WorldWideScience

Sample records for quantifying auditory event-related

  1. Auditory event-related responses to diphthongs in different attention conditions

    DEFF Research Database (Denmark)

    Morris, David Jackson; Steinmetzger, Kurt; Tøndering, John

    2016-01-01

    The modulation of auditory event-related potentials (ERP) by attention generally results in larger amplitudes when stimuli are attended. We measured the P1-N1-P2 acoustic change complex elicited with synthetic overt (second formant, F2 = 1000 Hz) and subtle (F2 = 100 Hz) diphthongs, while subjects...... (i) attended to the auditory stimuli, (ii) ignored the auditory stimuli and watched a film, and (iii) diverted their attention to a visual discrimination task. Responses elicited by diphthongs where F2 values rose and fell were found to be different and this precluded their combined analysis....... Multivariate analysis of ERP components from the rising F2 changes showed main effects of attention on P2 amplitude and latency, and N1-P2 amplitude. P2 amplitude decreased by 40% between the attend and ignore conditions, and by 60% between the attend and divert conditions. The effect of diphthong magnitude...

  2. From sensation to percept: the neural signature of auditory event-related potentials.

    Science.gov (United States)

    Joos, Kathleen; Gilles, Annick; Van de Heyning, Paul; De Ridder, Dirk; Vanneste, Sven

    2014-05-01

    An external auditory stimulus induces an auditory sensation which may lead to a conscious auditory perception. Although the sensory aspect is well known, it is still a question how an auditory stimulus results in an individual's conscious percept. To unravel the uncertainties concerning the neural correlates of a conscious auditory percept, event-related potentials may serve as a useful tool. In the current review we mainly wanted to shed light on the perceptual aspects of auditory processing and therefore we mainly focused on the auditory late-latency responses. Moreover, there is increasing evidence that perception is an active process in which the brain searches for the information it expects to be present, suggesting that auditory perception requires the presence of both bottom-up, i.e. sensory and top-down, i.e. prediction-driven processing. Therefore, the auditory evoked potentials will be interpreted in the context of the Bayesian brain model, in which the brain predicts which information it expects and when this will happen. The internal representation of the auditory environment will be verified by sensation samples of the environment (P50, N100). When this incoming information violates the expectation, it will induce the emission of a prediction error signal (Mismatch Negativity), activating higher-order neural networks and inducing the update of prior internal representations of the environment (P300). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Evaluation of auditory perception development in neonates by event-related potential technique.

    Science.gov (United States)

    Zhang, Qinfen; Li, Hongxin; Zheng, Aibin; Dong, Xuan; Tu, Wenjuan

    2017-08-01

    To investigate auditory perception development in neonates and correlate it with days after birth, left and right hemisphere development and sex using event-related potential (ERP) technique. Sixty full-term neonates, consisting of 32 males and 28 females, aged 2-28days were included in this study. An auditory oddball paradigm was used to elicit ERPs. N2 wave latencies and areas were recorded at different days after birth, to study on relationship between auditory perception and age, and comparison of left and right hemispheres, and males and females. Average wave forms of ERPs in neonates started from relatively irregular flat-bottomed troughs to relatively regular steep-sided ripples. A good linear relationship between ERPs and days after birth in neonates was observed. As days after birth increased, N2 latencies gradually and significantly shortened, and N2 areas gradually and significantly increased (both Pbrain were significantly greater, and N2 latencies in the central part were significantly shorter in the left hemisphere compared with the right, indicative of left hemisphere dominance (both Pdevelopment. In the days following birth, the auditory perception ability of neonates gradually increases. This occurs predominantly in the left hemisphere, with auditory perception ability appearing to develop earlier in female neonates than in males. ERP can be used as an objective index used to evaluate auditory perception development in neonates. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  4. Auditory event-related potentials associated with perceptual reversals of bistable pitch motion.

    Science.gov (United States)

    Davidson, Gray D; Pitts, Michael A

    2014-01-01

    Previous event-related potential (ERP) experiments have consistently identified two components associated with perceptual transitions of bistable visual stimuli, the "reversal negativity" (RN) and the "late positive complex" (LPC). The RN (~200 ms post-stimulus, bilateral occipital-parietal distribution) is thought to reflect transitions between neural representations that form the moment-to-moment contents of conscious perception, while the LPC (~400 ms, central-parietal) is considered an index of post-perceptual processing related to accessing and reporting one's percept. To explore the generality of these components across sensory modalities, the present experiment utilized a novel bistable auditory stimulus. Pairs of complex tones with ambiguous pitch relationships were presented sequentially while subjects reported whether they perceived the tone pairs as ascending or descending in pitch. ERPs elicited by the tones were compared according to whether perceived pitch motion changed direction or remained the same across successive trials. An auditory reversal negativity (aRN) component was evident at ~170 ms post-stimulus over bilateral fronto-central scalp locations. An auditory LPC component (aLPC) was evident at subsequent latencies (~350 ms, fronto-central distribution). These two components may be auditory analogs of the visual RN and LPC, suggesting functionally equivalent but anatomically distinct processes in auditory vs. visual bistable perception.

  5. Children's Performance on Pseudoword Repetition Depends on Auditory Trace Quality: Evidence from Event-Related Potentials.

    Science.gov (United States)

    Ceponiene, Rita; Service, Elisabet; Kurjenluoma, Sanna; Cheour, Marie; Naatanen, Risto

    1999-01-01

    Compared the mismatch-negativity (MMN) component of auditory event-related brain potentials to explore the relationship between phonological short-term memory and auditory-sensory processing in 7- to 9-year olds scoring the highest and lowest on a pseudoword repetition test. Found that high and low repeaters differed in MMN amplitude to speech…

  6. Differences between human auditory event-related potentials (AERPs) measured at 2 and 4 months after birth

    NARCIS (Netherlands)

    van den Heuvel, Marion I.; Otte, Renee A.; Braeken, Marijke A. K. A.; Winkler, Istvan; Kushnerenko, Elena; Van den Bergh, Bea R. H.

    2015-01-01

    Infant auditory event-related potentials (AERPs) show a series of marked changes during the first year of life. These AERP changes indicate important advances in early development. The current study examined AERP differences between 2- and 4-month-old infants. An auditory oddball paradigm was

  7. Classification of passive auditory event-related potentials using discriminant analysis and self-organizing feature maps.

    Science.gov (United States)

    Schönweiler, R; Wübbelt, P; Tolloczko, R; Rose, C; Ptok, M

    2000-01-01

    Discriminant analysis (DA) and self-organizing feature maps (SOFM) were used to classify passively evoked auditory event-related potentials (ERP) P(1), N(1), P(2) and N(2). Responses from 16 children with severe behavioral auditory perception deficits, 16 children with marked behavioral auditory perception deficits, and 14 controls were examined. Eighteen ERP amplitude parameters were selected for examination of statistical differences between the groups. Different DA methods and SOFM configurations were trained to the values. SOFM had better classification results than DA methods. Subsequently, measures on another 37 subjects that were unknown for the trained SOFM were used to test the reliability of the system. With 10-dimensional vectors, reliable classifications were obtained that matched behavioral auditory perception deficits in 96%, implying central auditory processing disorder (CAPD). The results also support the assumption that CAPD includes a 'non-peripheral' auditory processing deficit. Copyright 2000 S. Karger AG, Basel.

  8. Predictive coding of visual-auditory and motor-auditory events: An electrophysiological study.

    Science.gov (United States)

    Stekelenburg, Jeroen J; Vroomen, Jean

    2015-11-11

    The amplitude of auditory components of the event-related potential (ERP) is attenuated when sounds are self-generated compared to externally generated sounds. This effect has been ascribed to internal forward modals predicting the sensory consequences of one's own motor actions. Auditory potentials are also attenuated when a sound is accompanied by a video of anticipatory visual motion that reliably predicts the sound. Here, we investigated whether the neural underpinnings of prediction of upcoming auditory stimuli are similar for motor-auditory (MA) and visual-auditory (VA) events using a stimulus omission paradigm. In the MA condition, a finger tap triggered the sound of a handclap whereas in the VA condition the same sound was accompanied by a video showing the handclap. In both conditions, the auditory stimulus was omitted in either 50% or 12% of the trials. These auditory omissions induced early and mid-latency ERP components (oN1 and oN2, presumably reflecting prediction and prediction error), and subsequent higher-order error evaluation processes. The oN1 and oN2 of MA and VA were alike in amplitude, topography, and neural sources despite that the origin of the prediction stems from different brain areas (motor versus visual cortex). This suggests that MA and VA predictions activate a sensory template of the sound in auditory cortex. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Intelligence and P3 Components of the Event-Related Potential Elicited during an Auditory Discrimination Task with Masking

    Science.gov (United States)

    De Pascalis, V.; Varriale, V.; Matteoli, A.

    2008-01-01

    The relationship between fluid intelligence (indexed by scores on Raven Progressive Matrices) and auditory discrimination ability was examined by recording event-related potentials from 48 women during the performance of an auditory oddball task with backward masking. High ability (HA) subjects exhibited shorter response times, greater response…

  10. Event-related potentials to visual, auditory, and bimodal (combined auditory-visual) stimuli.

    Science.gov (United States)

    Isoğlu-Alkaç, Ummühan; Kedzior, Karina; Keskindemirci, Gonca; Ermutlu, Numan; Karamursel, Sacit

    2007-02-01

    The purpose of this study was to investigate the response properties of event related potentials to unimodal and bimodal stimulations. The amplitudes of N1 and P2 were larger during bimodal evoked potentials (BEPs) than auditory evoked potentials (AEPs) in the anterior sites and the amplitudes of P1 were larger during BEPs than VEPs especially at the parieto-occipital locations. Responses to bimodal stimulation had longer latencies than responses to unimodal stimulation. The N1 and P2 components were larger in amplitude and longer in latency during the bimodal paradigm and predominantly occurred at the anterior sites. Therefore, the current bimodal paradigm can be used to investigate the involvement and location of specific neural generators that contribute to higher processing of sensory information. Moreover, this paradigm may be a useful tool to investigate the level of sensory dysfunctions in clinical samples.

  11. Differences between human auditory event-related potentials (AERPs) measured at 2 and 4 months after birth.

    Science.gov (United States)

    van den Heuvel, Marion I; Otte, Renée A; Braeken, Marijke A K A; Winkler, István; Kushnerenko, Elena; Van den Bergh, Bea R H

    2015-07-01

    Infant auditory event-related potentials (AERPs) show a series of marked changes during the first year of life. These AERP changes indicate important advances in early development. The current study examined AERP differences between 2- and 4-month-old infants. An auditory oddball paradigm was delivered to infants with a frequent repetitive tone and three rare auditory events. The three rare events included a shorter than the regular inter-stimulus interval (ISI-deviant), white noise segments, and environmental sounds. The results suggest that the N250 infantile AERP component emerges during this period in response to white noise but not to environmental sounds, possibly indicating a developmental step towards separating acoustic deviance from contextual novelty. The scalp distribution of the AERP response to both the white noise and the environmental sounds shifted towards frontal areas and AERP peak latencies were overall lower in infants at 4 than at 2 months of age. These observations indicate improvements in the speed of sound processing and maturation of the frontal attentional network in infants during this period. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Nicotine enhances an auditory Event-Related Potential component which is inversely related to habituation.

    Science.gov (United States)

    Veltri, Theresa; Taroyan, Naira; Overton, Paul G

    2017-07-01

    Nicotine is a psychoactive substance that is commonly consumed in the context of music. However, the reason why music and nicotine are co-consumed is uncertain. One possibility is that nicotine affects cognitive processes relevant to aspects of music appreciation in a beneficial way. Here we investigated this possibility using Event-Related Potentials. Participants underwent a simple decision-making task (to maintain attentional focus), responses to which were signalled by auditory stimuli. Unlike previous research looking at the effects of nicotine on auditory processing, we used complex tones that varied in pitch, a fundamental element of music. In addition, unlike most other studies, we tested non-smoking subjects to avoid withdrawal-related complications. We found that nicotine (4.0 mg, administered as gum) increased P2 amplitude in the frontal region. Since a decrease in P2 amplitude and latency is related to habituation processes, and an enhanced ability to disengage from irrelevant stimuli, our findings suggest that nicotine may cause a reduction in habituation, resulting in non-smokers being less able to adapt to repeated stimuli. A corollary of that decrease in adaptation may be that nicotine extends the temporal window during which a listener is able and willing to engage with a piece of music.

  13. A comparative study of event-related coupling patterns during an auditory oddball task in schizophrenia

    Science.gov (United States)

    Bachiller, Alejandro; Poza, Jesús; Gómez, Carlos; Molina, Vicente; Suazo, Vanessa; Hornero, Roberto

    2015-02-01

    Objective. The aim of this research is to explore the coupling patterns of brain dynamics during an auditory oddball task in schizophrenia (SCH). Approach. Event-related electroencephalographic (ERP) activity was recorded from 20 SCH patients and 20 healthy controls. The coupling changes between auditory response and pre-stimulus baseline were calculated in conventional EEG frequency bands (theta, alpha, beta-1, beta-2 and gamma), using three coupling measures: coherence, phase-locking value and Euclidean distance. Main results. Our results showed a statistically significant increase from baseline to response in theta coupling and a statistically significant decrease in beta-2 coupling in controls. No statistically significant changes were observed in SCH patients. Significance. Our findings support the aberrant salience hypothesis, since SCH patients failed to change their coupling dynamics between stimulus response and baseline when performing an auditory cognitive task. This result may reflect an impaired communication among neural areas, which may be related to abnormal cognitive functions.

  14. Auditory event-related potentials in children with benign epilepsy with centro-temporal spikes.

    Science.gov (United States)

    Tomé, David; Sampaio, Mafalda; Mendes-Ribeiro, José; Barbosa, Fernando; Marques-Teixeira, João

    2014-12-01

    Benign focal epilepsy in childhood with centro-temporal spikes (BECTS) is one of the most common forms of idiopathic epilepsy, with onset from age 3 to 14 years. Although the prognosis for children with BECTS is excellent, some studies have revealed neuropsychological deficits in many domains, including language. Auditory event-related potentials (AERPs) reflect activation of different neuronal populations and are suggested to contribute to the evaluation of auditory discrimination (N1), attention allocation and phonological categorization (N2), and echoic memory (mismatch negativity--MMN). The scarce existing literature about this theme motivated the present study, which aims to investigate and document the existing AERP changes in a group of children with BECTS. AERPs were recorded, during the day, to pure and vocal tones and in a conventional auditory oddball paradigm in five children with BECTS (aged 8-12; mean=10 years; male=5) and in six gender and age-matched controls. Results revealed high amplitude of AERPs for the group of children with BECTS with a slight latency delay more pronounced in fronto-central electrodes. Children with BECTS may have abnormal central auditory processing, reflected by electrophysiological measures such as AERPs. In advance, AERPs seem a good tool to detect and reliably reveal cortical excitability in children with typical BECTS. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Effects of auditory stimuli in the horizontal plane on audiovisual integration: an event-related potential study.

    Science.gov (United States)

    Yang, Weiping; Li, Qi; Ochi, Tatsuya; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Takahashi, Satoshi; Wu, Jinglong

    2013-01-01

    This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160-200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360-400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides.

  16. Saturation of auditory short-term memory causes a plateau in the sustained anterior negativity event-related potential.

    Science.gov (United States)

    Alunni-Menichini, Kristelle; Guimond, Synthia; Bermudez, Patrick; Nolden, Sophie; Lefebvre, Christine; Jolicoeur, Pierre

    2014-12-10

    The maintenance of information in auditory short-term memory (ASTM) is accompanied by a sustained anterior negativity (SAN) in the event-related potential measured during the retention interval of simple auditory memory tasks. Previous work on ASTM showed that the amplitude of the SAN increased in negativity as the number of maintained items increases. The aim of the current study was to measure the SAN and observe its behavior beyond the point of saturation of auditory short-term memory. We used atonal pure tones in sequences of 2, 4, 6, or 8t. Our results showed that the amplitude of SAN increased in negativity from 2 to 4 items and then levelled off from 4 to 8 items. Behavioral results suggested that the average span in the task was slightly below 3, which was consistent with the observed plateau in the electrophysiological results. Furthermore, the amplitude of the SAN predicted individual differences in auditory memory capacity. The results support the hypothesis that the SAN is an electrophysiological index of brain activity specifically related to the maintenance of auditory information in ASTM. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Rendering visual events as sounds: Spatial attention capture by auditory augmented reality.

    Science.gov (United States)

    Stone, Scott A; Tata, Matthew S

    2017-01-01

    Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible.

  18. Rendering visual events as sounds: Spatial attention capture by auditory augmented reality.

    Directory of Open Access Journals (Sweden)

    Scott A Stone

    Full Text Available Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible.

  19. Cortical Auditory Disorders: A Case of Non-Verbal Disturbances Assessed with Event-Related Brain Potentials

    Directory of Open Access Journals (Sweden)

    Sönke Johannes

    1998-01-01

    Full Text Available In the auditory modality, there has been a considerable debate about some aspects of cortical disorders, especially about auditory forms of agnosia. Agnosia refers to an impaired comprehension of sensory information in the absence of deficits in primary sensory processes. In the non-verbal domain, sound agnosia and amusia have been reported but are frequently accompanied by language deficits whereas pure deficits are rare. Absolute pitch and musicians’ musical abilities have been associated with left hemispheric functions. We report the case of a right handed sound engineer with the absolute pitch who developed sound agnosia and amusia in the absence of verbal deficits after a right perisylvian stroke. His disabilities were assessed with the Seashore Test of Musical Functions, the tests of Wertheim and Botez (Wertheim and Botez, Brain 84, 1961, 19–30 and by event-related potentials (ERP recorded in a modified 'oddball paradigm’. Auditory ERP revealed a dissociation between the amplitudes of the P3a and P3b subcomponents with the P3b being reduced in amplitude while the P3a was undisturbed. This is interpreted as reflecting disturbances in target detection processes as indexed by the P3b. The findings that contradict some aspects of current knowledge about left/right hemispheric specialization in musical processing are discussed and related to the literature concerning cortical auditory disorders.

  20. Cortical auditory disorders: a case of non-verbal disturbances assessed with event-related brain potentials.

    Science.gov (United States)

    Johannes, Sönke; Jöbges, Michael E.; Dengler, Reinhard; Münte, Thomas F.

    1998-01-01

    In the auditory modality, there has been a considerable debate about some aspects of cortical disorders, especially about auditory forms of agnosia. Agnosia refers to an impaired comprehension of sensory information in the absence of deficits in primary sensory processes. In the non-verbal domain, sound agnosia and amusia have been reported but are frequently accompanied by language deficits whereas pure deficits are rare. Absolute pitch and musicians' musical abilities have been associated with left hemispheric functions. We report the case of a right handed sound engineer with the absolute pitch who developed sound agnosia and amusia in the absence of verbal deficits after a right perisylvian stroke. His disabilities were assessed with the Seashore Test of Musical Functions, the tests of Wertheim and Botez (Wertheim and Botez, Brain 84, 1961, 19-30) and by event-related potentials (ERP) recorded in a modified 'oddball paradigm'. Auditory ERP revealed a dissociation between the amplitudes of the P3a and P3b subcomponents with the P3b being reduced in amplitude while the P3a was undisturbed. This is interpreted as reflecting disturbances in target detection processes as indexed by the P3b. The findings that contradict some aspects of current knowledge about left/right hemispheric specialization in musical processing are discussed and related to the literature concerning cortical auditory disorders.

  1. Auditory selective attention in adolescents with major depression: An event-related potential study.

    Science.gov (United States)

    Greimel, E; Trinkl, M; Bartling, J; Bakos, S; Grossheinrich, N; Schulte-Körne, G

    2015-02-01

    Major depression (MD) is associated with deficits in selective attention. Previous studies in adults with MD using event-related potentials (ERPs) reported abnormalities in the neurophysiological correlates of auditory selective attention. However, it is yet unclear whether these findings can be generalized to MD in adolescence. Thus, the aim of the present ERP study was to explore the neural mechanisms of auditory selective attention in adolescents with MD. 24 male and female unmedicated adolescents with MD and 21 control subjects were included in the study. ERPs were collected during an auditory oddball paradigm. Depressive adolescents tended to show a longer N100 latency to target and non-target tones. Moreover, MD subjects showed a prolonged latency of the P200 component to targets. Across groups, longer P200 latency was associated with a decreased tendency of disinhibited behavior as assessed by a behavioral questionnaire. To be able to draw more precise conclusions about differences between the neural bases of selective attention in adolescents vs. adults with MD, future studies should include both age groups and apply the same experimental setting across all subjects. The study provides strong support for abnormalities in the neurophysiolgical bases of selective attention in adolecents with MD at early stages of auditory information processing. Absent group differences in later ERP components reflecting voluntary attentional processes stand in contrast to results reported in adults with MD and may suggest that adolescents with MD possess mechanisms to compensate for abnormalities in the early stages of selective attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A hierarchy of event-related potential markers of auditory processing in disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Steve Beukema

    2016-01-01

    Full Text Available Functional neuroimaging of covert perceptual and cognitive processes can inform the diagnoses and prognoses of patients with disorders of consciousness, such as the vegetative and minimally conscious states (VS;MCS. Here we report an event-related potential (ERP paradigm for detecting a hierarchy of auditory processes in a group of healthy individuals and patients with disorders of consciousness. Simple cortical responses to sounds were observed in all 16 patients; 7/16 (44% patients exhibited markers of the differential processing of speech and noise; and 1 patient produced evidence of the semantic processing of speech (i.e. the N400 effect. In several patients, the level of auditory processing that was evident from ERPs was higher than the abilities that were evident from behavioural assessment, indicating a greater sensitivity of ERPs in some cases. However, there were no differences in auditory processing between VS and MCS patient groups, indicating a lack of diagnostic specificity for this paradigm. Reliably detecting semantic processing by means of the N400 effect in passively listening single-subjects is a challenge. Multiple assessment methods are needed in order to fully characterise the abilities of patients with disorders of consciousness.

  3. Temporal integration: intentional sound discrimination does not modulate stimulus-driven processes in auditory event synthesis.

    Science.gov (United States)

    Sussman, Elyse; Winkler, István; Kreuzer, Judith; Saher, Marieke; Näätänen, Risto; Ritter, Walter

    2002-12-01

    Our previous study showed that the auditory context could influence whether two successive acoustic changes occurring within the temporal integration window (approximately 200ms) were pre-attentively encoded as a single auditory event or as two discrete events (Cogn Brain Res 12 (2001) 431). The aim of the current study was to assess whether top-down processes could influence the stimulus-driven processes in determining what constitutes an auditory event. Electroencepholagram (EEG) was recorded from 11 scalp electrodes to frequently occurring standard and infrequently occurring deviant sounds. Within the stimulus blocks, deviants either occurred only in pairs (successive feature changes) or both singly and in pairs. Event-related potential indices of change and target detection, the mismatch negativity (MMN) and the N2b component, respectively, were compared with the simultaneously measured performance in discriminating the deviants. Even though subjects could voluntarily distinguish the two successive auditory feature changes from each other, which was also indicated by the elicitation of the N2b target-detection response, top-down processes did not modify the event organization reflected by the MMN response. Top-down processes can extract elemental auditory information from a single integrated acoustic event, but the extraction occurs at a later processing stage than the one whose outcome is indexed by MMN. Initial processes of auditory event-formation are fully governed by the context within which the sounds occur. Perception of the deviants as two separate sound events (the top-down effects) did not change the initial neural representation of the same deviants as one event (indexed by the MMN), without a corresponding change in the stimulus-driven sound organization.

  4. Evidence of a visual-to-auditory cross-modal sensory gating phenomenon as reflected by the human P50 event-related brain potential modulation.

    Science.gov (United States)

    Lebib, Riadh; Papo, David; de Bode, Stella; Baudonnière, Pierre Marie

    2003-05-08

    We investigated the existence of a cross-modal sensory gating reflected by the modulation of an early electrophysiological index, the P50 component. We analyzed event-related brain potentials elicited by audiovisual speech stimuli manipulated along two dimensions: congruency and discriminability. The results showed that the P50 was attenuated when visual and auditory speech information were redundant (i.e. congruent), in comparison with this same event-related potential component elicited with discrepant audiovisual dubbing. When hard to discriminate, however, bimodal incongruent speech stimuli elicited a similar pattern of P50 attenuation. We concluded to the existence of a visual-to-auditory cross-modal sensory gating phenomenon. These results corroborate previous findings revealing a very early audiovisual interaction during speech perception. Finally, we postulated that the sensory gating system included a cross-modal dimension.

  5. Prestimulus subsequent memory effects for auditory and visual events.

    Science.gov (United States)

    Otten, Leun J; Quayle, Angela H; Puvaneswaran, Bhamini

    2010-06-01

    It has been assumed that the effective encoding of information into memory primarily depends on neural activity elicited when an event is initially encountered. Recently, it has been shown that memory formation also relies on neural activity just before an event. The precise role of such activity in memory is currently unknown. Here, we address whether prestimulus activity affects the encoding of auditory and visual events, is set up on a trial-by-trial basis, and varies as a function of the type of recognition judgment an item later receives. Electrical brain activity was recorded from the scalps of 24 healthy young adults while they made semantic judgments on randomly intermixed series of visual and auditory words. Each word was preceded by a cue signaling the modality of the upcoming word. Auditory words were preceded by auditory cues and visual words by visual cues. A recognition memory test with remember/know judgments followed after a delay of about 45 min. As observed previously, a negative-going, frontally distributed modulation just before visual word onset predicted later recollection of the word. Crucially, the same effect was found for auditory words and observed on stay as well as switch trials. These findings emphasize the flexibility and general role of prestimulus activity in memory formation, and support a functional interpretation of the activity in terms of semantic preparation. At least with an unpredictable trial sequence, the activity is set up anew on each trial.

  6. Auditory stream segregation using bandpass noises: evidence from event-related potentials

    Directory of Open Access Journals (Sweden)

    Yingjiu eNie

    2014-09-01

    Full Text Available The current study measured neural responses to investigate auditory stream segregation of noise stimuli with or without clear spectral contrast. Sequences of alternating A and B noise bursts were presented to elicit stream segregation in normal-hearing listeners. The successive B bursts in each sequence maintained an equal amount of temporal separation with manipulations introduced on the last stimulus. The last B burst was either delayed for 50% of the sequences or not delayed for the other 50%. The A bursts were jittered in between every two adjacent B bursts. To study the effects of spectral separation on streaming, the A and B bursts were further manipulated by using either bandpass-filtered noises widely spaced in center frequency or broadband noises. Event-related potentials (ERPs to the last B bursts were analyzed to compare the neural responses to the delay vs. no-delay trials in both passive and attentive listening conditions. In the passive listening condition, a trend for a possible late mismatch negativity (MMN or late discriminative negativity (LDN response was observed only when the A and B bursts were spectrally separate, suggesting that spectral separation in the A and B burst sequences could be conducive to stream segregation at the pre-attentive level. In the attentive condition, a P300 response was consistently elicited regardless of whether there was spectral separation between the A and B bursts, indicating the facilitative role of voluntary attention in stream segregation. The results suggest that reliable ERP measures can be used as indirect indicators for auditory stream segregation in conditions of weak spectral contrast. These findings have important implications for cochlear implant (CI studies – as spectral information available through a CI device or simulation is substantially degraded, it may require more attention to achieve stream segregation.

  7. Auditory attention in childhood and adolescence: An event-related potential study of spatial selective attention to one of two simultaneous stories

    Science.gov (United States)

    Karns, Christina M.; Isbell, Elif; Giuliano, Ryan J.; Neville, Helen J.

    2015-01-01

    Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs) in human children across five age groups: 3–5 years; 10 years; 13 years; 16 years; and young adults using a naturalistic dichotic listening paradigm, characterizing the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages. PMID:26002721

  8. Auditory attention in childhood and adolescence: An event-related potential study of spatial selective attention to one of two simultaneous stories.

    Science.gov (United States)

    Karns, Christina M; Isbell, Elif; Giuliano, Ryan J; Neville, Helen J

    2015-06-01

    Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs) across five age groups: 3-5 years; 10 years; 13 years; 16 years; and young adults. Using a naturalistic dichotic listening paradigm, we characterized the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Quantifying the impact on navigation performance in visually impaired: Auditory information loss versus information gain enabled through electronic travel aids.

    Directory of Open Access Journals (Sweden)

    Alex Kreilinger

    Full Text Available This study's purpose was to analyze and quantify the impact of auditory information loss versus information gain provided by electronic travel aids (ETAs on navigation performance in people with low vision. Navigation performance of ten subjects (age: 54.9±11.2 years with visual acuities >1.0 LogMAR was assessed via the Graz Mobility Test (GMT. Subjects passed through a maze in three different modalities: 'Normal' with visual and auditory information available, 'Auditory Information Loss' with artificially reduced hearing (leaving only visual information, and 'ETA' with a vibrating ETA based on ultrasonic waves, thereby facilitating visual, auditory, and tactile information. Main performance measures comprised passage time and number of contacts. Additionally, head tracking was used to relate head movements to motion direction. When comparing 'Auditory Information Loss' to 'Normal', subjects needed significantly more time (p<0.001, made more contacts (p<0.001, had higher relative viewing angles (p = 0.002, and a higher percentage of orientation losses (p = 0.011. The only significant difference when comparing 'ETA' to 'Normal' was a reduced number of contacts (p<0.001. Our study provides objective, quantifiable measures of the impact of reduced hearing on the navigation performance in low vision subjects. Significant effects of 'Auditory Information Loss' were found for all measures; for example, passage time increased by 17.4%. These findings show that low vision subjects rely on auditory information for navigation. In contrast, the impact of the ETA was not significant but further analysis of head movements revealed two different coping strategies: half of the subjects used the ETA to increase speed, whereas the other half aimed at avoiding contacts.

  10. Event-related delta, theta, alpha and gamma correlates to auditory oddball processing during Vipassana meditation

    Science.gov (United States)

    Delorme, Arnaud; Polich, John

    2013-01-01

    Long-term Vipassana meditators sat in meditation vs. a control (instructed mind wandering) states for 25 min, electroencephalography (EEG) was recorded and condition order counterbalanced. For the last 4 min, a three-stimulus auditory oddball series was presented during both meditation and control periods through headphones and no task imposed. Time-frequency analysis demonstrated that meditation relative to the control condition evinced decreased evoked delta (2–4 Hz) power to distracter stimuli concomitantly with a greater event-related reduction of late (500–900 ms) alpha-1 (8–10 Hz) activity, which indexed altered dynamics of attentional engagement to distracters. Additionally, standard stimuli were associated with increased early event-related alpha phase synchrony (inter-trial coherence) and evoked theta (4–8 Hz) phase synchrony, suggesting enhanced processing of the habituated standard background stimuli. Finally, during meditation, there was a greater differential early-evoked gamma power to the different stimulus classes. Correlation analysis indicated that this effect stemmed from a meditation state-related increase in early distracter-evoked gamma power and phase synchrony specific to longer-term expert practitioners. The findings suggest that Vipassana meditation evokes a brain state of enhanced perceptual clarity and decreased automated reactivity. PMID:22648958

  11. Dividing time: Concurrent timing of auditory and visual events by young and elderly adults

    OpenAIRE

    McAuley, J. Devin; Miller, Jonathan P.; Wang, Mo; Pang, Kevin C. H.

