 2 months (patient 1) and 3 months (patients 2 and 3) after onset and the ICP was reconstructed. The Balance Error Scoring System was used for evaluation of balance at the same time diffusion tensor imaging scanning was performed. The ICPs were discontinued at the upper portion of the vertical cerebellar branch and the transverse cerebellar branch (patient 1) and the proximal portion of the transverse cerebellar branch (patients 2 and 3) compared to the normal control subjects. Regarding DTT parameters, in the three patients, the fibre number of the ICPs was decreased by more than 2 SD compared with those of subjects in the control group. Evaluation of the ICP using DTT would be useful in patients with a balance problem after mTBI.

  14. The Superior Fronto-Occipital Fasciculus in the Human Brain Revealed by Diffusion Spectrum Imaging Tractography: An Anatomical Reality or a Methodological Artifact?

    Science.gov (United States)

    Bao, Yue; Wang, Yong; Wang, Wei; Wang, Yibao

    2017-01-01

    The existence of the superior fronto-occipital fasciculus (SFOF) in the human brain remains controversial. The aim of the present study was to clarify the existence, course, and terminations of the SFOF. High angular diffusion spectrum imaging (DSI) analysis was performed on six healthy adults and on a template of 842 subjects from the Human Connectome Project. To verify tractography results, we performed fiber microdissections of four post-mortem human brains. Based on DSI tractography, we reconstructed the SFOF in the subjects and the template from the Human Connectome Project that originated from the rostral and medial parts of the superior and middle frontal gyri. By tractography, we found that the fibers formed a compact fascicle at the level of the anterior horn of the lateral ventricle coursing above the head of caudate nucleus, medial to the corona radiate and under the corpus callosum (CC), and terminated at the parietal region via the lower part of the caudate nucleus. We consider that this fiber bundle observed by tractography is the SFOF, although it terminates mainly at the parietal region, rather than occipital lobe. By contrast, we were unable to identify a fiber bundle corresponding to the SFOF in our fiber dissection study. Although we did not provide definite evidence of the SFOF in the human brain, these findings may be useful for future studies in this field. PMID:29321729

  15. The Superior Fronto-Occipital Fasciculus in the Human Brain Revealed by Diffusion Spectrum Imaging Tractography: An Anatomical Reality or a Methodological Artifact?

    Directory of Open Access Journals (Sweden)

    Yue Bao

    2017-12-01

    Full Text Available The existence of the superior fronto-occipital fasciculus (SFOF in the human brain remains controversial. The aim of the present study was to clarify the existence, course, and terminations of the SFOF. High angular diffusion spectrum imaging (DSI analysis was performed on six healthy adults and on a template of 842 subjects from the Human Connectome Project. To verify tractography results, we performed fiber microdissections of four post-mortem human brains. Based on DSI tractography, we reconstructed the SFOF in the subjects and the template from the Human Connectome Project that originated from the rostral and medial parts of the superior and middle frontal gyri. By tractography, we found that the fibers formed a compact fascicle at the level of the anterior horn of the lateral ventricle coursing above the head of caudate nucleus, medial to the corona radiate and under the corpus callosum (CC, and terminated at the parietal region via the lower part of the caudate nucleus. We consider that this fiber bundle observed by tractography is the SFOF, although it terminates mainly at the parietal region, rather than occipital lobe. By contrast, we were unable to identify a fiber bundle corresponding to the SFOF in our fiber dissection study. Although we did not provide definite evidence of the SFOF in the human brain, these findings may be useful for future studies in this field.

  16. Diffusion tensor tractography of the brainstem pyramidal tract; A study on the optimal reduction factor in parallel imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yun Jung; Park, Jong Bin; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheol Kyu [Dept. of of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2016-08-15

    Parallel imaging mitigates susceptibility artifacts that can adversely affect diffusion tensor tractography (DTT) of the pons depending on the reduction (R) factor. We aimed to find the optimal R factor for DTT of the pons that would allow us to visualize the largest possible number of pyramidal tract fibers. Diffusion tensor imaging was performed on 10 healthy subjects at 3 Tesla based on single-shot echo-planar imaging using the following parameters: b value, 1000 s/mm{sup 2}; gradient direction, 15; voxel size, 2 × 2 × 2 mm{sup 3}; and R factors, 1, 2, 3, 4, and 5. DTT of the right and left pyramidal tracts in the pons was conducted in all subjects. Signal-to-noise ratio (SNR), image distortion, and the number of fibers in the tracts were compared across R factors. SNR, image distortion, and fiber number were significantly different according to R factor. Maximal SNR was achieved with an R factor of 2. Image distortion was minimal with an R factor of 5. The number of visible fibers was greatest with an R factor of 3. R factor 3 is optimal for DTT of the pontine pyramidal tract. A balanced consideration of SNR and image distortion, which do not have the same dependence on the R factor, is necessary for DTT of the pons.

  17. Diffusion tensor MRI tractography reveals increased fractional anisotropy (FA) in arcuate fasciculus following music-cued motor training.

    Science.gov (United States)

    Moore, Emma; Schaefer, Rebecca S; Bastin, Mark E; Roberts, Neil; Overy, Katie

    2017-08-01

    Auditory cues are frequently used to support movement learning and rehabilitation, but the neural basis of this behavioural effect is not yet clear. We investigated the microstructural neuroplasticity effects of adding musical cues to a motor learning task. We hypothesised that music-cued, left-handed motor training would increase fractional anisotropy (FA) in the contralateral arcuate fasciculus, a fibre tract connecting auditory, pre-motor and motor regions. Thirty right-handed participants were assigned to a motor learning condition either with (Music Group) or without (Control Group) musical cues. Participants completed 20minutes of training three times per week over four weeks. Diffusion tensor MRI and probabilistic neighbourhood tractography identified FA, axial (AD) and radial (RD) diffusivity before and after training. Results revealed that FA increased significantly in the right arcuate fasciculus of the Music group only, as hypothesised, with trends for AD to increase and RD to decrease, a pattern of results consistent with activity-dependent increases in myelination. No significant changes were found in the left ipsilateral arcuate fasciculus of either group. This is the first evidence that adding musical cues to movement learning can induce rapid microstructural change in white matter pathways in adults, with potential implications for therapeutic clinical practice. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Diffusion Tensor Imaging Tractography Reveals Disrupted White Matter Structural Connectivity Network in Healthy Adults with Insomnia Symptoms

    Directory of Open Access Journals (Sweden)

    Feng-Mei Lu

    2017-11-01

    Full Text Available Neuroimaging studies have revealed that insomnia is characterized by aberrant neuronal connectivity in specific brain regions, but the topological disruptions in the white matter (WM structural connectivity networks remain largely unknown in insomnia. The current study uses diffusion tensor imaging (DTI tractography to construct the WM structural networks and graph theory analysis to detect alterations of the brain structural networks. The study participants comprised 30 healthy subjects with insomnia symptoms (IS and 62 healthy subjects without IS. Both the two groups showed small-world properties regarding their WM structural connectivity networks. By contrast, increased local efficiency and decreased global efficiency were identified in the IS group, indicating an insomnia-related shift in topology away from regular networks. In addition, the IS group exhibited disrupted nodal topological characteristics in regions involving the fronto-limbic and the default-mode systems. To our knowledge, this is the first study to explore the topological organization of WM structural network connectivity in insomnia. More importantly, the dysfunctions of large-scale brain systems including the fronto-limbic pathways, salience network and default-mode network in insomnia were identified, which provides new insights into the insomnia connectome. Topology-based brain network analysis thus could be a potential biomarker for IS.

  19. Activation of less affected corticospinal tract and poor motor outcome in hemiplegic pediatric patients: a diffusion tensor tractography imaging study

    Directory of Open Access Journals (Sweden)

    Jin Hyun Kim

    2015-01-01

    Full Text Available The less affected hemisphere is important in motor recovery in mature brains. However, in terms of motor outcome in immature brains, no study has been reported on the less affected corticospinal tract in hemiplegic pediatric patients. Therefore, we examined the relationship between the condition of the less affected corticospinal tract and motor function in hemiplegic pediatric patients. Forty patients with hemiplegia due to perinatal or prenatal injury (13.7 ± 3.0 months and 40 age-matched typically developing controls were recruited. These patients were divided into two age-matched groups, the high functioning group (20 patients and the low functioning group (20 patients using functional level of hemiplegia scale. Diffusion tensor tractography images showed that compared with the control group, the patient group of the less affected corticospinal tract showed significantly increased fiber number and significantly decreased fractional anisotropy value. Significantly increased fiber number and significantly decreased fractional anisotropy value in the low functioning group were observed than in the high functioning group. These findings suggest that activation of the less affected hemisphere presenting as increased fiber number and decreased fractional anisotropy value is related to poor motor function in pediatric hemiplegic patients.

  20. Diffusion tensor tractography as a supplementary tool to conventional MRI for evaluating patients with myelopathy

    Directory of Open Access Journals (Sweden)

    Amal Amin A. El Maati

    2014-12-01

    Conclusion: Diffusion tensor imaging is a reliable method for the evaluation of the diffusion properties of normal and compressed spinal cords. Furthermore, this technique can be used as an important supplementary tool to conventional MRI for the quantification of fiber damage in spinal cord compression, thus has the potential to be of great utility for treatment planning and follow up.

  1. Comparative assessment of therapeutic response to physiotherapy with or without botulinum toxin injection using diffusion tensor tractography and clinical scores in term diplegic cerebral palsy children.

    Science.gov (United States)

    Chaturvedi, Saurabh K; Rai, Yogita; Chourasia, Ankita; Goel, Puneet; Paliwal, Vimal K; Garg, Ravindra K; Rathore, Ram Kishore S; Pandey, Chandra M; Gupta, Rakesh K

    2013-08-01

    The present study was to compare the effects of combined therapy [botulinum (BTX) plus physiotherapy] with physiotherapy alone using diffusion tensor imaging (DTI) derived fractional anisotropy (FA) values of motor and sensory fiber bundles and clinical grade of the disability to see the value of BTX in term children with spastic diplegic cerebral palsy (CP). Clinically diagnosed 36 children participated in the study. All these children were born at term, and had no history of seizures. The study was randomly categorized into two groups: group I (n=18) - physiotherapy alone and group II (n=18) - physiotherapy plus BTX injection. Quantitative diffusion tensor tractography on all these children was performed on motor and sensory fiber bundles on baseline as well as after 6months of therapy. Motor function and clinical grades were also measured by gross motor function measures (GMFM) scale on both occasions. We observed significant change in FA value in motor and sensory fiber bundle as well as in GMFM scores at 6months compared to baseline study in both the groups. However, delta change and relative delta change in FA values of sensory and motor fiber bundle as well as GMFM score between group I and group II was statistically insignificant. We conclude that addition of BTX to physiotherapy regimen does not influence the outcome at 6months with similar insult in children with term diplegic spastic CP. This information may influence management of diplegic CP especially in developing countries, where BTX is beyond the reach of these children. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  2. AxTract: Toward microstructure informed tractography.

    Science.gov (United States)

    Girard, Gabriel; Daducci, Alessandro; Petit, Laurent; Thiran, Jean-Philippe; Whittingstall, Kevin; Deriche, Rachid; Wassermann, Demian; Descoteaux, Maxime

    2017-11-01

    Diffusion-weighted (DW) magnetic resonance imaging (MRI) tractography has become the tool of choice to probe the human brain's white matter in vivo. However, tractography algorithms produce a large number of erroneous streamlines (false positives), largely due to complex ambiguous tissue configurations. Moreover, the relationship between the resulting streamlines and the underlying white matter microstructure characteristics remains poorly understood. In this work, we introduce a new approach to simultaneously reconstruct white matter fascicles and characterize the apparent distribution of axon diameters within fascicles. To achieve this, our method, AxTract, takes full advantage of the recent development DW-MRI microstructure acquisition, modeling, and reconstruction techniques. This enables AxTract to separate parallel fascicles with different microstructure characteristics, hence reducing ambiguities in areas of complex tissue configuration. We report a decrease in the incidence of erroneous streamlines compared to the conventional deterministic tractography algorithms on simulated data. We also report an average increase in streamline density over 15 known fascicles of the 34 healthy subjects. Our results suggest that microstructure information improves tractography in crossing areas of the white matter. Moreover, AxTract provides additional microstructure information along the fascicle that can be studied alongside other streamline-based indices. Overall, AxTract provides the means to distinguish and follow white matter fascicles using their microstructure characteristics, bringing new insights into the white matter organization. This is a step forward in microstructure informed tractography, paving the way to a new generation of algorithms able to deal with intricate configurations of white matter fibers and providing quantitative brain connectivity analysis. Hum Brain Mapp 38:5485-5500, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age.

    Science.gov (United States)

    Bassi, Laura; Ricci, Daniela; Volzone, Anna; Allsop, Joanna M; Srinivasan, Latha; Pai, Aakash; Ribes, Carmen; Ramenghi, Luca A; Mercuri, Eugenio; Mosca, Fabio; Edwards, A David; Cowan, Frances M; Rutherford, Mary A; Counsell, Serena J

    2008-02-01

    Children born prematurely have a high incidence of visual disorders which cannot always be explained by focal retinal or brain lesions. The aim of this study was to test the hypothesis that visual function in preterm infants is related to the microstructural development of white matter in the optic radiations. We used diffusion tensor imaging (DTI) with probabilistic diffusion tractography to delineate the optic radiations at term equivalent age and compared the fractional anisotropy (FA) to a contemporaneous evaluation of visual function. Thirty-seven preterm infants (19 male) born at median (range) 28(+4) (24(+1)-32(+3)) weeks gestational age, were examined at a post-menstrual age of 42 (39(+6)-43) weeks. MRI and DTI were acquired on a 3 Tesla MR system with DTI obtained in 15 non-collinear directions with a b value of 750 s/mm(2). Tracts were generated from a seed mask placed in the white matter lateral to the lateral geniculate nucleus and mean FA values of these tracts were determined. Visual assessment was performed using a battery of nine items assessing different aspects of visual abilities. Ten infants had evidence of cerebral lesions on conventional MRI. Multiple regression analysis demonstrated that the visual assessment score was independently correlated with FA values, but not gestational age at birth, post-menstrual age at scan or the presence of lesions on conventional MRI. The occurrence of mild retinopathy of prematurity did not affect the FA measures or visual scores. We then performed a secondary analysis using tract-based spatial statistics to determine whether global brain white matter development was related to visual function and found that only FA in the optic radiations was correlated with visual assessment score. Our results suggest that in preterm infants at term equivalent age visual function is directly related to the development of white matter in the optic radiations.

  4. Piriformis muscle syndrome with assessment of sciatic nerve using diffusion tensor imaging and tractography: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Keizo; Goto, Tomohiro; Takasago, Tomoya; Hamada, Daisuke; Sairyo, Koichi [The University of Tokushima Graduate School, Department of Orthopedics, Institute of Health Biosciences, Tokushima (Japan)

    2017-10-15

    Piriformis muscle syndrome (PMS) is difficult to diagnose by objective evaluation of sciatic nerve injury. Here we report a case of PMS diagnosed by diffusion tensor imaging (DTI) and tractography of the sciatic nerve, which can assess and visualize the extent of nerve injury. The patient was a 53-year-old man with a 2-year history of continuous pain and numbness in the left leg. His symptoms worsened when sitting. Physical examination, including sensorimotor neurologic tests, the deep tendon reflex test, and the straight leg raise test, revealed no specific findings. The hip flexion adduction and internal rotation test and resisted contraction maneuvers for the piriformis muscle were positive. There were no abnormal findings on magnetic resonance imaging (MRI) of the lumbar spine. The transverse diameter of piriformis muscle was slightly thicker in affected side on MRI of the pelvis. A single DTI sequence was performed during MRI of the pelvis. Fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) of the sciatic nerve were quantified at three levels using the fiber-tracking method. FA values were significantly lower and ADC values were significantly higher distal to the piriformis muscle. We performed endoscopic-assisted resection of the piriformis tendon. Intraoperatively, the motor-evoked potentials in the left gastrocnemius were improved by resection of the piriformis tendon. The patient's symptoms improved immediately after surgery. There was no significant difference in FA or ADC at any level between the affected side and the unaffected side 3 months postoperatively. MRI-DTI may aid the diagnosis of PMS. (orig.)

  5. Piriformis muscle syndrome with assessment of sciatic nerve using diffusion tensor imaging and tractography: a case report.

    Science.gov (United States)

    Wada, Keizo; Goto, Tomohiro; Takasago, Tomoya; Hamada, Daisuke; Sairyo, Koichi

    2017-10-01

    Piriformis muscle syndrome (PMS) is difficult to diagnose by objective evaluation of sciatic nerve injury. Here we report a case of PMS diagnosed by diffusion tensor imaging (DTI) and tractography of the sciatic nerve, which can assess and visualize the extent of nerve injury. The patient was a 53-year-old man with a 2-year history of continuous pain and numbness in the left leg. His symptoms worsened when sitting. Physical examination, including sensorimotor neurologic tests, the deep tendon reflex test, and the straight leg raise test, revealed no specific findings. The hip flexion adduction and internal rotation test and resisted contraction maneuvers for the piriformis muscle were positive. There were no abnormal findings on magnetic resonance imaging (MRI) of the lumbar spine. The transverse diameter of piriformis muscle was slightly thicker in affected side on MRI of the pelvis. A single DTI sequence was performed during MRI of the pelvis. Fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) of the sciatic nerve were quantified at three levels using the fiber-tracking method. FA values were significantly lower and ADC values were significantly higher distal to the piriformis muscle. We performed endoscopic-assisted resection of the piriformis tendon. Intraoperatively, the motor-evoked potentials in the left gastrocnemius were improved by resection of the piriformis tendon. The patient's symptoms improved immediately after surgery. There was no significant difference in FA or ADC at any level between the affected side and the unaffected side 3 months postoperatively. MRI-DTI may aid the diagnosis of PMS.

  6. Piriformis muscle syndrome with assessment of sciatic nerve using diffusion tensor imaging and tractography: a case report

    International Nuclear Information System (INIS)

    Wada, Keizo; Goto, Tomohiro; Takasago, Tomoya; Hamada, Daisuke; Sairyo, Koichi

    2017-01-01

    Piriformis muscle syndrome (PMS) is difficult to diagnose by objective evaluation of sciatic nerve injury. Here we report a case of PMS diagnosed by diffusion tensor imaging (DTI) and tractography of the sciatic nerve, which can assess and visualize the extent of nerve injury. The patient was a 53-year-old man with a 2-year history of continuous pain and numbness in the left leg. His symptoms worsened when sitting. Physical examination, including sensorimotor neurologic tests, the deep tendon reflex test, and the straight leg raise test, revealed no specific findings. The hip flexion adduction and internal rotation test and resisted contraction maneuvers for the piriformis muscle were positive. There were no abnormal findings on magnetic resonance imaging (MRI) of the lumbar spine. The transverse diameter of piriformis muscle was slightly thicker in affected side on MRI of the pelvis. A single DTI sequence was performed during MRI of the pelvis. Fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) of the sciatic nerve were quantified at three levels using the fiber-tracking method. FA values were significantly lower and ADC values were significantly higher distal to the piriformis muscle. We performed endoscopic-assisted resection of the piriformis tendon. Intraoperatively, the motor-evoked potentials in the left gastrocnemius were improved by resection of the piriformis tendon. The patient's symptoms improved immediately after surgery. There was no significant difference in FA or ADC at any level between the affected side and the unaffected side 3 months postoperatively. MRI-DTI may aid the diagnosis of PMS. (orig.)

  7. The value of 3 T MR diffusion tensor fiber tractography study of association fasciculus of normative human in vivo primarily

    International Nuclear Information System (INIS)

    Sun Xuejin; Dai Jianping; Gao Peiyi; Li Shaowu; Ai Lin; Chen Hongyan; Tian Shengyong; Pang Ruilin

    2006-01-01

    Objective: To exhibit the fibers of association fascicules, aims at demonstrating the association fibers of brain with diffusion tensor fiber tracking technique. Methods: Conventionality MRI, diffusion tensor imaging (DTI) and diffusion tensor fiber tractography (DT-FT) were performed in twenty healthy subjects, including eighteen right-handed (sixteen men and four women) and two left-handed (one male and one female) by 3 T Siemens Trio 2003 T MRI. To select arcuate fascicules, inferior longitudinal fascicules, frontalwoceipital fascicules, corpus callosum, posterior limb of internal capsule and external capsule as seeds used to track fibers. Results: Diffusion tensor fiber tracking exhibited bundles of external capsule left mean fibers were 308 bundles, right fibers were 307 bundles (t=0.138, P>0.05), frontal-occipital tracks left mean fibers were 115 bundles, right fibers were 110 bundles(t=1.174, P>0.05), and their fractional anisotropy (FA) valueexternal capsule mean FA left was 0.361, the right was 0.362 (t=-0.184, P>0.05). Frontal-occipital tracks mean fractional anisotropy left was 0.352, the right was 0.351 (t=-0.816, P>0.05). The difference between both sides were statistically insignificant (P>0.05). The posterior limb of internal capsule left mean fibers were 249 bundles, right fibers were 257 bundles (t=-0.818, P>0.05), arcuate fascietfiesleft mean fibers were 198 bundles, right fibers were 204 bundles (t=-0.465, P>0.05 ) fibers difference between both sides were statistically insignificant (P>0.05), but the individual difference was significant, and their fractional anisotropy difference between both sides (posterior limb of internal capsule mean FA left was 0.450, the right was 0.444 (t=2.771, P 0.05). Mean FA left was 0.369, the right was 0.370(t=-0.178, P>0.05) ,difference between both sides was statistically insignificant (P>0.05). But the individual difference was significant. Some of them were the left larger than the right side. The frontal

  8. Assessment of arcuate fasciculus with diffusion-tensor tractography may predict the prognosis of aphasia in patients with left middle cerebral artery infarcts

    International Nuclear Information System (INIS)

    Hosomi, Akiko; Nagakane, Yoshinari; Kuriyama, Nagato; Mizuno, Toshiki; Nakagawa, Masanori; Yamada, Kei; Nishimura, Tsunehiko

    2009-01-01

    It is often clinically difficult to assess the severity of aphasia in the earliest stage of cerebral infarction. A method enabling objective assessment of verbal function is needed for this purpose. We examined whether diffusion tensor (DT) tractography is of clinical value in assessing aphasia. Thirteen right-handed patients with left middle cerebral artery infarcts who were scanned within 2 days after stroke onset were enrolled in this study. Magnetic resonance data of ten control subjects were also examined by DT tractography. Based on the severity of aphasia at discharge, patients were divided into two groups: six patients in the aphasic group and seven in the nonaphasic group. Fractional anisotropy (FA) and number of arcuate fasciculus fibers were evaluated. Asymmetry index was calculated for both FA and number of fibers. FA values for the arcuate fasciculus fibers did not differ between hemispheres in either the patient groups or the controls. Number of arcuate fasciculus fibers exhibited a significant leftward asymmetry in the controls and the nonaphasic group but not in the aphasic group. Asymmetry index of number of fibers was significantly lower (rightward) in the aphasic group than in the nonaphasic (P = 0.015) and control (P = 0.005) groups. Loss of leftward asymmetry in number of AF fibers predicted aphasia at discharge with a sensitivity of 0.83 and specificity of 0.86. Asymmetry of arcuate fasciculus fibers by DT tractography may deserve to be assessed in acute infarction for predicting the fate of vascular aphasia. (orig.)

  9. Assessment of arcuate fasciculus with diffusion-tensor tractography may predict the prognosis of aphasia in patients with left middle cerebral artery infarcts

    Energy Technology Data Exchange (ETDEWEB)

    Hosomi, Akiko; Nagakane, Yoshinari; Kuriyama, Nagato; Mizuno, Toshiki; Nakagawa, Masanori [Kyoto Prefectural University of Medicine, Department of Neurology, Graduate School of Medical Science, Kyoto (Japan); Yamada, Kei; Nishimura, Tsunehiko [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science, Kyoto (Japan)

    2009-09-15

    It is often clinically difficult to assess the severity of aphasia in the earliest stage of cerebral infarction. A method enabling objective assessment of verbal function is needed for this purpose. We examined whether diffusion tensor (DT) tractography is of clinical value in assessing aphasia. Thirteen right-handed patients with left middle cerebral artery infarcts who were scanned within 2 days after stroke onset were enrolled in this study. Magnetic resonance data of ten control subjects were also examined by DT tractography. Based on the severity of aphasia at discharge, patients were divided into two groups: six patients in the aphasic group and seven in the nonaphasic group. Fractional anisotropy (FA) and number of arcuate fasciculus fibers were evaluated. Asymmetry index was calculated for both FA and number of fibers. FA values for the arcuate fasciculus fibers did not differ between hemispheres in either the patient groups or the controls. Number of arcuate fasciculus fibers exhibited a significant leftward asymmetry in the controls and the nonaphasic group but not in the aphasic group. Asymmetry index of number of fibers was significantly lower (rightward) in the aphasic group than in the nonaphasic (P = 0.015) and control (P = 0.005) groups. Loss of leftward asymmetry in number of AF fibers predicted aphasia at discharge with a sensitivity of 0.83 and specificity of 0.86. Asymmetry of arcuate fasciculus fibers by DT tractography may deserve to be assessed in acute infarction for predicting the fate of vascular aphasia. (orig.)

  10. Diffusion tractography of the subcortical auditory system in a postmortem human brain

    OpenAIRE

    Sitek, Kevin

    2017-01-01

    The subcortical auditory system is challenging to identify with standard human brain imaging techniques: MRI signal decreases toward the center of the brain as well as at higher resolution, both of which are necessary for imaging small brainstem auditory structures.Using high-resolution diffusion-weighted MRI, we asked:Can we identify auditory structures and connections in high-resolution ex vivo images?Which structures and connections can be mapped in vivo?

  11. Surface-Based fMRI-Driven Diffusion Tractography in the Presence of Significant Brain Pathology: A Study Linking Structure and Function in Cerebral Palsy

    Science.gov (United States)

    Cunnington, Ross; Boyd, Roslyn N.; Rose, Stephen E.

    2016-01-01

    Diffusion MRI (dMRI) tractography analyses are difficult to perform in the presence of brain pathology. Automated methods that rely on cortical parcellation for structural connectivity studies often fail, while manually defining regions is extremely time consuming and can introduce human error. Both methods also make assumptions about structure-function relationships that may not hold after cortical reorganisation. Seeding tractography with functional-MRI (fMRI) activation is an emerging method that reduces these confounds, but inherent smoothing of fMRI signal may result in the inclusion of irrelevant pathways. This paper describes a novel fMRI-seeded dMRI-analysis pipeline based on surface-meshes that reduces these issues and utilises machine-learning to generate task specific white matter pathways, minimising the requirement for manually-drawn ROIs. We directly compared this new strategy to a standard voxelwise fMRI-dMRI approach, by investigating correlations between clinical scores and dMRI metrics of thalamocortical and corticomotor tracts in 31 children with unilateral cerebral palsy. The surface-based approach successfully processed more participants (87%) than the voxel-based approach (65%), and provided significantly more-coherent tractography. Significant correlations between dMRI metrics and five clinical scores of function were found for the more superior regions of these tracts. These significant correlations were stronger and more frequently found with the surface-based method (15/20 investigated were significant; R2 = 0.43–0.73) than the voxelwise analysis (2 sig. correlations; 0.38 & 0.49). More restricted fMRI signal, better-constrained tractography, and the novel track-classification method all appeared to contribute toward these differences. PMID:27487011

  12. Diffusion tensor tractography of language functional areas and fiber pathways in normal human brain

    International Nuclear Information System (INIS)

    Sun Xuejin; Dai Jianping; Chen Hongyan; Gao Peiyi; Ai Lin; Tian Shengyong; Pang Ruilin

    2007-01-01

    Objective: To demonstrate the fiber pathways of Broca area to the other functional brain areas with diffusion tensor imaging and fiber tracking. Methods: Conventionality MRI, diffusion tensor imaging (DTI) and fiber tracking were performed using 3.0 T MRI in 20 healthy person. The fiber bundles and tracts were analyzed in Broca area and contralateral normal area. Results: The left-side fiber bundles were 428 and the right-side were 416 in B45 area, there were no statistically significant differences between both sides (t=0.216, P>0.05). The left-side fiber bundles were 432 and the right-side were 344 in B44 area,there were statistically significant (t=2.314, P 0.05). Differences of the arcuate fascicule between both sides were not statistically significant (t=-0.465, P>0.05), the mean FA on the left was higher than the right (t=1.912, P<0.05). DTI and fiber tracking exhibited that the fiber bundles from Broca area were distributed superoanteriorly to the lateral foreside of the frontal lobe, lateroinferiorly to the occipital lobe through external capsule, and went down through globus pallidus and internal capsule. Conclusion: The fiber tracts bewteen Broca area and other brain areas were the fundamental structures for performing language function of the human brain. (authors)

  13. Evaluation of the female pelvic floor in pelvic organ prolapse using 3.0-Tesla diffusion tensor imaging and fibre tractography

    Energy Technology Data Exchange (ETDEWEB)

    Zijta, F.M. [University of Amsterdam, Department of Radiology, Academic Medical Centre, Amsterdam (Netherlands); Onze Lieve Vrouwe Gasthuis, Amsterdam and Department of Radiology, Amsterdam (Netherlands); Academic Medical Center, Department of Radiology, Amsterdam, AZ (Netherlands); Lakeman, M.M.E.; Roovers, J.P. [University of Amsterdam the Netherlands and Biomedical NMR, Amsterdam and Department of Gynaecology, Academic Medical Centre, Amsterdam (Netherlands); Froeling, M. [University of Amsterdam, Department of Radiology, Academic Medical Centre, Amsterdam (Netherlands); Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven (Netherlands); Paardt, M.P. van der; Borstlap, C.S.V.; Bipat, S.; Nederveen, A.J.; Stoker, J. [University of Amsterdam, Department of Radiology, Academic Medical Centre, Amsterdam (Netherlands); Montauban van Swijndregt, A.D. [Onze Lieve Vrouwe Gasthuis, Amsterdam and Department of Radiology, Amsterdam (Netherlands); Strijkers, G.J. [Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven (Netherlands)

    2012-12-15

    To prospectively explore the clinical application of diffusion tensor imaging (DTI) and fibre tractography in evaluating the pelvic floor. Ten patients with pelvic organ prolapse, ten with pelvic floor symptoms and ten asymptomatic women were included. A two-dimensional (2D) spin-echo (SE) echo-planar imaging (EPI) sequence of the pelvic floor was acquired. Offline fibre tractography and morphological analysis of pelvic magnetic resonance imaging (MRI) were performed. Inter-rater agreement for quality assessment of fibre tracking results was evaluated using weighted kappa ({kappa}). From agreed tracking results, eigen values ({lambda}1, {lambda}2, {lambda}3), mean diffusivity (MD) and fractional anisotropy (FA) were calculated. MD and FA values were compared using ANOVA. Inter-rater reliability of DTI parameters was interpreted using the intra-class correlation coefficient (ICC). Substantial inter-rater agreement was found ({kappa} = 0.71 [95% CI 0.63-0.78]). Four anatomical structures were reliably identified. Substantial inter-rater agreement was found for MD and FA (ICC 0.60-0.91). No significant differences between groups were observed for anal sphincter, perineal body and puboperineal muscle. A significant difference in FA was found for internal obturator muscle between the prolapse group and the asymptomatic group (0.27 {+-} 0.05 vs 0.22 {+-} 0.03; P = 0.015). DTI with fibre tractography permits identification of part of the clinically relevant pelvic structures. Overall, no significant differences in DTI parameters were found between groups. circle Diffusion tensor MRI offers new insights into female pelvic floor problems. (orig.)

  14. Evaluation of left-right asymmetry of pyramidal tracts in preterm neonates by diffusion tensor imaging and tractography

    International Nuclear Information System (INIS)

    Ogita, Kaori

    2010-01-01

    Diffusion Tensor Tractography (DTT) is a new noninvasive brain imaging technique to detect the neural tract and is expected to be instrumental in diagnosing diseases with white matter involvement. Assessing the pyramidal tract with DTT will be useful in diagnosing motor dysfunction. However, the pyramidal tract (PT) has not been fully investigated with this technique especially in neonates. The aim of this study is to clarify the normal characteristics, especially the latevility, of the PT in healthy neonates. Fourteen preterm neonates were examined with DTT before being discharged from the neonatal intensive care unit (NICU). Free software dTV and Volume-One were used to depict the PT and analyze the fractional anisotrophy (FA) value, a parameter used in Diffusion Tensor Imaging (DTI). In the beginning, the FA at the medulla oblongata as the initial region of interest was determined to be 0.18 or more to depict the PT by DTT. The FA values at the level of the posterior limb of the Internal Capsule (IC), the Corona Radiate (CR), and the Centrum Semiovale (CS) of the depicted PT were measured and compared with the contralateral. The upper limit of the level of the FA at the medulla oblongata value capable of depicting the PT was measured and compared with the contralateral. All data was analyzed using the Mann-Whitney test. A p-value of less than 0.05 was considered to indicate significant difference. The FA value of the left CS was higher than that of the right in all 14 cases, and the FA value of the left CA was higher than that of the right in 13 cases. The upper limit of the FA value of the medulla oblongata as the initial region of interest to depict the left side of the PT was higher than for the right side of the PT in all 14 cases. We clarified the laterality of the PT in healthy neonates using DTT. This laterality must be taken into consideration when involvement of the PT is diagnosed using this technique. (author)

  15. Optic radiation structure and anatomy in the normally developing brain determined using diffusion MRI and tractography.

    Science.gov (United States)

    Dayan, Michael; Munoz, Monica; Jentschke, Sebastian; Chadwick, Martin J; Cooper, Janine M; Riney, Kate; Vargha-Khadem, Faraneh; Clark, Chris A

    2015-01-01

    The optic radiation (OR) is a component of the visual system known to be myelin mature very early in life. Diffusion tensor imaging (DTI) and its unique ability to reconstruct the OR in vivo were used to study structural maturation through analysis of DTI metrics in a cohort of 90 children aged 5-18 years. As the OR is at risk of damage during epilepsy surgery, we measured its position relative to characteristic anatomical landmarks. Anatomical distances, DTI metrics and volume of the OR were investigated for age, gender and hemisphere effects. We observed changes in DTI metrics with age comparable to known trajectories in other white matter tracts. Left lateralization of DTI metrics was observed that showed a gender effect in lateralization. Sexual dimorphism of DTI metrics in the right hemisphere was also found. With respect to OR dimensions, volume was shown to be right lateralised and sexual dimorphism demonstrated for the extent of the left OR. The anatomical results presented for the OR have potentially important applications for neurosurgical planning.

  16. Predicting pituitary stalk position by in vivo visualization of the hypothalamo-hypophyseal tract in craniopharyngioma using diffusion tensor imaging tractography.

    Science.gov (United States)

    Wang, Fuyu; Jiang, Jinli; Zhang, Jiashu; Wang, Qun

    2018-07-01

    The pituitary stalk (PS) is crucial to endocrine function and water-electrolyte equilibrium. Preservation of the PS during craniopharyngioma (CP) surgery is critical; however, in a pathological state, it is difficult to identify. The hypothalamo-hypophyseal tract (HHT) connects the hypothalamus and the posterior pituitary gland and projects through the PS. Thus, visualization of the HHT can help locate the PS. Preoperative visualization of the neural fasciculus has been widely achieved using diffusion tensor imaging (DTI) tractography. Therefore, this study evaluated the use of DTI tractography to identify and characterize the human HHT. We used DTI tractography to track the HHT in 10 patients with CP and compared the location of the tract with the intraoperative view of the PS in these patients. We successfully tracked the HHT in nine patients, indicating that delineating and quantifying the tracked HHT using this method is feasible. In addition, we found that the tract was consistent with the intraoperative view of the PS in seven out of eight patients (87.50%). Finally, we found that the mean number of tracts was 7.11 ± 12.28, the mean fractional anisotropy (FA) was 0.11 ± 0.04, and the mean tract length was 24.22 ± 9.39 mm. Taken together, our results demonstrate that the HHT can be visualized and characterized with DTI even in a clinical application, which may aid in preoperative identification of the PS. Characterization of the tracked HHT with this technique could also be used to advance our understanding of the HHT.

  17. Quantitative evaluation of normal lumbosacral plexus nerve by using diffusion tensor imaging

    International Nuclear Information System (INIS)

    Shi Yin; Wang Chuanbing; Liu Wei; Zong Min; Sa Rina; Shi Haibin; Wang Dehang

    2014-01-01

    Objective: To observe the lumbosacral plexus nerves by diffusion tensor tractography (DTT) and quantitatively evaluate them by using diffusion tensor imaging (DTI) in healthy volunteers. Methods: A total of 60 healthy volunteers (30 males and 30 females) underwent DTI scanning. Mean FA values of the lumbosacral plexus nerves (both sides of lumbar roots L3 to S1, proximal and distal to the lumbar foraminal zone) were quantified. Differences among various segments of lumbar nerve roots were compared with ANOVA test and SNK test. Differences between two sides of the lumbar nerve roots at the same lumbar segment were compared with paired-samples t test. Differences between the proximal and the distal nerve to the the lumbar foraminal zone at the same lumbar segment were compared with paired-samples t test. The lumbosacral plexus nerve was visualized with tractography. Results: (1) The lumbosacral plexus nerve was clearly visualized with tractography. (2) Mean FA values of the lumbar nerve roots L3 to S1 were as followings: proximal to the left lumbar foraminal zone 0.202 ± 0.021, 0.201 ± 0.026, 0.201 ± 0.027, 0.191 ±0.016, distal to the left lumbar foraminal zone 0.222 ± 0.034, 0.250 ± 0.028, 0.203 ± 0.026, 0.183 ± 0.020, proximal to the right lumbar foraminal zone 0.200 ± 0.023, 0.202 ± 0.023, 0.205 ± 0.027, 0.191 ± 0.017, distal to the right lumbar foraminal zone 0.225 ± 0.032, 0.247 ± 0.027, 0.205 ± 0.033, 0.183 ± 0.021. Mean FA values were significantly different between the proximal nerve to the distal nerve in lumbar nerve roots L3, L4, S1 (t=-9.114-2.366, P<0.05), but not significantly different in L5 (P>0.05). Differences were not found between the right and left side nerves at the same lumbar segment (P>0.05). (3) The whole length of the lumbar roots nerve L3 to S1 can be visualized clearly by using DTT. Conclusions: Diffusion tensor imaging and tractography can show and provide quantitative information of human lumbosacral plexus nerves. DTI

  18. Reconstruction of the arcuate fasciculus for surgical planning in the setting of peritumoral edema using two-tensor unscented Kalman filter tractography.

    Science.gov (United States)

    Chen, Zhenrui; Tie, Yanmei; Olubiyi, Olutayo; Rigolo, Laura; Mehrtash, Alireza; Norton, Isaiah; Pasternak, Ofer; Rathi, Yogesh; Golby, Alexandra J; O'Donnell, Lauren J

    2015-01-01

    Diffusion imaging tractography is increasingly used to trace critical fiber tracts in brain tumor patients to reduce the risk of post-operative neurological deficit. However, the effects of peritumoral edema pose a challenge to conventional tractography using the standard diffusion tensor model. The aim of this study was to present a novel technique using a two-tensor unscented Kalman filter (UKF) algorithm to track the arcuate fasciculus (AF) in brain tumor patients with peritumoral edema. Ten right-handed patients with left-sided brain tumors in the vicinity of language-related cortex and evidence of significant peritumoral edema were retrospectively selected for the study. All patients underwent 3-Tesla magnetic resonance imaging (MRI) including a diffusion-weighted dataset with 31 directions. Fiber tractography was performed using both single-tensor streamline and two-tensor UKF tractography. A two-regions-of-interest approach was applied to perform the delineation of the AF. Results from the two different tractography algorithms were compared visually and quantitatively. Using single-tensor streamline tractography, the AF appeared disrupted in four patients and contained few fibers in the remaining six patients. Two-tensor UKF tractography delineated an AF that traversed edematous brain areas in all patients. The volume of the AF was significantly larger on two-tensor UKF than on single-tensor streamline tractography (p tensor UKF tractography provides the ability to trace a larger volume AF than single-tensor streamline tractography in the setting of peritumoral edema in brain tumor patients.

  19. Abnormal topological organization in white matter structural networks revealed by diffusion tensor tractography in unmedicated patients with obsessive-compulsive disorder.

    Science.gov (United States)

    Zhong, Zhaoxi; Zhao, Tengda; Luo, Jia; Guo, Zhihua; Guo, Meng; Li, Ping; Sun, Jing; He, Yong; Li, Zhanjiang

    2014-06-03

    Obsessive-compulsive disorder (OCD) is a chronic psychiatric disorder defined by recurrent thoughts, intrusive and distressing impulses, or images and ritualistic behaviors. Although focal diverse regional abnormalities white matter integrity in specific brain regions have been widely studied in populations with OCD, alterations in the structural connectivities among them remain poorly understood. The aim was to investigate the abnormalities in the topological efficiency of the white matter networks and the correlation between the network metrics and Yale-Brown Obsessive-Compulsive Scale scores in unmedicated OCD patients, using diffusion tensor tractography and graph theoretical approaches. This study used diffusion tensor imaging and deterministic tractography to map the white matter structural networks in 26 OCD patients and 39 age- and gender-matched healthy controls; and then applied graph theoretical methods to investigate abnormalities in the global and regional properties of the white matter network in these patients. The patients and control participants both showed small-world organization of the white matter networks. However, the OCD patients exhibited significant abnormal global topology, including decreases in global efficiency (t = -2.32, p = 0.02) and increases in shortest path length, Lp (t = 2.30, p = 0.02), the normalized weighted shortest path length, λ (t = 2.08, p=0.04), and the normalized clustering coefficient, γ (t = 2.26, p = 0.03), of their white matter structural networks compared with healthy controls. Further, the OCD patients showed a reduction in nodal efficiency predominately in the frontal regions, the parietal regions and caudate nucleus. The normalized weighted shortest path length of the network metrics was significantly negatively correlated with obsessive subscale of the Yale-Brown Obsessive-Compulsive Scale (r = -0.57, p = 0.0058). These findings demonstrate the abnormal topological efficiency in the white matter networks

  20. Altered microstructural connectivity of the superior and middle cerebellar peduncles are related to motor dysfunction in children with diffuse periventricular leucomalacia born preterm: A DTI tractography study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shanshan, E-mail: jelly_66@126.com; Fan, Guo Guang, E-mail: cjr.fanguoguang@vip.163.com; Xu, Ke, E-mail: cjr.xuke@vip.163.com; Wang, Ci, E-mail: xiangxuehai19850224@yahoo.cn

    2014-06-15

    Purpose: To investigate the microstructural integrity of superior cerebellar peduncles (SCP) and middle cerebellar peduncles (MCP) by using DTI tractography method, and further to detect whether the microstructural integrity of these major cerebellar pathways is related to motor function in children with diffuse periventricular leucomalacia (PVL) born preterm. Materials and methods: 46 children with diffuse PVL (30 males and 16 females; age range 3–48 months; mean age 22.4 ± 6.7 months; mean gestational age 30.5 ± 2.2 weeks) and 40 healthy controls (27 males and 13 females; age range 3.5–48 months; mean age 22.1 ± 5.8 months) were enrolled in this study. DTI outcome measurements, fractional anisotropy (FA), for the SCP, MCP and cortical spinal tract (CST) were calculated. The gross motor function classification system (GMFCS) was used for assessing motor functions. Results: Compared to the controls, patients with diffuse PVL had a significantly lower FA in bilateral SCP, MCP and CST. There was a significant negative correlation between GMFCS levels and FA in bilateral SCP, MCP and CST in the patients group. In addition, significant inverse correlation of FA value was found between not only the contralateral but also the ipsilateral CST and SCP/MCP. Conclusions: These findings suggest that the injury of SCP and MCP may contribute to the motor dysfunction of diffuse PVL. Moreover, the correlations we found between supratentorial and subtentorial injured white matter extend our knowledge about the cerebro-cerebellar white matter interaction in children with diffuse PVL.

  1. Altered microstructural connectivity of the superior and middle cerebellar peduncles are related to motor dysfunction in children with diffuse periventricular leucomalacia born preterm: A DTI tractography study

    International Nuclear Information System (INIS)

    Wang, Shanshan; Fan, Guo Guang; Xu, Ke; Wang, Ci

    2014-01-01

    Purpose: To investigate the microstructural integrity of superior cerebellar peduncles (SCP) and middle cerebellar peduncles (MCP) by using DTI tractography method, and further to detect whether the microstructural integrity of these major cerebellar pathways is related to motor function in children with diffuse periventricular leucomalacia (PVL) born preterm. Materials and methods: 46 children with diffuse PVL (30 males and 16 females; age range 3–48 months; mean age 22.4 ± 6.7 months; mean gestational age 30.5 ± 2.2 weeks) and 40 healthy controls (27 males and 13 females; age range 3.5–48 months; mean age 22.1 ± 5.8 months) were enrolled in this study. DTI outcome measurements, fractional anisotropy (FA), for the SCP, MCP and cortical spinal tract (CST) were calculated. The gross motor function classification system (GMFCS) was used for assessing motor functions. Results: Compared to the controls, patients with diffuse PVL had a significantly lower FA in bilateral SCP, MCP and CST. There was a significant negative correlation between GMFCS levels and FA in bilateral SCP, MCP and CST in the patients group. In addition, significant inverse correlation of FA value was found between not only the contralateral but also the ipsilateral CST and SCP/MCP. Conclusions: These findings suggest that the injury of SCP and MCP may contribute to the motor dysfunction of diffuse PVL. Moreover, the correlations we found between supratentorial and subtentorial injured white matter extend our knowledge about the cerebro-cerebellar white matter interaction in children with diffuse PVL

  2. Assessment of Brain Damage and Plasticity in the Visual System Due to Early Occipital Lesion: Comparison of FDG-PET with Diffusion MRI Tractography

    Science.gov (United States)

    Jeong, Jeong-won; Tiwari, Vijay N.; Shin, Joseph; Chugani, Harry T.; Juhász, Csaba

    2015-01-01

    Purpose To determine the relation between glucose metabolic changes of the primary visual cortex, structural abnormalities of the corresponding visual tracts, and visual symptoms in children with Sturge-Weber syndrome (SWS). Materials and Methods In 10 children with unilateral SWS (ages 1.5–5.5 years), a region-of-interest analysis was applied in the bilateral medial occipital cortex on positron emission tomography (PET) and used to track diffusion-weighted imaging (DWI) streamlines corresponding to the central visual pathway. Normalized streamline volumes of individual SWS patients were compared with values from age-matched control groups as well as correlated with normalized glucose uptakes and visual field deficit. Results Lower glucose uptake and lower corresponding streamline volumes were detected in the affected occipital lobe in 9/10 patients, as compared to the contralateral side. Seven of these 9 patients had visual field deficit and normal or decreased streamline volumes on the unaffected side. The two other children had no visual symptoms and showed high contralateral visual streamline volumes. There was a positive correlation between the normalized ratios on DWI and PET, indicating that lower glucose metabolism was associated with lower streamline volume in the affected hemisphere (R = 0.70, P = 0.024). Conclusion We demonstrated that 18F-flurodeoxyglucose (FDG)-PET combined with DWI tractography can detect both brain damage on the side of the lesion and contralateral plasticity in children with early occipital lesions. PMID:24391057

  3. Diffusion tractography and graph theory analysis reveal the disrupted rich-club organization of white matter structural networks in early Tourette Syndrome children

    Science.gov (United States)

    Wen, Hongwei; Liu, Yue; Wang, Shengpei; Zhang, Jishui; Peng, Yun; He, Huiguang

    2017-03-01

    Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. At present, the topological disruptions of the whole brain white matter (WM) structural networks remain poorly understood in TS children. Considering the unique position of the topologically central role of densely interconnected brain hubs, namely the rich club regions, therefore, we aimed to investigate whether the rich club regions and their related connections would be particularly vulnerable in early TS children. In our study, we used diffusion tractography and graph theoretical analyses to explore the rich club structures in 44 TS children and 48 healthy children. The structural networks of TS children exhibited significantly increased normalized rich club coefficient, suggesting that TS is characterized by increased structural integrity of this centrally embedded rich club backbone, potentially resulting in increased global communication capacity. In addition, TS children showed a reorganization of rich club regions, as well as significantly increased density and decreased number in feeder connections. Furthermore, the increased rich club coefficients and feeder connections density of TS children were significantly positively correlated to tic severity, indicating that TS may be characterized by a selective alteration of the structural connectivity of the rich club regions, tending to have higher bridging with non-rich club regions, which may increase the integration among tic-related brain circuits with more excitability but less inhibition for information exchanges between highly centered brain regions and peripheral areas. In all, our results suggest the disrupted rich club organization in early TS children and provide structural insights into the brain networks.

  4. Real-time multi-peak tractography for instantaneous connectivity display

    Directory of Open Access Journals (Sweden)

    Maxime eChamberland

    2014-05-01

    Full Text Available The computerized process of reconstructing white matter tracts from diffusion MRI (dMRI data is often referred to as tractography. Tractography is nowadays central in structural connectivity since it is the only non-invasive technique to obtain information about brain wiring. Most publicly available tractography techniques and most studies are based on a fixed set of tractography parameters. However, the scale and curvature of fiber bundles can vary from region to region in the brain. Therefore, depending on the area of interest or subject (e.g. healthy control vs. tumor patient, optimal tracking parameters can be dramatically different. As a result, a slight change in tracking parameters may return different connectivity profiles and complicate the interpretation of the results. Having access to tractography parameters can thus be advantageous, as it will help in better isolating those which are sensitive to certain streamline features and potentially converge on optimal settings which are area-specific. In this work, we propose a real-time fiber tracking (RTT tool which can instantaneously compute and display streamlines. To achieve such real-time performance, we propose a novel evolution equation based on the upsampled principal directions, also called peaks, extracted at each voxel of the dMRI dataset. The technique runs on a single Computer Processing Unit (CPU without the need for Graphical Unit Processing (GPU programming. We qualitatively illustrate and quantitatively evaluate our novel multi-peak RTT technique on phantom and human datasets in comparison with the state of the art offline tractography from MRtrix, which is robust to fiber crossings. Finally, we show how our RTT tool facilitates neurosurgical planning and allows one to find fibers that infiltrate tumor areas, otherwise missing when using the standard default tracking parameters.

  5. Quantitative stratification of diffuse parenchymal lung diseases.

    Directory of Open Access Journals (Sweden)

    Sushravya Raghunath

    Full Text Available Diffuse parenchymal lung diseases (DPLDs are characterized by widespread pathological changes within the pulmonary tissue that impair the elasticity and gas exchange properties of the lungs. Clinical-radiological diagnosis of these diseases remains challenging and their clinical course is characterized by variable disease progression. These challenges have hindered the introduction of robust objective biomarkers for patient-specific prediction based on specific phenotypes in clinical practice for patients with DPLD. Therefore, strategies facilitating individualized clinical management, staging and identification of specific phenotypes linked to clinical disease outcomes or therapeutic responses are urgently needed. A classification schema consistently reflecting the radiological, clinical (lung function and clinical outcomes and pathological features of a disease represents a critical need in modern pulmonary medicine. Herein, we report a quantitative stratification paradigm to identify subsets of DPLD patients with characteristic radiologic patterns in an unsupervised manner and demonstrate significant correlation of these self-organized disease groups with clinically accepted surrogate endpoints. The proposed consistent and reproducible technique could potentially transform diagnostic staging, clinical management and prognostication of DPLD patients as well as facilitate patient selection for clinical trials beyond the ability of current radiological tools. In addition, the sequential quantitative stratification of the type and extent of parenchymal process may allow standardized and objective monitoring of disease, early assessment of treatment response and mortality prediction for DPLD patients.

  6. Quantitative Stratification of Diffuse Parenchymal Lung Diseases

    Science.gov (United States)

    Raghunath, Sushravya; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Maldonado, Fabien; Peikert, Tobias; Moua, Teng; Ryu, Jay H.; Bartholmai, Brian J.; Robb, Richard A.

    2014-01-01

    Diffuse parenchymal lung diseases (DPLDs) are characterized by widespread pathological changes within the pulmonary tissue that impair the elasticity and gas exchange properties of the lungs. Clinical-radiological diagnosis of these diseases remains challenging and their clinical course is characterized by variable disease progression. These challenges have hindered the introduction of robust objective biomarkers for patient-specific prediction based on specific phenotypes in clinical practice for patients with DPLD. Therefore, strategies facilitating individualized clinical management, staging and identification of specific phenotypes linked to clinical disease outcomes or therapeutic responses are urgently needed. A classification schema consistently reflecting the radiological, clinical (lung function and clinical outcomes) and pathological features of a disease represents a critical need in modern pulmonary medicine. Herein, we report a quantitative stratification paradigm to identify subsets of DPLD patients with characteristic radiologic patterns in an unsupervised manner and demonstrate significant correlation of these self-organized disease groups with clinically accepted surrogate endpoints. The proposed consistent and reproducible technique could potentially transform diagnostic staging, clinical management and prognostication of DPLD patients as well as facilitate patient selection for clinical trials beyond the ability of current radiological tools. In addition, the sequential quantitative stratification of the type and extent of parenchymal process may allow standardized and objective monitoring of disease, early assessment of treatment response and mortality prediction for DPLD patients. PMID:24676019

  7. New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography.

    Science.gov (United States)

    De Benedictis, Alessandro; Petit, Laurent; Descoteaux, Maxime; Marras, Carlo Efisio; Barbareschi, Mattia; Corsini, Francesco; Dallabona, Monica; Chioffi, Franco; Sarubbo, Silvio

    2016-12-01

    Extensive studies revealed that the human corpus callosum (CC) plays a crucial role in providing large-scale bi-hemispheric integration of sensory, motor and cognitive processing, especially within the frontal lobe. However, the literature lacks of conclusive data regarding the structural macroscopic connectivity of the frontal CC. In this study, a novel microdissection approach was adopted, to expose the frontal fibers of CC from the dorsum to the lateral cortex in eight hemispheres and in one entire brain. Post-mortem results were then combined with data from advanced constrained spherical deconvolution in 130 healthy subjects. We demonstrated as the frontal CC provides dense inter-hemispheric connections. In particular, we found three types of fronto-callosal fibers, having a dorso-ventral organization. First, the dorso-medial CC fibers subserve homotopic connections between the homologous medial cortices of the superior frontal gyrus. Second, the ventro-lateral CC fibers subserve homotopic connections between lateral frontal cortices, including both the middle frontal gyrus and the inferior frontal gyrus, as well as heterotopic connections between the medial and lateral frontal cortices. Third, the ventro-striatal CC fibers connect the medial and lateral frontal cortices with the contralateral putamen and caudate nucleus. We also highlighted an intricate crossing of CC fibers with the main association pathways terminating in the lateral regions of the frontal lobes. This combined approach of ex vivo microdissection and in vivo diffusion tractography allowed demonstrating a previously unappreciated three-dimensional architecture of the anterior frontal CC, thus clarifying the functional role of the CC in mediating the inter-hemispheric connectivity. Hum Brain Mapp 37:4718-4735, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Synchronous changes of cortical thickness and corresponding white matter microstructure during brain development accessed by diffusion MRI tractography from parcellated cortex

    Directory of Open Access Journals (Sweden)

    Tina eJeon

    2015-12-01

    Full Text Available Cortical thickness (CT changes during normal brain development is associated with complicated cellular and molecular processes including synaptic pruning and apoptosis. In parallel, the microstructural enhancement of developmental white matter (WM axons with their neuronal bodies in the cerebral cortex has been widely reported with measurements of metrics derived from diffusion tensor imaging (DTI, especially fractional anisotropy (FA. We hypothesized that the changes of CT and microstructural enhancement of corresponding axons are highly interacted during development. DTI and T1-weighted images of 50 healthy children and adolescents between the ages of 7 to 25 years were acquired. With the parcellated cortical gyri transformed from T1-weighted images to DTI space as the tractography seeds, probabilistic tracking was performed to delineate the WM fibers traced from specific parcellated cortical regions. CT was measured at certain cortical regions and FA was measured from the WM fibers traced from same cortical regions. The CT of all frontal cortical gyri, includeing Brodmann areas 4, 6, 8, 9, 10, 11, 44, 45, 46 and 47, decreased significantly and heterogeneously; concurrently, significant and heterogeneous increases of FA of WM traced from corresponding regions were found. We further revealed significant correlation between the slopes of the CT decrease and the slopes of corresponding WM FA increase in all frontal cortical gyri, suggesting coherent cortical pruning and corresponding WM microstructural enhancement. Such correlation was not found in cortical regions other than frontal cortex. The molecular and cellular mechanisms of these synchronous changes may be associated with overlapping signaling pathways of axonal guidance, synaptic pruning, neuronal apoptosis and more prevalent interstitial neurons in the prefrontal cortex. Revealing the coherence of cortical and WM structural changes during development may open a new window for

  9. Diffusion Properties and 3D Architecture of Human Lower Leg Muscles Assessed with Ultra-High-Field-Strength Diffusion-Tensor MR Imaging and Tractography: Reproducibility and Sensitivity to Sex Difference and Intramuscular Variability.

    Science.gov (United States)

    Fouré, Alexandre; Ogier, Augustin C; Le Troter, Arnaud; Vilmen, Christophe; Feiweier, Thorsten; Guye, Maxime; Gondin, Julien; Besson, Pierre; Bendahan, David

    2018-05-01

    Purpose To demonstrate the reproducibility of the diffusion properties and three-dimensional structural organization measurements of the lower leg muscles by using diffusion-tensor imaging (DTI) assessed with ultra-high-field-strength (7.0-T) magnetic resonance (MR) imaging and tractography of skeletal muscle fibers. On the basis of robust statistical mapping analyses, this study also aimed at determining the sensitivity of the measurements to sex difference and intramuscular variability. Materials and Methods All examinations were performed with ethical review board approval; written informed consent was obtained from all volunteers. Reproducibility of diffusion tensor indexes assessment including eigenvalues, mean diffusivity, and fractional anisotropy (FA) as well as muscle volume and architecture (ie, fiber length and pennation angle) were characterized in lower leg muscles (n = 8). Intramuscular variability and sex differences were characterized in young healthy men and women (n = 10 in each group). Student t test, statistical parametric mapping, correlation coefficients (Spearman rho and Pearson product-moment) and coefficient of variation (CV) were used for statistical data analysis. Results High reproducibility of measurements (mean CV ± standard deviation, 4.6% ± 3.8) was determined in diffusion properties and architectural parameters. Significant sex differences were detected in FA (4.2% in women for the entire lower leg; P = .001) and muscle volume (21.7% in men for the entire lower leg; P = .008), whereas architecture parameters were almost identical across sex. Additional differences were found independently of sex in diffusion properties and architecture along several muscles of the lower leg. Conclusion The high-spatial-resolution DTI assessed with 7.0-T MR imaging allows a reproducible assessment of structural organization of superficial and deep muscles, giving indirect information on muscle function. © RSNA, 2018 Online supplemental material is

  10. Disruption of Accumbens and Thalamic White Matter Connectivity Revealed by Diffusion Tensor Tractography in Young Men with Genetic Risk for Obesity

    Directory of Open Access Journals (Sweden)

    Gaia Olivo

    2018-02-01

    Full Text Available Background: Neurovascular coupling is associated with white matter (WM structural integrity, and it is regulated by specific subtypes of dopaminergic receptors. An altered activity of such receptors, highly expressed in reward-related regions, has been reported in carriers of obesity-risk alleles of the fat mass and obesity associated (FTO gene. Among the reward-related regions, the thalamus and the nucleus accumbens are particularly vulnerable to blood pressure dysregulation due to their peculiar anatomo-vascular characteristics, and have been consistently reported to be altered in early-stage obesity. We have thus hypothesized that a disruption in thalamus and nucleus accumbens WM microstructure, possibly on neurovascular basis, could potentially be a predisposing factor underlying the enhanced risk for obesity in the risk-allele carriers.Methods: We have tested WM integrity in 21 male participants genotyped on the FTO risk single nucleotide polymorphisms (SNP rs9939609, through a deterministic tractography analysis. Only homozygous participants (9 AA, 12 TT were included. 11 tracts were selected and categorized as following according to our hypothesis: “risk tracts”, “obesity-associated tracts”, and a control tract (forcpes major. We investigated whether an association existed between genotype, body mass index (BMI and WM microstructural integrity in the “risk-tracts” (anterior thalamic radiation and accumbofrontal fasciculus compared to other tracts. Moreover, we explored whether WM diffusivity could be related to specific personality traits in terms of punishment and reward sensitivity, as measure by the BIS/BAS questionnaire.Results: An effect of the genotype and an interaction effect of genotype and BMI were detected on the fractional anisotropy (FA of the “risk tracts”. Correlations between WM diffusivity parameters and measures of punishment and reward sensitivity were also detected in many WM tracts of both networks

  11. Brain changes following four weeks of unimanual motor training: Evidence from fMRI-guided diffusion MRI tractography.

    Science.gov (United States)

    Reid, Lee B; Sale, Martin V; Cunnington, Ross; Mattingley, Jason B; Rose, Stephen E

    2017-09-01

    We have reported reliable changes in behavior, brain structure, and function in 24 healthy right-handed adults who practiced a finger-thumb opposition sequence task with their left hand for 10 min daily, over 4 weeks. Here, we extend these findings by using diffusion MRI to investigate white-matter changes in the corticospinal tract, basal-ganglia, and connections of the dorsolateral prefrontal cortex. Twenty-three participant datasets were available with pre-training and post-training scans. Task performance improved in all participants (mean: 52.8%, SD: 20.0%; group P right caudate nucleus (4.9%; P left nucleus accumbens (-1.3%; P right corticospinal tract (mean 3.28%; P left corticospinal tract did not show any changes. FA also increased in white matter connections between the right middle frontal gyrus and both right caudate nucleus (17/22 participants; P right supplementary motor area (18/22 participants; P left (non-trained) hemisphere. In combination with our functional and structural findings, this study provides detailed, multifocal evidence for widespread neuroplastic changes in the human brain resulting from motor training. Hum Brain Mapp 38:4302-4312, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Detection of hand and leg motor tract injury using novel diffusion tensor MRI tractography in children with central motor dysfunction.

    Science.gov (United States)

    Jeong, Jeong-Won; Lee, Jessica; Kamson, David O; Chugani, Harry T; Juhász, Csaba

    2015-09-01

    To examine whether an objective segmenation of corticospinal tract (CST) associated with hand and leg movements can be used to detect central motor weakness in the corresponding extremities in a pediatric population. This retrospective study included diffusion tensor imaging (DTI) of 25 children with central paresis affecting at least one limb (age: 9.0±4.2years, 15 boys, 5/13/7 children with left/right/both hemispheric lesions including ischemia, cyst, and gliosis), as well as 42 pediatric control subjects with no motor dysfunction (age: 9.0±5.5years, 21 boys, 31 healthy/11 non-lesional epilepsy children). Leg- and hand-related CST pathways were segmented using DTI-maximum a posteriori (DTI-MAP) classification. The resulting CST volumes were then divided by total supratentorial white matter volume, resulting in a marker called "normalized streamline volume ratio (NSVR)" to quantify the degree of axonal loss in separate CST pathways associated with leg and hand motor functions. A receiver operating characteristic curve was applied to measure the accuracy of this marker to identify extremities with motor weakness. NSVR values of hand/leg CST selectively achieved the following values of accuracy/sensitivity/specificity: 0.84/0.84/0.57, 0.82/0.81/0.55, 0.78/0.75/0.55, 0.79/0.81/0.54 at a cut-off of 0.03/0.03/0.03/0.02 for right hand CST, left hand CST, right leg CST, and left leg CST, respectively. Motor weakness of hand and leg was most likely present at the cut-off values of hand and leg NSVR (i.e., 0.029/0.028/0.025/0.020 for left-hand/right-hand/left-leg/right-leg). The control group showed a moderate age-related increase in absolute CST volumes and a biphasic age-related variation of the normalized CST volumes, which were lacking in the paretic children. This study demonstrates that DTI-MAP classification may provide a new imaging tool to quantify axonal loss in children with central motor dysfunction. Using this technique, we found that early-life brain

  13. Cortical reorganization associated lower extremity motor recovery as evidenced by functional MRI and diffusion tensor tractography in a stroke patient.

    Science.gov (United States)

    Jang, Sung Ho; You, Sung H; Kwon, Yong-Hyun; Hallett, Mark; Lee, Mi Young; Ahn, Sang Ho

    2005-01-01

    Recovery mechanisms supporting upper extremity motor recovery following stroke are well established, but cortical mechanism associated with lower extremity motor recovery is unknown. The aim of this study was to assess cortical reorganization associated with lower extremity motor recovery in a hemiparetic patient. Six control subjects and a 17 year-old woman with left intracerebral hemorrhage due to an arterio-venous malformation rupture were evaluated. The motor function of the paretic (left) hip and knee had recovered slowly to the extent of her being able to overcome gravity for 10 months after the onset of stroke. However, her paretic upper extremity showed no significant motor recovery. Blood oxygenation level dependent (BOLD) functional MRI at 1.5 Tesla was used to determine the acutual location of cortical activation in the predefined regions of interest. Concurrently, Diffusion Tensor Imaging (DTI) in combination with a novel 3D-fiber reconstruction algorithm was utilized to investigate the pattern of the corticospinal pathway connectivity between the areas of the motor stream. All subjects' body parts were secured in the scanner and performed a sequential knee flexion-extension with a predetermined angle of 0-60 degrees at 0.5 Hz. Controls showed anticipated activation in the contralateral sensorimotor cortex (SM1) and the descending corticospinal fibers stemming from motor cortex. In contrast to control normal subjects, the stroke patient showed fMRI activation only in the unaffected (right) primary SM1 during either paretic or nonparetic knee movements. DTT fiber tracing data showed that the corticospinal tract fibers were found only in the unaffected hemisphere but not in the affected hemisphere. Our results indicate that an ipsilateral motor pathway from the unaffected (right) motor cortex to the paretic (right) leg was present in this patient. This study raises the potential that the contralesional (ipsilateral) SM1 is involved in cortical

  14. Stability of Gradient Field Corrections for Quantitative Diffusion MRI

    OpenAIRE

    Rogers, Baxter P.; Blaber, Justin; Welch, E. Brian; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.

    2017-01-01

    In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fie...

  15. Training shortest-path tractography: Automatic learning of spatial priors

    DEFF Research Database (Denmark)

    Kasenburg, Niklas; Liptrot, Matthew George; Reislev, Nina Linde

    2016-01-01

    Tractography is the standard tool for automatic delineation of white matter tracts from diffusion weighted images. However, the output of tractography often requires post-processing to remove false positives and ensure a robust delineation of the studied tract, and this demands expert prior...... knowledge. Here we demonstrate how such prior knowledge, or indeed any prior spatial information, can be automatically incorporated into a shortest-path tractography approach to produce more robust results. We describe how such a prior can be automatically generated (learned) from a population, and we...

  16. Learning from Tractography

    DEFF Research Database (Denmark)

    Kasenburg, Niklas

    Analysis of structural connections between brain regions enables us to gain insight into the structural architecture of the human brain and into how connections are affected by age or pathology. Tractography is the standard tool for automatic delineation of structural connections or tracts. Post......-processing of tractography results using expert prior knowledge is often performed to ensure a robust delineation. In this thesis, I present a shortest-path tractography (SPT) framework that can automatically incorporate any prior knowledge about the location of a tract. Furthermore, I show how such a prior can be learned...... of a connection and demonstrate their application in connectivity-based parcellation. Network models are a common way to represent structural connections of the whole brain. With supervised learning methods, features are extracted from these networks and are associated with a parameter of interest. Dimensionality...

  17. Tractography of lumbar nerve roots: initial results

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Vincent; Budzik, Jean-Francois; Thuc, Vianney le; Cotten, Anne [Hopital Roger Salengro, Service de Radiologie et d' Imagerie musculo-squelettique, Lille Cedex (France); Duhamel, Alain [Universite de Lille 2, UDSL, Lille (France); Bera-Louville, Anne [Service de Rhumatologie, Hopital Roger Salengro, Lille (France)

    2011-06-15

    The aims of this preliminary study were to demonstrate the feasibility of in vivo diffusion tensor imaging (DTI) and fibre tracking (FT) of the lumbar nerve roots, and to assess potential differences in the DTI parameters of the lumbar nerves between healthy volunteers and patients suffering from disc herniation. Nineteen patients with unilateral sciatica related to posterolateral or foraminal disc herniation and 19 healthy volunteers were enrolled in this study. DTI with tractography of the L5 or S1 nerves was performed. Mean fractional anisotropy (FA) and mean diffusivity (MD) values were calculated from tractography images. FA and MD values could be obtained from DTI-FT images in all controls and patients. The mean FA value of the compressed lumbar nerve roots was significantly lower than the FA of the contralateral nerve roots (p=0.0001) and of the nerve roots of volunteers (p=0.0001). MD was significantly higher in compressed nerve roots than in the contralateral nerve root (p=0.0002) and in the nerve roots of volunteers (p=0.04). DTI with tractography of the lumbar nerves is possible. Significant changes in diffusion parameters were found in the compressed lumbar nerves. (orig.)

  18. Tractography of lumbar nerve roots: initial results

    International Nuclear Information System (INIS)

    Balbi, Vincent; Budzik, Jean-Francois; Thuc, Vianney le; Cotten, Anne; Duhamel, Alain; Bera-Louville, Anne

    2011-01-01

    The aims of this preliminary study were to demonstrate the feasibility of in vivo diffusion tensor imaging (DTI) and fibre tracking (FT) of the lumbar nerve roots, and to assess potential differences in the DTI parameters of the lumbar nerves between healthy volunteers and patients suffering from disc herniation. Nineteen patients with unilateral sciatica related to posterolateral or foraminal disc herniation and 19 healthy volunteers were enrolled in this study. DTI with tractography of the L5 or S1 nerves was performed. Mean fractional anisotropy (FA) and mean diffusivity (MD) values were calculated from tractography images. FA and MD values could be obtained from DTI-FT images in all controls and patients. The mean FA value of the compressed lumbar nerve roots was significantly lower than the FA of the contralateral nerve roots (p=0.0001) and of the nerve roots of volunteers (p=0.0001). MD was significantly higher in compressed nerve roots than in the contralateral nerve root (p=0.0002) and in the nerve roots of volunteers (p=0.04). DTI with tractography of the lumbar nerves is possible. Significant changes in diffusion parameters were found in the compressed lumbar nerves. (orig.)

  19. Long-term functional outcomes and correlation with regional brain connectivity by MRI diffusion tractography metrics in a near-term rabbit model of intrauterine growth restriction.

    Directory of Open Access Journals (Sweden)

    Miriam Illa

    Full Text Available BACKGROUND: Intrauterine growth restriction (IUGR affects 5-10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI parameters and connectivity. METHODOLOGY: At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. PRINCIPAL FINDINGS: The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. CONCLUSIONS: The rabbit model used reproduced long-term functional impairments and their

  20. Long-term functional outcomes and correlation with regional brain connectivity by MRI diffusion tractography metrics in a near-term rabbit model of intrauterine growth restriction.

    Science.gov (United States)

    Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard

    2013-01-01

    Intrauterine growth restriction (IUGR) affects 5-10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. The rabbit model used reproduced long-term functional impairments and their neurostructural correlates of abnormal neurodevelopment associated with IUGR

  1. Long-Term Functional Outcomes and Correlation with Regional Brain Connectivity by MRI Diffusion Tractography Metrics in a Near-Term Rabbit Model of Intrauterine Growth Restriction

    Science.gov (United States)

    Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard

    2013-01-01

    Background Intrauterine growth restriction (IUGR) affects 5–10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. Methodology At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. Principal Findings The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. Conclusions The rabbit model used reproduced long-term functional impairments and their neurostructural

  2. Frozen history : limitations and possibilities of quantitative diffusion studies

    NARCIS (Netherlands)

    Mom, G.P.A.; Albert de la Bruhèze, A.A.; Oldenziel, R.

    2009-01-01

    In this contribution I have tried to show how quantitative methods can generate new questions and thus support historical research. It can be concluded that re ducing historical complexity through forcing reality into the shape of a diffusion curve does not seem to be the preferable strategy for

  3. Principles and implementation of diffusion-weighted and diffusion tensor imaging

    International Nuclear Information System (INIS)

    Roberts, Timothy P.L.; Schwartz, E.S.

    2007-01-01

    We review the physiological basis of diffusion-weighted imaging and discuss the implementation of diffusion-weighted imaging pulse sequences and the subsequent postprocessing to yield quantitative estimations of diffusion parameters. We also introduce the concept of directionality of ''apparent'' diffusion in vivo and the means of assessing such anisotropy quantitatively. This in turn leads to the methodological application of diffusion tensor imaging and the subsequent postprocessing, known as tractography. The following articles deal with the clinical applications enabled by such methodologies. (orig.)

  4. Brain microstructure mapping using quantitative and diffusion MRI

    International Nuclear Information System (INIS)

    Lebois, Alice

    2014-01-01

    This thesis is focused on the human brain microstructure mapping using quantitative and diffusion MRI. The T1/T2 quantitative imaging relies on sequences dedicated to the mapping of T1 and T2 relaxation times. Their variations within the tissue are linked to the presence of different water compartments defined by a specific organization of the tissue at the cell scale. Measuring these parameters can help, therefore, to better characterize the brain microstructure. The dMRI, on the other hand, explores the brownian motion of water molecules in the brain tissue, where the water molecules' movement is constrained by natural barriers, such as cell membranes. Thus, the information on their displacement carried by the dMRI signal gives access to the underlying cyto-architecture. Combination of these two modalities is, therefore, a promising way to probe the brain tissue microstructure. The main goal of the present thesis is to set up the methodology to study the microstructure of the white matter of the human brain in vivo. The first part includes the acquisition of a unique MRI database of 79 healthy subjects (the Archi/CONNECT), which includes anatomical high resolution data, relaxometry data, diffusion-weighted data at high spatio-angular resolution and functional data. This database has allowed us to build the first atlas of the anatomical connectivity of the healthy brain through the automatic segmentation of the major white matter bundles, providing an appropriate anatomical reference for the white matter to study individually the quantitative parameters along each fascicle, characterizing its microstructure organization. Emphasis was placed on the construction of the first atlas of the T1/T2 profiles along the major white matter pathways. The profiles of the T1 and T2 relaxation times were then correlated to the quantitative profiles computed from the diffusion MRI data (fractional anisotropy, radial and longitudinal diffusivities, apparent diffusion coefficient

  5. Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging

    International Nuclear Information System (INIS)

    Dubois, J.; Perrin, M.; Mangin, J.F.; Cointepas, Y.; Duchesnay, E.; Le Bihan, D.; Hertz-Pannier, L.; Dehaene-Lambertz, G.; Dubois, J.; Dehaene-Lambertz, G.; Perrin, M.; Mangin, J.F.; Cointepas, Y.; Duchesnay, E.; Le Bihan, D.; Hertz-Pannier, L.

    2008-01-01

    Normal cognitive development in infants follows a well-known temporal sequence, which is assumed to be correlated with the structural maturation of underlying functional networks. Postmortem studies and, more recently, structural MR imaging studies have described qualitatively the heterogeneous spatio-temporal progression of white matter myelination. However, in vivo quantification of the maturation phases of fiber bundles is still lacking. We used noninvasive diffusion tensor MR imaging and tractography in twenty-three 1-4-month-old healthy infants to quantify the early maturation of the main cerebral fascicles. A specific maturation model, based on the respective roles of different maturational processes on the diffusion phenomena, was designed to highlight asynchronous maturation across bundles by evaluating the time-course of mean diffusivity and anisotropy changes over the considered developmental period. Using an original approach, a progression of maturation in four relative stages was determined in each tract by estimating the maturation state and speed, from the diffusion indices over the infants group compared with an adults group on one hand, and in each tract compared with the average over bundles on the other hand. Results were coherent with, and extended previous findings in 8 of 11 bundles, showing the anterior limb of the internal capsule and cingulum as the most immature, followed by the optic radiations, arcuate and inferior longitudinal fascicles, then the spino-thalamic tract and fornix, and finally the cortico-spinal tract as the most mature bundle. Thus, this approach provides new quantitative landmarks for further noninvasive research on brain-behavior relationships during normal and abnormal development. (authors)

  6. Glioma surgery using intraoperative tractography and MEP monitoring

    International Nuclear Information System (INIS)

    Maesawa, Satoshi; Nakahara, Norimoto; Watanabe, Tadashi; Fujii, Masazumi; Yoshida, Jun

    2009-01-01

    In surgery of gliomas in motor-eloquent locations, it is essential to maximize resection while minimizing motor deficits. We attempted to identify the cortico-spinal tract (CST) by intraoperative-diffusion tensor imaging (DTI) tractography, combined with electrophysiological mapping using direct subcortical stimulation during tumor resection. Our techniques and preliminary results are reported. Tumors were removed from twelve patients with gliomas in and around the CST using high-field intraoperative MRI and neuronavigation system (BrainSUITE). DTI-based tractography was implemented for navigation of CST pre-and intraoperatively. When the CST was close to the manipulating area, direct subcortical stimulation was performed, and motor evoked potential (MEP)-responses were examined. Locations of CST indicated by pre- and intraoperative tractography (pre- or intra-CST-tractography), and locations identified by subcortical stimulation were recorded, and those correlations were examined. Imaging and functional outcomes were reviewed. Total resections were achieved in 10 patients (83.4%). Two patients developed transient deterioration of motor function (16.6%), and permanent paresis was seen in one (8.3%). The distance from intra-CST-tractography to corresponding sites by subcortical stimulation was 4.5 mm in average (standard deviation (SD)=4.2), and significantly shorter than from pre-CST-tractography. That distance correlated significantly with the intensity of subcortical stimulation. We observed that intraoperative DTI-tractography demonstrated the location of the pyramidal tract more accurately than preoperative one. The combination of intraoperative tractgraphy and MEP monitoring enhanced the quality of surgery for gliomas in motor-eloquent area. (author)

  7. On multi-spectral quantitative photoacoustic tomography in diffusive regime

    International Nuclear Information System (INIS)

    Bal, Guillaume; Ren, Kui

    2012-01-01

    The objective of quantitative photoacoustic tomography (qPAT) is to reconstruct the diffusion, absorption and Grüneisen thermodynamic coefficients of heterogeneous media from knowledge of the interior absorbed radiation. It has been shown in Bal and Ren (2011 Inverse Problems 27 075003), based on diffusion theory, that with data acquired at one given wavelength, all three coefficients cannot be reconstructed uniquely. In this work, we study the multi-spectral qPAT problem and show that when multiple wavelength data are available, all coefficients can be reconstructed simultaneously under minor prior assumptions. Moreover, the reconstructions are shown to be very stable. We present some numerical simulations that support the theoretical results. (paper)

  8. Regional differences in fiber tractography predict neurodevelopmental outcomes in neonates with infantile Krabbe disease

    Directory of Open Access Journals (Sweden)

    A. Gupta

    2015-01-01

    Interpretation: Neonatal microstructural abnormalities correlate with neurodevelopmental treatment outcomes in patients treated for infantile Krabbe disease. DTI with quantitative tractography is an excellent biomarker for evaluating infants with Krabbe disease identified through newborn screening.

  9. Seeing More by Showing Less: Orientation-Dependent Transparency Rendering for Fiber Tractography Visualization

    OpenAIRE

    Tax, Chantal M. W.; Chamberland, Maxime; van Stralen, Marijn; Viergever, Max A.; Whittingstall, Kevin; Fortin, David; Descoteaux, Maxime; Leemans, Alexander

    2015-01-01

    Fiber tractography plays an important role in exploring the architectural organization of fiber trajectories, both in fundamental neuroscience and in clinical applications. With the advent of diffusion MRI (dMRI) approaches that can also model "crossing fibers", the complexity of the fiber network as reconstructed with tractography has increased tremendously. Many pathways interdigitate and overlap, which hampers an unequivocal 3D visualization of the network and impedes an efficient study of...

  10. Trade-off between angular and spatial resolutions in in vivo fiber tractography

    OpenAIRE

    Vos, Sjoerd B.; Aksoy, Murat; Han, Zhaoying; Holdsworth, Samantha J.; Maclaren, Julian; Viergever, Max A.; Leemans, Alexander; Bammer, Roland

    2016-01-01

    Tractography is becoming an increasingly popular method to reconstruct white matter connections in vivo. The diffusion MRI data that tractography is based on requires a high angular resolution to resolve crossing fibers whereas high spatial resolution is required to distinguish kissing from crossing fibers. However, scan time increases with increasing spatial and angular resolutions, which can become infeasible in clinical settings. Here we investigated the trade-off between spatial and angul...

  11. Performance of unscented Kalman filter tractography in edema: Analysis of the two-tensor model.

    Science.gov (United States)

    Liao, Ruizhi; Ning, Lipeng; Chen, Zhenrui; Rigolo, Laura; Gong, Shun; Pasternak, Ofer; Golby, Alexandra J; Rathi, Yogesh; O'Donnell, Lauren J

    2017-01-01

    Diffusion MRI tractography is increasingly used in pre-operative neurosurgical planning to visualize critical fiber tracts. However, a major challenge for conventional tractography, especially in patients with brain tumors, is tracing fiber tracts that are affected by vasogenic edema, which increases water content in the tissue and lowers diffusion anisotropy. One strategy for improving fiber tracking is to use a tractography method that is more sensitive than the traditional single-tensor streamline tractography. We performed experiments to assess the performance of two-tensor unscented Kalman filter (UKF) tractography in edema. UKF tractography fits a diffusion model to the data during fiber tracking, taking advantage of prior information from the previous step along the fiber. We studied UKF performance in a synthetic diffusion MRI digital phantom with simulated edema and in retrospective data from two neurosurgical patients with edema affecting the arcuate fasciculus and corticospinal tracts. We compared the performance of several tractography methods including traditional streamline, UKF single-tensor, and UKF two-tensor. To provide practical guidance on how the UKF method could be employed, we evaluated the impact of using various seed regions both inside and outside the edematous regions, as well as the impact of parameter settings on the tractography sensitivity. We quantified the sensitivity of different methods by measuring the percentage of the patient-specific fMRI activation that was reached by the tractography. We expected that diffusion anisotropy threshold parameters, as well as the inclusion of a free water model, would significantly influence the reconstruction of edematous WM fiber tracts, because edema increases water content in the tissue and lowers anisotropy. Contrary to our initial expectations, varying the fractional anisotropy threshold and including a free water model did not affect the UKF two-tensor tractography output appreciably in

  12. White matter mapping by DTI-based tractography for neurosurgery

    International Nuclear Information System (INIS)

    Kamada, Kyousuke

    2009-01-01

    To validate the corticospinal tract (CST) and arcuate fasciculus (AF) illustrated by diffusion tensor imaging (DTI), we used CST- and AF-tractography integrated neuronavigation and monopolar and bipolar direct fiber stimulation. Forty seven patients with brain lesions adjacent to the CST and AF were studied. During lesion resection, direct fiber stimulation was applied to the CST and AF to elicit motor responses (fiber-motor evoked potential (MEP)) and the impairment of language-related functions to identify the CST and AF. The minimum distance between the resection border and illustrated CST was measured on postoperative images. Direct fiber stimulation demonstrated that CST- and AF-tractography accurately reflected anatomical CST functioning. The cortical stimulation to the gyrus, including the language-functional MRI (fMRI) activation, evoked speech arrest, while the subcortical stimulation close to the AF reproducibly caused 'paranomia' without speech arrest. There were strong correlations between stimulus intensity for the fiber-MEP and the distance between eloquent fibers and the stimulus points. The convergent calculation formulated 1.8 mA as the electrical threshold of CST for the fiber-MEP, which was much smaller than that of the hand motor area. Validated tractography demonstrated the mean distance and intersection angle between CST and AF were 5 mm and 107 deg, respectively. In addition, the anisotropic diffusion-weighted image (ADWI) and CST-tractography clearly indicated the locations of the primary motor area (PMA) and the central sulcus and well reflected the anatomical characteristics of the corticospinal tract in the human brain. DTI-based tractography is a reliable way to map the white matter connections in the entire brain in clinical and basic neuroscience. By combining these techniques, investigating the cortico-subcortical connections in the human central nervous system could contribute to elucidating the neural networks of the human brain and

  13. White matter mapping by DTI-based tractography for neurosurgery

    International Nuclear Information System (INIS)

    Kamada, Kyousuke

    2011-01-01

    The purpose of this study was to validate the corticospinal tract (CST) and arcuate fasciculus (AF) illustrated by diffusion tensor imaging (DTI), we used CST- and AF-tractography integrated neuronavigation and monopolar and bipolar direct fiber stimulation. Forty seven patients with brain lesions adjacent to the CST and AF were studied. During lesion resection, direct fiber stimulation was applied to the CST and AF to elicit motor responses (fiber-MEP) and the impairment of language-related functions to identify the CST and AF. The minimum distance between the resection border and illustrated CST was measured on postoperative images. Direct fiber stimulation demonstrated that CST- and AF-tractography accurately reflected anatomical CST functioning. The cortical stimulation to the gyrus, including the language-fMRI activation, evoked speech arrest, while the subcortical stimulation close to the AF reproducibly caused 'paranomia' without speech arrest. There were strong correlations between stimulus intensity for the fiber-MEP and the distance between eloquent fibers and the stimulus points. The convergent calculation formulated 1.8 mA as the electrical threshold of CST for the fiber-MEP, which was much smaller than that of the hand motor area. Validated tractography demonstrated the mean distance and intersection angle between CST and AF were 5 mm and 107 deg, respectively. In addition, the anisotropic diffusion-weighted image (ADWI) and CST-tractography clearly indicated the locations of the primary motor area (PMA) and the central sulcus and well reflected the anatomical characteristics of the corticospinal tract in the human brain. DTI-based tractography is a reliable way to map the white matter connections in the entire brain in clinical and basic neuroscience. By combining these techniques, investigating the cortico-subcortical connections in the human central nervous system could contribute to elucidating the neural networks of the human brain and shed light

  14. 弥散张量成像的脑神经示踪重建及临床应用研究%Three-dimensional reconstruction of cranial nerves and clinical exploration based on diffusion tensor tractography

    Institute of Scientific and Technical Information of China (English)

    马峻; 苏少波; 赵岩; 李勇刚; 岳树源

    2014-01-01

    目的 探讨应用弥散张量成像进行脑神经(CNs)纤维束示踪、可视化重建的可行性,并尝试将其应用于颅底肿瘤术前规划.方法 利用3.0T磁共振对10例健康志愿者,10例颅底肿瘤患者进行稳态采集快速成像、弥散张量成像扫描,3D Slicer软件完成脑神经纤维示踪、重建,病变患者重建肿瘤三维影像,通过手术观察及神经电生理监测确认脑神经的位置.结果 CNⅡ、Ⅲ、Ⅴ、Ⅵ、Ⅶ~Ⅷ、Ⅹ、Ⅻ成像良好,肿瘤、水肿与相关脑神经的三维空间关系通过纤维示踪与三维重建得以呈现,经过手术验证准确无误.结论联合应用弥散张量成像及3D Slicer软件是正常及病理状态下脑神经可视化重建切实可行的方案,具有良好的临床应用前景.%Objective To investigate the feasibility of 3-dimensional reconstruction of cranial nerves (CNs) via diffusion imaging tractography,and attempt to apply in the preoperative plan of skull base tumor.Methods 3-Tesla magnetic resonance imaging scans,including 3D-FSPGR,FIESTA and DTI,were used to collect information of 10 healthy subjects and 10 skull base tumor patients.DTI data were integrated into the 3D-Slicer for fiber tracking,overlapped anatomic images to determine course of nerves.3D reconstructions of tumors were achieved to perform neighbor,encasing,invading relationship between lesion and nerves whose location was then recorded during surgery by surgical observation and neurophysiological monitoring.Results Detailed fibers of the cranialnerves were depicted.Optic pathway showed perfect 3D streamline body,especially the posterior of optic chiasm.Oculomotor nerve coursed from the brainstem to the cavernous sinus distally,which also had high fidelity.Trigeminal nerve allowed visualization of gasserian ganglion as cisternal segment.Cisternal parts of abducent nerve,facial/ vestibulocochlear nerve,vagus nerve,hypoglossal nerve were also imaged well.Moreover,the 3D

  15. [Tractography of the uncinate fasciculus and the posterior cingulate fasciculus in patients with mild cognitive impairment and Alzheimer disease].

    Science.gov (United States)

    Larroza, A; Moratal, D; D'ocón Alcañiz, V; Arana, E

    2014-01-01

    Brain tractography is a non-invasive medical imaging technique which enables in vivo visualisation and various types of quantitative studies of white matter fibre tracts connecting different parts of the brain. We completed a quantitative study using brain tractography with diffusion tensor imaging in patients with mild cognitive impairment, patients with Alzheimer disease, and normal controls, in order to analyse the reproducibility and validity of the results. Fractional anisotropy (FA) and mean diffusivity (MD) were measured across the uncinate fasciculus and the posterior cingulate fasciculus in images, obtained from a database and a research centre, representing 52 subjects distributed among the 3 study groups. Two observers took the measurements twice in order to evaluate intra- and inter-observer reproducibility. Measurements of FA and MD of the uncinate fasciculus delivered an intraclass correlation coefficient above 0.9; ICC was above 0.68 for the posterior cingulate fasciculus. Patients with Alzheimer disease showed lower values of FA and higher MD values in the right uncinate fasciculus in images from the research centre. A comparison of the measurements from the 2 centres revealed significant differences. We established a reproducible methodology for performing tractography of the tracts in question. FA and MD indexes may serve as early indicators of Alzheimer disease. The type of equipment and the method used to acquire images must be considered because they may alter results as shown by comparing the 2 data sets in this study. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  16. Multi-source quantitative photoacoustic tomography in a diffusive regime

    International Nuclear Information System (INIS)

    Bal, Guillaume; Ren, Kui

    2011-01-01

    Photoacoustic tomography (PAT) is a novel hybrid medical imaging technique that aims to combine the large contrast of optical coefficients with the high-resolution capabilities of ultrasound. We assume that the first step of PAT, namely the reconstruction of a map of absorbed radiation from ultrasound boundary measurement, has been done. We focus on quantitative photoacoustic tomography, which aims at quantitatively reconstructing the optical coefficients from knowledge of the absorbed radiation map. We present a non-iterative procedure to reconstruct such optical coefficients, namely the diffusion and absorption coefficients, and the Grüneisen coefficient when the propagation of radiation is modeled by a second-order elliptic equation. We show that PAT measurements allow us to uniquely reconstruct only two out of the above three coefficients, even when data are collected using an arbitrary number of radiation illuminations. We present uniqueness and stability results for the reconstructions of two such parameters and demonstrate the accuracy of the reconstruction algorithm with numerical reconstructions from two-dimensional synthetic data

  17. Introduction to tractography-guided navigation: using 3-tesla magnetic resonance tractography in surgery for cerebral arteriovenous malformations.

    Science.gov (United States)

    Kikuta, K; Takagi, Y; Nozaki, K; Hashimoto, N

    2008-01-01

    To examine the effectiveness of magnetic resonance (MR) tractography in surgery for cerebral arteriovenous malformations (AVMs). A preoperative evaluation of major neural tracts around the nidus was carried out with 3-tesla (3 T) MR tractography in 25 consecutive patients with cerebral AVMs. The patients were 12 men and 13 women ranging in age from 4 to 60 years of age (mean age: 31.2 +/- 14.1 years). Twelve presented with hemorrhage. Images were obtained with T2-weighted turbo spin echo sequences, axial T1-weighted three-dimensional magnetization-prepared rapid acquisition gradient-echo (MPRAGE) sequences, three-dimensional time-of-flight MR angiography (3D TOF MRA), and thin-section diffusion-tensor imaging (DTI). The AVMs were obliterated in 22 of the 25 patients. A postoperative study of the MR tractography was carried out in 24 patients. In 21 patients, tracts were preserved and no postoperative neurological worsening was observed. Disruption of the tracts was found in 3 patients, and postoperative worsening was observed in 2 patients. However, no deterioration occurred in 1 patient with cerebellar AVM. Notwithstanding the limitations of this method, MR tractography can be considered useful for confirming the integrity of deviated tracts, for localizing deviated tracts, and for evaluating surgical risk, especially in cases of non-hemorrhagic AVM.

  18. Application of fiber tractography for neurosurgery

    International Nuclear Information System (INIS)

    Hashimoto, Naoya; Yoshimine, Toshiki

    2007-01-01

    This review describes about the fiber tractography (FT) for its basic principle, method, and application to neurosurgery involving usefulness, pitfall, validation needed and future perspective. MR diffusion weighted image exhibits the diffusion (Brownian movement) of water molecules and its multiple images taken by different angles of magnetic field can also give information of their diffusion anisotropy, whereby diffusion tensor image is yielded as FT owing to their high anisotropy, with use of appropriate softwares assuming an ellipsoid of anisotropic water (single tensor model). FT thus presents an image of a specific and functional neurofiber bundle. Recently, FT in neurosurgery has been recognized to have pitfalls in tracing the bundle at its crossing and branch, e.g., suggested avoidance of surgery of eloquent area navigated with FT alone. For this, developed and considered are the multi-tensor models based on multiple ellipsoids and on probabilistic one on probability, and combination of electrophysiological mapping is thought necessary as well. Application of FT is also actively in progress to understand neurological diseases like cerebral vascular lesion, hemiplegia, epilepsy, injury and many others. FT navigation without other validation is thus limited in neurosurgery, but FT is surely one of means to improve patients' prognosis and quality of life (QOL). (R.T.)

  19. Probabilistic shortest path tractography in DTI using Gaussian Process ODE solvers

    DEFF Research Database (Denmark)

    Schober, Michael; Kasenburg, Niklas; Feragen, Aasa

    2014-01-01

    Tractography in diffusion tensor imaging estimates connectivity in the brain through observations of local diffusivity. These observations are noisy and of low resolution and, as a consequence, connections cannot be found with high precision. We use probabilistic numerics to estimate connectivity...

  20. TractoR: Magnetic Resonance Imaging and Tractography with R

    Directory of Open Access Journals (Sweden)

    Chris A. Clark

    2011-10-01

    Full Text Available Statistical techniques play a major role in contemporary methods for analyzing magnetic resonance imaging (MRI data. In addition to the central role that classical statistical methods play in research using MRI, statistical modeling and machine learning techniques are key to many modern data analysis pipelines. Applications for these techniques cover a broad spectrum of research, including many preclinical and clinical studies, and in some cases these methods are working their way into widespread routine use. In this manuscript we describe a software tool called TractoR (for “Tractography with R”, a collection of packages for the R language and environment, along with additional infrastructure for straightforwardly performing common image processing tasks. TractoR provides general purpose functions for reading, writing and manipulating MR images, as well as more specific code for fitting signal models to diffusion MRI data and performing tractography, a technique for visualizing neural connectivity.

  1. The Emerging Role of Tractography in Deep Brain Stimulation: Basic Principles and Current Applications

    Directory of Open Access Journals (Sweden)

    Nelson B. Rodrigues

    2018-01-01

    Full Text Available Diffusion tensor imaging (DTI is an MRI-based technique that delineates white matter tracts in the brain by tracking the diffusion of water in neural tissue. This methodology, known as “tractography”, has been extensively applied in clinical neuroscience to explore nervous system architecture and diseases. More recently, tractography has been used to assist with neurosurgical targeting in functional neurosurgery. This review provides an overview of DTI principles, and discusses current applications of tractography for improving and helping develop novel deep brain stimulation (DBS targets.

  2. Development of a web-based graphical user interface to design brain fiber models for tractography validation

    OpenAIRE

    González Vela, Guillem

    2017-01-01

    Diffusion Magnetic Resonance Imaging (MRI) is an advanced MRI technique which can provide brain white matter tissue microscopic information. From this information, the connectivity map of axons in the brain can be obtained using tractography algorithms. However, this cartography of the brain wiring is known to suffer from several biases. Phantomas is an open source library created with the aim of evaluating tractography. It allows the creation of in silico brain phantoms and simulates i...

  3. Resolving crossings in the corticospinal tract by two-tensor streamline tractography

    DEFF Research Database (Denmark)

    Qazi, Arish Asif; Radmanesh, Alireza; O'Donnell, Lauren

    2009-01-01

    An inherent drawback of the traditional diffusion tensor model is its limited ability to provide detailed information about multidirectional fiber architecture within a voxel. This leads to erroneous fiber tractography results in locations where fiber bundles cross each other. This may lead to th...

  4. Two-tensor streamline tractography through white matter intra-voxel fiber crossings

    DEFF Research Database (Denmark)

    Qazi, Arish Asif; Kindlmann, G; O'Donnell, L

    2008-01-01

    An inherent drawback of the traditional diffusion tensor model is its limited ability to provide detailed information about multidirectional fiber architecture within a voxel. This leads to erroneous fiber tractography results in locations where fiber bundles cross each other. In this paper, we p...

  5. Seeing More by Showing Less : Orientation-Dependent Transparency Rendering for Fiber Tractography Visualization

    NARCIS (Netherlands)

    Tax, Chantal M. W.; Chamberland, Maxime; van Stralen, Marijn; Viergever, Max A.; Whittingstall, Kevin; Fortin, David; Descoteaux, Maxime; Leemans, Alexander

    2015-01-01

    Fiber tractography plays an important role in exploring the architectural organization of fiber trajectories, both in fundamental neuroscience and in clinical applications. With the advent of diffusion MRI (dMRI) approaches that can also model "crossing fibers", the complexity of the fiber network

  6. Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves

    Science.gov (United States)

    Lindbergh, Tobias; Larsson, Marcus; Szabó, Zoltán; Casimir-Ahn, Henrik; Strömberg, Tomas

    2010-03-01

    Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo- and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves (group A) gave an increasing oxygen saturation of 19+/-4%, 24+/-5%, and 28+/-8% (panimals increased with LVAD pump speed (p<0.001, ANOVA) and with oxygen content in inhaled gas (p<0.001, ANOVA). The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.

  7. Quantitative analysis of thermal diffuse X-ray scattering on single crystals. Communication 2. FCC metals

    International Nuclear Information System (INIS)

    Najsh, V.E.; Novoselova, T.V.; Sagaradze, I.V.; Kvyatkovskij, B.E.; Fedorov, V.I.; Chernenkov, Yu.P.

    1994-01-01

    With the use of X-ray diffractometer a study was made into the intensity of diffuse scattering in Ni crystals with FCC lattice. Earlier accomplished quantitative analysis for BCC crystals was extended to FCC lattices. Comparative evaluation was made for cooperative thermal oscillation patterns and corresponding diffuse scattering in crystals of various structures. Measurements on FCC crystals were carried out at room temperature using AgK a lpha-radiation in 96 points of Ni crystal. 8 refs., 4 figs

  8. Osteosarcoma subtypes: Magnetic resonance and quantitative diffusion weighted imaging criteria.

    Science.gov (United States)

    Zeitoun, Rania; Shokry, Ahmed M; Ahmed Khaleel, Sahar; Mogahed, Shaimaa M

    2018-03-01

    Osteosarcoma (OS) is a primary bone malignancy, characterized by spindle cells producing osteoid. The objective of this study is to describe the magnetic resonance imaging (MRI) features of different OS subtypes, record their attenuation diffusion coefficient (ADC) values and to point to the relation of their pathologic base and their corresponding ADC value. We performed a retrospective observational lesion-based analysis for 31 pathologically proven osteosarcoma subtypes: osteoblastic (n = 9), fibroblastic (n = 8), chondroblastic (n = 6), para-osteal (n = 3), periosteal (n = 1), telangiectatic (n = 2), small cell (n = 1) and extra-skeletal (n = 1). On conventional images we recorded: bone of origin, epicenter, intra-articular extension, and invasion of articulating bones, skip lesions, distant metastases, pathological fractures, ossified matrix, hemorrhage and necrosis. We measured the mean ADC value for each lesion. Among the included OS lesions, 51.6% originated at the femur, 29% showed intra-articular extension, 16% invaded neighboring bone, 9% were associated with pathological fracture and 25.8% were associated with distant metastases. On MRI, all lesions showed ossified matrix, 35.5% showed hemorrhage and 58% showed necrosis. The mean ADC values for OS lesions ranged from 0.74 × 10 -3  mm 2 /s (recorded for conventional osteoblastic OS) to 1.50 × 10 -3  mm 2 /s (recorded for telangiectatic OS) with an average value of 1.16 ± 0.18 × 10 -3  mm 2 /s. Conventional chondroblastic OS recorded higher values compared to the other two conventional subtypes. Osteosarcoma has different pathologic subtypes which correspondingly vary in their imaging criteria and their ADC values. Copyright © 2018. Production and hosting by Elsevier B.V.

  9. Quantitative diffusion tensor fiber tracking of age-related changes in the limbic system

    International Nuclear Information System (INIS)

    Stadlbauer, Andreas; Salomonowitz, Erich; Strunk, Guido; Hammen, Thilo; Ganslandt, Oliver

    2008-01-01

    Cerebral white matter is known to undergo degradation with aging, and diffusion tensor imaging (DTI) is capable of revealing the white matter integrity. We assessed age-related changes of quantitative diffusivity parameters and fiber characteristics within the fornix and the cingulum. Thirty-eight healthy subjects aged 18-88 years were examined at 3 Tesla using a 1.9-mm isotropic DTI sequence. Quantitative fiber tracking was performed for 3D-segmentation of the fornix and the cingulum to determine fractional anisotropy (FA), mean diffusivity (MD), eigenvalues (λ 1 , λ 2 , and λ 3 ), number of fibers (NoF), and mean NoF/voxel (FpV). In the fornix, all diffusivity parameters (FA, MD, and eigenvalues) were moderately correlated with age. Strong and moderate negative correlations for NoF and FpV were found, respectively. In the cingulum, no correlation was observed between FA and age, and only weak correlations for the other quantitative parameters. Differences in correlations between the fornix and the cingulum were significant for all diffusivity parameters and for NoF, but not for FpV. The strongest relative changes per decade of age were found in the fornix: FA -2.1%, MD 4.2%, NoF -10.6%, and FpV -4.6%. Our quantitative 3D fiber tracking approach shows that the cingulum is resistant to aging while the fornix is not. (orig.)

  10. Tracking errors in tractography of the gastrocnemius muscle. A comparison between the transverse and sagittal planes

    International Nuclear Information System (INIS)

    Aoki, Takako; Tohdoh, Yukihiro; Tawara, Noriyuki; Okuwaki, Toru; Horiuchi, Akira; Itagaki, Takuma; Niitsu, Mamoru

    2010-01-01

    In scans taken in conventional direction, tracking errors may occur when using a streamline-based algorithm for the tractography of the gastrocnemius muscle. To solve errors in tracking, we applied tractography to the musculotendinous junction and performed fiber tracking on the gastrocnemius muscle of 10 healthy subjects with their written informed consent. We employed a spin-echo diffusion tensor imaging (SE-DTI) sequence with 6-direction diffusion gradient sensitization and acquired DTI images at 1.5 tesla using a body array coil with parallel imaging. We compared tractography obtained in the transverse and sagittal planes using anatomical reference and found that the gastrocnemius muscle and musculotendinous junction were significantly better visualized on sagittal scans and in 3 regions of interest. We utilized Mann-Whitney U-test to determine significant differences between rates of concordance (P 2 value of skeletal muscle is around 50 ms, and TE should be as short as possible. A streamline-based algorithm is based on the continuity of a vector. It is easy to take running of the muscle fiber in sagittal scan. Therefore, tracking error is hard to occur. In conclusion, sagittal scanning may be one way to eliminate tracking errors in the tractography of the gastrocnemius muscle. Tracking errors were smaller with sagittal scans than transverse scans, and sagittal scans allow better fiber tracking. (author)

  11. Cognitive Function and 3-Tesla Magnetic Resonance Imaging Tractography of White Matter Hyperintensities in Elderly Persons

    Directory of Open Access Journals (Sweden)

    William Reginold

    2015-10-01

    Full Text Available Background/Aims: This study used 3-Tesla magnetic resonance imaging (MRI tractography to determine if there was an association between tracts crossing white matter hyperintensities (WMH and cognitive function in elderly persons. Methods: Brain T2-weighted fluid-attenuated inversion recovery (FLAIR and diffusion tensor MRI scans were acquired in participants above the age of 60 years. Twenty-six persons had WMH identified on T2 FLAIR scans. They completed a battery of neuropsychological tests and were classified as normal controls (n = 15 or with Alzheimer's dementia (n = 11. Tractography was generated by the Fiber Assignment by Continuous Tracking method. All tracts that crossed WMH were segmented. The average fractional anisotropy and average mean diffusivity of these tracts were quantified. We studied the association between cognitive test scores with the average mean diffusivity and average fractional anisotropy of tracts while controlling for age, total WMH volume and diagnosis. Results: An increased mean diffusivity of tracts crossing WMH was associated with worse performance on the Wechsler Memory Scale-III Longest Span Forward (p = 0.02. There was no association between the fractional anisotropy of tracts and performance on cognitive testing. Conclusion: The mean diffusivity of tracts crossing WMH measured by tractography is a novel correlate of performance on the Wechsler Memory Scale-III Longest Span Forward in elderly persons.

  12. Cognitive Function and 3-Tesla Magnetic Resonance Imaging Tractography of White Matter Hyperintensities in Elderly Persons.

    Science.gov (United States)

    Reginold, William; Luedke, Angela C; Tam, Angela; Itorralba, Justine; Fernandez-Ruiz, Juan; Reginold, Jennifer; Islam, Omar; Garcia, Angeles

    2015-01-01

    This study used 3-Tesla magnetic resonance imaging (MRI) tractography to determine if there was an association between tracts crossing white matter hyperintensities (WMH) and cognitive function in elderly persons. Brain T2-weighted fluid-attenuated inversion recovery (FLAIR) and diffusion tensor MRI scans were acquired in participants above the age of 60 years. Twenty-six persons had WMH identified on T2 FLAIR scans. They completed a battery of neuropsychological tests and were classified as normal controls (n = 15) or with Alzheimer's dementia (n = 11). Tractography was generated by the Fiber Assignment by Continuous Tracking method. All tracts that crossed WMH were segmented. The average fractional anisotropy and average mean diffusivity of these tracts were quantified. We studied the association between cognitive test scores with the average mean diffusivity and average fractional anisotropy of tracts while controlling for age, total WMH volume and diagnosis. An increased mean diffusivity of tracts crossing WMH was associated with worse performance on the Wechsler Memory Scale-III Longest Span Forward (p = 0.02). There was no association between the fractional anisotropy of tracts and performance on cognitive testing. The mean diffusivity of tracts crossing WMH measured by tractography is a novel correlate of performance on the Wechsler Memory Scale-III Longest Span Forward in elderly persons.

  13. Validation of in vitro probabilistic tractography

    DEFF Research Database (Denmark)

    Dyrby, Tim B.; Sogaard, L.V.; Parker, G.J.

    2007-01-01

    assessed the anatomical validity and reproducibility of in vitro multi-fiber probabilistic tractography against two invasive tracers: the histochemically detectable biotinylated dextran amine and manganese enhanced magnetic resonance imaging. Post mortern DWI was used to ensure that most of the sources...

  14. Contrasting Connectivity of the Vim and Vop Nuclei of the Motor Thalamus Demonstrated by Probabilistic Tractography

    DEFF Research Database (Denmark)

    Hyam, Jonathan A; Owen, Sarah L F; Kringelbach, Morten L.

    2011-01-01

    BACKGROUND:: Targeting of the motor thalamus for the treatment of tremor has traditionally been achieved by a combination of anatomical atlases and neuro-imaging, intra-operative clinical assessment, and physiological recordings. OBJECTIVE:: To evaluate whether thalamic nuclei targeted in tremor...... surgery could be identified by virtue of their differing connections using non-invasive neuro-imaging, thereby providing an extra factor to aid successful targeting. METHODS:: Diffusion tensor tractography was performed in seventeen healthy control subjects using diffusion data acquired at 1.5T magnetic...... resonance imaging (60 directions, b-value=1000 s/mm, 2x2x2 mm voxels). The ventralis intermedius (Vim) and ventralis oralis posterior (Vop) nuclei were identified by a stereotactic neurosurgeon and these sites were used as seeds for probabilistic tractography. The expected cortical connections...

  15. Gender differences in MR muscle tractography

    International Nuclear Information System (INIS)

    Okamoto, Yoshikazu; Minami, Manabu; Kunimatsu, Akira; Kono, Tatsuo; Sonobe, Jyunichi; Kujiraoka, Yuka

    2010-01-01

    Tractography of skeletal muscle can clearly reveal the 3-dimensional course of muscle fibers, and the procedure has great potential and could open new fields for diagnostic imaging. Studying this technique for clinical application, we noticed differences in the number of visualized tracts among volunteers and among muscles in the same volunteer. To comprehend why the number of visualized tracts varied so that we could acquire consistently high quality tractography of muscle fiber, we started to examine whether differences in individual parameters affected tractography visualization. The purpose of this study was to determine whether there are gender- and age-specific differences that differentiate the muscles by gender and age in MR tractography of skeletal muscle fiber. We divided 33 healthy volunteers by gender and age among 3 groups, A (13 younger men, aged 20 to 36 years), B (11 younger women, 25 to 39 years), and C (9 older men, 50 to 69), and we obtained from each volunteer tractographs of 8 fibers, including the bilateral gastrocnemius medialis (GCM), gastrocnemius lateralis (GCL), soleus (SOL), and anterior tibialis (AT) muscles. We classified the fibers into 5 grades depending on the extent of visualized tracts and used Mann-Whitney U-test to compare scores by gender (Group A versus B) and age (Group A versus C). Muscle tracts were significantly better visualized in women than men (median total visual score, 34 versus 24, P<0.05). In particular, the SOL muscles showed better visualization in the right (4.0 in women, 1.0 in men, P<0.05) and left (3.0 in women, 1.0 in men, P<0.05). Difference by age was not significant. The GCL was the highest scored muscle in all groups. Our results suggest that group differences, especially by gender, affected visualization of tractography of muscle fiber of the calf. (author)

  16. Cognitive Function and 3-Tesla Magnetic Resonance Imaging Tractography of White Matter Hyperintensities in Elderly Persons

    OpenAIRE

    Reginold, William; Luedke, Angela C.; Tam, Angela; Itorralba, Justine; Fernandez-Ruiz, Juan; Reginold, Jennifer; Islam, Omar; Garcia, Angeles

    2015-01-01

    Background/Aims: This study used 3-Tesla magnetic resonance imaging (MRI) tractography to determine if there was an association between tracts crossing white matter hyperintensities (WMH) and cognitive function in elderly persons. Methods: Brain T2-weighted fluid-attenuated inversion recovery (FLAIR) and diffusion tensor MRI scans were acquired in participants above the age of 60 years. Twenty-six persons had WMH identified on T2 FLAIR scans. They completed a battery of neuropsychological tes...

  17. MR neurography of ulnar nerve entrapment at the cubital tunnel: a diffusion tensor imaging study

    International Nuclear Information System (INIS)

    Breitenseher, Julia B.; Berzaczy, Dominik; Nemec, Stefan F.; Weber, Michael; Prayer, Daniela; Kasprian, Gregor; Kranz, Gottfried; Sycha, Thomas; Hold, Alina

    2015-01-01

    MR neurography, diffusion tensor imaging (DTI) and tractography at 3 Tesla were evaluated for the assessment of patients with ulnar neuropathy at the elbow (UNE). Axial T2-weighted and single-shot DTI sequences (16 gradient encoding directions) were acquired, covering the cubital tunnel of 46 patients with clinically and electrodiagnostically confirmed UNE and 20 healthy controls. Cross-sectional area (CSA) was measured at the retrocondylar sulcus and FA and ADC values on each section along the ulnar nerve. Three-dimensional nerve tractography and T2-weighted neurography results were independently assessed by two raters. Patients showed a significant reduction of ulnar nerve FA values at the retrocondylar sulcus (p = 0.002) and the deep flexor fascia (p = 0.005). At tractography, a complete or partial discontinuity of the ulnar nerve was found in 26/40 (65 %) of patients. Assessment of T2 neurography was most sensitive in detecting UNE (sensitivity, 91 %; specificity, 79 %), followed by tractography (88 %/69 %). CSA and FA measurements were less effective in detecting UNE. T2-weighted neurography remains the most sensitive MR technique in the imaging evaluation of clinically manifest UNE. DTI-based neurography at 3 Tesla supports the MR imaging assessment of UNE patients by adding quantitative and 3D imaging data. (orig.)

  18. MR neurography of ulnar nerve entrapment at the cubital tunnel: a diffusion tensor imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Breitenseher, Julia B.; Berzaczy, Dominik; Nemec, Stefan F.; Weber, Michael; Prayer, Daniela; Kasprian, Gregor [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Kranz, Gottfried; Sycha, Thomas [Medical University of Vienna, Department of Neurology, Vienna (Austria); Hold, Alina [Medical University of Vienna, Department of Plastic and Reconstructive Surgery, Vienna (Austria)

    2015-07-15

    MR neurography, diffusion tensor imaging (DTI) and tractography at 3 Tesla were evaluated for the assessment of patients with ulnar neuropathy at the elbow (UNE). Axial T2-weighted and single-shot DTI sequences (16 gradient encoding directions) were acquired, covering the cubital tunnel of 46 patients with clinically and electrodiagnostically confirmed UNE and 20 healthy controls. Cross-sectional area (CSA) was measured at the retrocondylar sulcus and FA and ADC values on each section along the ulnar nerve. Three-dimensional nerve tractography and T2-weighted neurography results were independently assessed by two raters. Patients showed a significant reduction of ulnar nerve FA values at the retrocondylar sulcus (p = 0.002) and the deep flexor fascia (p = 0.005). At tractography, a complete or partial discontinuity of the ulnar nerve was found in 26/40 (65 %) of patients. Assessment of T2 neurography was most sensitive in detecting UNE (sensitivity, 91 %; specificity, 79 %), followed by tractography (88 %/69 %). CSA and FA measurements were less effective in detecting UNE. T2-weighted neurography remains the most sensitive MR technique in the imaging evaluation of clinically manifest UNE. DTI-based neurography at 3 Tesla supports the MR imaging assessment of UNE patients by adding quantitative and 3D imaging data. (orig.)

  19. BootGraph: probabilistic fiber tractography using bootstrap algorithms and graph theory.

    Science.gov (United States)

    Vorburger, Robert S; Reischauer, Carolin; Boesiger, Peter

    2013-02-01

    Bootstrap methods have recently been introduced to diffusion-weighted magnetic resonance imaging to estimate the measurement uncertainty of ensuing diffusion parameters directly from the acquired data without the necessity to assume a noise model. These methods have been previously combined with deterministic streamline tractography algorithms to allow for the assessment of connection probabilities in the human brain. Thereby, the local noise induced disturbance in the diffusion data is accumulated additively due to the incremental progression of streamline tractography algorithms. Graph based approaches have been proposed to overcome this drawback of streamline techniques. For this reason, the bootstrap method is in the present work incorporated into a graph setup to derive a new probabilistic fiber tractography method, called BootGraph. The acquired data set is thereby converted into a weighted, undirected graph by defining a vertex in each voxel and edges between adjacent vertices. By means of the cone of uncertainty, which is derived using the wild bootstrap, a weight is thereafter assigned to each edge. Two path finding algorithms are subsequently applied to derive connection probabilities. While the first algorithm is based on the shortest path approach, the second algorithm takes all existing paths between two vertices into consideration. Tracking results are compared to an established algorithm based on the bootstrap method in combination with streamline fiber tractography and to another graph based algorithm. The BootGraph shows a very good performance in crossing situations with respect to false negatives and permits incorporating additional constraints, such as a curvature threshold. By inheriting the advantages of the bootstrap method and graph theory, the BootGraph method provides a computationally efficient and flexible probabilistic tractography setup to compute connection probability maps and virtual fiber pathways without the drawbacks of

  20. Preoperative DTI and probabilistic tractography in an amputee with deep brain stimulation for lower limb stump pain.

    Science.gov (United States)

    Owen, S L F; Heath, J; Kringelbach, M L; Stein, J F; Aziz, T Z

    2007-10-01

    This study aimed to find out whether preoperative diffusion tensor imaging (DTI) and probabilistic tractography could help with surgical planning for deep brain stimulation in the periaqueductal/periventricular grey area (PAG/PVG) in a patient with lower leg stump pain. A preoperative DTI was obtained from the patient, who then received DBS surgery in the PAG/PVG area with good pain relief. The postoperative MRI scan showing electrode placement was used to calculate four seed areas to represent the contacts on the Medtronic 3387 electrode. Probabilistic tractography was then performed from the pre-operative DTI image. Tracts were seen to connect to many areas within the pain network from the four different contacts. These initial findings suggest that preoperative DTI scanning and probabilistic tractography may be able to assist surgical planning in the future.

  1. Feasibility of a RARE-based sequence for quantitative diffusion-weighted MRI of the spine

    International Nuclear Information System (INIS)

    Raya, J.G.; Dietrich, O.; Sommer, J.; Reiser, M.F.; Baur-Melnyk, A.; Birkenmaier, C.