    2010-01-01

    This article examines age differences in individual’s ability to produce the durations of learned auditory and visual target events either in isolation (focused attention) or concurrently (divided attention). Young adults produced learned target durations equally well in focused and divided attention conditions. Older adults in contrast showed an age-related increase in timing variability in divided attention conditions that tended to be more pronounced for visual targets than for auditory ta...

  12. Changes of auditory event-related potentials in ovariectomized rats injected with d-galactose: Protective role of rosmarinic acid.

    Science.gov (United States)

    Kantar-Gok, Deniz; Hidisoglu, Enis; Er, Hakan; Acun, Alev Duygu; Olgar, Yusuf; Yargıcoglu, Piraye

    2017-09-01

    Rosmarinic acid (RA), which has multiple bioactive properties, might be a useful agent for protecting central nervous system against age related alterations. In this context, the purpose of the present study was to investigate possible protective effects of RA on mismatch negativity (MMN) component of auditory event-related potentials (AERPs) as an indicator of auditory discrimination and echoic memory in the ovariectomized (OVX) rats injected with d-galactose combined with neurochemical and histological analyses. Ninety female Wistar rats were randomly divided into six groups: sham control (S); RA-treated (R); OVX (O); OVX+RA-treated (OR); OVX+d-galactose-treated (OD); OVX+d-galactose+RA-treated (ODR). Eight weeks later, MMN responses were recorded using the oddball condition. An amplitude reduction of some components of AERPs was observed due to ovariectomy with or without d-galactose administiration and these reduction patterns were diverse for different electrode locations. MMN amplitudes were significantly lower over temporal and right frontal locations in the O and OD groups versus the S and R groups, which was accompanied by increased thiobarbituric acid reactive substances (TBARS) and hydroxy-2-nonenal (4-HNE) levels. RA treatment significantly increased AERP/MMN amplitudes and lowered the TBARS/4-HNE levels in the OR and ODR groups versus the O and OD groups, respectively. Our findings support the potential benefit of RA in the prevention of auditory distortion related to the estrogen deficiency and d-galactose administration at least partly by antioxidant actions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Neuronal activity in primate prefrontal cortex related to goal-directed behavior during auditory working memory tasks.

    Science.gov (United States)

    Huang, Ying; Brosch, Michael

    2016-06-01

    Prefrontal cortex (PFC) has been documented to play critical roles in goal-directed behaviors, like representing goal-relevant events and working memory (WM). However, neurophysiological evidence for such roles of PFC has been obtained mainly with visual tasks but rarely with auditory tasks. In the present study, we tested roles of PFC in auditory goal-directed behaviors by recording local field potentials in the auditory region of left ventrolateral PFC while a monkey performed auditory WM tasks. The tasks consisted of multiple events and required the monkey to change its mental states to achieve the reward. The events were auditory and visual stimuli, as well as specific actions. Mental states were engaging in the tasks and holding task-relevant information in auditory WM. We found that, although based on recordings from one hemisphere in one monkey only, PFC represented multiple events that were important for achieving reward, including auditory and visual stimuli like turning on and off an LED, as well as bar touch. The responses to auditory events depended on the tasks and on the context of the tasks. This provides support for the idea that neuronal representations in PFC are flexible and can be related to the behavioral meaning of stimuli. We also found that engaging in the tasks and holding information in auditory WM were associated with persistent changes of slow potentials, both of which are essential for auditory goal-directed behaviors. Our study, on a single hemisphere in a single monkey, reveals roles of PFC in auditory goal-directed behaviors similar to those in visual goal-directed behaviors, suggesting that functions of PFC in goal-directed behaviors are probably common across the auditory and visual modality. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Dividing time: concurrent timing of auditory and visual events by young and elderly adults.

    Science.gov (United States)

    McAuley, J Devin; Miller, Jonathan P; Wang, Mo; Pang, Kevin C H

    2010-07-01

    This article examines age differences in individual's ability to produce the durations of learned auditory and visual target events either in isolation (focused attention) or concurrently (divided attention). Young adults produced learned target durations equally well in focused and divided attention conditions. Older adults, in contrast, showed an age-related increase in timing variability in divided attention conditions that tended to be more pronounced for visual targets than for auditory targets. Age-related impairments were associated with a decrease in working memory span; moreover, the relationship between working memory and timing performance was largest for visual targets in divided attention conditions.

  15. Temporal integration of sequential auditory events: silent period in sound pattern activates human planum temporale.

    Science.gov (United States)

    Mustovic, Henrietta; Scheffler, Klaus; Di Salle, Francesco; Esposito, Fabrizio; Neuhoff, John G; Hennig, Jürgen; Seifritz, Erich

    2003-09-01

    Temporal integration is a fundamental process that the brain carries out to construct coherent percepts from serial sensory events. This process critically depends on the formation of memory traces reconciling past with present events and is particularly important in the auditory domain where sensory information is received both serially and in parallel. It has been suggested that buffers for transient auditory memory traces reside in the auditory cortex. However, previous studies investigating "echoic memory" did not distinguish between brain response to novel auditory stimulus characteristics on the level of basic sound processing and a higher level involving matching of present with stored information. Here we used functional magnetic resonance imaging in combination with a regular pattern of sounds repeated every 100 ms and deviant interspersed stimuli of 100-ms duration, which were either brief presentations of louder sounds or brief periods of silence, to probe the formation of auditory memory traces. To avoid interaction with scanner noise, the auditory stimulation sequence was implemented into the image acquisition scheme. Compared to increased loudness events, silent periods produced specific neural activation in the right planum temporale and temporoparietal junction. Our findings suggest that this area posterior to the auditory cortex plays a critical role in integrating sequential auditory events and is involved in the formation of short-term auditory memory traces. This function of the planum temporale appears to be fundamental in the segregation of simultaneous sound sources.

  16. The role of auditory transient and deviance processing in distraction of task performance: a combined behavioral and event-related brain potential study

    Directory of Open Access Journals (Sweden)

    Stefan eBerti

    2013-07-01

    Full Text Available Distraction of goal-oriented performance by a sudden change in the auditory environment is an everyday life experience. Different types of changes can be distracting, including a sudden onset of a transient sound and a slight deviation of otherwise regular auditory background stimulation. With regard to deviance detection, it is assumed that slight changes in a continuous sequence of auditory stimuli are detected by a predictive coding mechanisms and it has been demonstrated that this mechanism is capable of distracting ongoing task performance. In contrast, it is open whether transient detection – which does not rely on predictive coding mechanisms – can trigger behavioral distraction, too. In the present study, the effect of rare auditory changes on visual task performance is tested in an auditory-visual cross-modal distraction paradigm. The rare changes are either embedded within a continuous standard stimulation (triggering deviance detection or are presented within an otherwise silent situation (triggering transient detection. In the event-related brain potentials, deviants elicited the mismatch negativity (MMN while transients elicited an enhanced N1 component, mirroring pre-attentive change detection in both conditions but on the basis of different neuro-cognitive processes. These sensory components are followed by attention related ERP components including the P3a and the reorienting negativity (RON. This demonstrates that both types of changes trigger switches of attention. Finally, distraction of task performance is observable, too, but the impact of deviants is higher compared to transients. These findings suggest different routes of distraction allowing for the automatic processing of a wide range of potentially relevant changes in the environment as a pre-requisite for adaptive behavior.

  17. A Basic Study on P300 Event-Related Potentials Evoked by Simultaneous Presentation of Visual and Auditory Stimuli for the Communication Interface

    Directory of Open Access Journals (Sweden)

    Masami Hashimoto

    2011-10-01

    Full Text Available We have been engaged in the development of a brain-computer interface (BCI based on the cognitive P300 event-related potentials (ERPs evoked by simultaneous presentation of visual and auditory stimuli in order to assist with the communication in severe physical limitation persons. The purpose of the simultaneous presentation of these stimuli is to give the user more choices as commands. First, we extracted P300 ERPs by either visual oddball paradigm or auditory oddball paradigm. Then amplitude and latency of the P300 ERPs were measured. Second, visual and auditory stimuli were presented simultaneously, we measured the P300 ERPs varying the condition of combinations of these stimuli. In this report, we used 3 colors as visual stimuli and 3 types of MIDI sounds as auditory stimuli. Two types of simultaneous presentations were examined. The one was conducted with random combination. The other was called group stimulation, combining one color, such as red, and one MIDI sound, such as piano, in order to make a group; three groups were made. Each group was presented to users randomly. We evaluated the possibility of BCI using these stimuli from the amplitudes and the latencies of P300 ERPs.

  18. Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: an event-related potential and dipole-model analysis.

    Science.gov (United States)

    Giard, M H; Lavikahen, J; Reinikainen, K; Perrin, F; Bertrand, O; Pernier, J; Näätänen, R

    1995-01-01

    Abstract The present study analyzed the neural correlates of acoustic stimulus representation in echoic sensory memory. The neural traces of auditory sensory memory were indirectly studied by using the mismatch negativity (MMN), an event-related potential component elicited by a change in a repetitive sound. The MMN is assumed to reflect change detection in a comparison process between the sensory input from a deviant stimulus and the neural representation of repetitive stimuli in echoic memory. The scalp topographies of the MMNs elicited by pure tones deviating from standard tones by either frequency, intensity, or duration varied according to the type of stimulus deviance, indicating that the MMNs for different attributes originate, at least in part, from distinct neural populations in the auditory cortex. This result was supported by dipole-model analysis. If the MMN generator process occurs where the stimulus information is stored, these findings strongly suggest that the frequency, intensity, and duration of acoustic stimuli have a separate neural representation in sensory memory.

  19. Classification of Single-Trial Auditory Events Using Dry-Wireless EEG During Real and Motion Simulated Flight

    Directory of Open Access Journals (Sweden)

    Daniel eCallan

    2015-02-01

    Full Text Available Application of neuro-augmentation technology based on dry-wireless EEG may be considerably beneficial for aviation and space operations because of the inherent dangers involved. In this study we evaluate classification performance of perceptual events using a dry-wireless EEG system during motion platform based flight simulation and actual flight in an open cockpit biplane to determine if the system can be used in the presence of considerable environmental and physiological artifacts. A passive task involving 200 random auditory presentations of a chirp sound was used for evaluation. The advantage of this auditory task is that it does not interfere with the perceptual motor processes involved with piloting the plane. Classification was based on identifying the presentation of a chirp sound versus silent periods. Evaluation of Independent component analysis and Kalman filtering to enhance classification performance by extracting brain activity related to the auditory event from other non-task related brain activity and artifacts was assessed. The results of permutation testing revealed that single trial classification of presence or absence of an auditory event was significantly above chance for all conditions on a novel test set. The best performance could be achieved with both ICA and Kalman filtering relative to no processing: Platform Off (83.4% vs 78.3%, Platform On (73.1% vs 71.6%, Biplane Engine Off (81.1% vs 77.4%, and Biplane Engine On (79.2% vs 66.1%. This experiment demonstrates that dry-wireless EEG can be used in environments with considerable vibration, wind, acoustic noise, and physiological artifacts and achieve good single trial classification performance that is necessary for future successful application of neuro-augmentation technology based on brain-machine interfaces.

  20. Hippocampal P3-Like Auditory Event-Related Potentials are Disrupted in a Rat Model of Cholinergic Degeneration in Alzheimer's Disease: Reversal by Donepezil Treatment

    DEFF Research Database (Denmark)

    Laursen, Bettina; Mørk, Arne; Kristiansen, Uffe

    2014-01-01

    P300 (P3) event-related potentials (ERPs) have been suggested to be an endogenous marker of cognitive function and auditory oddball paradigms are frequently used to evaluate P3 ERPs in clinical settings. Deficits in P3 amplitude and latency reflect some of the neurological dysfunctions related...... cholinergic degeneration induced by SAP. SAP-lesioned rats may constitute a suitable model to test the efficacy of pro-cognitive substances in an applied experimental setup....

  1. Arousal and attention re-orienting in autism spectrum disorders: evidence from auditory event-related potentials

    Directory of Open Access Journals (Sweden)

    Elena V Orekhova

    2014-02-01

    Full Text Available The extended phenotype of autism spectrum disorders (ASD includes a combination of arousal regulation problems, sensory modulation difficulties, and attention re-orienting deficit. A slow and inefficient re-orienting to stimuli that appear outside of the attended sensory stream is thought to be especially detrimental for social functioning. Event-related potentials (ERPs and magnetic fields (ERFs may help to reveal which processing stages underlying brain response to unattended but salient sensory event are affected in individuals with ASD. Previous research focusing on two sequential stages of the brain response - automatic detection of physical changes in auditory stream, indexed by mismatch negativity (MMN, and evaluation of stimulus novelty, indexed by P3a component, - found in individuals with ASD either increased, decreased or normal processing of deviance and novelty. The review examines these apparently conflicting results, notes gaps in previous findings, and suggests a potentially unifying hypothesis relating the dampened responses to unattended sensory events to the deficit in rapid arousal process. Specifically, ‘sensory gating’ studies focused on pre-attentive arousal consistently demonstrated that brain response to unattended and temporally novel sound in ASD is already affected at around 100 ms after stimulus onset. We hypothesize that abnormalities in nicotinic cholinergic arousal pathways, previously reported in individuals with ASD, may contribute to these ERP/ERF aberrations and result in attention re-orienting deficit. Such cholinergic dysfunction may be present in individuals with ASD early in life and can influence both sensory processing and attention re-orienting behavior. Identification of early neurophysiological biomarkers for cholinergic deficit would help to detect infants at risk who can potentially benefit from particular types of therapies or interventions.

  2. Meaning From Environmental Sounds: Types of Signal-Referent Relations and Their Effect on Recognizing Auditory Icons

    Science.gov (United States)

    Keller, Peter; Stevens, Catherine

    2004-01-01

    This article addresses the learnability of auditory icons, that is, environmental sounds that refer either directly or indirectly to meaningful events. Direct relations use the sound made by the target event whereas indirect relations substitute a surrogate for the target. Across 3 experiments, different indirect relations (ecological, in which…

  3. Comparison of effects of valsartan and amlodipine on cognitive functions and auditory p300 event-related potentials in elderly hypertensive patients.

    Science.gov (United States)

    Katada, Eiichi; Uematsu, Norihiko; Takuma, Yuko; Matsukawa, Noriyuki

    2014-01-01

    We compared the antihypertensive effect of valsartan (VAL) and amlodipine (AML) treatments in elderly hypertensive patients by examining the long-term changes in cognitive function and auditory P300 event-related potentials. We enrolled 20 outpatients, including 12 men and 8 women in the age group of 56 to 81 years who had mild to moderate essential hypertension. The subjects were randomly allocated to receive either 80 mg VAL once a day (10 patients) or 5 mg AML once a day (10 patients). Neuropsychological assessment and auditory P300 event-related potentials were obtained before initiation of VAL or AML treatment and after 6 months of the treatment with VAL or AML. Neuropsychological assessment was evaluated by conducting the Mini-Mental State Examination, the verbal fluency, word-list memory, word-list recall test, word-list recognition, and Trails B tests. Both the groups showed significantly reduced-blood pressure after 6 months of treatment, and the intergroup difference was not significant. The mean baseline Mini-Mental State Examination scores of the VAL and AML groups were not significantly different. Amlodipine treatment did not significantly affect any test score, but VAL treatment significantly increased the word-list memory and word-list recall test scores. Valsartan, and not AML, significantly reduced the mean P300 latency after 6 months. These results suggest that VAL exerts a positive effect on cognitive functions, independent of its antihypertensive effect.

  4. Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children.

    Science.gov (United States)

    Badcock, Nicholas A; Preece, Kathryn A; de Wit, Bianca; Glenn, Katharine; Fieder, Nora; Thie, Johnson; McArthur, Genevieve

    2015-01-01

    Background. Previous work has demonstrated that a commercial gaming electroencephalography (EEG) system, Emotiv EPOC, can be adjusted to provide valid auditory event-related potentials (ERPs) in adults that are comparable to ERPs recorded by a research-grade EEG system, Neuroscan. The aim of the current study was to determine if the same was true for children. Method. An adapted Emotiv EPOC system and Neuroscan system were used to make simultaneous EEG recordings in nineteen 6- to 12-year-old children under "passive" and "active" listening conditions. In the passive condition, children were instructed to watch a silent DVD and ignore 566 standard (1,000 Hz) and 100 deviant (1,200 Hz) tones. In the active condition, they listened to the same stimuli, and were asked to count the number of 'high' (i.e., deviant) tones. Results. Intraclass correlations (ICCs) indicated that the ERP morphology recorded with the two systems was very similar for the P1, N1, P2, N2, and P3 ERP peaks (r = .82 to .95) in both passive and active conditions, and less so, though still strong, for mismatch negativity ERP component (MMN; r = .67 to .74). There were few differences between peak amplitude and latency estimates for the two systems. Conclusions. An adapted EPOC EEG system can be used to index children's late auditory ERP peaks (i.e., P1, N1, P2, N2, P3) and their MMN ERP component.

  5. Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children

    Directory of Open Access Journals (Sweden)

    Nicholas A. Badcock

    2015-04-01

    Full Text Available Background. Previous work has demonstrated that a commercial gaming electroencephalography (EEG system, Emotiv EPOC, can be adjusted to provide valid auditory event-related potentials (ERPs in adults that are comparable to ERPs recorded by a research-grade EEG system, Neuroscan. The aim of the current study was to determine if the same was true for children.Method. An adapted Emotiv EPOC system and Neuroscan system were used to make simultaneous EEG recordings in nineteen 6- to 12-year-old children under “passive” and “active” listening conditions. In the passive condition, children were instructed to watch a silent DVD and ignore 566 standard (1,000 Hz and 100 deviant (1,200 Hz tones. In the active condition, they listened to the same stimuli, and were asked to count the number of ‘high’ (i.e., deviant tones.Results. Intraclass correlations (ICCs indicated that the ERP morphology recorded with the two systems was very similar for the P1, N1, P2, N2, and P3 ERP peaks (r = .82 to .95 in both passive and active conditions, and less so, though still strong, for mismatch negativity ERP component (MMN; r = .67 to .74. There were few differences between peak amplitude and latency estimates for the two systems.Conclusions. An adapted EPOC EEG system can be used to index children’s late auditory ERP peaks (i.e., P1, N1, P2, N2, P3 and their MMN ERP component.

  6. Acute nicotine fails to alter event-related potential or behavioral performance indices of auditory distraction in cigarette smokers.

    Science.gov (United States)

    Knott, Verner J; Scherling, Carole S; Blais, Crystal M; Camarda, Jordan; Fisher, Derek J; Millar, Anne; McIntosh, Judy F

    2006-04-01

    Behavioral studies have shown that nicotine enhances performance in sustained attention tasks, but they have not shown convincing support for the effects of nicotine on tasks requiring selective attention or attentional control under conditions of distraction. We investigated distractibility in 14 smokers (7 females) with event-related brain potentials (ERPs) and behavioral performance measures extracted from an auditory discrimination task requiring a choice reaction time response to short- and long-duration tones, both with and without embedded deviants. Nicotine gum (4 mg), administered in a randomized, double-blind, placebo-controlled crossover design, failed to counter deviant-elicited behavioral distraction (i.e., slower reaction times and increased response errors), and it did not influence the distracter-elicited mismatch negativity, the P300a, or the reorienting negativity ERP components reflecting acoustic change detection, involuntary attentional switching, and attentional reorienting, respectively. Results are discussed in relation to a stimulus-filter model of smoking and in relation to future research directions.

  7. An Auditory Go/No-Go Study of Event-Related Potentials in Children with Fetal Alcohol Spectrum Disorders

    DEFF Research Database (Denmark)

    Steinmann, Tobias P.; Andrew, Colin M.; Thomsen, Carsten E.

    2011-01-01

    Abstract—In this study event-related potentials (ERPs) were used to investigate the effects of prenatal alcohol exposure on response inhibition identified during task performance. ERPs were recorded during a auditory Go/No Go task in two groups of children with mean age of 12:8years (11years to 14......:7years): one diagnosed with fetal alcohol syndrome (FAS) or partial FAS (FAS/PFAS; n = 12) and a control group of children of same age whose mothers abstained from alcohol or drank minimally during pregnancy (n = 11). The children were instructed to push a button in response to the Go stimulus...... trials, suggesting a less efficient early classification of the stimulus. P3 showed larger amplitudes to No-Go vs. Go in both groups. The study has provided new evidence for inhibition deficits in FAS/PFAS subjects identified by ERPs....

  8. Event-related brain potential correlates of human auditory sensory memory-trace formation.

    Science.gov (United States)

    Haenschel, Corinna; Vernon, David J; Dwivedi, Prabuddh; Gruzelier, John H; Baldeweg, Torsten

    2005-11-09

    The event-related potential (ERP) component mismatch negativity (MMN) is a neural marker of human echoic memory. MMN is elicited by deviant sounds embedded in a stream of frequent standards, reflecting the deviation from an inferred memory trace of the standard stimulus. The strength of this memory trace is thought to be proportional to the number of repetitions of the standard tone, visible as the progressive enhancement of MMN with number of repetitions (MMN memory-trace effect). However, no direct ERP correlates of the formation of echoic memory traces are currently known. This study set out to investigate changes in ERPs to different numbers of repetitions of standards, delivered in a roving-stimulus paradigm in which the frequency of the standard stimulus changed randomly between stimulus trains. Normal healthy volunteers (n = 40) were engaged in two experimental conditions: during passive listening and while actively discriminating changes in tone frequency. As predicted, MMN increased with increasing number of standards. However, this MMN memory-trace effect was caused mainly by enhancement with stimulus repetition of a slow positive wave from 50 to 250 ms poststimulus in the standard ERP, which is termed here "repetition positivity" (RP). This RP was recorded from frontocentral electrodes when participants were passively listening to or actively discriminating changes in tone frequency. RP may represent a human ERP correlate of rapid and stimulus-specific adaptation, a candidate neuronal mechanism underlying sensory memory formation in the auditory cortex.

  9. Temporal and identity prediction in visual-auditory events: Electrophysiological evidence from stimulus omissions.

    Science.gov (United States)

    van Laarhoven, Thijs; Stekelenburg, Jeroen J; Vroomen, Jean

    2017-04-15

    A rare omission of a sound that is predictable by anticipatory visual information induces an early negative omission response (oN1) in the EEG during the period of silence where the sound was expected. It was previously suggested that the oN1 was primarily driven by the identity of the anticipated sound. Here, we examined the role of temporal prediction in conjunction with identity prediction of the anticipated sound in the evocation of the auditory oN1. With incongruent audiovisual stimuli (a video of a handclap that is consistently combined with the sound of a car horn) we demonstrate in Experiment 1 that a natural match in identity between the visual and auditory stimulus is not required for inducing the oN1, and that the perceptual system can adapt predictions to unnatural stimulus events. In Experiment 2 we varied either the auditory onset (relative to the visual onset) or the identity of the sound across trials in order to hamper temporal and identity predictions. Relative to the natural stimulus with correct auditory timing and matching audiovisual identity, the oN1 was abolished when either the timing or the identity of the sound could not be predicted reliably from the video. Our study demonstrates the flexibility of the perceptual system in predictive processing (Experiment 1) and also shows that precise predictions of timing and content are both essential elements for inducing an oN1 (Experiment 2). Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Relating auditory attributes of multichannel sound to preference and to physical parameters

    DEFF Research Database (Denmark)

    Choisel, Sylvain; Wickelmaier, Florian Maria

    2006-01-01

    playing a role in sound quality evaluation. Eight selected attributes are quantified by a panel of 39 listeners using paired-comparison judgments and probabilistic choice models, and related to overall preference. A multiple-regression model predicts preference well, and some similarities are observed......Sound reproduced by multichannel systems is affected by many factors giving rise to various sensations, or auditory attributes. Relating specific attributes to overall preference and to physical measures of the sound field provides valuable information for a better understanding of the parameters...

  11. Effects of acute nicotine on event-related potential and performance indices of auditory distraction in nonsmokers.

    Science.gov (United States)

    Knott, Verner J; Bolton, Kiley; Heenan, Adam; Shah, Dhrasti; Fisher, Derek J; Villeneuve, Crystal

    2009-05-01

    Although nicotine has been purported to enhance attentional processes, this has been evidenced mostly in tasks of sustained attention, and its effects on selective attention and attentional control under conditions of distraction are less convincing. This study investigated the effects of nicotine on distractibility in 21 (11 males) nonsmokers with event-related potentials (ERPs) and behavioral performance measures extracted from an auditory discrimination task requiring a choice reaction time response to short- and long-duration tones, with and without imbedded deviants. Administered in a randomized, double-blind, placebo-controlled crossover design, nicotine gum (6 mg) failed to counter deviant-elicited behavioral distraction characterized by longer reaction times and increased response errors. Of the deviant-elicited ERP components, nicotine did not alter the P3a-indexed attentional switching to the deviant, but in females, it tended to diminish the automatic processing of the deviant as shown by a smaller mismatch negativity component, and it attenuated attentional reorienting following deviant-elicited distraction, as reflected by a reduced reorienting negativity ERP component. Results are discussed in relation to attentional models of nicotine and with respect to future research directions.

  12. Musical experience, auditory perception and reading-related skills in children.

    Science.gov (United States)

    Banai, Karen; Ahissar, Merav

    2013-01-01

    The relationships between auditory processing and reading-related skills remain poorly understood despite intensive research. Here we focus on the potential role of musical experience as a confounding factor. Specifically we ask whether the pattern of correlations between auditory and reading related skills differ between children with different amounts of musical experience. Third grade children with various degrees of musical experience were tested on a battery of auditory processing and reading related tasks. Very poor auditory thresholds and poor memory skills were abundant only among children with no musical education. In this population, indices of auditory processing (frequency and interval discrimination thresholds) were significantly correlated with and accounted for up to 13% of the variance in reading related skills. Among children with more than one year of musical training, auditory processing indices were better, yet reading related skills were not correlated with them. A potential interpretation for the reduction in the correlations might be that auditory and reading-related skills improve at different rates as a function of musical training. Participants' previous musical training, which is typically ignored in studies assessing the relations between auditory and reading related skills, should be considered. Very poor auditory and memory skills are rare among children with even a short period of musical training, suggesting musical training could have an impact on both. The lack of correlation in the musically trained population suggests that a short period of musical training does not enhance reading related skills of individuals with within-normal auditory processing skills. Further studies are required to determine whether the associations between musical training, auditory processing and memory are indeed causal or whether children with poor auditory and memory skills are less likely to study music and if so, why this is the case.

  13. Musical experience, auditory perception and reading-related skills in children.

    Directory of Open Access Journals (Sweden)

    Karen Banai

    Full Text Available BACKGROUND: The relationships between auditory processing and reading-related skills remain poorly understood despite intensive research. Here we focus on the potential role of musical experience as a confounding factor. Specifically we ask whether the pattern of correlations between auditory and reading related skills differ between children with different amounts of musical experience. METHODOLOGY/PRINCIPAL FINDINGS: Third grade children with various degrees of musical experience were tested on a battery of auditory processing and reading related tasks. Very poor auditory thresholds and poor memory skills were abundant only among children with no musical education. In this population, indices of auditory processing (frequency and interval discrimination thresholds were significantly correlated with and accounted for up to 13% of the variance in reading related skills. Among children with more than one year of musical training, auditory processing indices were better, yet reading related skills were not correlated with them. A potential interpretation for the reduction in the correlations might be that auditory and reading-related skills improve at different rates as a function of musical training. CONCLUSIONS/SIGNIFICANCE: Participants' previous musical training, which is typically ignored in studies assessing the relations between auditory and reading related skills, should be considered. Very poor auditory and memory skills are rare among children with even a short period of musical training, suggesting musical training could have an impact on both. The lack of correlation in the musically trained population suggests that a short period of musical training does not enhance reading related skills of individuals with within-normal auditory processing skills. Further studies are required to determine whether the associations between musical training, auditory processing and memory are indeed causal or whether children with poor auditory and

  14. Auditory sensory memory in 2-year-old children: an event-related potential study.

    Science.gov (United States)

    Glass, Elisabeth; Sachse, Steffi; von Suchodoletz, Waldemar

    2008-03-26

    Auditory sensory memory is assumed to play an important role in cognitive development, but little is known about it in young children. The aim of this study was to estimate the duration of auditory sensory memory in 2-year-old children. We recorded the mismatch negativity in response to tone stimuli presented with different interstimulus intervals. Our findings suggest that in 2-year-old children the memory representation of the standard tone remains in the sensory memory store for at least 1 s but for less than 2 s. Recording the mismatch negativity with stimuli presented at various interstimulus intervals seems to be a useful method for studying the relationship between auditory sensory memory and normal and disturbed cognitive development.

  15. Temporal factors affecting somatosensory-auditory interactions in speech processing

    Directory of Open Access Journals (Sweden)

    Takayuki eIto

    2014-11-01

    Full Text Available Speech perception is known to rely on both auditory and visual information. However, sound specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009. In the present study we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory-auditory interaction in speech perception. We examined the changes in event-related potentials in response to multisensory synchronous (simultaneous and asynchronous (90 ms lag and lead somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the event-related potential was reliably different from the two unisensory potentials. More importantly, the magnitude of the event-related potential difference varied as a function of the relative timing of the somatosensory-auditory stimulation. Event-related activity change due to stimulus timing was seen between 160-220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory-auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production.

  16. Reduced object related negativity response indicates impaired auditory scene analysis in adults with autistic spectrum disorder

    Directory of Open Access Journals (Sweden)

    Veema Lodhia

    2014-02-01

    Full Text Available Auditory Scene Analysis provides a useful framework for understanding atypical auditory perception in autism. Specifically, a failure to segregate the incoming acoustic energy into distinct auditory objects might explain the aversive reaction autistic individuals have to certain auditory stimuli or environments. Previous research with non-autistic participants has demonstrated the presence of an Object Related Negativity (ORN in the auditory event related potential that indexes pre-attentive processes associated with auditory scene analysis. Also evident is a later P400 component that is attention dependent and thought to be related to decision-making about auditory objects. We sought to determine whether there are differences between individuals with and without autism in the levels of processing indexed by these components. Electroencephalography (EEG was used to measure brain responses from a group of 16 autistic adults, and 16 age- and verbal-IQ-matched typically-developing adults. Auditory responses were elicited using lateralized dichotic pitch stimuli in which inter-aural timing differences create the illusory perception of a pitch that is spatially separated from a carrier noise stimulus. As in previous studies, control participants produced an ORN in response to the pitch stimuli. However, this component was significantly reduced in the participants with autism. In contrast, processing differences were not observed between the groups at the attention-dependent level (P400. These findings suggest that autistic individuals have difficulty segregating auditory stimuli into distinct auditory objects, and that this difficulty arises at an early pre-attentive level of processing.

  17. Absence of direction-specific cross-modal visual-auditory adaptation in motion-onset event-related potentials.

    Science.gov (United States)

    Grzeschik, Ramona; Lewald, Jörg; Verhey, Jesko L; Hoffmann, Michael B; Getzmann, Stephan

    2016-01-01

    Adaptation to visual or auditory motion affects within-modality motion processing as reflected by visual or auditory free-field motion-onset evoked potentials (VEPs, AEPs). Here, a visual-auditory motion adaptation paradigm was used to investigate the effect of visual motion adaptation on VEPs and AEPs to leftward motion-onset test stimuli. Effects of visual adaptation to (i) scattered light flashes, and motion in the (ii) same or in the (iii) opposite direction of the test stimulus were compared. For the motion-onset VEPs, i.e. the intra-modal adaptation conditions, direction-specific adaptation was observed--the change-N2 (cN2) and change-P2 (cP2) amplitudes were significantly smaller after motion adaptation in the same than in the opposite direction. For the motion-onset AEPs, i.e. the cross-modal adaptation condition, there was an effect of motion history only in the change-P1 (cP1), and this effect was not direction-specific--cP1 was smaller after scatter than after motion adaptation to either direction. No effects were found for later components of motion-onset AEPs. While the VEP results provided clear evidence for the existence of a direction-specific effect of motion adaptation within the visual modality, the AEP findings suggested merely a motion-related, but not a direction-specific effect. In conclusion, the adaptation of veridical auditory motion detectors by visual motion is not reflected by the AEPs of the present study. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. EEG Channel Selection Using Particle Swarm Optimization for the Classification of Auditory Event-Related Potentials

    Directory of Open Access Journals (Sweden)

    Alejandro Gonzalez

    2014-01-01

    Full Text Available Brain-machine interfaces (BMI rely on the accurate classification of event-related potentials (ERPs and their performance greatly depends on the appropriate selection of classifier parameters and features from dense-array electroencephalography (EEG signals. Moreover, in order to achieve a portable and more compact BMI for practical applications, it is also desirable to use a system capable of accurate classification using information from as few EEG channels as possible. In the present work, we propose a method for classifying P300 ERPs using a combination of Fisher Discriminant Analysis (FDA and a multiobjective hybrid real-binary Particle Swarm Optimization (MHPSO algorithm. Specifically, the algorithm searches for the set of EEG channels and classifier parameters that simultaneously maximize the classification accuracy and minimize the number of used channels. The performance of the method is assessed through offline analyses on datasets of auditory ERPs from sound discrimination experiments. The proposed method achieved a higher classification accuracy than that achieved by traditional methods while also using fewer channels. It was also found that the number of channels used for classification can be significantly reduced without greatly compromising the classification accuracy.

  19. Emergence of auditory-visual relations from a visual-visual baseline with auditory-specific consequences in individuals with autism.

    Science.gov (United States)

    Varella, André A B; de Souza, Deisy G

    2014-07-01

    Empirical studies have demonstrated that class-specific contingencies may engender stimulus-reinforcer relations. In these studies, crossmodal relations emerged when crossmodal relations comprised the baseline, and intramodal relations emerged when intramodal relations were taught during baseline. This study investigated whether auditory-visual relations (crossmodal) would emerge after participants learned a visual-visual baseline (intramodal) with auditory stimuli presented as specific consequences. Four individuals with autism learned AB and CD relations with class-specific reinforcers. When A1 and C1 were presented as samples, the selections of B1 and D1, respectively, were followed by an edible (R1) and a sound (S1). Selections of B2 and D2 under the control of A2 and C2, respectively, were followed by R2 and S2. Probe trials tested for visual-visual AC, CA, AD, DA, BC, CB, BD, and DB emergent relations and auditory-visual SA, SB, SC, and SD emergent relations. All of the participants demonstrated the emergence of all auditory-visual relations, and three of four participants showed emergence of all visual-visual relations. Thus, the emergence of auditory-visual relations from specific auditory consequences suggests that these relations do not depend on crossmodal baseline training. The procedure has great potential for applied technology to generate auditory-visual discriminations and stimulus classes in the context of behavior-analytic interventions for autism. © Society for the Experimental Analysis of Behavior.

  20. Neurofeedback-Based Enhancement of Single-Trial Auditory Evoked Potentials: Treatment of Auditory Verbal Hallucinations in Schizophrenia.

    Science.gov (United States)

    Rieger, Kathryn; Rarra, Marie-Helene; Diaz Hernandez, Laura; Hubl, Daniela; Koenig, Thomas

    2018-03-01

    Auditory verbal hallucinations depend on a broad neurobiological network ranging from the auditory system to language as well as memory-related processes. As part of this, the auditory N100 event-related potential (ERP) component is attenuated in patients with schizophrenia, with stronger attenuation occurring during auditory verbal hallucinations. Changes in the N100 component assumingly reflect disturbed responsiveness of the auditory system toward external stimuli in schizophrenia. With this premise, we investigated the therapeutic utility of neurofeedback training to modulate the auditory-evoked N100 component in patients with schizophrenia and associated auditory verbal hallucinations. Ten patients completed electroencephalography neurofeedback training for modulation of N100 (treatment condition) or another unrelated component, P200 (control condition). On a behavioral level, only the control group showed a tendency for symptom improvement in the Positive and Negative Syndrome Scale total score in a pre-/postcomparison ( t (4) = 2.71, P = .054); however, no significant differences were found in specific hallucination related symptoms ( t (7) = -0.53, P = .62). There was no significant overall effect of neurofeedback training on ERP components in our paradigm; however, we were able to identify different learning patterns, and found a correlation between learning and improvement in auditory verbal hallucination symptoms across training sessions ( r = 0.664, n = 9, P = .05). This effect results, with cautious interpretation due to the small sample size, primarily from the treatment group ( r = 0.97, n = 4, P = .03). In particular, a within-session learning parameter showed utility for predicting symptom improvement with neurofeedback training. In conclusion, patients with schizophrenia and associated auditory verbal hallucinations who exhibit a learning pattern more characterized by within-session aptitude may benefit from electroencephalography neurofeedback

  1. Speech Auditory Alerts Promote Memory for Alerted Events in a Video-Simulated Self-Driving Car Ride.

    Science.gov (United States)

    Nees, Michael A; Helbein, Benji; Porter, Anna

    2016-05-01

    Auditory displays could be essential to helping drivers maintain situation awareness in autonomous vehicles, but to date, few or no studies have examined the effectiveness of different types of auditory displays for this application scenario. Recent advances in the development of autonomous vehicles (i.e., self-driving cars) have suggested that widespread automation of driving may be tenable in the near future. Drivers may be required to monitor the status of automation programs and vehicle conditions as they engage in secondary leisure or work tasks (entertainment, communication, etc.) in autonomous vehicles. An experiment compared memory for alerted events-a component of Level 1 situation awareness-using speech alerts, auditory icons, and a visual control condition during a video-simulated self-driving car ride with a visual secondary task. The alerts gave information about the vehicle's operating status and the driving scenario. Speech alerts resulted in better memory for alerted events. Both auditory display types resulted in less perceived effort devoted toward the study tasks but also greater perceived annoyance with the alerts. Speech auditory displays promoted Level 1 situation awareness during a simulation of a ride in a self-driving vehicle under routine conditions, but annoyance remains a concern with auditory displays. Speech auditory displays showed promise as a means of increasing Level 1 situation awareness of routine scenarios during an autonomous vehicle ride with an unrelated secondary task. © 2016, Human Factors and Ergonomics Society.

  2. Effects of twenty-minute 3G mobile phone irradiation on event related potential components and early gamma synchronization in auditory oddball paradigm.

    Science.gov (United States)

    Stefanics, G; Thuróczy, G; Kellényi, L; Hernádi, I

    2008-11-19

    We investigated the potential effects of 20 min irradiation from a new generation Universal Mobile Telecommunication System (UMTS) 3G mobile phone on human event related potentials (ERPs) in an auditory oddball paradigm. In a double-blind task design, subjects were exposed to either genuine or sham irradiation in two separate sessions. Before and after irradiation subjects were presented with a random series of 50 ms tone burst (frequent standards: 1 kHz, P=0.8, rare deviants: 1.5 kHz, P=0.2) at a mean repetition rate of 1500 ms while electroencephalogram (EEG) was recorded. The subjects' task was to silently count the appearance of targets. The amplitude and latency of the N100, N200, P200 and P300 components for targets and standards were analyzed in 29 subjects. We found no significant effects of electromagnetic field (EMF) irradiation on the amplitude and latency of the above ERP components. In order to study possible effects of EMF on attentional processes, we applied a wavelet-based time-frequency method to analyze the early gamma component of brain responses to auditory stimuli. We found that the early evoked gamma activity was insensitive to UMTS RF exposition. Our results support the notion, that a single 20 min irradiation from new generation 3G mobile phones does not induce measurable changes in latency or amplitude of ERP components or in oscillatory gamma-band activity in an auditory oddball paradigm.

  3. Visual Temporal Acuity Is Related to Auditory Speech Perception Abilities in Cochlear Implant Users.

    Science.gov (United States)

    Jahn, Kelly N; Stevenson, Ryan A; Wallace, Mark T

    Despite significant improvements in speech perception abilities following cochlear implantation, many prelingually deafened cochlear implant (CI) recipients continue to rely heavily on visual information to develop speech and language. Increased reliance on visual cues for understanding spoken language could lead to the development of unique audiovisual integration and visual-only processing abilities in these individuals. Brain imaging studies have demonstrated that good CI performers, as indexed by auditory-only speech perception abilities, have different patterns of visual cortex activation in response to visual and auditory stimuli as compared with poor CI performers. However, no studies have examined whether speech perception performance is related to any type of visual processing abilities following cochlear implantation. The purpose of the present study was to provide a preliminary examination of the relationship between clinical, auditory-only speech perception tests, and visual temporal acuity in prelingually deafened adult CI users. It was hypothesized that prelingually deafened CI users, who exhibit better (i.e., more acute) visual temporal processing abilities would demonstrate better auditory-only speech perception performance than those with poorer visual temporal acuity. Ten prelingually deafened adult CI users were recruited for this study. Participants completed a visual temporal order judgment task to quantify visual temporal acuity. To assess auditory-only speech perception abilities, participants completed the consonant-nucleus-consonant word recognition test and the AzBio sentence recognition test. Results were analyzed using two-tailed partial Pearson correlations, Spearman's rho correlations, and independent samples t tests. Visual temporal acuity was significantly correlated with auditory-only word and sentence recognition abilities. In addition, proficient CI users, as assessed via auditory-only speech perception performance, demonstrated

  4. Electrophysiological correlates of predictive coding of auditory location in the perception of natural audiovisual events.

    Science.gov (United States)

    Stekelenburg, Jeroen J; Vroomen, Jean

    2012-01-01

    In many natural audiovisual events (e.g., a clap of the two hands), the visual signal precedes the sound and thus allows observers to predict when, where, and which sound will occur. Previous studies have reported that there are distinct neural correlates of temporal (when) versus phonetic/semantic (which) content on audiovisual integration. Here we examined the effect of visual prediction of auditory location (where) in audiovisual biological motion stimuli by varying the spatial congruency between the auditory and visual parts. Visual stimuli were presented centrally, whereas auditory stimuli were presented either centrally or at 90° azimuth. Typical sub-additive amplitude reductions (AV - V audiovisual interaction was also found at 40-60 ms (P50) in the spatially congruent condition, while no effect of congruency was found on the suppression of the P2. This indicates that visual prediction of auditory location can be coded very early in auditory processing.

  5. Neurophysiological Effects of Meditation Based on Evoked and Event Related Potential Recordings.

    Science.gov (United States)

    Singh, Nilkamal; Telles, Shirley

    2015-01-01

    Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control.

  6. Neurophysiological Effects of Meditation Based on Evoked and Event Related Potential Recordings

    Science.gov (United States)

    Singh, Nilkamal; Telles, Shirley

    2015-01-01

    Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control. PMID:26137479

  7. Auditory perception and attention as reflected by the brain event-related potentials in children with Asperger syndrome.

    Science.gov (United States)

    Lepistö, T; Silokallio, S; Nieminen-von Wendt, T; Alku, P; Näätänen, R; Kujala, T

    2006-10-01

    Language development is delayed and deviant in individuals with autism, but proceeds quite normally in those with Asperger syndrome (AS). We investigated auditory-discrimination and orienting in children with AS using an event-related potential (ERP) paradigm that was previously applied to children with autism. ERPs were measured to pitch, duration, and phonetic changes in vowels and to corresponding changes in non-speech sounds. Active sound discrimination was evaluated with a sound-identification task. The mismatch negativity (MMN), indexing sound-discrimination accuracy, showed right-hemisphere dominance in the AS group, but not in the controls. Furthermore, the children with AS had diminished MMN-amplitudes and decreased hit rates for duration changes. In contrast, their MMN to speech pitch changes was parietally enhanced. The P3a, reflecting involuntary orienting to changes, was diminished in the children with AS for speech pitch and phoneme changes, but not for the corresponding non-speech changes. The children with AS differ from controls with respect to their sound-discrimination and orienting abilities. The results of the children with AS are relatively similar to those earlier obtained from children with autism using the same paradigm, although these clinical groups differ markedly in their language development.

  8. Effects of inter- and intramodal selective attention to non-spatial visual stimuli: An event-related potential analysis.

    NARCIS (Netherlands)

    de Ruiter, M.B.; Kok, A.; van der Schoot, M.

    1998-01-01

    Event-related potentials (ERPs) were recorded to trains of rapidly presented auditory and visual stimuli. ERPs in conditions in which Ss attended to different features of visual stimuli were compared with ERPs to the same type of stimuli when Ss attended to different features of auditory stimuli,

  9. Electrophysiological correlates of predictive coding of auditory location in the perception of natural audiovisual events

    Directory of Open Access Journals (Sweden)

    Jeroen eStekelenburg

    2012-05-01

    Full Text Available In many natural audiovisual events (e.g., a clap of the two hands, the visual signal precedes the sound and thus allows observers to predict when, where, and which sound will occur. Previous studies have already reported that there are distinct neural correlates of temporal (when versus phonetic/semantic (which content on audiovisual integration. Here we examined the effect of visual prediction of auditory location (where in audiovisual biological motion stimuli by varying the spatial congruency between the auditory and visual part of the audiovisual stimulus. Visual stimuli were presented centrally, whereas auditory stimuli were presented either centrally or at 90° azimuth. Typical subadditive amplitude reductions (AV – V < A were found for the auditory N1 and P2 for spatially congruent and incongruent conditions. The new finding is that the N1 suppression was larger for spatially congruent stimuli. A very early audiovisual interaction was also found at 30-50 ms in the spatially congruent condition, while no effect of congruency was found on the suppression of the P2. This indicates that visual prediction of auditory location can be coded very early in auditory processing.

  10. Phi-square Lexical Competition Database (Phi-Lex): an online tool for quantifying auditory and visual lexical competition.

    Science.gov (United States)

    Strand, Julia F

    2014-03-01

    A widely agreed-upon feature of spoken word recognition is that multiple lexical candidates in memory are simultaneously activated in parallel when a listener hears a word, and that those candidates compete for recognition (Luce, Goldinger, Auer, & Vitevitch, Perception 62:615-625, 2000; Luce & Pisoni, Ear and Hearing 19:1-36, 1998; McClelland & Elman, Cognitive Psychology 18:1-86, 1986). Because the presence of those competitors influences word recognition, much research has sought to quantify the processes of lexical competition. Metrics that quantify lexical competition continuously are more effective predictors of auditory and visual (lipread) spoken word recognition than are the categorical metrics traditionally used (Feld & Sommers, Speech Communication 53:220-228, 2011; Strand & Sommers, Journal of the Acoustical Society of America 130:1663-1672, 2011). A limitation of the continuous metrics is that they are somewhat computationally cumbersome and require access to existing speech databases. This article describes the Phi-square Lexical Competition Database (Phi-Lex): an online, searchable database that provides access to multiple metrics of auditory and visual (lipread) lexical competition for English words, available at www.juliastrand.com/phi-lex .

  11. Non-Monotonic Relation Between Noise Exposure Severity and Neuronal Hyperactivity in the Auditory Midbrain

    Directory of Open Access Journals (Sweden)

    Lara Li Hesse

    2016-08-01

    Full Text Available The occurrence of tinnitus can be linked to hearing loss in the majority of cases, but there is nevertheless a large degree of unexplained heterogeneity in the relation between hearing loss and tinnitus. Part of the problem might be that hearing loss is usually quantified in terms of increased hearing thresholds, which only provides limited information about the underlying cochlear damage. Moreover, noise exposure that does not cause hearing threshold loss can still lead to hidden hearing loss (HHL, i.e. functional deafferentation of auditory nerve fibres (ANFs through loss of synaptic ribbons in inner hair cells. Whilst it is known that increased hearing thresholds can trigger increases in spontaneous neural activity in the central auditory system, i.e. a putative neural correlate of tinnitus, the central effects of HHL have not yet been investigated. Here, we exposed mice to octave-band noise at 100 and 105 dB SPL, to generate HHL and permanent increases of hearing thresholds, respectively. Deafferentation of ANFs was confirmed through measurement of auditory brainstem responses and cochlear immunohistochemistry. Acute extracellular recordings from the auditory midbrain (inferior colliculus demonstrated increases in spontaneous neuronal activity (a putative neural correlate of tinnitus in both groups. Surprisingly the increase in spontaneous activity was most pronounced in the mice with HHL, suggesting that the relation between hearing loss and neuronal hyperactivity might be more complex than currently understood. Our computational model indicated that these differences in neuronal hyperactivity could arise from different degrees of deafferentation of low-threshold ANFs in the two exposure groups.Our results demonstrate that HHL is sufficient to induce changes in central auditory processing, and they also indicate a non-monotonic relationship between cochlear damage and neuronal hyperactivity, suggesting an explanation for why tinnitus might

  12. Auditory white noise reduces age-related fluctuations in balance.

    Science.gov (United States)

    Ross, J M; Will, O J; McGann, Z; Balasubramaniam, R

    2016-09-06

    Fall prevention technologies have the potential to improve the lives of older adults. Because of the multisensory nature of human balance control, sensory therapies, including some involving tactile and auditory noise, are being explored that might reduce increased balance variability due to typical age-related sensory declines. Auditory white noise has previously been shown to reduce postural sway variability in healthy young adults. In the present experiment, we examined this treatment in young adults and typically aging older adults. We measured postural sway of healthy young adults and adults over the age of 65 years during silence and auditory white noise, with and without vision. Our results show reduced postural sway variability in young and older adults with auditory noise, even in the absence of vision. We show that vision and noise can reduce sway variability for both feedback-based and exploratory balance processes. In addition, we show changes with auditory noise in nonlinear patterns of sway in older adults that reflect what is more typical of young adults, and these changes did not interfere with the typical random walk behavior of sway. Our results suggest that auditory noise might be valuable for therapeutic and rehabilitative purposes in older adults with typical age-related balance variability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Event-related potential response to auditory social stimuli, parent-reported social communicative deficits and autism risk in school-aged children with congenital visual impairment

    Directory of Open Access Journals (Sweden)

    Joe Bathelt

    2017-10-01

    Full Text Available Communication with visual signals, like facial expression, is important in early social development, but the question if these signals are necessary for typical social development remains to be addressed. The potential impact on social development of being born with no or very low levels of vision is therefore of high theoretical and clinical interest. The current study investigated event-related potential responses to basic social stimuli in a rare group of school-aged children with congenital visual disorders of the anterior visual system (globe of the eye, retina, anterior optic nerve. Early-latency event-related potential responses showed no difference between the VI and control group, suggesting similar initial auditory processing. However, the mean amplitude over central and right frontal channels between 280 and 320 ms was reduced in response to own-name stimuli, but not control stimuli, in children with VI suggesting differences in social processing. Children with VI also showed an increased rate of autistic-related behaviours, pragmatic language deficits, as well as peer relationship and emotional problems on standard parent questionnaires. These findings suggest that vision may be necessary for the typical development of social processing across modalities.

  14. Dyslexia risk gene relates to representation of sound in the auditory brainstem.

    Science.gov (United States)

    Neef, Nicole E; Müller, Bent; Liebig, Johanna; Schaadt, Gesa; Grigutsch, Maren; Gunter, Thomas C; Wilcke, Arndt; Kirsten, Holger; Skeide, Michael A; Kraft, Indra; Kraus, Nina; Emmrich, Frank; Brauer, Jens; Boltze, Johannes; Friederici, Angela D

    2017-04-01

    Dyslexia is a reading disorder with strong associations with KIAA0319 and DCDC2. Both genes play a functional role in spike time precision of neurons. Strikingly, poor readers show an imprecise encoding of fast transients of speech in the auditory brainstem. Whether dyslexia risk genes are related to the quality of sound encoding in the auditory brainstem remains to be investigated. Here, we quantified the response consistency of speech-evoked brainstem responses to the acoustically presented syllable [da] in 159 genotyped, literate and preliterate children. When controlling for age, sex, familial risk and intelligence, partial correlation analyses associated a higher dyslexia risk loading with KIAA0319 with noisier responses. In contrast, a higher risk loading with DCDC2 was associated with a trend towards more stable responses. These results suggest that unstable representation of sound, and thus, reduced neural discrimination ability of stop consonants, occurred in genotypes carrying a higher amount of KIAA0319 risk alleles. Current data provide the first evidence that the dyslexia-associated gene KIAA0319 can alter brainstem responses and impair phoneme processing in the auditory brainstem. This brain-gene relationship provides insight into the complex relationships between phenotype and genotype thereby improving the understanding of the dyslexia-inherent complex multifactorial condition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Efficient visual search from synchronized auditory signals requires transient audiovisual events.

    Directory of Open Access Journals (Sweden)

    Erik Van der Burg

    Full Text Available BACKGROUND: A prevailing view is that audiovisual integration requires temporally coincident signals. However, a recent study failed to find any evidence for audiovisual integration in visual search even when using synchronized audiovisual events. An important question is what information is critical to observe audiovisual integration. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that temporal coincidence (i.e., synchrony of auditory and visual components can trigger audiovisual interaction in cluttered displays and consequently produce very fast and efficient target identification. In visual search experiments, subjects found a modulating visual target vastly more efficiently when it was paired with a synchronous auditory signal. By manipulating the kind of temporal modulation (sine wave vs. square wave vs. difference wave; harmonic sine-wave synthesis; gradient of onset/offset ramps we show that abrupt visual events are required for this search efficiency to occur, and that sinusoidal audiovisual modulations do not support efficient search. CONCLUSIONS/SIGNIFICANCE: Thus, audiovisual temporal alignment will only lead to benefits in visual search if the changes in the component signals are both synchronized and transient. We propose that transient signals are necessary in synchrony-driven binding to avoid spurious interactions with unrelated signals when these occur close together in time.

  16. Hearing Shapes: Event-related Potentials Reveal the Time Course of Auditory-Visual Sensory Substitution.

    Science.gov (United States)

    Graulty, Christian; Papaioannou, Orestis; Bauer, Phoebe; Pitts, Michael A; Canseco-Gonzalez, Enriqueta

    2018-04-01

    In auditory-visual sensory substitution, visual information (e.g., shape) can be extracted through strictly auditory input (e.g., soundscapes). Previous studies have shown that image-to-sound conversions that follow simple rules [such as the Meijer algorithm; Meijer, P. B. L. An experimental system for auditory image representation. Transactions on Biomedical Engineering, 39, 111-121, 1992] are highly intuitive and rapidly learned by both blind and sighted individuals. A number of recent fMRI studies have begun to explore the neuroplastic changes that result from sensory substitution training. However, the time course of cross-sensory information transfer in sensory substitution is largely unexplored and may offer insights into the underlying neural mechanisms. In this study, we recorded ERPs to soundscapes before and after sighted participants were trained with the Meijer algorithm. We compared these posttraining versus pretraining ERP differences with those of a control group who received the same set of 80 auditory/visual stimuli but with arbitrary pairings during training. Our behavioral results confirmed the rapid acquisition of cross-sensory mappings, and the group trained with the Meijer algorithm was able to generalize their learning to novel soundscapes at impressive levels of accuracy. The ERP results revealed an early cross-sensory learning effect (150-210 msec) that was significantly enhanced in the algorithm-trained group compared with the control group as well as a later difference (420-480 msec) that was unique to the algorithm-trained group. These ERP modulations are consistent with previous fMRI results and provide additional insight into the time course of cross-sensory information transfer in sensory substitution.

  17. Auditory Exposure in the Neonatal Intensive Care Unit: Room Type and Other Predictors.

    Science.gov (United States)

    Pineda, Roberta; Durant, Polly; Mathur, Amit; Inder, Terrie; Wallendorf, Michael; Schlaggar, Bradley L

    2017-04-01

    To quantify early auditory exposures in the neonatal intensive care unit (NICU) and evaluate how these are related to medical and environmental factors. We hypothesized that there would be less auditory exposure in the NICU private room, compared with the open ward. Preterm infants born at ≤ 28 weeks gestation (33 in the open ward, 25 in private rooms) had auditory exposure quantified at birth, 30 and 34 weeks postmenstrual age (PMA), and term equivalent age using the Language Environmental Acquisition device. Meaningful language (P noise (P noise decreased (P noise in the environment, although parent presence (P = .009) and engagement (P  = .002) were related to greater language exposure. Average sound levels in the NICU were 58.9 ± 3.6 decibels, with an average peak level of 86.9 ± 1.4 decibels. Understanding the NICU auditory environment paves the way for interventions that reduce high levels of adverse sound and enhance positive forms of auditory exposure, such as language. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Differential activity in left inferior frontal gyrus for pseudowords and real words: an event-related fMRI study on auditory lexical decision.

    Science.gov (United States)

    Xiao, Zhuangwei; Zhang, John X; Wang, Xiaoyi; Wu, Renhua; Hu, Xiaoping; Weng, Xuchu; Tan, Li Hai

    2005-06-01

    After Newman and Twieg and others, we used a fast event-related functional magnetic resonance imaging (fMRI) design and contrasted the lexical processing of pseudowords and real words. Participants carried out an auditory lexical decision task on a list of randomly intermixed real and pseudo Chinese two-character (or two-syllable) words. The pseudowords were constructed by recombining constituent characters of the real words to control for sublexical code properties. Processing of pseudowords and real words activated a highly comparable network of brain regions, including bilateral inferior frontal gyrus, superior, middle temporal gyrus, calcarine and lingual gyrus, and left supramarginal gyrus. Mirroring a behavioral lexical effect, left inferior frontal gyrus (IFG) was significantly more activated for pseudowords than for real words. This result disconfirms a popular view that this area plays a role in grapheme-to-phoneme conversion, as such a conversion process was unnecessary in our task with auditory stimulus presentation. An alternative view was supported that attributes increased activity in left IFG for pseudowords to general processes in decision making, specifically in making positive versus negative responses. Activation in left supramarginal gyrus was of a much larger volume for real words than for pseudowords, suggesting a role of this region in the representation of phonological or semantic information for two-character Chinese words at the lexical level.

  19. Development of a Method to Compensate for Signal Quality Variations in Repeated Auditory Event-Related Potential Recordings

    Science.gov (United States)

    Paukkunen, Antti K. O.; Leminen, Miika M.; Sepponen, Raimo

    2010-01-01

    Reliable measurements are mandatory in clinically relevant auditory event-related potential (AERP)-based tools and applications. The comparability of the results gets worse as a result of variations in the remaining measurement error. A potential method is studied that allows optimization of the length of the recording session according to the concurrent quality of the recorded data. In this way, the sufficiency of the trials can be better guaranteed, which enables control of the remaining measurement error. The suggested method is based on monitoring the signal-to-noise ratio (SNR) and remaining measurement error which are compared to predefined threshold values. The SNR test is well defined, but the criterion for the measurement error test still requires further empirical testing in practice. According to the results, the reproducibility of average AERPs in repeated experiments is improved in comparison to a case where the number of recorded trials is constant. The test-retest reliability is not significantly changed on average but the between-subject variation in the value is reduced by 33–35%. The optimization of the number of trials also prevents excessive recordings which might be of practical interest especially in the clinical context. The efficiency of the method may be further increased by implementing online tools that improve data consistency. PMID:20407635

  20. Potencial evocado auditivo tardio relacionado a eventos (P300 na síndrome de Down Late auditory event-related evoked potential (P300 in Down's syndrome patients

    Directory of Open Access Journals (Sweden)

    Carla Patrícia Hernandez Alves Ribeiro César

    2010-04-01

    Full Text Available A síndrome de Down é causada pela trissomia do cromossomo 21 e está associada com alteração do processamento auditivo, distúrbio de aprendizagem e, provavelmente, início precoce de Doença de Alzheimer. OBJETIVO: Avaliar as latências e amplitudes do potencial evocado auditivo tardio relacionado a eventos (P300 e suas alterações em indivíduos jovens adultos com síndrome de Down. MATERIAL E MÉTODO: Estudo de caso prospectivo. Latências e amplitudes do P300 foram avaliadas em 17 indivíduos com síndrome de Down e 34 indivíduos sadios. RESULTADOS: Foram identificadas latências do P300 (N1, P2, N2 e P3 prolongadas e amplitude N2 - P3 diminuída nos indivíduos com síndrome de Down quando comparados ao grupo controle. CONCLUSÃO: Em indivíduos jovens adultos com síndrome de Down ocorre aumento das latências N1, P2, N2 e P3, e diminuição significativa da amplitude N2-P3 do potencial evocado auditivo tardio relacionado a eventos (P300, sugerindo prejuízo da integração da área de associação auditiva com as áreas corticais e subcorticais do sistema nervoso central.Down syndrome is caused by a trisomy of chromosome 21 and is associated with central auditory processing deficit, learning disability and, probably, early-onset Alzheimer's disease. AIM: to evaluate the latencies and amplitudes of evoked late auditory potential related to P300 events and their changes in young adults with Down's syndrome. MATERIALS AND METHODS: Prospective case study. P300 test latency and amplitudes were evaluated in 17 individuals with Down's syndrome and 34 healthy individuals. RESULTS The P300 latency (N1, P2, N2 and P3 was longer and the N2-P3 amplitude was lower in individuals with Down syndrome when compared to those in the control group. CONCLUSION: In young adults with Down syndrome, N1, P2, N2 and P3 latencies of late auditory evoked potential related to P300 events were prolonged, and N2 - P3 amplitudes were significantly reduced

  1. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    Science.gov (United States)

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre

  2. Quantifying stimulus-response rehabilitation protocols by auditory feedback in Parkinson's disease gait pattern

    Science.gov (United States)

    Pineda, Gustavo; Atehortúa, Angélica; Iregui, Marcela; García-Arteaga, Juan D.; Romero, Eduardo

    2017-11-01

    External auditory cues stimulate motor related areas of the brain, activating motor ways parallel to the basal ganglia circuits and providing a temporary pattern for gait. In effect, patients may re-learn motor skills mediated by compensatory neuroplasticity mechanisms. However, long term functional gains are dependent on the nature of the pathology, follow-up is usually limited and reinforcement by healthcare professionals is crucial. Aiming to cope with these challenges, several researches and device implementations provide auditory or visual stimulation to improve Parkinsonian gait pattern, inside and outside clinical scenarios. The current work presents a semiautomated strategy for spatio-temporal feature extraction to study the relations between auditory temporal stimulation and spatiotemporal gait response. A protocol for auditory stimulation was built to evaluate the integrability of the strategy in the clinic practice. The method was evaluated in transversal measurement with an exploratory group of people with Parkinson's (n = 12 in stage 1, 2 and 3) and control subjects (n =6). The result showed a strong linear relation between auditory stimulation and cadence response in control subjects (R=0.98 +/-0.008) and PD subject in stage 2 (R=0.95 +/-0.03) and stage 3 (R=0.89 +/-0.05). Normalized step length showed a variable response between low and high gait velocity (0.2> R >0.97). The correlation between normalized mean velocity and stimulus was strong in all PD stage 2 (R>0.96) PD stage 3 (R>0.84) and controls (R>0.91) for all experimental conditions. Among participants, the largest variation from baseline was found in PD subject in stage 3 (53.61 +/-39.2 step/min, 0.12 +/- 0.06 in step length and 0.33 +/- 0.16 in mean velocity). In this group these values were higher than the own baseline. These variations are related with direct effect of metronome frequency on cadence and velocity. The variation of step length involves different regulation strategies and

  3. A new method for detecting interactions between the senses in event-related potentials

    DEFF Research Database (Denmark)

    Gondan, Matthias; Röder, B.