    2007-01-01

    The feasibility of a diffusion-weighted single-shot fast-spin-echo sequence for the diagnostic work-up of bone marrow diseases was assessed. Twenty healthy controls and 16 patients with various bone marrow pathologies of the spine (bone marrow edema, tumor and inflammation) were examined with a diffusion-weighted single-shot sequence based on a modified rapid acquisition with relaxation enhancement (mRARE) technique; four diffusion weightings (b-values: 50, 250, 500 and 750 s/mm 2 ) in three orthogonal orientations were applied. Apparent diffusion coefficients (ADCs) were determined in the bone marrow and in the intervertebral discs of healthy volunteers and in diseased bone marrow. Ten of the 20 volunteers were repeatedly scanned within 30 min to examine short-time reproducibility. Spatial reproducibility was assessed by measuring ADCs in two different slices including the same lesion in 12 patients. The ADCs of the lesions exhibited significantly higher values, (1.27 ± 0.32) x 10 -3 mm 2 /s, compared with healthy bone marrow, (0.21 ± 0.10) x 10 -3 mm 2 /s. Short-time and spatial reproducibility had a mean coefficient of variation of 2.1% and 6.4%, respectively. The diffusion-weighted mRARE sequence provides a reliable tool for determining quantitative ADCs in vertebral bone marrow with adequate image quality. (orig.)

  2. Fuzzy logic algorithm for quantitative tissue characterization of diffuse liver diseases from ultrasound images.

    Science.gov (United States)

    Badawi, A M; Derbala, A S; Youssef, A M

    1999-08-01

    Computerized ultrasound tissue characterization has become an objective means for diagnosis of liver diseases. It is difficult to differentiate diffuse liver diseases, namely cirrhotic and fatty liver by visual inspection from the ultrasound images. The visual criteria for differentiating diffused diseases are rather confusing and highly dependent upon the sonographer's experience. This often causes a bias effects in the diagnostic procedure and limits its objectivity and reproducibility. Computerized tissue characterization to assist quantitatively the sonographer for the accurate differentiation and to minimize the degree of risk is thus justified. Fuzzy logic has emerged as one of the most active area in classification. In this paper, we present an approach that employs Fuzzy reasoning techniques to automatically differentiate diffuse liver diseases using numerical quantitative features measured from the ultrasound images. Fuzzy rules were generated from over 140 cases consisting of normal, fatty, and cirrhotic livers. The input to the fuzzy system is an eight dimensional vector of feature values: the mean gray level (MGL), the percentile 10%, the contrast (CON), the angular second moment (ASM), the entropy (ENT), the correlation (COR), the attenuation (ATTEN) and the speckle separation. The output of the fuzzy system is one of the three categories: cirrhosis, fatty or normal. The steps done for differentiating the pathologies are data acquisition and feature extraction, dividing the input spaces of the measured quantitative data into fuzzy sets. Based on the expert knowledge, the fuzzy rules are generated and applied using the fuzzy inference procedures to determine the pathology. Different membership functions are developed for the input spaces. This approach has resulted in very good sensitivities and specificity for classifying diffused liver pathologies. This classification technique can be used in the diagnostic process, together with the history

  3. Quantitative diffusion characteristics of the human brain depend on MRI sequence parameters

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.; Blumhardt, L.D. [University of Nottingham, Department of Neurology, Royal Preston Hospital, Preston (United Kingdom); Morgan, P.S. [Division of Academic Radiology, Queens Medical Centre, Nottingham (United Kingdom)

    2002-07-01

    Quantitative diffusion-weighted MRI has been applied to the study of neurological diseases, including multiple sclerosis, where the molecular self-diffusion coefficient D has been measured in both lesions and normal-appearing white matter. Histograms of D have been used as a novel measure of the ''lesion load'', with potential applications that include the monitoring of efficacy in new treatment trials. However different ways of measuring D may affect its value, making comparison between different centres and research groups impossible. We aimed to assess the effect, if any, of using two different MRI sequences on the value of D. We studied 13 healthy volunteers, using two different quantitative diffusion sequences (including different b{sub max} values and gradient applications). Maps of D were analysed using both regions of interest (ROI) in white matter and ''whole brain'' histograms, and compared between the two sequences. In addition, we studied three standardised test liquids (with known values of D) using both sequences. Histograms from the two sequences had different distributions, with a greater spread and higher peak position from the sequence with lower b{sub max}. This greater spread of D was also evident in the white matter and test liquid ROI. ''Limits of agreement'' analysis demonstrated that the differences could be clinically relevant, despite significant correlations between the sequences obtained using simple rank methods. We conclude that different quantitative diffusion sequences are unlikely to produce directly comparable values of D, particularly if different b{sub max} values are used. In addition, the use of inappropriate statistical tests may give false impressions of close agreement. Standardisation of methods for the measurement of D are required if these techniques are to become useful tools, for example in monitoring changes in the disease burden of multiple sclerosis. (orig.)

  4. Quantitative diffusion characteristics of the human brain depend on MRI sequence parameters

    International Nuclear Information System (INIS)

    Wilson, M.; Blumhardt, L.D.; Morgan, P.S.

    2002-01-01

    Quantitative diffusion-weighted MRI has been applied to the study of neurological diseases, including multiple sclerosis, where the molecular self-diffusion coefficient D has been measured in both lesions and normal-appearing white matter. Histograms of D have been used as a novel measure of the ''lesion load'', with potential applications that include the monitoring of efficacy in new treatment trials. However different ways of measuring D may affect its value, making comparison between different centres and research groups impossible. We aimed to assess the effect, if any, of using two different MRI sequences on the value of D. We studied 13 healthy volunteers, using two different quantitative diffusion sequences (including different b max values and gradient applications). Maps of D were analysed using both regions of interest (ROI) in white matter and ''whole brain'' histograms, and compared between the two sequences. In addition, we studied three standardised test liquids (with known values of D) using both sequences. Histograms from the two sequences had different distributions, with a greater spread and higher peak position from the sequence with lower b max . This greater spread of D was also evident in the white matter and test liquid ROI. ''Limits of agreement'' analysis demonstrated that the differences could be clinically relevant, despite significant correlations between the sequences obtained using simple rank methods. We conclude that different quantitative diffusion sequences are unlikely to produce directly comparable values of D, particularly if different b max values are used. In addition, the use of inappropriate statistical tests may give false impressions of close agreement. Standardisation of methods for the measurement of D are required if these techniques are to become useful tools, for example in monitoring changes in the disease burden of multiple sclerosis. (orig.)

  5. Quantitation of chemical exchange rates using pulsed-field-gradient diffusion measurements

    International Nuclear Information System (INIS)

    Andrec, Michael; Prestegard, James H.

    1997-01-01

    A new approach to the quantitation of chemical exchange rates is presented, and its utility is illustrated with application to the exchange of protein amide protons with bulk water. The approach consists of a selective-inversion exchange HMQC experiment in which a short spin echo diffusion filter has been inserted into the exchange period. In this way, the kinetics of exchange are encoded directly in an apparent diffusion coefficient which is a function of the position of the diffusion filter in the pulse sequence. A detailed theoretical analysis of this experiment indicates that, in addition to the measurement of simple exchange rates, the experiment is capable of measuring the effect of mediated exchange, e.g. the transfer of magnetization from bulk water to an amide site mediated by an internal bound water molecule or a labile protein side-chain proton in fast exchange with bulk water. Experimental results for rapid water/amide exchange in acyl carrier protein are shown to be quantitatively consistent with the exchange rates measured using a selective-inversion exchange experiment

  6. Tractographie globale sous contraintes anatomiques

    OpenAIRE

    Teillac , Achille

    2017-01-01

    This work aims at developing a method inferring white matter fibers reconstructed using a global spin-glass approach constrained by anatomical prior knowledge. Unlike usual methods building fibers independently from one another, our markovian approach reconstructs the whole tractogram in an unique process by minimizing the global energy depending on the spin glass configuration (position, orientation, length and connection(s)) and the match with the local diffusion process in order to increas...

  7. Diffusion-weighted MRI and quantitative biophysical modeling of hippocampal neurite loss in chronic stress.

    Directory of Open Access Journals (Sweden)

    Peter Vestergaard-Poulsen

    Full Text Available Chronic stress has detrimental effects on physiology, learning and memory and is involved in the development of anxiety and depressive disorders. Besides changes in synaptic formation and neurogenesis, chronic stress also induces dendritic remodeling in the hippocampus, amygdala and the prefrontal cortex. Investigations of dendritic remodeling during development and treatment of stress are currently limited by the invasive nature of histological and stereological methods. Here we show that high field diffusion-weighted MRI combined with quantitative biophysical modeling of the hippocampal dendritic loss in 21 day restraint stressed rats highly correlates with former histological findings. Our study strongly indicates that diffusion-weighted MRI is sensitive to regional dendritic loss and thus a promising candidate for non-invasive studies of dendritic plasticity in chronic stress and stress-related disorders.

  8. Parotid gland tumours: MR tractography to assess contact with the facial nerve.

    Science.gov (United States)

    Attyé, Arnaud; Karkas, Alexandre; Troprès, Irène; Roustit, Matthieu; Kastler, Adrian; Bettega, Georges; Lamalle, Laurent; Renard, Félix; Righini, Christian; Krainik, Alexandre

    2016-07-01

    To assess the feasibility of intraparotid facial nerve (VIIn) tractographic reconstructions in estimating the presence of a contact between the VIIn and the tumour, in patients requiring surgical resection of parotid tumours. Patients underwent MR scans with VIIn tractography calculated with the constrained spherical deconvolution model. The parameters of the diffusion sequence were: b-value of 1000 s/mm(2); 32 directions; voxel size: 2 mm isotropic; scan time: 9'31'. The potential contacts between VIIn branches and tumours were estimated with different initial fractional anisotropy (iFA) cut-offs compared to surgical data. Surgeons were blinded to the tractography reconstructions and identified both nerves and contact with tumours using nerve stimulation and reference photographs. Twenty-six patients were included in this study and the mean patient age was 55.2 years. Surgical direct assessment of VIIn allowed identifying 0.1 as the iFA threshold with the best sensitivity to detect tumour contact. In all patients with successful VIIn identification by tractography, surgeons confirmed nerve courses as well as lesion location in parotid glands. Mean VIIn branch FA values were significantly lower in cases with tumour contact (t-test; p ≤ 0.01). This study showed the feasibility of intraparotid VIIn tractography to identify nerve contact with parotid tumours. • Diffusion imaging is an efficient method for highlighting the intraparotid VIIn. • Visualization of the VIIn may help to better manage patients before surgery. • We bring new insights to future trials for patients with VIIn dysfunction. • We aimed to provide radio-anatomical references for further studies.

  9. Quantitative modeling of the reaction/diffusion kinetics of two-chemistry photopolymers

    Science.gov (United States)

    Kowalski, Benjamin Andrew

    Optically driven diffusion in photopolymers is an appealing material platform for a broad range of applications, in which the recorded refractive index patterns serve either as images (e.g. data storage, display holography) or as optical elements (e.g. custom GRIN components, integrated optical devices). A quantitative understanding of the reaction/diffusion kinetics is difficult to obtain directly, but is nevertheless necessary in order to fully exploit the wide array of design freedoms in these materials. A general strategy for characterizing these kinetics is proposed, in which key processes are decoupled and independently measured. This strategy enables prediction of a material's potential refractive index change, solely on the basis of its chemical components. The degree to which a material does not reach this potential reveals the fraction of monomer that has participated in unwanted reactions, reducing spatial resolution and dynamic range. This approach is demonstrated for a model material similar to commercial media, achieving quantitative predictions of index response over three orders of exposure dose (~1 to ~103 mJ cm-2) and three orders of feature size (0.35 to 500 microns). The resulting insights enable guided, rational design of new material formulations with demonstrated performance improvement.

  10. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    Science.gov (United States)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  11. Tractography of the corticospinal tracts in infants with focal perinatal injury: comparison with normal controls and to motor development

    International Nuclear Information System (INIS)

    Roze, Elise; Harris, Polly A.; Ball, Gareth; Braga, Rodrigo M.; Allsop, Joanna M.; Counsell, Serena J.; Elorza, Leire Zubiaurre; Merchant, Nazakat; Arichi, Tomoki; Edwards, A.D.; Cowan, Frances M.; Porter, Emma; Rutherford, Mary A.

    2012-01-01

    Our aims were to (1) assess the corticospinal tracts (CSTs) in infants with focal injury and healthy term controls using probabilistic tractography and (2) to correlate the conventional magnetic resonance imaging (MRI) and tractography findings in infants with focal injury with their later motor function. We studied 20 infants with focal lesions and 23 controls using MRI and diffusion tensor imaging. Tract volume, fractional anisotropy (FA), apparent diffusion coefficient (ADC) values, axial diffusivity and radial diffusivity (RD) of the CSTs were determined. Asymmetry indices (AIs) were calculated by comparing ipsilateral to contralateral CSTs. Motor outcome was assessed using a standardized neurological examination. Conventional MRI was able to predict normal motor development (n = 9) or hemiplegia (n = 6). In children who developed a mild motor asymmetry (n = 5), conventional MRI predicted a hemiplegia in two and normal motor development in three infants. The AIs for tract volume, FA, ADC and RD showed a significant difference between controls and infants who developed a hemiplegia, and RD also showed a significant difference in AI between controls and infants who developed a mild asymmetry. Conventional MRI was able to predict subsequent normal motor development or hemiplegia following focal injury in newborn infants. Measures of RD obtained from diffusion tractography may offer additional information for predicting a subsequent asymmetry in motor function. (orig.)

  12. White matter pathways in persistent developmental stuttering: Lessons from tractography.

    Science.gov (United States)

    Kronfeld-Duenias, Vered; Civier, Oren; Amir, Ofer; Ezrati-Vinacour, Ruth; Ben-Shachar, Michal

    2018-03-01

    Fluent speech production relies on the coordinated processing of multiple brain regions. This highlights the role of neural pathways that connect distinct brain regions in producing fluent speech. Here, we aim to investigate the role of the white matter pathways in persistent developmental stuttering (PDS), where speech fluency is disrupted. We use diffusion weighted imaging and tractography to compare the white matter properties between adults who do and do not stutter. We compare the diffusion properties along 18 major cerebral white matter pathways. We complement the analysis with an overview of the methodology and a roadmap of the pathways implicated in PDS according to the existing literature. We report differences in the microstructural properties of the anterior callosum, the right inferior longitudinal fasciculus and the right cingulum in people who stutter compared with fluent controls. Persistent developmental stuttering is consistently associated with differences in bilateral distributed networks. We review evidence showing that PDS involves differences in bilateral dorsal fronto-temporal and fronto-parietal pathways, in callosal pathways, in several motor pathways and in basal ganglia connections. This entails an important role for long range white matter pathways in this disorder. Using a wide-lens analysis, we demonstrate differences in additional, right hemispheric pathways, which go beyond the replicable findings in the literature. This suggests that the affected circuits may extend beyond the known language and motor pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Visual pathway impairment by pituitary adenomas: quantitative diagnostics by diffusion tensor imaging.

    Science.gov (United States)

    Lilja, Ylva; Gustafsson, Oscar; Ljungberg, Maria; Starck, Göran; Lindblom, Bertil; Skoglund, Thomas; Bergquist, Henrik; Jakobsson, Karl-Erik; Nilsson, Daniel

    2017-09-01

    OBJECTIVE Despite ample experience in surgical treatment of pituitary adenomas, little is known about objective indices that may reveal risk of visual impairment caused by tumor growth that leads to compression of the anterior visual pathways. This study aimed to explore diffusion tensor imaging (DTI) as a means for objective assessment of injury to the anterior visual pathways caused by pituitary adenomas. METHODS Twenty-three patients with pituitary adenomas, scheduled for transsphenoidal tumor resection, and 20 healthy control subjects were included in the study. A minimum suprasellar tumor extension of Grade 2-4, according to the SIPAP (suprasellar, infrasellar, parasellar, anterior, and posterior) scale, was required for inclusion. Neuroophthalmological examinations, conventional MRI, and DTI were completed in all subjects and were repeated 6 months after surgery. Quantitative assessment of chiasmal lift, visual field defect (VFD), and DTI parameters from the optic tracts was performed. Linear correlations, group comparisons, and prediction models were done in controls and patients. RESULTS Both the degree of VFD and chiasmal lift were significantly correlated with the radial diffusivity (r = 0.55, p visual pathways that were compressed by pituitary adenomas. The correlation between radial diffusivity and visual impairment may reflect a gradual demyelination in the visual pathways caused by an increased tumor effect. The low level of axial diffusivity found in the patient group may represent early atrophy in the visual pathways, detectable on DTI but not by conventional methods. DTI may provide objective data, detect early signs of injury, and be an additional diagnostic tool for determining indication for surgery in cases of pituitary adenomas.

  14. Multimodality 3D Superposition and Automated Whole Brain Tractography: Comprehensive Printing of the Functional Brain.

    Science.gov (United States)

    Konakondla, Sanjay; Brimley, Cameron J; Sublett, Jesna Mathew; Stefanowicz, Edward; Flora, Sarah; Mongelluzzo, Gino; Schirmer, Clemens M

    2017-09-29

    Whole brain tractography using diffusion tensor imaging (DTI) sequences can be used to map cerebral connectivity; however, this can be time-consuming due to the manual component of image manipulation required, calling for the need for a standardized, automated, and accurate fiber tracking protocol with automatic whole brain tractography (AWBT). Interpreting conventional two-dimensional (2D) images, such as computed tomography (CT) and magnetic resonance imaging (MRI), as an intraoperative three-dimensional (3D) environment is a difficult task with recognized inter-operator variability. Three-dimensional printing in neurosurgery has gained significant traction in the past decade, and as software, equipment, and practices become more refined, trainee education, surgical skills, research endeavors, innovation, patient education, and outcomes via valued care is projected to improve. We describe a novel multimodality 3D superposition (MMTS) technique, which fuses multiple imaging sequences alongside cerebral tractography into one patient-specific 3D printed model. Inferences on cost and improved outcomes fueled by encouraging patient engagement are explored.

  15. Seeing More by Showing Less: Orientation-Dependent Transparency Rendering for Fiber Tractography Visualization.

    Directory of Open Access Journals (Sweden)

    Chantal M W Tax

    Full Text Available Fiber tractography plays an important role in exploring the architectural organization of fiber trajectories, both in fundamental neuroscience and in clinical applications. With the advent of diffusion MRI (dMRI approaches that can also model "crossing fibers", the complexity of the fiber network as reconstructed with tractography has increased tremendously. Many pathways interdigitate and overlap, which hampers an unequivocal 3D visualization of the network and impedes an efficient study of its organization. We propose a novel fiber tractography visualization approach that interactively and selectively adapts the transparency rendering of fiber trajectories as a function of their orientation to enhance the visibility of the spatial context. More specifically, pathways that are oriented (locally or globally along a user-specified opacity axis can be made more transparent or opaque. This substantially improves the 3D visualization of the fiber network and the exploration of tissue configurations that would otherwise be largely covered by other pathways. We present examples of fiber bundle extraction and neurosurgical planning cases where the added benefit of our new visualization scheme is demonstrated over conventional fiber visualization approaches.

  16. Visualizing whole-brain DTI tractography with GPU-based Tuboids and LoD management.

    Science.gov (United States)

    Petrovic, Vid; Fallon, James; Kuester, Falko

    2007-01-01

    Diffusion Tensor Imaging (DTI) of the human brain, coupled with tractography techniques, enable the extraction of large-collections of three-dimensional tract pathways per subject. These pathways and pathway bundles represent the connectivity between different brain regions and are critical for the understanding of brain related diseases. A flexible and efficient GPU-based rendering technique for DTI tractography data is presented that addresses common performance bottlenecks and image-quality issues, allowing interactive render rates to be achieved on commodity hardware. An occlusion query-based pathway LoD management system for streamlines/streamtubes/tuboids is introduced that optimizes input geometry, vertex processing, and fragment processing loads, and helps reduce overdraw. The tuboid, a fully-shaded streamtube impostor constructed entirely on the GPU from streamline vertices, is also introduced. Unlike full streamtubes and other impostor constructs, tuboids require little to no preprocessing or extra space over the original streamline data. The supported fragment processing levels of detail range from texture-based draft shading to full raycast normal computation, Phong shading, environment mapping, and curvature-correct text labeling. The presented text labeling technique for tuboids provides adaptive, aesthetically pleasing labels that appear attached to the surface of the tubes. Furthermore, an occlusion query aggregating and scheduling scheme for tuboids is described that reduces the query overhead. Results for a tractography dataset are presented, and demonstrate that LoD-managed tuboids offer benefits over traditional streamtubes both in performance and appearance.

  17. Diffusion

    International Nuclear Information System (INIS)

    Kubaschewski, O.

    1983-01-01

    The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes

  18. Quantitative diffusion and swelling kinetic measurements using large-angle interferometric refractometry.

    Science.gov (United States)

    Saunders, John E; Chen, Hao; Brauer, Chris; Clayton, McGregor; Chen, Weijian; Barnes, Jack A; Loock, Hans-Peter

    2015-12-07

    The uptake and release of sorbates into films and coatings is typically accompanied by changes of the films' refractive index and thickness. We provide a comprehensive model to calculate the concentration of the sorbate from the average refractive index and the film thickness, and validate the model experimentally. The mass fraction of the analyte partitioned into a film is described quantitatively by the Lorentz-Lorenz equation and the Clausius-Mosotti equation. To validate the model, the uptake kinetics of water and other solvents into SU-8 films (d = 40-45 μm) were explored. Large-angle interferometric refractometry measurements can be used to characterize films that are between 15 μm to 150 μm thick and, Fourier analysis, is used to determine independently the thickness, the average refractive index and the refractive index at the film-substrate interface at one-second time intervals. From these values the mass fraction of water in SU-8 was calculated. The kinetics were best described by two independent uptake processes having different rates. Each process followed one-dimensional Fickian diffusion kinetics with diffusion coefficients for water into SU-8 photoresist film of 5.67 × 10(-9) cm(2) s(-1) and 61.2 × 10(-9) cm(2) s(-1).

  19. Clinical feasibility of simultaneous multi-slice imaging with blipped-CAIPI for diffusion-weighted imaging and diffusion-tensor imaging of the brain.

    Science.gov (United States)

    Yokota, Hajime; Sakai, Koji; Tazoe, Jun; Goto, Mariko; Imai, Hiroshi; Teramukai, Satoshi; Yamada, Kei

    2017-12-01

    Background Simultaneous multi-slice (SMS) imaging is starting to be used in clinical situation, although evidence of clinical feasibility is scanty. Purpose To prospectively assess the clinical feasibility of SMS diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI) with blipped-controlled aliasing in parallel imaging for brain lesions. Material and Methods The institutional review board approved this study. This study included 156 hyperintense lesions on DWI from 32 patients. A slice acceleration factor of 2 was applied for SMS scans, which allowed shortening of the scan time by 41.3%. The signal-to-noise ratio (SNR) was calculated for brain tissue of a selected slice. The contrast-to-noise ratio (CNR), apparent diffusion coefficient (ADC), and fractional anisotropy (FA) were calculated in 36 hyperintense lesions with a diameter of three pixels or more. Visual assessment was performed for all 156 lesions. Tractography of the corticospinal tract of 29 patients was evaluated. The number of tracts and averaged tract length were used for quantitative analysis, and visual assessment was evaluated by grading. Results The SMS scan showed no bias and acceptable 95% limits of agreement compared to conventional scans in SNR, CNR, and ADC on Bland-Altman analyses. Only FA of the lesions was higher in the SMS scan by 9% ( P = 0.016), whereas FA of the surrounding tissues was similar. Quantitative analysis of tractography showed similar values. Visual assessment of DWI hyperintense lesions and tractography also resulted in comparable evaluation. Conclusion SMS imaging was clinically feasible for imaging quality and quantitative values compared with conventional DWI and DTI.

  20. Quantitative measurement of water diffusion lifetimes at a protein/DNA interface by NMR

    International Nuclear Information System (INIS)

    Gruschus, James M.; Ferretti, James A.

    2001-01-01

    Hydration site lifetimes of slowly diffusing water molecules at the protein/DNA interface of the vnd/NK-2 homeodomain DNA complex were determined using novel three-dimensional NMR techniques. The lifetimes were calculated using the ratios of ROE and NOE cross-relaxation rates between the water and the protein backbone and side chain amides. This calculation of the lifetimes is based on a model of the spectral density function of the water-protein interaction consisting of three timescales of motion: fast vibrational/rotational motion, diffusion into/out of the hydration site, and overall macromolecular tumbling. The lifetimes measured ranged from approximately 400 ps to more than 5 ns, and nearly all the slowly diffusing water molecules detected lie at the protein/DNA interface. A quantitative analysis of relayed water cross-relaxation indicated that even at very short mixing times, 5 ms for ROESY and 12 ms for NOESY, relay of magnetization can make a small but detectable contribution to the measured rates. The temperature dependences of the NOE rates were measured to help discriminate direct dipolar cross-relaxation from chemical exchange. Comparison with several X-ray structures of homeodomain/DNA complexes reveals a strong correspondence between water molecules in conserved locations and the slowly diffusing water molecules detected by NMR. A homology model based on the X-ray structures was created to visualize the conserved water molecules detected at the vnd/NK-2 homeodomain DNA interface. Two chains of water molecules are seen at the right and left sides of the major groove, adjacent to the third helix of the homeodomain. Two water-mediated hydrogen bond bridges spanning the protein/DNA interface are present in the model, one between the backbone of Phe8 and a DNA phosphate, and one between the side chain of Asn51 and a DNA phosphate. The hydrogen bond bridge between Asn51 and the DNA might be especially important since the DNA contact made by the invariant

  1. A Quantitative Property-Property Relationship for the Internal Diffusion Coefficients of Organic Compounds in Solid Materials

    DEFF Research Database (Denmark)

    Huang, Lei; Fantke, Peter; Jolliet, Olivier

    2017-01-01

    of chemical-material combinations. This paper develops and evaluates a quantitative property-property relationship (QPPR) to predict diffusion coefficients for a wide range of organic chemicals and materials. We first compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals in 32......Indoor releases of organic chemicals encapsulated in solid materials are major contributors to human exposures and are directly related to the internal diffusion coefficient in solid materials. Existing correlations to estimate the diffusion coefficient are only valid for a limited number...... consolidated material types. Following a detailed analysis of the temperature influence, we developed a multiple linear regression model to predict diffusion coefficients as a function of chemical molecular weight (MW), temperature, and material type (adjusted R2 of 0.93). The internal validations showed...

  2. Detection of the arcuate fasciculus in congenital amusia depends on the tractography algorithm

    Directory of Open Access Journals (Sweden)

    Joyce L Chen

    2015-01-01

    Full Text Available The advent of diffusion magnetic resonance imaging allows researchers to virtually dissect white matter fibre pathways in the brain in vivo. This, for example, allows us to characterize and quantify how fibre tracts differ across populations in health and disease, and change as a function of training. Based on diffusion MRI, prior literature reports the absence of the arcuate fasciculus (AF in some control individuals and as well in those with congenital amusia. The complete absence of such a major anatomical tract is surprising given the subtle impairments that characterize amusia. Thus, we hypothesize that failure to detect the AF in this population may relate to the tracking algorithm used, and is not necessarily reflective of their phenotype. Diffusion data in control and amusic individuals were analyzed using three different tracking algorithms: deterministic and probabilistic, the latter either modeling two or one fibre populations. Across the three algorithms, we replicate prior findings of a left greater than right AF volume, but do not find group differences or an interaction. We detect the AF in all individuals using the probabilistic 2-fibre model, however, tracking failed in some control and amusic individuals when deterministic tractography was applied. These findings show that the ability to detect the AF in our sample is dependent on the type of tractography algorithm. This raises the question of whether failure to detect the AF in prior studies may be unrelated to the underlying anatomy or phenotype.

  3. Detection of the arcuate fasciculus in congenital amusia depends on the tractography algorithm.

    Science.gov (United States)

    Chen, Joyce L; Kumar, Sukhbinder; Williamson, Victoria J; Scholz, Jan; Griffiths, Timothy D; Stewart, Lauren

    2015-01-01

    The advent of diffusion magnetic resonance imaging (MRI) allows researchers to virtually dissect white matter fiber pathways in the brain in vivo. This, for example, allows us to characterize and quantify how fiber tracts differ across populations in health and disease, and change as a function of training. Based on diffusion MRI, prior literature reports the absence of the arcuate fasciculus (AF) in some control individuals and as well in those with congenital amusia. The complete absence of such a major anatomical tract is surprising given the subtle impairments that characterize amusia. Thus, we hypothesize that failure to detect the AF in this population may relate to the tracking algorithm used, and is not necessarily reflective of their phenotype. Diffusion data in control and amusic individuals were analyzed using three different tracking algorithms: deterministic and probabilistic, the latter either modeling two or one fiber populations. Across the three algorithms, we replicate prior findings of a left greater than right AF volume, but do not find group differences or an interaction. We detect the AF in all individuals using the probabilistic 2-fiber model, however, tracking failed in some control and amusic individuals when deterministic tractography was applied. These findings show that the ability to detect the AF in our sample is dependent on the type of tractography algorithm. This raises the question of whether failure to detect the AF in prior studies may be unrelated to the underlying anatomy or phenotype.

  4. Differentiation of benign and malignant skeletal lesions with quantitative diffusion weighted MRI at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Shivani, E-mail: sahlawa1@jhmi.edu [The Russell H. Morgan Department of Radiology & Radiological Science, The Johns Hopkins University School of Medicine, 601 North Wolfe Street, Baltimore MD 21287 (United States); Khandheria, Paras, E-mail: pkhandh1@jhmi.edu [The Russell H. Morgan Department of Radiology & Radiological Science, The Johns Hopkins University School of Medicine, 601 North Wolfe Street, Baltimore MD 21287 (United States); Subhawong, Ty K., E-mail: TSubhawong@med.miami.edu [Department of Radiology (R-109), University of Miami Leonard M. Miller Miami, FL 33101 (United States); Fayad, Laura M., E-mail: lfayad1@jhmi.edu [The Russell H. Morgan Department of Radiology & Radiological Science, The Johns Hopkins University School of Medicine, 601 North Wolfe Street, Baltimore MD 21287 (United States)

    2015-06-15

    Highlights: • DWI may have predictive value for the characterization of bone lesions. • Benign lesions have higher minimum, and mean ADC values than malignancies. • Minimum ADC has the highest accuracy in discerning benign from malignant lesion. • Minimum ADC of 0.9 × 10. • All ADC measurements were made with high inter-observer concordance. - Abstract: Objectives: To investigate the accuracy of quantitative diffusion-weighted imaging with apparent diffusion coefficient (ADC) mapping for characterizing bone lesions as benign or malignant. Methods: At 3 T, 31 subjects with intramedullary lesions imaged by DWI (b-values 50, 400, 800 s/mm{sup 2}) were included. ADC values (minimum, mean, maximum) were recorded by three observers independently. Interobserver variability and differences between ADC values in benign and malignant lesions were assessed (unpaired t-test, receiver operating characteristic (ROC) analysis). Results: Of 31 lesions, 18 were benign (osteoblastic (n = 1), chondroid (n = 6), cysts (n = 4), hemangiomatosis (n = 1), fibrous (n = 3), eosinophilic granuloma (n = 1), giant cell tumor (n = 1), osteomyelitis (n = 1)) and 13 were malignant (primary (n = 5), metastases (n = 8)). Overall, there were higher minimum (1.27 × 10{sup −3} mm{sup 2}/s vs 0.68 × 10{sup −3} mm{sup 2}/s, p < 0.001), mean (1.68 × 10{sup −3} mm{sup 2}/s vs 1.13 × 10{sup −3} mm{sup 2}/s, p < 0.001), and maximum (2.09 × 10{sup −3} mm{sup 2}/s vs 1. 7 × 10{sup −3} mm{sup 2}/s, p = 0.03). ADC values in benign lesions compared with those in malignancies. ROC analysis revealed areas under the curve for minimum, mean, and maximum ADC values of 0.91, 0.85, and 0.71, respectively. ADC measurements were made with high inter-observer concordance (ρ = 0.83–0.96). Conclusion: Quantitative ADC maps may have predictive value for the characterization of bone lesions. Benign lesions generally have higher minimum, mean, and maximum ADC values than malignancies, with the

  5. Joint Multi-Fiber NODDI Parameter Estimation and Tractography using the Unscented Information Filter

    Directory of Open Access Journals (Sweden)

    Yogesh eRathi

    2016-04-01

    Full Text Available Tracing white matter fiber bundles is an integral part of analyzing brain connectivity. An accurate estimate of the underlying tissue parameters is also paramount in several neuroscience applications. In this work, we propose to use a joint fiber model estimation and tractography algorithm that uses the NODDI (neurite orientation dispersion diffusion imaging model to estimate fiber orientation dispersion consistently and smoothly along the fiber tracts along with estimating the intracellular and extracellular volume fractions from the diffusion signal. While the NODDI model has been used in earlier works to estimate the microstructural parameters at each voxel independently, for the first time, we propose to integrate it into a tractography framework. We extend this framework to estimate the NODDI parameters for two crossing fibers, which is imperative to trace fiber bundles through crossings as well as to estimate the microstructural parameters for each fiber bundle separately. We propose to use the unscented information filter (UIF to accurately estimate the model parameters and perform tractography. The proposed approach has significant computational performance improvements as well as numerical robustness over the unscented Kalman filter (UKF. Our method not only estimates the confidence in the estimated parameters via the covariance matrix, but also provides the Fisher-information matrix of the state variables (model parameters, which can be quite useful to measure model complexity. Results from in-vivo human brain data sets demonstrate the ability of our algorithm to trace through crossing fiber regions, while estimating orientation dispersion and other biophysical model parameters in a consistent manner along the tracts.

  6. Diffusion Tensor Imaging-Based Research on Human White Matter Anatomy

    Directory of Open Access Journals (Sweden)

    Ming-guo Qiu

    2012-01-01

    Full Text Available The aim of this study is to investigate the white matter by the diffusion tensor imaging and the Chinese visible human dataset and to provide the 3D anatomical data of the corticospinal tract for the neurosurgical planning by studying the probabilistic maps and the reproducibility of the corticospinal tract. Diffusion tensor images and high-resolution T1-weighted images of 15 healthy volunteers were acquired; the DTI data were processed using DtiStudio and FSL software. The FA and color FA maps were compared with the sectional images of the Chinese visible human dataset. The probability maps of the corticospinal tract were generated as a quantitative measure of reproducibility for each voxel of the stereotaxic space. The fibers displayed by the diffusion tensor imaging were well consistent with the sectional images of the Chinese visible human dataset and the existing anatomical knowledge. The three-dimensional architecture of the white matter fibers could be clearly visualized on the diffusion tensor tractography. The diffusion tensor tractography can establish the 3D probability maps of the corticospinal tract, in which the degree of intersubject reproducibility of the corticospinal tract is consistent with the previous architectonic report. DTI is a reliable method of studying the fiber connectivity in human brain, but it is difficult to identify the tiny fibers. The probability maps are useful for evaluating and identifying the corticospinal tract in the DTI, providing anatomical information for the preoperative planning and improving the accuracy of surgical risk assessments preoperatively.

  7. Diffusion tensor tract-specific analysis of the uncinate fasciculus in patients with amyotrophic lateral sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kanako; Masutani, Yoshitaka; Watadani, Takeyuki; Nakata, Yasuhiro; Yoshida, Mariko; Abe, Osamu; Ohtomo, Kuni [University of Tokyo, Department of Radiology, Graduate School of Medicine, Bunkyo, Tokyo (Japan); Aoki, Shigeki [Juntendo University, Department of Radiology, Bunkyo, Tokyo (Japan); Iwata, Nobue K.; Terao, Yasuo; Tsuji, Shoji [University of Tokyo, Department of Neurology, Graduate School of Medicine, Bunkyo, Tokyo (Japan)

    2010-08-15

    The uncinate fasciculus (UF) consists of core fibers connecting the frontal and temporal lobes and is considered to be related to cognitive/behavioral function. Using diffusion tensor tractography, we quantitatively evaluated changes in fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) of the UF by tract-specific analysis to evaluate the damage of the UF in patients with amyotrophic lateral sclerosis (ALS). We obtained diffusion tensor images of 15 patients with ALS and 9 age-matched volunteers. Patients with ALS showed significantly lower mean FA (P = 0.029) compared with controls. No significant difference was seen in mean ADC. The results suggest that damage of the UF in patients with ALS can be quantitatively evaluated with FA. (orig.)

  8. A semi-quantitative study of transient ischemic attacks by diffusion weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wen Feng; Guo Liang

    2007-01-01

    Objective: To explore the incidence and morphological findings of transient ischemic attacks (TIA) related-focus by diffusion weighted magnetic resonance imaging(DWI), and the semi-quantitative characteristics of TIA related-focus on DWI manifestation were researched. Methods: A prospective analysis was performed on 39 TIA patients who were admitted to the Pudong New Area People Hospital and who had also undergone DWI scan 3 , and rADC ratio of the lesion was (-25.8 ± 9.01)%, and rAI ratio was(59.9 ± 12.9)% and compared with that of the contralateral side there was significant difference. Conclusion: The incidence of positivity rate of DWI is more than that obtained by conventional MR imaging. The related focus of TIA are very small and the ADC value of the lesion is decreased slightly, but averge intensity is increased highly. These data may be of value in identifying those TIA patients for whom MRI evaluation with DWI is of great clinical utility. (authors)

  9. Non-invasive tissue temperature measurements based on quantitative diffuse optical spectroscopy (DOS) of water

    Energy Technology Data Exchange (ETDEWEB)

    Chung, S H [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Cerussi, A E; Tromberg, B J [Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road, Irvine 92612, CA (United States); Merritt, S I [Masimo Corporation, 40 Parker, Irvine, CA 92618 (United States); Ruth, J, E-mail: bjtrombe@uci.ed [Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Room 240, Skirkanich Hall, Philadelphia, PA 19104 (United States)

    2010-07-07

    We describe the development of a non-invasive method for quantitative tissue temperature measurements using Broadband diffuse optical spectroscopy (DOS). Our approach is based on well-characterized opposing shifts in near-infrared (NIR) water absorption spectra that appear with temperature and macromolecular binding state. Unlike conventional reflectance methods, DOS is used to generate scattering-corrected tissue water absorption spectra. This allows us to separate the macromolecular bound water contribution from the thermally induced spectral shift using the temperature isosbestic point at 996 nm. The method was validated in intralipid tissue phantoms by correlating DOS with thermistor measurements (R = 0.96) with a difference of 1.1 {+-} 0.91 {sup 0}C over a range of 28-48 {sup 0}C. Once validated, thermal and hemodynamic (i.e. oxy- and deoxy-hemoglobin concentration) changes were measured simultaneously and continuously in human subjects (forearm) during mild cold stress. DOS-measured arm temperatures were consistent with previously reported invasive deep tissue temperature studies. These results suggest that DOS can be used for non-invasive, co-registered measurements of absolute temperature and hemoglobin parameters in thick tissues, a potentially important approach for optimizing thermal diagnostics and therapeutics.

  10. Quantitative studies of electric field intensity on atom diffusion of Cu/Ta/Si stacks during annealing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei, E-mail: ray521252@gmail.com [Institute of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Stomatology Department, Nanjing General Hospital, Nanjing University, Medical School, Nanjing, 210002 (China); Asempah, Isaac; Dong, Song-Tao; Yin, Pian-Pian [Institute of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Jin, Lei, E-mail: ljin@nju.edu.cn [Stomatology Department, Nanjing General Hospital, Nanjing University, Medical School, Nanjing, 210002 (China)

    2017-03-31

    Highlights: • The electric field intensity accelerates the atom diffusion of Cu/Ta/Si stacks at 650 °C. • The acceleration effect is enhanced with an increment of electric field intensity. • An acceleration factor (1 + a·a{sup E/0.8}){sup 2} accelerating diffusion coefficient is determined by quantitative analysis. - Abstract: It has been shown that enhanced electric field intensity (0–4.0 kV/cm) has an obvious effect on accelerating atom diffusion in Cu/Ta/Si interconnect stacks at 650 °C. The theoretical deduction proves that diffusion coefficient is accelerated proportional to an acceleration factor (1 + a·α{sup E/0.8}){sup 2}. The analysis indicates that the accelerating effect is mainly attributed to the perturbation of the electric state of the defects and enhanced vacancy and dislocation densities.

  11. A DTI-based tractography study of effects on brain structure associated with prenatal alcohol exposure in newborns

    Science.gov (United States)

    Taylor, Paul A.; Jacobson, Sandra W.; van der Kouwe, André; Molteno, Christopher D.; Chen, Gang; Wintermark, Pia; Alhamud, Alkathafi; Jacobson, Joseph L.; Meintjes, Ernesta M.

    2014-01-01

    Prenatal alcohol exposure is known to have severe, long-term consequences for brain and behavioral development already detectable in infancy and childhood. Resulting features of fetal alcohol spectrum disorders (FASD) include cognitive and behavioral effects, as well as facial anomalies and growth deficits. Diffusion tensor imaging (DTI) and tractography were used to analyze white matter development in 11 newborns (age since conception <45 weeks) whose mothers were recruited during pregnancy. Comparisons were made with 9 age-matched controls born to abstainers or light drinkers from the same Cape Coloured (mixed ancestry) community near Cape Town, South Africa. DTI parameters, T1 relaxation time, proton density and volumes were used to quantify and investigate group differences in white matter (WM) in the newborn brains. Probabilistic tractography was used to estimate and to delineate similar tract locations among the subjects for transcallosal pathways, cortico-spinal projection fibers and cortico-cortical association fibers. In each of these WM networks, the axial diffusivity AD was the parameter that showed the strongest association with maternal drinking. The strongest relations were observed in medial and inferior WM, regions in which the myelination process typically begins. In contrast to studies of older individuals with prenatal alcohol exposure, FA did not exhibit a consistent and significant relation with alcohol exposure. To our knowledge, this is the first DTI-tractography study of prenatally alcohol exposed newborns. PMID:25182535

  12. Susceptibility tensor imaging and tractography of collagen fibrils in the articular cartilage.

    Science.gov (United States)

    Wei, Hongjiang; Gibbs, Eric; Zhao, Peida; Wang, Nian; Cofer, Gary P; Zhang, Yuyao; Johnson, G Allan; Liu, Chunlei

    2017-11-01

    To investigate the B 0 orientation-dependent magnetic susceptibility of collagen fibrils within the articular cartilage and to determine whether susceptibility tensor imaging (STI) can detect the 3D collagen network within cartilage. Multiecho gradient echo datasets (100-μm isotropic resolution) were acquired from fixed porcine articular cartilage specimens at 9.4 T. The susceptibility tensor was calculated using phase images acquired at 12 or 15 different orientations relative to B 0 . The susceptibility anisotropy of the collagen fibril was quantified and diffusion tensor imaging (DTI) was compared against STI. 3D tractography was performed to visualize and track the collagen fibrils with DTI and STI. STI experiments showed the distinct and significant anisotropic magnetic susceptibility of collagen fibrils within the articular cartilage. STI can be used to measure and quantify susceptibility anisotropy maps. Furthermore, STI provides orientation information of the underlying collagen network via 3D tractography. The findings of this study demonstrate that STI can characterize the orientation variation of collagen fibrils where diffusion anisotropy fails. We believe that STI could serve as a sensitive and noninvasive marker to study the collagen fibrils microstructure. Magn Reson Med 78:1683-1690, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Using Tractography to Distinguish SWEDD from Parkinson’s Disease Patients Based on Connectivity

    Directory of Open Access Journals (Sweden)

    Mansu Kim

    2016-01-01

    Full Text Available Background. It is critical to distinguish between Parkinson’s disease (PD and scans without evidence of dopaminergic deficit (SWEDD, because the two groups are different and require different therapeutic approaches. Objective. The aim of this study was to distinguish SWEDD patients from PD patients using connectivity information derived from diffusion tensor imaging tractography. Methods. Diffusion magnetic resonance images of SWEDD (n=37 and PD (n=40 were obtained from a research database. Tractography, the process of obtaining neural fiber information, was performed using custom software. Group-wise differences between PD and SWEDD patients were quantified using the number of connected fibers between two regions, and correlation analyses were performed based on clinical scores. A support vector machine classifier (SVM was applied to distinguish PD and SWEDD based on group-wise differences. Results. Four connections showed significant group-wise differences and correlated with the Unified Parkinson’s Disease Rating Scale sponsored by the Movement Disorder Society. The SVM classifier attained 77.92% accuracy in distinguishing between SWEDD and PD using these identified connections. Conclusions. The connections and regions identified represent candidates for future research investigations.

  14. Toward uniform implementation of parametric map Digital Imaging and Communication in Medicine standard in multisite quantitative diffusion imaging studies.

    Science.gov (United States)

    Malyarenko, Dariya; Fedorov, Andriy; Bell, Laura; Prah, Melissa; Hectors, Stefanie; Arlinghaus, Lori; Muzi, Mark; Solaiyappan, Meiyappan; Jacobs, Michael; Fung, Maggie; Shukla-Dave, Amita; McManus, Kevin; Boss, Michael; Taouli, Bachir; Yankeelov, Thomas E; Quarles, Christopher Chad; Schmainda, Kathleen; Chenevert, Thomas L; Newitt, David C

    2018-01-01

    This paper reports on results of a multisite collaborative project launched by the MRI subgroup of Quantitative Imaging Network to assess current capability and provide future guidelines for generating a standard parametric diffusion map Digital Imaging and Communication in Medicine (DICOM) in clinical trials that utilize quantitative diffusion-weighted imaging (DWI). Participating sites used a multivendor DWI DICOM dataset of a single phantom to generate parametric maps (PMs) of the apparent diffusion coefficient (ADC) based on two models. The results were evaluated for numerical consistency among models and true phantom ADC values, as well as for consistency of metadata with attributes required by the DICOM standards. This analysis identified missing metadata descriptive of the sources for detected numerical discrepancies among ADC models. Instead of the DICOM PM object, all sites stored ADC maps as DICOM MR objects, generally lacking designated attributes and coded terms for quantitative DWI modeling. Source-image reference, model parameters, ADC units and scale, deemed important for numerical consistency, were either missing or stored using nonstandard conventions. Guided by the identified limitations, the DICOM PM standard has been amended to include coded terms for the relevant diffusion models. Open-source software has been developed to support conversion of site-specific formats into the standard representation.

  15. Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy.

    Science.gov (United States)

    Bergholt, Mads S; Albro, Michael B; Stevens, Molly M

    2017-09-01

    Tissue engineering (TE) has the potential to improve the outcome for patients with osteoarthritis (OA). The successful clinical translation of this technique as part of a therapy requires the ability to measure extracellular matrix (ECM) production of engineered tissues in vitro, in order to ensure quality control and improve the likelihood of tissue survival upon implantation. Conventional techniques for assessing the ECM content of engineered cartilage, such as biochemical assays and histological staining are inherently destructive. Raman spectroscopy, on the other hand, represents a non-invasive technique for in situ biochemical characterization. Here, we outline current roadblocks in translational Raman spectroscopy in TE and introduce a comprehensive workflow designed to non-destructively monitor and quantify ECM biomolecules in large (>3 mm), live cell TE constructs online. Diffuse near-infrared fiber-optic Raman spectra were measured from live cell cartilaginous TE constructs over a 56-day culturing period. We developed a multivariate curve resolution model that enabled quantitative biochemical analysis of the TE constructs. Raman spectroscopy was able to non-invasively quantify the ECM components and showed an excellent correlation with biochemical assays for measurement of collagen (R 2  = 0.84) and glycosaminoglycans (GAGs) (R 2  = 0.86). We further demonstrated the robustness of this technique for online prospective analysis of live cell TE constructs. The fiber-optic Raman spectroscopy strategy developed in this work offers the ability to non-destructively monitor construct growth online and can be adapted to a broad range of TE applications in regenerative medicine toward controlled clinical translation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Tensor and non-tensor tractography for the assessment of the corticospinal tract of children with motor disorders: a comparative study.

    Science.gov (United States)

    Stefanou, Maria-Ioanna; Lumsden, Daniel E; Ashmore, Jonathan; Ashkan, Keyoumars; Lin, Jean-Pierre; Charles-Edwards, Geoffrey

    2016-10-01

    Non-invasive measures of corticospinal tract (CST) integrity may help to guide clinical interventions, particularly in children and young people (CAYP) with motor disorders. We compared diffusion tensor imaging (DTI) metrics extracted from the CST generated by tensor and non-tensor based tractography algorithms. For a group of 25 CAYP undergoing clinical evaluation, the CST was reconstructed using (1) deterministic tensor-based tractography algorithm, (2) probabilistic tensor-based, and (3) constrained spherical deconvolution (CSD)-derived tractography algorithms. Choice of tractography algorithm significantly altered the results of tracking. Larger tracts were consistently defined with CSD, with differences in FA but not MD values for tracts to the pre- or post-central gyrus. Differences between deterministic and probabilistic tensor-based algorithms were minimal. Non-tensor reconstructed tracts appeared to be more anatomically representative. Examining metrics along the tract, difference in FA values appeared to be greatest in voxels with predominantly single-fibre orientations. Less pronounced differences were seen outwith of these regions. With an increasing interest in the applications of tractography analysis at all stages of movement disorder surgery, it is important that clinicians remain alert to the consequences of choice of tractography algorithm on subsequently generated tracts, including differences in volumes, anatomical reconstruction, and DTI metrics, the latter of which will have global as well as more regional effects. Tract-wide analysis of DTI based metrics is of limited utility, and a more segmental approach to analysis may be appropriate, particularly if disruption to a focal region of a white matter pathway is anticipated.

  17. Three-dimensional corticospinal tractography for brain tumor surgery

    International Nuclear Information System (INIS)

    Kamada, Kyousuke

    2009-01-01

    Maximal resection of the intracranial lesion like a brain tumor and concomitant identification of the unresectable region for avoiding the loss of motor and language functions are important before and during the operation. For these purposes, corticospinal tract (CST)-tractography (TG) based on diffusion tensor imaging (DTI) is widely used for nerve fiber tracking but it is conceivably essential to examine if the CST image in problem reflects the actually valid anatomical, functional CST. For the problem, in author's department, the intraoperative local relationship between the lesion and CST is monitored by a neuronavigation (NNA) system combined with CST-TG in case of patients who have the lesion close to CST and, when the resection site approaches CST, its surrounding white matter is electrically stimulated to evoke the myoelectric potential at upper and lower limbs. Here are reported examinations of the reliability of CST-TG by analysis of the positional relation of CST with the electric stimulating point and current value, and of the expansion of the subcortical stimulation current in the white matter. MRI data of such 40 patients as above by 1.5 or 3T machine were obtained with spin-echo/echo planer imaging and subsequent DTI data were processed by authors' VOLUME-ONE/dTV (http://volume-one.org). CST-TG-fused functional NNA was conducted by NNA system where 3D reconstructed image of CST-TG DTI and 3DMRI using digital imaging and communication medicine (DICOM) and the evoked functional myoelectric potential had been combined. This fusion was found useful for rapid decision of the position and timing of the electric stimulation at surgery, and highly reliable as CST-TG. Further, the stimulating threshold in the white matter was found lower than in the cortex. Future progress in imaging technology and separating algorithm of crossing fibers was expected for improved image of more complex central nervous system (CNS) structures. (K.T.)

  18. Probabilistic Tractography of the Cranial Nerves in Vestibular Schwannoma.

    Science.gov (United States)

    Zolal, Amir; Juratli, Tareq A; Podlesek, Dino; Rieger, Bernhard; Kitzler, Hagen H; Linn, Jennifer; Schackert, Gabriele; Sobottka, Stephan B

    2017-11-01

    Multiple recent studies have reported on diffusion tensor-based fiber tracking of cranial nerves in vestibular schwannoma, with conflicting results as to the accuracy of the method and the occurrence of cochlear nerve depiction. Probabilistic nontensor-based tractography might offer advantages in terms of better extraction of directional information from the underlying data in cranial nerves, which are of subvoxel size. Twenty-one patients with large vestibular schwannomas were recruited. The probabilistic tracking was run preoperatively and the position of the potential depictions of the facial and cochlear nerves was estimated postoperatively by 3 independent observers in a blinded fashion. The true position of the nerve was determined intraoperatively by the surgeon. Thereafter, the imaging-based estimated position was compared with the intraoperatively determined position. Tumor size, cystic appearance, and postoperative House-Brackmann score were analyzed with regard to the accuracy of the depiction of the nerves. The probabilistic tracking showed a connection that correlated to the position of the facial nerve in 81% of the cases and to the position of the cochlear nerve in 33% of the cases. Altogether, the resulting depiction did not correspond to the intraoperative position of any of the nerves in 3 cases. In a majority of cases, the position of the facial nerve, but not of the cochlear nerve, could be estimated by evaluation of the probabilistic tracking results. However, false depictions not corresponding to any nerve do occur and cannot be discerned as such from the image only. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. UK quantitative WB-DWI technical workgroup: consensus meeting recommendations on optimisation, quality control, processing and analysis of quantitative whole-body diffusion-weighted imaging for cancer.

    Science.gov (United States)

    Barnes, Anna; Alonzi, Roberto; Blackledge, Matthew; Charles-Edwards, Geoff; Collins, David J; Cook, Gary; Coutts, Glynn; Goh, Vicky; Graves, Martin; Kelly, Charles; Koh, Dow-Mu; McCallum, Hazel; Miquel, Marc E; O'Connor, James; Padhani, Anwar; Pearson, Rachel; Priest, Andrew; Rockall, Andrea; Stirling, James; Taylor, Stuart; Tunariu, Nina; van der Meulen, Jan; Walls, Darren; Winfield, Jessica; Punwani, Shonit

    2018-01-01

    Application of whole body diffusion-weighted MRI (WB-DWI) for oncology are rapidly increasing within both research and routine clinical domains. However, WB-DWI as a quantitative imaging biomarker (QIB) has significantly slower adoption. To date, challenges relating to accuracy and reproducibility, essential criteria for a good QIB, have limited widespread clinical translation. In recognition, a UK workgroup was established in 2016 to provide technical consensus guidelines (to maximise accuracy and reproducibility of WB-MRI QIBs) and accelerate the clinical translation of quantitative WB-DWI applications for oncology. A panel of experts convened from cancer centres around the UK with subspecialty expertise in quantitative imaging and/or the use of WB-MRI with DWI. A formal consensus method was used to obtain consensus agreement regarding best practice. Questions were asked about the appropriateness or otherwise on scanner hardware and software, sequence optimisation, acquisition protocols, reporting, and ongoing quality control programs to monitor precision and accuracy and agreement on quality control. The consensus panel was able to reach consensus on 73% (255/351) items and based on consensus areas made recommendations to maximise accuracy and reproducibly of quantitative WB-DWI studies performed at 1.5T. The panel were unable to reach consensus on the majority of items related to quantitative WB-DWI performed at 3T. This UK Quantitative WB-DWI Technical Workgroup consensus provides guidance on maximising accuracy and reproducibly of quantitative WB-DWI for oncology. The consensus guidance can be used by researchers and clinicians to harmonise WB-DWI protocols which will accelerate clinical translation of WB-DWI-derived QIBs.

  20. Methods for quantitative infrared directional-hemispherical and diffuse reflectance measurements using an FTIR and a commercial integrating sphere

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Thomas A.; Johnson, Timothy J.; Tonkyn, Russell G.; Forland, Brenda M.; Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Bernacki, Bruce E.; Hanssen, Leonard; Gonzalez, Gerardo

    2018-01-01

    Infrared integrating sphere measurements of solid samples are important in providing reference data for contact, standoff and remote sensing applications. At the Pacific Northwest National Laboratory (PNNL) we have developed protocols to measure both the directional-hemispherical ( and diffuse (d) reflectances of powders, liquids, and disks of powders and solid materials using a commercially available, matte gold-coated integrating sphere and Fourier transform infrared spectrometer. Detailed descriptions of the sphere alignment and its use for making these reflectance measurements are given. Diffuse reflectance values were found to be dependent on the bidirectional reflection distribution function (BRDF) of the sample and the solid angle intercepted by the sphere’s specular exclusion port. To determine how well the sphere and protocols produce quantitative reflectance data, measurements were made of three diffuse and two specular standards prepared by the National institute of Standards and Technology (NIST, USA), LabSphere Infragold and Spectralon standards, hand-loaded sulfur and talc powder samples, and water. The five NIST standards behaved as expected: the three diffuse standards had a high degree of “diffuseness,” d/ = D > 0.9, whereas the two specular standards had D ≤ 0.03. The average absolute differences between the NIST and PNNL measurements of the NIST standards for both directional-hemispherical and diffuse reflectances are on the order of 0.01 reflectance units. Other quantitative differences between the PNNL-measured and calibration (where available) or literature reflectance values for these standards and materials are given and the possible origins of discrepancies are discussed. Random uncertainties and estimates of systematic uncertainties are presented. Corrections necessary to provide better agreement between the PNNL reflectance values as measured for the NIST standards and the NIST reflectance values for these same standards are also

  1. Quantitative differentiation of breast lesions at 3T diffusion-weighted imaging (DWI) using the ratio of distributed diffusion coefficient (DDC).

    Science.gov (United States)

    Ertas, Gokhan; Onaygil, Can; Akin, Yasin; Kaya, Handan; Aribal, Erkin

    2016-12-01

    To investigate the accuracy of diffusion coefficients and diffusion coefficient ratios of breast lesions and of glandular breast tissue from mono- and stretched-exponential models for quantitative diagnosis in diffusion-weighted magnetic resonance imaging (MRI). We analyzed pathologically confirmed 170 lesions (85 benign and 85 malignant) imaged using a 3.0T MR scanner. Small regions of interest (ROIs) focusing on the highest signal intensity for lesions and also for glandular tissue of contralateral breast were obtained. Apparent diffusion coefficient (ADC) and distributed diffusion coefficient (DDC) were estimated by performing nonlinear fittings using mono- and stretched-exponential models, respectively. Coefficient ratios were calculated by dividing the lesion coefficient by the glandular tissue coefficient. A stretched exponential model provides significantly better fits then the monoexponential model (P DDC ratio (area under the curve [AUC] = 0.93) when compared with lesion DDC, ADC ratio, and lesion ADC (AUC = 0.91, 0.90, 0.90) but with no statistically significant difference (P > 0.05). At optimal thresholds, the DDC ratio achieves 93% sensitivity, 80% specificity, and 87% overall diagnostic accuracy, while ADC ratio leads to 89% sensitivity, 78% specificity, and 83% overall diagnostic accuracy. The stretched exponential model fits better with signal intensity measurements from both lesion and glandular tissue ROIs. Although the DDC ratio estimated by using the model shows a higher diagnostic accuracy than the ADC ratio, lesion DDC, and ADC, it is not statistically significant. J. Magn. Reson. Imaging 2016;44:1633-1641. © 2016 International Society for Magnetic Resonance in Medicine.