    2006-01-01

    Event-related potentials (ERPs) can be used in multisensory research to determine the point in time when different senses start to interact, for example, the auditory and the visual system. For this purpose, the ERP to bimodal stimuli (AV) is often compared to the sum of the ERPs to auditory (A......) and visual (V) stimuli: AV - (A + V). If the result is non-zero, this is interpreted as an indicator for multisensory interactions. Using this method, several studies have demonstrated auditory-visual interactions as early as 50 ms after stimulus onset. The subtraction requires that A, V, and AV do...... not contain common activity: This activity would be subtracted twice from one ERP and would, therefore, contaminate the result. In the present study, ERPs to unimodal, bimodal, and trimodal auditory, visual, and tactile stimuli (T) were recorded. We demonstrate that (T + TAV) - (TA + TV) is equivalent to AV...

  4. Changes in event-related potential functional networks predict traumatic brain injury in piglets.

    Science.gov (United States)

    Atlan, Lorre S; Lan, Ingrid S; Smith, Colin; Margulies, Susan S

    2018-06-01

    Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US each year. None of the current diagnostic tools, such as quantitative cognitive and balance tests, have been validated to identify mild traumatic brain injury in infants, adults and animals. In this preliminary study, we report a novel, quantitative tool that has the potential to quickly and reliably diagnose traumatic brain injury and which can track the state of the brain during recovery across multiple ages and species. Using 32 scalp electrodes, we recorded involuntary auditory event-related potentials from 22 awake four-week-old piglets one day before and one, four, and seven days after two different injury types (diffuse and focal) or sham. From these recordings, we generated event-related potential functional networks and assessed whether the patterns of the observed changes in these networks could distinguish brain-injured piglets from non-injured. Piglet brains exhibited significant changes after injury, as evaluated by five network metrics. The injury prediction algorithm developed from our analysis of the changes in the event-related potentials functional networks ultimately produced a tool with 82% predictive accuracy. This novel approach is the first application of auditory event-related potential functional networks to the prediction of traumatic brain injury. The resulting tool is a robust, objective and predictive method that offers promise for detecting mild traumatic brain injury, in particular because collecting event-related potentials data is noninvasive and inexpensive. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Different event-related patterns of gamma-band power in brain waves of fast- and slow-reacting subjects.

    Science.gov (United States)

    Jokeit, H; Makeig, S

    1994-01-01

    Fast- and slow-reacting subjects exhibit different patterns of gamma-band electroencephalogram (EEG) activity when responding as quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects produce speeded reactions in different ways and demonstrates that analysis of event-related changes in the amplitude of EEG activity recorded from the human scalp can reveal information about event-related brain processes unavailable using event-related potential measures. Time-varying spectral power in a selected (35- to 43-Hz) gamma frequency band was averaged across trials in two experimental conditions: passive listening and speeded reacting to binaural clicks, forming 40-Hz event-related spectral responses. Factor analysis of between-subject event-related spectral response differences split subjects into two near-equal groups composed of faster- and slower-reacting subjects. In faster-reacting subjects, 40-Hz power peaked near 200 ms and 400 ms poststimulus in the react condition, whereas in slower-reacting subjects, 40-Hz power just before stimulus delivery was larger in the react condition. These group differences were preserved in separate averages of relatively long and short reaction-time epochs for each group. gamma-band (20-60 Hz)-filtered event-related potential response averages did not differ between the two groups or conditions. Because of this and because gamma-band power in the auditory event-related potential is small compared with the EEG, the observed event-related spectral response features must represent gamma-band EEG activity reliably induced by, but not phase-locked to, experimental stimuli or events. PMID:8022783

  6. Event-related potential response to auditory social stimuli, parent-reported social communicative deficits and autism risk in school-aged children with congenital visual impairment.

    Science.gov (United States)

    Bathelt, Joe; Dale, Naomi; de Haan, Michelle

    2017-10-01

    Communication with visual signals, like facial expression, is important in early social development, but the question if these signals are necessary for typical social development remains to be addressed. The potential impact on social development of being born with no or very low levels of vision is therefore of high theoretical and clinical interest. The current study investigated event-related potential responses to basic social stimuli in a rare group of school-aged children with congenital visual disorders of the anterior visual system (globe of the eye, retina, anterior optic nerve). Early-latency event-related potential responses showed no difference between the VI and control group, suggesting similar initial auditory processing. However, the mean amplitude over central and right frontal channels between 280 and 320ms was reduced in response to own-name stimuli, but not control stimuli, in children with VI suggesting differences in social processing. Children with VI also showed an increased rate of autistic-related behaviours, pragmatic language deficits, as well as peer relationship and emotional problems on standard parent questionnaires. These findings suggest that vision may be necessary for the typical development of social processing across modalities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Differential Recruitment of Auditory Cortices in the Consolidation of Recent Auditory Fearful Memories.

    Science.gov (United States)

    Cambiaghi, Marco; Grosso, Anna; Renna, Annamaria; Sacchetti, Benedetto

    2016-08-17

    Memories of frightening events require a protracted consolidation process. Sensory cortex, such as the auditory cortex, is involved in the formation of fearful memories with a more complex sensory stimulus pattern. It remains controversial, however, whether the auditory cortex is also required for fearful memories related to simple sensory stimuli. In the present study, we found that, 1 d after training, the temporary inactivation of either the most anterior region of the auditory cortex, including the primary (Te1) cortex, or the most posterior region, which included the secondary (Te2) component, did not affect the retention of recent memories, which is consistent with the current literature. However, at this time point, the inactivation of the entire auditory cortices completely prevented the formation of new memories. Amnesia was site specific and was not due to auditory stimuli perception or processing and strictly related to the interference with memory consolidation processes. Strikingly, at a late time interval 4 d after training, blocking the posterior part (encompassing the Te2) alone impaired memory retention, whereas the inactivation of the anterior part (encompassing the Te1) left memory unaffected. Together, these data show that the auditory cortex is necessary for the consolidation of auditory fearful memories related to simple tones in rats. Moreover, these results suggest that, at early time intervals, memory information is processed in a distributed network composed of both the anterior and the posterior auditory cortical regions, whereas, at late time intervals, memory processing is concentrated in the most posterior part containing the Te2 region. Memories of threatening experiences undergo a prolonged process of "consolidation" to be maintained for a long time. The dynamic of fearful memory consolidation is poorly understood. Here, we show that 1 d after learning, memory is processed in a distributed network composed of both primary Te1 and

  8. Electrophysiological Evidence of Developmental Changes in the Duration of Auditory Sensory Memory.

    Science.gov (United States)

    Gomes, Hilary; And Others

    1999-01-01

    Investigated developmental change in duration of auditory sensory memory for tonal frequency by measuring mismatch negativity, an electrophysiological component of the auditory event-related potential that is relatively insensitive to attention and does not require a behavioral response. Findings among children and adults suggest that there are…

  9. Neural correlates of distraction and conflict resolution for nonverbal auditory events.

    Science.gov (United States)

    Stewart, Hannah J; Amitay, Sygal; Alain, Claude

    2017-05-09

    In everyday situations auditory selective attention requires listeners to suppress task-irrelevant stimuli and to resolve conflicting information in order to make appropriate goal-directed decisions. Traditionally, these two processes (i.e. distractor suppression and conflict resolution) have been studied separately. In the present study we measured neuroelectric activity while participants performed a new paradigm in which both processes are quantified. In separate block of trials, participants indicate whether two sequential tones share the same pitch or location depending on the block's instruction. For the distraction measure, a positive component peaking at ~250 ms was found - a distraction positivity. Brain electrical source analysis of this component suggests different generators when listeners attended to frequency and location, with the distraction by location more posterior than the distraction by frequency, providing support for the dual-pathway theory. For the conflict resolution measure, a negative frontocentral component (270-450 ms) was found, which showed similarities with that of prior studies on auditory and visual conflict resolution tasks. The timing and distribution are consistent with two distinct neural processes with suppression of task-irrelevant information occurring before conflict resolution. This new paradigm may prove useful in clinical populations to assess impairments in filtering out task-irrelevant information and/or resolving conflicting information.

  10. Dynamics of auditory working memory

    Directory of Open Access Journals (Sweden)

    Jochen eKaiser

    2015-05-01

    Full Text Available Working memory denotes the ability to retain stimuli in mind that are no longer physically present and to perform mental operations on them. Electro- and magnetoencephalography allow investigating the short-term maintenance of acoustic stimuli at a high temporal resolution. Studies investigating working memory for non-spatial and spatial auditory information have suggested differential roles of regions along the putative auditory ventral and dorsal streams, respectively, in the processing of the different sound properties. Analyses of event-related potentials have shown sustained, memory load-dependent deflections over the retention periods. The topography of these waves suggested an involvement of modality-specific sensory storage regions. Spectral analysis has yielded information about the temporal dynamics of auditory working memory processing of individual stimuli, showing activation peaks during the delay phase whose timing was related to task performance. Coherence at different frequencies was enhanced between frontal and sensory cortex. In summary, auditory working memory seems to rely on the dynamic interplay between frontal executive systems and sensory representation regions.

  11. Is the auditory sensory memory sensitive to visual information?

    Science.gov (United States)

    Besle, Julien; Fort, Alexandra; Giard, Marie-Hélène

    2005-10-01

    The mismatch negativity (MMN) component of auditory event-related brain potentials can be used as a probe to study the representation of sounds in auditory sensory memory (ASM). Yet it has been shown that an auditory MMN can also be elicited by an illusory auditory deviance induced by visual changes. This suggests that some visual information may be encoded in ASM and is accessible to the auditory MMN process. It is not known, however, whether visual information affects ASM representation for any audiovisual event or whether this phenomenon is limited to specific domains in which strong audiovisual illusions occur. To highlight this issue, we have compared the topographies of MMNs elicited by non-speech audiovisual stimuli deviating from audiovisual standards on the visual, the auditory, or both dimensions. Contrary to what occurs with audiovisual illusions, each unimodal deviant elicited sensory-specific MMNs, and the MMN to audiovisual deviants included both sensory components. The visual MMN was, however, different from a genuine visual MMN obtained in a visual-only control oddball paradigm, suggesting that auditory and visual information interacts before the MMN process occurs. Furthermore, the MMN to audiovisual deviants was significantly different from the sum of the two sensory-specific MMNs, showing that the processes of visual and auditory change detection are not completely independent.

  12. Hippocampal P3-like auditory event-related potentials are disrupted in a rat model of cholinergic degeneration in Alzheimer's disease: reversal by donepezil treatment.

    Science.gov (United States)

    Laursen, Bettina; Mørk, Arne; Kristiansen, Uffe; Bastlund, Jesper Frank

    2014-01-01

    P300 (P3) event-related potentials (ERPs) have been suggested to be an endogenous marker of cognitive function and auditory oddball paradigms are frequently used to evaluate P3 ERPs in clinical settings. Deficits in P3 amplitude and latency reflect some of the neurological dysfunctions related to several psychiatric and neurological diseases, e.g., Alzheimer's disease (AD). However, only a very limited number of rodent studies have addressed the back-translational validity of the P3-like ERPs as suitable markers of cognition. Thus, the potential of rodent P3-like ERPs to predict pro-cognitive effects in humans remains to be fully validated. The current study characterizes P3-like ERPs in the 192-IgG-SAP (SAP) rat model of the cholinergic degeneration associated with AD. Following training in a combined auditory oddball and lever-press setup, rats were subjected to bilateral intracerebroventricular infusion of 1.25 μg SAP or PBS (sham lesion) and recording electrodes were implanted in hippocampal CA1. Relative to sham-lesioned rats, SAP-lesioned rats had significantly reduced amplitude of P3-like ERPs. P3 amplitude was significantly increased in SAP-treated rats following pre-treatment with 1 mg/kg donepezil. Infusion of SAP reduced the hippocampal choline acetyltransferase activity by 75%. Behaviorally defined cognitive performance was comparable between treatment groups. The present study suggests that AD-like deficits in P3-like ERPs may be mimicked by the basal forebrain cholinergic degeneration induced by SAP. SAP-lesioned rats may constitute a suitable model to test the efficacy of pro-cognitive substances in an applied experimental setup.

  13. Deviance-Related Responses along the Auditory Hierarchy: Combined FFR, MLR and MMN Evidence

    Science.gov (United States)

    Shiga, Tetsuya; Althen, Heike; Cornella, Miriam; Zarnowiec, Katarzyna; Yabe, Hirooki; Escera, Carles

    2015-01-01

    The mismatch negativity (MMN) provides a correlate of automatic auditory discrimination in human auditory cortex that is elicited in response to violation of any acoustic regularity. Recently, deviance-related responses were found at much earlier cortical processing stages as reflected by the middle latency response (MLR) of the auditory evoked potential, and even at the level of the auditory brainstem as reflected by the frequency following response (FFR). However, no study has reported deviance-related responses in the FFR, MLR and long latency response (LLR) concurrently in a single recording protocol. Amplitude-modulated (AM) sounds were presented to healthy human participants in a frequency oddball paradigm to investigate deviance-related responses along the auditory hierarchy in the ranges of FFR, MLR and LLR. AM frequency deviants modulated the FFR, the Na and Nb components of the MLR, and the LLR eliciting the MMN. These findings demonstrate that it is possible to elicit deviance-related responses at three different levels (FFR, MLR and LLR) in one single recording protocol, highlight the involvement of the whole auditory hierarchy in deviance detection and have implications for cognitive and clinical auditory neuroscience. Moreover, the present protocol provides a new research tool into clinical neuroscience so that the functional integrity of the auditory novelty system can now be tested as a whole in a range of clinical populations where the MMN was previously shown to be defective. PMID:26348628

  14. Diminished auditory sensory gating during active auditory verbal hallucinations.

    Science.gov (United States)

    Thoma, Robert J; Meier, Andrew; Houck, Jon; Clark, Vincent P; Lewine, Jeffrey D; Turner, Jessica; Calhoun, Vince; Stephen, Julia

    2017-10-01

    Auditory sensory gating, assessed in a paired-click paradigm, indicates the extent to which incoming stimuli are filtered, or "gated", in auditory cortex. Gating is typically computed as the ratio of the peak amplitude of the event related potential (ERP) to a second click (S2) divided by the peak amplitude of the ERP to a first click (S1). Higher gating ratios are purportedly indicative of incomplete suppression of S2 and considered to represent sensory processing dysfunction. In schizophrenia, hallucination severity is positively correlated with gating ratios, and it was hypothesized that a failure of sensory control processes early in auditory sensation (gating) may represent a larger system failure within the auditory data stream; resulting in auditory verbal hallucinations (AVH). EEG data were collected while patients (N=12) with treatment-resistant AVH pressed a button to indicate the beginning (AVH-on) and end (AVH-off) of each AVH during a paired click protocol. For each participant, separate gating ratios were computed for the P50, N100, and P200 components for each of the AVH-off and AVH-on states. AVH trait severity was assessed using the Psychotic Symptoms Rating Scales AVH Total score (PSYRATS). The results of a mixed model ANOVA revealed an overall effect for AVH state, such that gating ratios were significantly higher during the AVH-on state than during AVH-off for all three components. PSYRATS score was significantly and negatively correlated with N100 gating ratio only in the AVH-off state. These findings link onset of AVH with a failure of an empirically-defined auditory inhibition system, auditory sensory gating, and pave the way for a sensory gating model of AVH. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of Sound Frequency on Audiovisual Integration: An Event-Related Potential Study.

    Science.gov (United States)

    Yang, Weiping; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Ren, Yanna; Takahashi, Satoshi; Wu, Jinglong

    2015-01-01

    A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190-210 ms, for 1 kHz stimuli from 170-200 ms, for 2.5 kHz stimuli from 140-200 ms, 5 kHz stimuli from 100-200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300-340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies.

  16. Auditory-somatosensory temporal sensitivity improves when the somatosensory event is caused by voluntary body movement

    Directory of Open Access Journals (Sweden)

    Norimichi Kitagawa

    2016-12-01

    Full Text Available When we actively interact with the environment, it is crucial that we perceive a precise temporal relationship between our own actions and sensory effects to guide our body movements.Thus, we hypothesized that voluntary movements improve perceptual sensitivity to the temporal disparity between auditory and movement-related somatosensory events compared to when they are delivered passively to sensory receptors. In the voluntary condition, participants voluntarily tapped a button, and a noise burst was presented at various onset asynchronies relative to the button press. The participants made either 'sound-first' or 'touch-first' responses. We found that the performance of temporal order judgment (TOJ in the voluntary condition (as indexed by the just noticeable difference was significantly better (M=42.5 ms ±3.8 s.e.m than that when their finger was passively stimulated (passive condition: M=66.8 ms ±6.3 s.e.m. We further examined whether the performance improvement with voluntary action can be attributed to the prediction of the timing of the stimulation from sensory cues (sensory-based prediction, kinesthetic cues contained in voluntary action, and/or to the prediction of stimulation timing from the efference copy of the motor command (motor-based prediction. When the participant’s finger was moved passively to press the button (involuntary condition and when three noise bursts were presented before the target burst with regular intervals (predictable condition, the TOJ performance was not improved from that in the passive condition. These results suggest that the improvement in sensitivity to temporal disparity between somatosensory and auditory events caused by the voluntary action cannot be attributed to sensory-based prediction and kinesthetic cues. Rather, the prediction from the efference copy of the motor command would be crucial for improving the temporal sensitivity.

  17. An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex.

    Science.gov (United States)

    Noto, M; Nishikawa, J; Tateno, T

    2016-03-24

    A sound interrupted by silence is perceived as discontinuous. However, when high-intensity noise is inserted during the silence, the missing sound may be perceptually restored and be heard as uninterrupted. This illusory phenomenon is called auditory induction. Recent electrophysiological studies have revealed that auditory induction is associated with the primary auditory cortex (A1). Although experimental evidence has been accumulating, the neural mechanisms underlying auditory induction in A1 neurons are poorly understood. To elucidate this, we used both experimental and computational approaches. First, using an optical imaging method, we characterized population responses across auditory cortical fields to sound and identified five subfields in rats. Next, we examined neural population activity related to auditory induction with high temporal and spatial resolution in the rat auditory cortex (AC), including the A1 and several other AC subfields. Our imaging results showed that tone-burst stimuli interrupted by a silent gap elicited early phasic responses to the first tone and similar or smaller responses to the second tone following the gap. In contrast, tone stimuli interrupted by broadband noise (BN), considered to cause auditory induction, considerably suppressed or eliminated responses to the tone following the noise. Additionally, tone-burst stimuli that were interrupted by notched noise centered at the tone frequency, which is considered to decrease the strength of auditory induction, partially restored the second responses from the suppression caused by BN. To phenomenologically mimic the neural population activity in the A1 and thus investigate the mechanisms underlying auditory induction, we constructed a computational model from the periphery through the AC, including a nonlinear dynamical system. The computational model successively reproduced some of the above-mentioned experimental results. Therefore, our results suggest that a nonlinear, self

  18. Hostile attribution biases for relationally provocative situations and event-related potentials.

    Science.gov (United States)

    Godleski, Stephanie A; Ostrov, Jamie M; Houston, Rebecca J; Schlienz, Nicolas J

    2010-04-01

    This exploratory study investigates how hostile attribution biases for relationally provocative situations may be related to neurocognitive processing using the P300 event-related potential. Participants were 112 (45 women) emerging adults enrolled in a large, public university in upstate New York. Participants completed self-report measures on relational aggression and hostile attribution biases and performed an auditory perseveration task to elicit the P300. It was found that hostile attribution biases for relational provocation situations was associated with a larger P300 amplitude above and beyond the role of hostile attribution biases for instrumental situations, relational aggression, and gender. Larger P300 amplitude is interpreted to reflect greater allocation of cognitive resources or enhanced "attending" to salient stimuli. Implications for methodological approaches to studying aggression and hostile attribution biases and for theory are discussed, as well as implications for the fields of developmental psychology and psychopathology. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Admissions and Readmissions Related to Adverse Events, 2007-2014

    Science.gov (United States)

    2015-12-01

    DRG is a classification system primarily used for billing purposes. It uses the principle and secondary diagnoses to assign clinical conditions to...This study assessed adverse events as they relate to readmissions in the Military Health System (MHS). Among 142,579 admissions with an adverse event...The following study retrospectively assessed admissions and readmissions for adverse events in the Military Health System (MHS) by quantifying

  20. A Detection-Theoretic Analysis of Auditory Streaming and Its Relation to Auditory Masking

    Directory of Open Access Journals (Sweden)

    An-Chieh Chang

    2016-09-01

    Full Text Available Research on hearing has long been challenged with understanding our exceptional ability to hear out individual sounds in a mixture (the so-called cocktail party problem. Two general approaches to the problem have been taken using sequences of tones as stimuli. The first has focused on our tendency to hear sequences, sufficiently separated in frequency, split into separate cohesive streams (auditory streaming. The second has focused on our ability to detect a change in one sequence, ignoring all others (auditory masking. The two phenomena are clearly related, but that relation has never been evaluated analytically. This article offers a detection-theoretic analysis of the relation between multitone streaming and masking that underscores the expected similarities and differences between these phenomena and the predicted outcome of experiments in each case. The key to establishing this relation is the function linking performance to the information divergence of the tone sequences, DKL (a measure of the statistical separation of their parameters. A strong prediction is that streaming and masking of tones will be a common function of DKL provided that the statistical properties of sequences are symmetric. Results of experiments are reported supporting this prediction.

  1. Only low frequency event-related EEG activity is compromised in multiple sclerosis: insights from an independent component clustering analysis.

    Directory of Open Access Journals (Sweden)

    Hanni Kiiski

    Full Text Available Cognitive impairment (CI, often examined with neuropsychological tests such as the Paced Auditory Serial Addition Test (PASAT, affects approximately 65% of multiple sclerosis (MS patients. The P3b event-related potential (ERP, evoked when an infrequent target stimulus is presented, indexes cognitive function and is typically compared across subjects' scalp electroencephalography (EEG data. However, the clustering of independent components (ICs is superior to scalp-based EEG methods because it can accommodate the spatiotemporal overlap inherent in scalp EEG data. Event-related spectral perturbations (ERSPs; event-related mean power spectral changes and inter-trial coherence (ITCs; event-related consistency of spectral phase reveal a more comprehensive overview of EEG activity. Ninety-five subjects (56 MS patients, 39 controls completed visual and auditory two-stimulus P3b event-related potential tasks and the PASAT. MS patients were also divided into CI and non-CI groups (n = 18 in each based on PASAT scores. Data were recorded from 128-scalp EEG channels and 4 IC clusters in the visual, and 5 IC clusters in the auditory, modality were identified. In general, MS patients had significantly reduced ERSP theta power versus controls, and a similar pattern was observed for CI vs. non-CI MS patients. The ITC measures were also significantly different in the theta band for some clusters. The finding that MS patients had reduced P3b task-related theta power in both modalities is a reflection of compromised connectivity, likely due to demyelination, that may have disrupted early processes essential to P3b generation, such as orientating and signal detection. However, for posterior sources, MS patients had a greater decrease in alpha power, normally associated with enhanced cognitive function, which may reflect a compensatory mechanism in response to the compromised early cognitive processing.

  2. Effects of white noise on event-related potentials in somatosensory Go/No-go paradigms.

    Science.gov (United States)

    Ohbayashi, Wakana; Kakigi, Ryusuke; Nakata, Hiroki

    2017-09-06

    Exposure to auditory white noise has been shown to facilitate human cognitive function. This phenomenon is termed stochastic resonance, and a moderate amount of auditory noise has been suggested to benefit individuals in hypodopaminergic states. The present study investigated the effects of white noise on the N140 and P300 components of event-related potentials in somatosensory Go/No-go paradigms. A Go or No-go stimulus was presented to the second or fifth digit of the left hand, respectively, at the same probability. Participants performed somatosensory Go/No-go paradigms while hearing three different white noise levels (45, 55, and 65 dB conditions). The peak amplitudes of Go-P300 and No-go-P300 in ERP waveforms were significantly larger under 55 dB than 45 and 65 dB conditions. White noise did not affect the peak latency of N140 or P300, or the peak amplitude of N140. Behavioral data for the reaction time, SD of reaction time, and error rates showed the absence of an effect by white noise. This is the first event-related potential study to show that exposure to auditory white noise at 55 dB enhanced the amplitude of P300 during Go/No-go paradigms, reflecting changes in the neural activation of response execution and inhibition processing.

  3. Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas.

    Science.gov (United States)

    Gourévitch, Boris; Le Bouquin Jeannès, Régine; Faucon, Gérard; Liégeois-Chauvel, Catherine

    2008-03-01

    Temporal envelope processing in the human auditory cortex has an important role in language analysis. In this paper, depth recordings of local field potentials in response to amplitude modulated white noises were used to design maps of activation in primary, secondary and associative auditory areas and to study the propagation of the cortical activity between them. The comparison of activations between auditory areas was based on a signal-to-noise ratio associated with the response to amplitude modulation (AM). The functional connectivity between cortical areas was quantified by the directed coherence (DCOH) applied to auditory evoked potentials. This study shows the following reproducible results on twenty subjects: (1) the primary auditory cortex (PAC), the secondary cortices (secondary auditory cortex (SAC) and planum temporale (PT)), the insular gyrus, the Brodmann area (BA) 22 and the posterior part of T1 gyrus (T1Post) respond to AM in both hemispheres. (2) A stronger response to AM was observed in SAC and T1Post of the left hemisphere independent of the modulation frequency (MF), and in the left BA22 for MFs 8 and 16Hz, compared to those in the right. (3) The activation and propagation features emphasized at least four different types of temporal processing. (4) A sequential activation of PAC, SAC and BA22 areas was clearly visible at all MFs, while other auditory areas may be more involved in parallel processing upon a stream originating from primary auditory area, which thus acts as a distribution hub. These results suggest that different psychological information is carried by the temporal envelope of sounds relative to the rate of amplitude modulation.

  4. [Differential effects of attention deficit/hyperactivity disorder subtypes in event-related potentials].

    Science.gov (United States)

    Tamayo-Orrego, Lukas; Osorio Forero, Alejandro; Quintero Giraldo, Lina Paola; Parra Sánchez, José Hernán; Varela, Vilma; Restrepo, Francia

    2015-01-01

    To better understand the neurophysiological substrates in attention deficit/hyperactivity disorder (ADHD), a study was performed on of event-related potentials (ERPs) in Colombian patients with inattentive and combined ADHD. A case-control, cross-sectional study was designed. The sample was composed of 180 subjects between 5 and 15 years of age (mean, 9.25±2.6), from local schools in Manizales. The sample was divided equally in ADHD or control groups and the subjects were paired by age and gender. The diagnosis was made using the DSM-IV-TR criteria, the Conners and WISC-III test, a psychiatric interview (MINIKID), and a medical evaluation. ERPs were recorded in a visual and auditory passive oddball paradigm. Latency and amplitude of N100, N200 and P300 components for common and rare stimuli were used for statistical comparisons. ADHD subjects show differences in the N200 amplitude and P300 latency in the auditory task. The N200 amplitude was reduced in response to visual stimuli. ADHD subjects with combined symptoms show a delayed P300 in response to auditory stimuli, whereas inattentive subjects exhibited differences in the amplitude of N100 and N200. Combined ADHD patients showed longer N100 latency and smaller N200-P300 amplitude compared to inattentive ADHD subjects. The results show differences in the event-related potentials between combined and inattentive ADHD subjects. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  5. Differential activity in left inferior frontal gyrus for pseudo and real words: an event-related functional MRI study on auditory lexical decision

    International Nuclear Information System (INIS)

    Xiao Zhuangwei; Xu Weixiong; Zhang Xuexin; Wang Xiaoyi; Weng Xuchu; Wu Renhua; Wu Xiaoping

    2006-01-01

    Objective: To study lexical processing of pseudo words and real words by using a fast event-related functional MRI (ER-fMRI) design. Methods: Participants did an auditory lexical decision task on a list of pseudo-randomly intermixed real and pseudo Chinese two-character (or two-syllable) words. Pseudo words were constructed by recombining constituent characters of the real words to control for sublexical codes properties. Results: The behavioral performance of fourteen participants indicated that response to pseudowords was significantly slower and less accurate than to real words (mean error rate: 9.9% versus 3.9%, mean reaction time: 1618 ms versus 1143 ms). Processing of pseudo words and real words activated a highly comparable network of brain regions, including bilateral inferior frontal gyrus, superior, middle temporal gyrus, calcarine and lingual gyrus, and left supramarginal gyrus. Mirroring a behavioral lexical effect, left inferior frontal gyrus (IFG) was significantly more activated for pseudo words than for real words. Conclusion: The results indicate that the processing of left inferior frontal gyrus in judging pseudo words and real words is not related to grapheme-to-phoneme conversion, but rather to making positive versus negative responses in decision making. (authors)

  6. Attention-related modulation of auditory brainstem responses during contralateral noise exposure.

    Science.gov (United States)

    Ikeda, Kazunari; Sekiguchi, Takahiro; Hayashi, Akiko

    2008-10-29

    As determinants facilitating attention-related modulation of the auditory brainstem response (ABR), two experimental factors were examined: (i) auditory discrimination; and (ii) contralateral masking intensity. Tone pips at 80 dB sound pressure level were presented to the left ear via either single-tone exposures or oddball exposures, whereas white noise was delivered continuously to the right ear at variable intensities (none--80 dB sound pressure level). Participants each conducted two tasks during stimulation, either reading a book (ignoring task) or detecting target tones (attentive task). Task-related modulation within the ABR range was found only during oddball exposures at contralateral masking intensities greater than or equal to 60 dB. Attention-related modulation of ABR can thus be detected reliably during auditory discrimination under contralateral masking of sufficient intensity.

  7. Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates.

    Science.gov (United States)

    Huang, Ying; Matysiak, Artur; Heil, Peter; König, Reinhard; Brosch, Michael

    2016-07-20

    Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys.

  8. Auditory processing in autism spectrum disorder

    DEFF Research Database (Denmark)

    Vlaskamp, Chantal; Oranje, Bob; Madsen, Gitte Falcher

    2017-01-01

    Children with autism spectrum disorders (ASD) often show changes in (automatic) auditory processing. Electrophysiology provides a method to study auditory processing, by investigating event-related potentials such as mismatch negativity (MMN) and P3a-amplitude. However, findings on MMN in autism...... a hyper-responsivity at the attentional level. In addition, as similar MMN deficits are found in schizophrenia, these MMN results may explain some of the frequently reported increased risk of children with ASD to develop schizophrenia later in life. Autism Res 2017, 10: 1857–1865....

  9. Quantifying auditory temporal stability in a large database of recorded music.

    Science.gov (United States)

    Ellis, Robert J; Duan, Zhiyan; Wang, Ye

    2014-01-01

    "Moving to the beat" is both one of the most basic and one of the most profound means by which humans (and a few other species) interact with music. Computer algorithms that detect the precise temporal location of beats (i.e., pulses of musical "energy") in recorded music have important practical applications, such as the creation of playlists with a particular tempo for rehabilitation (e.g., rhythmic gait training), exercise (e.g., jogging), or entertainment (e.g., continuous dance mixes). Although several such algorithms return simple point estimates of an audio file's temporal structure (e.g., "average tempo", "time signature"), none has sought to quantify the temporal stability of a series of detected beats. Such a method--a "Balanced Evaluation of Auditory Temporal Stability" (BEATS)--is proposed here, and is illustrated using the Million Song Dataset (a collection of audio features and music metadata for nearly one million audio files). A publically accessible web interface is also presented, which combines the thresholdable statistics of BEATS with queryable metadata terms, fostering potential avenues of research and facilitating the creation of highly personalized music playlists for clinical or recreational applications.

  10. Multisensory stimuli improve relative localisation judgments compared to unisensory auditory or visual stimuli

    OpenAIRE

    Bizley, Jennifer; Wood, Katherine; Freeman, Laura

    2018-01-01

    Observers performed a relative localisation task in which they reported whether the second of two sequentially presented signals occurred to the left or right of the first. Stimuli were detectability-matched auditory, visual, or auditory-visual signals and the goal was to compare changes in performance with eccentricity across modalities. Visual performance was superior to auditory at the midline, but inferior in the periphery, while auditory-visual performance exceeded both at all locations....

  11. No meditation-related changes in the auditory N1 during first-time meditation.

    Science.gov (United States)

    Barnes, L J; McArthur, G M; Biedermann, B A; de Lissa, P; Polito, V; Badcock, N A

    2018-05-01

    Recent studies link meditation expertise with enhanced low-level attention, measured through auditory event-related potentials (ERPs). In this study, we tested the reliability and validity of a recent finding that the N1 ERP in first-time meditators is smaller during meditation than non-meditation - an effect not present in long-term meditators. In the first experiment, we replicated the finding in first-time meditators. In two subsequent experiments, we discovered that this finding was not due to stimulus-related instructions, but was explained by an effect of the order of conditions. Extended exposure to the same tones has been linked with N1 decrement in other studies, and may explain N1 decrement across our two conditions. We give examples of existing meditation and ERP studies that may include similar condition order effects. The role of condition order among first-time meditators in this study indicates the importance of counterbalancing meditation and non-mediation conditions in meditation studies that use event-related potentials. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Effects of Auditory Stimuli on Visual Velocity Perception

    Directory of Open Access Journals (Sweden)

    Michiaki Shibata

    2011-10-01

    Full Text Available We investigated the effects of auditory stimuli on the perceived velocity of a moving visual stimulus. Previous studies have reported that the duration of visual events is perceived as being longer for events filled with auditory stimuli than for events not filled with auditory stimuli, ie, the so-called “filled-duration illusion.” In this study, we have shown that auditory stimuli also affect the perceived velocity of a moving visual stimulus. In Experiment 1, a moving comparison stimulus (4.2∼5.8 deg/s was presented together with filled (or unfilled white-noise bursts or with no sound. The standard stimulus was a moving visual stimulus (5 deg/s presented before or after the comparison stimulus. The participants had to judge which stimulus was moving faster. The results showed that the perceived velocity in the auditory-filled condition was lower than that in the auditory-unfilled and no-sound conditions. In Experiment 2, we investigated the effects of auditory stimuli on velocity adaptation. The results showed that the effects of velocity adaptation in the auditory-filled condition were weaker than those in the no-sound condition. These results indicate that auditory stimuli tend to decrease the perceived velocity of a moving visual stimulus.

  13. Speaking Two Languages Enhances an Auditory but Not a Visual Neural Marker of Cognitive Inhibition

    Directory of Open Access Journals (Sweden)

    Mercedes Fernandez

    2014-09-01

    Full Text Available The purpose of the present study was to replicate and extend our original findings of enhanced neural inhibitory control in bilinguals. We compared English monolinguals to Spanish/English bilinguals on a non-linguistic, auditory Go/NoGo task while recording event-related brain potentials. New to this study was the visual Go/NoGo task, which we included to investigate whether enhanced neural inhibition in bilinguals extends from the auditory to the visual modality. Results confirmed our original findings and revealed greater inhibition in bilinguals compared to monolinguals. As predicted, compared to monolinguals, bilinguals showed increased N2 amplitude during the auditory NoGo trials, which required inhibitory control, but no differences during the Go trials, which required a behavioral response and no inhibition. Interestingly, during the visual Go/NoGo task, event related brain potentials did not distinguish the two groups, and behavioral responses were similar between the groups regardless of task modality. Thus, only auditory trials that required inhibitory control revealed between-group differences indicative of greater neural inhibition in bilinguals. These results show that experience-dependent neural changes associated with bilingualism are specific to the auditory modality and that the N2 event-related brain potential is a sensitive marker of this plasticity.

  14. Selective and divided attention modulates auditory-vocal integration in the processing of pitch feedback errors.

    Science.gov (United States)

    Liu, Ying; Hu, Huijing; Jones, Jeffery A; Guo, Zhiqiang; Li, Weifeng; Chen, Xi; Liu, Peng; Liu, Hanjun

    2015-08-01

    Speakers rapidly adjust their ongoing vocal productions to compensate for errors they hear in their auditory feedback. It is currently unclear what role attention plays in these vocal compensations. This event-related potential (ERP) study examined the influence of selective and divided attention on the vocal and cortical responses to pitch errors heard in auditory feedback regarding ongoing vocalisations. During the production of a sustained vowel, participants briefly heard their vocal pitch shifted up two semitones while they actively attended to auditory or visual events (selective attention), or both auditory and visual events (divided attention), or were not told to attend to either modality (control condition). The behavioral results showed that attending to the pitch perturbations elicited larger vocal compensations than attending to the visual stimuli. Moreover, ERPs were likewise sensitive to the attentional manipulations: P2 responses to pitch perturbations were larger when participants attended to the auditory stimuli compared to when they attended to the visual stimuli, and compared to when they were not explicitly told to attend to either the visual or auditory stimuli. By contrast, dividing attention between the auditory and visual modalities caused suppressed P2 responses relative to all the other conditions and caused enhanced N1 responses relative to the control condition. These findings provide strong evidence for the influence of attention on the mechanisms underlying the auditory-vocal integration in the processing of pitch feedback errors. In addition, selective attention and divided attention appear to modulate the neurobehavioral processing of pitch feedback errors in different ways. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Neural Correlates of Automatic and Controlled Auditory Processing in Schizophrenia

    Science.gov (United States)

    Morey, Rajendra A.; Mitchell, Teresa V.; Inan, Seniha; Lieberman, Jeffrey A.; Belger, Aysenil

    2009-01-01

    Individuals with schizophrenia demonstrate impairments in selective attention and sensory processing. The authors assessed differences in brain function between 26 participants with schizophrenia and 17 comparison subjects engaged in automatic (unattended) and controlled (attended) auditory information processing using event-related functional MRI. Lower regional neural activation during automatic auditory processing in the schizophrenia group was not confined to just the temporal lobe, but also extended to prefrontal regions. Controlled auditory processing was associated with a distributed frontotemporal and subcortical dysfunction. Differences in activation between these two modes of auditory information processing were more pronounced in the comparison group than in the patient group. PMID:19196926

  16. Automatic detection of lexical change: an auditory event-related potential study.

    Science.gov (United States)

    Muller-Gass, Alexandra; Roye, Anja; Kirmse, Ursula; Saupe, Katja; Jacobsen, Thomas; Schröger, Erich

    2007-10-29

    We investigated the detection of rare task-irrelevant changes in the lexical status of speech stimuli. Participants performed a nonlinguistic task on word and pseudoword stimuli that occurred, in separate conditions, rarely or frequently. Task performance for pseudowords was deteriorated relative to words, suggesting unintentional lexical analysis. Furthermore, rare word and pseudoword changes had a similar effect on the event-related potentials, starting as early as 165 ms. This is the first demonstration of the automatic detection of change in lexical status that is not based on a co-occurring acoustic change. We propose that, following lexical analysis of the incoming stimuli, a mental representation of the lexical regularity is formed and used as a template against which lexical change can be detected.

  17. Behavioral and EEG evidence for auditory memory suppression

    Directory of Open Access Journals (Sweden)

    Maya Elizabeth Cano

    2016-03-01

    Full Text Available The neural basis of motivated forgetting using the Think/No-Think (TNT paradigm is receiving increased attention with a particular focus on the mechanisms that enable memory suppression. However, most TNT studies have been limited to the visual domain. To assess whether and to what extent direct memory suppression extends across sensory modalities, we examined behavioral and electroencephalographic (EEG effects of auditory Think/No-Think in healthy young adults by adapting the TNT paradigm to the auditory modality. Behaviorally, suppression of memory strength was indexed by prolonged response times during the retrieval of subsequently remembered No-Think words. We examined task-related EEG activity of both attempted memory retrieval and inhibition of a previously learned target word during the presentation of its paired associate. Event-related EEG responses revealed two main findings: 1 a centralized Think > No-Think positivity during auditory word presentation (from approximately 0-500ms, and 2 a sustained Think positivity over parietal electrodes beginning at approximately 600ms reflecting the memory retrieval effect which was significantly reduced for No-Think words. In addition, word-locked theta (4-8 Hz power was initially greater for No-Think compared to Think during auditory word presentation over fronto-central electrodes. This was followed by a posterior theta increase indexing successful memory retrieval in the Think condition.The observed event-related potential pattern and theta power analysis are similar to that reported in visual Think/No-Think studies and support a modality non-specific mechanism for memory inhibition. The EEG data also provide evidence supporting differing roles and time courses of frontal and parietal regions in the flexible control of auditory memory.

  18. Behavioral and EEG Evidence for Auditory Memory Suppression.

    Science.gov (United States)

    Cano, Maya E; Knight, Robert T

    2016-01-01

    The neural basis of motivated forgetting using the Think/No-Think (TNT) paradigm is receiving increased attention with a particular focus on the mechanisms that enable memory suppression. However, most TNT studies have been limited to the visual domain. To assess whether and to what extent direct memory suppression extends across sensory modalities, we examined behavioral and electroencephalographic (EEG) effects of auditory TNT in healthy young adults by adapting the TNT paradigm to the auditory modality. Behaviorally, suppression of memory strength was indexed by prolonged response time (RTs) during the retrieval of subsequently remembered No-Think words. We examined task-related EEG activity of both attempted memory retrieval and inhibition of a previously learned target word during the presentation of its paired associate. Event-related EEG responses revealed two main findings: (1) a centralized Think > No-Think positivity during auditory word presentation (from approximately 0-500 ms); and (2) a sustained Think positivity over parietal electrodes beginning at approximately 600 ms reflecting the memory retrieval effect which was significantly reduced for No-Think words. In addition, word-locked theta (4-8 Hz) power was initially greater for No-Think compared to Think during auditory word presentation over fronto-central electrodes. This was followed by a posterior theta increase indexing successful memory retrieval in the Think condition. The observed event-related potential pattern and theta power analysis are similar to that reported in visual TNT studies and support a modality non-specific mechanism for memory inhibition. The EEG data also provide evidence supporting differing roles and time courses of frontal and parietal regions in the flexible control of auditory memory.

  19. Feature conjunctions and auditory sensory memory.

    Science.gov (United States)

    Sussman, E; Gomes, H; Nousak, J M; Ritter, W; Vaughan, H G

    1998-05-18

    This study sought to obtain additional evidence that transient auditory memory stores information about conjunctions of features on an automatic basis. The mismatch negativity of event-related potentials was employed because its operations are based on information that is stored in transient auditory memory. The mismatch negativity was found to be elicited by a tone that differed from standard tones in a combination of its perceived location and frequency. The result lends further support to the hypothesis that the system upon which the mismatch negativity relies processes stimuli in an holistic manner. Copyright 1998 Elsevier Science B.V.

  20. Sizing up the competition: quantifying the influence of the mental lexicon on auditory and visual spoken word recognition.

    Science.gov (United States)

    Strand, Julia F; Sommers, Mitchell S

    2011-09-01

    Much research has explored how spoken word recognition is influenced by the architecture and dynamics of the mental lexicon (e.g., Luce and Pisoni, 1998; McClelland and Elman, 1986). A more recent question is whether the processes underlying word recognition are unique to the auditory domain, or whether visually perceived (lipread) speech may also be sensitive to the structure of the mental lexicon (Auer, 2002; Mattys, Bernstein, and Auer, 2002). The current research was designed to test the hypothesis that both aurally and visually perceived spoken words are isolated in the mental lexicon as a function of their modality-specific perceptual similarity to other words. Lexical competition (the extent to which perceptually similar words influence recognition of a stimulus word) was quantified using metrics that are well-established in the literature, as well as a statistical method for calculating perceptual confusability based on the phi-square statistic. Both auditory and visual spoken word recognition were influenced by modality-specific lexical competition as well as stimulus word frequency. These findings extend the scope of activation-competition models of spoken word recognition and reinforce the hypothesis (Auer, 2002; Mattys et al., 2002) that perceptual and cognitive properties underlying spoken word recognition are not specific to the auditory domain. In addition, the results support the use of the phi-square statistic as a better predictor of lexical competition than metrics currently used in models of spoken word recognition. © 2011 Acoustical Society of America

  1. The selective processing of emotional visual stimuli while detecting auditory targets: an ERP analysis.

    Science.gov (United States)

    Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O

    2008-09-16

    Event-related potential studies revealed an early posterior negativity (EPN) for emotional compared to neutral pictures. Exploring the emotion-attention relationship, a previous study observed that a primary visual discrimination task interfered with the emotional modulation of the EPN component. To specify the locus of interference, the present study assessed the fate of selective visual emotion processing while attention is directed towards the auditory modality. While simply viewing a rapid and continuous stream of pleasant, neutral, and unpleasant pictures in one experimental condition, processing demands of a concurrent auditory target discrimination task were systematically varied in three further experimental conditions. Participants successfully performed the auditory task as revealed by behavioral performance and selected event-related potential components. Replicating previous results, emotional pictures were associated with a larger posterior negativity compared to neutral pictures. Of main interest, increasing demands of the auditory task did not modulate the selective processing of emotional visual stimuli. With regard to the locus of interference, selective emotion processing as indexed by the EPN does not seem to reflect shared processing resources of visual and auditory modality.

  2. Human event-related brain potentials to auditory periodic noise stimuli.

    Science.gov (United States)

    Kaernbach, C; Schröger, E; Gunter, T C

    1998-02-06

    Periodic noise is perceived as different from ordinary non-repeating noise due to the involvement of echoic memory. Since this stimulus does not contain simple physical cues (such as onsets or spectral shape) that might obscure sensory memory interpretations, it is a valuable tool to study sensory memory functions. We demonstrated for the first time that the processing of periodic noise can be tapped by event-related brain potentials (ERPs). Human subjects received repeating segments of noise embedded in non-repeating noise. They were instructed to detect the periodicity inherent to the stimulation. We observed a central negativity time-locked on the periodic segment that correlated to the subjects behavioral performance in periodicity detection. It is argued that the ERP result indicates an enhancement of sensory-specific processing.

  3. Neural network approach in multichannel auditory event-related potential analysis.

    Science.gov (United States)

    Wu, F Y; Slater, J D; Ramsay, R E

    1994-04-01

    Even though there are presently no clearly defined criteria for the assessment of P300 event-related potential (ERP) abnormality, it is strongly indicated through statistical analysis that such criteria exist for classifying control subjects and patients with diseases resulting in neuropsychological impairment such as multiple sclerosis (MS). We have demonstrated the feasibility of artificial neural network (ANN) methods in classifying ERP waveforms measured at a single channel (Cz) from control subjects and MS patients. In this paper, we report the results of multichannel ERP analysis and a modified network analysis methodology to enhance automation of the classification rule extraction process. The proposed methodology significantly reduces the work of statistical analysis. It also helps to standardize the criteria of P300 ERP assessment and facilitate the computer-aided analysis on neuropsychological functions.

  4. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  5. Examining age-related differences in auditory attention control using a task-switching procedure.

    Science.gov (United States)

    Lawo, Vera; Koch, Iring

    2014-03-01

    Using a novel task-switching variant of dichotic selective listening, we examined age-related differences in the ability to intentionally switch auditory attention between 2 speakers defined by their sex. In our task, young (M age = 23.2 years) and older adults (M age = 66.6 years) performed a numerical size categorization on spoken number words. The task-relevant speaker was indicated by a cue prior to auditory stimulus onset. The cuing interval was either short or long and varied randomly trial by trial. We found clear performance costs with instructed attention switches. These auditory attention switch costs decreased with prolonged cue-stimulus interval. Older adults were generally much slower (but not more error prone) than young adults, but switching-related effects did not differ across age groups. These data suggest that the ability to intentionally switch auditory attention in a selective listening task is not compromised in healthy aging. We discuss the role of modality-specific factors in age-related differences.

  6. Effect of task-related continuous auditory feedback during learning of tracking motion exercises

    Directory of Open Access Journals (Sweden)

    Rosati Giulio

    2012-10-01

    Full Text Available Abstract Background This paper presents the results of a set of experiments in which we used continuous auditory feedback to augment motor training exercises. This feedback modality is mostly underexploited in current robotic rehabilitation systems, which usually implement only very basic auditory interfaces. Our hypothesis is that properly designed continuous auditory feedback could be used to represent temporal and spatial information that could in turn, improve performance and motor learning. Methods We implemented three different experiments on healthy subjects, who were asked to track a target on a screen by moving an input device (controller with their hand. Different visual and auditory feedback modalities were envisaged. The first experiment investigated whether continuous task-related auditory feedback can help improve performance to a greater extent than error-related audio feedback, or visual feedback alone. In the second experiment we used sensory substitution to compare different types of auditory feedback with equivalent visual feedback, in order to find out whether mapping the same information on a different sensory channel (the visual channel yielded comparable effects with those gained in the first experiment. The final experiment applied a continuously changing visuomotor transformation between the controller and the screen and mapped kinematic information, computed in either coordinate system (controller or video, to the audio channel, in order to investigate which information was more relevant to the user. Results Task-related audio feedback significantly improved performance with respect to visual feedback alone, whilst error-related feedback did not. Secondly, performance in audio tasks was significantly better with respect to the equivalent sensory-substituted visual tasks. Finally, with respect to visual feedback alone, video-task-related sound feedback decreased the tracking error during the learning of a novel

  7. Modification of sudden onset auditory ERP by involuntary attention to visual stimuli.

    Science.gov (United States)

    Oray, Serkan; Lu, Zhong-Lin; Dawson, Michael E

    2002-03-01

    To investigate the cross-modal nature of the exogenous attention system, we studied how involuntary attention in the visual modality affects ERPs elicited by sudden onset of events in the auditory modality. Relatively loud auditory white noise bursts were presented to subjects with random and long inter-trial intervals. The noise bursts were either presented alone, or paired with a visual stimulus with a visual to auditory onset asynchrony of 120 ms. In a third condition, the visual stimuli were shown alone. All three conditions, auditory alone, visual alone, and paired visual/auditory, were randomly inter-mixed and presented with equal probabilities. Subjects were instructed to fixate on a point in front of them without task instructions concerning either the auditory or visual stimuli. ERPs were recorded from 28 scalp sites throughout every experimental session. Compared to ERPs in the auditory alone condition, pairing the auditory noise bursts with the visual stimulus reduced the amplitude of the auditory N100 component at Cz by 40% and the auditory P200/P300 component at Cz by 25%. No significant topographical change was observed in the scalp distributions of the N100 and P200/P300. Our results suggest that involuntary attention to visual stimuli suppresses early sensory (N100) as well as late cognitive (P200/P300) processing of sudden auditory events. The activation of the exogenous attention system by sudden auditory onset can be modified by involuntary visual attention in a cross-model, passive prepulse inhibition paradigm.

  8. Crossmodal effects of Guqin and piano music on selective attention: an event-related potential study.

    Science.gov (United States)

    Zhu, Weina; Zhang, Junjun; Ding, Xiaojun; Zhou, Changle; Ma, Yuanye; Xu, Dan

    2009-11-27

    To compare the effects of music from different cultural environments (Guqin: Chinese music; piano: Western music) on crossmodal selective attention, behavioral and event-related potential (ERP) data in a standard two-stimulus visual oddball task were recorded from Chinese subjects in three conditions: silence, Guqin music or piano music background. Visual task data were then compared with auditory task data collected previously. In contrast with the results of the auditory task, the early (N1) and late (P300) stages exhibited no differences between Guqin and piano backgrounds during the visual task. Taking our previous study and this study together, we can conclude that: although the cultural-familiar music influenced selective attention both in the early and late stages, these effects appeared only within a sensory modality (auditory) but not in cross-sensory modalities (visual). Thus, the musical cultural factor is more obvious in intramodal than in crossmodal selective attention.

  9. Visual form predictions facilitate auditory processing at the N1.

    Science.gov (United States)

    Paris, Tim; Kim, Jeesun; Davis, Chris

    2017-02-20

    Auditory-visual (AV) events often involve a leading visual cue (e.g. auditory-visual speech) that allows the perceiver to generate predictions about the upcoming auditory event. Electrophysiological evidence suggests that when an auditory event is predicted, processing is sped up, i.e., the N1 component of the ERP occurs earlier (N1 facilitation). However, it is not clear (1) whether N1 facilitation is based specifically on predictive rather than multisensory integration and (2) which particular properties of the visual cue it is based on. The current experiment used artificial AV stimuli in which visual cues predicted but did not co-occur with auditory cues. Visual form cues (high and low salience) and the auditory-visual pairing were manipulated so that auditory predictions could be based on form and timing or on timing only. The results showed that N1 facilitation occurred only for combined form and temporal predictions. These results suggest that faster auditory processing (as indicated by N1 facilitation) is based on predictive processing generated by a visual cue that clearly predicts both what and when the auditory stimulus will occur. Copyright © 2016. Published by Elsevier Ltd.

  10. Functional magnetic resonance imaging measure of automatic and controlled auditory processing

    OpenAIRE

    Mitchell, Teresa V.; Morey, Rajendra A.; Inan, Seniha; Belger, Aysenil

    2005-01-01

    Activity within fronto-striato-temporal regions during processing of unattended auditory deviant tones and an auditory target detection task was investigated using event-related functional magnetic resonance imaging. Activation within the middle frontal gyrus, inferior frontal gyrus, anterior cingulate gyrus, superior temporal gyrus, thalamus, and basal ganglia were analyzed for differences in activity patterns between the two stimulus conditions. Unattended deviant tones elicited robust acti...

  11. Concentrated pitch discrimination modulates auditory brainstem responses during contralateral noise exposure.

    Science.gov (United States)

    Ikeda, Kazunari; Sekiguchi, Takahiro; Hayashi, Akiko

    2010-03-31

    This study examined a notion that auditory discrimination is a requisite for attention-related modulation of the auditory brainstem response (ABR) during contralateral noise exposure. Given that the right ear was exposed continuously with white noise at an intensity of 60-80 dB sound pressure level, tone pips at 80 dB sound pressure level were delivered to the left ear through either single-stimulus or oddball procedures. Participants conducted reading (ignoring task) and counting target tones (attentive task) during stimulation. The oddball but not the single-stimulus procedures elicited task-related modulations in both early (ABR) and late (processing negativity) event-related potentials simultaneously. The elicitation of the attention-related ABR modulation during contralateral noise exposure is thus considered to require auditory discrimination and have the corticofugal nature evidently.

  12. Common coding of auditory and visual spatial information in working memory.

    Science.gov (United States)

    Lehnert, Günther; Zimmer, Hubert D

    2008-09-16

    We compared spatial short-term memory for visual and auditory stimuli in an event-related slow potentials study. Subjects encoded object locations of either four or six sequentially presented auditory or visual stimuli and maintained them during a retention period of 6 s. Slow potentials recorded during encoding were modulated by the modality of the stimuli. Stimulus related activity was stronger for auditory items at frontal and for visual items at posterior sites. At frontal electrodes, negative potentials incrementally increased with the sequential presentation of visual items, whereas a strong transient component occurred during encoding of each auditory item without the cumulative increment. During maintenance, frontal slow potentials were affected by modality and memory load according to task difficulty. In contrast, at posterior recording sites, slow potential activity was only modulated by memory load independent of modality. We interpret the frontal effects as correlates of different encoding strategies and the posterior effects as a correlate of common coding of visual and auditory object locations.

  13. Mathematical model quantifies multiple daylight exposure and burial events for rock surfaces using luminescence dating

    International Nuclear Information System (INIS)

    Freiesleben, Trine; Sohbati, Reza; Murray, Andrew; Jain, Mayank; Al Khasawneh, Sahar; Hvidt, Søren; Jakobsen, Bo

    2015-01-01

    Interest in the optically stimulated luminescence (OSL) dating of rock surfaces has increased significantly over the last few years, as the potential of the method has been explored. It has been realized that luminescence-depth profiles show qualitative evidence for multiple daylight exposure and burial events. To quantify both burial and exposure events a new mathematical model is developed by expanding the existing models of evolution of luminescence–depth profiles, to include repeated sequential events of burial and exposure to daylight. This new model is applied to an infrared stimulated luminescence-depth profile from a feldspar-rich granite cobble from an archaeological site near Aarhus, Denmark. This profile shows qualitative evidence for multiple daylight exposure and burial events; these are quantified using the model developed here. By determining the burial ages from the surface layer of the cobble and by fitting the new model to the luminescence profile, it is concluded that the cobble was well bleached before burial. This indicates that the OSL burial age is likely to be reliable. In addition, a recent known exposure event provides an approximate calibration for older daylight exposure events. This study confirms the suggestion that rock surfaces contain a record of exposure and burial history, and that these events can be quantified. The burial age of rock surfaces can thus be dated with confidence, based on a knowledge of their pre-burial light exposure; it may also be possible to determine the length of a fossil exposure, using a known natural light exposure as calibration. - Highlights: • Evidence for multiple exposure and burial events in the history of a single cobble. • OSL rock surface dating model improved to include multiple burial/exposure cycles. • Application of the new model quantifies burial and exposure events.

  14. The human brain maintains contradictory and redundant auditory sensory predictions.

    Directory of Open Access Journals (Sweden)

    Marika Pieszek

    Full Text Available Computational and experimental research has revealed that auditory sensory predictions are derived from regularities of the current environment by using internal generative models. However, so far, what has not been addressed is how the auditory system handles situations giving rise to redundant or even contradictory predictions derived from different sources of information. To this end, we measured error signals in the event-related brain potentials (ERPs in response to violations of auditory predictions. Sounds could be predicted on the basis of overall probability, i.e., one sound was presented frequently and another sound rarely. Furthermore, each sound was predicted by an informative visual cue. Participants' task was to use the cue and to discriminate the two sounds as fast as possible. Violations of the probability based prediction (i.e., a rare sound as well as violations of the visual-auditory prediction (i.e., an incongruent sound elicited error signals in the ERPs (Mismatch Negativity [MMN] and Incongruency Response [IR]. Particular error signals were observed even in case the overall probability and the visual symbol predicted different sounds. That is, the auditory system concurrently maintains and tests contradictory predictions. Moreover, if the same sound was predicted, we observed an additive error signal (scalp potential and primary current density equaling the sum of the specific error signals. Thus, the auditory system maintains and tolerates functionally independently represented redundant and contradictory predictions. We argue that the auditory system exploits all currently active regularities in order to optimally prepare for future events.

  15. The role of auditory cortices in the retrieval of single-trial auditory-visual object memories.

    OpenAIRE

    Matusz, P.J.; Thelen, A.; Amrein, S.; Geiser, E.; Anken, J.; Murray, M.M.

    2015-01-01

    Single-trial encounters with multisensory stimuli affect both memory performance and early-latency brain responses to visual stimuli. Whether and how auditory cortices support memory processes based on single-trial multisensory learning is unknown and may differ qualitatively and quantitatively from comparable processes within visual cortices due to purported differences in memory capacities across the senses. We recorded event-related potentials (ERPs) as healthy adults (n = 18) performed a ...

  16. Cognitive event-related potentials in comatose and post-comatose states.

    Science.gov (United States)

    Vanhaudenhuyse, Audrey; Laureys, Steven; Perrin, Fabien

    2008-01-01

    We review the interest of cognitive event-related potentials (ERPs) in comatose, vegetative, or minimally conscious patients. Auditory cognitive ERPs are useful to investigate residual cognitive functions, such as echoic memory (MMN), acoustical and semantic discrimination (P300), and incongruent language detection (N400). While early ERPs (such as the absence of cortical responses on somatosensory-evoked potentials) predict bad outcome, cognitive ERPs (MMN and P300) are indicative of recovery of consciousness. In coma-survivors, cognitive potentials are more frequently obtained when using stimuli that are more ecologic or have an emotional content (such as the patient's own name) than when using classical sine tones.

  17. P300 component of event-related potentials in persons with asperger disorder.

    Science.gov (United States)

    Iwanami, Akira; Okajima, Yuka; Ota, Haruhisa; Tani, Masayuki; Yamada, Takashi; Yamagata, Bun; Hashimoto, Ryuichiro; Kanai, Chieko; Takashio, Osamu; Inamoto, Atsuko; Ono, Taisei; Takayama, Yukiko; Kato, Nobumasa

    2014-10-01

    In the present study, we investigated auditory event-related potentials in adults with Asperger disorder and normal controls using an auditory oddball task and a novelty oddball task. Task performance and the latencies of P300 evoked by both target and novel stimuli in the two tasks did not differ between the two groups. Analysis of variance revealed that there was a significant interaction effect between group and electrode site on the mean amplitude of the P300 evoked by novel stimuli, which indicated that there was an altered distribution of the P300 in persons with Asperger disorder. In contrast, there was no significant interaction effect on the mean P300 amplitude elicited by target stimuli. Considering that P300 comprises two main subcomponents, frontal-central-dominant P3a and parietal-dominant P3b, our results suggested that persons with Asperger disorder have enhanced amplitude of P3a, which indicated activated prefrontal function in this task.