  2. TU-H-CAMPUS-IeP2-01: Quantitative Evaluation of PROPELLER DWI Using QIBA Diffusion Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Yung, J; Ai, H; Liu, H; Stafford, R [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: The purpose of this study is to determine the quantitative variability of apparent diffusion coefficient (ADC) values when varying imaging parameters in a diffusion-weighted (DW) fast spin echo (FSE) sequence with Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) k-space trajectory. Methods: Using a 3T MRI scanner, a NIST traceable, quantitative magnetic resonance imaging (MRI) diffusion phantom (High Precision Devices, Inc, Boulder, Colorado) consisting of 13 vials filled with various concentrations of polymer polyvinylpyrrolidone (PVP) in aqueous solution was imaged with a standard Quantitative Imaging Biomarkers Alliance (QIBA) DWI spin echo, echo planar imaging (SE EPI) acquisition. The same phantom was then imaged with a DWI PROPELLER sequence at varying echo train lengths (ETL) of 8, 20, and 32, as well as b-values of 400, 900, and 2000. QIBA DWI phantom analysis software was used to generate ADC maps and create region of interests (ROIs) for quantitative measurements of each vial. Mean and standard deviations of the ROIs were compared. Results: The SE EPI sequence generated ADC values that showed very good agreement with the known ADC values of the phantom (r2 = 0.9995, slope = 1.0061). The ADC values measured from the PROPELLER sequences were inflated, but were highly correlated with an r2 range from 0.8754 to 0.9880. The PROPELLER sequence with an ETL=20 and b-value of 0 and 2000 showed the closest agreement (r2 = 0.9034, slope = 0.9880). Conclusion: The DW PROPELLER sequence is promising for quantitative evaluation of ADC values. A drawback of the PROPELLER sequence is the longer acquisition time. The 180° refocusing pulses may also cause the observed increase in ADC values compared to the standard SE EPI DW sequence. However, the FSE sequence offers an advantage with in-plane motion and geometric distortion which will be investigated in future studies.

  3. Quantitative relationship between the octanol/water partition coefficient and the diffusion limitation of the exchange between adipose and blood.

    Science.gov (United States)

    Levitt, David G

    2010-01-07

    The goal of physiologically based pharmacokinetics (PBPK) is to predict drug kinetics from an understanding of the organ/blood exchange. The standard approach is to assume that the organ is "flow limited" which means that the venous blood leaving the organ equilibrates with the well-stirred tissue compartment. Although this assumption is valid for most solutes, it has been shown to be incorrect for several very highly fat soluble compounds which appear to be "diffusion limited". This paper describes the physical basis of this adipose diffusion limitation and its quantitative dependence on the blood/water (Kbld-wat) and octanol/water (Kow) partition coefficient. Experimental measurements of the time dependent rat blood and adipose concentration following either intravenous or oral input were used to estimate the "apparent" adipose perfusion rate (FA) assuming that the tissue is flow limited. It is shown that the ratio of FA to the anatomic perfusion rate (F) provides a measure of the diffusion limitation. A quantitative relationship between this diffusion limitation and Kbld-wat and Kow is derived. This analysis was applied to previously published data, including the Oberg et. al. measurements of the rat plasma and adipose tissue concentration following an oral dose of a mixture of 13 different polychlorinated biphenyls. Solutes become diffusion limited at values of log Kow greater than about 5.6, with the adipose-blood exchange rate reduced by a factor of about 30 for a solute with a log Kow of 7.36. Quantitatively, a plot of FA/F versus Kow is well described assuming an adipose permeability-surface area product (PS) of 750/min. This PS corresponds to a 0.14 micron aqueous layer separating the well-stirred blood from the adipose lipid. This is approximately equal to the thickness of the rat adipose capillary endothelium. These results can be used to quantitate the adipose-blood diffusion limitation as a function of Kow. This is especially important for the highly

  4. Quantitative diffusion MRI using reduced field-of-view and multi-shot acquisition techniques: Validation in phantoms and prostate imaging.

    Science.gov (United States)

    Zhang, Yuxin; Holmes, James; Rabanillo, Iñaki; Guidon, Arnaud; Wells, Shane; Hernando, Diego

    2018-04-17

    To evaluate the reproducibility of quantitative diffusion measurements obtained with reduced Field of View (rFOV) and Multi-shot EPI (msEPI) acquisitions, using single-shot EPI (ssEPI) as a reference. Diffusion phantom experiments, and prostate diffusion-weighted imaging in healthy volunteers and patients with known or suspected prostate cancer were performed across the three different sequences. Quantitative diffusion measurements of apparent diffusion coefficient, and diffusion kurtosis parameters (healthy volunteers), were obtained and compared across diffusion sequences (rFOV, msEPI, and ssEPI). Other possible confounding factors like b-value combinations and acquisition parameters were also investigated. Both msEPI and rFOV have shown reproducible quantitative diffusion measurements relative to ssEPI; no significant difference in ADC was observed across pulse sequences in the standard diffusion phantom (p = 0.156), healthy volunteers (p ≥ 0.12) or patients (p ≥ 0.26). The ADC values within the non-cancerous central gland and peripheral zone of patients were 1.29 ± 0.17 × 10 -3  mm 2 /s and 1.74 ± 0.23 × 10 -3  mm 2 /s respectively. However, differences in quantitative diffusion parameters were observed across different number of averages for rFOV, and across b-value groups and diffusion models for all the three sequences. Both rFOV and msEPI have the potential to provide high image quality with reproducible quantitative diffusion measurements in prostate diffusion MRI. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Abscess of the medulla oblongata in a toddler: case report and technical considerations based on magnetic resonance imaging tractography.

    Science.gov (United States)

    Arzoglou, Vasileios; D'Angelo, Luca; Koutzoglou, Michael; Di Rocco, Concezio

    2011-08-01

    We report a unique case of a toddler (the only one reported) successfully operated on for a medulla oblongata abscess and comment on the influence of neuroimaging modalities in the preoperative planning of the surgical approach. We report a case of a 20-month-old child with a solitary medulla oblongata abscess. The abscess appeared to be in close proximity to the anterior medulla oblongata, but preoperative planning based on diffusion tensor imaging (DTI) tractography motivated us to try to remove this lesion through a midline suboccipital approach. The ventral medulla oblongata abscess was surgically removed via a telovelar approach. At the anterior wall of the 4th ventricle, a fenestration was made with pus release and evacuation of the cavity. The child was discharged 1 week later with an uneventful and full recovery. Modern imaging modalities of the nervous system can be very helpful in preoperative planning. Functional visualization of the nervous system provided by modern imaging techniques, such as the DTI tractography, can alter the classic topographic concept of surgical approach. In the case presented, approaching an anterior medulla oblongata abscess based on DTI tractography data, through a suboccipital midline transventricular approach, proved to be an effective and safe technique.

  6. White matter tracts in first-episode psychosis: A DTI tractography study of the uncinate fasciculus

    Science.gov (United States)

    Price, Gary; Cercignani, Mara; Parker, Geoffrey J.M.; Altmann, Daniel R.; Barnes, Thomas R.E.; Barker, Gareth J.; Joyce, Eileen M.; Ron, Maria A.

    2008-01-01

    A model of disconnectivity involving abnormalities in the cortex and connecting white matter pathways may explain the symptoms and cognitive abnormalities of schizophrenia. Recently, diffusion imaging tractography has made it possible to study white matter pathways in detail, and we present here a study of patients with first-episode psychosis using this technique. We studied the uncinate fasciculus (UF), the largest white matter tract that connects the frontal and temporal lobes, two brain regions significantly implicated in schizophrenia. Nineteen patients with first-episode schizophrenia and 23 controls were studied using a probabilistic tractography algorithm (PICo). Fractional anisotropy (FA) and probability of connection were obtained for every voxel in the tract, and the group means and distributions of these variables were compared. The spread of the FA distribution in the upper tail, as measured by the squared coefficient of variance (SCV), was reduced in the left UF in the patient group, indicating that the number of voxels with high FA values was reduced in the core of the tract and suggesting the presence of changes in fibre alignment and tract coherence in the patient group. The SCV of FA was lower in females across both groups and there was no correlation between the SCV of FA and clinical ratings. PMID:17988894

  7. Automated Whole Brain Tractography Affects Preoperative Surgical Decision Making.

    Science.gov (United States)

    Zakaria, Hesham; Haider, Sameah; Lee, Ian

    2017-09-06

    Surgery in and around eloquent brain structures poses a technical challenge when the goal of surgery is maximal safe resection. Magnetic resonance imaging (MRI) has revolutionized the diagnosis and treatment of neurological disorders, but tractography still remains limited in terms of utility because of the requisite manual labor and time required combined with the high risk of bias and inaccuracy. Automated whole brain tractography (AWBT) has simplified this workflow, overcoming historical barriers, and allowing for integration into modern neuronavigation. However, current literature showing the usefulness of this new technology is limited. In this study, we aimed to illustrate the utility of AWBT during cranial surgery and its ability to affect presurgical and intraoperative clinical decision making. We performed a retrospective chart review of cases that underwent AWBT for one year from July 2016 to July 2017. All patients underwent conventional anatomic MRI with and without contrast sequences, in addition to diffusion tensor imaging (DTI) on a 3 Tesla MRI scanner (Ingenia 3.0T, Philips, Amsterdam NL). Post-hoc AWBT processing was performed on a separate workstation. Patients were subsequently grouped into those that had undergone either language or motor mapping and those that did not. We compared both sets of patients to see any differences in patient age, sex, laterality of surgery, depth of resection from cortical surface, and smallest distance between the lesion and adjacent eloquent white matter tracts. We identified illustrative cases which demonstrated the ability of AWBT to affect surgical decision making. In this single-center series, we identified 73 total patients who underwent AWBT for intracranial surgery, of which 28 patients underwent either speech or language mapping. When comparing mapping to non-mapping patients, we found no difference with respect to age, gender, laterality of surgery, or whether the surgery was a revision. The distance

  8. Malignant versus benign mediastinal lesions: quantitative assessment with diffusion weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Guemuestas, Sevtap; Inan, Nagihan; Sarisoy, Hasan Tahsin; Anik, Yonca; Arslan, Arzu; Ciftci, Ercuement; Akansel, Guer; Demirci, Ali [University of Kocaeli, Department of Radiology, School of Medicine, Umuttepe Kocaeli (Turkey)

    2011-11-15

    We aimed to evaluate the performance of diffusion-weighted magnetic resonance imaging in differentiating malignant from benign mediastinal lesions. Fifty-three mediastinal lesions were examined with T1- and T2-weighted (W) conventional images. Then, two diffusion-weighted images were obtained with b = 0 and 1000 s/mm{sup 2} values and apparent diffusion coefficients (ADC) were calculated. The statistical significance of differences between measurements was tested using the Student-t test. The mean ADC of malignant lesions was significantly lower than that of the benign masses (p < 0.001). The cut-off value of {<=} 1.39 x 10{sup -3} mm{sup 2}/s indicated a malignant lesion with a sensitivity of 95% and specificity of 87%. Diffusion-weighted imaging may be helpful in differentiating benign from malignant mediastinal masses. (orig.)

  9. Microstructural brain changes in acromegaly: quantitative analysis by diffusion tensor imaging

    Science.gov (United States)

    Ilhan, M M; Alkan, A; Aralasmak, A; Akkoyunlu, M E; Kart, L; Tasan, E

    2014-01-01

    Objective: We examined brain diffusion changes of patients with acromegaly. We searched whether there are differences in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values between remission and non-remission patients with acromegaly and investigated any effect of time of hormone exposure on diffusion metrics. Methods: The values of FA and ADC were calculated in a total of 35 patients with acromegaly and 28 control subjects. Patients were subdivided into remission and non-remission groups. We looked at brain FA and ADC differences among the groups and looked for any relation between the diffusion changes and time of hormone exposure among the patients with acromegaly. Results: We found decreased FA and increased ADC values in some of the growth hormone responsive areas. There were no significant brain diffusion changes between remission and non-remission groups. The most affected areas were the hypothalamus, parietal white matter and pre-motor cortex in patients with acromegaly. In terms of hormone exposure time among the patients with acromegaly, there was no effect of disease duration on brain microstructural changes. Conclusion: All patients with acromegaly showed increased brain diffusion with no relation to disease duration and treatment status. We suggested that in patients with acromegaly, brain damage had already occurred in the subclinical period before symptom onset. Advances in knowledge: This study contributes to the understanding of the mechanisms in acromegaly. PMID:24734977

  10. Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data

    International Nuclear Information System (INIS)

    Hormuth II, David A; Weis, Jared A; Barnes, Stephanie L; Miga, Michael I; Yankeelov, Thomas E; Rericha, Erin C; Quaranta, Vito

    2015-01-01

    Reaction–diffusion models have been widely used to model glioma growth. However, it has not been shown how accurately this model can predict future tumor status using model parameters (i.e., tumor cell diffusion and proliferation) estimated from quantitative in vivo imaging data. To this end, we used in silico studies to develop the methods needed to accurately estimate tumor specific reaction–diffusion model parameters, and then tested the accuracy with which these parameters can predict future growth. The analogous study was then performed in a murine model of glioma growth. The parameter estimation approach was tested using an in silico tumor ‘grown’ for ten days as dictated by the reaction–diffusion equation. Parameters were estimated from early time points and used to predict subsequent growth. Prediction accuracy was assessed at global (total volume and Dice value) and local (concordance correlation coefficient, CCC) levels. Guided by the in silico study, rats (n = 9) with C6 gliomas, imaged with diffusion weighted magnetic resonance imaging, were used to evaluate the model’s accuracy for predicting in vivo tumor growth. The in silico study resulted in low global (tumor volume error 0.92) and local (CCC values >0.80) level errors for predictions up to six days into the future. The in vivo study showed higher global (tumor volume error >11.7%, Dice <0.81) and higher local (CCC <0.33) level errors over the same time period. The in silico study shows that model parameters can be accurately estimated and used to accurately predict future tumor growth at both the global and local scale. However, the poor predictive accuracy in the experimental study suggests the reaction–diffusion equation is an incomplete description of in vivo C6 glioma biology and may require further modeling of intra-tumor interactions including segmentation of (for example) proliferative and necrotic regions. (paper)

  11. [Quantitative analysis of diffusion-weighted magnetic resonance images during chemoradiation therapy for cancer of the cervix uteri: Prognostic role of pretreatment diffusion coefficient values].

    Science.gov (United States)

    Kharuzhyk, S A

    2015-01-01

    to carry out a quantitative analysis of diffusion-weighted magnetic resonance images (DWI) in cancer of the cervix uteri (CCU) and to estimate the possibility of using pretreatment measured diffusion coefficient (MDC) to predict chemoradiation therapy (CRT). The investigation prospectively enrolled 46 women with morphologically verified Stages IB-IVB CCU. All the women underwent diffusion-weighted magnetic resonance imaging of pelvic organs before and after treatment. A semiautomatic method was used to determine tumor signal intensity (SI) on DWI at b 1000 s/mm2 (SI b1000) and tumor MDC. The reproducibility of MDC measurements was assessed in 16 randomly selected women. The investigators compared the pretreatment quantitative DWI measures in complete and incomplete regression (CR and IR) groups and the presence and absence of tumor progression during a follow-up. An association of MDC with progression-free and overall survivals (PFS and OS) was determined in the patients. A semiautomatic tumor segmentation framework could determine the pretreatment quantitative DMI measures with minimal time spent and high reproducibility. The mean tumor MDC was 0.82 +/- 0.14 x 10(-3) mm2/s. CR and IR were established in 28 and 18 women, respectively. The MDC < or = 0.83 x 10(-3) mm2/s predicted CR with a sensitivity of 64.3% and a specificity of 77.8% (p=0.007). The median follow-up was 47 months (range, 3-82 months). With the MDC < or = 0.86 x 10(-3) mm2/s, 5-year PFS was 74.1% versus 42.1% with a higher MDC (p=0.023) and 5-year OS was 70.4 and 40.6%, respectively (p=0.021). The survival difference was insignificant in relation to the degree of tumor regression. The pretreatment IS at b1000 was of no prognostic value. The pretreatment tumor MDC may serve as a biomarker for predicting the efficiency of CRT for CCU.

  12. Correction of Gradient Nonlinearity Bias in Quantitative Diffusion Parameters of Renal Tissue with Intra Voxel Incoherent Motion.

    Science.gov (United States)

    Malyarenko, Dariya I; Pang, Yuxi; Senegas, Julien; Ivancevic, Marko K; Ross, Brian D; Chenevert, Thomas L

    2015-12-01

    Spatially non-uniform diffusion weighting bias due to gradient nonlinearity (GNL) causes substantial errors in apparent diffusion coefficient (ADC) maps for anatomical regions imaged distant from magnet isocenter. Our previously-described approach allowed effective removal of spatial ADC bias from three orthogonal DWI measurements for mono-exponential media of arbitrary anisotropy. The present work evaluates correction feasibility and performance for quantitative diffusion parameters of the two-component IVIM model for well-perfused and nearly isotropic renal tissue. Sagittal kidney DWI scans of a volunteer were performed on a clinical 3T MRI scanner near isocenter and offset superiorly. Spatially non-uniform diffusion weighting due to GNL resulted both in shift and broadening of perfusion-suppressed ADC histograms for off-center DWI relative to unbiased measurements close to isocenter. Direction-average DW-bias correctors were computed based on the known gradient design provided by vendor. The computed bias maps were empirically confirmed by coronal DWI measurements for an isotropic gel-flood phantom. Both phantom and renal tissue ADC bias for off-center measurements was effectively removed by applying pre-computed 3D correction maps. Comparable ADC accuracy was achieved for corrections of both b -maps and DWI intensities in presence of IVIM perfusion. No significant bias impact was observed for IVIM perfusion fraction.

  13. Diffusion tensor MRI: clinical applications

    International Nuclear Information System (INIS)

    Meli, Francisco; Romero, Carlos; Carpintiero, Silvina; Salvatico, Rosana; Lambre, Hector; Vila, Jose

    2005-01-01

    Purpose: To evaluate the usefulness of diffusion-tensor imaging (DTI) on different neurological diseases, and to know if this technique shows additional information than conventional Magnetic Resonance Imaging (MRI). Materials and method: Eight patients, with neurological diseases (five patients with brain tumors, one with multiple sclerosis (MS), one with variant Creutzfeldt-Jakob disease (vCJD) and the other with delayed CO intoxication were evaluated. A MR scanner of 1.5 T was used and conventional sequences and DTI with twenty-five directions were done. Quantitative maps were gotten, where the fractional anisotropy (FA) through regions of interest (ROIs) in specific anatomic area were quantified (i.e.: internal and external capsules, frontal and temporal bundles, corpus fibers). Results: In the patients with brain tumors, there was a decrease of FA on intra and peritumoral fibers. Some of them had a disruption in their pattern. In patients with MS and CO intoxication, partial interruption along white matter bundles was demonstrated. However, a 'mismatch' between the findings of FLAIR, Diffusion-weighted images (DWI) and DTI, in the case of CO intoxication, was seen. Conclusions: DTI gave more information compared to conventional sequences about ultrastructural brain tissue in almost all the diseases above mentioned. Therefore, there is a work in progress about DTI acquisition, to evaluate a new technique, called tractography. (author)

  14. Quantitative Model of Price Diffusion and Market Friction Based on Trading as a Mechanistic Random Process

    Science.gov (United States)

    Daniels, Marcus G.; Farmer, J. Doyne; Gillemot, László; Iori, Giulia; Smith, Eric

    2003-03-01

    We model trading and price formation in a market under the assumption that order arrival and cancellations are Poisson random processes. This model makes testable predictions for the most basic properties of markets, such as the diffusion rate of prices (which is the standard measure of financial risk) and the spread and price impact functions (which are the main determinants of transaction cost). Guided by dimensional analysis, simulation, and mean-field theory, we find scaling relations in terms of order flow rates. We show that even under completely random order flow the need to store supply and demand to facilitate trading induces anomalous diffusion and temporal structure in prices.

  15. Spinal diffusion tensor imaging: a comprehensive review with emphasis on spinal cord anatomy and clinical applications.

    Science.gov (United States)

    Hendrix, Philipp; Griessenauer, Christoph J; Cohen-Adad, Julien; Rajasekaran, Shanmuganathan; Cauley, Keith A; Shoja, Mohammadali M; Pezeshk, Parham; Tubbs, R Shane

    2015-01-01

    Magnetic resonance imaging technology allows for in vivo visualization of fiber tracts of the central nervous system using diffusion-weighted imaging sequences and data processing referred to as "diffusion tensor imaging" and "diffusion tensor tractography." While protocols for high-fidelity diffusion tensor imaging of the brain are well established, the spinal cord has proven a more difficult target for diffusion tensor methods. Here, we review the current literature on spinal diffusion tensor imaging and tractography with special emphasis on neuroanatomical correlations and clinical applications. © 2014 Wiley Periodicals, Inc.

  16. Feasibility of 3.0 T diffusion-weighted nuclear magnetic resonance imaging in the evaluation of functional recovery of rats with complete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Duo Zhang

    2015-01-01

    Full Text Available Diffusion tensor imaging is a sensitive way to reflect axonal necrosis and degeneration, glial cell regeneration and demyelination following spinal cord injury, and to display microstructure changes in the spinal cord in vivo. Diffusion tensor imaging technology is a sensitive method to diagnose spinal cord injury fiber tractography visualizes the white matter fibers, and directly displays the structural integrity and resultant damage of the fiber bundle. At present, diffusion tensor imaging is restricted to brain examinations, and is rarely applied in the evaluation of spinal cord injury. This study aimed to explore the fractional anisotropy and apparent diffusion coefficient of diffusion tensor magnetic resonance imaging and the feasibility of diffusion tensor tractography in the evaluation of complete spinal cord injury in rats. The results showed that the average combined scores were obviously decreased after spinal cord transection in rats, and then began to increase over time. The fractional anisotropy scores after spinal cord transection in rats were significantly lower than those in normal rats (P <0.05 the apparent diffusion coefficient was significantly increased compared with the normal group (P < 0.05. Following spinal cord transection, fractional anisotropy scores were negatively correlated with apparent diffusion coefficient values (r = -0.856, P < 0.01, and positively correlated with the average combined scores (r = 0.943, P < 0.01, while apparent diffusion coefficient values had a negative correlation with the average combined scores (r = -0.949, P < 0.01. Experimental findings suggest that, as a non-invasive examination, diffusion tensor magnetic resonance imaging can provide qualitative and quantitative information about spinal cord injury. The fractional anisotropy score and apparent diffusion coefficient have a good correlation with the average combined scores, which reflect functional recovery after spinal cord injury.

  17. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    Science.gov (United States)

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  18. Atomic-scale Ge diffusion in strained Si revealed by quantitative scanning transmission electron microscopy

    Science.gov (United States)

    Radtke, G.; Favre, L.; Couillard, M.; Amiard, G.; Berbezier, I.; Botton, G. A.

    2013-05-01

    Aberration-corrected scanning transmission electron microscopy is employed to investigate the local chemistry in the vicinity of a Si0.8Ge0.2/Si interface grown by molecular-beam epitaxy. Atomic-resolution high-angle annular dark field contrast reveals the presence of a nonuniform diffusion of Ge from the substrate into the strained Si thin film. On the basis of multislice calculations, a model is proposed to quantify the experimental contrast, showing that the Ge concentration in the thin film reaches about 4% at the interface and decreases monotonically on a typical length scale of 10 nm. Diffusion occurring during the growth process itself therefore appears as a major factor limiting the abruptness of interfaces in the Si-Ge system.

  19. Quantitative autoradiography of semiconductor materials by means of diffused phosphorus standards

    International Nuclear Information System (INIS)

    Treutler, H.C.; Freyer, K.

    1983-01-01

    A suitable standard sample was developed and tested on the basis of phosphorus for the quantitative autoradiography of elements of interest in semiconductor technology. By the aid of silicon disks with a phosphorus concentration of 6x10 17 atomsxcm - 2 the error of the quantitative autoradiogprahic method is determined. The relative mean error of the density measurement is at best +-4%; the relative mean error of the determination of phosphorus concentration by use of an error-free standard sample is about +-15%. The method will be extended to other elements by use of this standard sample of phosphorus. (author)

  20. Quantitative characterization of water transport and flooding in the diffusion layers of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, A.; Colombo, L.; Galbiati, S.; Marchesi, R. [Department of Energy, Politecnico di Milano, via Lambruschini 4, 20156 Milano (Italy)

    2010-07-01

    Optimization of water management in polymer electrolyte membrane fuel cells (PEMFC) and in direct methanol fuel cells (DMFC) is a very important factor for the achievement of high performances and long lifetime. A good hydration of the electrolyte membrane is essential for high proton conductivity; on the contrary water in excess may lead to electrode flooding and severe reduction in performances. Many studies on water transport across the gas diffusion layer (GDL) have been carried out to improve these components; anyway efforts in this field are affected by lack of effective experimental methods. The present work reports an experimental investigation with the purpose to determine the global coefficient of water transport across different diffusion layers under real operating conditions. An appropriate and accurate experimental apparatus has been designed and built to test the single GDL under a wide range of operating conditions. Data analysis has allowed quantification of both the water vapor transport across different diffusion layers, and the effects of micro-porous layers; furthermore flooding onset and its consequences on the mass transport coefficient have been characterized by means of suitably defined parameters. (author)

  1. Quantitative structural analysis of lignin by diffuse reflectance fourier transform infrared spectrometry

    International Nuclear Information System (INIS)

    Schultz, T.P.; Glasser, W.G.

    1986-01-01

    Empirical quantitative relationships were established between infrared (IR) spectral information and several structural features in lignins as determined by conventional methods. The structural composition of average phenylpropane (C g ) units which significantly correlated (0.01 level) with IR peak intensities included methoxy content, aromatic hydrogen content, phenolic hydroxy content, guaiacyl/syringyl ratio, and ''hydrolysis'' and ''condensation'' ratios

  2. Diffusion tensor imaging of the anterior cruciate ligament graft.

    Science.gov (United States)

    Van Dyck, Pieter; Froeling, Martijn; De Smet, Eline; Pullens, Pim; Torfs, Michaël; Verdonk, Peter; Sijbers, Jan; Parizel, Paul M; Jeurissen, Ben

    2017-11-01

    A great need exists for objective biomarkers to assess graft healing following ACL reconstruction to guide the time of return to sports. The purpose of this study was to evaluate the feasibility and reliability of diffusion tensor imaging (DTI) to delineate the anterior cruciate ligament (ACL) graft and to investigate its diffusion properties using a clinical 3T scanner. DTI of the knee (b = 0, 400, and 800 s/mm 2 , 10 diffusion directions, repeated 16 times for a total of 336 diffusion-weighted volumes) was performed at 3T in 17 patients between 3 and 7 months (mean, 4 months) following ACL reconstruction. Tractography was performed by two independent observers to delineate the ACL graft. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated within the graft. Interrater reliability was assessed using the intraclass correlation coefficient (ICC) and the scan-rescan reproducibility was evaluated based on the percentage coefficient of variance (%CV) across 20 repetition bootknife samples. In all subjects, tractography of the ACL graft was feasible. Quantitative evaluation of the diffusion properties of the ACL graft yielded the following mean ± SD values: FA = 0.23 ± 0.04; MD = 1.30 ± 0.11 × 10 -3 mm 2 /s; AD = 1.61 ± 0.12 × 10 -3 mm 2 /s, and RD = 1.15 ± 0.11 × 10 -3 mm 2 /s. Interrater reliability for the DTI parameters was excellent (ICC = 0.91-0.98). Mean %CVs for FA, MD, AD, and RD were 4.6%, 3.5%, 3.7%, and 4.4%, respectively. We demonstrated the feasibility and reliability of DTI for the visualization and quantitative evaluation of the ACL graft at 3T. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1423-1432. © 2017 International Society for Magnetic Resonance in Medicine.

  3. A flocking based method for brain tractography.

    Science.gov (United States)

    Aranda, Ramon; Rivera, Mariano; Ramirez-Manzanares, Alonso

    2014-04-01

    We propose a new method to estimate axonal fiber pathways from Multiple Intra-Voxel Diffusion Orientations. Our method uses the multiple local orientation information for leading stochastic walks of particles. These stochastic particles are modeled with mass and thus they are subject to gravitational and inertial forces. As result, we obtain smooth, filtered and compact trajectory bundles. This gravitational interaction can be seen as a flocking behavior among particles that promotes better and robust axon fiber estimations because they use collective information to move. However, the stochastic walks may generate paths with low support (outliers), generally associated to incorrect brain connections. In order to eliminate the outlier pathways, we propose a filtering procedure based on principal component analysis and spectral clustering. The performance of the proposal is evaluated on Multiple Intra-Voxel Diffusion Orientations from two realistic numeric diffusion phantoms and a physical diffusion phantom. Additionally, we qualitatively demonstrate the performance on in vivo human brain data. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography

    Science.gov (United States)

    Ravanfar, Mohammadreza; Pfeiffer, Ferris M.; Bozynski, Chantelle C.; Wang, Yuanbo; Yao, Gang

    2017-12-01

    Collagen degeneration is an important pathological feature of osteoarthritis. The purpose of this study is to investigate whether the polarization-sensitive optical coherence tomography (PSOCT)-based optical polarization tractography (OPT) can be useful in imaging collagen structural changes in human osteoarthritic cartilage samples. OPT eliminated the banding artifacts in conventional PSOCT by calculating the depth-resolved local birefringence and fiber orientation. A close comparison between OPT and PSOCT showed that OPT provided improved visualization and characterization of the zonal structure in human cartilage. Experimental results obtained in this study also underlined the importance of knowing the collagen fiber orientation in conventional polarized light microscopy assessment. In addition, parametric OPT imaging was achieved by quantifying the surface roughness, birefringence, and fiber dispersion in the superficial zone of the cartilage. These quantitative parametric images provided complementary information on the structural changes in cartilage, which can be useful for a comprehensive evaluation of collagen damage in osteoarthritic cartilage.

  5. Quantitative consensus of supervised learners for diffuse lung parenchymal HRCT patterns

    Science.gov (United States)

    Raghunath, Sushravya; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Bartholmai, Brian J.; Robb, Richard A.

    2013-03-01

    Automated lung parenchymal classification usually relies on supervised learning of expert chosen regions representative of the visually differentiable HRCT patterns specific to different pathologies (eg. emphysema, ground glass, honey combing, reticular and normal). Considering the elusiveness of a single most discriminating similarity measure, a plurality of weak learners can be combined to improve the machine learnability. Though a number of quantitative combination strategies exist, their efficacy is data and domain dependent. In this paper, we investigate multiple (N=12) quantitative consensus approaches to combine the clusters obtained with multiple (n=33) probability density-based similarity measures. Our study shows that hypergraph based meta-clustering and probabilistic clustering provides optimal expert-metric agreement.

  6. MRI and MR tractography in bilateral hypertrophic olivary degeneration

    Directory of Open Access Journals (Sweden)

    Debraj Sen

    2014-01-01

    Full Text Available Hypertrophic olivary degeneration is a trans-synaptic neuronal degeneration associated with hypertrophy of the inferior olivary nucleus due to a lesion in the triangle of Guillain-Mollaret. Familiarity with this entity on magnetic resonance imaging (MRI is essential to avoid other erroneous ominous diagnoses. We present a case of bilateral hypertrophic olivary degeneration and discuss the etiopathogenesis and MRI findings in this entity. The contributory role of MR tractography in the diagnosis is also highlighted.

  7. MRI and MR tractography in bilateral hypertrophic olivary degeneration.

    Science.gov (United States)

    Sen, Debraj; Gulati, Yoginder S; Malik, Virender; Mohimen, Aneesh; Sibi, Eranki; Reddy, Deepak Chandra

    2014-10-01

    Hypertrophic olivary degeneration is a trans-synaptic neuronal degeneration associated with hypertrophy of the inferior olivary nucleus due to a lesion in the triangle of Guillain-Mollaret. Familiarity with this entity on magnetic resonance imaging (MRI) is essential to avoid other erroneous ominous diagnoses. We present a case of bilateral hypertrophic olivary degeneration and discuss the etiopathogenesis and MRI findings in this entity. The contributory role of MR tractography in the diagnosis is also highlighted.

  8. MRI and MR tractography in bilateral hypertrophic olivary degeneration

    International Nuclear Information System (INIS)

    Sen, Debraj; Gulati, Yoginder S.; Malik, Virender; Mohimen, Aneesh; Sibi, Eranki; Reddy, Deepak Chandra

    2014-01-01

    Hypertrophic olivary degeneration is a trans-synaptic neuronal degeneration associated with hypertrophy of the inferior olivary nucleus due to a lesion in the triangle of Guillain-Mollaret. Familiarity with this entity on magnetic resonance imaging (MRI) is essential to avoid other erroneous ominous diagnoses. We present a case of bilateral hypertrophic olivary degeneration and discuss the etiopathogenesis and MRI findings in this entity. The contributory role of MR tractography in the diagnosis is also highlighted

  9. D-BRAIN : Anatomically accurate simulated diffusion MRI brain data

    NARCIS (Netherlands)

    Perrone, Daniele; Jeurissen, Ben; Aelterman, Jan; Roine, Timo; Sijbers, Jan; Pizurica, Aleksandra; Leemans, Alexander; Philips, Wilfried

    2016-01-01

    Diffusion Weighted (DW) MRI allows for the non-invasive study of water diffusion inside living tissues. As such, it is useful for the investigation of human brain white matter (WM) connectivity in vivo through fiber tractography (FT) algorithms. Many DW-MRI tailored restoration techniques and FT

  10. Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI

    International Nuclear Information System (INIS)

    Magro, Elsa; Moreau, Tristan; Gibaud, Bernard; Seizeur, Romuald; Morandi, Xavier

    2012-01-01

    Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness. Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness. The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers. These results raise questions about the functional role of these MRI tracks and their relation with laterality. (orig.)

  11. QIN DAWG Validation of Gradient Nonlinearity Bias Correction Workflow for Quantitative Diffusion-Weighted Imaging in Multicenter Trials.

    Science.gov (United States)

    Malyarenko, Dariya I; Wilmes, Lisa J; Arlinghaus, Lori R; Jacobs, Michael A; Huang, Wei; Helmer, Karl G; Taouli, Bachir; Yankeelov, Thomas E; Newitt, David; Chenevert, Thomas L

    2016-12-01

    Previous research has shown that system-dependent gradient nonlinearity (GNL) introduces a significant spatial bias (nonuniformity) in apparent diffusion coefficient (ADC) maps. Here, the feasibility of centralized retrospective system-specific correction of GNL bias for quantitative diffusion-weighted imaging (DWI) in multisite clinical trials is demonstrated across diverse scanners independent of the scanned object. Using corrector maps generated from system characterization by ice-water phantom measurement completed in the previous project phase, GNL bias correction was performed for test ADC measurements from an independent DWI phantom (room temperature agar) at two offset locations in the bore. The precomputed three-dimensional GNL correctors were retrospectively applied to test DWI scans by the central analysis site. The correction was blinded to reference DWI of the agar phantom at magnet isocenter where the GNL bias is negligible. The performance was evaluated from changes in ADC region of interest histogram statistics before and after correction with respect to the unbiased reference ADC values provided by sites. Both absolute error and nonuniformity of the ADC map induced by GNL (median, 12%; range, -35% to +10%) were substantially reduced by correction (7-fold in median and 3-fold in range). The residual ADC nonuniformity errors were attributed to measurement noise and other non-GNL sources. Correction of systematic GNL bias resulted in a 2-fold decrease in technical variability across scanners (down to site temperature range). The described validation of GNL bias correction marks progress toward implementation of this technology in multicenter trials that utilize quantitative DWI.

  12. Quantitative probabilistic functional diffusion mapping in newly diagnosed glioblastoma treated with radiochemotherapy.

    Science.gov (United States)

    Ellingson, Benjamin M; Cloughesy, Timothy F; Lai, Albert; Nghiemphu, Phioanh L; Liau, Linda M; Pope, Whitney B

    2013-03-01

    Functional diffusion mapping (fDM) is a cancer imaging technique that uses voxel-wise changes in apparent diffusion coefficients (ADC) to evaluate response to treatment. Despite promising initial results, uncertainty in image registration remains the largest barrier to widespread clinical application. The current study introduces a probabilistic approach to fDM quantification to overcome some of these limitations. A total of 143 patients with newly diagnosed glioblastoma who were undergoing standard radiochemotherapy were enrolled in this retrospective study. Traditional and probabilistic fDMs were calculated using ADC maps acquired before and after therapy. Probabilistic fDMs were calculated by applying random, finite translational, and rotational perturbations to both pre-and posttherapy ADC maps, then repeating calculation of fDMs reflecting changes after treatment, resulting in probabilistic fDMs showing the voxel-wise probability of fDM classification. Probabilistic fDMs were then compared with traditional fDMs in their ability to predict progression-free survival (PFS) and overall survival (OS). Probabilistic fDMs applied to patients with newly diagnosed glioblastoma treated with radiochemotherapy demonstrated shortened PFS and OS among patients with a large volume of tumor with decreasing ADC evaluated at the posttreatment time with respect to the baseline scans. Alternatively, patients with a large volume of tumor with increasing ADC evaluated at the posttreatment time with respect to baseline scans were more likely to progress later and live longer. Probabilistic fDMs performed better than traditional fDMs at predicting 12-month PFS and 24-month OS with use of receiver-operator characteristic analysis. Univariate log-rank analysis on Kaplan-Meier data also revealed that probabilistic fDMs could better separate patients on the basis of PFS and OS, compared with traditional fDMs. Results suggest that probabilistic fDMs are a more predictive biomarker in

  13. Quantitative Apparent Diffusion Coefficients in the Characterization of Brain Tumors and Associated Peritumoral Edema

    International Nuclear Information System (INIS)

    Server, A.; Schellhorn, T.; Nakstad, P.H.; Kulle, B.; Maehlen, J.; Kumar, T.; Josefsen, R.; Langberg, C.W.

    2009-01-01

    Background: Conventional magnetic resonance (MR) imaging has a number of limitations in the diagnosis of the most common intracranial brain tumors, including tumor specification and the detection of tumoral infiltration in regions of peritumoral edema. Purpose: To prospectively assess if diffusion-weighted MR imaging (DWI) could be used to differentiate between different types of brain tumors and to distinguish between peritumoral infiltration in high-grade gliomas, lymphomas, and pure vasogenic edema in metastases and meningiomas. Material and Methods: MR imaging and DWI was performed on 93 patients with newly diagnosed brain tumors: 59 patients had histologically verified high-grade gliomas (37 glioblastomas multiforme, 22 anaplastic astrocytomas), 23 patients had metastatic brain tumors, five patients had primary cerebral lymphomas, and six patients had meningiomas. Apparent diffusion coefficient (ADC) values of tumor (enhancing regions or the solid portion of tumor) and peritumoral edema, and ADC ratios (ADC of tumor or peritumoral edema to ADC of contralateral white matter, ADC of tumor to ADC of peritumoral edema) were compared with the histologic diagnosis. ADC values and ratios of high-grade gliomas, primary cerebral lymphomas, metastases, and meningiomas were compared by using ANOVA and multiple comparisons. Optimal thresholds of ADC values and ADC ratios for distinguishing high-grade gliomas from metastases were determined by receiver operating characteristic (ROC) curve analysis. Results: Statistically significant differences were found for minimum and mean of ADC tumor and ADC tumor ratio values between metastases and high-grade gliomas when including only one factor at a time. Including a combination of in total four parameters (mean ADC tumor, and minimum, maximum and mean ADC tumor ratio) resulted in sensitivity, specificity, positive (PPV), and negative predictive values (NPV) of 72.9, 82.6, 91.5, and 54.3% respectively. In the ROC curve analysis

  14. High and ultra-high b-value diffusion-weighted imaging in prostate cancer: a quantitative analysis.

    Science.gov (United States)

    Wetter, Axel; Nensa, Felix; Lipponer, Christine; Guberina, Nika; Olbricht, Tobias; Schenck, Marcus; Schlosser, Thomas W; Gratz, Marcel; Lauenstein, Thomas C

    2015-08-01

    Diffusion-weighted imaging (DWI) is routinely used in magnetic resonance imaging (MRI) of prostate cancer. However, the routine use of b values higher than 1000 s/mm(2) is not clear up to present. Moreover, the complex diffusion behavior of malignant and benign prostate tissues hampers precise predictions of contrast in DWI images and apparent diffusion coefficient (ADC) maps. To quantitatively analyze DWI with different b values in prostate cancer and to identify b values best suitable for cancer detection. Forty-one patients with histologically proven prostate cancer were examined with high resolution T2-weighted imaging and DWI at 3 Tesla. Five different b values (0, 800, 1000, 1500, 2000 s/mm(2)) were applied. ADC values of tumors and reference areas were measured on ADC maps derived from different pairs of b values. Furthermore, signal intensities of DW images of tumors and reference areas were measured. For analysis, contrast ratios of ADC values and signal intensities of DW images were calculated and compared. No significant differences were found between contrast ratios measured on ADC maps of all analyzed b value pairs (P = 0.43). Contrast ratios calculated from signal intensities of DW images were highest at b values of 1500 and 2000 s/mm(2) and differed significantly from contrast ratios at b values of 800 and 1000 s/mm(2) (P values, contrast ratios of DW images are significantly higher at b-values of 1500 and 2000 s/mm(2) in comparison to b values of 800 and 1000 s/mm(2). Therefore, diagnostic performance of DWI in prostate cancer might be increased by application of b values higher than 1000 s/mm(2). © The Foundation Acta Radiologica 2014.

  15. A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins.

    Science.gov (United States)

    Nichols, Brandon S; Schindler, Christine E; Brown, Jonathon Q; Wilke, Lee G; Mulvey, Christine S; Krieger, Marlee S; Gallagher, Jennifer; Geradts, Joseph; Greenup, Rachel A; Von Windheim, Jesko A; Ramanujam, Nirmala

    2015-01-01

    In an ongoing effort to address the clear clinical unmet needs surrounding breast conserving surgery (BCS), our group has developed a next-generation multiplexed optical-fiber-based tool to assess breast tumor margin status during initial surgeries. Specifically detailed in this work is the performance and clinical validation of a research-grade intra-operative tool for margin assessment based on diffuse optical spectroscopy. Previous work published by our group has illustrated the proof-of-concept generations of this device; here we incorporate a highly optimized quantitative diffuse reflectance imaging (QDRI) system utilizing a wide-field (imaging area = 17 cm(2)) 49-channel multiplexed fiber optic probe, a custom raster-scanning imaging platform, a custom dual-channel white LED source, and an astronomy grade imaging CCD and spectrograph. The system signal to noise ratio (SNR) was found to be greater than 40 dB for all channels. Optical property estimation error was found to be less than 10%, on average, over a wide range of absorption (μa = 0-8.9 cm(-1)) and scattering (μs' = 7.0-9.7 cm(-1)) coefficients. Very low inter-channel and CCD crosstalk was observed (2% max) when used on turbid media (including breast tissue). A raster-scanning mechanism was developed to achieve sub-pixel resolution and was found to be optimally performed at an upsample factor of 8, affording 0.75 mm spatially resolved diffuse reflectance images (λ = 450-600 nm) of an entire margin (area = 17 cm(2)) in 13.8 minutes (1.23 cm(2)/min). Moreover, controlled pressure application at the probe-tissue interface afforded by the imaging platform reduces repeated scan variability, providing operative time scales with improved sensitivity to regions of focal disease that may otherwise be overlooked.

  16. Quantitative characterization of steady and time-varying, sooting, laminar diffusion flames using optical techniques

    Science.gov (United States)

    Connelly, Blair C.

    In order to reduce the emission of pollutants such as soot and NO x from combustion systems, a detailed understanding of pollutant formation is required. In addition to environmental concerns, this is important for a fundamental understanding of flame behavior as significant quantities of soot lower local flame temperatures, increase overall flame length and affect the formation of such temperature-dependent species as NOx. This problem is investigated by carrying out coupled computational and experimental studies of steady and time-varying sooting, coflow diffusion flames. Optical diagnostic techniques are a powerful tool for characterizing combustion systems, as they provide a noninvasive method of probing the environment. Laser diagnostic techniques have added advantages, as systems can be probed with high spectral, temporal and spatial resolution, and with species selectivity. Experimental soot volume fractions were determined by using two-dimensional laser-induced incandescence (LII), calibrated with an on-line extinction measurement, and soot pyrometry. Measurements of soot particle size distributions are made using time-resolved LII (TR-LII). Laser-induced fluorescence measurements are made of NO and formaldehyde. These experimental measurements, and others, are compared with computational results in an effort to understand and model soot formation and to examine the coupled relationship of soot and NO x formation.

  17. Quantitative skin color measurements in acanthosis nigricans patients: colorimetry and diffuse reflectance spectroscopy.

    Science.gov (United States)

    Pattamadilok, Bensachee; Devpura, Suneetha; Syed, Zain U; Agbai, Oma N; Vemulapalli, Pranita; Henderson, Marsha; Rehse, Steven J; Mahmoud, Bassel H; Lim, Henry W; Naik, Ratna; Hamzavi, Iltefat H

    2012-08-01

    Tristimulus colorimetry and diffuse reflectance spectroscopy (DRS) are white-light skin reflectance techniques used to measure the intensity of skin pigmentation. The tristimulus colorimeter is an instrument that measures a perceived color and the DRS instrument measures biological chromophores of the skin, including oxy- and deoxyhemoglobin, melanin and scattering. Data gathered from these tools can be used to understand morphological changes induced in skin chromophores due to conditions of the skin or their treatments. The purpose of this study was to evaluate the use of these two instruments in color measurements of acanthosis nigricans (AN) lesions. Eight patients with hyperinsulinemia and clinically diagnosable AN were seen monthly. Skin pigmentation was measured at three sites: the inner forearm, the medial aspect of the posterior neck, and anterior neck unaffected by AN. Of the three, measured tristimulus L*a*b* color parameters, the luminosity parameter L* was found to most reliably distinguish lesion from normally pigmented skin. The DRS instrument was able to characterize a lesion on the basis of the calculated melanin concentration, though melanin is a weak indicator of skin change and not a reliable measure to be used independently. Calculated oxyhemoglobin and deoxyhemoglobin concentrations were not found to be reliable indicators of AN. Tristimulus colorimetry may provide reliable methods for respectively quantifying and characterizing the objective color change in AN, while DRS may be useful in characterizing changes in skin melanin content associated with this skin condition. © 2012 John Wiley & Sons A/S.

  18. Histogram analysis of diffusion kurtosis imaging of nasopharyngeal carcinoma: Correlation between quantitative parameters and clinical stage.

    Science.gov (United States)

    Xu, Xiao-Quan; Ma, Gao; Wang, Yan-Jun; Hu, Hao; Su, Guo-Yi; Shi, Hai-Bin; Wu, Fei-Yun

    2017-07-18

    To evaluate the correlation between histogram parameters derived from diffusion-kurtosis (DK) imaging and the clinical stage of nasopharyngeal carcinoma (NPC). High T-stage (T3/4) NPC showed significantly higher Kapp-mean (P = 0.018), Kapp-median (P = 0.029) and Kapp-90th (P = 0.003) than low T-stage (T1/2) NPC. High N-stage NPC (N2/3) showed significantly lower Dapp-mean (P = 0.002), Dapp-median (P = 0.002) and Dapp-10th (P Histogram parameters, including mean, median, 10th, 90th percentiles, skewness and kurtosis of Dapp and Kapp were calculated. Patients were divided into low and high T, N and clinical stage based on American Joint Committee on Cancer (AJCC) staging system. Differences of histogram parameters between low and high T, N and AJCC stages were compared using t test. Multiple receiver operating characteristic (ROC) curves were used to determine and compare the value of significant parameters in predicting high T, N and AJCC stage, respectively. DK imaging-derived parameters correlated well with clinical stage of NPC, therefore could serve as an adjunctive imaging technique for evaluating NPC.

  19. A Quantitative Diffuse Reflectance Imaging (QDRI System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins.

    Directory of Open Access Journals (Sweden)

    Brandon S Nichols

    Full Text Available In an ongoing effort to address the clear clinical unmet needs surrounding breast conserving surgery (BCS, our group has developed a next-generation multiplexed optical-fiber-based tool to assess breast tumor margin status during initial surgeries. Specifically detailed in this work is the performance and clinical validation of a research-grade intra-operative tool for margin assessment based on diffuse optical spectroscopy. Previous work published by our group has illustrated the proof-of-concept generations of this device; here we incorporate a highly optimized quantitative diffuse reflectance imaging (QDRI system utilizing a wide-field (imaging area = 17 cm(2 49-channel multiplexed fiber optic probe, a custom raster-scanning imaging platform, a custom dual-channel white LED source, and an astronomy grade imaging CCD and spectrograph. The system signal to noise ratio (SNR was found to be greater than 40 dB for all channels. Optical property estimation error was found to be less than 10%, on average, over a wide range of absorption (μa = 0-8.9 cm(-1 and scattering (μs' = 7.0-9.7 cm(-1 coefficients. Very low inter-channel and CCD crosstalk was observed (2% max when used on turbid media (including breast tissue. A raster-scanning mechanism was developed to achieve sub-pixel resolution and was found to be optimally performed at an upsample factor of 8, affording 0.75 mm spatially resolved diffuse reflectance images (λ = 450-600 nm of an entire margin (area = 17 cm(2 in 13.8 minutes (1.23 cm(2/min. Moreover, controlled pressure application at the probe-tissue interface afforded by the imaging platform reduces repeated scan variability, providing <1% variation across repeated scans of clinical specimens. We demonstrate the clinical utility of this device through a pilot 20-patient study of high-resolution optical parameter maps of the ratio of the β-carotene concentration to the reduced scattering coefficient. An empirical cumulative

  20. Intrahepatic and hilar mass-forming cholangiocarcinoma: Qualitative and quantitative evaluation with diffusion-weighted MR imaging.

    Science.gov (United States)

    Fattach, Hassan El; Dohan, Anthony; Guerrache, Youcef; Dautry, Raphael; Boudiaf, Mourad; Hoeffel, Christine; Soyer, Philippe

    2015-08-01

    To qualitatively and quantitatively analyze the presentation of intrahepatic and hilar mass-forming cholangiocarcinoma with diffusion-weighted magnetic resonance imaging (DW-MRI). Twenty-eight patients with histopathologically proven mass-forming cholangiocarcinoma (hilar, n=17; intrahepatic, n=11) underwent hepatic DW-MRI at 1.5-T using free-breathing acquisition and three b-values (0,400,800s/mm(2)). Cholangiocarcinomas were evaluated qualitatively using visual analysis of DW-MR images and quantitatively with conventional ADC and normalized ADC measurements using liver and spleen as reference organs. All cholangiocarcinomas (28/28; 100%) were visible on DW-MR images. DW-MRI yielded best conspicuity of cholangiocarcinomas than the other MRI sequences (Philar cholangiocarcinomas. The use of normalized ADC using the liver as reference organ resulted in the most restricted distribution of ADC values of cholangiocarcinomas (variation coefficient=16.6%). There is a trend towards a common appearance of intrahepatic and hilar mass-forming cholangiocarcinomas on DW-MRI but variations may be observed. Familiarity with these variations may improve the diagnosis of mass-forming cholangiocarcinoma. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Quantitative Measurements of Electronically Excited CH Concentration in Normal Gravity and Microgravity Coflow Laminar Diffusion Flames

    Science.gov (United States)

    Giassi, D.; Cao, S.; Stocker, D. P.; Takahashi, F.; Bennett, B. A. V.; Smooke, M. D.; Long, M. B.

    2015-01-01

    With the conclusion of the SLICE campaign aboard the ISS in 2012, a large amount of data was made available for the analysis of the effect of microgravity on laminar coflow diffusion flames. Previous work focused on the study of sooty flames in microgravity as well as the ability of numerical models to predict its formation in a simplified buoyancy-free environment. The current work shifts the investigation to soot-free flames, putting an emphasis on the chemiluminescence emission from electronically excited CH (CH*). This radical species is of significant interest in combustion studies: it has been shown that the electronically excited CH spatial distribution is indicative of the flame front position and, given the relatively simple diagnostic involved with its measurement, several works have been done trying to understand the ability of electronically excited CH chemiluminescence to predict the total and local flame heat release rate. In this work, a subset of the SLICE nitrogen-diluted methane flames has been considered, and the effect of fuel and coflow velocity on electronically excited CH concentration is discussed and compared with both normal gravity results and numerical simulations. Experimentally, the spectral characterization of the DSLR color camera used to acquire the flame images allowed the signal collected by the blue channel to be considered representative of the electronically excited CH emission centered around 431 nm. Due to the axisymmetric flame structure, an Abel deconvolution of the line-of-sight chemiluminescence was used to obtain the radial intensity profile and, thanks to an absolute light intensity calibration, a quantification of the electronically excited CH concentration was possible. Results show that, in microgravity, the maximum flame electronically excited CH concentration increases with the coflow velocity, but it is weakly dependent on the fuel velocity; normal gravity flames, if not lifted, tend to follow the same trend

  2. Quantitative Measurements of CH* Concentration in Normal Gravity and Microgravity Coflow Laminar Diffusion Flames

    Science.gov (United States)

    Giassi, D.; Cao, S.; Stocker, D. P.; Takahashi, F.; Bennett, B. A.; Smooke, M. D.; Long, M. B.

    2015-01-01

    With the conclusion of the SLICE campaign aboard the ISS in 2012, a large amount of data was made available for the analysis of the effect of microgravity on laminar coflow diffusion flames. Previous work focused on the study of sooty flames in microgravity as well as the ability of numerical models to predict its formation in a simplified buoyancy-free environment. The current work shifts the investigation to soot-free flames, putting an emphasis on the chemiluminescence emission from electronically excited CH (CH*). This radical species is of significant interest in combustion studies: it has been shown that the CH* spatial distribution is indicative of the flame front position and, given the relatively simple diagnostic involved with its measurement, several works have been done trying to understand the ability of CH* chemiluminescence to predict the total and local flame heat release rate. In this work, a subset of the SLICE nitrogen-diluted methane flames has been considered, and the effect of fuel and coflow velocity on CH* concentration is discussed and compared with both normal gravity results and numerical simulations. Experimentally, the spectral characterization of the DSLR color camera used to acquire the flame images allowed the signal collected by the blue channel to be considered representative of the CH* emission centered around 431 nm. Due to the axisymmetric flame structure, an Abel deconvolution of the line-of-sight chemiluminescence was used to obtain the radial intensity profile and, thanks to an absolute light intensity calibration, a quantification of the CH* concentration was possible. Results show that, in microgravity, the maximum flame CH* concentration increases with the coflow velocity, but it is weakly dependent on the fuel velocity; normal gravity flames, if not lifted, tend to follow the same trend, albeit with different peak concentrations. Comparisons with numerical simulations display reasonably good agreement between measured and

  3. Quantitative ultrasonic coda wave (diffuse field) NDE of carbon-fiber reinforced polymer plates

    Science.gov (United States)

    Livings, Richard A.

    The increasing presence and applications of composite materials in aerospace structures precipitates the need for improved Nondestructive Evaluation (NDE) techniques to move from simple damage detection to damage diagnosis and structural prognosis. Structural Health Monitoring (SHM) with advanced ultrasonic (UT) inspection methods can potentially address these issues. Ultrasonic coda wave NDE is one of the advanced methods currently under investigation. Coda wave NDE has been applied to concrete and metallic specimens to assess damage with some success, but currently the method is not fully mature or ready to be applied for SHM. Additionally, the damage diagnosis capabilities and limitations of coda wave NDE applied to fibrous composite materials have not been widely addressed in literature. The central objective of this work, therefore, is to develop a quantitative foundation for the use of coda wave NDE for the inspection and evaluation of fibrous composite materials. Coda waves are defined as the superposition of late arriving wave modes that have been scattered or reflected multiple times. This results in long, complex signals where individual wave modes cannot be discriminated. One method of interpreting the changes in such signals caused by the introduction or growth of damage is to isolate and quantify the difference between baseline and damage signals. Several differential signal features are used in this work to quantify changes in the coda waves which can then be correlated to damage size and growth. Experimental results show that coda wave differential features are effective in detecting drilled through-holes as small as 0.4 mm in a 50x100x6 mm plate and discriminating between increasing hole diameter and increasing number of holes. The differential features are also shown to have an underlying basis function that is dependent on the hole volume and can be scaled by a material dependent coefficient to estimate the feature amplitude and size holes. The

  4. Automatic target validation based on neuroscientific literature mining for tractography

    Directory of Open Access Journals (Sweden)

    Xavier eVasques

    2015-05-01

    Full Text Available Target identification for tractography studies requires solid anatomical knowledge validated by an extensive literature review across species for each seed structure to be studied. Manual literature review to identify targets for a given seed region is tedious and potentially subjective. Therefore, complementary approaches would be useful. We propose to use text-mining models to automatically suggest potential targets from the neuroscientific literature, full-text articles and abstracts, so that they can be used for anatomical connection studies and more specifically for tractography. We applied text-mining models to three structures: two well studied structures, since validated deep brain stimulation targets, the internal globus pallidus and the subthalamic nucleus and, the nucleus accumbens, an exploratory target for treating psychiatric disorders. We performed a systematic review of the literature to document the projections of the three selected structures and compared it with the targets proposed by text-mining models, both in rat and primate (including human. We ran probabilistic tractography on the nucleus accumbens and compared the output with the results of the text-mining models and literature review. Overall, text-mining the literature could find three times as many targets as two man-weeks of curation could. The overall efficiency of the text-mining against literature review in our study was 98% recall (at 36% precision, meaning that over all the targets for the three selected seeds, only one target has been missed by text-mining. We demonstrate that connectivity for a structure of interest can be extracted from a very large amount of publications and abstracts. We believe this tool will be useful in helping the neuroscience community to facilitate connectivity studies of particular brain regions. The text mining tools used for the study are part of the HBP Neuroinformatics Platform, publicly available at http://connectivity-brainer.rhcloud.com/.

  5. A novel approach of fMRI-guided tractography analysis within a group: construction of an fMRI-guided tractographic atlas.