  18. The Auditory-Visual Speech Benefit on Working Memory in Older Adults with Hearing Impairment

    OpenAIRE

    Frtusova, Jana B.; Phillips, Natalie A.

    2016-01-01

    This study examined the effect of auditory-visual (AV) speech stimuli on working memory in older adults with poorer-hearing (PH) in comparison to age- and education-matched older adults with better hearing (BH). Participants completed a working memory n-back task (0- to 2-back) in which sequences of digits were presented in visual-only (i.e., speech-reading), auditory-only (A-only), and AV conditions. Auditory event-related potentials (ERP) were collected to assess the relationship between pe...

  19. Sparse representation of sounds in the unanesthetized auditory cortex.

    Directory of Open Access Journals (Sweden)

    Tomás Hromádka

    2008-01-01

    Full Text Available How do neuronal populations in the auditory cortex represent acoustic stimuli? Although sound-evoked neural responses in the anesthetized auditory cortex are mainly transient, recent experiments in the unanesthetized preparation have emphasized subpopulations with other response properties. To quantify the relative contributions of these different subpopulations in the awake preparation, we have estimated the representation of sounds across the neuronal population using a representative ensemble of stimuli. We used cell-attached recording with a glass electrode, a method for which single-unit isolation does not depend on neuronal activity, to quantify the fraction of neurons engaged by acoustic stimuli (tones, frequency modulated sweeps, white-noise bursts, and natural stimuli in the primary auditory cortex of awake head-fixed rats. We find that the population response is sparse, with stimuli typically eliciting high firing rates (>20 spikes/second in less than 5% of neurons at any instant. Some neurons had very low spontaneous firing rates (<0.01 spikes/second. At the other extreme, some neurons had driven rates in excess of 50 spikes/second. Interestingly, the overall population response was well described by a lognormal distribution, rather than the exponential distribution that is often reported. Our results represent, to our knowledge, the first quantitative evidence for sparse representations of sounds in the unanesthetized auditory cortex. Our results are compatible with a model in which most neurons are silent much of the time, and in which representations are composed of small dynamic subsets of highly active neurons.

  20. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder.

    Science.gov (United States)

    Lotfi, Yones; Mehrkian, Saiedeh; Moossavi, Abdollah; Zadeh, Soghrat Faghih; Sadjedi, Hamed

    2016-03-01

    This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD). The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9-11 years) according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth) and lower negative correlations in the most lateral reference location (60° azimuth) in the children with APD. The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information.

  1. Mathematical model quantifies multiple daylight exposure and burial events for rock surfaces using luminescence dating

    DEFF Research Database (Denmark)

    Freiesleben, Trine Holm; Sohbati, Reza; Murray, Andrew

    2015-01-01

    Interest in the optically stimulated luminescence (OSL) dating of rock surfaces has increased significantly over the last few years, as the potential of the method has been explored. It has been realized that luminescence-depth profiles show qualitative evidence for multiple daylight exposure...... and burial events. To quantify both burial and exposure events a new mathematical model is developed by expanding the existing models of evolution of luminescenceedepth profiles, to include repeated sequential events of burial and exposure to daylight. This new model is applied to an infrared stimulated...... events. This study confirms the suggestion that rock surfaces contain a record of exposure and burial history, and that these events can be quantified. The burial age of rock surfaces can thus be dated with confidence, based on a knowledge of their pre-burial light exposure; it may also be possible...

  2. The relation between working memory capacity and auditory lateralization in children with auditory processing disorders.

    Science.gov (United States)

    Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed

    2014-11-01

    Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Assessing cross-modal target transition effects with a visual-auditory oddball.

    Science.gov (United States)

    Kiat, John E

    2018-04-30

    Prior research has shown contextual manipulations involving temporal and sequence related factors significantly moderate attention-related responses, as indexed by the P3b event-related-potential, towards infrequent (i.e., deviant) target oddball stimuli. However, significantly less research has looked at the influence of cross-modal switching on P3b responding, with the impact of target-to-target cross-modal transitions being virtually unstudied. To address this gap, this study recorded high-density (256 electrodes) EEG data from twenty-five participants as they completed a cross-modal visual-auditory oddball task. This task was comprised of unimodal visual (70% Nontargets: 30% Deviant-targets) and auditory (70% Nontargets: 30% Deviant-targets) oddballs presented in fixed alternating order (i.e., visual-auditory-visual-auditory, etc.) with participants being tasked with detecting deviant-targets in both modalities. Differences in the P3b response towards deviant-targets as a function of preceding deviant-target's presentation modality was analyzed using temporal-spatial PCA decomposition. In line with predictions, the results indicate that the ERP response to auditory deviant-targets preceded by visual deviant-targets exhibits an elevated P3b, relative to the processing of auditory deviant-targets preceded by auditory deviant-targets. However, the processing of visual deviant-targets preceded by auditory deviant-targets exhibited a reduced P3b response, relative to the P3b response towards visual deviant-targets preceded by visual deviant-targets. These findings provide the first demonstration of temporally and perceptually decoupled target-to-target cross-modal transitions moderating P3b responses on the oddball paradigm, generally providing support for the context-updating interpretation of the P3b response. Copyright © 2017. Published by Elsevier B.V.

  4. Neural Substrates of Auditory Emotion Recognition Deficits in Schizophrenia.

    Science.gov (United States)

    Kantrowitz, Joshua T; Hoptman, Matthew J; Leitman, David I; Moreno-Ortega, Marta; Lehrfeld, Jonathan M; Dias, Elisa; Sehatpour, Pejman; Laukka, Petri; Silipo, Gail; Javitt, Daniel C

    2015-11-04

    Deficits in auditory emotion recognition (AER) are a core feature of schizophrenia and a key component of social cognitive impairment. AER deficits are tied behaviorally to impaired ability to interpret tonal ("prosodic") features of speech that normally convey emotion, such as modulations in base pitch (F0M) and pitch variability (F0SD). These modulations can be recreated using synthetic frequency modulated (FM) tones that mimic the prosodic contours of specific emotional stimuli. The present study investigates neural mechanisms underlying impaired AER using a combined event-related potential/resting-state functional connectivity (rsfMRI) approach in 84 schizophrenia/schizoaffective disorder patients and 66 healthy comparison subjects. Mismatch negativity (MMN) to FM tones was assessed in 43 patients/36 controls. rsfMRI between auditory cortex and medial temporal (insula) regions was assessed in 55 patients/51 controls. The relationship between AER, MMN to FM tones, and rsfMRI was assessed in the subset who performed all assessments (14 patients, 21 controls). As predicted, patients showed robust reductions in MMN across FM stimulus type (p = 0.005), particularly to modulations in F0M, along with impairments in AER and FM tone discrimination. MMN source analysis indicated dipoles in both auditory cortex and anterior insula, whereas rsfMRI analyses showed reduced auditory-insula connectivity. MMN to FM tones and functional connectivity together accounted for ∼50% of the variance in AER performance across individuals. These findings demonstrate that impaired preattentive processing of tonal information and reduced auditory-insula connectivity are critical determinants of social cognitive dysfunction in schizophrenia, and thus represent key targets for future research and clinical intervention. Schizophrenia patients show deficits in the ability to infer emotion based upon tone of voice [auditory emotion recognition (AER)] that drive impairments in social cognition

  5. Auditory N1 reveals planning and monitoring processes during music performance.

    Science.gov (United States)

    Mathias, Brian; Gehring, William J; Palmer, Caroline

    2017-02-01

    The current study investigated the relationship between planning processes and feedback monitoring during music performance, a complex task in which performers prepare upcoming events while monitoring their sensory outcomes. Theories of action planning in auditory-motor production tasks propose that the planning of future events co-occurs with the perception of auditory feedback. This study investigated the neural correlates of planning and feedback monitoring by manipulating the contents of auditory feedback during music performance. Pianists memorized and performed melodies at a cued tempo in a synchronization-continuation task while the EEG was recorded. During performance, auditory feedback associated with single melody tones was occasionally substituted with tones corresponding to future (next), present (current), or past (previous) melody tones. Only future-oriented altered feedback disrupted behavior: Future-oriented feedback caused pianists to slow down on the subsequent tone more than past-oriented feedback, and amplitudes of the auditory N1 potential elicited by the tone immediately following the altered feedback were larger for future-oriented than for past-oriented or noncontextual (unrelated) altered feedback; larger N1 amplitudes were associated with greater slowing following altered feedback in the future condition only. Feedback-related negativities were elicited in all altered feedback conditions. In sum, behavioral and neural evidence suggests that future-oriented feedback disrupts performance more than past-oriented feedback, consistent with planning theories that posit similarity-based interference between feedback and planning contents. Neural sensory processing of auditory feedback, reflected in the N1 ERP, may serve as a marker for temporal disruption caused by altered auditory feedback in auditory-motor production tasks. © 2016 Society for Psychophysiological Research.

  6. Attention-dependent allocation of auditory processing resources as measured by mismatch negativity.

    Science.gov (United States)

    Dittmann-Balcar, A; Thienel, R; Schall, U

    1999-12-16

    Mismatch negativity (MMN) is a pre-attentive event-related potential measure of echoic memory. However, recent studies suggest attention-related modulation of MMN. This study investigates duration-elicited MMN in healthy subjects (n = 12) who were performing a visual discrimination task and, subsequently, an auditory discrimination task in a series of increasing task difficulty. MMN amplitude was found to be maximal at centro-frontal electrode sites without hemispheric differences. Comparison of both attend conditions (visual vs. auditory), revealed larger MMN amplitudes at Fz in the visual task without differences across task difficulty. However, significantly smaller MMN in the most demanding auditory condition supports the notion of limited processing capacity whose resources are modulated by attention in response to task requirements.

  7. Basic Auditory Processing Deficits in Dyslexia: Systematic Review of the Behavioral and Event-Related Potential/Field Evidence

    Science.gov (United States)

    Hämäläinen, Jarmo A.; Salminen, Hanne K.; Leppänen, Paavo H. T.

    2013-01-01

    A review of research that uses behavioral, electroencephalographic, and/or magnetoencephalographic methods to investigate auditory processing deficits in individuals with dyslexia is presented. Findings show that measures of frequency, rise time, and duration discrimination as well as amplitude modulation and frequency modulation detection were…

  8. Event-related potentials and secondary task performance during simulated driving.

    Science.gov (United States)

    Wester, A E; Böcker, K B E; Volkerts, E R; Verster, J C; Kenemans, J L

    2008-01-01

    Inattention and distraction account for a substantial number of traffic accidents. Therefore, we examined the impact of secondary task performance (an auditory oddball task) on a primary driving task (lane keeping). Twenty healthy participants performed two 20-min tests in the Divided Attention Steering Simulator (DASS). The visual secondary task of the DASS was replaced by an auditory oddball task to allow recording of brain activity. The driving task and the secondary (distracting) oddball task were presented in isolation and simultaneously, to assess their mutual interference. In addition to performance measures (lane keeping in the primary driving task and reaction speed in the secondary oddball task), brain activity, i.e. event-related potentials (ERPs), was recorded. Performance parameters on the driving test and the secondary oddball task did not differ between performance in isolation and simultaneous performance. However, when both tasks were performed simultaneously, reaction time variability increased in the secondary oddball task. Analysis of brain activity indicated that ERP amplitude (P3a amplitude) related to the secondary task, was significantly reduced when the task was performed simultaneously with the driving test. This study shows that when performing a simple secondary task during driving, performance of the driving task and this secondary task are both unaffected. However, analysis of brain activity shows reduced cortical processing of irrelevant, potentially distracting stimuli from the secondary task during driving.

  9. Early access to lexical-level phonological representations of Mandarin word-forms : evidence from auditory N1 habituation

    NARCIS (Netherlands)

    Yue, Jinxing; Alter, Kai; Howard, David; Bastiaanse, Roelien

    2017-01-01

    An auditory habituation design was used to investigate whether lexical-level phonological representations in the brain can be rapidly accessed after the onset of a spoken word. We studied the N1 component of the auditory event-related electrical potential, and measured the amplitude decrements of N1

  10. The role of auditory cortices in the retrieval of single-trial auditory-visual object memories.

    Science.gov (United States)

    Matusz, Pawel J; Thelen, Antonia; Amrein, Sarah; Geiser, Eveline; Anken, Jacques; Murray, Micah M

    2015-03-01

    Single-trial encounters with multisensory stimuli affect both memory performance and early-latency brain responses to visual stimuli. Whether and how auditory cortices support memory processes based on single-trial multisensory learning is unknown and may differ qualitatively and quantitatively from comparable processes within visual cortices due to purported differences in memory capacities across the senses. We recorded event-related potentials (ERPs) as healthy adults (n = 18) performed a continuous recognition task in the auditory modality, discriminating initial (new) from repeated (old) sounds of environmental objects. Initial presentations were either unisensory or multisensory; the latter entailed synchronous presentation of a semantically congruent or a meaningless image. Repeated presentations were exclusively auditory, thus differing only according to the context in which the sound was initially encountered. Discrimination abilities (indexed by d') were increased for repeated sounds that were initially encountered with a semantically congruent image versus sounds initially encountered with either a meaningless or no image. Analyses of ERPs within an electrical neuroimaging framework revealed that early stages of auditory processing of repeated sounds were affected by prior single-trial multisensory contexts. These effects followed from significantly reduced activity within a distributed network, including the right superior temporal cortex, suggesting an inverse relationship between brain activity and behavioural outcome on this task. The present findings demonstrate how auditory cortices contribute to long-term effects of multisensory experiences on auditory object discrimination. We propose a new framework for the efficacy of multisensory processes to impact both current multisensory stimulus processing and unisensory discrimination abilities later in time. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder

    Directory of Open Access Journals (Sweden)

    Yones Lotfi

    2016-03-01

    Full Text Available Background: This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD. Methods: The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9–11 years according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. Results: The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth and lower negative correlations in the most lateral reference location (60° azimuth in the children with APD. Conclusion: The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information.

  12. Using Facebook to Reach People Who Experience Auditory Hallucinations.

    Science.gov (United States)

    Crosier, Benjamin Sage; Brian, Rachel Marie; Ben-Zeev, Dror

    2016-06-14

    Auditory hallucinations (eg, hearing voices) are relatively common and underreported false sensory experiences that may produce distress and impairment. A large proportion of those who experience auditory hallucinations go unidentified and untreated. Traditional engagement methods oftentimes fall short in reaching the diverse population of people who experience auditory hallucinations. The objective of this proof-of-concept study was to examine the viability of leveraging Web-based social media as a method of engaging people who experience auditory hallucinations and to evaluate their attitudes toward using social media platforms as a resource for Web-based support and technology-based treatment. We used Facebook advertisements to recruit individuals who experience auditory hallucinations to complete an 18-item Web-based survey focused on issues related to auditory hallucinations and technology use in American adults. We systematically tested multiple elements of the advertisement and survey layout including image selection, survey pagination, question ordering, and advertising targeting strategy. Each element was evaluated sequentially and the most cost-effective strategy was implemented in the subsequent steps, eventually deriving an optimized approach. Three open-ended question responses were analyzed using conventional inductive content analysis. Coded responses were quantified into binary codes, and frequencies were then calculated. Recruitment netted N=264 total sample over a 6-week period. Ninety-seven participants fully completed all measures at a total cost of $8.14 per participant across testing phases. Systematic adjustments to advertisement design, survey layout, and targeting strategies improved data quality and cost efficiency. People were willing to provide information on what triggered their auditory hallucinations along with strategies they use to cope, as well as provide suggestions to others who experience auditory hallucinations. Women, people

  13. Using Facebook to Reach People Who Experience Auditory Hallucinations

    Science.gov (United States)

    Brian, Rachel Marie; Ben-Zeev, Dror

    2016-01-01

    Background Auditory hallucinations (eg, hearing voices) are relatively common and underreported false sensory experiences that may produce distress and impairment. A large proportion of those who experience auditory hallucinations go unidentified and untreated. Traditional engagement methods oftentimes fall short in reaching the diverse population of people who experience auditory hallucinations. Objective The objective of this proof-of-concept study was to examine the viability of leveraging Web-based social media as a method of engaging people who experience auditory hallucinations and to evaluate their attitudes toward using social media platforms as a resource for Web-based support and technology-based treatment. Methods We used Facebook advertisements to recruit individuals who experience auditory hallucinations to complete an 18-item Web-based survey focused on issues related to auditory hallucinations and technology use in American adults. We systematically tested multiple elements of the advertisement and survey layout including image selection, survey pagination, question ordering, and advertising targeting strategy. Each element was evaluated sequentially and the most cost-effective strategy was implemented in the subsequent steps, eventually deriving an optimized approach. Three open-ended question responses were analyzed using conventional inductive content analysis. Coded responses were quantified into binary codes, and frequencies were then calculated. Results Recruitment netted N=264 total sample over a 6-week period. Ninety-seven participants fully completed all measures at a total cost of $8.14 per participant across testing phases. Systematic adjustments to advertisement design, survey layout, and targeting strategies improved data quality and cost efficiency. People were willing to provide information on what triggered their auditory hallucinations along with strategies they use to cope, as well as provide suggestions to others who experience

  14. Deficient multisensory integration in schizophrenia: an event-related potential study.

    Science.gov (United States)

    Stekelenburg, Jeroen J; Maes, Jan Pieter; Van Gool, Arthur R; Sitskoorn, Margriet; Vroomen, Jean

    2013-07-01

    In many natural audiovisual events (e.g., the sight of a face articulating the syllable /ba/), the visual signal precedes the sound and thus allows observers to predict the onset and the content of the sound. In healthy adults, the N1 component of the event-related brain potential (ERP), reflecting neural activity associated with basic sound processing, is suppressed if a sound is accompanied by a video that reliably predicts sound onset. If the sound does not match the content of the video (e.g., hearing /ba/ while lipreading /fu/), the later occurring P2 component is affected. Here, we examined whether these visual information sources affect auditory processing in patients with schizophrenia. The electroencephalography (EEG) was recorded in 18 patients with schizophrenia and compared with that of 18 healthy volunteers. As stimuli we used video recordings of natural actions in which visual information preceded and predicted the onset of the sound that was either congruent or incongruent with the video. For the healthy control group, visual information reduced the auditory-evoked N1 if compared to a sound-only condition, and stimulus-congruency affected the P2. This reduction in N1 was absent in patients with schizophrenia, and the congruency effect on the P2 was diminished. Distributed source estimations revealed deficits in the network subserving audiovisual integration in patients with schizophrenia. The results show a deficit in multisensory processing in patients with schizophrenia and suggest that multisensory integration dysfunction may be an important and, to date, under-researched aspect of schizophrenia. Copyright © 2013. Published by Elsevier B.V.

  15. Integration and segregation in auditory scene analysis

    Science.gov (United States)

    Sussman, Elyse S.

    2005-03-01

    Assessment of the neural correlates of auditory scene analysis, using an index of sound change detection that does not require the listener to attend to the sounds [a component of event-related brain potentials called the mismatch negativity (MMN)], has previously demonstrated that segregation processes can occur without attention focused on the sounds and that within-stream contextual factors influence how sound elements are integrated and represented in auditory memory. The current study investigated the relationship between the segregation and integration processes when they were called upon to function together. The pattern of MMN results showed that the integration of sound elements within a sound stream occurred after the segregation of sounds into independent streams and, further, that the individual streams were subject to contextual effects. These results are consistent with a view of auditory processing that suggests that the auditory scene is rapidly organized into distinct streams and the integration of sequential elements to perceptual units takes place on the already formed streams. This would allow for the flexibility required to identify changing within-stream sound patterns, needed to appreciate music or comprehend speech..

  16. Neurofeedback-Based Enhancement of Single Trial Auditory Evoked Potentials: Feasibility in Healthy Subjects.

    Science.gov (United States)

    Rieger, Kathryn; Rarra, Marie-Helene; Moor, Nicolas; Diaz Hernandez, Laura; Baenninger, Anja; Razavi, Nadja; Dierks, Thomas; Hubl, Daniela; Koenig, Thomas

    2018-03-01

    Previous studies showed a global reduction of the event-related potential component N100 in patients with schizophrenia, a phenomenon that is even more pronounced during auditory verbal hallucinations. This reduction assumingly results from dysfunctional activation of the primary auditory cortex by inner speech, which reduces its responsiveness to external stimuli. With this study, we tested the feasibility of enhancing the responsiveness of the primary auditory cortex to external stimuli with an upregulation of the event-related potential component N100 in healthy control subjects. A total of 15 healthy subjects performed 8 double-sessions of EEG-neurofeedback training over 2 weeks. The results of the used linear mixed effect model showed a significant active learning effect within sessions ( t = 5.99, P < .001) against an unspecific habituation effect that lowered the N100 amplitude over time. Across sessions, a significant increase in the passive condition ( t = 2.42, P = .03), named as carry-over effect, was observed. Given that the carry-over effect is one of the ultimate aims of neurofeedback, it seems reasonable to apply this neurofeedback training protocol to influence the N100 amplitude in patients with schizophrenia. This intervention could provide an alternative treatment option for auditory verbal hallucinations in these patients.

  17. Individual Differences in Auditory Sentence Comprehension in Children: An Exploratory Event-Related Functional Magnetic Resonance Imaging Investigation

    Science.gov (United States)

    Yeatman, Jason D.; Ben-Shachar, Michal; Glover, Gary H.; Feldman, Heidi M.

    2010-01-01

    The purpose of this study was to explore changes in activation of the cortical network that serves auditory sentence comprehension in children in response to increasing demands of complex sentences. A further goal is to study how individual differences in children's receptive language abilities are associated with such changes in cortical…

  18. Separating acoustic deviance from novelty during the first year of life: a review of event-related potential evidence

    Science.gov (United States)

    Kushnerenko, Elena V.; Van den Bergh, Bea R. H.; Winkler, István

    2013-01-01

    Orienting to salient events in the environment is a first step in the development of attention in young infants. Electrophysiological studies have indicated that in newborns and young infants, sounds with widely distributed spectral energy, such as noise and various environmental sounds, as well as sounds widely deviating from their context elicit an event-related potential (ERP) similar to the adult P3a response. We discuss how the maturation of event-related potentials parallels the process of the development of passive auditory attention during the first year of life. Behavioral studies have indicated that the neonatal orientation to high-energy stimuli gradually changes to attending to genuine novelty and other significant events by approximately 9 months of age. In accordance with these changes, in newborns, the ERP response to large acoustic deviance is dramatically larger than that to small and moderate deviations. This ERP difference, however, rapidly decreases within first months of life and the differentiation of the ERP response to genuine novelty from that to spectrally rich but repeatedly presented sounds commences during the same period. The relative decrease of the response amplitudes elicited by high-energy stimuli may reflect development of an inhibitory brain network suppressing the processing of uninformative stimuli. Based on data obtained from healthy full-term and pre-term infants as well as from infants at risk for various developmental problems, we suggest that the electrophysiological indices of the processing of acoustic and contextual deviance may be indicative of the functioning of auditory attention, a crucial prerequisite of learning and language development. PMID:24046757

  19. A template-free approach for determining the latency of single events of auditory evoked M100

    Energy Technology Data Exchange (ETDEWEB)

    Burghoff, M [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany); Link, A [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany); Salajegheh, A [Cognitive Neuroscience of Language Laboratory, University of Maryland College Park, MD (United States); Elster, C [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany); Poeppel, D [Cognitive Neuroscience of Language Laboratory, University of Maryland College Park, MD (United States); Trahms, L [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany)

    2005-02-07

    The phase of the complex output of a narrow band Gaussian filter is taken to define the latency of the auditory evoked response M100 recorded by magnetoencephalography. It is demonstrated that this definition is consistent with the conventional peak latency. Moreover, it provides a tool for reducing the number of averages needed for a reliable estimation of the latency. Single-event latencies obtained by this procedure can be used to improve the signal quality of the conventional average by latency adjusted averaging. (note)

  20. The effects of interstimulus interval on sensory gating and on preattentive auditory memory in the oddball paradigm. Can magnitude of the sensory gating affect preattentive auditory comparison process?

    Science.gov (United States)

    Ermutlu, M Numan; Demiralp, Tamer; Karamürsel, Sacit

    2007-01-22

    P50, and mismatch negativity (MMN) are components of event-related potentials (ERP) reflecting sensory gating and preattentive auditory memory, respectively. Interstimulus interval (ISI) is an important determinant of the amplitudes of these components and N1. In the present study the interrelation between stimulus gating and preattentive auditory sensory memory were investigated as a function of ISI in 1.5, 2.5 and 3.5s in 15 healthy volunteered participants. ISI factor affected the N1 peak amplitude significantly. MMN amplitude in 2.5s ISI was significantly smaller compared to 1.5 and 3.5s ISI. ISI X stimuli interaction on P50 amplitude was statistically significant. P50 amplitudes to deviant stimuli in 2.5s ISI were larger than the P50 amplitudes in other ISIs. P50 difference (P50d) waveform amplitude correlated significantly with MMN amplitude. The results suggest that: (i) auditory sensory gating could affect preattentive auditory sensory memory by supplying input to the comparator mechanism; (ii) 2.5s ISI is important in displaying the sensory gating and preattentive auditory sensory memory relation.

  1. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Direct recordings from the auditory cortex in a cochlear implant user.

    Science.gov (United States)

    Nourski, Kirill V; Etler, Christine P; Brugge, John F; Oya, Hiroyuki; Kawasaki, Hiroto; Reale, Richard A; Abbas, Paul J; Brown, Carolyn J; Howard, Matthew A

    2013-06-01

    Electrical stimulation of the auditory nerve with a cochlear implant (CI) is the method of choice for treatment of severe-to-profound hearing loss. Understanding how the human auditory cortex responds to CI stimulation is important for advances in stimulation paradigms and rehabilitation strategies. In this study, auditory cortical responses to CI stimulation were recorded intracranially in a neurosurgical patient to examine directly the functional organization of the auditory cortex and compare the findings with those obtained in normal-hearing subjects. The subject was a bilateral CI user with a 20-year history of deafness and refractory epilepsy. As part of the epilepsy treatment, a subdural grid electrode was implanted over the left temporal lobe. Pure tones, click trains, sinusoidal amplitude-modulated noise, and speech were presented via the auxiliary input of the right CI speech processor. Additional experiments were conducted with bilateral CI stimulation. Auditory event-related changes in cortical activity, characterized by the averaged evoked potential and event-related band power, were localized to posterolateral superior temporal gyrus. Responses were stable across recording sessions and were abolished under general anesthesia. Response latency decreased and magnitude increased with increasing stimulus level. More apical intracochlear stimulation yielded the largest responses. Cortical evoked potentials were phase-locked to the temporal modulations of periodic stimuli and speech utterances. Bilateral electrical stimulation resulted in minimal artifact contamination. This study demonstrates the feasibility of intracranial electrophysiological recordings of responses to CI stimulation in a human subject, shows that cortical response properties may be similar to those obtained in normal-hearing individuals, and provides a basis for future comparisons with extracranial recordings.

  3. Neural Correlates of Auditory Processing, Learning and Memory Formation in Songbirds

    Science.gov (United States)

    Pinaud, R.; Terleph, T. A.; Wynne, R. D.; Tremere, L. A.

    Songbirds have emerged as powerful experimental models for the study of auditory processing of complex natural communication signals. Intact hearing is necessary for several behaviors in developing and adult animals including vocal learning, territorial defense, mate selection and individual recognition. These behaviors are thought to require the processing, discrimination and memorization of songs. Although much is known about the brain circuits that participate in sensorimotor (auditory-vocal) integration, especially the ``song-control" system, less is known about the anatomical and functional organization of central auditory pathways. Here we discuss findings associated with a telencephalic auditory area known as the caudomedial nidopallium (NCM). NCM has attracted significant interest as it exhibits functional properties that may support higher order auditory functions such as stimulus discrimination and the formation of auditory memories. NCM neurons are vigorously dr iven by auditory stimuli. Interestingly, these responses are selective to conspecific, relative to heterospecific songs and artificial stimuli. In addition, forms of experience-dependent plasticity occur in NCM and are song-specific. Finally, recent experiments employing high-throughput quantitative proteomics suggest that complex protein regulatory pathways are engaged in NCM as a result of auditory experience. These molecular cascades are likely central to experience-associated plasticity of NCM circuitry and may be part of a network of calcium-driven molecular events that support the formation of auditory memory traces.

  4. Auditory, visual and auditory-visual memory and sequencing performance in typically developing children.

    Science.gov (United States)

    Pillai, Roshni; Yathiraj, Asha

    2017-09-01

    The study evaluated whether there exists a difference/relation in the way four different memory skills (memory score, sequencing score, memory span, & sequencing span) are processed through the auditory modality, visual modality and combined modalities. Four memory skills were evaluated on 30 typically developing children aged 7 years and 8 years across three modality conditions (auditory, visual, & auditory-visual). Analogous auditory and visual stimuli were presented to evaluate the three modality conditions across the two age groups. The children obtained significantly higher memory scores through the auditory modality compared to the visual modality. Likewise, their memory scores were significantly higher through the auditory-visual modality condition than through the visual modality. However, no effect of modality was observed on the sequencing scores as well as for the memory and the sequencing span. A good agreement was seen between the different modality conditions that were studied (auditory, visual, & auditory-visual) for the different memory skills measures (memory scores, sequencing scores, memory span, & sequencing span). A relatively lower agreement was noted only between the auditory and visual modalities as well as between the visual and auditory-visual modality conditions for the memory scores, measured using Bland-Altman plots. The study highlights the efficacy of using analogous stimuli to assess the auditory, visual as well as combined modalities. The study supports the view that the performance of children on different memory skills was better through the auditory modality compared to the visual modality. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The semantic representation of event information depends on the cue modality: an instance of meaning-based retrieval.

    Science.gov (United States)

    Karlsson, Kristina; Sikström, Sverker; Willander, Johan

    2013-01-01

    The semantic content, or the meaning, is the essence of autobiographical memories. In comparison to previous research, which has mainly focused on the phenomenological experience and the age distribution of retrieved events, the present study provides a novel view on the retrieval of event information by quantifying the information as semantic representations. We investigated the semantic representation of sensory cued autobiographical events and studied the modality hierarchy within the multimodal retrieval cues. The experiment comprised a cued recall task, where the participants were presented with visual, auditory, olfactory or multimodal retrieval cues and asked to recall autobiographical events. The results indicated that the three different unimodal retrieval cues generate significantly different semantic representations. Further, the auditory and the visual modalities contributed the most to the semantic representation of the multimodally retrieved events. Finally, the semantic representation of the multimodal condition could be described as a combination of the three unimodal conditions. In conclusion, these results suggest that the meaning of the retrieved event information depends on the modality of the retrieval cues.

  6. The semantic representation of event information depends on the cue modality: an instance of meaning-based retrieval.

    Directory of Open Access Journals (Sweden)

    Kristina Karlsson

    Full Text Available The semantic content, or the meaning, is the essence of autobiographical memories. In comparison to previous research, which has mainly focused on the phenomenological experience and the age distribution of retrieved events, the present study provides a novel view on the retrieval of event information by quantifying the information as semantic representations. We investigated the semantic representation of sensory cued autobiographical events and studied the modality hierarchy within the multimodal retrieval cues. The experiment comprised a cued recall task, where the participants were presented with visual, auditory, olfactory or multimodal retrieval cues and asked to recall autobiographical events. The results indicated that the three different unimodal retrieval cues generate significantly different semantic representations. Further, the auditory and the visual modalities contributed the most to the semantic representation of the multimodally retrieved events. Finally, the semantic representation of the multimodal condition could be described as a combination of the three unimodal conditions. In conclusion, these results suggest that the meaning of the retrieved event information depends on the modality of the retrieval cues.

  7. Auditory post-processing in a passive listening task is deficient in Alzheimer's disease.

    Science.gov (United States)

    Bender, Stephan; Bluschke, Annet; Dippel, Gabriel; Rupp, André; Weisbrod, Matthias; Thomas, Christine

    2014-01-01

    To investigate whether automatic auditory post-processing is deficient in patients with Alzheimer's disease and is related to sensory gating. Event-related potentials were recorded during a passive listening task to examine the automatic transient storage of auditory information (short click pairs). Patients with Alzheimer's disease were compared to a healthy age-matched control group. A young healthy control group was included to assess effects of physiological aging. A bilateral frontal negativity in combination with deep temporal positivity occurring 500 ms after stimulus offset was reduced in patients with Alzheimer's disease, but was unaffected by physiological aging. Its amplitude correlated with short-term memory capacity, but was independent of sensory gating in healthy elderly controls. Source analysis revealed a dipole pair in the anterior temporal lobes. Results suggest that auditory post-processing is deficient in Alzheimer's disease, but is not typically related to sensory gating. The deficit could neither be explained by physiological aging nor by problems in earlier stages of auditory perception. Correlations with short-term memory capacity and executive control tasks suggested an association with memory encoding and/or overall cognitive control deficits. An auditory late negative wave could represent a marker of auditory working memory encoding deficits in Alzheimer's disease. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. The effects of interstimulus interval on event-related indices of attention: an auditory selective attention test of perceptual load theory.

    Science.gov (United States)

    Gomes, Hilary; Barrett, Sophia; Duff, Martin; Barnhardt, Jack; Ritter, Walter

    2008-03-01

    We examined the impact of perceptual load by manipulating interstimulus interval (ISI) in two auditory selective attention studies that varied in the difficulty of the target discrimination. In the paradigm, channels were separated by frequency and target/deviant tones were softer in intensity. Three ISI conditions were presented: fast (300ms), medium (600ms) and slow (900ms). Behavioral (accuracy and RT) and electrophysiological measures (Nd, P3b) were observed. In both studies, participants evidenced poorer accuracy during the fast ISI condition than the slow suggesting that ISI impacted task difficulty. However, none of the three measures of processing examined, Nd amplitude, P3b amplitude elicited by unattended deviant stimuli, or false alarms to unattended deviants, were impacted by ISI in the manner predicted by perceptual load theory. The prediction based on perceptual load theory, that there would be more processing of irrelevant stimuli under conditions of low as compared to high perceptual load, was not supported in these auditory studies. Task difficulty/perceptual load impacts the processing of irrelevant stimuli in the auditory modality differently than predicted by perceptual load theory, and perhaps differently than in the visual modality.

  9. Probing the lifetimes of auditory novelty detection processes.

    Science.gov (United States)

    Pegado, Felipe; Bekinschtein, Tristan; Chausson, Nicolas; Dehaene, Stanislas; Cohen, Laurent; Naccache, Lionel

    2010-08-01

    Auditory novelty detection can be fractionated into multiple cognitive processes associated with their respective neurophysiological signatures. In the present study we used high-density scalp event-related potentials (ERPs) during an active version of the auditory oddball paradigm to explore the lifetimes of these processes by varying the stimulus onset asynchrony (SOA). We observed that early MMN (90-160 ms) decreased when the SOA increased, confirming the evanescence of this echoic memory system. Subsequent neural events including late MMN (160-220 ms) and P3a/P3b components of the P3 complex (240-500 ms) did not decay with SOA, but showed a systematic delay effect supporting a two-stage model of accumulation of evidence. On the basis of these observations, we propose a distinction within the MMN complex of two distinct events: (1) an early, pre-attentive and fast-decaying MMN associated with generators located within superior temporal gyri (STG) and frontal cortex, and (2) a late MMN more resistant to SOA, corresponding to the activation of a distributed cortical network including fronto-parietal regions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Spatial auditory attention is modulated by tactile priming.

    Science.gov (United States)

    Menning, Hans; Ackermann, Hermann; Hertrich, Ingo; Mathiak, Klaus

    2005-07-01

    Previous studies have shown that cross-modal processing affects perception at a variety of neuronal levels. In this study, event-related brain responses were recorded via whole-head magnetoencephalography (MEG). Spatial auditory attention was directed via tactile pre-cues (primes) to one of four locations in the peripersonal space (left and right hand versus face). Auditory stimuli were white noise bursts, convoluted with head-related transfer functions, which ensured spatial perception of the four locations. Tactile primes (200-300 ms prior to acoustic onset) were applied randomly to one of these locations. Attentional load was controlled by three different visual distraction tasks. The auditory P50m (about 50 ms after stimulus onset) showed a significant "proximity" effect (larger responses to face stimulation as well as a "contralaterality" effect between side of stimulation and hemisphere). The tactile primes essentially reduced both the P50m and N100m components. However, facial tactile pre-stimulation yielded an enhanced ipsilateral N100m. These results show that earlier responses are mainly governed by exogenous stimulus properties whereas cross-sensory interaction is spatially selective at a later (endogenous) processing stage.

  11. Motor-related signals in the auditory system for listening and learning.

    Science.gov (United States)

    Schneider, David M; Mooney, Richard

    2015-08-01

    In the auditory system, corollary discharge signals are theorized to facilitate normal hearing and the learning of acoustic behaviors, including speech and music. Despite clear evidence of corollary discharge signals in the auditory cortex and their presumed importance for hearing and auditory-guided motor learning, the circuitry and function of corollary discharge signals in the auditory cortex are not well described. In this review, we focus on recent developments in the mouse and songbird that provide insights into the circuitry that transmits corollary discharge signals to the auditory system and the function of these signals in the context of hearing and vocal learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Cognitive mechanisms associated with auditory sensory gating

    Science.gov (United States)

    Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.

    2016-01-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891

  13. Relative contributions of visual and auditory spatial representations to tactile localization.

    Science.gov (United States)

    Noel, Jean-Paul; Wallace, Mark

    2016-02-01

    Spatial localization of touch is critically dependent upon coordinate transformation between different reference frames, which must ultimately allow for alignment between somatotopic and external representations of space. Although prior work has shown an important role for cues such as body posture in influencing the spatial localization of touch, the relative contributions of the different sensory systems to this process are unknown. In the current study, we had participants perform a tactile temporal order judgment (TOJ) under different body postures and conditions of sensory deprivation. Specifically, participants performed non-speeded judgments about the order of two tactile stimuli presented in rapid succession on their ankles during conditions in which their legs were either uncrossed or crossed (and thus bringing somatotopic and external reference frames into conflict). These judgments were made in the absence of 1) visual, 2) auditory, or 3) combined audio-visual spatial information by blindfolding and/or placing participants in an anechoic chamber. As expected, results revealed that tactile temporal acuity was poorer under crossed than uncrossed leg postures. Intriguingly, results also revealed that auditory and audio-visual deprivation exacerbated the difference in tactile temporal acuity between uncrossed to crossed leg postures, an effect not seen for visual-only deprivation. Furthermore, the effects under combined audio-visual deprivation were greater than those seen for auditory deprivation. Collectively, these results indicate that mechanisms governing the alignment between somatotopic and external reference frames extend beyond those imposed by body posture to include spatial features conveyed by the auditory and visual modalities - with a heavier weighting of auditory than visual spatial information. Thus, sensory modalities conveying exteroceptive spatial information contribute to judgments regarding the localization of touch. Copyright © 2016

  14. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    Science.gov (United States)

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  15. Auditory/visual distance estimation: accuracy and variability

    Directory of Open Access Journals (Sweden)

    Paul Wallace Anderson

    2014-10-01

    Full Text Available Past research has shown that auditory distance estimation improves when listeners are given the opportunity to see all possible sound sources when compared to no visual input. It has also been established that distance estimation is more accurate in vision than in audition. The present study investigates the degree to which auditory distance estimation is improved when matched with a congruent visual stimulus. Virtual sound sources based on binaural room impulse response (BRIR measurements made from distances ranging from approximately 0.3 to 9.8 m in a concert hall were used as auditory stimuli. Visual stimuli were photographs taken from the listener’s perspective at each distance in the impulse response measurement setup presented on a large HDTV monitor. Listeners were asked to estimate egocentric distance to the sound source in each of three conditions: auditory only (A, visual only (V, and congruent auditory/visual stimuli (A+V. Each condition was presented within its own block. Sixty-two listeners were tested in order to quantify the response variability inherent in auditory distance perception. Distance estimates from both the V and A+V conditions were found to be considerably more accurate and less variable than estimates from the A condition.

  16. Music training relates to the development of neural mechanisms of selective auditory attention.

    Science.gov (United States)

    Strait, Dana L; Slater, Jessica; O'Connell, Samantha; Kraus, Nina

    2015-04-01

    Selective attention decreases trial-to-trial variability in cortical auditory-evoked activity. This effect increases over the course of maturation, potentially reflecting the gradual development of selective attention and inhibitory control. Work in adults indicates that music training may alter the development of this neural response characteristic, especially over brain regions associated with executive control: in adult musicians, attention decreases variability in auditory-evoked responses recorded over prefrontal cortex to a greater extent than in nonmusicians. We aimed to determine whether this musician-associated effect emerges during childhood, when selective attention and inhibitory control are under development. We compared cortical auditory-evoked variability to attended and ignored speech streams in musicians and nonmusicians across three age groups: preschoolers, school-aged children and young adults. Results reveal that childhood music training is associated with reduced auditory-evoked response variability recorded over prefrontal cortex during selective auditory attention in school-aged child and adult musicians. Preschoolers, on the other hand, demonstrate no impact of selective attention on cortical response variability and no musician distinctions. This finding is consistent with the gradual emergence of attention during this period and may suggest no pre-existing differences in this attention-related cortical metric between children who undergo music training and those who do not. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Intracranial auditory detection and discrimination potentials as substrates of echoic memory in children.

    Science.gov (United States)

    Liasis, A; Towell, A; Boyd, S

    1999-03-01

    In children, intracranial responses to auditory detection and discrimination processes have not been reported. We, therefore, recorded intracranial event-related potentials (ERPs) to both standard and deviant tones and/or syllables in 4 children undergoing pre-surgical evaluation for epilepsy. ERPs to detection (mean latency = 63 ms) and discrimination (mean latency = 334 ms) were highly localized to areas surrounding the Sylvian fissure (SF). These potentials reflect activation of different neuronal populations and are suggested to contribute to the scalp recorded auditory N1 and mismatch negativity (MMN).

  18. Neural correlates of auditory recognition memory in primate lateral prefrontal cortex.

    Science.gov (United States)

    Plakke, B; Ng, C-W; Poremba, A

    2013-08-06

    The neural underpinnings of working and recognition memory have traditionally been studied in the visual domain and these studies pinpoint the lateral prefrontal cortex (lPFC) as a primary region for visual memory processing (Miller et al., 1996; Ranganath et al., 2004; Kennerley and Wallis, 2009). Herein, we utilize single-unit recordings for the same region in monkeys (Macaca mulatta) but investigate a second modality examining auditory working and recognition memory during delayed matching-to-sample (DMS) performance. A large portion of neurons in the dorsal and ventral banks of the principal sulcus (area 46, 46/9) show DMS event-related activity to one or more of the following task events: auditory cues, memory delay, decision wait time, response, and/or reward portions. Approximately 50% of the neurons show evidence of auditory-evoked activity during the task and population activity demonstrated encoding of recognition memory in the form of match enhancement. However, neither robust nor sustained delay activity was observed. The neuronal responses during the auditory DMS task are similar in many respects to those found within the visual working memory domain, which supports the hypothesis that the lPFC, particularly area 46, functionally represents key pieces of information for recognition memory inclusive of decision-making, but regardless of modality. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Auditory stimulus timing influences perceived duration of co-occurring visual stimuli

    Directory of Open Access Journals (Sweden)

    Vincenzo eRomei

    2011-09-01

    Full Text Available There is increasing interest in multisensory influences upon sensory-specific judgements, such as when auditory stimuli affect visual perception. Here we studied whether the duration of an auditory event can objectively affect the perceived duration of a co-occurring visual event. On each trial, participants were presented with a pair of successive flashes and had to judge whether the first or second was longer. Two beeps were presented with the flashes. The order of short and long stimuli could be the same across audition and vision (audiovisual congruent or reversed, so that the longer flash was accompanied by the shorter beep and vice versa (audiovisual incongruent; or the two beeps could have the same duration as each other. Beeps and flashes could onset synchronously or asynchronously. In a further control experiment, the beep durations were much longer (tripled than the flashes. Results showed that visual duration-discrimination sensitivity (d' was significantly higher for congruent (and significantly lower for incongruent audiovisual synchronous combinations, relative to the visual only presentation. This effect was abolished when auditory and visual stimuli were presented asynchronously, or when sound durations tripled those of flashes. We conclude that the temporal properties of co-occurring auditory stimuli influence the perceived duration of visual stimuli and that this can reflect genuine changes in visual sensitivity rather than mere response bias.

  20. Modelling the Emergence and Dynamics of Perceptual Organisation in Auditory Streaming

    Science.gov (United States)

    Mill, Robert W.; Bőhm, Tamás M.; Bendixen, Alexandra; Winkler, István; Denham, Susan L.

    2013-01-01

    Many sound sources can only be recognised from the pattern of sounds they emit, and not from the individual sound events that make up their emission sequences. Auditory scene analysis addresses the difficult task of interpreting the sound world in terms of an unknown number of discrete sound sources (causes) with possibly overlapping signals, and therefore of associating each event with the appropriate source. There are potentially many different ways in which incoming events can be assigned to different causes, which means that the auditory system has to choose between them. This problem has been studied for many years using the auditory streaming paradigm, and recently it has become apparent that instead of making one fixed perceptual decision, given sufficient time, auditory perception switches back and forth between the alternatives—a phenomenon known as perceptual bi- or multi-stability. We propose a new model of auditory scene analysis at the core of which is a process that seeks to discover predictable patterns in the ongoing sound sequence. Representations of predictable fragments are created on the fly, and are maintained, strengthened or weakened on the basis of their predictive success, and conflict with other representations. Auditory perceptual organisation emerges spontaneously from the nature of the competition between these representations. We present detailed comparisons between the model simulations and data from an auditory streaming experiment, and show that the model accounts for many important findings, including: the emergence of, and switching between, alternative organisations; the influence of stimulus parameters on perceptual dominance, switching rate and perceptual phase durations; and the build-up of auditory streaming. The principal contribution of the model is to show that a two-stage process of pattern discovery and competition between incompatible patterns can account for both the contents (perceptual organisations) and the

  1. EEG signatures accompanying auditory figure-ground segregation.

    Science.gov (United States)

    Tóth, Brigitta; Kocsis, Zsuzsanna; Háden, Gábor P; Szerafin, Ágnes; Shinn-Cunningham, Barbara G; Winkler, István

    2016-11-01

    In everyday acoustic scenes, figure-ground segregation typically requires one to group together sound elements over both time and frequency. Electroencephalogram was recorded while listeners detected repeating tonal complexes composed of a random set of pure tones within stimuli consisting of randomly varying tonal elements. The repeating pattern was perceived as a figure over the randomly changing background. It was found that detection performance improved both as the number of pure tones making up each repeated complex (figure coherence) increased, and as the number of repeated complexes (duration) increased - i.e., detection was easier when either the spectral or temporal structure of the figure was enhanced. Figure detection was accompanied by the elicitation of the object related negativity (ORN) and the P400 event-related potentials (ERPs), which have been previously shown to be evoked by the presence of two concurrent sounds. Both ERP components had generators within and outside of auditory cortex. The amplitudes of the ORN and the P400 increased with both figure coherence and figure duration. However, only the P400 amplitude correlated with detection performance. These results suggest that 1) the ORN and P400 reflect processes involved in detecting the emergence of a new auditory object in the presence of other concurrent auditory objects; 2) the ORN corresponds to the likelihood of the presence of two or more concurrent sound objects, whereas the P400 reflects the perceptual recognition of the presence of multiple auditory objects and/or preparation for reporting the detection of a target object. Copyright © 2016. Published by Elsevier Inc.

  2. EEG signatures accompanying auditory figure-ground segregation

    Science.gov (United States)

    Tóth, Brigitta; Kocsis, Zsuzsanna; Háden, Gábor P.; Szerafin, Ágnes; Shinn-Cunningham, Barbara; Winkler, István

    2017-01-01

    In everyday acoustic scenes, figure-ground segregation typically requires one to group together sound elements over both time and frequency. Electroencephalogram was recorded while listeners detected repeating tonal complexes composed of a random set of pure tones within stimuli consisting of randomly varying tonal elements. The repeating pattern was perceived as a figure over the randomly changing background. It was found that detection performance improved both as the number of pure tones making up each repeated complex (figure coherence) increased, and as the number of repeated complexes (duration) increased – i.e., detection was easier when either the spectral or temporal structure of the figure was enhanced. Figure detection was accompanied by the elicitation of the object related negativity (ORN) and the P400 event-related potentials (ERPs), which have been previously shown to be evoked by the presence of two concurrent sounds. Both ERP components had generators within and outside of auditory cortex. The amplitudes of the ORN and the P400 increased with both figure coherence and figure duration. However, only the P400 amplitude correlated with detection performance. These results suggest that 1) the ORN and P400 reflect processes involved in detecting the emergence of a new auditory object in the presence of other concurrent auditory objects; 2) the ORN corresponds to the likelihood of the presence of two or more concurrent sound objects, whereas the P400 reflects the perceptual recognition of the presence of multiple auditory objects and/or preparation for reporting the detection of a target object. PMID:27421185

  3. Neural dynamics underlying attentional orienting to auditory representations in short-term memory.

    Science.gov (United States)

    Backer, Kristina C; Binns, Malcolm A; Alain, Claude

    2015-01-21

    Sounds are ephemeral. Thus, coherent auditory perception depends on "hearing" back in time: retrospectively attending that which was lost externally but preserved in short-term memory (STM). Current theories of auditory attention assume that sound features are integrated into a perceptual object, that multiple objects can coexist in STM, and that attention can be deployed to an object in STM. Recording electroencephalography from humans, we tested these assumptions, elucidating feature-general and feature-specific neural correlates of auditory attention to STM. Alpha/beta oscillations and frontal and posterior event-related potentials indexed feature-general top-down attentional control to one of several coexisting auditory representations in STM. Particularly, task performance during attentional orienting was correlated with alpha/low-beta desynchronization (i.e., power suppression). However, attention to one feature could occur without simultaneous processing of the second feature of the representation. Therefore, auditory attention to memory relies on both feature-specific and feature-general neural dynamics. Copyright © 2015 the authors 0270-6474/15/351307-12$15.00/0.

  4. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    Directory of Open Access Journals (Sweden)

    Yael Zaltz

    2017-11-01

    Full Text Available The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF, intensity discrimination, spectrum discrimination (DLS, and time discrimination (DLT. Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels, and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels, were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant

  5. Comparison of auditory and visual oddball fMRI in schizophrenia.

    Science.gov (United States)

    Collier, Azurii K; Wolf, Daniel H; Valdez, Jeffrey N; Turetsky, Bruce I; Elliott, Mark A; Gur, Raquel E; Gur, Ruben C

    2014-09-01

    Individuals with schizophrenia often suffer from attentional deficits, both in focusing on task-relevant targets and in inhibiting responses to distractors. Schizophrenia also has a differential impact on attention depending on modality: auditory or visual. However, it remains unclear how abnormal activation of attentional circuitry differs between auditory and visual modalities, as these two modalities have not been directly compared in the same individuals with schizophrenia. We utilized event-related functional magnetic resonance imaging (fMRI) to compare patterns of brain activation during an auditory and visual oddball task in order to identify modality-specific attentional impairment. Healthy controls (n=22) and patients with schizophrenia (n=20) completed auditory and visual oddball tasks in separate sessions. For responses to targets, the auditory modality yielded greater activation than the visual modality (A-V) in auditory cortex, insula, and parietal operculum, but visual activation was greater than auditory (V-A) in visual cortex. For responses to novels, A-V differences were found in auditory cortex, insula, and supramarginal gyrus; and V-A differences in the visual cortex, inferior temporal gyrus, and superior parietal lobule. Group differences in modality-specific activation were found only for novel stimuli; controls showed larger A-V differences than patients in prefrontal cortex and the putamen. Furthermore, for patients, greater severity of negative symptoms was associated with greater divergence of A-V novel activation in the visual cortex. Our results demonstrate that patients have more pronounced activation abnormalities in auditory compared to visual attention, and link modality specific abnormalities to negative symptom severity. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Crop damage by primates: quantifying the key parameters of crop-raiding events.

    Directory of Open Access Journals (Sweden)

    Graham E Wallace

    Full Text Available Human-wildlife conflict often arises from crop-raiding, and insights regarding which aspects of raiding events determine crop loss are essential when developing and evaluating deterrents. However, because accounts of crop-raiding behaviour are frequently indirect, these parameters are rarely quantified or explicitly linked to crop damage. Using systematic observations of the behaviour of non-human primates on farms in western Uganda, this research identifies number of individuals raiding and duration of raid as the primary parameters determining crop loss. Secondary factors include distance travelled onto farm, age composition of the raiding group, and whether raids are in series. Regression models accounted for greater proportions of variation in crop loss when increasingly crop and species specific. Parameter values varied across primate species, probably reflecting differences in raiding tactics or perceptions of risk, and thereby providing indices of how comfortable primates are on-farm. Median raiding-group sizes were markedly smaller than the typical sizes of social groups. The research suggests that key parameters of raiding events can be used to measure the behavioural impacts of deterrents to raiding. Furthermore, farmers will benefit most from methods that discourage raiding by multiple individuals, reduce the size of raiding groups, or decrease the amount of time primates are on-farm. This study demonstrates the importance of directly relating crop loss to the parameters of raiding events, using systematic observations of the behaviour of multiple primate species.

  7. Crop Damage by Primates: Quantifying the Key Parameters of Crop-Raiding Events

    Science.gov (United States)

    Wallace, Graham E.; Hill, Catherine M.

    2012-01-01

    Human-wildlife conflict often arises from crop-raiding, and insights regarding which aspects of raiding events determine crop loss are essential when developing and evaluating deterrents. However, because accounts of crop-raiding behaviour are frequently indirect, these parameters are rarely quantified or explicitly linked to crop damage. Using systematic observations of the behaviour of non-human primates on farms in western Uganda, this research identifies number of individuals raiding and duration of raid as the primary parameters determining crop loss. Secondary factors include distance travelled onto farm, age composition of the raiding group, and whether raids are in series. Regression models accounted for greater proportions of variation in crop loss when increasingly crop and species specific. Parameter values varied across primate species, probably reflecting differences in raiding tactics or perceptions of risk, and thereby providing indices of how comfortable primates are on-farm. Median raiding-group sizes were markedly smaller than the typical sizes of social groups. The research suggests that key parameters of raiding events can be used to measure the behavioural impacts of deterrents to raiding. Furthermore, farmers will benefit most from methods that discourage raiding by multiple individuals, reduce the size of raiding groups, or decrease the amount of time primates are on-farm. This study demonstrates the importance of directly relating crop loss to the parameters of raiding events, using systematic observations of the behaviour of multiple primate species. PMID:23056378

  8. Development of a Comprehensive Blast-Related Auditory Injury Database (BRAID)

    Science.gov (United States)

    2016-05-01

    servicemembers included in the Blast-Related Auditory Injury Database. * Training injuries, accidents, and other noncombat injuries. †3,452 injuries...medications, exposures to ototoxic chemicals, recreational noise exposure, and other forms of temporary and persistent threshold shift. Combat marines...AC, Vecchiotti M, Kujawa SG, Lee DJ, Quesnel AM. Otologic outcomes after blast injury: The Boston Marathon experience. Otol Neurotol. 2014; 35(10

  9. Towards an auditory account of speech rhythm: application of a model of the auditory 'primal sketch' to two multi-language corpora.

    Science.gov (United States)

    Lee, Christopher S; Todd, Neil P McAngus

    2004-10-01

    The world's languages display important differences in their rhythmic organization; most particularly, different languages seem to privilege different phonological units (mora, syllable, or stress foot) as their basic rhythmic unit. There is now considerable evidence that such differences have important consequences for crucial aspects of language acquisition and processing. Several questions remain, however, as to what exactly characterizes the rhythmic differences, how they are manifested at an auditory/acoustic level and how listeners, whether adult native speakers or young infants, process rhythmic information. In this paper it is proposed that the crucial determinant of rhythmic organization is the variability in the auditory prominence of phonetic events. In order to test this auditory prominence hypothesis, an auditory model is run on two multi-language data-sets, the first consisting of matched pairs of English and French sentences, and the second consisting of French, Italian, English and Dutch sentences. The model is based on a theory of the auditory primal sketch, and generates a primitive representation of an acoustic signal (the rhythmogram) which yields a crude segmentation of the speech signal and assigns prominence values to the obtained sequence of events. Its performance is compared with that of several recently proposed phonetic measures of vocalic and consonantal variability.

  10. Event-related brain potentials reflect traces of echoic memory in humans.

    Science.gov (United States)

    Winkler, I; Reinikainen, K; Näätänen, R

    1993-04-01

    In sequences of identical auditory stimuli, infrequent deviant stimuli elicit an event-related brain potential component called mismatch negativity (MMN). MMN is presumed to reflect the existence of a memory trace of the frequent stimulus at the moment of presentation of the infrequent stimulus. This hypothesis was tested by applying the recognition-masking paradigm of cognitive psychology. In this paradigm, a masking sound presented shortly before or after a test stimulus diminishes the recognition memory of this stimulus, the more so the shorter the interval between the test and masking stimuli. This interval was varied in the present study. It was found that the MMN amplitude strongly correlated with the subject's ability to discriminate between frequent and infrequent stimuli. This result strongly suggests that MMN provides a measure for a trace of sensory memory, and further, that with MMN, this memory can be studied without performance-related distortions.

  11. Impact of Aging on the Auditory System and Related Cognitive Functions: A Narrative Review

    Directory of Open Access Journals (Sweden)

    Dona M. P. Jayakody

    2018-03-01

    Full Text Available Age-related hearing loss (ARHL, presbycusis, is a chronic health condition that affects approximately one-third of the world's population. The peripheral and central hearing alterations associated with age-related hearing loss have a profound impact on perception of verbal and non-verbal auditory stimuli. The high prevalence of hearing loss in the older adults corresponds to the increased frequency of dementia in this population. Therefore, researchers have focused their attention on age-related central effects that occur independent of the peripheral hearing loss as well as central effects of peripheral hearing loss and its association with cognitive decline and dementia. Here we review the current evidence for the age-related changes of the peripheral and central auditory system and the relationship between hearing loss and pathological cognitive decline and dementia. Furthermore, there is a paucity of evidence on the relationship between ARHL and established biomarkers of Alzheimer's disease, as the most common cause of dementia. Such studies are critical to be able to consider any causal relationship between dementia and ARHL. While this narrative review will examine the pathophysiological alterations in both the peripheral and central auditory system and its clinical implications, the question remains unanswered whether hearing loss causes cognitive impairment or vice versa.

  12. Trait aspects of auditory mismatch negativity predict response to auditory training in individuals with early illness schizophrenia.

    Science.gov (United States)

    Biagianti, Bruno; Roach, Brian J; Fisher, Melissa; Loewy, Rachel; Ford, Judith M; Vinogradov, Sophia; Mathalon, Daniel H

    2017-01-01

    Individuals with schizophrenia have heterogeneous impairments of the auditory processing system that likely mediate differences in the cognitive gains induced by auditory training (AT). Mismatch negativity (MMN) is an event-related potential component reflecting auditory echoic memory, and its amplitude reduction in schizophrenia has been linked to cognitive deficits. Therefore, MMN may predict response to AT and identify individuals with schizophrenia who have the most to gain from AT. Furthermore, to the extent that AT strengthens auditory deviance processing, MMN may also serve as a readout of the underlying changes in the auditory system induced by AT. Fifty-six individuals early in the course of a schizophrenia-spectrum illness (ESZ) were randomly assigned to 40 h of AT or Computer Games (CG). Cognitive assessments and EEG recordings during a multi-deviant MMN paradigm were obtained before and after AT and CG. Changes in these measures were compared between the treatment groups. Baseline and trait-like MMN data were evaluated as predictors of treatment response. MMN data collected with the same paradigm from a sample of Healthy Controls (HC; n = 105) were compared to baseline MMN data from the ESZ group. Compared to HC, ESZ individuals showed significant MMN reductions at baseline ( p = .003). Reduced Double-Deviant MMN was associated with greater general cognitive impairment in ESZ individuals ( p = .020). Neither ESZ intervention group showed significant change in MMN. We found high correlations in all MMN deviant types (rs = .59-.68, all ps < .001) between baseline and post-intervention amplitudes irrespective of treatment group, suggesting trait-like stability of the MMN signal. Greater deficits in trait-like Double-Deviant MMN predicted greater cognitive improvements in the AT group ( p = .02), but not in the CG group. In this sample of ESZ individuals, AT had no effect on auditory deviance processing as assessed by MMN. In ESZ individuals, baseline MMN

  13. The Effect of Working Memory Training on Auditory Stream Segregation in Auditory Processing Disorders Children

    OpenAIRE

    Abdollah Moossavi; Saeideh Mehrkian; Yones Lotfi; Soghrat Faghih zadeh; Hamed Adjedi

    2015-01-01

    Objectives: This study investigated the efficacy of working memory training for improving working memory capacity and related auditory stream segregation in auditory processing disorders children. Methods: Fifteen subjects (9-11 years), clinically diagnosed with auditory processing disorder participated in this non-randomized case-controlled trial. Working memory abilities and auditory stream segregation were evaluated prior to beginning and six weeks after completing the training program...