    Science.gov (United States)

    Preti, Maria Giulia; Makris, Nikos; Laganà, Maria Marcella; Papadimitriou, George; Baglio, Francesca; Griffanti, Ludovica; Nemni, Raffaello; Cecconi, Pietro; Westin, Carl-Fredrik; Baselli, Giuseppe

    2012-01-01

    Diffusion Tensor Imaging (DTI) tractography and functional Magnetic Resonance Imaging (fMRI) investigate two complementary aspects of brain networks: white matter (WM) anatomical connectivity and gray matter (GM) function. However, integration standards have yet to be defined; namely, individual fMRI-driven tractography is usually applied and only few studies address group analysis. This work proposes an efficient method of fMRI-driven tractography at group level through the creation of a tractographic atlas starting from the GM areas activated by a verbal fluency task in 11 healthy subjects. The individual tracts were registered to the MNI space. Selection ROIs derived by GM masking and dilation of group activated areas were applied to obtain the fMRI-driven subsets within tracts. An atlas of the tracts recruited among the population was obtained by selecting for each subject the fMRI-guided tracts passing through the high probability voxels (the voxels recruited by the 90% of the subjects) and merging them together. The reliability of this approach was assessed by comparing it with the probabilistic atlas previously introduced in literature. The introduced method allowed to successfully reconstruct activated tracts, which comprehended corpus callosum, left cingulum and arcuate, a small portion of the right arcuate, both cortico-spinal tracts and inferior fronto-occipital fasciculi. Moreover, it proved to give results concordant with the previously introduced probabilistic approach, allowing in addition to reconstruct 3D trajectories of the activated fibers, which appear particularly helpful in the detection of WM connections.

  6. Diffusion tensor imaging for nerve fiber bundles in the brain stem and spinocerebellar degeneration

    International Nuclear Information System (INIS)

    Honma, Tsuguo

    2009-01-01

    Diffusion tensor imaging (DTI) can create an image of the anisotropic nature of diffusion and express it quantitatively. Nerve fibers have a large anisotropic diffusion, and it is possible to obtain images of the nerve fiber bundle. The purpose of this study is to observe the nerve fiber bundles in the brain stem using DTI and study its potential for diagnosing the type of spinocerebellar degeneration (SCD). Fractional anisotropy (FA) maps and 3D-tractography images were obtained for 41 subjects with no brain stem abnormalities. We created an apparent diffusion coefficient (ADC) map and an FA map using DTI for 16 subjects in the disease group (11 with hereditary SCD and 5 with non-hereditary SCD) and 25 in the control group. The diffusion value of the pons and middle cerebellar peduncle was measured using ADC, and the degree of anisotropic diffusion was measured using FA. The pyramidal tract, superior cerebellar peduncle, and inferior cerebellar peduncle were clearly demonstrated for all cases. ADC for the middle cerebellar peduncle in spinocerebellar ataxin (SCA)1 was significantly higher, similar to that for the pons in dentatorubro-pallidoluysian atrophy (DRPLA). In MSA-C, ADC for both the pons and middle cerebellar peduncle was significantly elevated and FA was significantly decreased. There were no significant changes in SCA3. We could observe the nerve fiber bundles in the brain stem using DTI. FA and ADC measurements with DTI can aid in diagnosing the type of SCD. (author)

  7. Anatomical parcellation of the brainstem and cerebellar white matter: a preliminary probabilistic tractography study at 3 T

    International Nuclear Information System (INIS)

    Habas, Christophe; Cabanis, Emmanuel A.

    2007-01-01

    The aims of this study were: (1) to test whether higher spatial resolution diffusion tensor images and a higher field strength (3 T) enable a more accurate delineation of the anatomical tract within the brainstem, and, in particular, (2) to try to distinguish the different components of the corticopontocerebellar paths in terms of their cortical origins. The main tracts of the brainstem of four volunteers were studied at 3 T using a probabilistic diffusion tensor imaging (DTI) axonal tracking. The resulting tractograms enabled anatomical well-delineated structures to be identified on the diffusion tensor coloured images. We tracked corticopontine, corticospinal, central tegmental, inferior and superior cerebellopeduncular, transverse, medial lemniscal and, possibly, longitudinal medial fibres. Moreover, DTI tracking allowed a broad delineation of the corticopontocerebellar paths. Diffusion tensor coloured images allow a rapid and reliable access to the white matter broad parcellation of the brainstem and of the cerebellum, which can be completed by fibre tracking. However, a more accurate and exhaustive depiction of the anatomical connectivity within the brainstem requires the application of more sophisticated techniques and tractography algorithms, such as diffusion spectrum imaging. (orig.)

  8. Anatomical parcellation of the brainstem and cerebellar white matter: a preliminary probabilistic tractography study at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Christophe; Cabanis, Emmanuel A. [UPMC Paris 6, Service de NeuroImagerie, Hopital des Quinze-Vingts, Paris (France)

    2007-10-15

    The aims of this study were: (1) to test whether higher spatial resolution diffusion tensor images and a higher field strength (3 T) enable a more accurate delineation of the anatomical tract within the brainstem, and, in particular, (2) to try to distinguish the different components of the corticopontocerebellar paths in terms of their cortical origins. The main tracts of the brainstem of four volunteers were studied at 3 T using a probabilistic diffusion tensor imaging (DTI) axonal tracking. The resulting tractograms enabled anatomical well-delineated structures to be identified on the diffusion tensor coloured images. We tracked corticopontine, corticospinal, central tegmental, inferior and superior cerebellopeduncular, transverse, medial lemniscal and, possibly, longitudinal medial fibres. Moreover, DTI tracking allowed a broad delineation of the corticopontocerebellar paths. Diffusion tensor coloured images allow a rapid and reliable access to the white matter broad parcellation of the brainstem and of the cerebellum, which can be completed by fibre tracking. However, a more accurate and exhaustive depiction of the anatomical connectivity within the brainstem requires the application of more sophisticated techniques and tractography algorithms, such as diffusion spectrum imaging. (orig.)

  9. Intrahepatic and hilar mass-forming cholangiocarcinoma: Qualitative and quantitative evaluation with diffusion-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fattach, Hassan El, E-mail: hassangreenmed@gmail.com [Department of Abdominal Imaging, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, 2 rue Ambroise Paré, 75010 Paris (France); Dohan, Anthony, E-mail: anthony.dohan@lrb.aphp.fr [Department of Abdominal Imaging, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, 2 rue Ambroise Paré, 75010 Paris (France); Université Paris-Diderot, Sorbonne Paris Cité, 10 Avenue de Verdun, 75010 Paris (France); UMR INSERM 965-Paris 7 “Angiogenèse et recherche translationnelle”, 2 rue Amboise Paré, 75010 Paris (France); Guerrache, Youcef, E-mail: docyoucef05@yahoo.fr [Department of Abdominal Imaging, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, 2 rue Ambroise Paré, 75010 Paris (France); Dautry, Raphael, E-mail: raphael.dautry@lrb.aphp.fr [Department of Abdominal Imaging, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, 2 rue Ambroise Paré, 75010 Paris (France); Université Paris-Diderot, Sorbonne Paris Cité, 10 Avenue de Verdun, 75010 Paris (France); and others

    2015-08-15

    Highlights: • DW-MR imaging helps depicts all intrahepatic or hilar mass-forming cholangiocarcinomas. • DW-MRI provides best conspicuity of intrahepatic or hilar mass-forming cholangiocarcinomas than the other MRI sequences (P < 0.001). • The use of normalized ADC using the liver as reference organ results in the most restricted distribution of ADC values of intrahepatic or hilar mass-forming cholangiocarcinomas (variation coefficient = 16.6%). - Abstract: Objective: To qualitatively and quantitatively analyze the presentation of intrahepatic and hilar mass-forming cholangiocarcinoma with diffusion-weighted magnetic resonance imaging (DW-MRI). Materials and methods: Twenty-eight patients with histopathologically proven mass-forming cholangiocarcinoma (hilar, n = 17; intrahepatic, n = 11) underwent hepatic DW-MRI at 1.5-T using free-breathing acquisition and three b-values (0,400,800 s/mm{sup 2}). Cholangiocarcinomas were evaluated qualitatively using visual analysis of DW-MR images and quantitatively with conventional ADC and normalized ADC measurements using liver and spleen as reference organs. Results: All cholangiocarcinomas (28/28; 100%) were visible on DW-MR images. DW-MRI yielded best conspicuity of cholangiocarcinomas than the other MRI sequences (P < 0.001). Seven cholangiocarcinomas (7/11; 64%) showed hypointense central area on DW-MR images. Conventional ADC value of cholangiocarcinomas (1.042 × 10{sup −3} mm{sup 2}/s ± 0.221 × 10{sup −3} mm{sup 2}/s; range: 0.616 × 10{sup −3} mm{sup 2}/s to 2.050 × 10{sup −3} mm{sup 2}/s) was significantly lower than that of apparently normal hepatic parenchyma (1.362 × 10{sup −3} mm{sup 2}/s ± 0.187 × 10{sup −3} mm{sup 2}/s) (P < 0.0001), although substantial overlap was found. No significant differences in ADC and normalized ADC values were found between intrahepatic and hilar cholangiocarcinomas. The use of normalized ADC using the liver as reference organ resulted in the most restricted

  10. Intrahepatic and hilar mass-forming cholangiocarcinoma: Qualitative and quantitative evaluation with diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Fattach, Hassan El; Dohan, Anthony; Guerrache, Youcef; Dautry, Raphael

    2015-01-01

    Highlights: • DW-MR imaging helps depicts all intrahepatic or hilar mass-forming cholangiocarcinomas. • DW-MRI provides best conspicuity of intrahepatic or hilar mass-forming cholangiocarcinomas than the other MRI sequences (P < 0.001). • The use of normalized ADC using the liver as reference organ results in the most restricted distribution of ADC values of intrahepatic or hilar mass-forming cholangiocarcinomas (variation coefficient = 16.6%). - Abstract: Objective: To qualitatively and quantitatively analyze the presentation of intrahepatic and hilar mass-forming cholangiocarcinoma with diffusion-weighted magnetic resonance imaging (DW-MRI). Materials and methods: Twenty-eight patients with histopathologically proven mass-forming cholangiocarcinoma (hilar, n = 17; intrahepatic, n = 11) underwent hepatic DW-MRI at 1.5-T using free-breathing acquisition and three b-values (0,400,800 s/mm 2 ). Cholangiocarcinomas were evaluated qualitatively using visual analysis of DW-MR images and quantitatively with conventional ADC and normalized ADC measurements using liver and spleen as reference organs. Results: All cholangiocarcinomas (28/28; 100%) were visible on DW-MR images. DW-MRI yielded best conspicuity of cholangiocarcinomas than the other MRI sequences (P < 0.001). Seven cholangiocarcinomas (7/11; 64%) showed hypointense central area on DW-MR images. Conventional ADC value of cholangiocarcinomas (1.042 × 10 −3 mm 2 /s ± 0.221 × 10 −3 mm 2 /s; range: 0.616 × 10 −3 mm 2 /s to 2.050 × 10 −3 mm 2 /s) was significantly lower than that of apparently normal hepatic parenchyma (1.362 × 10 −3 mm 2 /s ± 0.187 × 10 −3 mm 2 /s) (P < 0.0001), although substantial overlap was found. No significant differences in ADC and normalized ADC values were found between intrahepatic and hilar cholangiocarcinomas. The use of normalized ADC using the liver as reference organ resulted in the most restricted distribution of ADC values of cholangiocarcinomas (variation

  11. Inter- and Intra-Observer Repeatability of Quantitative Whole-Body, Diffusion-Weighted Imaging (WBDWI in Metastatic Bone Disease.

    Directory of Open Access Journals (Sweden)

    Matthew D Blackledge

    Full Text Available Quantitative whole-body diffusion-weighted MRI (WB-DWI is now possible using semi-automatic segmentation techniques. The method enables whole-body estimates of global Apparent Diffusion Coefficient (gADC and total Diffusion Volume (tDV, both of which have demonstrated considerable utility for assessing treatment response in patients with bone metastases from primary prostate and breast cancers. Here we investigate the agreement (inter-observer repeatability between two radiologists in their definition of Volumes Of Interest (VOIs and subsequent assessment of tDV and gADC on an exploratory patient cohort of nine. Furthermore, each radiologist was asked to repeat his or her measurements on the same patient data sets one month later to identify the intra-observer repeatability of the technique. Using a Markov Chain Monte Carlo (MCMC estimation method provided full posterior probabilities of repeatability measures along with maximum a-posteriori values and 95% confidence intervals. Our estimates of the inter-observer Intraclass Correlation Coefficient (ICCinter for log-tDV and median gADC were 1.00 (0.97-1.00 and 0.99 (0.89-0.99 respectively, indicating excellent observer agreement for these metrics. Mean gADC values were found to have ICCinter = 0.97 (0.81-0.99 indicating a slight sensitivity to outliers in the derived distributions of gADC. Of the higher order gADC statistics, skewness was demonstrated to have good inter-user agreement with ICCinter = 0.99 (0.86-1.00, whereas gADC variance and kurtosis performed relatively poorly: 0.89 (0.39-0.97 and 0.96 (0.69-0.99 respectively. Estimates of intra-observer repeatability (ICCintra demonstrated similar results: 0.99 (0.95-1.00 for log-tDV, 0.98 (0.89-0.99 and 0.97 (0.83-0.99 for median and mean gADC respectively, 0.64 (0.25-0.88 for gADC variance, 0.85 (0.57-0.95 for gADC skewness and 0.85 (0.57-0.95 for gADC kurtosis. Further investigation of two anomalous patient cases revealed that a very small

  12. Connectomic disturbances in attention-deficit/hyperactivity disorder: a whole-brain tractography analysis.

    Science.gov (United States)

    Hong, Soon-Beom; Zalesky, Andrew; Fornito, Alex; Park, Subin; Yang, Young-Hui; Park, Min-Hyeon; Song, In-Chan; Sohn, Chul-Ho; Shin, Min-Sup; Kim, Bung-Nyun; Cho, Soo-Churl; Han, Doug Hyun; Cheong, Jae Hoon; Kim, Jae-Won

    2014-10-15

    Few studies have sought to identify, in a regionally unbiased way, the precise cortical and subcortical regions that are affected by white matter abnormalities in attention-deficit/hyperactivity disorder (ADHD). This study aimed to derive a comprehensive, whole-brain characterization of connectomic disturbances in ADHD. Using diffusion tensor imaging, whole-brain tractography, and an imaging connectomics approach, we characterized altered white matter connectivity in 71 children and adolescents with ADHD compared with 26 healthy control subjects. White matter differences were further delineated between patients with (n = 40) and without (n = 26) the predominantly hyperactive/impulsive subtype of ADHD. A significant network comprising 25 distinct fiber bundles linking 23 different brain regions spanning frontal, striatal, and cerebellar brain regions showed altered white matter structure in ADHD patients (p attentional disturbances. Attention-deficit/hyperactivity disorder subtypes were differentiated by a right-lateralized network (p attentional performance underscore the functional importance of these connectomic disturbances for the clinical phenotype of ADHD. A distributed pattern of white matter microstructural integrity separately involving frontal, striatal, and cerebellar brain regions, rather than direct frontostriatal connectivity, appears to be disrupted in children and adolescents with ADHD. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. MR muscle tractography study on VX2 soft-tissue tumor in rabbits

    International Nuclear Information System (INIS)

    Li Yonggang; Guo Liang; Xie Daohai; Hu Chunhogn; Guo Maofeng; Zhu Wei; Chen Jianhua; Xing Jianming; Wang Renfa

    2008-01-01

    Objective: To determine if diffusion tensor imaging (DTI) and muscle fiber tracts of muscle disease are feasible. Methods: Twenty Newzealand white rabbits were implanted with 0.2 ml VX 2 tumor tissue suspension in the right proximal thighs. MRI and DTI were performed on these rabbits and DTI of muscle fiber tracts in the muscles around the lesions were reconstructed. The fractional anisotropy(FA) and volume ratio anisotropy(VrA) of the tumor and the normal muscle were analyzed. The correlation study between MRI and pathological findings was done. Results: All experimental animal models of rabbit VX 2 soft tissue tumors were successfully established. The difference of FA between the central parenchyma area and the necrosis area, the peripheral area of the tumor, the adjacent and contralateral normal muscle was statistically significant (P 0.05). The difference of FA and VrA between the adjacent and contralateral normal muscle was not statistically significant (P>0.05). The arrangement of normal muscle was regular on DTI of muscle tract. The muscle around the tumor lesions was infiltrated and destructed, which demonstrated irregular and interrupted muscle fiber on muscle tractography. Conclusion: DTI is advantageous to demonstrate the structure of soft tissue tumors and its border, which should be helpful in the structure and function research of muscle, as well as in the diagnosis of muscle diseases. (authors)

  14. The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography.

    Science.gov (United States)

    Forkel, Stephanie J; Thiebaut de Schotten, Michel; Kawadler, Jamie M; Dell'Acqua, Flavio; Danek, Adrian; Catani, Marco

    2014-07-01

    The occipital and frontal lobes are anatomically distant yet functionally highly integrated to generate some of the most complex behaviour. A series of long associative fibres, such as the fronto-occipital networks, mediate this integration via rapid feed-forward propagation of visual input to anterior frontal regions and direct top-down modulation of early visual processing. Despite the vast number of anatomical investigations a general consensus on the anatomy of fronto-occipital connections is not forthcoming. For example, in the monkey the existence of a human equivalent of the 'inferior fronto-occipital fasciculus' (iFOF) has not been demonstrated. Conversely, a 'superior fronto-occipital fasciculus' (sFOF), also referred to as 'subcallosal bundle' by some authors, is reported in monkey axonal tracing studies but not in human dissections. In this study our aim is twofold. First, we use diffusion tractography to delineate the in vivo anatomy of the sFOF and the iFOF in 30 healthy subjects and three acallosal brains. Second, we provide a comprehensive review of the post-mortem and neuroimaging studies of the fronto-occipital connections published over the last two centuries, together with the first integral translation of Onufrowicz's original description of a human fronto-occipital fasciculus (1887) and Muratoff's report of the 'subcallosal bundle' in animals (1893). Our tractography dissections suggest that in the human brain (i) the iFOF is a bilateral association pathway connecting ventro-medial occipital cortex to orbital and polar frontal cortex, (ii) the sFOF overlaps with branches of the superior longitudinal fasciculus (SLF) and probably represents an 'occipital extension' of the SLF, (iii) the subcallosal bundle of Muratoff is probably a complex tract encompassing ascending thalamo-frontal and descending fronto-caudate connections and is therefore a projection rather than an associative tract. In conclusion, our experimental findings and review of the

  15. Alterations in the microstructure of white matter in children and adolescents with Tourette syndrome measured using tract-based spatial statistics and probabilistic tractography.

    Science.gov (United States)

    Sigurdsson, Hilmar P; Pépés, Sophia E; Jackson, Georgina M; Draper, Amelia; Morgan, Paul S; Jackson, Stephen R

    2018-04-12

    Tourette syndrome (TS) is a neurodevelopmental disorder characterised by repetitive and intermittent motor and vocal tics. TS is thought to reflect fronto-striatal dysfunction and the aetiology of the disorder has been linked to widespread alterations in the functional and structural integrity of the brain. The aim of this study was to assess white matter (WM) abnormalities in a large sample of young patients with TS in comparison to a sample of matched typically developing control individuals (CS) using diffusion MRI. The study included 35 patients with TS (3 females; mean age: 14.0 ± 3.3) and 35 CS (3 females; mean age: 13.9 ± 3.3). Diffusion MRI data was analysed using tract-based spatial statistics (TBSS) and probabilistic tractography. Patients with TS demonstrated both marked and widespread decreases in axial diffusivity (AD) together with altered WM connectivity. Moreover, we showed that tic severity and the frequency of premonitory urges (PU) were associated with increased connectivity between primary motor cortex (M1) and the caudate nuclei, and increased information transfer between M1 and the insula, respectively. This is to our knowledge the first study to employ both TBSS and probabilistic tractography in a sample of young patients with TS. Our results contribute to the limited existing literature demonstrating altered connectivity in TS and confirm previous results suggesting in particular, that altered insular function contributes to increased frequency of PU. Copyright © 2018. Published by Elsevier Ltd.

  16. Image quality transfer and applications in diffusion MRI

    DEFF Research Database (Denmark)

    Alexander, Daniel C.; Zikic, Darko; Ghosh, Aurobrata

    2017-01-01

    and the uniquely rich diffusion MRI data set from the human connectome project (HCP). Results highlight potential benefits of IQT in both brain connectivity mapping and microstructure imaging. In brain connectivity mapping, IQT reveals, from standard data sets, thin connection pathways that tractography normally...

  17. Structural parcellation of the thalamus using shortest-path tractography

    DEFF Research Database (Denmark)

    Kasenburg, Niklas; Darkner, Sune; Hahn, Ute

    2016-01-01

    that parcellation of the thalamus results in p-value maps that are spatially coherent across subjects. Comparing to the state-of-the-art parcellation of Behrens et al. [1], we observe some agreement, but the soft segmentation exhibits better stability for voxels connected to multiple target regions.......We demonstrate how structural parcellation can be implemented using shortest-path tractography, thereby addressing some of the shortcomings of the conventional approaches. In particular, our algorithm quantifies, via p-values, the confidence that a voxel in the parcellated region is connected...... to each cortical target region. Calculation of these statistical measures is derived from a rank-based test on the histogram of tract-based scores from all the shortest paths found between the source voxel and each voxel within the target region. Using data from the Human Connectome Project, we show...

  18. Performance of unscented Kalman filter tractography in edema: Analysis of the two-tensor model

    Directory of Open Access Journals (Sweden)

    Ruizhi Liao

    2017-01-01

    Overall, the main contribution of this study is to provide insight into how UKF tractography can work, using a two-tensor model, to begin to address the challenge of fiber tract reconstruction in edematous regions near brain tumors.

  19. Quantitative study of the cervical spinal cord damage in patients with multiple sclerosis and neuromyelitis optica using diffusion tensor imaging

    International Nuclear Information System (INIS)

    Hou Huanxin; Li Yongmei; Lu Fajin; Luo Tianyou; Ouyang Yu; Zeng Chun; Zhang Zhiwei

    2012-01-01

    Objective: To investigate the changes of the cervical spinal cord in patients with relapsing-remitting multiple sclerosis (RRMS) and relapsing neuromyelitis optica (RNMO) using diffusion tensor imaging (DTI) and to analyze its correlations with clinical disability scores. Methods: Thirty patients with MS (MS group),28 patients with NMO (NMO group) and 20 healthy volunteers were imaged using DTI on a 3.0 Tesla scanner. DTI indices of cervical spinal cord from all participants were measured, including mean diffusivity (MD) and fractional anisotropy (FA), and the correlations between the DTI metrics and the expanded disability status scale (EDSS) scores were assessed. One-way ANOVA, Dunnett-t test and Spearman correlation analysis were used for statistics. Results: (1) The values of MD among three groups were different at C3 level for left lateral and dorsal columns, C4 level for the central gray substance and dorsal columns, and C5-C6 level for all structures. There were significant differences among them (F=4.006-36.814, P<0.05). The values of FA were significantly different at all levels (F=5.561-98.128, P<0.05). (2) Compared with the control group, the values of MD were increased and FA were decreased for both MS and NMO groups, there were significant differences among them (t=-0.320-3.138, P<0.05). In MS and NMO groups, there were no significant differences of MD (t=-1.183-0.069, P>0.05), while the FA at C4-C6 levels (including the central gray substance, dorsal columns,right lateral columns and left lateral columns) for NMO group were 0.57 ± 0.09, 0.56 ± 0.11, 0.54 ±0.10, 0.57±0.09, 0.55 ±0.11, 0.52 ±0.13, 0.55 ±0.11, 0.54 ±0.13, 0.54±0.10, 0.54±0.11, 0.53 ±0.13, 0.52 ±0.11; and for MS group were 0.67 ±0.10, 0.68 ±0.10, 0.68 ±0.10, 0.70 ±0.12, 0.68 ±0.11, 0.69±0.10, 0.68 ±0.11, 0.69 ±0.12, 0.67 ±0.14, 0.68 ±0.15, 0.69 ±0.14, 0.69 ±0.16, and there were significant differences between two groups (t=-0.011-0.169, P<0.05). (3) Univariate

  20. Diffusion tensor imaging in spinal cord compression

    International Nuclear Information System (INIS)

    Wang, Wei; Qin, Wen; Hao, Nanxin; Wang, Yibin; Zong, Genlin

    2012-01-01

    Background Although diffusion tensor imaging has been successfully applied in brain research for decades, several main difficulties have hindered its extended utilization in spinal cord imaging. Purpose To assess the feasibility and clinical value of diffusion tensor imaging and tractography for evaluating chronic spinal cord compression. Material and Methods Single-shot spin-echo echo-planar DT sequences were scanned in 42 spinal cord compression patients and 49 healthy volunteers. The mean values of the apparent diffusion coefficient and fractional anisotropy were measured in region of interest at the cervical and lower thoracic spinal cord. The patients were divided into two groups according to the high signal on T2WI (the SCC-HI group and the SCC-nHI group for with or without high signal). A one-way ANOVA was used. Diffusion tensor tractography was used to visualize the morphological features of normal and impaired white matter. Results There were no statistically significant differences in the apparent diffusion coefficient and fractional anisotropy values between the different spinal cord segments of the normal subjects. All of the patients in the SCC-HI group had increased apparent diffusion coefficient values and decreased fractional anisotropy values at the lesion level compared to the normal controls. However, there were no statistically significant diffusion index differences between the SCC-nHI group and the normal controls. In the diffusion tensor imaging maps, the normal spinal cord sections were depicted as fiber tracts that were color-encoded to a cephalocaudal orientation. The diffusion tensor images were compressed to different degrees in all of the patients. Conclusion Diffusion tensor imaging and tractography are promising methods for visualizing spinal cord tracts and can provide additional information in clinical studies in spinal cord compression

  1. A higher-order tensor vessel tractography for segmentation of vascular structures.

    Science.gov (United States)

    Cetin, Suheyla; Unal, Gozde

    2015-10-01

    A new vascular structure segmentation method, which is based on a cylindrical flux-based higher order tensor (HOT), is presented. On a vessel structure, the HOT naturally models branching points, which create challenges for vessel segmentation algorithms. In a general linear HOT model embedded in 3D, one has to work with an even order tensor due to an enforced antipodal-symmetry on the unit sphere. However, in scenarios such as in a bifurcation, the antipodally-symmetric tensor embedded in 3D will not be useful. In order to overcome that limitation, we embed the tensor in 4D and obtain a structure that can model asymmetric junction scenarios. During construction of a higher order tensor (e.g. third or fourth order) in 4D, the orientation vectors lie on the unit 3-sphere, in contrast to the unit 2-sphere in 3D tensor modeling. This 4D tensor is exploited in a seed-based vessel segmentation algorithm, where the principal directions of the 4D HOT is obtained by decomposition, and used in a HOT tractography approach. We demonstrate quantitative validation of the proposed algorithm on both synthetic complex tubular structures as well as real cerebral vasculature in Magnetic Resonance Angiography (MRA) datasets and coronary arteries from Computed Tomography Angiography (CTA) volumes.

  2. Fiber tractography of the axonal pathways linking the basal ganglia and cerebellum in Parkinson disease: implications for targeting in deep brain stimulation.

    Science.gov (United States)

    Sweet, Jennifer A; Walter, Benjamin L; Gunalan, Kabilar; Chaturvedi, Ashutosh; McIntyre, Cameron C; Miller, Jonathan P

    2014-04-01

    Stimulation of white matter pathways near targeted structures may contribute to therapeutic effects of deep brain stimulation (DBS) for patients with Parkinson disease (PD). Two tracts linking the basal ganglia and cerebellum have been described in primates: the subthalamopontocerebellar tract (SPCT) and the dentatothalamic tract (DTT). The authors used fiber tractography to evaluate white matter tracts that connect the cerebellum to the region of the basal ganglia in patients with PD who were candidates for DBS. Fourteen patients with advanced PD underwent 3-T MRI, including 30-directional diffusion-weighted imaging sequences. Diffusion tensor tractography was performed using 2 regions of interest: ipsilateral subthalamic and red nuclei, and contralateral cerebellar hemisphere. Nine patients underwent subthalamic DBS, and the course of each tract was observed relative to the location of the most effective stimulation contact and the volume of tissue activated. In all patients 2 distinct tracts were identified that corresponded closely to the described anatomical features of the SPCT and DTT, respectively. The mean overall distance from the active contact to the DTT was 2.18 ± 0.35 mm, and the mean proportional distance relative to the volume of tissue activated was 1.35 ± 0.48. There was a nonsignificant trend toward better postoperative tremor control in patients with electrodes closer to the DTT. The SPCT and the DTT may be related to the expression of symptoms in PD, and this may have implications for DBS targeting. The use of tractography to identify the DTT might assist with DBS targeting in the future.

  3. Determining injuries from posterior and flank stab wounds using computed tomography tractography.

    Science.gov (United States)

    Bansal, Vishal; Reid, Chris M; Fortlage, Dale; Lee, Jeanne; Kobayashi, Leslie; Doucet, Jay; Coimbra, Raul

    2014-04-01

    Unlike anterior stab wounds (SW), in which local exploration may direct management, posterior SW can be challenging to evaluate. Traditional triple contrast computed tomography (CT) imaging is cumbersome and technician-dependent. The present study examines the role of CT tractography as a strategy to manage select patients with back and flank SW. Hemodynamically stable patients with back and flank SW were studied. After resuscitation, Betadine- or Visipaque®-soaked sterile sponges were inserted into each SW for the estimated depth of the wound. Patients underwent abdominal helical CT scanning, including intravenous contrast, as the sole abdominal imaging study. Images were reviewed by an attending radiologist and trauma surgeon. The tractogram was evaluated to determine SW trajectory and injury to intra- or retroperitoneal organs, vascular structures, the diaphragm, and the urinary tract. Complete patient demographics including operative management and injuries were collected. Forty-one patients underwent CT tractography. In 11 patients, tractography detected violation of the intra- or retroperitoneal cavity leading to operative exploration. Injuries detected included: the spleen (two), colon (one), colonic mesentery (one), kidney (kidney), diaphragm (kidney), pneumothorax (seven), hemothorax (two), iliac artery (one), and traumatic abdominal wall hernia (two). In all patients, none had negative CT findings that failed observation. In this series, CT tractography is a safe and effective imaging strategy to evaluate posterior torso SW. It is unknown whether CT tractography is superior to traditional imaging modalities. Other uses for CT tractography may include determining trajectory from missile wounds and tangential penetrating injuries.

  4. Toward quantitative fast diffusion kurtosis imaging with b-values chosen in consideration of signal-to-noise ratio and model fidelity.

    Science.gov (United States)

    Kuo, Yen-Shu; Yang, Shun-Chung; Chung, Hsiao-Wen; Wu, Wen-Chau

    2018-02-01

    Diffusion kurtosis (DK) imaging is a variant of conventional diffusion magnetic resonance (MR) imaging that allows assessment of non-Gaussian diffusion. Fast DK imaging expedites the procedure by decreasing both scan time (acquiring the minimally required number of b-values) and computation time (obviating least-square curve fitting). This study aimed to investigate the applicability of fast DK imaging for both cerebral gray matter and white matter as a quantitative method. Seventeen healthy volunteers were recruited and each provided written informed consent before participation. On a 3-Tesla clinical MR system, diffusion imaging was performed with 12 b-values ranging from 0 to 4000 s/mm 2 . Diffusion encoding was along three orthogonal directions (slice selection, phase encoding, and frequency encoding) in separate series. Candidate b-values were chosen by first determining the maximum b-value (b max ) in the context of signal-to-noise ratio and then assessing the model fidelity for all b-value combinations within b max . Diffusion coefficient (D) and diffusion kurtosis coefficient (K) were derived from these candidates and assessed for their dependence on b-value combination. Our data suggested b max to be 2200 s/mm 2 as a trade-off between the percentage (~80%) of voxels statistically detectable against background and the sensitivity to non-Gaussian diffusion in both gray matter and white matter. The measurement dependence on b-value was observed predominantly in areas with a considerable amount of cerebrospinal fluid. In most gray matter and white matter, b-value combinations do not cause statistical difference in the calculated D and K. For fast DK imaging to be quantitatively applicable in both gray matter and white matter, b max should be chosen to ensure adequate signal-to-noise ratio in the majority of gray/white matter and the two nonzero b-values should be chosen in consideration of model fidelity to mitigate the dependence of derived indices on b

  5. Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars

    International Nuclear Information System (INIS)

    Huisman, Thierry A.G.M.; Loenneker, Thomas; Barta, Gerd; Bellemann, Matthias E.; Hennig, Juergen; Fischer, Joachim E.; Il'yasov, Kamil A.

    2006-01-01

    The objectives were to study the ''impact'' of the magnetic field strength on diffusion tensor imaging (DTI) metrics and also to determine whether magnetic-field-related differences in T2-relaxation times of brain tissue influence DTI measurements. DTI was performed on 12 healthy volunteers at 1.5 and 3.0 Tesla (within 2 h) using identical DTI scan parameters. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured at multiple gray and white matter locations. ADC and FA values were compared and analyzed for statistically significant differences. In addition, DTI measurements were performed at different echo times (TE) for both field strengths. ADC values for gray and white matter were statistically significantly lower at 3.0 Tesla compared with 1.5 Tesla (% change between -1.94% and -9.79%). FA values were statistically significantly higher at 3.0 Tesla compared with 1.5 Tesla (% change between +4.04 and 11.15%). ADC and FA values are not significantly different for TE=91 ms and TE=125 ms. Thus, ADC and FA values vary with the used field strength. Comparative clinical studies using ADC or FA values should consequently compare ADC or FA results with normative ADC or FA values that have been determined for the field strength used. (orig.)

  6. Identification of the primary motor cortex: value of T2 echo-planar imaging, diffusion-weighted imaging and quantitative apparent diffusion coefficient measurement at 3 T

    International Nuclear Information System (INIS)

    Dincer, Alp; Erzen, Canan; Oezyurt, Onur; Pamir, M.N.

    2010-01-01

    To investigate the primary motor cortex (PMC) concerning T2 shortening on T2 echo-planar imaging (EPI-T2) and the double-layer sign on diffusion-weighted imaging (DWI), and also to measure its apparent diffusion coefficient (ADC). 3-T MR DWI was performed in 134 adult volunteers and 64 patients. T2 shortening was graded as hypointense or isointense compared with the signal of the superior frontal cortex (SFC). The double-layer sign of the PMC was graded as present or absent. Both findings (T2 shortening and double-layer sign) were evaluated independently by two authors. ADC of the PMC and the SFC were calculated using manually selected ROIs. T2 shortening was found in 131 adults and 62 patients by author 1 and in 132 adults and 61 patients by author 2 (κ = 0.96 and 0.91). The double-layer sign was found in 131 adults and 61 patients by author 1 and in 127 adults and 58 patients by author 2 (κ = 0.94 and 0.91). ADC values of the PMC and the SFC were different for all subjects (p < 0.01). T2 shortening and/or the double-layer sign on 3-T MR can be used to locate the PMC. The difference in ADC values between PMC and SFC is a distinguishing feature. (orig.)

  7. DTI fiber tractography of cerebro-cerebellar pathways and clinical evaluation of ataxia in childhood posterior fossa tumor survivors.

    Science.gov (United States)

    Oh, Myung Eun; Driever, Pablo Hernáiz; Khajuria, Rajiv K; Rueckriegel, Stefan Mark; Koustenis, Elisabeth; Bruhn, Harald; Thomale, Ulrich-Wilhelm

    2017-01-01

    Pediatric posterior fossa (PF) tumor survivors experience long-term motor deficits. Specific cerebrocerebellar connections may be involved in incidence and severity of motor dysfunction. We examined the relationship between long-term ataxia as well as fine motor function and alteration of differential cerebellar efferent and afferent pathways using diffusion tensor imaging (DTI) and tractography. DTI-based tractography was performed in 19 patients (10 pilocytic astrocytoma (PA) and 9 medulloblastoma patients (MB)) and 20 healthy peers. Efferent Cerebello-Thalamo-Cerebral (CTC) and afferent Cerebro-Ponto-Cerebellar (CPC) tracts were reconstructed and analyzed concerning fractional anisotropy (FA) and volumetric measurements. Clinical outcome was assessed with the International Cooperative Ataxia Rating Scale (ICARS). Kinematic parameters of fine motor function (speed, automation, variability, and pressure) were obtained by employing a digitizing graphic tablet. ICARS scores were significantly higher in MB patients than in PA patients. Poorer ICARS scores and impaired fine motor function correlated significantly with volume loss of CTC pathway in MB patients, but not in PA patients. Patients with pediatric post-operative cerebellar mutism syndrome showed higher loss of CTC pathway volume and were more atactic. CPC pathway volume was significantly reduced in PA patients, but not in MB patients. Neither relationship was observed between the CPC pathway and ICARS or fine motor function. There was no group difference of FA values between the patients and healthy peers. Reduced CTC pathway volumes in our cohorts were associated with severity of long-term ataxia and impaired fine motor function in survivors of MBs. We suggest that the CTC pathway seems to play a role in extent of ataxia and fine motor dysfunction after childhood cerebellar tumor treatment. DTI may be a useful tool to identify relevant structures of the CTC pathway and possibly avoid surgically induced long

  8. Physiological Background of Differences in Quantitative Diffusion-Weighted Magnetic Resonance Imaging Between Acute Malignant and Benign Vertebral Body Fractures: Correlation of Apparent Diffusion Coefficient With Quantitative Perfusion Magnetic Resonance Imaging Using the 2-Compartment Exchange Model.

    Science.gov (United States)

    Geith, Tobias; Biffar, Andreas; Schmidt, Gerwin; Sourbron, Steven; Dietrich, Olaf; Reiser, Maximilian; Baur-Melnyk, Andrea

    2015-01-01

    To test the hypothesis that apparent diffusion coefficient (ADC) in vertebral bone marrow of benign and malignant fractures is related to the volume of the interstitial space, determined with dynamic contrast-enhanced (DCE) magnetic resonance imaging. Patients with acute benign (n = 24) and malignant (n = 19) vertebral body fractures were examined at 1.5 T. A diffusion-weighted single-shot turbo-spin-echo sequence (b = 100 to 600 s/mm) and DCE turbo-FLASH sequence were evaluated. Regions of interest were manually selected for each fracture. Apparent diffusion coefficient was determined with a monoexponential decay model. The DCE magnetic resonance imaging concentration-time curves were analyzed using a 2-compartment tracer-kinetic model. Apparent diffusion coefficient showed a significant positive correlation with interstitial volume in the whole study population (Pearson r = 0.66, P correlation between ADC and the permeability-surface area product could be observed when analyzing the whole study population (Spearman rs = 0.40, P = 0.008), but not when separately examining the subgroups. Plasma flow showed a significant correlation with ADC in benign fractures (Pearson r = 0.23, P = 0.03). Plasma volume did not show significant correlations with ADC. The results support the hypothesis that the ADC of a lesion is inversely correlated to its cellularity. This explains previous observations that ADC is reduced in more malignant lesions.

  9. Quantitative and qualitative evaluation of brain diffusion weighted magnetic resonance imaging comparison with 1.5 T and 3.0 T units

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Eun Hoe [Dept. of Radiological Science, Cheongju University, Cheongju (Korea, Republic of); Dong, Kyung Rae [Dept. of Radiological Technology, Gwangju Health University, Gwangju (Korea, Republic of)

    2017-02-15

    DWI of biological effects are independent of magnetic field strength in various regions. High field strength, however, does affect the signal to noise ratio (SNR) and artifacts of diffusion weighted imaging (DWI) images, which ultimately will influence the quantitative of diffusion imaging . In this study, the effects of field strength on DWI are reviewed. The effects of the diseases also are discussed. Comparing DWI in cerebellum, WM, GM, Hyperacute region measurements both as a function of field strength (1.5 T and 3.0 T). Overall, the SNR of the DWI roughly doubled going from 1.5 T to 3.0 T. In summary, DWI studies at 3.0 T is provided significantly improved DWI measurements relative to studies at 1.5 T.

  10. D-BRAIN : Anatomically accurate simulated diffusion MRI brain data

    OpenAIRE

    Perrone, Daniele; Jeurissen, Ben; Aelterman, Jan; Roine, Timo; Sijbers, Jan; Pizurica, Aleksandra; Leemans, Alexander; Philips, Wilfried

    2016-01-01

    Diffusion Weighted (DW) MRI allows for the non-invasive study of water diffusion inside living tissues. As such, it is useful for the investigation of human brain white matter (WM) connectivity in vivo through fiber tractography (FT) algorithms. Many DW-MRI tailored restoration techniques and FT algorithms have been developed. However, it is not clear how accurately these methods reproduce the WM bundle characteristics in real-world conditions, such as in the presence of noise, partial volume...

  11. Evaluation of conventional, dynamic contrast enhanced and diffusion weighted MRI for quantitative Crohn's disease assessment with histopathology of surgical specimens

    NARCIS (Netherlands)

    Tielbeek, Jeroen A. W.; Ziech, Manon L. W.; Li, Zhang; Lavini, Cristina; Bipat, Shandra; Bemelman, Willem A.; Roelofs, Joris J. T. H.; Ponsioen, Cyriel Y.; Vos, Frans M.; Stoker, Jaap

    2014-01-01

    To prospectively compare conventional MRI sequences, dynamic contrast enhanced (DCE) MRI and diffusion weighted imaging (DWI) with histopathology of surgical specimens in Crohn's disease. 3-T MR enterography was performed in consecutive Crohn's disease patients scheduled for surgery within 4 weeks.

  12. Assessment of the link between quantitative biexponential diffusion-weighted imaging and contrast-enhanced MRI in the liver

    NARCIS (Netherlands)

    Dijkstra, Hildebrand; Oudkerk, Matthijs; Kappert, Peter; Sijens, Paul E.

    Purpose: To investigate if intravoxel incoherent motion (IVIM) modeled diffusion-weighted imaging (DWI) can be linked to contrast-enhanced (CE-)MRI in liver parenchyma and liver lesions. Methods: Twenty-five patients underwent IVIM-DWI followed by multiphase CE-MRI using Gd-EOB-DTPA (n = 20) or

  13. Quantitative analysis of diffusion-weighted magnetic resonance imaging in malignant breast lesions using different b value combinations

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, Line B. [Oslo University Hospital, Department of Radiation Biology, Norwegian Radium Hospital, P.O. Box 4959, Oslo (Norway); University of Oslo, Faculty of Medicine, P.O. Box 1078, Oslo (Norway); Fangberget, Anne [Oslo University Hospital, Department of Radiology and Nuclear Medicine, Division of Diagnostics and Intervention, Norwegian Radium Hospital, P.O. Box 4959, Oslo (Norway); Geier, Oliver [Oslo University Hospital, Department of Diagnostic Physics, The Interventional Centre, Division of Diagnostics and Intervention, P.O. Box 4950, Oslo (Norway); Seierstad, Therese [Oslo University Hospital, Department of Radiology and Nuclear Medicine, Division of Diagnostics and Intervention, Norwegian Radium Hospital, P.O. Box 4959, Oslo (Norway); Buskerud University College, Department of Health Sciences, P.O. Box 7053, Drammen (Norway)

    2013-04-15

    To explore how apparent diffusion coefficients (ADCs) in malignant breast lesions are affected by selection of b values in the monoexponential model and to compare ADCs with diffusion coefficients (Ds) obtained from the biexponential model. Twenty-four women (mean age 51.3 years) with locally advanced breast cancer were included in this study. Pre-treatment diffusion-weighted magnetic resonance imaging was performed using a 1.5-T system with b values of 0, 50, 100, 250 and 800 s/mm{sup 2}. Thirteen different b value combinations were used to derive individual monoexponential ADC maps. All b values were used in the biexponential model. Median ADC (including all b values) and D were 1.04 x 10{sup -3} mm{sup 2}/s (range 0.82-1.61 x 10{sup -3} mm{sup 2}/s) and 0.84 x 10{sup -3} mm{sup 2}/s (range 0.17-1.56 x 10{sup -3} mm{sup 2}/s), respectively. There was a strong positive correlation between ADCs and Ds. For clinically relevant b value combinations, maximum deviation between ADCs including and excluding low b values (<100 s/mm{sup 2}) was 11.8 %. Selection of b values strongly affects ADCs of malignant breast lesions. However, by excluding low b values, ADCs approach biexponential Ds, demonstrating that microperfusion influences the diffusion signal. Thus, care should be taken when ADC calculation includes low b values. (orig.)

  14. Use of Diffusion Spectrum imaging in preliminary longitudinal evaluation of Amyotrophic Lateral Sclerosis: development of an imaging biomarker

    Directory of Open Access Journals (Sweden)

    Kumar eAbhinav

    2014-04-01

    Full Text Available Previous diffusion tensor imaging (DTI studies have shown white matter pathology in ALS, predominantly in the motor pathways. Further these studies have shown that DTI can be used longitudinally to track pathology over time, making white matter pathology a candidate as an outcome measure in future trials. DTI has demonstrated application in group studies, however its derived indices, for example fractional anisotropy, are susceptible to partial volume effects, making its role questionable in examining individual progression. We hypothesize that changes in the white matter are present in ALS beyond the motor tracts, and that the affected pathways and associated pattern of disease progression can be tracked longitudinally using automated diffusion connectometry analysis. Connectometry analysis is based on diffusion spectrum imaging (DSI and overcomes the limitations of a conventional tractography approach and DTI. The identified affected white matter tracts can then be assessed in a targeted fashion using High definition fiber tractography (a novel white matter MR imaging technique. Changes in quantitative and qualitative markers over time could then be correlated with clinical progression.We illustrate these principles towards developing an imaging biomarker for demonstrating individual progression, by presenting results for five ALS patients, including with longitudinal data in two. Preliminary analysis demonstrated a number of changes bilaterally and asymmetrically in motoric and extramotoric white matter pathways. Further the limbic system was also affected possibly explaining the cognitive symptoms in ALS. In the two longitudinal subjects, the white matter changes were less extensive at baseline, although there was evidence of disease progression in a frontal pattern with a relatively spared postcentral gyrus, consistent with the known pathology in ALS.

  15. Diffusion tensor imaging of the cervical spinal cord in healthy adult population: normative values and measurement reproducibility at 3T MRI.

    Science.gov (United States)

    Brander, Antti; Koskinen, Eerika; Luoto, Teemu M; Hakulinen, Ullamari; Helminen, Mika; Savilahti, Sirpa; Ryymin, Pertti; Dastidar, Prasun; Ohman, Juha

    2014-05-01

    Compared to diffusion tensor imaging (DTI) of the brain, there is a paucity of reports addressing the applicability of DTI in the evaluation of the spinal cord. Most normative data of cervical spinal cord DTI consist of relatively small and arbitrarily collected populations. Comprehensive normative data are necessary for clinical decision-making. To establish normal values for cervical spinal cord DTI metrics with region of interest (ROI)- and fiber tractography (FT)-based measurements and to assess the reproducibility of both measurement methods. Forty healthy adults underwent cervical spinal cord 3T MRI. Sagittal and axial conventional T2 sequences and DTI in the axial plane were performed. Whole cord fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were determined at different cervical levels from C2 to C7 using the ROI method. DTI metrics (FA, axial, and radial diffusivities based on eigenvalues λ1, λ2, and λ3, and ADC) of the lateral and posterior funicles were measured at C3 level. FA and ADC of the whole cord and the lateral and posterior funicles were also measured using quantitative tractography. Intra- and inter-observer variation of the measurement methods were assessed. Whole cord FA values decreased and ADC values increased in the rostral to caudal direction from C2 to C7. Between the individual white matter funicles no statistically significant difference for FA or ADC values was found. Both axial diffusivity and radial diffusivity of both lateral funicles differed significantly from those of the posterior funicle. Neither gender nor age correlated with any of the DTI metrics. Intra-observer variation of the measurements for whole cord FA and ADC showed almost perfect agreement with both ROI and tractography-based measurements. There was more variation in measurements of individual columns. Inter-observer agreement varied from moderate to strong for whole cord FA and ADC. Both ROI- and FT-based measurements are applicable

  16. Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography

    Directory of Open Access Journals (Sweden)

    Elena Rykhlevskaia

    2009-11-01

    Full Text Available Poor mathematical abilities adversely affect academic and career opportunities. The neuroanatomical basis of developmental dyscalculia (DD, a specific learning deficit with prevalence rates exceeding 5%, is poorly understood. We used structural MRI and diffusion tensor imaging (DTI to examine macro- and micro-structural impairments in 7-9 year old children with DD, compared to a group of typically developing (TD children matched on age, gender, intelligence, reading abilities and working memory capacity. Voxel-based morphometry (VBM revealed reduced grey matter (GM bilaterally in superior parietal lobule, intra-parietal sulcus, fusiform gyrus, parahippocampal gyrus and right anterior temporal cortex in children with DD. VBM analysis also showed reduced white matter (WM volume in right temporal-parietal cortex. DTI revealed reduced fractional anisotropy (FA in this WM region, pointing to significant right hemisphere micro-structural impairments. Furthermore, FA in this region was correlated with numerical operations but not verbal mathematical reasoning or word reading. Atlas-based tract mapping identified the inferior longitudinal fasciculus, inferior fronto-occipital fasciculus and caudal forceps major as key pathways impaired in DD. DTI tractography suggests that long-range WM projection fibers linking the right fusiform gyrus with temporal-parietal WM are a specific source of vulnerability in DD. Network and classification analysis suggest that DD in children may be characterized by multiple dysfunctional circuits arising from a core WM deficit. Our findings link GM and WM abnormalities in children with DD and they point to macro- and micro-structural abnormalities in right hemisphere temporal-parietal WM, and pathways associated with it, as key neuroanatomical correlates of DD.

  17. Multi-Shell Hybrid Diffusion Imaging (HYDI at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.

    Directory of Open Access Journals (Sweden)

    Madelaine Daianu

    Full Text Available Diffusion weighted imaging (DWI is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI and high-angular resolution imaging (HARDI are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI, composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric "shells" when computing three distinct anisotropy maps-fractional anisotropy (FA, generalized fractional anisotropy (GFA and normalized quantitative anisotropy (NQA. We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI. We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals.

  18. Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.

    Science.gov (United States)

    Daianu, Madelaine; Jacobs, Russell E; Weitz, Tara M; Town, Terrence C; Thompson, Paul M

    2015-01-01

    Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric "shells" when computing three distinct anisotropy maps-fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals.

  19. Automatic reference selection for quantitative EEG interpretation: identification of diffuse/localised activity and the active earlobe reference, iterative detection of the distribution of EEG rhythms.

    Science.gov (United States)

    Wang, Bei; Wang, Xingyu; Ikeda, Akio; Nagamine, Takashi; Shibasaki, Hiroshi; Nakamura, Masatoshi

    2014-01-01

    EEG (Electroencephalograph) interpretation is important for the diagnosis of neurological disorders. The proper adjustment of the montage can highlight the EEG rhythm of interest and avoid false interpretation. The aim of this study was to develop an automatic reference selection method to identify a suitable reference. The results may contribute to the accurate inspection of the distribution of EEG rhythms for quantitative EEG interpretation. The method includes two pre-judgements and one iterative detection module. The diffuse case is initially identified by pre-judgement 1 when intermittent rhythmic waveforms occur over large areas along the scalp. The earlobe reference or averaged reference is adopted for the diffuse case due to the effect of the earlobe reference depending on pre-judgement 2. An iterative detection algorithm is developed for the localised case when the signal is distributed in a small area of the brain. The suitable averaged reference is finally determined based on the detected focal and distributed electrodes. The presented technique was applied to the pathological EEG recordings of nine patients. One example of the diffuse case is introduced by illustrating the results of the pre-judgements. The diffusely intermittent rhythmic slow wave is identified. The effect of active earlobe reference is analysed. Two examples of the localised case are presented, indicating the results of the iterative detection module. The focal and distributed electrodes are detected automatically during the repeating algorithm. The identification of diffuse and localised activity was satisfactory compared with the visual inspection. The EEG rhythm of interest can be highlighted using a suitable selected reference. The implementation of an automatic reference selection method is helpful to detect the distribution of an EEG rhythm, which can improve the accuracy of EEG interpretation during both visual inspection and automatic interpretation. Copyright © 2013 IPEM

  20. Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI

    Energy Technology Data Exchange (ETDEWEB)

    Magro, Elsa [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Cavale Blanche, Service de Neurochirurgie, Pole Neurolocomoteur, Brest (France); Moreau, Tristan; Gibaud, Bernard [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); Seizeur, Romuald [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Cavale Blanche, Service de Neurochirurgie, Pole Neurolocomoteur, Brest (France); INSERM UMR 1101 LaTIM, Brest (France); Morandi, Xavier [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Pontchaillou, Service de Neurochirurgie, Rennes (France)

    2012-11-15

    Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness. Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness. The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers. These results raise questions about the functional role of these MRI tracks and their relation with laterality. (orig.)

  1. Quantitative analysis of MR perfusion/diffusion images in a dog model of renal artery stenosis with microsphere correlation

    International Nuclear Information System (INIS)

    Lorens, C.H.; Powers, T.A.; Holburn, G.E.; Price, R.R.

    1990-01-01

    This paper compares MR perfusion/diffusion-derived parameters with microsphere determination of asymmetry of renal perfusion in a dog model of renal artery stenosis. A left renal artery stenosis was created by placement of a silk ligature. Nb-95-labeled microspheres were injected into the left ventricle, and a reference blood sample was drawn. The dog was imaged in a 1.5-T MR imager with both spin-echo and turbo-FLASH perfusion/diffusion-sensitive pulse sequences. The kidneys were excised, weighted, divided into sections, and counted. Two dogs have been studied to date. In dog 1, left renal blood flow (RBF) was 42 mL/min/100g and right RBF was 337 mL/min/100g. In dog 2 left RBF was 444 mL/min/100g and right RBF was 608 mL/min/100g. The apparent diffusion coefficients (ADC) reflected the asymmetry of flow in dog 1 for both spin-echo and turbo-FLASH sequences (RADC/LADC = 1.7) and showed essentially equal flow in dog 2(RADC/LADC = 0.7)

  2. Quantitative Analysis of Diffusion-Weighted Imaging for Diagnosis of Puerperal Breast Abscess After Polyacrylamide Hydrogel Augmentation Mammoplasty: Compared with Other Conventional Modalities.

    Science.gov (United States)

    Liu, Lihua; Long, Miaomiao; Wang, Junping; Liu, Ning; Ge, Xihong; Hu, Zhandong; Shen, Wen

    2015-02-01

    Puerperal breast abscess after polyacrylamide hydrogel (PAAG) augmentation mammoplasty can induce breast auto-inflation resulting in serious consequences. Mammography, ultrasound, and conventional MRI are poor at detecting related PAAG abnormality histologically. We evaluated the value of diffusion-weighted imaging (DWI) in the quantitative analysis of puerperal PAAG abscess after augmentation mammoplasty. This was a retrospective study, and a waiver for informed consent was granted. Sixteen puerperal women with breast discomfort underwent conventional breast non-enhanced MRI and axial DWI using a 3T MR scanner. Qualitative analysis of the signal intensity on DWI and conventional sequences was performed. The apparent diffusion coefficient (ADC) values of the affected and contralateral normal PAAG cysts were measured quantitatively. Paired t test was used to evaluate whether there was significant difference. Both affected and normal PAAG cysts showed equal signal intensity on conventional T1WI and fat saturation T2WI, which were not helpful in detecting puerperal PAAG abscess. However, the affected PAAG cysts had a significantly decreased ADC value of 1.477 ± 0.332 × 10(-3)mm(2)/s and showed obvious hypo-intensity on the ADC map and increased signal intensity on DWI compared with the ADC value of 2.775 ± 0.233 × 10(-3)mm(2)/s of the contralateral normal PAAG cysts. DWI and quantitative measurement of ADC values are of great value for the diagnosis of puerperal PAAG abscess. Standardized MRI should be suggested to these puerperal women with breast discomfort or just for the purpose of check up. DWI should be selected as the essential MRI sequence.

  3. Quantitative evaluation of the tibial tunnel after anterior cruciate ligament reconstruction using diffusion weighted and dynamic contrast enhanced MRI: a follow-up feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Rupreht, Mitja; Seruga, Tomaz; Jevsek, Marko [University Medical Centre Maribor, Radiology Department, Maribor (Slovenia); Jevtic, Vladimir [University of Ljubljana, Medical Faculty, Ljubljana (Slovenia); Sersa, Igor [Jozef Stefan Institute, MRI Laboratory, Ljubljana (Slovenia); Vogrin, Matjaz [University of Medical Centre of Maribor, Department of Orthopaedics, Maribor (Slovenia)

    2012-05-15

    The aim of the study was to evaluate the feasibility of two quantitative MRI methods: diffusion weighted imaging (DWI) and dynamic contrast enhanced imaging (DCEI), for follow-up assessment of the tibial tunnel after reconstruction of the anterior cruciate ligament (ACL). Twenty-three patients were examined by MRI at 1 and 6 months following ACL reconstruction. DWI and DCEI were utilized for evaluating the region of interest (ROI) within the proximal part of the tibial tunnel. From the resulting apparent diffusion coefficient (ADC) maps, ADC values were calculated. DCEI data were used to extract the enhancement factor (f{sub enh}) and the enhancement gradient (g{sub enh}) for the same ROI. Calculated ADC as well as the f{sub enh} and g{sub enh} had diminished to a statistically significant extent by 6 months after ACL reconstruction. The average ADC value diminished from 1.48 (10{sup -3} mm{sup 2}/s) at 1 month to 1.30 (10{sup -3} mm{sup 2}/s) at 6 months after reconstruction. The average f{sub enh} value decreased from 1.21 at 1 month to 0.50 at 6 months and the average g{sub enh} value decreased from 2.01%/s to 1.15%/s at 6 months, respectively. The study proved feasibility of DWI and DCEI for quantitative assessment of the tibial tunnel at 1 and 6 months after ACL reconstruction. Both methods have the potential for use as an additional tool in the evaluation of new methods of ACL reconstruction. To our knowledge, this is the first time quantitative MRI has been used in the follow-up to the ACL graft healing process. (orig.)

  4. Does the use of hormonal contraceptives cause microstructural changes in cerebral white matter? Preliminary results of a DTI and tractography study.

    Science.gov (United States)

    De Bondt, Timo; Van Hecke, Wim; Veraart, Jelle; Leemans, Alexander; Sijbers, Jan; Sunaert, Stefan; Jacquemyn, Yves; Parizel, Paul M

    2013-01-01

    To evaluate the effect of monophasic combined oral contraceptive pill (COCP) and menstrual cycle phase in healthy young women on white matter (WM) organization using diffusion tensor imaging (DTI). Thirty young women were included in the study; 15 women used COCP and 15 women had a natural cycle. All subjects underwent DTI magnetic resonance imaging during the follicular and luteal phase of their cycle, or in different COCP cycle phases. DTI parameters were obtained in different WM structures by performing diffusion tensor fibre tractography. Fractional anisotropy and mean diffusivity were calculated for different WM structures. Hormonal plasma concentrations were measured in peripheral venous blood samples and correlated with the DTI findings. We found a significant difference in mean diffusivity in the fornix between the COCP and the natural cycle group. Mean diffusivity values in the fornix were negatively correlated with luteinizing hormone and estradiol blood concentrations. An important part in the limbic system, the fornix, regulates emotional processes. Differences in diffusion parameters in the fornix may contribute to behavioural alternations related to COCP use. This finding also suggests that the use of oral contraceptives needs to be taken into account when designing DTI group studies.

  5. Homogeneity based segmentation and enhancement of Diffusion Tensor Images : a white matter processing framework

    OpenAIRE

    Rodrigues, P.R.

    2011-01-01

    In diffusion magnetic resonance imaging (DMRI) the Brownian motion of the water molecules, within biological tissue, is measured through a series of images. In diffusion tensor imaging (DTI) this diffusion is represented using tensors. DTI describes, in a non-invasive way, the local anisotropy pattern enabling the reconstruction of the nervous fibers - dubbed tractography. DMRI constitutes a powerful tool to analyse the structure of the white matter within a voxel, but also to investigate the...

  6. PI-RADS version 2: quantitative analysis aids reliable interpretation of diffusion-weighted imaging for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Yoon; Jung, Dae Chul; Oh, Young Taik [Yonsei University College of Medicine, Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Seoul (Korea, Republic of); Shin, Su-Jin [Yonsei University College of Medicine, Department of Pathology, Seoul (Korea, Republic of); Hanyang University College of Medicine, Department of Pathology, Seoul (Korea, Republic of); Cho, Nam Hoon [Yonsei University College of Medicine, Department of Pathology, Seoul (Korea, Republic of); Choi, Young Deuk; Rha, Koon Ho; Hong, Sung Joon [Yonsei University College of Medicine, Department of Urology, Seoul (Korea, Republic of)

    2017-07-15

    To determine whether apparent diffusion coefficient (ADC) ratio aids reliable interpretation of diffusion-weighted imaging (DWI) for prostate cancer (PCa). Seventy-six consecutive patients with PCa who underwent DWI and surgery were included. Based on pathologic tumour location, two readers independently performed DWI scoring according to the revised Prostate Imaging Reporting and Data System (PI-RADSv2). ADC ratios of benign to cancerous prostatic tissue were then measured independently and compared between cases showing concordant and discordant DWI scores ≥4. Area under the curve (AUC) and threshold of ADC ratio were analyzed for DWI scores ≥4. The rate of inter-reader disagreement for DWI score ≥4 was 11.8% (9/76). ADC ratios were higher in concordant vs. discordant DWI scores ≥4 (median, 1.7 vs. 1.1-1.2; p < 0.001). For DWI scores ≥4, the AUCs of ADC ratios were 0.970 for reader 1 and 0.959 for reader 2. In patients with an ADC ratio >1.3, the rate of inter-reader disagreement for DWI score ≥4 decreased to 5.9-6.0%. An ADC ratio >1.3 yielded 100% (reader 1, 54/54; reader 2, 51/51) positive predictive value for clinically significant cancer. ADC ratios may be useful for reliable interpretation of DWI score ≥4 in PI-RADSv2. (orig.)

  7. Quantitative study of elemental inter-diffusion across ZnSe/GaAs interface by using SIMS

    International Nuclear Information System (INIS)

    Gard, F.S.; Riley, J.; Usher, B.F.; Prince, K.; Burke, P.

    1999-01-01

    ZnSe and related II-VI materials are wide bandgap semiconductors, which are expected to be used for blue/green lasers. However, the maximum lifetime of the devices has not been increased beyond 400 hours for the last 3 years. In this time commercial GaN-based devices have been successfully introduced to market. However GaN-based devices do not cover the whole range of green region, due to their bandgaps. Molecular Beam Epitaxy (MBE) of ZnSe-based materials has overcome some of the problems traditionally encountered in producing high-quality crystalline ZnSe. Controlled doping of ZnSe to produce n- and p- type material has made it possible to develop high efficiency pin diodes for use in the visible region. ZnSe-based materials still have a technological future, however remaining problems are yet to be solved. This paper present data obtained from ZnSe epilayers grown on GaAs substrates by MBE. At temperatures over 500 deg C diffusion og Ga atoms was clearly observed. The diffusion of As atoms was relatively small compared to the Ga atoms

  8. Quantitative diffusion weighted imaging parameters in tumor and peritumoral stroma for prediction of molecular subtypes in breast cancer

    Science.gov (United States)

    He, Ting; Fan, Ming; Zhang, Peng; Li, Hui; Zhang, Juan; Shao, Guoliang; Li, Lihua

    2018-03-01

    Breast cancer can be classified into four molecular subtypes of Luminal A, Luminal B, HER2 and Basal-like, which have significant differences in treatment and survival outcomes. We in this study aim to predict immunohistochemistry (IHC) determined molecular subtypes of breast cancer using image features derived from tumor and peritumoral stroma region based on diffusion weighted imaging (DWI). A dataset of 126 breast cancer patients were collected who underwent preoperative breast MRI with a 3T scanner. The apparent diffusion coefficients (ADCs) were recorded from DWI, and breast image was segmented into regions comprising the tumor and the surrounding stromal. Statistical characteristics in various breast tumor and peritumoral regions were computed, including mean, minimum, maximum, variance, interquartile range, range, skewness, and kurtosis of ADC values. Additionally, the difference of features between each two regions were also calculated. The univariate logistic based classifier was performed for evaluating the performance of the individual features for discriminating subtypes. For multi-class classification, multivariate logistic regression model was trained and validated. The results showed that the tumor boundary and proximal peritumoral stroma region derived features have a higher performance in classification compared to that of the other regions. Furthermore, the prediction model using statistical features, difference features and all the features combined from these regions generated AUC values of 0.774, 0.796 and 0.811, respectively. The results in this study indicate that ADC feature in tumor and peritumoral stromal region would be valuable for estimating the molecular subtype in breast cancer.

  9. Comparison of qualitative and quantitative evaluation of diffusion-weighted MRI and chemical-shift imaging in the differentiation of benign and malignant vertebral body fractures.

    Science.gov (United States)

    Geith, Tobias; Schmidt, Gerwin; Biffar, Andreas; Dietrich, Olaf; Dürr, Hans Roland; Reiser, Maximilian; Baur-Melnyk, Andrea

    2012-11-01

    The objective of our study was to compare the diagnostic value of qualitative diffusion-weighted imaging (DWI), quantitative DWI, and chemical-shift imaging in a single prospective cohort of patients with acute osteoporotic and malignant vertebral fractures. The study group was composed of patients with 26 osteoporotic vertebral fractures (18 women, eight men; mean age, 69 years; age range, 31 years 6 months to 86 years 2 months) and 20 malignant vertebral fractures (nine women, 11 men; mean age, 63.4 years; age range, 24 years 8 months to 86 years 4 months). T1-weighted, STIR, and T2-weighted sequences were acquired at 1.5 T. A DW reverse fast imaging with steady-state free precession (PSIF) sequence at different delta values was evaluated qualitatively. A DW echo-planar imaging (EPI) sequence and a DW single-shot turbo spin-echo (TSE) sequence at different b values were evaluated qualitatively and quantitatively using the apparent diffusion coefficient. Opposed-phase sequences were used to assess signal intensity qualitatively. The signal loss between in- and opposed-phase images was determined quantitatively. Two-tailed Fisher exact test, Mann-Whitney test, and receiver operating characteristic analysis were performed. Sensitivities, specificities, and accuracies were determined. Qualitative DW-PSIF imaging (delta = 3 ms) showed the best performance for distinguishing between benign and malignant fractures (sensitivity, 100%; specificity, 88.5%; accuracy, 93.5%). Qualitative DW-EPI (b = 50 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.50]) and DW single-shot TSE imaging (b = 100 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.18]; b = 400 s/mm(2) [p = 0.18]; b = 600 s/mm(2) [p = 0.39]) did not indicate significant differences between benign and malignant fractures. DW-EPI using a b value of 500 s/mm(2) (p = 0.01) indicated significant differences between benign and malignant vertebral fractures. Quantitative DW-EPI (p = 0.09) and qualitative opposed-phase imaging (p = 0

  10. 3.0T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging-A preliminary study.

    Science.gov (United States)

    Jungmann, Pia M; Baum, Thomas; Schaeffeler, Christoph; Sauerschnig, Martin; Brucker, Peter U; Mann, Alexander; Ganter, Carl; Bieri, Oliver; Rummeny, Ernst J; Woertler, Klaus; Bauer, Jan S

    2015-08-01

    To determine the impact of axial traction during high resolution 3.0T MR imaging of the ankle on morphological assessment of articular cartilage and quantitative cartilage imaging parameters. MR images of n=25 asymptomatic ankles were acquired with and without axial traction (6kg). Coronal and sagittal T1-weighted (w) turbo spin echo (TSE) sequences with a driven equilibrium pulse and sagittal fat-saturated intermediate-w (IMfs) TSE sequences were acquired for morphological evaluation on a four-point scale (1=best, 4=worst). For quantitative assessment of cartilage degradation segmentation was performed on 2D multislice-multiecho (MSME) SE T2, steady-state free-precession (SSFP; n=8) T2 and SSFP diffusion-weighted imaging (DWI; n=8) images. Wilcoxon-tests and paired t-tests were used for statistical analysis. With axial traction, joint space width increased significantly and delineation of cartilage surfaces was rated superior (Pevaluation were smaller. Subchondral bone evaluation, motion artifacts and image quality were not significantly different between the acquisition methods (P>0.05). T2 values were lower at the tibia than at the talus (P<0.001). Reproducibility was better for images with axial traction. Axial traction increased the joint space width, allowed for better visualization of cartilage surfaces and improved compartment discrimination and reproducibility of quantitative cartilage parameters. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Repeatability and variation of region-of-interest methods using quantitative diffusion tensor MR imaging of the brain

    International Nuclear Information System (INIS)

    Hakulinen, Ullamari; Brander, Antti; Ryymin, Pertti; Öhman, Juha; Soimakallio, Seppo; Helminen, Mika; Dastidar, Prasun; Eskola, Hannu

    2012-01-01

    Diffusion tensor imaging (DTI) is increasingly used in various diseases as a clinical tool for assessing the integrity of the brain’s white matter. Reduced fractional anisotropy (FA) and an increased apparent diffusion coefficient (ADC) are nonspecific findings in most pathological processes affecting the brain’s parenchyma. At present, there is no gold standard for validating diffusion measures, which are dependent on the scanning protocols, methods of the softwares and observers. Therefore, the normal variation and repeatability effects on commonly-derived measures should be carefully examined. Thirty healthy volunteers (mean age 37.8 years, SD 11.4) underwent DTI of the brain with 3T MRI. Region-of-interest (ROI) -based measurements were calculated at eleven anatomical locations in the pyramidal tracts, corpus callosum and frontobasal area. Two ROI-based methods, the circular method (CM) and the freehand method (FM), were compared. Both methods were also compared by performing measurements on a DTI phantom. The intra- and inter-observer variability (coefficient of variation, or CV%) and repeatability (intra-class correlation coefficient, or ICC) were assessed for FA and ADC values obtained using both ROI methods. The mean FA values for all of the regions were 0.663 with the CM and 0.621 with the FM. For both methods, the FA was highest in the splenium of the corpus callosum. The mean ADC value was 0.727 ×10 -3 mm 2 /s with the CM and 0.747 ×10 -3 mm 2 /s with the FM, and both methods found the ADC to be lowest in the corona radiata. The CV percentages of the derived measures were < 13% with the CM and < 10% with the FM. In most of the regions, the ICCs were excellent or moderate for both methods. With the CM, the highest ICC for FA was in the posterior limb of the internal capsule (0.90), and with the FM, it was in the corona radiata (0.86). For ADC, the highest ICC was found in the genu of the corpus callosum (0.93) with the CM and in the uncinate

  12. Differentiation between benign and malignant breast lesions using quantitative diffusion-weighted sequence on 3 T MRI

    International Nuclear Information System (INIS)

    Tan, S.L.L.; Rahmat, K.; Rozalli, F.I.; Mohd-Shah, M.N.; Aziz, Y.F.A.; Yip, C.H.; Vijayananthan, A.; Ng, K.H.

    2014-01-01

    Aim: To investigate the capability and diagnostic accuracy of diffusion-weighted imaging (DWI) in differentiating benign from malignant breast lesions using 3 T magnetic resonance imaging (MRI). Materials and methods: Women with suspicious or indeterminate breast lesions detected at MRI, mammogram and/or ultrasound were recruited for dynamic contrast-enhanced (DCE)-MRI and DWI prior to their biopsy. Image fusion of DCE-MRI with apparent diffusion coefficient (ADC) map was utilized to select the region of interest (ROI) for ADC calculation in the area that showed the most avid enhancement. DWI was performed using two sets of b-values at 500 and 1000 s/mm 2 , respectively. Results: Fifty women were recruited and the final analysis comprised 44 breast lesions, 31 of which were malignant and 13 were benign. Significant results were obtained between ADC values of benign and malignant lesions (p −3 mm 2 /s for b = 500 s/mm 2 and 1.22 × 10 −3 mm 2 /s for b = 1000 s/mm 2 , respectively. The sensitivity of DCE-MRI alone was 100% with a specificity of 66.7%. When DCE-MRI was combined with b = 1000 s/mm 2 , the specificity rose to 100%, while only mildly affecting sensitivity (90.6%). No significant correlation was found between ADC values and prognostic factors, such as lymph node metastasis, tumour size, oestrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status, and tumour grades. Conclusion: The present study provides consistent evidence to support DWI as a diagnostic tool for breast lesion characterization. A combination of DCE-MRI with DWI is suggested to improve the sensitivity and specificity of lesion characterization

  13. Quantitative evaluation of multiple adulterants in roasted coffee by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and chemometrics.

    Science.gov (United States)

    Reis, Nádia; Franca, Adriana S; Oliveira, Leandro S

    2013-10-15

    The current study presents an application of Diffuse Reflectance Infrared Fourier Transform Spectroscopy for detection and quantification of fraudulent addition of commonly employed adulterants (spent coffee grounds, coffee husks, roasted corn and roasted barley) to roasted and ground coffee. Roasted coffee samples were intentionally blended with the adulterants (pure and mixed), with total adulteration levels ranging from 1% to 66% w/w. Partial Least Squares Regression (PLS) was used to relate the processed spectra to the mass fraction of adulterants and the model obtained provided reliable predictions of adulterations at levels as low as 1% w/w. A robust methodology was implemented that included the detection of outliers. High correlation coefficients (0.99 for calibration; 0.98 for validation) coupled with low degrees of error (1.23% for calibration; 2.67% for validation) confirmed that DRIFTS can be a valuable analytical tool for detection and quantification of adulteration in ground, roasted coffee. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Quantitative assessment of diffuse optical tomography sensitivity to the cerebral cortex using a whole-head probe

    International Nuclear Information System (INIS)

    Perdue, Katherine L; Diamond, Solomon G; Fang Qianqian

    2012-01-01

    We quantify the variability in diffuse optical tomography (DOT) sensitivity over the cortical surface in eight young adult subjects. We use the 10/5 electroencephalography system as a basis for our whole-head optical high-density probe design. The contrast-to-noise ratio (CNR) is calculated along with the percentage of the cortex that is above a CNR = 0 dB threshold. We also quantify the effect of including vasculature on the forward model and list our assumptions that allow us to estimate light penetration depth in the head. We show that using the 10/5 system for the optical probe design allows for the measurement of 37% of the cortical surface on average, with a mean CNR in the visible region of 5.5 dB. Certain anatomical regions, such as the lateral occipital cortex, had a very high percentage above the CNR threshold, while other regions such as the cingulate cortex were not measurable. Vasculature blocked optical sensitivity over 1% of the cortex. Cortical coverage was positively correlated with intracranial volume and relative cerebrospinal fluid volume, and negatively correlated with relative scalp volume and skull volume. These contributions allow experimenters to understand how anatomical variation in a subject population may impact DOT or functional near-infrared spectroscopy measurements. (paper)

  15. Quantitative volcanic susceptibility analysis of Lanzarote and Chinijo Islands based on kernel density estimation via a linear diffusion process

    Science.gov (United States)

    Galindo, I.; Romero, M. C.; Sánchez, N.; Morales, J. M.

    2016-06-01

    Risk management stakeholders in high-populated volcanic islands should be provided with the latest high-quality volcanic information. We present here the first volcanic susceptibility map of Lanzarote and Chinijo Islands and their submarine flanks based on updated chronostratigraphical and volcano structural data, as well as on the geomorphological analysis of the bathymetric data of the submarine flanks. The role of the structural elements in the volcanic susceptibility analysis has been reviewed: vents have been considered since they indicate where previous eruptions took place; eruptive fissures provide information about the stress field as they are the superficial expression of the dyke conduit; eroded dykes have been discarded since they are single non-feeder dykes intruded in deep parts of Miocene-Pliocene volcanic edifices; main faults have been taken into account only in those cases where they could modified the superficial movement of magma. The application of kernel density estimation via a linear diffusion process for the volcanic susceptibility assessment has been applied successfully to Lanzarote and could be applied to other fissure volcanic fields worldwide since the results provide information about the probable area where an eruption could take place but also about the main direction of the probable volcanic fissures.

  16. Early diagnosis of Balo's concentric sclerosis by diffusion tensor tractography: a case report and literature review

    Directory of Open Access Journals (Sweden)

    Juan Alberto Nader Kawachi

    2016-03-01

    Full Text Available La esclerosis concéntrica de Baló es una variante infrecuente de enfermedad desmielinizante relacionada con la esclerosis múltiple, inicialmente considerada de progresión fatal. En estudios recientes se reportan variantes no fatales de esclerosis concéntrica de Baló en los que se enfatiza la importancia del diagnóstico por medio de la imagen por resonancia magnética, utilizando además la espectroscopia y las secuencias de difusión y perfusión. En los últimos años se ha logrado reproducir la imagen tridimensional de un fascículo en particular y observar la presencia de lesiones por medio de la tractografía por imagen por resonancia magnética mediante la técnica de tensor de difusión. Presentamos el caso de una mujer joven con síntomas neurológicos focales agudos, incluyendo paresia de extremidades derechas, cuyo diagnóstico por biopsia fue de esclerosis concéntrica de Baló, confirmando el resultado de los estudios de imagen. La paciente recibió tratamiento con bolos de metilprednisolona, obteniendo remisión clínica completa a largo plazo. A nuestro entender, este es el primer reporte que describe los hallazgos de la esclerosis concéntrica de Baló utilizando la técnica de tensor de difusión. Consideramos que dicha técnica permitirá en el futuro la detección temprana de la enfermedad, su tratamiento oportuno y permitirá establecer nuevos criterios de clasificación y estratificación. Este caso demuestra la existencia de variantes benignas de esclerosis concéntrica de Baló, que tienen buena respuesta a la terapia con glucocorticoides y donde se logra la recuperación funcional.

  17. Automated longitudinal intra-subject analysis (ALISA) for diffusion MRI tractography

    DEFF Research Database (Denmark)

    Aarnink, Saskia H; Vos, Sjoerd B; Leemans, Alexander

    2014-01-01

    the inter-subject and intra-subject automation in this situation are intended for subjects without gross pathology. In this work, we propose such an automated longitudinal intra-subject analysis (dubbed ALISA) approach, and assessed whether ALISA could preserve the same level of reliability as obtained....... The major disadvantage of manual FT segmentations, unfortunately, is that placing regions-of-interest for tract selection can be very labor-intensive and time-consuming. Although there are several methods that can identify specific WM fiber bundles in an automated way, manual FT segmentations across...... multiple subjects performed by a trained rater with neuroanatomical expertise are generally assumed to be more accurate. However, for longitudinal DTI analyses it may still be beneficial to automate the FT segmentation across multiple time points, but then for each individual subject separately. Both...

  18. Motor pathway degeneration in young ataxia telangiectasia patients: A diffusion tractography study

    Directory of Open Access Journals (Sweden)

    Ishani Sahama

    2015-01-01

    Conclusions: Whole tract analysis of the corticomotor, corticospinal and somatosensory pathways in ataxia telangiectasia showed significant white matter degeneration along the entire length of motor circuits, highlighting that ataxia–telangiectasia gene mutation impacts the cerebellum and multiple other motor circuits in young patients.

  19. Probabilistic Tractography Recovers a Rostrocaudal Trajectory of Connectivity Variability in the Human Insular Cortex

    Science.gov (United States)

    Cerliani, Leonardo; Thomas, Rajat M; Jbabdi, Saad; Siero, Jeroen CW; Nanetti, Luca; Crippa, Alessandro; Gazzola, Valeria; D'Arceuil, Helen; Keysers, Christian

    2012-01-01

    The insular cortex of macaques has a wide spectrum of anatomical connections whose distribution is related to its heterogeneous cytoarchitecture. Although there is evidence of a similar cytoarchitectural arrangement in humans, the anatomical connectivity of the insula in the human brain has not yet been investigated in vivo. In the present work, we used in vivo probabilistic white-matter tractography and Laplacian eigenmaps (LE) to study the variation of connectivity patterns across insular territories in humans. In each subject and hemisphere, we recovered a rostrocaudal trajectory of connectivity variation ranging from the anterior dorsal and ventral insula to the dorsal caudal part of the long insular gyri. LE suggested that regional transitions among tractography patterns in the insula occur more gradually than in other brain regions. In particular, the change in tractography patterns was more gradual in the insula than in the medial premotor region, where a sharp transition between different tractography patterns was found. The recovered trajectory of connectivity variation in the insula suggests a relation between connectivity and cytoarchitecture in humans resembling that previously found in macaques: tractography seeds from the anterior insula were mainly found in limbic and paralimbic regions and in anterior parts of the inferior frontal gyrus, while seeds from caudal insular territories mostly reached parietal and posterior temporal cortices. Regions in the putative dysgranular insula displayed more heterogeneous connectivity patterns, with regional differences related to the proximity with either putative granular or agranular regions. Hum Brain Mapp 33:2005–2034, 2012. © 2011 Wiley Periodicals, Inc. PMID:21761507

  20. Differentiation of malignant from benign soft tissue tumours: use of additive qualitative and quantitative diffusion-weighted MR imaging to standard MR imaging at 3.0 T

    International Nuclear Information System (INIS)

    Lee, So-Yeon; Jee, Won-Hee; Jung, Joon-Yong; Park, Michael Y.; Kim, Sun-Ki; Jung, Chan-Kwon; Chung, Yang-Guk

    2016-01-01

    To determine the added value of diffusion-weighted imaging (DWI) to standard magnetic resonance imaging (MRI) to differentiate malignant from benign soft tissue tumours at 3.0 T. 3.0 T MR images including DWI in 63 patients who underwent surgery for soft tissue tumours were retrospectively analyzed. Two readers independently interpreted MRI for the presence of malignancy in two steps: standard MRI alone, standard MRI and DWI with qualitative and quantitative analysis combined. There were 34 malignant and 29 non-malignant soft tissue tumours. In qualitative analysis, hyperintensity relative to skeletal muscle was more frequent in malignant than benign tumours on DWI (P=0.003). In quantitative analysis, ADCs of malignant tumours were significantly lower than those of non-malignant tumours (P≤0.002): 759±385 vs. 1188±423 μm 2 /sec minimum ADC value, 941±440 vs. 1310±440 μm 2 /sec average ADC value. The mean sensitivity, specificity and accuracy of both readers were 96 %, 72 %, and 85 % on standard MRI alone and 97 %, 90 %, and 94 % on standard MRI with DWI. The addition of DWI to standard MRI improves the diagnostic accuracy for differentiation of malignant from benign soft tissue tumours at 3.0 T. (orig.)

  1. Differentiation of malignant from benign soft tissue tumours: use of additive qualitative and quantitative diffusion-weighted MR imaging to standard MR imaging at 3.0 T.

    Science.gov (United States)

    Lee, So-Yeon; Jee, Won-Hee; Jung, Joon-Yong; Park, Michael Y; Kim, Sun-Ki; Jung, Chan-Kwon; Chung, Yang-Guk

    2016-03-01

    To determine the added value of diffusion-weighted imaging (DWI) to standard magnetic resonance imaging (MRI) to differentiate malignant from benign soft tissue tumours at 3.0 T. 3.0 T MR images including DWI in 63 patients who underwent surgery for soft tissue tumours were retrospectively analyzed. Two readers independently interpreted MRI for the presence of malignancy in two steps: standard MRI alone, standard MRI and DWI with qualitative and quantitative analysis combined. There were 34 malignant and 29 non-malignant soft tissue tumours. In qualitative analysis, hyperintensity relative to skeletal muscle was more frequent in malignant than benign tumours on DWI (P=0.003). In quantitative analysis, ADCs of malignant tumours were significantly lower than those of non-malignant tumours (P≤0.002): 759±385 vs. 1188±423 μm(2)/sec minimum ADC value, 941±440 vs. 1310±440 μm(2)/sec average ADC value. The mean sensitivity, specificity and accuracy of both readers were 96%, 72%, and 85% on standard MRI alone and 97%, 90%, and 94% on standard MRI with DWI. The addition of DWI to standard MRI improves the diagnostic accuracy for differentiation of malignant from benign soft tissue tumours at 3.0 T. DWI has added value for differentiating malignant from benign soft tissue tumours. Addition of DWI to standard MRI at 3.0 T improves the diagnostic accuracy. Measurements of both ADC min within solid portion and ADC av are helpful.

  2. Connectivity between the superior colliculus and the amygdala in humans and macaque monkeys: virtual dissection with probabilistic DTI tractography

    Science.gov (United States)

    Koller, Kristin; Bultitude, Janet H.; Mullins, Paul; Ward, Robert; Mitchell, Anna S.; Bell, Andrew H.

    2015-01-01

    It has been suggested that some cortically blind patients can process the emotional valence of visual stimuli via a fast, subcortical pathway from the superior colliculus (SC) that reaches the amygdala via the pulvinar. We provide in vivo evidence for connectivity between the SC and the amygdala via the pulvinar in both humans and rhesus macaques. Probabilistic diffusion tensor imaging tractography revealed a streamlined path that passes dorsolaterally through the pulvinar before arcing rostrally to traverse above the temporal horn of the lateral ventricle and connect to the lateral amygdala. To obviate artifactual connectivity with crossing fibers of the stria terminalis, the stria was also dissected. The putative streamline between the SC and amygdala traverses above the temporal horn dorsal to the stria terminalis and is positioned medial to it in humans and lateral to it in monkeys. The topography of the streamline was examined in relation to lesion anatomy in five patients who had previously participated in behavioral experiments studying the processing of emotionally valenced visual stimuli. The pulvinar lesion interrupted the streamline in two patients who had exhibited contralesional processing deficits and spared the streamline in three patients who had no deficit. Although not definitive, this evidence supports the existence of a subcortical pathway linking the SC with the amygdala in primates. It also provides a necessary bridge between behavioral data obtained in future studies of neurological patients, and any forthcoming evidence from more invasive techniques, such as anatomical tracing studies and electrophysiological investigations only possible in nonhuman species. PMID:26224780

  3. High-definition fiber tractography for the evaluation of perilesional white matter tracts in high-grade glioma surgery.

    Science.gov (United States)

    Abhinav, Kumar; Yeh, Fang-Cheng; Mansouri, Alireza; Zadeh, Gelareh; Fernandez-Miranda, Juan C

    2015-09-01

    Conventional white matter (WM) imaging approaches, such as diffusion tensor imaging (DTI), have been used to preoperatively identify the location of affected WM tracts in patients with intracranial tumors in order to maximize the extent of resection and potentially reduce postoperative morbidity. DTI, however, has limitations that include its inability to resolve multiple crossing fibers and its susceptibility to partial volume effects. Therefore, recent focus has shifted to more advanced WM imaging techniques such as high-definition fiber tractography (HDFT). In this paper, we illustrate the application of HDFT, which in our preliminary experience has enabled accurate depiction of perilesional tracts in a 3-dimensional manner in multiple anatomical compartments including edematous zones around high-grade gliomas. This has facilitated accurate surgical planning. This is illustrated by using case examples of patients with glioblastoma multiforme. We also discuss future directions in the role of these techniques in surgery for gliomas. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Relationships between diffusing capacity for carbon monoxide (D{sub L}CO), and quantitative computed tomography measurements and visual assessment for chronic obstructive pulmonary disease

    Energy Technology Data Exchange (ETDEWEB)

    Nambu, Atsushi, E-mail: nambu-a@gray.plala.or.jp [Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 (United States); Department of Radiology, Teikyo University Mizonokuchi Hospital (Japan); Zach, Jordan, E-mail: ZachJ@NJHealth.org [Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 (United States); Schroeder, Joyce, E-mail: Joyce.schroeder@stanfordalumni.org [Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 (United States); Jin, Gong Yong, E-mail: gyjin@chonbuk.ac.kr [Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 (United States); Department of Radiology, Chonbuk National University Hospital (Korea, Republic of); Kim, Song Soo, E-mail: haneul88@hanmail.net [Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 (United States); Department of Radiology, Chungnam National Hospital, Chungnam National University School of Medicine (Korea, Republic of); Kim, Yu-IL, E-mail: kyionly@chonnam.ac.kr [Department of Medicine, National Jewish Health, Denver, CO (United States); Department of Internal Medicine, Chonnam National University Hospital, Gwangju (Korea, Republic of); Schnell, Christina, E-mail: SchnellC@NJHealth.org [Department of Medicine, National Jewish Health, Denver, CO (United States); Bowler, Russell, E-mail: BowlerR@NJHealth.org [Division of Pulmonary Medicine, Department of Medicine, National Jewish Health (United States); Lynch, David A., E-mail: LynchD@NJHealth.org [Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 (United States)

    2015-05-15

    Highlights: • Quantitative CT measurements significantly correlated with D{sub L}CO/V{sub A}. • 15{sup th} percentile HU had the strongest correlation with D{sub L}CO/V{sub A}. • Visual scoring of emphysema had independent significant correlations with D{sub L}CO/V{sub A}. - Abstract: Purpose: To evaluate the relationships between D{sub L}CO, and Quantitative CT (QCT) measurements and visual assessment of pulmonary emphysema and to test the relative roles of visual and quantitative assessment of emphysema. Materials and methods: The subjects included 199 current and former cigarette smokers from the COPDGene cohort who underwent inspiratory and expiratory CT and also had diffusing capacity for carbon monoxide corrected for alveolar volume (D{sub L}CO/V{sub A}). Quantitative CT measurements included % low attenuation areas (%LAA−950ins = voxels ≤−950 Hounsfield unit (HU), % LAA{sub −910ins}, and % LAA{sub −856ins}), mean CT attenuation and 15th percentile HU value on inspiratory CT, and %LAA{sub −856exp} (voxels ≤−856 HU on expiratory CT). The extent of emphysema was visually assessed using a 5-point grading system. Univariate and multiple variable linear regression analyses were employed to evaluate the correlations between D{sub L}CO/V{sub A} and QCT parameters and visual extent of emphysema. Results: The D{sub L}CO/V{sub A} correlated most strongly with 15th percentile HU (R{sup 2} = 0.440, p < 0.001) closely followed by % LAA{sub −950ins} (R{sup 2} = 0.417, p < 0.001) and visual extent of emphysema (R{sup 2} = 0.411, p < 0.001). Multiple variable analysis showed that visual extent of emphysema and 15th percentile HU were independent significant predictors of D{sub L}CO/V{sub A} at an R{sup 2} of 0.599. Conclusions: 15th percentile HU seems the best parameter to represent the respiratory condition of COPD. Visual and Quantitative CT assessment of emphysema provide complementary information to QCT analysis.

  5. Altered structural connectivity of pain-related brain network in burning mouth syndrome-investigation by graph analysis of probabilistic tractography.

    Science.gov (United States)

    Wada, Akihiko; Shizukuishi, Takashi; Kikuta, Junko; Yamada, Haruyasu; Watanabe, Yusuke; Imamura, Yoshiki; Shinozaki, Takahiro; Dezawa, Ko; Haradome, Hiroki; Abe, Osamu

    2017-05-01

    Burning mouth syndrome (BMS) is a chronic intraoral pain syndrome featuring idiopathic oral pain and burning discomfort despite clinically normal oral mucosa. The etiology of chronic pain syndrome is unclear, but preliminary neuroimaging research has suggested the alteration of volume, metabolism, blood flow, and diffusion at multiple brain regions. According to the neuromatrix theory of Melzack, pain sense is generated in the brain by the network of multiple pain-related brain regions. Therefore, the alteration of pain-related network is also assumed as an etiology of chronic pain. In this study, we investigated the brain network of BMS brain by using probabilistic tractography and graph analysis. Fourteen BMS patients and 14 age-matched healthy controls underwent 1.5T MRI. Structural connectivity was calculated in 83 anatomically defined regions with probabilistic tractography of 60-axis diffusion tensor imaging and 3D T1-weighted imaging. Graph theory network analysis was used to evaluate the brain network at local and global connectivity. In BMS brain, a significant difference of local brain connectivity was recognized at the bilateral rostral anterior cingulate cortex, right medial orbitofrontal cortex, and left pars orbitalis which belong to the medial pain system; however, no significant difference was recognized at the lateral system including the somatic sensory cortex. A strengthened connection of the anterior cingulate cortex and medial prefrontal cortex with the basal ganglia, thalamus, and brain stem was revealed. Structural brain network analysis revealed the alteration of the medial system of the pain-related brain network in chronic pain syndrome.

  6. A Random Riemannian Metric for Probabilistic Shortest-Path Tractography

    DEFF Research Database (Denmark)

    Hauberg, Søren; Schober, Michael; Liptrot, Matthew George

    2015-01-01

    of the diffusion tensor as a “random Riemannian metric”, where a geodesic is a distribution over tracts. We approximate this distribution with a Gaussian process and present a probabilistic numerics algorithm for computing the geodesic distribution. We demonstrate SPT improvements on data from the Human Connectome...

  7. Diffusion tensor imaging of the nigrostriatal fibers in Parkinson's disease.

    Science.gov (United States)

    Zhang, Yu; Wu, I-Wei; Buckley, Shannon; Coffey, Christopher S; Foster, Eric; Mendick, Susan; Seibyl, John; Schuff, Norbert

    2015-08-01

    Parkinson's disease (PD) is histopathologically characterized by the loss of dopamine neurons in the substantia nigra pars compacta. The depletion of these neurons is thought to reduce the dopaminergic function of the nigrostriatal pathway, as well as the neural fibers that link the substantia nigra to the striatum (putamen and caudate), causing a dysregulation in striatal activity that ultimately leads to lack of movement control. Based on diffusion tensor imaging, visualizing this pathway and measuring alterations of the fiber integrity remain challenging. The objectives were to 1) develop a diffusion tensor tractography protocol for reliably tracking the nigrostriatal fibers on multicenter data; 2) test whether the integrities measured by diffusion tensor imaging of the nigrostriatal fibers are abnormal in PD; and 3) test whether abnormal integrities of the nigrostriatal fibers in PD patients are associated with the severity of motor disability and putaminal dopamine binding ratios. Diffusion tensor tractography was performed on 50 drug-naïve PD patients and 27 healthy control subjects from the international multicenter Parkinson's Progression Marker Initiative. Tractography consistently detected the nigrostriatal fibers, yielding reliable diffusion measures. Fractional anisotropy, along with radial and axial diffusivity of the nigrostriatal tract, showed systematic abnormalities in patients. In addition, variations in fractional anisotropy and radial diffusivity of the nigrostriatal tract were associated with the degree of motor deficits in PD patients. Taken together, the findings imply that the diffusion tensor imaging characteristic of the nigrostriatal tract is potentially an index for detecting and staging of early PD. © 2015 International Parkinson and Movement Disorder Society.

  8. WE-FG-202-08: Assessment of Treatment Response Via Longitudinal Diffusion MRI On A MRI-Guided System: Initial Experience of Quantitative Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Qi, X; Yang, Y; Yang, L; Low, D; Sheng, K [UCLA, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To report our initial experience of systematic monitoring treatment response using longitudinal diffusion MR images on a Co-60 MRI-guided radiotherapy system. Methods: Four patients, including 2 head-and-necks, 1 sarcoma and 1 GBM treated on a 0.35 Tesla MRI-guided treatment system, were analyzed. For each patient, 3D TrueFISP MRIs were acquired during CT simulation and before each treatment for treatment planning and patient setup purposes respectively. Additionally, 2D diffusion-weighted MR images (DWI) were acquired weekly throughout the treatment course. The gross target volume (GTV) and brainstem (as a reference structure) were delineated on weekly 3D TrueFISP MRIs to monitor anatomy changes, the contours were then transferred onto the corresponding DWI images after fusing with the weekly TrueFISP images. The patient-specific temporal and spatial variations during the entire treatment course, such as anatomic changes, target apparent diffusion coefficient (ADC) distribution were evaluated in a longitudinal pattern. Results: Routine MRI revealed progressive soft-tissue GTV volume changes (up to 53%) for the H&N cases during the treatment course of 5–7 weeks. Within the GTV, the mean ADC values varied from −44% (ADC decrease) to +26% (ADC increase) in a week. The gradual increase of ADC value was inversely associated with target volume variation for one H&N case. The maximal changes of mean ADC values within the brainstem were 5.3% for the H&N cases. For the large size sarcoma and GBM tumors, spatial heterogeneity and temporal variations were observed through longitudinal ADC analysis. Conclusion: In addition to the superior soft-tissue visualization, the 0.35T MR system on ViewRay showed the potential to quantitatively measure the ADC values for both tumor and normal tissues. For normal tissue that is minimally affected by radiation, its ADC values are reproducible. Tumor ADC values show temporal and spatial fluctuation that can be exploited for

  9. MR-perfusion (MRP) and diffusion-weighted imaging (DWI) in prostate cancer: quantitative and model-based gadobenate dimeglumine MRP parameters in detection of prostate cancer.

    Science.gov (United States)

    Scherr, M K; Seitz, M; Müller-Lisse, U G; Ingrisch, M; Reiser, M F; Müller-Lisse, U L

    2010-12-01

    Various MR methods, including MR-spectroscopy (MRS), dynamic, contrast-enhanced MRI (DCE-MRI), and diffusion-weighted imaging (DWI) have been applied to improve test quality of standard MRI of the prostate. To determine if quantitative, model-based MR-perfusion (MRP) with gadobenate dimeglumine (Gd-BOPTA) discriminates between prostate cancer, benign tissue, and transitional zone (TZ) tissue. 27 patients (age, 65±4 years; PSA 11.0±6.1 ng/ml) with clinical suspicion of prostate cancer underwent standard MRI, 3D MR-spectroscopy (MRS), and MRP with Gd-BOPTA. Based on results of combined MRI/MRS and subsequent guided prostate biopsy alone (17/27), biopsy and radical prostatectomy (9/27), or sufficient negative follow-up (7/27), maps of model-free, deconvolution-based mean transit time (dMTT) were generated for 29 benign regions (bROIs), 14 cancer regions (cROIs), and 18 regions of transitional zone (tzROIs). Applying a 2-compartment exchange model, quantitative perfusion analysis was performed including as parameters: plasma flow (PF), plasma volume (PV), plasma mean transit time (PMTT), extraction flow (EFL), extraction fraction (EFR), interstitial volume (IV) and interstitial mean transit time (IMTT). Two-sided T-tests (significance level pMRP with Gd-BOPTA discriminates between prostate cancer and benign tissue with several parameters. However, distinction of prostate cancer and TZ does not appear to be reliable. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS)

    International Nuclear Information System (INIS)

    Kretzschmar, M.; Hainc, N.; Studler, U.; Bieri, O.; Miska, M.; Wiewiorski, M.; Valderrabano, V.

    2015-01-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm 2 /ms) was significantly higher compared to normal cartilage (1.46 μm 2 /ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. (orig.)

  11. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS)

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, M.; Hainc, N.; Studler, U. [University Hospital Basel, Department of Radiology, Basel (Switzerland); Bieri, O. [University Hospital Basel, Division of Radiological Physics, Basel (Switzerland); Miska, M. [University Hospital, Department of Orthopedics, Heidelberg (Germany); Wiewiorski, M.; Valderrabano, V. [University Hospital Basel, Department of Orthopedic Surgery, Basel (Switzerland)

    2015-04-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm{sup 2}/ms) was significantly higher compared to normal cartilage (1.46 μm{sup 2}/ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. (orig.)

  12. MR-perfusion (MRP) and diffusion-weighted imaging (DWI) in prostate cancer: Quantitative and model-based gadobenate dimeglumine MRP parameters in detection of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Scherr, M.K., E-mail: michael.scherr@med.uni-muenchen.de [Institute of Clinical Radiology, University of Munich, Munich (Germany); Seitz, M. [Department of Urology, University of Munich, Munich (Germany); Mueller-Lisse, U.G. [Institute of Clinical Radiology, University of Munich, Munich (Germany); Ingrisch, M. [Josef Lissner Laboratory for Biomedical Imaging, Institute of Clinical Radiology, University of Munich, Munich (Germany); Reiser, M.F. [Institute of Clinical Radiology, University of Munich, Munich (Germany); Mueller-Lisse, U.L. [Department of Urology, University of Munich, Munich (Germany)

    2010-12-15

    Background: Various MR methods, including MR-spectroscopy (MRS), dynamic, contrast-enhanced MRI (DCE-MRI), and diffusion-weighted imaging (DWI) have been applied to improve test quality of standard MRI of the prostate. Purpose: To determine if quantitative, model-based MR-perfusion (MRP) with gadobenate dimeglumine (Gd-BOPTA) discriminates between prostate cancer, benign tissue, and transitional zone (TZ) tissue. Material and methods: 27 patients (age, 65 {+-} 4 years; PSA 11.0 {+-} 6.1 ng/ml) with clinical suspicion of prostate cancer underwent standard MRI, 3D MR-spectroscopy (MRS), and MRP with Gd-BOPTA. Based on results of combined MRI/MRS and subsequent guided prostate biopsy alone (17/27), biopsy and radical prostatectomy (9/27), or sufficient negative follow-up (7/27), maps of model-free, deconvolution-based mean transit time (dMTT) were generated for 29 benign regions (bROIs), 14 cancer regions (cROIs), and 18 regions of transitional zone (tzROIs). Applying a 2-compartment exchange model, quantitative perfusion analysis was performed including as parameters: plasma flow (PF), plasma volume (PV), plasma mean transit time (PMTT), extraction flow (EFL), extraction fraction (EFR), interstitial volume (IV) and interstitial mean transit time (IMTT). Two-sided T-tests (significance level p < 0.05) discriminated bROIs vs. cROIs and cROIs vs. tzROIs, respectively. Results: PMTT discriminated best between bROIs (11.8 {+-} 3.0 s) and cROIs (24.3 {+-} 9.6 s) (p < 0.0001), while PF, PV, PS, EFR, IV, IMTT also differed significantly (p 0.00002-0.0136). Discrimination between cROIs and tzROIs was insignificant for all parameters except PV (14.3 {+-} 2.5 ml vs. 17.6 {+-} 2.6 ml, p < 0.05). Conclusions: Besides MRI, MRS and DWI quantitative, 2-compartment MRP with Gd-BOPTA discriminates between prostate cancer and benign tissue with several parameters. However, distinction of prostate cancer and TZ does not appear to be reliable.

  13. 3.0 T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging—A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Jungmann, Pia M., E-mail: pia.jungmann@tum.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Baum, Thomas, E-mail: thomas.baum@tum.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Schaeffeler, Christoph, E-mail: schaeffeler@me.com [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Musculoskeletal Imaging, Kantonsspital Graubuenden, Loestrasse 170, CH-7000 Chur (Switzerland); Sauerschnig, Martin, E-mail: martin.sauerschnig@mri.tum.de [Department of Trauma Surgery, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Brucker, Peter U., E-mail: peter.brucker@lrz.tu-muenchen.de [Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Mann, Alexander, E-mail: abmann@onlinemed.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Ganter, Carl, E-mail: cganter@tum.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Bieri, Oliver, E-mail: oliver.bieri@unibas.ch [Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Petersgraben 4, 4031 Basel (Switzerland); and others

    2015-08-15

    Highlights: • Axial traction is applicable during high resolution MR imaging of the ankle. • Axial traction during MR imaging oft the ankle improves cartilage surface delineation of the individual tibial and talar cartilage layer for better morphological evaluation without the need of intraarticular contrast agent application. • Coronal T1-weighted MR images with a driven equilibrium pulse performed best. • Axial traction during MR imaging of the ankle facilitates compartment discrimination for segmentation purposes resulting in better reproducibility. - Abstract: Purpose: To determine the impact of axial traction during high resolution 3.0 T MR imaging of the ankle on morphological assessment of articular cartilage and quantitative cartilage imaging parameters. Materials and Methods: MR images of n = 25 asymptomatic ankles were acquired with and without axial traction (6 kg). Coronal and sagittal T1-weighted (w) turbo spin echo (TSE) sequences with a driven equilibrium pulse and sagittal fat-saturated intermediate-w (IMfs) TSE sequences were acquired for morphological evaluation on a four-point scale (1 = best, 4 = worst). For quantitative assessment of cartilage degradation segmentation was performed on 2D multislice-multiecho (MSME) SE T2, steady-state free-precession (SSFP; n = 8) T2 and SSFP diffusion-weighted imaging (DWI; n = 8) images. Wilcoxon-tests and paired t-tests were used for statistical analysis. Results: With axial traction, joint space width increased significantly and delineation of cartilage surfaces was rated superior (P < 0.05). Cartilage surfaces were best visualized on coronal T1-w images (P < 0.05). Differences for cartilage matrix evaluation were smaller. Subchondral bone evaluation, motion artifacts and image quality were not significantly different between the acquisition methods (P > 0.05). T2 values were lower at the tibia than at the talus (P < 0.001). Reproducibility was better for images with axial traction. Conclusion

  14. 3.0 T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging—A preliminary study

    International Nuclear Information System (INIS)

    Jungmann, Pia M.; Baum, Thomas; Schaeffeler, Christoph; Sauerschnig, Martin; Brucker, Peter U.; Mann, Alexander; Ganter, Carl; Bieri, Oliver

    2015-01-01

    Highlights: • Axial traction is applicable during high resolution MR imaging of the ankle. • Axial traction during MR imaging oft the ankle improves cartilage surface delineation of the individual tibial and talar cartilage layer for better morphological evaluation without the need of intraarticular contrast agent application. • Coronal T1-weighted MR images with a driven equilibrium pulse performed best. • Axial traction during MR imaging of the ankle facilitates compartment discrimination for segmentation purposes resulting in better reproducibility. - Abstract: Purpose: To determine the impact of axial traction during high resolution 3.0 T MR imaging of the ankle on morphological assessment of articular cartilage and quantitative cartilage imaging parameters. Materials and Methods: MR images of n = 25 asymptomatic ankles were acquired with and without axial traction (6 kg). Coronal and sagittal T1-weighted (w) turbo spin echo (TSE) sequences with a driven equilibrium pulse and sagittal fat-saturated intermediate-w (IMfs) TSE sequences were acquired for morphological evaluation on a four-point scale (1 = best, 4 = worst). For quantitative assessment of cartilage degradation segmentation was performed on 2D multislice-multiecho (MSME) SE T2, steady-state free-precession (SSFP; n = 8) T2 and SSFP diffusion-weighted imaging (DWI; n = 8) images. Wilcoxon-tests and paired t-tests were used for statistical analysis. Results: With axial traction, joint space width increased significantly and delineation of cartilage surfaces was rated superior (P < 0.05). Cartilage surfaces were best visualized on coronal T1-w images (P < 0.05). Differences for cartilage matrix evaluation were smaller. Subchondral bone evaluation, motion artifacts and image quality were not significantly different between the acquisition methods (P > 0.05). T2 values were lower at the tibia than at the talus (P < 0.001). Reproducibility was better for images with axial traction. Conclusion

  15. Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pannek, Kerstin [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, School of Medicine, Brisbane (Australia); University of Queensland, Centre for Advanced Imaging, Brisbane (Australia); Guzzetta, Andrea [IRCCS Stella Maris, Department of Developmental Neuroscience, Calambrone Pisa (Italy); Colditz, Paul B. [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, Perinatal Research Centre, Brisbane (Australia); Rose, Stephen E. [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, Centre for Advanced Imaging, Brisbane (Australia); University of Queensland Centre for Clinical Research, Royal Brisbane and Women' s Hospital, Brisbane (Australia)

    2012-10-15

    Diffusion MRI (dMRI) is a popular noninvasive imaging modality for the investigation of the neonate brain. It enables the assessment of white matter integrity, and is particularly suited for studying white matter maturation in the preterm and term neonate brain. Diffusion tractography allows the delineation of white matter pathways and assessment of connectivity in vivo. In this review, we address the challenges of performing and analysing neonate dMRI. Of particular importance in dMRI analysis is adequate data preprocessing to reduce image distortions inherent to the acquisition technique, as well as artefacts caused by head movement. We present a summary of techniques that should be used in the preprocessing of neonate dMRI data, and demonstrate the effect of these important correction steps. Furthermore, we give an overview of available analysis techniques, ranging from voxel-based analysis of anisotropy metrics including tract-based spatial statistics (TBSS) to recently developed methods of statistical analysis addressing issues of resolving complex white matter architecture. We highlight the importance of resolving crossing fibres for tractography and outline several tractography-based techniques, including connectivity-based segmentation, the connectome and tractography mapping. These techniques provide powerful tools for the investigation of brain development and maturation. (orig.)

  16. Altered integrity of the right arcuate fasciculus as a trait marker of schizophrenia: a sibling study using tractography-based analysis of the whole brain.

    Science.gov (United States)

    Wu, Chen-Hao; Hwang, Tzung-Jeng; Chen, Yu-Jen; Hsu, Yun-Chin; Lo, Yu-Chun; Liu, Chih-Min; Hwu, Hai-Gwo; Liu, Chen-Chung; Hsieh, Ming H; Chien, Yi Ling; Chen, Chung-Ming; Tseng, Wen-Yih Isaac

    2015-03-01

    Trait markers of schizophrenia aid the dissection of the heterogeneous phenotypes into distinct subtypes and facilitate the genetic underpinning of the disease. The microstructural integrity of the white matter tracts could serve as a trait marker of schizophrenia, and tractography-based analysis (TBA) is the current method of choice. Manual tractography is time-consuming and limits the analysis to preselected fiber tracts. Here, we sought to identify a trait marker of schizophrenia from among 74 fiber tracts across the whole brain using a novel automatic TBA method. Thirty-one patients with schizophrenia, 31 unaffected siblings and 31 healthy controls were recruited to undergo diffusion spectrum magnetic resonance imaging at 3T. Generalized fractional anisotropy (GFA), an index reflecting tract integrity, was computed for each tract and compared among the three groups. Ten tracts were found to exhibit significant differences between the groups with a linear, stepwise order from controls to siblings to patients; they included the right arcuate fasciculus, bilateral fornices, bilateral auditory tracts, left optic radiation, the genu of the corpus callosum, and the corpus callosum to the bilateral dorsolateral prefrontal cortices, bilateral temporal poles, and bilateral hippocampi. Posthoc between-group analyses revealed that the GFA of the right arcuate fasciculus was significantly decreased in both the patients and unaffected siblings compared to the controls. Furthermore, the GFA of the right arcuate fasciculus exhibited a trend toward positive symptom scores. In conclusion, the right arcuate fasciculus may be a candidate trait marker and deserves further study to verify any genetic association. © 2014 Wiley Periodicals, Inc.

  17. Dipy, a library for the analysis of diffusion MRI data.

    Science.gov (United States)

    Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian

    2014-01-01

    Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing.

  18. Diffusion-weighted MR imaging of the brain. 2. ed.

    International Nuclear Information System (INIS)

    Moritani, Toshio; Ekholm, Sven; Westesson, Per-Lennart

    2009-01-01

    This practical-minded text helps the radiologist and the clinician understand diffusion-weighted MR imaging. The book's 15 chapters range from basic principles to interpretation of diffusion-weighted MR imaging and specific disease. In this second edition, diffusion tensor imaging (fractional anisotropy, color map and fiber tractography) is covered and a new chapter, on ''Diffusion-Weighted Imaging of Scalp and Skull Lesions,'' is included. The volume is updated by newly added cases accompanied by radiological and pathological images along with the most recent references. It is aimed at all those who are involved in neuroimaging, including: residents, fellows, staff, as well as neurologists and neurosurgeons. Diffusion-weighted MR imaging is widely accepted as a means to identify acute infarction but also to differentiate many other pathologic conditions. Understanding diffusion-weighted imaging is important for radiologists, neurologists, neurosurgeons as well as radiology technologists. (orig.)

  19. Intraoperative tractography and neuronavigation of the pyramidal tract

    International Nuclear Information System (INIS)

    Nimsky, C.; Ganslandt, O.; Weigel, D.; Keller, B. von; Stadlbauer, A.; Akutsu, H.; Hammen, T.; Buchfelder, M.

    2008-01-01

    Diffusion tensor imaging (DTI) based fiber tracking was applied to visualize the course of the pyramidal tract in the surgical field by microscope-based navigation. In 70 patients with lesions adjacent to the pyramidal tract, DTI data were integrated in a navigational setup. Diffusion data (b=0) were rigidly registered with standard T1-weighted 3-D images. Fiber tracking was performed applying a tensor-deflection algorithm using a multiple volume of interest approach as seed regions for tracking. fMRI data identifying the motor gyrus were applied as selection criteria to define the fibers of interest. After tracking, a 3-D object was generated representing the pyramidal tract. In selected cases, the intraoperative image data (1.5 T intraoperative MRI) were used to update the navigation system. In all patients the pyramidal tract could be visualized in the operative field applying the heads-up display of the operating microscope. In 8 patients (11%) a new or aggravated postoperative paresis could be observed, which was transient in 5 of them; thus, only in 3 patients (4.2%) was there a new permanent neurological deficit. Intraoperative imaging depicted a shifting of the pyramidal tract which amounted up to 15 mm; even the direction of shifting was variable and could not be predicted before surgery, so that mathematical models trying to predict brain shift behaviour are of restricted value only. DTI fiber tracking data can be reliably integrated into navigational systems providing intraoperative visualization of the pyramidal tract. This technique allowed the resection of lesions adjacent to the pyramidal tract with low morbidity. (author)

  20. New MR sequences (diffusion, perfusion, spectroscopy) in brain tumours

    International Nuclear Information System (INIS)

    Rossi, Andrea; Gandolfo, Carlo; Morana, Giovanni; Severino, Mariasavina; Garre, Maria Luisa; Cama, Armando

    2010-01-01

    While MRI has been instrumental in significantly improving care in children harbouring brain tumours, conventional sequences lack information regarding functional parameters including cellularity, haemodynamics and metabolism. Advanced MR imaging modalities, such as diffusion (including diffusion tensor imaging and fibre tractography), perfusion and spectroscopy have significantly improved our understanding of the physiopathology of brain tumours and have provided invaluable additional information for treatment planning and monitoring of treatment results. The contribution of these methods to the characterization of brain neoplasms in children is the focus of the present manuscript. (orig.)

  1. Diffuse axonal injury: detection of changes in anisotropy of water diffusion by diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Chan, J.H.M.; Tsui, E.Y.K.; Yuen, M.K.; Peh, W.C.G.; Fong, D.; Fok, K.F.; Leung, K.M.; Fung, K.K.L.

    2003-01-01

    Myelinated axons of white matter demonstrate prominent directional differences in water diffusion. We performed diffusion-weighted imaging on ten patients with head injury to explore the feasibility of using water diffusion anisotropy for quantitating diffuse axonal injury. We showed significant decrease in diffusion anisotropy indices in areas with or without signal abnormality on T2 and T2*-weighted images. We conclude that the water diffusion anisotropy index a potentially useful, sensitive and quantitative way of diagnosing and assessing patients with diffuse axonal injury. (orig.)

  2. Abnormal Corpus Callosum Connectivity, Socio-Communicative Deficits, and Motor Deficits in Children with Autism Spectrum Disorder: A Diffusion Tensor Imaging Study

    Science.gov (United States)

    Hanaie, Ryuzo; Mohri, Ikuko; Kagitani-Shimono, Kuriko; Tachibana, Masaya; Matsuzaki, Junko; Watanabe, Yoshiyuki; Fujita, Norihiko; Taniike, Masako

    2014-01-01

    In addition to social and communicative deficits, many studies have reported motor deficits in autism spectrum disorder (ASD). This study investigated the macro and microstructural properties of the corpus callosum (CC) of 18 children with ASD and 12 typically developing controls using diffusion tensor imaging tractography. We aimed to explore…

  3. Dipy, a library for the analysis of diffusion MRI data

    Directory of Open Access Journals (Sweden)

    Eleftherios eGaryfallidis

    2014-02-01

    Full Text Available Diffusion Imaging in Python (Dipy is a free and open source software projectfor the analysis of data from diffusion magnetic resonance imaging (dMRIexperiments. dMRI is an application of MRI that can be used to measurestructural features of brain white matter. Many methods have been developed touse dMRI data to model the local configuration of white matter nerve fiberbundles and infer the trajectory of bundles connecting different parts of thebrain.Dipy gathers implementations of many different methods in dMRI, including:diffusion signal pre-processing; reconstruction of diffusion distributions inindividual voxels; fiber tractography and fiber track post-processing, analysisand visualization. Dipy aims to provide transparent implementations forall the different steps of dMRI analysis with a uniform programming interface.We have implemented classical signal reconstruction techniques, such as thediffusion tensor model and deterministic fiber tractography. In addition,cutting edge novel reconstruction techniques are implemented, such asconstrained spherical deconvolution and diffusion spectrum imaging withdeconvolution, as well as methods for probabilistic tracking and originalmethods for tractography clustering. Many additional utility functions areprovided to calculate various statistics, informative visualizations, as wellas file-handling routines to assist in the development and use of noveltechniques.In contrast to many other scientific software projects, Dipy is not beingdeveloped by a single research group. Rather, it is an open project thatencourages contributions from any scientist/developer through GitHub and opendiscussions on the project mailing list. Consequently, Dipy today has aninternational team of contributors, spanning seven different academic institutionsin five countries and three continents, which is still growing.

  4. SU-F-J-160: Clinical Evaluation of Targeting Accuracy in Radiosurgery Using Tractography

    Energy Technology Data Exchange (ETDEWEB)

    Juh, R; Han, J; Kim, C; Oh, C [Seoul National University Bundang Hospital, Seongnamsi, GyeonggiDo (Korea, Republic of); Suh, T [The catholic university of Korea, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: Focal radiosurgery is a common treatment modality for trigeminal neuralgia (TN), a neuropathic facial pain condition. Assessment of treatment effectiveness is primarily clinical, given the paucity of investigational tools to assess trigeminal nerve changes. The efficiency of radiosurgery is related to its highly precise targeting. We assessed clinically the targeting accuracy of radiosurgery with Gamma knife. We hypothesized that trigeminal tractography provides more information than 2D-MR imaging, allowing detection of unique, focal changes in the target area after radiosurgery. Methods: Sixteen TN patients (2 females, 4 males, average age 65.3 years) treated with Gamma Knife radiosurgery, 40 Gy/50% isodose line underwent 1.5Tesla MR trigeminal nerve. Target accuracy was assessed from deviation of the coordinates of the target compared with the center of enhancement on post MRI. Radiation dose delivered at the borders of contrast enhancement was evaluated. Results: The median deviation of the coordinates between the intended target and the center of contrast enhancement was within 1mm. The radiation doses fitting within the borders of the contrast enhancement the target ranged from 37.5 to 40 Gy. Trigeminal tractography accurately detected the radiosurgical target. Radiosurgery resulted in 47% drop in FA values at the target with no significant change in FA outside the target, suggesting that radiosurgery primarily affects myelin. Tractography was more sensitive, since FA changes were detected regardless of trigeminal nerve enhancement. Conclusion: The median deviation found in clinical assessment of gamma knife treatment for TN Is low and compatible with its high rate of efficiency. DTI parameters accurately detect the effects of focal radiosurgery on the trigeminal nerve, serving as an in vivo imaging tool to study TN. This study is a proof of principle for further assessment of DTI parameters to understand the pathophysiology of TN and treatment

  5. Diffusion tensor imaging of the human calf: Variation of inter- and intramuscle-specific diffusion parameters.

    Science.gov (United States)

    Schlaffke, Lara; Rehmann, Robert; Froeling, Martijn; Kley, Rudolf; Tegenthoff, Martin; Vorgerd, Matthias; Schmidt-Wilcke, Tobias

    2017-10-01

    To investigate to what extent inter- and intramuscular variations of diffusion parameters of human calf muscles can be explained by age, gender, muscle location, and body mass index (BMI) in a specific age group (20-35 years). Whole calf muscles of 18 healthy volunteers were evaluated. Magnetic resonance imaging (MRI) was performed using a 3T scanner and a 16-channel Torso XL coil. Diffusion-weighted images were acquired to perform fiber tractography and diffusion tensor imaging (DTI) analysis for each muscle of both legs. Fiber tractography was used to separate seven lower leg muscles. Associations between DTI parameters and confounds were evaluated. All muscles were additionally separated in seven identical segments along the z-axis to evaluate intramuscular differences in diffusion parameters. Fractional anisotropy (FA) and mean diffusivity (MD) were obtained for each muscle with low standard deviations (SDs) (SD FA : 0.01-0.02; SD MD : 0.07-0.14(10 -3 )). We found significant differences in FA values of the tibialis anterior muscle (AT) and extensor digitorum longus (EDL) muscles between men and women for whole muscle FA (two-sample t-tests; AT: P = 0.0014; EDL: P = 0.0004). We showed significant intramuscular differences in diffusion parameters between adjacent segments in most calf muscles (P < 0.001). Whereas muscle insertions showed higher (SD 0.03-0.06) than muscle bellies (SD 0.01-0.03), no relationships between FA or MD with age or BMI were found. Inter- and intramuscular variations in diffusion parameters of the calf were shown, which are not related to age or BMI in this age group. Differences between muscle belly and insertion should be considered when interpreting datasets not including whole muscles. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1137-1148. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Diffusion Capillary Phantom vs. Human Data: Outcomes for Reconstruction Methods Depend on Evaluation Medium

    Directory of Open Access Journals (Sweden)

    Sarah D. Lichenstein

    2016-09-01

    Full Text Available Purpose: Diffusion MRI provides a non-invasive way of estimating structural connectivity in the brain. Many studies have used diffusion phantoms as benchmarks to assess the performance of different tractography reconstruction algorithms and assumed that the results can be applied to in vivo studies. Here we examined whether quality metrics derived from a common, publically available, diffusion phantom can reliably predict tractography performance in human white matter tissue. Material and Methods: We compared estimates of fiber length and fiber crossing among a simple tensor model (diffusion tensor imaging, a more complicated model (ball-and-sticks and model-free (diffusion spectrum imaging, generalized q-sampling imaging reconstruction methods using a capillary phantom and in vivo human data (N=14. Results: Our analysis showed that evaluation outcomes differ depending on whether they were obtained from phantom or human data. Specifically, the diffusion phantom favored a more complicated model over a simple tensor model or model-free methods for resolving crossing fibers. On the other hand, the human studies showed the opposite pattern of results, with the model-free methods being more advantageous than model-based methods or simple tensor models. This performance difference was consistent across several metrics, including estimating fiber length and resolving fiber crossings in established white matter pathways. Conclusions: These findings indicate that the construction of current capillary diffusion phantoms tends to favor complicated reconstruction models over a simple tensor model or model-free methods, whereas the in vivo data tends to produce opposite results. This brings into question the previous phantom-based evaluation approaches and suggests that a more realistic phantom or simulation is necessary to accurately predict the relative performance of different tractography reconstruction methods. Acronyms: BSM: ball-and-sticks model; d

  7. Role of magnetic resonance tractography in the preoperative planning and intraoperative assessment of patients with intra-axial brain tumours.

    Science.gov (United States)

    Romano, A; Ferrante, M; Cipriani, V; Fasoli, F; Ferrante, L; D'Andrea, G; Fantozzi, L M; Bozzao, A

    2007-09-01

    This study was conducted to assess the possibility of identifying precise white matter tracts situated in proximity to intracranial tumours, to define the anatomical and topographical relations between the same white matter tracts and the tumour, to verify the possibility of integrating tractographic images in the context of a package of three-dimensional anatomical images to send to the neuronavigation system, to assess the impact of this information on surgical planning, and to analyse, both pre-and postoperatively, the patient's clinical conditions as an index of the functional integrity of the fibres themselves. Twenty-five patients underwent diffusion tensor study prior to neurosurgery. With the use of dedicated software, relative colour maps were obtained and the trajectories of the white matter tracts adjacent to the tumour were reconstructed in three dimensions. These were then processed for preoperative planning. Planning, which was performed with the neuronavigator, was based on analysis of the location of the course of the main white matter tracts adjacent to the lesion (pyramidal tract, optic radiation and arcuate fasciculus). Two neurosurgeons were asked whether the tractography images had modified the access and/or intraoperative approach to the tumour. All patients were clinically assessed both pre-and postoperatively 1 month after the procedure to define the presence of symptoms related to the involvement of the white matter tracts studied and therefore to assess the integrity of the fibres after the operation. In one patient, the tumour was situated away from all the tracts studied and did not compress them in any way. Overall, 40/75 tracts studied had no anatomical relation with the tumour, were not displaced by the tumour or could not be visualised in their entire course. Analysis of the remaining 35 white matter tracts led to an a priori change in the surgical approach for corticotomy in four patients (16%), with no disagreement between the two

  8. Postmortem diffusion MRI of the entire human spinal cord at microscopic resolution

    Directory of Open Access Journals (Sweden)

    Evan Calabrese

    Full Text Available The human spinal cord is a central nervous system structure that plays an important role in normal motor and sensory function, and can be affected by many debilitating neurologic diseases. Due to its clinical importance, the spinal cord is frequently the subject of imaging research. Common methods for visualizing spinal cord anatomy and pathology include histology and magnetic resonance imaging (MRI, both of which have unique benefits and drawbacks. Postmortem microscopic resolution MRI of fixed specimens, sometimes referred to as magnetic resonance microscopy (MRM, combines many of the benefits inherent to both techniques. However, the elongated shape of the human spinal cord, along with hardware and scan time limitations, have restricted previous microscopic resolution MRI studies (both in vivo and ex vivo to small sections of the cord. Here we present the first MRM dataset of the entire postmortem human spinal cord. These data include 50 μm isotropic resolution anatomic image data and 100 μm isotropic resolution diffusion data, made possible by a 280 h long multi-segment acquisition and automated image segment composition. We demonstrate the use of these data for spinal cord lesion detection, automated volumetric gray matter segmentation, and quantitative spinal cord morphometry including estimates of cross sectional dimensions and gray matter fraction throughout the length of the cord. Keywords: Spinal cord, Magnetic resonance microscopy, Tractography, Human, Gray matter

  9. Detection of prostate cancer in peripheral zone: comparison of MR diffusion tensor imaging, quantitative dynamic contrast-enhanced MRI, and the two techniques combined at 3.0 T.

    Science.gov (United States)

    Li, Chunmei; Chen, Min; Li, Saying; Zhao, Xuna; Zhang, Chen; Luo, Xiaojie; Zhou, Cheng

    2014-03-01

    Previous studies have shown that the diagnostic accuracy for prostate cancer improved with diffusion tensor imaging (DTI) or quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) only. However, the efficacy of combined DTI and quantitative DCE-MRI in detecting prostate cancer at 3.0 T is still indeterminate. To investigate the utility of diffusion tensor imaging (DTI), quantitative DCE-MRI, and the two techniques combined at 3.0 T in detecting prostate cancer of the peripheral zone (PZ). DTI and DCE-MRI of 33 patients was acquired prior to prostate biopsy. Regions of interest (ROIs) were drawn according to biopsy zones which were apex, mid-gland, and base on each side of the PZ. Apparent diffusion coefficient (ADC), fractional anisotropy (FA), volume transfer constant (K(trans)), and rate constant (kep) values of cancerous sextants and non-cancerous sextants in PZ were calculated. Logistic regression models were generated for DTI, DCE-MRI, and DTI + DCE-MRI. Receiver-operating characteristic (ROC) curves were used to compare the ability of these models to differentiate cancerous sextants from non-cancerous sextants of PZ. There were significant differences in the ADC, FA, K(trans), and kep values between cancerous sextants and non-cancerous sextants in PZ (P < 0.0001, P < 0.0001, P < 0.0001, and P < 0.0001, respectively). The area under curve (AUC) for DTI + DCE-MRI was significantly greater than that for either DTI (0.93 vs. 0.86, P = 0.0017) or DCE-MRI (0.93 vs. 0.84, P = 0.0034) alone. The combination of DTI and quantitative DCE-MRI has better diagnostic performance in detecting prostate cancer of the PZ than either technique alone.

  10. On Diffusion and Permeation

    KAUST Repository

    Peppin, Stephen S. L.

    2009-01-01

    concentrations they form a nearly rigid porous glass through which the fluid permeates. The theoretically determined pressure drop is nonlinear in the diffusion regime and linear in the permeation regime, in quantitative agreement with experimental measurements

  11. Interpolation of diffusion weighted imaging datasets

    DEFF Research Database (Denmark)

    Dyrby, Tim B; Lundell, Henrik; Burke, Mark W

    2014-01-01

    anatomical details and signal-to-noise-ratio for reliable fibre reconstruction. We assessed the potential benefits of interpolating DWI datasets to a higher image resolution before fibre reconstruction using a diffusion tensor model. Simulations of straight and curved crossing tracts smaller than or equal......Diffusion weighted imaging (DWI) is used to study white-matter fibre organisation, orientation and structural connectivity by means of fibre reconstruction algorithms and tractography. For clinical settings, limited scan time compromises the possibilities to achieve high image resolution for finer...... interpolation methods fail to disentangle fine anatomical details if PVE is too pronounced in the original data. As for validation we used ex-vivo DWI datasets acquired at various image resolutions as well as Nissl-stained sections. Increasing the image resolution by a factor of eight yielded finer geometrical...

  12. Preoperative Navigated Transcranial Magnetic Stimulation and Tractography to Guide Endoscopic Cystoventriculostomy: A Technical Note and Case Report.

    Science.gov (United States)

    Hendrix, Philipp; Senger, Sebastian; Griessenauer, Christoph J; Simgen, Andreas; Linsler, Stefan; Oertel, Joachim

    2018-01-01

    To report a technique for endoscopic cystoventriculostomy guided by preoperative navigated transcranial magnetic stimulation (nTMS) and tractography in a patient with a large speech eloquent arachnoid cyst. A 74-year old woman presented with a seizure and subsequent persistent anomic aphasia from a progressive left-sided parietal arachnoid cyst. An endoscopic cystoventriculostomy and endoscope-assisted ventricle catheter placement were performed. Surgery was guided by preoperative nTMS and tractography to avoid eloquent language, motor, and visual pathways. Preoperative nTMS motor and language mapping were used to guide tractography of motor and language white matter tracts. The ideal locations of entry point and cystoventriculostomy as well as trajectory for stent-placement were determined preoperatively with a pseudo-3-dimensional model visualizing eloquent language, motor, and visual cortical and subcortical information. The early postoperative course was uneventful. At her 3-month follow-up visit, her language impairments had completely recovered. Additionally, magnetic resonance imaging demonstrated complete collapse of the arachnoid cyst. The combination of nTMS and tractography supports the identification of a safe trajectory for cystoventriculostomy in eloquent arachnoid cysts. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. White matter tract-specific quantitative analysis in multiple sclerosis: Comparison of optic radiation reconstruction techniques.

    Directory of Open Access Journals (Sweden)

    Chenyu Wang

    Full Text Available The posterior visual pathway is commonly affected by multiple sclerosis (MS pathology that results in measurable clinical and electrophysiological impairment. Due to its highly structured retinotopic mapping, the visual pathway represents an ideal substrate for investigating patho-mechanisms in MS. Therefore, a reliable and robust imaging segmentation method for in-vivo delineation of the optic radiations (OR is needed. However, diffusion-based tractography approaches, which are typically used for OR segmentation are confounded by the presence of focal white matter lesions. Current solutions require complex acquisition paradigms and demand expert image analysis, limiting application in both clinical trials and clinical practice. In the current study, using data acquired in a clinical setting on a 3T scanner, we optimised and compared two approaches for optic radiation (OR reconstruction: individual probabilistic tractography-based and template-based methods. OR segmentation results were applied to subjects with MS and volumetric and diffusivity parameters were compared between OR segmentation techniques. Despite differences in reconstructed OR volumes, both OR lesion volume and OR diffusivity measurements in MS subjects were highly comparable using optimised probabilistic tractography-based, and template-based, methods. The choice of OR reconstruction technique should be determined primarily by the research question and the nature of the available dataset. Template-based approaches are particularly suited to the semi-automated analysis of large image datasets and have utility even in the absence of dMRI acquisitions. Individual tractography methods, while more complex than template based OR reconstruction, permit measurement of diffusivity changes along fibre bundles that are affected by specific MS lesions or other focal pathologies.

  14. Distortion-free diffusion tensor imaging for evaluation of lumbar nerve roots: Utility of direct coronal single-shot turbo spin-echo diffusion sequence.

    Science.gov (United States)

    Sakai, Takayuki; Doi, Kunio; Yoneyama, Masami; Watanabe, Atsuya; Miyati, Tosiaki; Yanagawa, Noriyuki

    2018-06-01

    Diffusion tensor imaging (DTI) based on a single-shot echo planer imaging (EPI-DTI) is an established method that has been used for evaluation of lumbar nerve disorders in previous studies, but EPI-DTI has problems such as a long acquisition time, due to a lot of axial slices, and geometric distortion. To solve these problems, we attempted to apply DTI based on a single-shot turbo spin echo (TSE-DTI) with direct coronal acquisition. Our purpose in this study was to investigate whether TSE-DTI may be more useful for evaluation of lumbar nerve disorders than EPI-DTI. First, lumbar nerve roots of five healthy volunteers were evaluated for optimization of imaging parameters with TSE-DTI including b-values and the number of motion proving gradient (MPG) directions. Subsequently, optimized TSE-DTI was quantitatively compared with conventional EPI-DTI by using fractional anisotropy (FA) values and visual scores in subjective visual evaluation of tractography. Lumbar nerve roots of six patients, who had unilateral neurologic symptoms in one leg, were evaluated by the optimized TSE-DTI. TSE-DTI with b-value of 400 s/mm 2 and 32 diffusion-directions could reduce the image distortion compared with EPI-DTI, and showed that the average FA values on the symptomatic side for six patients were significantly lower than those on the non-symptomatic side (P DTI might show damaged areas of lumbar nerve roots without severe image distortion. TSE-DTI might improve the reproducibility in measurements of FA values for quantification of a nerve disorder, and would become a useful tool for diagnosis of low back pain. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Development of More Cost-Effective Methods for Long-Term Monitoring of Soil Vapor Intrusion to Indoor Air Using Quantitative Passive Diffusive-Adsorptive Sampling Techniques

    Science.gov (United States)

    2015-05-01

    ASTM ASTM International ASU Arizona State University ATD automated thermal desorption BENZ Benzene C/Co passive sampler concentration...Protection Agency [USEPA], 1998a, b; California Department of Toxic Substance Control, 2011; ASTM International [ASTM] D7758, 2011). This demonstration... microporous sintered polyethylene, through which the vapors diffuse. Figure 1b. Radiello sampler with regular (white) and low-uptake rate

  16. Diffusion tensor imaging in spinal cord injury

    International Nuclear Information System (INIS)

    Kamble, Ravindra B; Venkataramana, Neelam K; Naik, Arun L; Rao, Shailesh V

    2011-01-01

    To assess the feasibility of spinal tractography in patients of spinal cord injury vs a control group and to compare fractional anisotropy (FA) values between the groups. Diffusion tensor imaging (DTI) was performed in the spinal cord of 29 patients (18 patients and 11 controls). DTI was done in the cervical region if the cord injury was at the dorsal or lumbar region and in the conus region if cord injury was in the cervical or dorsal region. FA was calculated for the patients and the controls and the values were compared. The mean FA value was 0.550±0.09 in the control group and 0.367±0.14 in the patients; this difference was statistically significant (P=0.001). Spinal tractography is a feasible technique to assess the extent of spinal cord injury by FA, which is reduced in patients of spinal cord injury, suggesting possible Wallerian degeneration. In future, this technique may become a useful tool for assessing cord injury patients after stem cell therapy, with improvement in FA values indicating axonal regeneration

  17. Investigating the effects of streamline-based fiber tractography on matrix scaling in brain connective network.

    Science.gov (United States)

    Jan, Hengtai; Chao, Yi-Ping; Cho, Kuan-Hung; Kuo, Li-Wei

    2013-01-01

    Investigating the brain connective network using the modern graph theory has been widely applied in cognitive and clinical neuroscience research. In this study, we aimed to investigate the effects of streamline-based fiber tractography on the change of network properties and established a systematic framework to understand how an adequate network matrix scaling can be determined. The network properties, including degree, efficiency and betweenness centrality, show similar tendency in both left and right hemispheres. By employing the curve-fitting process with exponential law and measuring the residuals, the association between changes of network properties and threshold of track numbers is found and an adequate range of investigating the lateralization of brain network is suggested. The proposed approach can be further applied in clinical applications to improve the diagnostic sensitivity using network analysis with graph theory.

  18. Intravoxel Incoherent Motion and Quantitative Non-Gaussian Diffusion MR Imaging: Evaluation of the Diagnostic and Prognostic Value of Several Markers of Malignant and Benign Breast Lesions.

    Science.gov (United States)

    Iima, Mami; Kataoka, Masako; Kanao, Shotaro; Onishi, Natsuko; Kawai, Makiko; Ohashi, Akane; Sakaguchi, Rena; Toi, Masakazu; Togashi, Kaori

    2018-05-01

    Purpose To investigate the performance of integrated approaches that combined intravoxel incoherent motion (IVIM) and non-Gaussian diffusion parameters compared with the Breast Imaging and Reporting Data System (BI-RADS) to establish multiparameter thresholds scores or probabilities by using Bayesian analysis to distinguish malignant from benign breast lesions and their correlation with molecular prognostic factors. Materials and Methods Between May 2013 and March 2015, 411 patients were prospectively enrolled and 199 patients (allocated to training [n = 99] and validation [n = 100] sets) were included in this study. IVIM parameters (flowing blood volume fraction [fIVIM] and pseudodiffusion coefficient [D*]) and non-Gaussian diffusion parameters (theoretical apparent diffusion coefficient [ADC] at b value of 0 sec/mm 2 [ADC 0 ] and kurtosis [K]) by using IVIM and kurtosis models were estimated from diffusion-weighted image series (16 b values up to 2500 sec/mm 2 ), as well as a synthetic ADC (sADC) calculated by using b values of 200 and 1500 (sADC 200-1500 ) and a standard ADC calculated by using b values of 0 and 800 sec/mm 2 (ADC 0-800 ). The performance of two diagnostic approaches (combined parameter thresholds and Bayesian analysis) combining IVIM and diffusion parameters was evaluated and compared with BI-RADS performance. The Mann-Whitney U test and a nonparametric multiple comparison test were used to compare their performance to determine benignity or malignancy and as molecular prognostic biomarkers and subtypes of breast cancer. Results Significant differences were found between malignant and benign breast lesions for IVIM and non-Gaussian diffusion parameters (ADC 0 , K, fIVIM, fIVIM · D*, sADC 200-1500, and ADC 0-800 ; P < .05). Sensitivity and specificity for the validation set by radiologists A and B were as follows: sensitivity, 94.7% and 89.5%, and specificity, 75.0% and 79.2% for sADC 200-1500 , respectively; sensitivity, 94.7% and 96.1%, and

  19. Time-optimized high-resolution readout-segmented diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Gernot Reishofer

    Full Text Available Readout-segmented echo planar imaging with 2D navigator-based reacquisition is an uprising technique enabling the sampling of high-resolution diffusion images with reduced susceptibility artifacts. However, low signal from the small voxels and long scan times hamper the clinical applicability. Therefore, we introduce a regularization algorithm based on total variation that is applied directly on the entire diffusion tensor. The spatially varying regularization parameter is determined automatically dependent on spatial variations in signal-to-noise ratio thus, avoiding over- or under-regularization. Information about the noise distribution in the diffusion tensor is extracted from the diffusion weighted images by means of complex independent component analysis. Moreover, the combination of those features enables processing of the diffusion data absolutely user independent. Tractography from in vivo data and from a software phantom demonstrate the advantage of the spatially varying regularization compared to un-regularized data with respect to parameters relevant for fiber-tracking such as Mean Fiber Length, Track Count, Volume and Voxel Count. Specifically, for in vivo data findings suggest that tractography results from the regularized diffusion tensor based on one measurement (16 min generates results comparable to the un-regularized data with three averages (48 min. This significant reduction in scan time renders high resolution (1 × 1 × 2.5 mm(3 diffusion tensor imaging of the entire brain applicable in a clinical context.

  20. Reconstruction of white matter fibre tracts using diffusion kurtosis tensor imaging at 1.5T: Pre-surgical planning in patients with gliomas.

    Science.gov (United States)

    Leote, Joao; Nunes, Rita G; Cerqueira, Luis; Loução, Ricardo; Ferreira, Hugo A

    2018-01-01

    Tractography studies for pre-surgical planning of primary brain tumors is typically done using diffusion tensor imaging (DTI), which cannot resolve crossing, kissing or highly angulated fibres. Tractography based on the estimation of the diffusion kurtosis (DK) tensor was recently demonstrated to enable tackling these limitations. However, its use in the clinical context at low 1.5T field has not yet been reported. To evaluate if the estimation of whole-brain tractography using the DK tensor is feasible for pre-surgical investigation of patients with brain tumors at 1.5T. Eight healthy subjects and 3 patients with brain tumors were scanned at 1.5T using a 12-channel head coil. Diffusion-weighted images were acquired with repetition/echo times of 5800/107 ms, 82 × 82 resolution, 3 × 3 × 3 mm 3 voxel size, b-values of 0, 1000, 2000 s/mm 2 and 64 gradient sensitising directions. Whole-brain tractography was estimated using the DK tensor and corticospinal tracts (CST) were isolated using regions-of-interest placed at the cerebral peduncles and motor gyrus. Tract size, DK metrics and CST deviation index (highest curvature point) were compared between healthy subjects and patients. Tract sizes did not differ between groups. The CST deviation index was significantly higher in patients compared to healthy subjects. Fractional anisotropy was significantly lower in patients, with higher mean kurtosis asymmetry index at the highest curvature point in patients. Corticospinal fibre bundles estimated using DK tensor in a 1.5T scanner presented similar properties in patients with brain gliomas as those reported in the literature using DTI-based tractography.

  1. In vivo quantitative whole-brain diffusion tensor imaging analysis of APP/PS1 transgenic mice using voxel-based and atlas-based methods

    International Nuclear Information System (INIS)

    Qin, Yuan-Yuan; Li, Mu-Wei; Oishi, Kenichi; Zhang, Shun; Zhang, Yan; Zhao, Ling-Yun; Zhu, Wen-Zhen; Lei, Hao

    2013-01-01

    Diffusion tensor imaging (DTI) has been applied to characterize the pathological features of Alzheimer's disease (AD) in a mouse model, although little is known about whether these features are structure specific. Voxel-based analysis (VBA) and atlas-based analysis (ABA) are good complementary tools for whole-brain DTI analysis. The purpose of this study was to identify the spatial localization of disease-related pathology in an AD mouse model. VBA and ABA quantification were used for the whole-brain DTI analysis of nine APP/PS1 mice and wild-type (WT) controls. Multiple scalar measurements, including fractional anisotropy (FA), trace, axial diffusivity (DA), and radial diffusivity (DR), were investigated to capture the various types of pathology. The accuracy of the image transformation applied for VBA and ABA was evaluated by comparing manual and atlas-based structure delineation using kappa statistics. Following the MR examination, the brains of the animals were analyzed for microscopy. Extensive anatomical alterations were identified in APP/PS1 mice, in both the gray matter areas (neocortex, hippocampus, caudate putamen, thalamus, hypothalamus, claustrum, amygdala, and piriform cortex) and the white matter areas (corpus callosum/external capsule, cingulum, septum, internal capsule, fimbria, and optic tract), evidenced by an increase in FA or DA, or both, compared to WT mice (p 0.05). The histopathological changes in the gray matter areas were confirmed by microscopy studies. DTI did, however, demonstrate significant changes in white matter areas, where the difference was not apparent by qualitative observation of a single-slice histological specimen. This study demonstrated the structure-specific nature of pathological changes in APP/PS1 mouse, and also showed the feasibility of applying whole-brain analysis methods to the investigation of an AD mouse model. (orig.)

  2. Subcomponents and Connectivity of the Inferior Fronto-Occipital Fasciculus Revealed by Diffusion Spectrum Imaging Fiber Tracking

    OpenAIRE

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao

    2016-01-01

    The definitive structure and functional role of the inferior fronto-occipital fasciculus (IFOF) are still controversial. In this study, we aimed to investigate the connectivity, asymmetry, and segmentation patterns of this bundle. High angular diffusion spectrum imaging (DSI) analysis was performed on 10 healthy adults and a 90-subject DSI template (NTU-90 Atlas). In addition, a new tractography approach based on the anatomic subregions and two regions of interest (ROI) was evaluated for the ...

  3. Use of quantitative diffusion-weighted magnetic resonance imaging to predict human papilloma virus status in patients with oropharyngeal squamous cell carcinoma.

    Science.gov (United States)

    Nakahira, Mitsuhiko; Saito, Naoko; Yamaguchi, Hiroshi; Kuba, Kiyomi; Sugasawa, Masashi

    2014-05-01

    Although identification of human papilloma virus (HPV) status in oropharyngeal squamous cell carcinoma (OPSCC) is essential in predicting treatment response, no imaging modality can currently determine whether a tumor is HPV-related. In this retrospective study, 26 patients with OPSCC confined to the lateral wall or the base of tongue underwent neck magnetic resonance imaging, using T1-, T2- and diffusion-weighted imaging (DWI). Apparent diffusion coefficients (ADCs) in a region of interest covering the largest available primary tumor area of OPSCC on a single slice of the ADC map were calculated using two b values (0 and 1,000 s/mm(2)). Mean and minimum ADCs were compared with HPV status, using p16 immunohistochemistry as a surrogate marker for HPV infection. Mean and minimum ADCs for HPV(+) OPSCC were significantly lower than those for HPV(-) OPSCC. A cut-off value of mean ADC for HPV(+) OPSCC of 1.027 × 10(-3) mm(2)/s yielded sensitivity and specificity of 83.33 and 78.57%, respectively. In conclusion, the present study indicates that ADC could be used to predict HPV status in patients with OPSCC.

  4. In vivo quantitative whole-brain diffusion tensor imaging analysis of APP/PS1 transgenic mice using voxel-based and atlas-based methods

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yuan-Yuan [Huazhong University of Science and Technology, Department of Radiology, Tongji Hospital, Tongji Medical College, Wuhan (China); The Johns Hopkins University School of Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Li, Mu-Wei; Oishi, Kenichi [The Johns Hopkins University School of Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Zhang, Shun; Zhang, Yan; Zhao, Ling-Yun; Zhu, Wen-Zhen [Huazhong University of Science and Technology, Department of Radiology, Tongji Hospital, Tongji Medical College, Wuhan (China); Lei, Hao [Chinese Academy of Sciences, Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan (China)

    2013-08-15

    Diffusion tensor imaging (DTI) has been applied to characterize the pathological features of Alzheimer's disease (AD) in a mouse model, although little is known about whether these features are structure specific. Voxel-based analysis (VBA) and atlas-based analysis (ABA) are good complementary tools for whole-brain DTI analysis. The purpose of this study was to identify the spatial localization of disease-related pathology in an AD mouse model. VBA and ABA quantification were used for the whole-brain DTI analysis of nine APP/PS1 mice and wild-type (WT) controls. Multiple scalar measurements, including fractional anisotropy (FA), trace, axial diffusivity (DA), and radial diffusivity (DR), were investigated to capture the various types of pathology. The accuracy of the image transformation applied for VBA and ABA was evaluated by comparing manual and atlas-based structure delineation using kappa statistics. Following the MR examination, the brains of the animals were analyzed for microscopy. Extensive anatomical alterations were identified in APP/PS1 mice, in both the gray matter areas (neocortex, hippocampus, caudate putamen, thalamus, hypothalamus, claustrum, amygdala, and piriform cortex) and the white matter areas (corpus callosum/external capsule, cingulum, septum, internal capsule, fimbria, and optic tract), evidenced by an increase in FA or DA, or both, compared to WT mice (p < 0.05, corrected). The average kappa value between manual and atlas-based structure delineation was approximately 0.8, and there was no significant difference between APP/PS1 and WT mice (p > 0.05). The histopathological changes in the gray matter areas were confirmed by microscopy studies. DTI did, however, demonstrate significant changes in white matter areas, where the difference was not apparent by qualitative observation of a single-slice histological specimen. This study demonstrated the structure-specific nature of pathological changes in APP/PS1 mouse, and also showed the

  5. Symmetrical Location Characteristics of Corticospinal Tract Associated With Hand Movement in the Human Brain: A Probabilistic Diffusion Tensor Tractography.

    Science.gov (United States)

    Lee, Dong-Hoon; Lee, Do-Wan; Han, Bong-Soo

    2016-04-01

    The purpose of this study is to elucidate the symmetrical characteristics of corticospinal tract (CST) related with hand movement in bilateral hemispheres using probabilistic fiber tracking method. Seventeen subjects were participated in this study. Fiber tracking was performed with 2 regions of interest, hand activated functional magnetic resonance imaging (fMRI) results and pontomedullary junction in each cerebral hemisphere. Each subject's extracted fiber tract was normalized with a brain template. To measure the symmetrical distributions of the CST related with hand movement, the laterality and anteriority indices were defined in upper corona radiata (CR), lower CR, and posterior limb of internal capsule. The measured laterality and anteriority indices between the hemispheres in each different brain location showed no significant differences with P the measured indices among 3 different brain locations in each cerebral hemisphere with P the hand CST had symmetric structures in bilateral hemispheres. The probabilistic fiber tracking with fMRI approach demonstrated that the hand CST can be successfully extracted regardless of crossing fiber problem. Our analytical approaches and results seem to be helpful for providing the database of CST somatotopy to neurologists and clinical researches.

  6. Quantitative theory of channeling particle diffusion in transverse energy in the presence of nuclear scattering and direct evaluation of dechanneling length

    Energy Technology Data Exchange (ETDEWEB)

    Tikhomirov, Victor V. [Belarusian State University, Institute for Nuclear Problems, Minsk (Belarus)

    2017-07-15

    A refined equation for channeling particle diffusion in transverse energy taking into consideration large-angle scattering by nuclei is suggested. This equation is reduced to the Sturm-Liouville problem, allowing one to reveal both the origin and the limitations of the dechanneling length notion. The values of the latter are evaluated for both positively and negatively charged particles of various energies. New features of the dechanneling dynamics of positively charged particles are also revealed. First, it is demonstrated that the dechanneling length notion is completely inapplicable for their nuclear dechanneling process. Second, the effective electron dechanneling length of positively charged particle varies more than twice converging to a constant asymptotic value only at the depth exceeding the latter. (orig.)

  7. Quantitative determination of flame color and its determining factor in hydrocarbon/air laminar diffusion flames; Soryu kakusan kaen ni okeru kaenshoku no teiryoka to sono kettei yoin

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, S. [Asahikawa National College of Technology, Hokkaido (Japan); Fujita, O.; Ito, K. [Hokkaido University, Sapporo (Japan)

    1998-08-25

    The color of laminar diffusion flames burning propane, methane and ethylene was determined by chromaticity coordinates (x, y) defined by the CIE 1931 standard colorimetric system. The differences in flame color attributed to burning condition and fuel types were examined with a colorimeter. Spectroscopic measurement and numerical analysis using a simplified radiation model were also carried out to discuss the determining factors of the flame color. The relation between x and y measured on the central axis of the flames was expressed in the experimental equations. The (x, y) in the luminous region plotted on a chromaticity diagram changed along Planckian locus with the burning conditions. The contribution of the thermal radiation of soot particles and the chemiluminescence to the flame color was successfully evaluated by introducing the concept of additive mixture of color stimuli. The (x, y) profiles from the numerical analysis agreed well with the experimental results. 17 refs., 14 figs., 1 tab.

  8. Pre-operative assessment of residual disease in locally advanced breast cancer patients: A sequential study by quantitative diffusion weighted MRI as a function of therapy.

    Science.gov (United States)

    Agarwal, Khushbu; Sharma, Uma; Sah, Rani G; Mathur, Sandeep; Hari, Smriti; Seenu, Vurthaluru; Parshad, Rajinder; Jagannathan, Naranamangalam R

    2017-10-01

    The potential of diffusion weighted imaging (DWI) in assessing pathologic response and surgical margins in locally advanced breast cancer patients (n=38) undergoing neoadjuvant chemotherapy was investigated. DWI was performed at pre-therapy (Tp0), after I (Tp1) and III (Tp3) NACT at 1.5T. Apparent diffusion coefficient (ADC) of whole tumor (ADC WT ), solid tumor (ADC ST ), intra-tumoral necrosis (ADC Nec ) was determined. Further, ADC of 6 consecutive shells (5mm thickness each) including tumor margin to outside tumor margins (OM1 to OM5) was calculated and the data analyzed to define surgical margins. Of 38 patients, 6 were pathological complete responders (pCR), 19 partial responders (pPR) and 13 were non-responders (pNR). Significant increase was observed in ADC ST and ADC WT in pCR and pPR following therapy. Pre-therapy ADC was significantly lower in pCR compared to pPR and pNR indicating the heterogeneous nature of tumor which may affect drug perfusion and consequently the response. ADC of outside margins (OM1, OM2, and OM3) was significantly different among pCR, pPR and pNR at Tp3 which may serve as response predictive parameter. Further, at Tp3, ADC of outside margins (OM1, OM2, and OM3) was significantly lower compared to that seen at Tp0 in pCR, indicating the presence of residual disease in these shells. Pre-surgery information may serve as a guide to define cancer free margins and the extent of residual disease which may be useful in planning breast conservation surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Quantitative cerebral blood flow calculation method using xenon CT. Introduction of a factor reflecting diffusing capacity of the lung for xenon

    International Nuclear Information System (INIS)

    Sase, Shigeru; Honda, Mitsuru; Noguchi, Yoshitaka

    2007-01-01

    In calculating cerebral blood flow (CBF) using the Fick principle, time-course information on arterial tracer concentration is indispensable and exerts considerable influence on the accuracy of CBF. In xenon-enhanced CT (Xe-CT), the time-course change rate for end-tidal xenon concentration (Ke), which can be measured, and that for arterial xenon concentration (Ka) have been assumed to be equal. However, it has been pointed out that there are large differences between Ke and Ka in many cases. We have introduced a single factor (γ) which correlates Ke with Ka in the equation Ka=γ x (1-e -Ke/γ ). This factor, γ, reflects the diffusing capacity of the lung for xenon; larger γ values correspond to larger diffusing capacities and Ka is equal to Ke when γ is infinity. Kety's equation contains two parameters: CBF and xenon solubility coefficient We added a third parameter, γ, to Kety's equation, and developed an efficient method to obtain the γ value for each Xe-CT study. Applying this method to ten normal subjects (35.4±16.3 years, mean±standard deviation (SD)), we obtained γ value of 1.01±0.17 and the average CBF value of 38.8±7.5 mL/100 g/min in basal ganglia. The wash-in period could be shortened to two minutes using this method. Xe-CT with this factor (γ) as a parameter enhances its clinical availability as well as the accuracy of CBF. (author)

  10. Qualitative and quantitative analysis of diffusion-weighted imaging of gestational trophoblastic disease: Can it predict progression of molar pregnancy to persistent form of disease?

    Energy Technology Data Exchange (ETDEWEB)

    Sefidbakht, Sepideh [Medical imaging research center, Department of Radiology and Imaging, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Hosseini, Fatemeh, E-mail: f.hoseini88@gmail.com [Medical imaging research center, Department of Radiology and Imaging, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Bijan, Bijan [Abdominal Imaging/MR and Nonvascular Interventional Division, University of California, Davis, CA (United States); Hamedi, Bahareh; Azizi, Tayyebeh [Obstetrics& Gynecology Department, Medical School, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of)

    2017-03-15

    Highlights: • The incidence of GTD in Iran is significantly higher than America and Europe. • ADC value of GTD is (1.96 ± 0.32 × 10{sup −3} mm{sup 2}/s). • GTD in T1 and T2-weighted images shows heterogeneous “snow-storm” appearance. • Focal intratumoral hemorrhage is bright in DWI and low signal in the ADC map. • ADC value and DWI are not helpful to predict progression of HM to persistent disease. - Abstract: Purpose: To describe the diffusion-weighted imaging (DWI) appearance of gestational trophoblastic disease (GTD) and to determine its apparent diffusion coefficient (ADC) values. To evaluate the feasibility of DWI to predict progression of hydatidiform mole (HM) to persistent disease. Methods: During a period of 6 months, women with preliminary diagnosis of GTD, based on ultrasound and ßhCG levels, underwent 1.5T MRI (T2 high-resolution and DWI; b values 50, 400, 800; sagittal and perpendicular to the endometrium; and T1, T2 Turbo Spin Echo [TSE] axial images). Patients were followed for 6–12 months to monitor progression to persistent form of the disease. ADC values and image characteristics were compared between HM and persistent neoplasia and between GTD and non-molar pregnancy using Mann–Whitney U and Fisher’s exact tests, respectively. Results: Among the 23 studied patients, 19 (83%) were classified as molar and 4 (17%) as non-molar, based on pathology reports. After 6–12 months of follow-up, 5 (26%) cases progressed to persistent disease and 14 (74%) cases were benign HM. There was no significant difference between ADC values for HM (1.93 ± 0.33 × 10{sup −3} mm{sup 2}/s) and persistent neoplasia (2.03 ± 0.28 × 10{sup −3} mm{sup 2}/s) (P = 0.69). The ADC of non-molar pregnancies was (0.96 ± 0.46 × 10{sup −3} mm{sup 2}/s), which was significantly different from GTD (1.96 ± 0.32 × 10{sup −3} mm{sup 2}/s) (P = 0.001). Heterogeneous snowstorm appearance, focal intratumoral hemorrhage, myometrial contraction, and

  11. Quantitative Tractography and Volumetric MRI in Blast and Blunt Force TBI: Predictors of Neurocognitive and Behavioral Outcome

    Science.gov (United States)

    2014-10-01

    domains based on the Caplan and colleagues26 factor analytic study with soldiers who sus- tained a mild to severe TBI. A full listing of symptoms assessed...in the NSI, categorized according to the Caplan et al26 suggested symptom groupings, can be found in Table 2. Statistical analyses Differences in... Caplan LJ, Ivins B, Poole JH, Vanderploeg R, Jaffee MS, Schwab K. The structure of postconcussive symptoms in 3 US military samples. J Head Trauma

  12. Quantitative Tractography and Volumetric MRI in Blast and Blunt Force TBI: Predictors of Neurocognitive and Behavioral Outcome

    Science.gov (United States)

    2013-10-01

    Examining the psycho - metric properties of the MFIS in TBI is important for researchers and clinicians who may wish to use this scale to evaluate...limited in regions with more complex architecture (eg, where crossing fibers exist within a single voxel), and thus the measured FA may be attenuated in

  13. Prostate cancer: assessing the effects of androgen-deprivation therapy using quantitative diffusion-weighted and dynamic contrast-enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hoetker, Andreas M. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Universitaetsmedizin Mainz, Department of Diagnostic and Interventional Radiology, Mainz (Germany); Mazaheri, Yousef [Memorial Sloan-Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Zheng, Junting; Moskowitz, Chaya S. [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Berkowitz, Joshua; Pei, Xin; Zelefsky, Michael J. [Memorial Sloan-Kettering Cancer Center, Department of Radiation Oncology, New York, NY (United States); Lantos, Joshua E.; Hricak, Hedvig; Akin, Oguz [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States)

    2015-09-15

    To investigate the effects of androgen-deprivation therapy (ADT) on MRI parameters and evaluate their associations with treatment response measures. The study included 30 men with histopathologically confirmed prostate cancer who underwent MRI before and after initiation of ADT. Thirty-four tumours were volumetrically assessed on DW-MRI (n = 32) and DCE-MRI (n = 18), along with regions of interest in benign prostatic tissue, to calculate apparent diffusion coefficient (ADC) and transfer constant (K{sup trans}) values. Changes in MRI parameters and correlations with clinical parameters (change in prostate-specific antigen [PSA], treatment duration, PSA nadir) were assessed. Prostate volume and PSA values decreased significantly with therapy (p < 0.001). ADC values increased significantly in tumours and decreased in benign prostatic tissue (p < 0.05). Relative changes in ADC and absolute post-therapeutic ADC values differed significantly between tumour and benign tissue (p < 0.001). K{sup trans} decreased significantly only in tumours (p < 0.001); relative K{sup trans} changes and post-therapeutic values were not significantly different between tumour and benign tissue. The relative change in tumour ADC correlated significantly with PSA decrease. No changes were associated with treatment duration or PSA nadir. Multi-parametric MRI shows significant measurable changes in tumour and benign prostate caused by ADT and may help in monitoring treatment response. (orig.)

  14. Is quantitative diffusion-weighted MRI a valuable technique for the detection of changes in kidneys after extracorporeal shock wave lithotripsy?

    Science.gov (United States)

    Hocaoglu, Elif; Inci, Ercan; Aydin, Sibel; Cesme, Dilek Hacer; Kalfazade, Nadir

    2015-01-01

    Objective The aim of this study was to evaluate the capability and the reliability of diffusion-weighted imaging (DWI) in the changes of kidneys occurring after extracorporeal shock wave lithotripsy (ESWL) treatment for renal stones. Materials and Methods A total of 32 patients who underwent ESWL treatment for renal stone disease between June and December 2011 were enrolled in this prospective study. Color Doppler ultrasonography (CDUS) and DWI were performed before and within 24 hours after ESWL. DWI was obtained with b factors of 0, 500 and 1000 s/mm2 at 1.5 T MRI. Each of Resistive index (RI) and ADC values were calculated from the three regions of renal upper, middle and lower zones for both of the affected and contralateral kidneys. Paired sample t test was used for statistical analyses. Results After ESWL, the treated kidneys had statistically significant lower ADC values in all different regions compared with previous renal images. The best discriminative parameter was signal intensity with a b value of 1000 s/mm2. The changes of DWI after ESWL were noteworthy in the middle of the treated kidney (pESWL (p>0.05). Conclusion DWI is a valuable technique enables the detection of changes in DWI after ESWL treatment that may provide useful information in prediction of renal damage by shock waves, even CDUS is normal. PMID:25928520

  15. Quantitative assessment of hemodynamic and structural characteristics of in vivo brain tissue using total diffuse reflectance spectrum measured in a non-contact fashion.

    Science.gov (United States)

    Song, Yinchen; Garcia, Sarahy; Frometa, Yisel; Ramella-Roman, Jessica C; Soltani, Mohammad; Almadi, Mohamed; Riera, Jorge J; Lin, Wei-Chiang

    2017-01-01

    Here we present a new methodology that investigates the intrinsic structural and hemodynamic characteristics of in vivo brain tissue, in a non-contact fashion, and can be easily incorporated in an intra-operative environment. Within this methodology, relative total diffuse reflectance spectra (R TD (λ)) were acquired from targets using a hybrid spectroscopy imaging system. A spectral interpretation algorithm was subsequently applied to R TD (λ) to retrieve optical properties related to the compositional and structural characteristics of each target. Estimation errors of the proposed methodology were computationally evaluated using a Monte Carlo simulation model for photon migration under various conditions. It was discovered that this new methodology could handle moderate noise and achieve very high accuracy, but only if the refractive index of the target is known. The accuracy of the technique was also validated using a series of tissue phantom studies, and consistent and accurate estimates of μ s '(λ)/μ a (λ) were obtained from all the phantoms tested. Finally, a small-scale animal study was conducted to demonstrate the clinical utility of the reported method, wherein a forepaw stimulation model was utilized to induce transient hemodynamic responses in somatosensory cortices. With this approach, significant stimulation-related changes (p < 0.001) in cortical hemodynamic and structural characteristics were successfully measured.

  16. Prostate cancer: assessing the effects of androgen-deprivation therapy using quantitative diffusion-weighted and dynamic contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Hoetker, Andreas M.; Mazaheri, Yousef; Zheng, Junting; Moskowitz, Chaya S.; Berkowitz, Joshua; Pei, Xin; Zelefsky, Michael J.; Lantos, Joshua E.; Hricak, Hedvig; Akin, Oguz

    2015-01-01

    To investigate the effects of androgen-deprivation therapy (ADT) on MRI parameters and evaluate their associations with treatment response measures. The study included 30 men with histopathologically confirmed prostate cancer who underwent MRI before and after initiation of ADT. Thirty-four tumours were volumetrically assessed on DW-MRI (n = 32) and DCE-MRI (n = 18), along with regions of interest in benign prostatic tissue, to calculate apparent diffusion coefficient (ADC) and transfer constant (K trans ) values. Changes in MRI parameters and correlations with clinical parameters (change in prostate-specific antigen [PSA], treatment duration, PSA nadir) were assessed. Prostate volume and PSA values decreased significantly with therapy (p < 0.001). ADC values increased significantly in tumours and decreased in benign prostatic tissue (p < 0.05). Relative changes in ADC and absolute post-therapeutic ADC values differed significantly between tumour and benign tissue (p < 0.001). K trans decreased significantly only in tumours (p < 0.001); relative K trans changes and post-therapeutic values were not significantly different between tumour and benign tissue. The relative change in tumour ADC correlated significantly with PSA decrease. No changes were associated with treatment duration or PSA nadir. Multi-parametric MRI shows significant measurable changes in tumour and benign prostate caused by ADT and may help in monitoring treatment response. (orig.)

  17. Pre-surgical planning and MR-tractography utility in brain tumour resection

    Energy Technology Data Exchange (ETDEWEB)

    Romano, A.; Fantozzi, L.M.; Bozzao, A. [University Sapienza, Department of Neuroradiology, S. Andrea Hospital, Rome (Italy); D' Andrea, G.; Mastronardi, L.; Ferrante, L. [University Sapienza, Department of Neurosurgery, S. Andrea Hospital, Rome (Italy); Minniti, G. [University Sapienza, Department of Radiotherapy, S. Andrea Hospital, Rome (Italy)

    2009-12-15

    The purposes of this study were (1) to evaluate the possible identification of trajectories of fibre tracts, (2) to examine the useful of a neuronavigation system for pre-surgical planning, (3) to assess pre- and post-surgery patients' clinical condition and (4) to evaluate the impact of this information on surgical planning and procedure. Twenty-eight right-handed patients were prospectively and consecutively studied. All the patients were clinically assessed by a neurologist in both pre- and post-surgical phases. Separately the pyramidal tract, optic radiation and arcuate fasciculus were reconstructed. The trajectories were considered suitable for surgical planning if there were no interruptions of any of the layers at the level of the lesion. Dedicated software 'merged' the acquired images with the tractographic processing, and the whole dataset was sent to the neuronavigation system. The assessment of the 37 visualised trajectories close to the tumour resulted in a modification of the surgical approach to corticotomy in six patients (21%); the impact on the definition of the resection margins during surgery was 64% (18 cases). The overall impact percentage on the surgical procedure was 82%. In 27 cases, the symptoms had not changed. MR-tractography provides the neurosurgeon with a new anatomical view that has an impact on the surgical resection planning for brain neoplasms. (orig.)

  18. Pre-surgical planning and MR-tractography utility in brain tumour resection

    International Nuclear Information System (INIS)

    Romano, A.; Fantozzi, L.M.; Bozzao, A.; D'Andrea, G.; Mastronardi, L.; Ferrante, L.; Minniti, G.

    2009-01-01

    The purposes of this study were (1) to evaluate the possible identification of trajectories of fibre tracts, (2) to examine the useful of a neuronavigation system for pre-surgical planning, (3) to assess pre- and post-surgery patients' clinical condition and (4) to evaluate the impact of this information on surgical planning and procedure. Twenty-eight right-handed patients were prospectively and consecutively studied. All the patients were clinically assessed by a neurologist in both pre- and post-surgical phases. Separately the pyramidal tract, optic radiation and arcuate fasciculus were reconstructed. The trajectories were considered suitable for surgical planning if there were no interruptions of any of the layers at the level of the lesion. Dedicated software 'merged' the acquired images with the tractographic processing, and the whole dataset was sent to the neuronavigation system. The assessment of the 37 visualised trajectories close to the tumour resulted in a modification of the surgical approach to corticotomy in six patients (21%); the impact on the definition of the resection margins during surgery was 64% (18 cases). The overall impact percentage on the surgical procedure was 82%. In 27 cases, the symptoms had not changed. MR-tractography provides the neurosurgeon with a new anatomical view that has an impact on the surgical resection planning for brain neoplasms. (orig.)

  19. Potential of diffusion tensor MRI in the assessment of periventricular leukomalacia

    International Nuclear Information System (INIS)

    Fan, G.G.; Yu, B.; Quan, S.M.; Sun, B.H.; Guo, Q.Y.

    2006-01-01

    AIM: To investigate magnetic resonance (MR) diffusion tensor imaging (DTI) and fibre tractography in the assessment of altered major white matter (WM) fibre tracts in periventricular leukomalacia (PVL). MATERIALS AND METHODS: Twelve children (male:female=7:5, age range 3-10 years; mean age=6.5 years) who had suffered PVL were included in this study. Meanwhile, Twelve age-matched normal controls (male:female=6:6, age range 4-12 years; mean age=7.3 years) with normal MRI findings and no neurological abnormalities were recruited for comparison. DTI was performed with 15 different diffusion gradient directions and DTI colour maps were created from fractional anisotropy (FA) values and the three vector elements. To identify alteration of WM fibre tracts in patient of PVL quantitatively, FA values on diffusion tensor colour maps were compared between the patients and controls. Quantitative analysis was performed using the regions of interest (ROI) method settled on the central part of all identifiable WM fibres, including the corticospinal tract (CST) in the brainstem, middle cerebellar peduncle (MCP), medial lemniscus (ML), anterior/posterior limb of internal capsule (ICAL/ICPL), arcuate fasciculus (AF), posterior thalamic radiation (PTR), genu of corpus callosum (GCC), splenium of corpus callosum (SCC), corona radiata (CR), cingulum (CG), and superior longitudinal fasciculus (SLF). The averaged FA value of each WM fibre was measured and summarized as the mean±standard deviation (SD). All data were analysed by paired Student's t-test. A p-value of less than 0.05 was considered to indicate statistical significance. RESULTS: Visual investigation of WM fibre tracts showed that the ICAL, brainstem CST, ML, MCP, and external capsule (EC) was similar in controls and subjects. However, the ICPL, AF, PTR, CR, CG, SLF and corpus callosum, were all attenuated in size. All 12 cases of PVL showed a significant mean FA reduction in the ICPL, AF, PTR, CR, CG, SLF, SCC, and GCC in

  20. Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas

    International Nuclear Information System (INIS)

    Server, Andres; Kulle, Bettina; Gadmar, Oystein B.; Josefsen, Roger; Kumar, Theresa; Nakstad, Per H.

    2011-01-01

    Purpose: Tumor grading is very important both in treatment decision and evaluation of prognosis. While tissue samples are obtained as part of most therapeutic approaches, factors that may result in inaccurate grading due to sampling error (namely, heterogeneity in tissue sampling, as well as tumor-grade heterogeneity within the same tumor specimen), have led to a desire to use imaging better to ascertain tumor grade. The purpose in our study was to evaluate the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), area under the curve (AUC), and accuracy of diffusion-weighted MR imaging (DWI), proton MR spectroscopic imaging (MRSI) or both in grading primary cerebral gliomas. Materials and methods: We performed conventional MR imaging (MR), DWI, and MRSI in 74 patients with newly diagnosed brain gliomas: 59 patients had histologically verified high-grade gliomas: 37 glioblastomas multiform (GBM) and 22 anaplastic astrocytomas (AA), and 15 patients had low-grade gliomas. Apparent diffusion coefficient (ADC) values of tumor and peritumoral edema, and ADC ratios (ADC in tumor or peritumoral edema to ADC of contralateral white matter, as well as ADC in tumor to ADC in peritumoral edema) were determined from three regions of interest. The average of the mean, maximum, and minimum for ADC variables was calculated for each patient. The metabolite ratios of Cho/Cr and Cho/NAA at intermediate TE were assessed from spectral maps in the solid portion of tumor, peritumoral edema and contralateral normal-appearing white matter. Tumor grade determined with the two methods was then compared with that from histopathologic grading. Logistic regression and receiver operating characteristic (ROC) curve analysis were performed to determine optimum thresholds for tumor grading. Measures of diagnostic examination performance, such as sensitivity, specificity, PPV, NPV, AUC, and accuracy for identifying high-grade gliomas were also calculated

  1. Hemispheric asymmetries in dorsal language pathway white-matter tracts: A magnetic resonance imaging tractography and functional magnetic resonance imaging study.

    Science.gov (United States)

    Silva, Guilherme; Citterio, Alberto

    2017-10-01

    Introduction Previous studies have shown that the arcuate fasciculus has a leftward asymmetry in right-handers that could be correlated with the language lateralisation defined by functional magnetic resonance imaging. Nonetheless, information about the asymmetry of the other fibres that constitute the dorsal language pathway is scarce. Objectives This study investigated the asymmetry of the white-matter tracts involved in the dorsal language pathway through the diffusion tensor imaging (DTI) technique, in relation to language hemispheric dominance determined by task-dependent functional magnetic resonance imaging (fMRI). Methods We selected 11 patients (10 right-handed) who had been studied with task-dependent fMRI for language areas and DTI and who had no language impairment or structural abnormalities that could compromise magnetic resonance tractography of the fibres involved in the dorsal language pathway. Laterality indices (LI) for fMRI and for the volumes of each tract were calculated. Results In fMRI, all the right-handers had left hemispheric lateralisation, and the ambidextrous subject presented right hemispheric dominance. The arcuate fasciculus LI was strongly correlated with fMRI LI ( r = 0.739, p = 0.009), presenting the same lateralisation of fMRI in seven subjects (including the right hemispheric dominant). It was not asymmetric in three cases and had opposite lateralisation in one case. The other tracts presented predominance for rightward lateralisation, especially superior longitudinal fasciculus (SLF) II/III (nine subjects), but their LI did not correlate (directly or inversely) with fMRI LI. Conclusion The fibres that constitute the dorsal language pathway have an asymmetric distribution in the cerebral hemispheres. Only the asymmetry of the arcuate fasciculus is correlated with fMRI language lateralisation.

  2. Modeling transcranial magnetic stimulation from the induced electric fields to the membrane potentials along tractography-based white matter fiber tracts

    Science.gov (United States)

    De Geeter, Nele; Dupré, Luc; Crevecoeur, Guillaume

    2016-04-01

    Objective. Transcranial magnetic stimulation (TMS) is a promising non-invasive tool for modulating the brain activity. Despite the widespread therapeutic and diagnostic use of TMS in neurology and psychiatry, its observed response remains hard to predict, limiting its further development and applications. Although the stimulation intensity is always maximum at the cortical surface near the coil, experiments reveal that TMS can affect deeper brain regions as well. Approach. The explanation of this spread might be found in the white matter fiber tracts, connecting cortical and subcortical structures. When applying an electric field on neurons, their membrane potential is altered. If this change is significant, more likely near the TMS coil, action potentials might be initiated and propagated along the fiber tracts towards deeper regions. In order to understand and apply TMS more effectively, it is important to capture and account for this interaction as accurately as possible. Therefore, we compute, next to the induced electric fields in the brain, the spatial distribution of the membrane potentials along the fiber tracts and its temporal dynamics. Main results. This paper introduces a computational TMS model in which electromagnetism and neurophysiology are combined. Realistic geometry and tissue anisotropy are included using magnetic resonance imaging and targeted white matter fiber tracts are traced using tractography based on diffusion tensor imaging. The position and orientation of the coil can directly be retrieved from the neuronavigation system. Incorporating these features warrants both patient- and case-specific results. Significance. The presented model gives insight in the activity propagation through the brain and can therefore explain the observed clinical responses to TMS and their inter- and/or intra-subject variability. We aspire to advance towards an accurate, flexible and personalized TMS model that helps to understand stimulation in the connected

  3. Correlated diffusion imaging

    International Nuclear Information System (INIS)

    Wong, Alexander; Glaister, Jeffrey; Cameron, Andrew; Haider, Masoom

    2013-01-01

    Prostate cancer is one of the leading causes of cancer death in the male population. Fortunately, the prognosis is excellent if detected at an early stage. Hence, the detection and localization of prostate cancer is crucial for diagnosis, as well as treatment via targeted focal therapy. New imaging techniques can potentially be invaluable tools for improving prostate cancer detection and localization. In this study, we introduce a new form of diffusion magnetic resonance imaging called correlated diffusion imaging, where the tissue being imaged is characterized by the joint correlation of diffusion signal attenuation across multiple gradient pulse strengths and timings. By taking into account signal attenuation at different water diffusion motion sensitivities, correlated diffusion imaging can provide improved delineation between cancerous tissue and healthy tissue when compared to existing diffusion imaging modalities. Quantitative evaluation using receiver operating characteristic (ROC) curve analysis, tissue class separability analysis, and visual assessment by an expert radiologist were performed to study correlated diffusion imaging for the task of prostate cancer diagnosis. These results are compared with that obtained using T2-weighted imaging and standard diffusion imaging (via the apparent diffusion coefficient (ADC)). Experimental results suggest that correlated diffusion imaging provide improved delineation between healthy and cancerous tissue and may have potential as a diagnostic tool for cancer detection and localization in the prostate gland. A new form of diffusion magnetic resonance imaging called correlated diffusion imaging (CDI) was developed for the purpose of aiding radiologists in cancer detection and localization in the prostate gland. Preliminary results show CDI shows considerable promise as a diagnostic aid for radiologists in the detection and localization of prostate cancer

  4. A reliability assessment of constrained spherical deconvolution-based diffusion-weighted magnetic resonance imaging in individuals with chronic stroke.

    Science.gov (United States)

    Snow, Nicholas J; Peters, Sue; Borich, Michael R; Shirzad, Navid; Auriat, Angela M; Hayward, Kathryn S; Boyd, Lara A

    2016-01-15

    Diffusion-weighted magnetic resonance imaging (DW-MRI) is commonly used to assess white matter properties after stroke. Novel work is utilizing constrained spherical deconvolution (CSD) to estimate complex intra-voxel fiber architecture unaccounted for with tensor-based fiber tractography. However, the reliability of CSD-based tractography has not been established in people with chronic stroke. Establishing the reliability of CSD-based DW-MRI in chronic stroke. High-resolution DW-MRI was performed in ten adults with chronic stroke during two separate sessions. Deterministic region of interest-based fiber tractography using CSD was performed by two raters. Mean fractional anisotropy (FA), apparent diffusion coefficient (ADC), tract number, and tract volume were extracted from reconstructed fiber pathways in the corticospinal tract (CST) and superior longitudinal fasciculus (SLF). Callosal fiber pathways connecting the primary motor cortices were also evaluated. Inter-rater and test-retest reliability were determined by intra-class correlation coefficients (ICCs). ICCs revealed excellent reliability for FA and ADC in ipsilesional (0.86-1.00; preliability for all metrics in callosal fibers (0.85-1.00; preliable approach to evaluate FA and ADC in major white matter pathways, in chronic stroke. Future work should address the reproducibility and utility of CSD-based metrics of tract number and tract volume. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Strain Map of the Tongue in Normal and ALS Speech Patterns from Tagged and Diffusion MRI.

    Science.gov (United States)

    Xing, Fangxu; Prince, Jerry L; Stone, Maureen; Reese, Timothy G; Atassi, Nazem; Wedeen, Van J; El Fakhri, Georges; Woo, Jonghye

    2018-02-01

    Amyotrophic Lateral Sclerosis (ALS) is a neurological disease that causes death of neurons controlling muscle movements. Loss of speech and swallowing functions is a major impact due to degeneration of the tongue muscles. In speech studies using magnetic resonance (MR) techniques, diffusion tensor imaging (DTI) is used to capture internal tongue muscle fiber structures in three-dimensions (3D) in a non-invasive manner. Tagged magnetic resonance images (tMRI) are used to record tongue motion during speech. In this work, we aim to combine information obtained with both MR imaging techniques to compare the functionality characteristics of the tongue between normal and ALS subjects. We first extracted 3D motion of the tongue using tMRI from fourteen normal subjects in speech. The estimated motion sequences were then warped using diffeomorphic registration into the b0 spaces of the DTI data of two normal subjects and an ALS patient. We then constructed motion atlases by averaging all warped motion fields in each b0 space, and computed strain in the line of action along the muscle fiber directions provided by tractography. Strain in line with the fiber directions provides a quantitative map of the potential active region of the tongue during speech. Comparison between normal and ALS subjects explores the changing volume of compressing tongue tissues in speech facing the situation of muscle degradation. The proposed framework provides for the first time a dynamic map of contracting fibers in ALS speech patterns, and has the potential to provide more insight into the detrimental effects of ALS on speech.

  6. Evaluating contextual processing in diffusion MRI: application to optic radiation reconstruction for epilepsy surgery.

    Directory of Open Access Journals (Sweden)

    Chantal M W Tax

    Full Text Available Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning.

  7. On Diffusion and Permeation

    KAUST Repository

    Peppin, Stephen S. L.

    2009-01-01

    Diffusion and permeation are discussed within the context of irreversible thermodynamics. A new expression for the generalized Stokes-Einstein equation is obtained which links the permeability to the diffusivity of a two-component solution and contains the poroelastic Biot-Willis coefficient. The theory is illustrated by predicting the concentration and pressure profiles during the filtration of a protein solution. At low concentrations the proteins diffuse independently while at higher concentrations they form a nearly rigid porous glass through which the fluid permeates. The theoretically determined pressure drop is nonlinear in the diffusion regime and linear in the permeation regime, in quantitative agreement with experimental measurements. © 2009 Walter de Gruyter, Berlin, New York.

  8. Perfusion- and pattern-based quantitative CT indexes using contrast-enhanced dual-energy computed tomography in diffuse interstitial lung disease: relationships with physiologic impairment and prediction of prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jung Won [Sungkyunkwan University School of Medicine, Department of Radiology, Kangbuk Samsung Hospital, Seoul (Korea, Republic of); Bae, Jang Pyo; Kim, Namkug; Chang, Yongjun; Seo, Joon Beom [University of Ulsan College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Lee, Ho Yun; Lee, Kyung Soo [Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea, Republic of); Chung, Man Pyo; Park, Hye Yun [Sungkyunkwan University School of Medicine, Department of Pulmonology, Samsung Medical Center, Seoul (Korea, Republic of)

    2016-05-15

    To evaluate automated texture-based segmentation of dual-energy CT (DECT) images in diffuse interstitial lung disease (DILD) patients and prognostic stratification by overlapping morphologic and perfusion information of total lung. Suspected DILD patients scheduled for surgical biopsy were prospectively included. Texture patterns included ground-glass opacity (GGO), reticulation and consolidation. Pattern- and perfusion-based CT measurements were assessed to extract quantitative parameters. Accuracy of texture-based segmentation was analysed. Correlations between CT measurements and pulmonary function test or 6-minute walk test (6MWT) were calculated. Parameters of idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP) and non-IPF/UIP were compared. Survival analysis was performed. Overall accuracy was 90.47 % for whole lung segmentation. Correlations between mean iodine values of total lung, 50-97.5th (%) attenuation and forced vital capacity or 6MWT were significant. Volume of GGO, reticulation and consolidation had significant correlation with DLco or SpO{sub 2} on 6MWT. Significant differences were noted between IPF/UIP and non-IPF/UIP in 6MWT distance, mean iodine value of total lung, 25-75th (%) attenuation and entropy. IPF/UIP diagnosis, GGO ratio, DILD extent, 25-75th (%) attenuation and SpO{sub 2} on 6MWT showed significant correlations with survival. DECT combined with pattern analysis is useful for analysing DILD and predicting survival by provision of morphology and enhancement. (orig.)

  9. Subject-specific regional measures of water diffusion are associated with impairment in chronic spinal cord injury.

    Science.gov (United States)

    Choe, Ann S; Sadowsky, Cristina L; Smith, Seth A; van Zijl, Peter C M; Pekar, James J; Belegu, Visar

    2017-08-01

    We aimed to identify non-invasive imaging parameters that can serve as biomarkers for the integrity of the spinal cord, which is paramount to neurological function. Diffusion tensor imaging (DTI) indices are sensitive to axonal and myelin damage, and have strong potential to serve as such biomarkers. However, averaging DTI indices over large regions of interest (ROIs), a common approach to analyzing the images of injured spinal cord, leads to loss of subject-specific information. We investigated if DTI-tractography-driven, subject-specific demarcation approach can yield measures that are more specific to impairment. In 18 individuals with chronic spinal cord injury (SCI), subject-specific demarcation of the injury region was performed using DTI tractography, which yielded three regions relative to injury (RRI; regions superior to, at, and below injury epicenter). DTI indices averaged over each RRI were correlated with measures of residual motor and sensory function, obtained using the International Standard of Neurological Classification for Spinal Cord Injury (ISNCSCI). Total ISNCSCI score (ISNCSCI-tot; sum of ISNCSCI motor and sensory scores) was significantly (p injury epicenter (IRRI), the degree of which exceeded that of those measured from the entire cervical cord-suggesting contribution from Wallerian degeneration. DTI tractography-driven, subject-specific injury demarcation approach provided measures that were more specific to impairment. Notably, DTI indices obtained from the IRRI region showed the highest specificity to impairment, demonstrating their strong potential as biomarkers for the SCI severity.

  10. Diffusion in ordered binary solid systems

    International Nuclear Information System (INIS)

    Stolwijk, N.A.

    1980-01-01

    This thesis contains contributions to the field of diffusion in ordered binary solid systems. An extensive experimental investigation of the self diffusion in CoGa is presented. The results of these diffusion measurements strongly suggest that a substantial part of the atomic migration is caused by a new type of defect. A quantitative description of the atomic displacements via this defect is given. Finally computer simulations are presented of diffusion and ordering in binary solid systems. (Auth.)

  11. Conservative diffusions

    International Nuclear Information System (INIS)

    Carlen, E.A.

    1984-01-01

    In Nelson's stochastic mechanics, quantum phenomena are described in terms of diffusions instead of wave functions. These diffusions are formally given by stochastic differential equations with extremely singular coefficients. Using PDE methods, we prove the existence of solutions. This reult provides a rigorous basis for stochastic mechanics. (orig.)

  12. Diagnosis of Lumbar Foraminal Stenosis using Diffusion Tensor Imaging.

    Science.gov (United States)

    Eguchi, Yawara; Ohtori, Seiji; Suzuki, Munetaka; Oikawa, Yasuhiro; Yamanaka, Hajime; Tamai, Hiroshi; Kobayashi, Tatsuya; Orita, Sumihisa; Yamauchi, Kazuyo; Suzuki, Miyako; Aoki, Yasuchika; Watanabe, Atsuya; Kanamoto, Hirohito; Takahashi, Kazuhisa

    2016-02-01

    Diagnosis of lumbar foraminal stenosis remains difficult. Here, we report on a case in which bilateral lumbar foraminal stenosis was difficult to diagnose, and in which diffusion tensor imaging (DTI) was useful. The patient was a 52-year-old woman with low back pain and pain in both legs that was dominant on the right. Right lumbosacral nerve compression due to a massive uterine myoma was apparent, but the leg pain continued after a myomectomy was performed. No abnormalities were observed during nerve conduction studies. Computed tomography and magnetic resonance imaging indicated bilateral L5 lumbar foraminal stenosis. DTI imaging was done. The extraforaminal values were decreased and tractography was interrupted in the foraminal region. Bilateral L5 vertebral foraminal stenosis was treated by transforaminal lumbar interbody fusion and the pain in both legs disappeared. The case indicates the value of DTI for diagnosing vertebral foraminal stenosis.

  13. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization

    Science.gov (United States)

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P.; Johnson, G. Allan

    2015-01-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved 3D reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate accurate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. PMID:26043869

  14. Imaging Arterial Fibres Using Diffusion Tensor Imaging—Feasibility Study and Preliminary Results

    Directory of Open Access Journals (Sweden)

    Ciaran K. Simms

    2010-01-01

    Full Text Available MR diffusion tensor imaging (DTI was used to analyze the fibrous structure of aortic tissue. A fresh porcine aorta was imaged at 7T using a spin echo sequence with the following parameters: matrix 128 × 128 pixel; slice thickness 0.5 mm; interslice spacing 0.1 mm; number of slices 16; echo time 20.3 s; field of view 28 mm × 28 mm. Eigenvectors from the diffusion tensor images were calculated for the central image slice and the averaged tensors and the eigenvector corresponding to the largest eigenvalue showed two distinct angles corresponding to near 0∘ and 180∘ to the transverse plane of the aorta. Fibre tractography within the aortic volume imaged confirmed that fibre angles were oriented helically with lead angles of 15±2.5∘ and 175±2.5∘. The findings correspond to current histological and microscopy data on the fibrous structure of aortic tissue, and therefore the eigenvector maps and fibre tractography appear to reflect the alignment of the fibers in the aorta. In view of current efforts to develop noninvasive diagnostic tools for cardiovascular diseases, DTI may offer a technique to assess the structural properties of arterial tissue and hence any changes or degradation in arterial tissue.

  15. Imaging Arterial Fibres Using Diffusion Tensor Imaging—Feasibility Study and Preliminary Results

    Directory of Open Access Journals (Sweden)

    Kerskens Christian

    2010-01-01

    Full Text Available Abstract MR diffusion tensor imaging (DTI was used to analyze the fibrous structure of aortic tissue. A fresh porcine aorta was imaged at 7T using a spin echo sequence with the following parameters: matrix 128 128 pixel; slice thickness 0.5 mm; interslice spacing 0.1 mm; number of slices 16; echo time 20.3 s; field of view 28 mm 28 mm. Eigenvectors from the diffusion tensor images were calculated for the central image slice and the averaged tensors and the eigenvector corresponding to the largest eigenvalue showed two distinct angles corresponding to near and to the transverse plane of the aorta. Fibre tractography within the aortic volume imaged confirmed that fibre angles were oriented helically with lead angles of and . The findings correspond to current histological and microscopy data on the fibrous structure of aortic tissue, and therefore the eigenvector maps and fibre tractography appear to reflect the alignment of the fibers in the aorta. In view of current efforts to develop noninvasive diagnostic tools for cardiovascular diseases, DTI may offer a technique to assess the structural properties of arterial tissue and hence any changes or degradation in arterial tissue.

  16. Detection of white matter injury in concussion using high-definition fiber tractography.

    Science.gov (United States)

    Shin, Samuel S; Pathak, Sudhir; Presson, Nora; Bird, William; Wagener, Lauren; Schneider, Walter; Okonkwo, David O; Fernandez-Miranda, Juan C

    2014-01-01

    Over the last few decades, structural imaging techniques of the human brain have undergone significant strides. High resolution provided by recent developments in magnetic resonance imaging (MRI) allows improved detection of injured regions in patients with moderate-to-severe traumatic brain injury (TBI). In addition, diffusion imaging techniques such as diffusion tensor imaging (DTI) has gained much interest recently due to its possible utility in detecting structural integrity of white matter pathways in mild TBI (mTBI) cases. However, the results from recent DTI studies in mTBI patients remain equivocal. Also, there are important shortcomings for DTI such as limited resolution in areas of multiple crossings and false tract formation. The detection of white matter damage in concussion remains challenging, and development of imaging biomarkers for mTBI is still in great need. In this chapter, we discuss our experience with high-definition fiber tracking (HDFT), a diffusion spectrum imaging-based technique. We also discuss ongoing developments and specific advantages HDFT may offer concussion patients. © 2014 S. Karger AG, Basel.

  17. Diffusion tensor imaging of spinal cord parenchyma lesion in rat with chronic spinal cord injury.

    Science.gov (United States)

    Zhao, Can; Rao, Jia-Sheng; Pei, Xiao-Jiao; Lei, Jian-Feng; Wang, Zhan-Jing; Zhao, Wen; Wei, Rui-Han; Yang, Zhao-Yang; Li, Xiao-Guang

    2018-04-01

    Adequate evaluation of spinal cord parenchyma and accurate identification of injury range are considered two premises for the research and treatment of chronic spinal cord injury (SCI). Diffusion tensor imaging (DTI) provides information about water diffusion in spinal cord, and thus makes it possible to realize these premises. In this study, we conducted magnetic resonance imaging (MRI) for Wistar rats 84days after spinal cord contusion. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) from different positions of the injured cord were collected, analyzed, and compared with the histological results and locomotor outcomes. Moreover, we performed fiber tractography, and examined the difference in cavity percentage obtained respectively via conventional MRI, DTI and histology. Results showed that the chronic SCI rats had the largest changes of all DTI metrics at the epicenter; the farther away from the epicenter, the smaller the variation. FA, AD and RD were all influenced by SCI in a greater space range than MD. The good consistency of FA values and histological results in specific regions evidenced FA's capability of reflecting Wallerian degeneration after SCI. DTI metrics at the epicenter in ventral funiculus also showed a close correlation with the BBB scores. Additionally, supported by the histological results, DTI enables a more accurate measurement of cavity percentage compared to the conventional MRI. DTI parameters might comprehensively reflect the post-SCI pathological status of spinal cord parenchyma at the epicenter and distal parts during the chronic stage, while showing good consistency with locomotor performance. DTI combined with tractography could intuitively display the distribution of spared fibers after SCI and accurately provide information such as cavity area. This may shed light on the research and treatment of chronic SCI. Copyright © 2017 Elsevier Inc. All rights

  18. Fractional Diffusion Equations and Anomalous Diffusion

    Science.gov (United States)

    Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin

    2018-01-01

    Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.

  19. Linear associations between clinically assessed upper motor neuron disease and diffusion tensor imaging metrics in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Woo, John H; Wang, Sumei; Melhem, Elias R; Gee, James C; Cucchiara, Andrew; McCluskey, Leo; Elman, Lauren

    2014-01-01

    To assess the relationship between clinically assessed Upper Motor Neuron (UMN) disease in Amyotrophic Lateral Sclerosis (ALS) and local diffusion alterations measured in the brain corticospinal tract (CST) by a tractography-driven template-space region-of-interest (ROI) analysis of Diffusion Tensor Imaging (DTI). This cross-sectional study included 34 patients with ALS, on whom DTI was performed. Clinical measures were separately obtained including the Penn UMN Score, a summary metric based upon standard clinical methods. After normalizing all DTI data to a population-specific template, tractography was performed to determine a region-of-interest (ROI) outlining the CST, in which average Mean Diffusivity (MD) and Fractional Anisotropy (FA) were estimated. Linear regression analyses were used to investigate associations of DTI metrics (MD, FA) with clinical measures (Penn UMN Score, ALSFRS-R, duration-of-disease), along with age, sex, handedness, and El Escorial category as covariates. For MD, the regression model was significant (p = 0.02), and the only significant predictors were the Penn UMN Score (p = 0.005) and age (p = 0.03). The FA regression model was also significant (p = 0.02); the only significant predictor was the Penn UMN Score (p = 0.003). Measured by the template-space ROI method, both MD and FA were linearly associated with the Penn UMN Score, supporting the hypothesis that DTI alterations reflect UMN pathology as assessed by the clinical examination.

  20. Policy Diffusion and Policy Transfer in Comparative Welfare State Research

    DEFF Research Database (Denmark)

    Obinger, Herbert; Schmitt, Carina; Starke, Peter

    2013-01-01

    existing theoretical concepts and quantitative and qualitative methodological approaches that enable the analysis of interdependencies between countries. Moreover, we summarize the empirical findings of quantitative and qualitative studies on the diffusion and transfer of social policy, from some...

  1. Diffusion abnormalities of the uncinate fasciculus in Alzheimer's disease: diffusion tensor tract-specific analysis using a new method to measure the core of the tract

    International Nuclear Information System (INIS)

    Yasmin, Hasina; Nakata, Yasuhiro; Abe, Osamu; Masutani, Yoshitaka; Ohtomo, Kuni; Aoki, Shigeki; Sato, Noriko; Nemoto, Kiyotaka; Arima, Kunimasa; Furuta, Nobuo; Uno, Masatake; Hirai, Shigeo

    2008-01-01

    Our aim was to determine diffusion abnormalities in the uncinate fasciculus (UF) in Alzheimer's disease (AD) by diffusion tensor tractography (DTT) using a new method for measuring the core of the tract. We studied 19 patients with AD and 19 age-matched control subjects who underwent MRI using diffusion tensor imaging (DTI). DTT of the UF was generated. The mean diffusivity (MD) and fractional anisotropy (FA) of the core of the tract were measured after voxelized tract shape processing. Student's t-test was used to compare results between patients with AD and controls. Intraobserver correlation tests were also performed. FA was significantly lower (P 0.93 for measured FA and r > 0.92 for measured MD. Our results suggest that FA reflects progression of AD-related histopathological changes in the UF of the white matter and may represent a useful biological index in monitoring AD. Diffusion tensor tract-specific analysis with voxelized tract shape processing to measure the core of the tract may be a sensitive tool for evaluation of diffusion abnormalities of white matter tracts in AD. (orig.)

  2. Quantitative assessment of the hepatic metabolic volume product in patients with diffuse hepatic steatosis and normal controls through use of FDG-PET and MR imaging: a novel concept.

    Science.gov (United States)

    Bural, Gonca G; Torigian, Drew A; Burke, Anne; Houseni, Mohamed; Alkhawaldeh, Khaled; Cucchiara, Andrew; Basu, Sandip; Alavi, Abass

    2010-06-01

    The aim of this study was to compare hepatic standardized uptake values (SUVs) and hepatic metabolic volumetric products (HMVP) between patients of diffuse hepatic steatosis and control subjects with normal livers. Twenty-seven subjects were included in the study (13 men and 14 women; age range, 34-72 years). All had 18F-2-fluoro-2-D-deoxyglucose-positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) scans with an interscan interval of 0-5 months. Twelve of 27 subjects had diffuse hepatic steatosis on MRI. The remaining 15 were selected as age-matched controls based on normal liver parenchyma on MRI. Mean and maximum hepatic SUVs were calculated for both patient groups on FDG-PET images. Hepatic volumes were measured from MRI. HMVP in each subject was subsequently calculated by multiplication of hepatic volume by mean hepatic SUV. HMVPs as well as mean and maximum hepatic SUVs were compared between the two study groups. HMVPs, mean hepatic SUVs, and maximum hepatic SUVs were greater (statistically significant, p < 0.05) in subjects with diffuse hepatic steatosis compared to those in the control group. The increase in HMVP is the result of increased hepatic metabolic activity likely related to the diffuse hepatic steatosis. The active inflammatory process related to the diffuse hepatic steatosis is the probable explanation for the increase in hepatic metabolic activity on FDG-PET study.

  3. Conformational Diffusion and Helix Formation Kinetics

    International Nuclear Information System (INIS)

    Hummer, Gerhard; Garcia, Angel E.; Garde, Shekhar

    2000-01-01

    The time, temperature, and sequence dependences of helix formation kinetics of fully atomistic peptide models in explicit solvent are described quantitatively by a diffusive search within the coil state with barrierless transitions into the helical state. Conformational diffusion leads to nonexponential kinetics and jump-width dependences in temperature jump experiments. (c) 2000 The American Physical Society

  4. Conformational Diffusion and Helix Formation Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Hummer, Gerhard [Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States); Garcia, Angel E. [Theoretical Biology and Biophysics Group T-10, MS K710, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Garde, Shekhar [Department of Chemical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States)

    2000-09-18

    The time, temperature, and sequence dependences of helix formation kinetics of fully atomistic peptide models in explicit solvent are described quantitatively by a diffusive search within the coil state with barrierless transitions into the helical state. Conformational diffusion leads to nonexponential kinetics and jump-width dependences in temperature jump experiments. (c) 2000 The American Physical Society.

  5. Segmentation of the Cingulum Bundle in the Human Brain: A New Perspective Based on DSI Tractography and Fiber Dissection Study.

    Science.gov (United States)

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao; Ou, Shaowu

    2016-01-01

    The cingulum bundle (CB) is a critical white matter fiber tract in the brain, which forms connections between the frontal lobe, parietal lobe and temporal lobe. In non-human primates, the CB is actually divided into distinct subcomponents on the basis of corticocortical connections. However, at present, no study has verified similar distinct subdivisions in the human brain. In this study, we reconstructed these distinct subdivisions in the human brain, and determined their exact cortical connections using high definition fiber tracking (HDFT) technique on 10 healthy adults and a 488-subject template from the Human Connectome Project (HCP-488). Fiber dissections were performed to verify tractography results. Five CB segments were identified. CB-I ran from the subrostral areas to the precuneus and splenium, encircling the corpus callosum (CC). CB-II arched around the splenium and extended anteriorly above the CC to the medial aspect of the superior frontal gyrus (SFG). CB-III connected the superior parietal lobule (SPL) and precuneus with the medial aspect of the SFG. CB-IV was a relatively minor subcomponent from the SPL and precuneus to the frontal region. CB-V, the para-hippocampal cingulum, stemmed from the medial temporal lobe and fanned out to the occipital lobes. Our findings not only provide a more accurate and detailed description on the associated architecture of the subcomponents within the CB, but also offer new insights into the functional role of the CB in the human brain.

  6. Segmentation of the cingulum bundle in the human brain: a new perspective based on DSI tractography and fiber dissection study

    Directory of Open Access Journals (Sweden)

    Yupeng Wu

    2016-09-01

    Full Text Available The cingulum bundle (CB is a critical white matter fiber tract in the brain, which forms connections between the frontal lobe, parietal lobe, and temporal lobe. In non-human primates, the CB is actually divided into distinct subcomponents on the basis of corticocortical connections. However, at present, no study has verified similar distinct subdivisions in the human brain. In this study, we reconstructed these distinct subdivisions in the human brain, and determined their exact cortical connections using high definition fiber tracking (HDFT technique on 10 healthy adults and a 488-subject template from the Human Connectome Project (HCP-488. Fiber dissections were performed to verify tractography results. Five CB segments were identified. CB-I ran from the subrostral areas to the precuneus and splenium, encircling the corpus callosum. CB-II arched around the splenium and extended anteriorly above the corpus callosum to the medial aspect of the superior frontal gyrus. CB-III connected the superior parietal lobule and precuneus with the medial aspect of the superior frontal gyrus. CB-IV was a relatively minor subcomponent from the superior parietal lobule and precuneus to the frontal region. CB-V, the para-hippocampal cingulum, stemmed from the medial temporal lobe and fanned out to the occipital lobes. Our findings not only provide a more accurate and detailed description on the associated architecture of the subcomponents within the CB, but also offer new insights into the functional role of the CB in the human brain.

  7. Identification of the pyramidal tract by neuronavigation based on intraoperative magnetic resonance tractography: correlation with subcortical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Bozzao, Alessandro; Romano, Andrea; Calabria, Luigi Fausto; Coppola, Valeria; Fantozzi, Luigi Maria [University of Rome Sapienza, Department of Neuroradiology, Rome (Italy); Angelini, Albina; D' Andrea, Giancarlo; Mastronardi, Luciano; Ferrante, Luigi [University of Rome Sapienza, Department of Neurosurgery, Rome (Italy)

    2010-10-15

    To demonstrate the accuracy of magnetic resonance tractography (MRT) in localizing the cortical spinal tract (CST) close to brain tumours by using intraoperative electric subcortical stimulation. Nine patients with intra-axial brain tumours underwent neurosurgery. Planning was based on analysis of the course of streamlines compatible with the CST. After tumour removal, intraoperative MRT was reacquired. Sites at various distance from the CST were repeatedly stimulated to assess whether registered motor evoked potential (MEP) could be elicited. All patients were assessed clinically both pre- and postoperatively. The motor function was preserved in all patients. In all patients intraoperative MRT demonstrated shift of the bundle position caused by the surgical procedure. The distance between the estimated intraoperative CST and the point of elicited MEP was 1 cm or less in all nine patients. At distances greater than 2 cm, no patient reported positive MEP. Intraoperative MRT is a reliable technique for localization of CST. In all patients MEP were elicited by direct subcortical electrical stimulation at a distance below 1 cm from the CST as represented by MRT. Brain shifting might impact this evaluation since CST position may change during surgery in the range of 8 mm. (orig.)

  8. Identification of the pyramidal tract by neuronavigation based on intraoperative magnetic resonance tractography: correlation with subcortical stimulation

    International Nuclear Information System (INIS)

    Bozzao, Alessandro; Romano, Andrea; Calabria, Luigi Fausto; Coppola, Valeria; Fantozzi, Luigi Maria; Angelini, Albina; D'Andrea, Giancarlo; Mastronardi, Luciano; Ferrante, Luigi

    2010-01-01

    To demonstrate the accuracy of magnetic resonance tractography (MRT) in localizing the cortical spinal tract (CST) close to brain tumours by using intraoperative electric subcortical stimulation. Nine patients with intra-axial brain tumours underwent neurosurgery. Planning was based on analysis of the course of streamlines compatible with the CST. After tumour removal, intraoperative MRT was reacquired. Sites at various distance from the CST were repeatedly stimulated to assess whether registered motor evoked potential (MEP) could be elicited. All patients were assessed clinically both pre- and postoperatively. The motor function was preserved in all patients. In all patients intraoperative MRT demonstrated shift of the bundle position caused by the surgical procedure. The distance between the estimated intraoperative CST and the point of elicited MEP was 1 cm or less in all nine patients. At distances greater than 2 cm, no patient reported positive MEP. Intraoperative MRT is a reliable technique for localization of CST. In all patients MEP were elicited by direct subcortical electrical stimulation at a distance below 1 cm from the CST as represented by MRT. Brain shifting might impact this evaluation since CST position may change during surgery in the range of 8 mm. (orig.)

  9. Diffusion in membranes: Toward a two-dimensional diffusion map

    Directory of Open Access Journals (Sweden)

    Toppozini Laura

    2015-01-01

    Full Text Available For decades, quasi-elastic neutron scattering has been the prime tool for studying molecular diffusion in membranes over relevant nanometer distances. These experiments are essential to our current understanding of molecular dynamics of lipids, proteins and membrane-active molecules. Recently, we presented experimental evidence from X-ray diffraction and quasi-elastic neutron scattering demonstrating that ethanol enhances the permeability of membranes. At the QENS 2014/WINS 2014 conference we presented a novel technique to measure diffusion across membranes employing 2-dimensional quasi-elastic neutron scattering. We present results from our preliminary analysis of an experiment on the cold neutron multi-chopper spectrometer LET at ISIS, where we studied the self-diffusion of water molecules along lipid membranes and have the possibility of studying the diffusion in membranes. By preparing highly oriented membrane stacks and aligning them horizontally in the spectrometer, our aim is to distinguish between lateral and transmembrane diffusion. Diffusion may also be measured at different locations in the membranes, such as the water layer and the hydrocarbon membrane core. With a complete analysis of the data, 2-dimensional mapping will enable us to determine diffusion channels of water and ethanol molecules to quantitatively determine nanoscale membrane permeability.

  10. Diffusion bonding

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1976-01-01

    A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions

  11. Multipassage diffuser

    International Nuclear Information System (INIS)

    Lalis, A.; Rouviere, R.; Simon, G.

    1976-01-01

    A multipassage diffuser having 2p passages comprises a leak-tight cylindrical enclosure closed by a top cover and a bottom end-wall, parallel porous tubes which are rigidly assembled in sectors between tube plates and through which the gas mixture flows, the tube sectors being disposed at uniform intervals on the periphery of the enclosure. The top tube plates are rigidly fixed to an annular header having the shape of a half-torus and adapted to communicate with the tubes of the corresponding sector. Each passage is constituted by a plurality of juxtaposed sectors in which the mixture circulates in the same direction, the header being divided into p portions limited by radial partition-walls and each constituting two adjacent passages. The diffuser is provided beneath the bottom end-wall with p-1 leak-tight chambers each adapted to open into two different portions of the header, and with two collector-chambers each fitted with a nozzle for introducing the gas mixture and discharging the fraction of the undiffused mixture. By means of a central orifice formed in the bottom end-wall the enclosure communicates with a shaft for discharging the diffused fraction of the gas mixture

  12. Alterations in the inferior longitudinal fasciculus in autism and associations with visual processing: a diffusion-weighted MRI study.

    Science.gov (United States)

    Boets, Bart; Van Eylen, Lien; Sitek, Kevin; Moors, Pieter; Noens, Ilse; Steyaert, Jean; Sunaert, Stefan; Wagemans, Johan

    2018-01-01

    One of the most reported neural features of autism spectrum disorder (ASD) is the alteration of multiple long-range white matter fiber tracts, as assessed by diffusion-weighted imaging and indexed by reduced fractional anisotropy (FA). Recent methodological advances, however, have shown that this same pattern of reduced FA may be an artifact resulting from excessive head motion and poorer data quality and that aberrant structural connectivity in children with ASD is confined to the right inferior longitudinal fasciculus (ILF). This study aimed at replicating the observation of reduced FA along the right ILF in ASD, while controlling for group differences in head motion and data quality. In addition, we explored associations between reduced FA in the right ILF and quantitative ASD characteristics, and the involvement of the right ILF in visual processing, which is known to be altered in ASD. Global probabilistic tractography was performed on diffusion-weighted imaging data of 17 adolescent boys with ASD and 17 typically developing boys, matched for age, performance IQ, handedness, and data quality. Four tasks were administered to measure various aspects of visual information processing, together with questionnaires assessing ASD characteristics. Group differences were examined and the neural data were integrated with previously published findings using Bayesian statistics to quantify evidence for replication and to pool data and thus increase statistical power. (Partial) correlations were calculated to investigate associations between measures. The ASD group showed consistently reduced FA only in the right ILF and slower performance on the visual search task. Bayesian statistics pooling data across studies confirmed that group differences in FA were confined to the right ILF only, with the evidence for altered FA in the left ILF being indecisive. Lower FA in the right ILF tended to covary with slower visual search and a more fragmented part-oriented processing style

  13. Multimodal Diffusion-MRI and MEG Assessment of Auditory and Language System Development in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Jeffrey I Berman

    2016-03-01

    Full Text Available Background: Auditory processing and language impairments are prominent in children with autism spectrum disorder (ASD. The present study integrated diffusion MR measures of white-matter microstructure and magnetoencephalography (MEG measures of cortical dynamics to investigate associations between brain structure and function within auditory and language systems in ASD. Based on previous findings, abnormal structure-function relationships in auditory and language systems in ASD were hypothesized. Methods: Evaluable neuroimaging data was obtained from 44 typically developing (TD children (mean age 10.4±2.4years and 95 children with ASD (mean age 10.2±2.6years. Diffusion MR tractography was used to delineate and quantitatively assess the auditory radiation and arcuate fasciculus segments of the auditory and language systems. MEG was used to measure (1 superior temporal gyrus auditory evoked M100 latency in response to pure-tone stimuli as an indicator of auditory system conduction velocity, and (2 auditory vowel-contrast mismatch field (MMF latency as a passive probe of early linguistic processes. Results: Atypical development of white matter and cortical function, along with atypical lateralization, were present in ASD. In both auditory and language systems, white matter integrity and cortical electrophysiology were found to be coupled in typically developing children, with white matter microstructural features contributing significantly to electrophysiological response latencies. However, in ASD, we observed uncoupled structure-function relationships in both auditory and language systems. Regression analyses in ASD indicated that factors other than white-matter microstructure additionally contribute to the latency of neural evoked responses and ultimately behavior. Results also indicated that whereas delayed M100 is a marker for ASD severity, MMF delay is more associated with language impairment. Conclusion: Present findings suggest atypical

  14. Quantitative autoradiography of semiconductor base material

    International Nuclear Information System (INIS)

    Treutler, H.C.; Freyer, K.

    1983-01-01

    Autoradiographic methods for the quantitative determination of elements interesting in semiconductor technology and their distribution in silicon are described. Whereas the local concentration and distribution of phosphorus has been determined with the aid of silver halide films the neutron-induced autoradiography has been applied in the case of boron. Silicon disks containing diffused phosphorus or implanted or diffused boron have been used as standard samples. Different possibilities of the quantitative evaluation of autoradiograms are considered and compared

  15. Identification of Stria Medullaris Fibers in the Massa Intermedia Using Diffusion Tensor Imaging.

    Science.gov (United States)

    Kochanski, Ryan B; Dawe, Robert; Kocak, Mehmet; Sani, Sepehr

    2018-04-01

    The massa intermedia (MI) or interthalamic adhesion is an inconsistent band spanning between bilateral medial thalami that is absent in up to 20%-30% of individuals. Little is known of its significance, especially in regard to functional pathways. Probabilistic diffusion tensor imaging (DTI) has recently been used to seed the lateral habenula and define its afferent white matter pathway, the stria medullaris thalami (SM). We sought to determine whether the MI serves as a conduit for crossing of limbic fibers such as the SM. Probabilistic DTI was performed on 10 subjects who had presence of a MI as visualized on magnetic resonance imaging. Tractography was also performed on 2 subjects without MI. Manual identification of the lateral habenula on axial T1-weighted magnetic resonance imaging was used for the initial seed region for tractography. In all subjects, the SM was reliably visualized. In 7 of the 10 subjects with MI, there was evidence of SM fibers that crossed to the ipsilateral hemisphere. Three subjects with small diameter MI did not have tractographic evidence of crossing SM fibers. Of the 7 subjects with crossing SM fibers within the MI, 5 showed predilection toward the right orbitofrontal cortex from both the left and right seed regions. Probabilistic DTI provides evidence of SM fibers within the MI. Given its anatomic location as a bridging pathway between thalami, further studies are necessary to assess its role within the limbic functional network. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.

    Science.gov (United States)

    Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe

    2018-03-16

    A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.

  17. Sparse and Adaptive Diffusion Dictionary (SADD) for recovering intra-voxel white matter structure.

    Science.gov (United States)

    Aranda, Ramon; Ramirez-Manzanares, Alonso; Rivera, Mariano

    2015-12-01

    On the analysis of the Diffusion-Weighted Magnetic Resonance Images, multi-compartment models overcome the limitations of the well-known Diffusion Tensor model for fitting in vivo brain axonal orientations at voxels with fiber crossings, branching, kissing or bifurcations. Some successful multi-compartment methods are based on diffusion dictionaries. The diffusion dictionary-based methods assume that the observed Magnetic Resonance signal at each voxel is a linear combination of the fixed dictionary elements (dictionary atoms). The atoms are fixed along different orientations and diffusivity profiles. In this work, we present a sparse and adaptive diffusion dictionary method based on the Diffusion Basis Functions Model to estimate in vivo brain axonal fiber populations. Our proposal overcomes the following limitations of the diffusion dictionary-based methods: the limited angular resolution and the fixed shapes for the atom set. We propose to iteratively re-estimate the orientations and the diffusivity profile of the atoms independently at each voxel by using a simplified and easier-to-solve mathematical approach. As a result, we improve the fitting of the Diffusion-Weighted Magnetic Resonance signal. The advantages with respect to the former Diffusion Basis Functions method are demonstrated on the synthetic data-set used on the 2012 HARDI Reconstruction Challenge and in vivo human data. We demonstrate that improvements obtained in the intra-voxel fiber structure estimations benefit brain research allowing to obtain better tractography estimations. Hence, these improvements result in an accurate computation of the brain connectivity patterns. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Diffusion tensor imaging of the human skeletal muscle: contributions and applications

    International Nuclear Information System (INIS)

    Neji, Radhouene

    2010-01-01

    In this thesis, we present several techniques for the processing of diffusion tensor images. They span a wide range of tasks such as estimation and regularization, clustering and segmentation, as well as registration. The variational framework proposed for recovering a tensor field from noisy diffusion weighted images exploits the fact that diffusion data represent populations of fibers and therefore each tensor can be reconstructed using a weighted combination of tensors lying in its neighborhood. The segmentation approach operates both at the voxel and the fiber tract levels. It is based on the use of Mercer kernels over Gaussian diffusion probabilities to model tensor similarity and spatial interactions, allowing the definition of fiber metrics that combine information from spatial localization and diffusion tensors. Several clustering techniques can be subsequently used to segment tensor fields and fiber tractographies. Moreover, we show how to develop supervised extensions of these algorithms. The registration algorithm uses probability kernels in order to match moving and target images. The deformation consistency is assessed using the distortion induced in the distances between neighboring probabilities. Discrete optimization is used to seek an optimum of the defined objective function. The experimental validation is done over a dataset of manually segmented diffusion images of the lower leg muscle for healthy and diseased subjects. The results of the techniques developed throughout this thesis are promising. (author)

  19. Quantum diffusion

    International Nuclear Information System (INIS)

    Habib, S.

    1994-01-01

    We consider a simple quantum system subjected to a classical random force. Under certain conditions it is shown that the noise-averaged Wigner function of the system follows an integro-differential stochastic Liouville equation. In the simple case of polynomial noise-couplings this equation reduces to a generalized Fokker-Planck form. With nonlinear noise injection new ''quantum diffusion'' terms rise that have no counterpart in the classical case. Two special examples that are not of a Fokker-Planck form are discussed: the first with a localized noise source and the other with a spatially modulated noise source

  20. Hereditary Diffuse Gastric Cancer

    Science.gov (United States)

    ... Hereditary Diffuse Gastric Cancer Request Permissions Hereditary Diffuse Gastric Cancer Approved by the Cancer.Net Editorial Board , 10/2017 What is hereditary diffuse gastric cancer? Hereditary diffuse gastric cancer (HDGC) is a rare ...

  1. Diffusion tensor imaging using multiple coils for mouse brain connectomics.

    Science.gov (United States)

    Nouls, John C; Badea, Alexandra; Anderson, Robert B J; Cofer, Gary P; Allan Johnson, G

    2018-04-19

    The correlation between brain connectivity and psychiatric or neurological diseases has intensified efforts to develop brain connectivity mapping techniques on mouse models of human disease. The neural architecture of mouse brain specimens can be shown non-destructively and three-dimensionally by diffusion tensor imaging, which enables tractography, the establishment of a connectivity matrix and connectomics. However, experiments on cohorts of animals can be prohibitively long. To improve throughput in a 7-T preclinical scanner, we present a novel two-coil system in which each coil is shielded, placed off-isocenter along the axis of the magnet and connected to a receiver circuit of the scanner. Preservation of the quality factor of each coil is essential to signal-to-noise ratio (SNR) performance and throughput, because mouse brain specimen imaging at 7 T takes place in the coil-dominated noise regime. In that regime, we show a shielding configuration causing no SNR degradation in the two-coil system. To acquire data from several coils simultaneously, the coils are placed in the magnet bore, around the isocenter, in which gradient field distortions can bias diffusion tensor imaging metrics, affect tractography and contaminate measurements of the connectivity matrix. We quantified the experimental alterations in fractional anisotropy and eigenvector direction occurring in each coil. We showed that, when the coils were placed 12 mm away from the isocenter, measurements of the brain connectivity matrix appeared to be minimally altered by gradient field distortions. Simultaneous measurements on two mouse brain specimens demonstrated a full doubling of the diffusion tensor imaging throughput in practice. Each coil produced images devoid of shading or artifact. To further improve the throughput of mouse brain connectomics, we suggested a future expansion of the system to four coils. To better understand acceptable trade-offs between imaging throughput and connectivity

  2. Tractography-Based Score for Learning Effective Connectivity From Multimodal Imaging Data Using Dynamic Bayesian Networks.

    Science.gov (United States)

    Dang, Shilpa; Chaudhury, Santanu; Lall, Brejesh; Roy, Prasun K

    2018-05-01

    Effective connectivity (EC) is the methodology for determining functional-integration among the functionally active segregated regions of the brain. By definition EC is "the causal influence exerted by one neuronal group on another" which is constrained by anatomical connectivity (AC) (axonal connections). AC is necessary for EC but does not fully determine it, because synaptic communication occurs dynamically in a context-dependent fashion. Although there is a vast emerging evidence of structure-function relationship using multimodal imaging studies, till date only a few studies have done joint modeling of the two modalities: functional MRI (fMRI) and diffusion tensor imaging (DTI). We aim to propose a unified probabilistic framework that combines information from both sources to learn EC using dynamic Bayesian networks (DBNs). DBNs are probabilistic graphical temporal models that learn EC in an exploratory fashion. Specifically, we propose a novel anatomically informed (AI) score that evaluates fitness of a given connectivity structure to both DTI and fMRI data simultaneously. The AI score is employed in structure learning of DBN given the data. Experiments with synthetic-data demonstrate the face validity of structure learning with our AI score over anatomically uninformed counterpart. Moreover, real-data results are cross-validated by performing classification-experiments. EC inferred on real fMRI-DTI datasets is found to be consistent with previous literature and show promising results in light of the AC present as compared to other classically used techniques such as Granger-causality. Multimodal analyses provide a more reliable basis for differentiating brain under abnormal/diseased conditions than the single modality analysis.

  3. Brain anatomical networks in world class gymnasts: a DTI tractography study.

    Science.gov (United States)

    Wang, Bin; Fan, Yuanyuan; Lu, Min; Li, Shumei; Song, Zheng; Peng, Xiaoling; Zhang, Ruibin; Lin, Qixiang; He, Yong; Wang, Jun; Huang, Ruiwang

    2013-01-15

    The excellent motor skills of world class gymnasts amaze everyone. People marvel at the way they precisely control their movements and wonder how the brain structure and function of these elite athletes differ from those of non-athletes. In this study, we acquired diffusion images from thirteen world class gymnasts and fourteen matched controls, constructed their anatomical networks, and calculated the topological properties of each network based on graph theory. From a connectivity-based analysis, we found that most of the edges with increased connection density in the champions were linked to brain regions that are located in the sensorimotor, attentional, and default-mode systems. From graph-based metrics, we detected significantly greater global and local efficiency but shorter characteristic path length in the anatomical networks of the champions compared with the controls. Moreover, in the champions we found a significantly higher nodal degree and greater regional efficiency in several brain regions that correspond to motor and attention functions. These included the left precentral gyrus, left postcentral gyrus, right anterior cingulate gyrus and temporal lobes. In addition, we revealed an increase in the mean fractional anisotropy of the corticospinal tract in the champions, possibly in response to long-term gymnastic training. Our study indicates that neuroanatomical adaptations and plastic changes occur in gymnasts' brain anatomical networks either in response to long-term intensive gymnastic training or as an innate predisposition or both. Our findings may help to explain gymnastic skills at the highest levels of performance and aid in understanding the neural mechanisms that distinguish expert gymnasts from novices. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Differential involvement of corticospinal tract (CST fibers in UMN-predominant ALS patients with or without CST hyperintensity: A diffusion tensor tractography study

    Directory of Open Access Journals (Sweden)

    Venkateswaran Rajagopalan

    2017-01-01

    DTT revealed subcortical loss ('truncation' of virtual motor CST fibers (presumably projecting from the precentral gyrus (PrG in ALS patients but not in controls; in contrast, virtual fibers (presumably projecting to the adjacent postcentral gyrus (PoG were spared. No significant differences in virtual CST fiber length were observed between controls and ALS patients. However, the frequency of CST truncation was significantly higher in the ALS-CST+ subgroup (9 of 21 than in the ALS-CST− subgroup (4 of 24; p = 0.049, suggesting this finding could differentiate these ALS subgroups. Also, because virtual CST truncation occurred only in the ALS patient group and not in the control group (p = 0.018, this DTT finding could prove to be a diagnostic biomarker of ALS. Significantly shorter disease duration and faster disease progression rate were observed in ALS patients with CST fiber truncation than in those without (p  0.05 in any of the ROIs. In addition, comparing FA values between ALS patients with CST truncation and those without in the aforementioned four ROIs, revealed no significant differences in either hemisphere. However, visual evaluation of DTT was able to identify UMN degeneration in patients with ALS, particularly in those with a more aggressive clinical disease course and possibly different pathologic processes.

  5. Quantitative research.

    Science.gov (United States)

    Watson, Roger

    2015-04-01

    This article describes the basic tenets of quantitative research. The concepts of dependent and independent variables are addressed and the concept of measurement and its associated issues, such as error, reliability and validity, are explored. Experiments and surveys – the principal research designs in quantitative research – are described and key features explained. The importance of the double-blind randomised controlled trial is emphasised, alongside the importance of longitudinal surveys, as opposed to cross-sectional surveys. Essential features of data storage are covered, with an emphasis on safe, anonymous storage. Finally, the article explores the analysis of quantitative data, considering what may be analysed and the main uses of statistics in analysis.

  6. Quantitative habitability.

    Science.gov (United States)

    Shock, Everett L; Holland, Melanie E

    2007-12-01

    A framework is proposed for a quantitative approach to studying habitability. Considerations of environmental supply and organismal demand of energy lead to the conclusions that power units are most appropriate and that the units for habitability become watts per organism. Extreme and plush environments are revealed to be on a habitability continuum, and extreme environments can be quantified as those where power supply only barely exceeds demand. Strategies for laboratory and field experiments are outlined that would quantify power supplies, power demands, and habitability. An example involving a comparison of various metabolisms pursued by halophiles is shown to be well on the way to a quantitative habitability analysis.

  7. Review of diffusion tensor imaging and its application in children

    Energy Technology Data Exchange (ETDEWEB)

    Vorona, Gregory A. [Children' s Hospital of Richmond at Virginia Commonwealth University, Department of Radiology, Richmond, VA (United States); Berman, Jeffrey I. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2015-09-15

    Diffusion MRI is an imaging technique that uses the random motion of water to probe tissue microstructure. Diffusion tensor imaging (DTI) can quantitatively depict the organization and connectivity of white matter. Given the non-invasiveness of the technique, DTI has become a widely used tool for researchers and clinicians to examine the white matter of children. This review covers the basics of diffusion-weighted imaging and diffusion tensor imaging and discusses examples of their clinical application in children. (orig.)

  8. 4.7-T diffusion tensor imaging of acute traumatic peripheral nerve injury.

    Science.gov (United States)

    Boyer, Richard B; Kelm, Nathaniel D; Riley, D Colton; Sexton, Kevin W; Pollins, Alonda C; Shack, R Bruce; Dortch, Richard D; Nanney, Lillian B; Does, Mark D; Thayer, Wesley P

    2015-09-01

    Diagnosis and management of peripheral nerve injury is complicated by the inability to assess microstructural features of injured nerve fibers via clinical examination and electrophysiology. Diffusion tensor imaging (DTI) has been shown to accurately detect nerve injury and regeneration in crush models of peripheral nerve injury, but no prior studies have been conducted on nerve transection, a surgical emergency that can lead to permanent weakness or paralysis. Acute sciatic nerve injuries were performed microsurgically to produce multiple grades of nerve transection in rats that were harvested 1 hour after surgery. High-resolution diffusion tensor images from ex vivo sciatic nerves were obtained using diffusion-weighted spin-echo acquisitions at 4.7 T. Fractional anisotropy was significantly reduced at the injury sites of transected rats compared with sham rats. Additionally, minor eigenvalues and radial diffusivity were profoundly elevated at all injury sites and were negatively correlated to the degree of injury. Diffusion tensor tractography showed discontinuities at all injury sites and significantly reduced continuous tract counts. These findings demonstrate that high-resolution DTI is a promising tool for acute diagnosis and grading of traumatic peripheral nerve injuries.

  9. Diffusion tensor imaging of occult injury of optic radiation following optic neuritis in multiple sclerosis.

    Science.gov (United States)

    Chen, Jiafeng; Zhu, Lijun; Li, He; Lu, Ziwen; Chen, Xin; Fang, Shaokuan

    2016-10-01

    Multiple sclerosis (MS) is easily detected by routine magnetic resonance imaging (MRI). However, it is not possible to detect early or occult lesions in MS by routine MRI, and this may explain the inconsistency between the severity of the lesions found by MRI and the degree of clinical disability of patients with MS. The present study included 10 patients with relapsing-remitting MS and 10 healthy volunteers. Each patient underwent routine 3.0 T MRI, diffusion tensor imaging (DTI), and diffusion tensor tractography (DTT). Optic nerve and optic radiation were analyzed by DTI and DTT. The fractional anisotropy (FA), mean diffusivity (MD), λ // , and λ ┴ values were measured. In the 10 patients with MS, 7 optic nerves were affected, and 13 optic nerves were not affected. Cranial MRI showed that optic nerve thickening and hyperintensity occurred in 2 patients with MS. In the directionally encoded color maps, a hypointensive green signal in the optic nerve was observed in 3 patients with MS. The FA values were significantly lower and the MD, λ // , and λ ┴ values were significantly higher in the affected and unaffected optic nerves and optic radiations in patients with MS in comparison with controls (P0.05). Diffusion tensor imaging is sensitive in the detection of occult injury of the optic nerve and optic radiation following optic neuritis. Diffusion tensor imaging may be a useful tool for the early diagnosis, treatment and management of MS.

  10. The Disruption of Geniculocalcarine Tract in Occipital Neoplasm: A Diffusion Tensor Imaging Study

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2016-01-01

    Full Text Available Aim. Investigate the disruption of geniculocalcarine tract (GCT in different occipital neoplasm by diffusion tensor imaging (DTI. Methods. Thirty-two subjects (44.1 ± 3.6 years who had single occipital neoplasm (9 gliomas, 6 meningiomas, and 17 metastatic tumors with ipsilateral GCT involved and thirty healthy subjects (39.2 ± 3.3 years underwent conventional sequences scanning and diffusion tensor imaging by a 1.5T MR scanner. The diffusion-sensitive gradient direction is 13. Compare the fractional anisotropy (FA and mean diffusivity (MD values of healthy GCT with the corresponding values of GCT in peritumoral edema area. Perform diffusion tensor tractography (DTT on GCT by the line propagation technique in all subjects. Results. The FA values of GCT in peritumoral edema area decreased (P=0.001 while the MD values increased (P=0.002 when compared with healthy subjects. There was no difference in the FA values across tumor types (P=0.114 while the MD values of GCT in the metastatic tumor group were higher than the other groups (P=0.001. GCTs were infiltrated in all the 9 gliomas cases, with displacement in 2 cases and disruption in 7 cases. GCTs were displaced in 6 meningiomas cases. GCTs were displaced in all the 7 metastatic cases, with disruption in 7 cases. Conclusions. DTI represents valid markers for evaluating GCT’s disruption in occipital neoplasm. The disruption of GCT varies according to the properties of neoplasm.

  11. White matter microstructure in transsexuals and controls investigated by diffusion tensor imaging.

    Science.gov (United States)

    Kranz, Georg S; Hahn, Andreas; Kaufmann, Ulrike; Küblböck, Martin; Hummer, Allan; Ganger, Sebastian; Seiger, Rene; Winkler, Dietmar; Swaab, Dick F; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2014-11-12

    Biological causes underpinning the well known gender dimorphisms in human behavior, cognition, and emotion have received increased attention in recent years. The advent of diffusion-weighted magnetic resonance imaging has permitted the investigation of the white matter microstructure in unprecedented detail. Here, we aimed to study the potential influences of biological sex, gender identity, sex hormones, and sexual orientation on white matter microstructure by investigating transsexuals and healthy controls using diffusion tensor imaging (DTI). Twenty-three female-to-male (FtM) and 21 male-to-female (MtF) transsexuals, as well as 23 female (FC) and 22 male (MC) controls underwent DTI at 3 tesla. Fractional anisotropy, axial, radial, and mean diffusivity were calculated using tract-based spatial statistics (TBSS) and fiber tractography. Results showed widespread significant differences in mean diffusivity between groups in almost all white matter tracts. FCs had highest mean diffusivities, followed by FtM transsexuals with lower values, MtF transsexuals with further reduced values, and MCs with lowest values. Investigating axial and radial diffusivities showed that a transition in axial diffusivity accounted for mean diffusivity results. No significant differences in fractional anisotropy maps were found between groups. Plasma testosterone levels were strongly correlated with mean, axial, and radial diffusivities. However, controlling for individual estradiol, testosterone, or progesterone plasma levels or for subjects' sexual orientation did not change group differences. Our data harmonize with the hypothesis that fiber tract development is influenced by the hormonal environment during late prenatal and early postnatal brain development. Copyright © 2014 the authors 0270-6474/14/3415466-10$15.00/0.

  12. White Matter Microstructure in Transsexuals and Controls Investigated by Diffusion Tensor Imaging

    Science.gov (United States)

    Kranz, Georg S.; Hahn, Andreas; Kaufmann, Ulrike; Küblböck, Martin; Hummer, Allan; Ganger, Sebastian; Seiger, Rene; Winkler, Dietmar; Swaab, Dick F.; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2015-01-01

    Biological causes underpinning the well known gender dimorphisms in human behavior, cognition, and emotion have received increased attention in recent years. The advent of diffusion-weighted magnetic resonance imaging has permitted the investigation of the white matter microstructure in unprecedented detail. Here, we aimed to study the potential influences of biological sex, gender identity, sex hormones, and sexual orientation on white matter microstructure by investigating transsexuals and healthy controls using diffusion tensor imaging (DTI). Twenty-three female-to-male (FtM) and 21 male-to-female (MtF) transsexuals, as well as 23 female (FC) and 22 male (MC) controls underwent DTI at 3 tesla. Fractional anisotropy, axial, radial, and mean diffusivity were calculated using tract-based spatial statistics (TBSS) and fiber tractography. Results showed widespread significant differences in mean diffusivity between groups in almost all white matter tracts. FCs had highest mean diffusivities, followed by FtM transsexuals with lower values, MtF transsexuals with further reduced values, and MCs with lowest values. Investigating axial and radial diffusivities showed that a transition in axial diffusivity accounted for mean diffusivity results. No significant differences in fractional anisotropy maps were found between groups. Plasma testosterone levels were strongly correlated with mean, axial, and radial diffusivities. However, controlling for individual estradiol, testosterone, or progesterone plasma levels or for subjects’ sexual orientation did not change group differences. Our data harmonize with the hypothesis that fiber tract development is influenced by the hormonal environment during late prenatal and early postnatal brain development. PMID:25392513

  13. Connectivity and tissue microstructural alterations in right and left temporal lobe epilepsy revealed by diffusion spectrum imaging.

    Science.gov (United States)

    Lemkaddem, Alia; Daducci, Alessandro; Kunz, Nicolas; Lazeyras, François; Seeck, Margitta; Thiran, Jean-Philippe; Vulliémoz, Serge

    2014-01-01

    Focal epilepsy is increasingly recognized as the result of an altered brain network, both on the structural and functional levels and the characterization of these widespread brain alterations is crucial for our understanding of the clinical manifestation of seizure and cognitive deficits as well as for the management of candidates to epilepsy surgery. Tractography based on Diffusion Tensor Imaging allows non-invasive mapping of white matter tracts in vivo. Recently, diffusion spectrum imaging (DSI), based on an increased number of diffusion directions and intensities, has improved the sensitivity of tractography, notably with respect to the problem of fiber crossing and recent developments allow acquisition times compatible with clinical application. We used DSI and parcellation of the gray matter in regions of interest to build whole-brain connectivity matrices describing the mutual connections between cortical and subcortical regions in patients with focal epilepsy and healthy controls. In addition, the high angular and radial resolution of DSI allowed us to evaluate also some of the biophysical compartment models, to better understand the cause of the changes in diffusion anisotropy. Global connectivity, hub architecture and regional connectivity patterns were altered in TLE patients and showed different characteristics in RTLE vs LTLE with stronger abnormalities in RTLE. The microstructural analysis suggested that disturbed axonal density contributed more than fiber orientation to the connectivity changes affecting the temporal lobes whereas fiber orientation changes were more involved in extratemporal lobe changes. Our study provides further structural evidence that RTLE and LTLE are not symmetrical entities and DSI-based imaging could help investigate the microstructural correlate of these imaging abnormalities.

  14. Diffusion archeology for diffusion progression history reconstruction.

    Science.gov (United States)

    Sefer, Emre; Kingsford, Carl

    2016-11-01

    Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring - perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of