  14. Auditory verbal memory and psychosocial symptoms are related in children with idiopathic epilepsy.

    Science.gov (United States)

    Schaffer, Yael; Ben Zeev, Bruria; Cohen, Roni; Shuper, Avinoam; Geva, Ronny

    2015-07-01

    Idiopathic epilepsies are considered to have relatively good prognoses and normal or near normal developmental outcomes. Nevertheless, accumulating studies demonstrate memory and psychosocial deficits in this population, and the prevalence, severity and relationships between these domains are still not well defined. We aimed to assess memory, psychosocial function, and the relationships between these two domains among children with idiopathic epilepsy syndromes using an extended neuropsychological battery and psychosocial questionnaires. Cognitive abilities, neuropsychological performance, and socioemotional behavior of 33 early adolescent children, diagnosed with idiopathic epilepsy, ages 9-14years, were assessed and compared with 27 age- and education-matched healthy controls. Compared to controls, patients with stabilized idiopathic epilepsy exhibited higher risks for short-term memory deficits (auditory verbal and visual) (pmemory deficits (plong-term memory deficits (pmemory deficits was related to severity of psychosocial symptoms among the children with epilepsy but not in the healthy controls. Results suggest that deficient auditory verbal memory may be compromising psychosocial functioning in children with idiopathic epilepsy, possibly underscoring that cognitive variables, such as auditory verbal memory, should be assessed and treated in this population to prevent secondary symptoms. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss.

    Science.gov (United States)

    Kolarik, Andrew J; Moore, Brian C J; Zahorik, Pavel; Cirstea, Silvia; Pardhan, Shahina

    2016-02-01

    Auditory distance perception plays a major role in spatial awareness, enabling location of objects and avoidance of obstacles in the environment. However, it remains under-researched relative to studies of the directional aspect of sound localization. This review focuses on the following four aspects of auditory distance perception: cue processing, development, consequences of visual and auditory loss, and neurological bases. The several auditory distance cues vary in their effective ranges in peripersonal and extrapersonal space. The primary cues are sound level, reverberation, and frequency. Nonperceptual factors, including the importance of the auditory event to the listener, also can affect perceived distance. Basic internal representations of auditory distance emerge at approximately 6 months of age in humans. Although visual information plays an important role in calibrating auditory space, sensorimotor contingencies can be used for calibration when vision is unavailable. Blind individuals often manifest supranormal abilities to judge relative distance but show a deficit in absolute distance judgments. Following hearing loss, the use of auditory level as a distance cue remains robust, while the reverberation cue becomes less effective. Previous studies have not found evidence that hearing-aid processing affects perceived auditory distance. Studies investigating the brain areas involved in processing different acoustic distance cues are described. Finally, suggestions are given for further research on auditory distance perception, including broader investigation of how background noise and multiple sound sources affect perceived auditory distance for those with sensory loss.

  16. Exploration of auditory P50 gating in schizophrenia by way of difference waves

    DEFF Research Database (Denmark)

    Arnfred, Sidse M

    2006-01-01

    potentials but here this method along with low frequency filtering is applied exploratory on auditory P50 gating data, previously analyzed in the standard format (reported in Am J Psychiatry 2003, 160:2236-8). The exploration was motivated by the observation during visual peak detection that the AEP waveform......Electroencephalographic measures of information processing encompass both mid-latency evoked potentials like the pre-attentive auditory P50 potential and a host of later more cognitive components like P300 and N400.Difference waves have mostly been employed in studies of later event related...

  17. Examining Age-Related Differences in Auditory Attention Control Using a Task-Switching Procedure

    OpenAIRE

    Vera Lawo; Iring Koch

    2014-01-01

    Objectives. Using a novel task-switching variant of dichotic selective listening, we examined age-related differences in the ability to intentionally switch auditory attention between 2 speakers defined by their sex.

  18. Auditory Spatial Layout

    Science.gov (United States)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  19. Transitional Probabilities Are Prioritized over Stimulus/Pattern Probabilities in Auditory Deviance Detection: Memory Basis for Predictive Sound Processing.

    Science.gov (United States)

    Mittag, Maria; Takegata, Rika; Winkler, István

    2016-09-14

    Representations encoding the probabilities of auditory events do not directly support predictive processing. In contrast, information about the probability with which a given sound follows another (transitional probability) allows predictions of upcoming sounds. We tested whether behavioral and cortical auditory deviance detection (the latter indexed by the mismatch negativity event-related potential) relies on probabilities of sound patterns or on transitional probabilities. We presented healthy adult volunteers with three types of rare tone-triplets among frequent standard triplets of high-low-high (H-L-H) or L-H-L pitch structure: proximity deviant (H-H-H/L-L-L), reversal deviant (L-H-L/H-L-H), and first-tone deviant (L-L-H/H-H-L). If deviance detection was based on pattern probability, reversal and first-tone deviants should be detected with similar latency because both differ from the standard at the first pattern position. If deviance detection was based on transitional probabilities, then reversal deviants should be the most difficult to detect because, unlike the other two deviants, they contain no low-probability pitch transitions. The data clearly showed that both behavioral and cortical auditory deviance detection uses transitional probabilities. Thus, the memory traces underlying cortical deviance detection may provide a link between stimulus probability-based change/novelty detectors operating at lower levels of the auditory system and higher auditory cognitive functions that involve predictive processing. Our research presents the first definite evidence for the auditory system prioritizing transitional probabilities over probabilities of individual sensory events. Forming representations for transitional probabilities paves the way for predictions of upcoming sounds. Several recent theories suggest that predictive processing provides the general basis of human perception, including important auditory functions, such as auditory scene analysis. Our

  20. Increased Early Processing of Task-Irrelevant Auditory Stimuli in Older Adults.

    Directory of Open Access Journals (Sweden)

    Erich S Tusch

    Full Text Available The inhibitory deficit hypothesis of cognitive aging posits that older adults' inability to adequately suppress processing of irrelevant information is a major source of cognitive decline. Prior research has demonstrated that in response to task-irrelevant auditory stimuli there is an age-associated increase in the amplitude of the N1 wave, an ERP marker of early perceptual processing. Here, we tested predictions derived from the inhibitory deficit hypothesis that the age-related increase in N1 would be 1 observed under an auditory-ignore, but not auditory-attend condition, 2 attenuated in individuals with high executive capacity (EC, and 3 augmented by increasing cognitive load of the primary visual task. ERPs were measured in 114 well-matched young, middle-aged, young-old, and old-old adults, designated as having high or average EC based on neuropsychological testing. Under the auditory-ignore (visual-attend task, participants ignored auditory stimuli and responded to rare target letters under low and high load. Under the auditory-attend task, participants ignored visual stimuli and responded to rare target tones. Results confirmed an age-associated increase in N1 amplitude to auditory stimuli under the auditory-ignore but not auditory-attend task. Contrary to predictions, EC did not modulate the N1 response. The load effect was the opposite of expectation: the N1 to task-irrelevant auditory events was smaller under high load. Finally, older adults did not simply fail to suppress the N1 to auditory stimuli in the task-irrelevant modality; they generated a larger response than to identical stimuli in the task-relevant modality. In summary, several of the study's findings do not fit the inhibitory-deficit hypothesis of cognitive aging, which may need to be refined or supplemented by alternative accounts.

  1. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  2. Evidence for a neurophysiologic auditory deficit in children with benign epilepsy with centro-temporal spikes.

    Science.gov (United States)

    Liasis, A; Bamiou, D E; Boyd, S; Towell, A

    2006-07-01

    Benign focal epilepsy in childhood with centro-temporal spikes (BECTS) is one of the most common forms of epilepsy. Recent studies have questioned the benign nature of BECTS, as they have revealed neuropsychological deficits in many domains including language. The aim of this study was to investigate whether the epileptic discharges during the night have long-term effects on auditory processing, as reflected on electrophysiological measures, during the day, which could underline the language deficits. In order to address these questions we recorded base line electroencephalograms (EEG), sleep EEG and auditory event related potentials in 12 children with BECTS and in age- and gender-matched controls. In the children with BECTS, 5 had unilateral and 3 had bilateral spikes. In the 5 patients with unilateral spikes present during sleep, an asymmetry of the auditory event related component (P85-120) was observed contralateral to the side of epileptiform activity compared to the normal symmetrical vertex distribution that was noted in all controls and in 3 the children with bilateral spikes. In all patients the peak to peak amplitude of this event related potential component was statistically greater compared to the controls. Analysis of subtraction waveforms (deviant - standard) revealed no evidence of a mismatch negativity component in any of the children with BECTS. We propose that the abnormality of P85-120 and the absence of mismatch negativity during wake recordings in this group may arise in response to the long-term effects of spikes occurring during sleep, resulting in disruption of the evolution and maintenance of echoic memory traces. These results may indicate that patients with BECTS have abnormal processing of auditory information at a sensory level ipsilateral to the hemisphere evoking spikes during sleep.

  3. Event-related EEG changes preceding saccadic eye movements before and after dry immersion.

    Science.gov (United States)

    Tomilovskaya, E S; Kirenskaya, A V; Novototski-Vlasov, V Yu; Kozlovskaya, I B

    2004-07-01

    Objectives of this work were to quantify antisaccade characteristics, presaccadic slow negative EEG-potentials, and event-related EEG frequency band power (theta, alpha1, alpha2, beta1, beta2 and beta3) changes (ERD) in healthy volunteers before and after 6-day simulated weightlessness (dry immersion).

  4. Bilateral theta-burst magnetic stimulation influence on event-related brain potentials.

    Science.gov (United States)

    Pinto, Nuno; Duarte, Marta; Gonçalves, Helena; Silva, Ricardo; Gama, Jorge; Pato, Maria Vaz

    2018-01-01

    Theta-burst stimulation (TBS) can be a non-invasive technique to modulate cognitive functions, with promising therapeutic potential, but with some contradictory results. Event related potentials are used as a marker of brain deterioration and can be used to evaluate TBS-related cognitive performance, but its use remains scant. This study aimed to study bilateral inhibitory and excitatory TBS effects upon neurocognitive performance of young healthy volunteers, using the auditory P300' results. Using a double-blind sham-controlled study, 51 healthy volunteers were randomly assigned to five different groups, two submitted to either excitatory (iTBS) or inhibitory (cTBS) stimulation over the left dorsolateral pre-frontal cortex (DLPFC), two other actively stimulated the right DLPFC and finally a sham stimulation group. An oddball based auditory P300 was performed just before a single session of iTBS, cTBS or sham stimulation and repeated immediately after. P300 mean latency comparison between the pre- and post-TBS stimulation stages revealed significantly faster post stimulation latencies only when iTBS was performed on the left hemisphere (p = 0.003). Right and left hemisphere cTBS significantly delayed P300 latency (right p = 0.026; left p = 0.000). Multiple comparisons for N200 showed slower latencies after iTBS over the right hemisphere. No significant difference was found in amplitude variation. TBS appears to effectively influence neural networking involved in P300 formation, but effects seem distinct for iTBS vs cTBS and for the right or the left hemisphere. P300 evoked potentials can be an effective and practical tool to evaluate transcranial magnetic stimulation related outcomes.

  5. Temporal expectation weights visual signals over auditory signals.

    Science.gov (United States)

    Menceloglu, Melisa; Grabowecky, Marcia; Suzuki, Satoru

    2017-04-01

    Temporal expectation is a process by which people use temporally structured sensory information to explicitly or implicitly predict the onset and/or the duration of future events. Because timing plays a critical role in crossmodal interactions, we investigated how temporal expectation influenced auditory-visual interaction, using an auditory-visual crossmodal congruity effect as a measure of crossmodal interaction. For auditory identification, an incongruent visual stimulus produced stronger interference when the crossmodal stimulus was presented with an expected rather than an unexpected timing. In contrast, for visual identification, an incongruent auditory stimulus produced weaker interference when the crossmodal stimulus was presented with an expected rather than an unexpected timing. The fact that temporal expectation made visual distractors more potent and visual targets less susceptible to auditory interference suggests that temporal expectation increases the perceptual weight of visual signals.

  6. Usage of drip drops as stimuli in an auditory P300 BCI paradigm.

    Science.gov (United States)

    Huang, Minqiang; Jin, Jing; Zhang, Yu; Hu, Dewen; Wang, Xingyu

    2018-02-01

    Recently, many auditory BCIs are using beeps as auditory stimuli, while beeps sound unnatural and unpleasant for some people. It is proved that natural sounds make people feel comfortable, decrease fatigue, and improve the performance of auditory BCI systems. Drip drop is a kind of natural sounds that makes humans feel relaxed and comfortable. In this work, three kinds of drip drops were used as stimuli in an auditory-based BCI system to improve the user-friendness of the system. This study explored whether drip drops could be used as stimuli in the auditory BCI system. The auditory BCI paradigm with drip-drop stimuli, which was called the drip-drop paradigm (DP), was compared with the auditory paradigm with beep stimuli, also known as the beep paradigm (BP), in items of event-related potential amplitudes, online accuracies and scores on the likability and difficulty to demonstrate the advantages of DP. DP obtained significantly higher online accuracy and information transfer rate than the BP ( p  < 0.05, Wilcoxon signed test; p  < 0.05, Wilcoxon signed test). Besides, DP obtained higher scores on the likability with no significant difference on the difficulty ( p  < 0.05, Wilcoxon signed test). The results showed that the drip drops were reliable acoustic materials as stimuli in an auditory BCI system.

  7. Odors Bias Time Perception in Visual and Auditory Modalities.

    Science.gov (United States)

    Yue, Zhenzhu; Gao, Tianyu; Chen, Lihan; Wu, Jiashuang

    2016-01-01

    Previous studies have shown that emotional states alter our perception of time. However, attention, which is modulated by a number of factors, such as emotional events, also influences time perception. To exclude potential attentional effects associated with emotional events, various types of odors (inducing different levels of emotional arousal) were used to explore whether olfactory events modulated time perception differently in visual and auditory modalities. Participants were shown either a visual dot or heard a continuous tone for 1000 or 4000 ms while they were exposed to odors of jasmine, lavender, or garlic. Participants then reproduced the temporal durations of the preceding visual or auditory stimuli by pressing the spacebar twice. Their reproduced durations were compared to those in the control condition (without odor). The results showed that participants produced significantly longer time intervals in the lavender condition than in the jasmine or garlic conditions. The overall influence of odor on time perception was equivalent for both visual and auditory modalities. The analysis of the interaction effect showed that participants produced longer durations than the actual duration in the short interval condition, but they produced shorter durations in the long interval condition. The effect sizes were larger for the auditory modality than those for the visual modality. Moreover, by comparing performance across the initial and the final blocks of the experiment, we found odor adaptation effects were mainly manifested as longer reproductions for the short time interval later in the adaptation phase, and there was a larger effect size in the auditory modality. In summary, the present results indicate that odors imposed differential impacts on reproduced time durations, and they were constrained by different sensory modalities, valence of the emotional events, and target durations. Biases in time perception could be accounted for by a framework of

  8. Localized brain activation related to the strength of auditory learning in a parrot.

    Directory of Open Access Journals (Sweden)

    Hiroko Eda-Fujiwara

    Full Text Available Parrots and songbirds learn their vocalizations from a conspecific tutor, much like human infants acquire spoken language. Parrots can learn human words and it has been suggested that they can use them to communicate with humans. The caudomedial pallium in the parrot brain is homologous with that of songbirds, and analogous to the human auditory association cortex, involved in speech processing. Here we investigated neuronal activation, measured as expression of the protein product of the immediate early gene ZENK, in relation to auditory learning in the budgerigar (Melopsittacus undulatus, a parrot. Budgerigar males successfully learned to discriminate two Japanese words spoken by another male conspecific. Re-exposure to the two discriminanda led to increased neuronal activation in the caudomedial pallium, but not in the hippocampus, compared to untrained birds that were exposed to the same words, or were not exposed to words. Neuronal activation in the caudomedial pallium of the experimental birds was correlated significantly and positively with the percentage of correct responses in the discrimination task. These results suggest that in a parrot, the caudomedial pallium is involved in auditory learning. Thus, in parrots, songbirds and humans, analogous brain regions may contain the neural substrate for auditory learning and memory.

  9. Neural correlates of auditory recognition memory in the primate dorsal temporal pole

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany

    2013-01-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324

  10. Neural correlates of auditory recognition memory in the primate dorsal temporal pole.

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2014-02-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects.

  11. Event-Related Potential Patterns Associated with Hyperarousal in Gulf War Illness Syndrome Groups

    Science.gov (United States)

    Tillman, Gail D.; Calley, Clifford S.; Green, Timothy A.; Buhl, Virginia I.; Biggs, Melanie M.; Spence, Jeffrey S.; Briggs, Richard W.; Haley, Robert W.; Hart, John; Kraut, Michael A.

    2012-01-01

    An exaggerated response to emotional stimuli is one of several symptoms widely reported by veterans of the 1991 Persian Gulf War. Many have attributed these symptoms to post-war stress; others have attributed the symptoms to deployment-related exposures and associated damage to cholinergic, dopaminergic, and white matter systems. We collected event-related potential (ERP) data from 20 veterans meeting Haley criteria for Gulf War Syndromes 1–3 and from 8 matched Gulf War veteran controls, who were deployed but not symptomatic, while they performed an auditory three-condition oddball task with gunshot and lion roar sounds as the distractor stimuli. Reports of hyperarousal from the ill veterans were significantly greater than those from the control veterans; different ERP profiles emerged to account for their hyperarousability. Syndromes 2 and 3, who have previously shown brainstem abnormalities, show significantly stronger auditory P1 amplitudes, purported to indicate compromised cholinergic inhibitory gating in the reticular activating system. Syndromes 1 and 2, who have previously shown basal ganglia dysfunction, show significantly weaker P3a response to distractor stimuli, purported to indicate dysfunction of the dopaminergic contribution to their ability to inhibit distraction by irrelevant stimuli. All three syndrome groups showed an attenuated P3b to target stimuli, which could be secondary to both cholinergic and dopaminergic contributions or disruption of white matter integrity. PMID:22691951

  12. Prestimulus influences on auditory perception from sensory representations and decision processes.

    Science.gov (United States)

    Kayser, Stephanie J; McNair, Steven W; Kayser, Christoph

    2016-04-26

    The qualities of perception depend not only on the sensory inputs but also on the brain state before stimulus presentation. Although the collective evidence from neuroimaging studies for a relation between prestimulus state and perception is strong, the interpretation in the context of sensory computations or decision processes has remained difficult. In the auditory system, for example, previous studies have reported a wide range of effects in terms of the perceptually relevant frequency bands and state parameters (phase/power). To dissociate influences of state on earlier sensory representations and higher-level decision processes, we collected behavioral and EEG data in human participants performing two auditory discrimination tasks relying on distinct acoustic features. Using single-trial decoding, we quantified the relation between prestimulus activity, relevant sensory evidence, and choice in different task-relevant EEG components. Within auditory networks, we found that phase had no direct influence on choice, whereas power in task-specific frequency bands affected the encoding of sensory evidence. Within later-activated frontoparietal regions, theta and alpha phase had a direct influence on choice, without involving sensory evidence. These results delineate two consistent mechanisms by which prestimulus activity shapes perception. However, the timescales of the relevant neural activity depend on the specific brain regions engaged by the respective task.

  13. ERP evaluation of auditory sensory memory systems in adults with intellectual disability.

    Science.gov (United States)

    Ikeda, Kazunari; Hashimoto, Souichi; Hayashi, Akiko; Kanno, Atsushi

    2009-01-01

    Auditory sensory memory stage can be functionally divided into two subsystems; transient-detector system and permanent feature-detector system (Naatanen, 1992). We assessed these systems in persons with intellectual disability by measuring event-related potentials (ERPs) N1 and mismatch negativity (MMN), which reflect the two auditory subsystems, respectively. Added to these, P3a (an ERP reflecting stage after sensory memory) was evaluated. Either synthesized vowels or simple tones were delivered during a passive oddball paradigm to adults with and without intellectual disability. ERPs were recorded from midline scalp sites (Fz, Cz, and Pz). Relative to control group, participants with the disability exhibited greater N1 latency and less MMN amplitude. The results for N1 amplitude and MMN latency were basically comparable between both groups. IQ scores in participants with the disability revealed no significant relation with N1 and MMN measures, whereas the IQ scores tended to increase significantly as P3a latency reduced. These outcomes suggest that persons with intellectual disability might own discrete malfunctions for the two detector systems in auditory sensory-memory stage. Moreover, the processes following sensory memory might be partly related to a determinant of mental development.

  14. A frontal cortex event-related potential driven by the basal forebrain

    Science.gov (United States)

    Nguyen, David P; Lin, Shih-Chieh

    2014-01-01

    Event-related potentials (ERPs) are widely used in both healthy and neuropsychiatric conditions as physiological indices of cognitive functions. Contrary to the common belief that cognitive ERPs are generated by local activity within the cerebral cortex, here we show that an attention-related ERP in the frontal cortex is correlated with, and likely generated by, subcortical inputs from the basal forebrain (BF). In rats performing an auditory oddball task, both the amplitude and timing of the frontal ERP were coupled with BF neuronal activity in single trials. The local field potentials (LFPs) associated with the frontal ERP, concentrated in deep cortical layers corresponding to the zone of BF input, were similarly coupled with BF activity and consistently triggered by BF electrical stimulation within 5–10 msec. These results highlight the important and previously unrecognized role of long-range subcortical inputs from the BF in the generation of cognitive ERPs. DOI: http://dx.doi.org/10.7554/eLife.02148.001 PMID:24714497

  15. [Event-related potentials P₃₀₀ with memory function and psychopathology in first-episode paranoid schizophrenia].

    Science.gov (United States)

    Liu, Wei-bo; Chen, Qiao-zhen; Yin, Hou-min; Zheng, Lei-lei; Yu, Shao-hua; Chen, Yi-ping; Li, Hui-chun

    2011-11-01

    To investigate the variability of event-related potentials P(300) and the relationship with memory function/psychopathology in patients with first-episode paranoid schizophrenia. Thirty patients with first-episode paranoid schizophrenia (patient group) and twenty health subjects (control group) were enrolled in the study. The auditory event-related potentials P₃₀₀ at the scalp electrodes Cz, Pz and Wechsler Memory Scale (WMS) were examined in both groups, Positive And Negative Syndrome Scale (PANSS) was evaluated in patient group. In comparison with control group, patients had longer latency of P₃₀₀ [(390.6 ± 47.6)ms at Cz and (393.3 ± 50.1)ms at Pz] (Pparanoid schizophrenia has memory deficit, which can be evaluated comprehensively by P₃₀₀ and WMS. The longer latency of P₃₀₀ might be associated with the increased severity of first-episode paranoid schizophrenia.

  16. Present and past: Can writing abilities in school children be associated with their auditory discrimination capacities in infancy?

    Science.gov (United States)

    Schaadt, Gesa; Männel, Claudia; van der Meer, Elke; Pannekamp, Ann; Oberecker, Regine; Friederici, Angela D

    2015-12-01

    Literacy acquisition is highly associated with auditory processing abilities, such as auditory discrimination. The event-related potential Mismatch Response (MMR) is an indicator for cortical auditory discrimination abilities and it has been found to be reduced in individuals with reading and writing impairments and also in infants at risk for these impairments. The goal of the present study was to analyze the relationship between auditory speech discrimination in infancy and writing abilities at school age within subjects, and to determine when auditory speech discrimination differences, relevant for later writing abilities, start to develop. We analyzed the MMR registered in response to natural syllables in German children with and without writing problems at two points during development, that is, at school age and at infancy, namely at age 1 month and 5 months. We observed MMR related auditory discrimination differences between infants with and without later writing problems, starting to develop at age 5 months-an age when infants begin to establish language-specific phoneme representations. At school age, these children with and without writing problems also showed auditory discrimination differences, reflected in the MMR, confirming a relationship between writing and auditory speech processing skills. Thus, writing problems at school age are, at least, partly grounded in auditory discrimination problems developing already during the first months of life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Maturation of Rapid Auditory Temporal Processing and Subsequent Nonword Repetition Performance in Children

    Science.gov (United States)

    Fox, Allison M.; Reid, Corinne L.; Anderson, Mike; Richardson, Cassandra; Bishop, Dorothy V. M.

    2012-01-01

    According to the rapid auditory processing theory, the ability to parse incoming auditory information underpins learning of oral and written language. There is wide variation in this low-level perceptual ability, which appears to follow a protracted developmental course. We studied the development of rapid auditory processing using event-related…

  18. Development of auditory event-related potentials in infants prenatally exposed to methadone.

    Science.gov (United States)

    Paul, Jonathan A; Logan, Beth A; Krishnan, Ramesh; Heller, Nicole A; Morrison, Deborah G; Pritham, Ursula A; Tisher, Paul W; Troese, Marcia; Brown, Mark S; Hayes, Marie J

    2014-07-01

    Developmental features of the P2 auditory ERP in a change detection paradigm were examined in infants prenatally exposed to methadone. Opiate dependent pregnant women maintained on methadone replacement therapy were recruited during pregnancy (N = 60). Current and historical alcohol and substance use, SES, and psychiatric status were assessed with a maternal interview during the third trimester. Medical records were used to collect information regarding maternal medications, monthly urinalysis, and breathalyzer to confirm comorbid drug and alcohol exposures. Between birth and 4 months infant ERP change detection performance was evaluated on one occasion with the oddball paradigm (.2 probability oddball) using pure-tone stimuli (standard = 1 kHz and oddball = 2 kHz frequency) at midline electrode sites, Fz, Cz, Pz. Infant groups were examined in the following developmental windows: 4-15, 16-32, or 33-120 days PNA. Older groups showed increased P2 amplitude at Fz and effective change detection performance at P2 not seen in the newborn group. Developmental maturation of amplitude and stimulus discrimination for P2 has been reported in developing infants at all of the ages tested and data reported here in the older infants are consistent with typical development. However, it has been previously reported that the P2 amplitude difference is detectable in neonates; therefore, absence of a difference in P2 amplitude between stimuli in the 4-15 days group may represent impaired ERP performance by neonatal abstinence syndrome or prenatal methadone exposure. © 2013 Wiley Periodicals, Inc.

  19. A Method to Quantify Plant Availability and Initiating Event Frequency Using a Large Event Tree, Small Fault Tree Model

    International Nuclear Information System (INIS)

    Kee, Ernest J.; Sun, Alice; Rodgers, Shawn; Popova, ElmiraV; Nelson, Paul; Moiseytseva, Vera; Wang, Eric

    2006-01-01

    South Texas Project uses a large fault tree to produce scenarios (minimal cut sets) used in quantification of plant availability and event frequency predictions. On the other hand, the South Texas Project probabilistic risk assessment model uses a large event tree, small fault tree for quantifying core damage and radioactive release frequency predictions. The South Texas Project is converting its availability and event frequency model to use a large event tree, small fault in an effort to streamline application support and to provide additional detail in results. The availability and event frequency model as well as the applications it supports (maintenance and operational risk management, system engineering health assessment, preventive maintenance optimization, and RIAM) are briefly described. A methodology to perform availability modeling in a large event tree, small fault tree framework is described in detail. How the methodology can be used to support South Texas Project maintenance and operations risk management is described in detail. Differences with other fault tree methods and other recently proposed methods are discussed in detail. While the methods described are novel to the South Texas Project Risk Management program and to large event tree, small fault tree models, concepts in the area of application support and availability modeling have wider applicability to the industry. (authors)

  20. Time-to-event analysis as a framework for quantifying fish passage performance: Chapter 9.1

    Science.gov (United States)

    Castro-Santos, Theodore R.; Perry, Russell W.; Adams, Noah S.; Beeman, John W.; Eiler, John H.

    2012-01-01

    Fish passage is the result of a sequence of processes, whereby fish must approach, enter, and pass a structure. Each of these processes takes time, and fishway performance is best quantified in terms of the rates at which each process is completed. Optimal performance is achieved by maximizing the rates of approach, entry, and passage through safe and desirable routes. Sometimes, however, it is necessary to reduce rates of passage through less desirable routes in order to increase proportions passing through the preferred route. Effectiveness of operational or structural modifications for achieving either of these goals is best quantified by applying time-to-event analysis, commonly known as survival analysis methods, to telemetry data. This set of techniques allows for accurate estimation of passage rates and covariate effects on those rates. Importantly, it allows researchers to quantify rates that vary over time, as well as the effects of covariates that also vary over time. Finally, these methods are able to control for competing risks, i.e., the presence of alternate passage routes, failure to pass, or other fates that remove fish from the pool of candidates available to pass through a particular route. In this chapter, we present a model simulation of telemetered fish passing a hydroelectric dam, and provide step-by-step guidance and rationales for performing time-to-event analysis on the resulting data. We demonstrate how this approach removes bias from performance estimates that can result from using methods that focus only on proportions passing each route. Time-to-event analysis, coupled with multinomial models for measuring survival, provides a comprehensive set of techniques for quantifying fish passage, and a framework from which performance among different sites can be better understood.

  1. Short-term plasticity in auditory cognition.

    Science.gov (United States)

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  2. Effects of Temporal Congruity Between Auditory and Visual Stimuli Using Rapid Audio-Visual Serial Presentation.

    Science.gov (United States)

    An, Xingwei; Tang, Jiabei; Liu, Shuang; He, Feng; Qi, Hongzhi; Wan, Baikun; Ming, Dong

    2016-10-01

    Combining visual and auditory stimuli in event-related potential (ERP)-based spellers gained more attention in recent years. Few of these studies notice the difference of ERP components and system efficiency caused by the shifting of visual and auditory onset. Here, we aim to study the effect of temporal congruity of auditory and visual stimuli onset on bimodal brain-computer interface (BCI) speller. We designed five visual and auditory combined paradigms with different visual-to-auditory delays (-33 to +100 ms). Eleven participants attended in this study. ERPs were acquired and aligned according to visual and auditory stimuli onset, respectively. ERPs of Fz, Cz, and PO7 channels were studied through the statistical analysis of different conditions both from visual-aligned ERPs and audio-aligned ERPs. Based on the visual-aligned ERPs, classification accuracy was also analyzed to seek the effects of visual-to-auditory delays. The latencies of ERP components depended mainly on the visual stimuli onset. Auditory stimuli onsets influenced mainly on early component accuracies, whereas visual stimuli onset determined later component accuracies. The latter, however, played a dominate role in overall classification. This study is important for further studies to achieve better explanations and ultimately determine the way to optimize the bimodal BCI application.

  3. Higher dietary diversity is related to better visual and auditory sustained attention.

    Science.gov (United States)

    Shiraseb, Farideh; Siassi, Fereydoun; Qorbani, Mostafa; Sotoudeh, Gity; Rostami, Reza; Narmaki, Elham; Yavari, Parvaneh; Aghasi, Mohadeseh; Shaibu, Osman Mohammed

    2016-04-01

    Attention is a complex cognitive function that is necessary for learning, for following social norms of behaviour and for effective performance of responsibilities and duties. It is especially important in sensitive occupations requiring sustained attention. Improvement of dietary diversity (DD) is recognised as an important factor in health promotion, but its association with sustained attention is unknown. The aim of this study was to determine the association between auditory and visual sustained attention and DD. A cross-sectional study was carried out on 400 women aged 20-50 years who attended sports clubs at Tehran Municipality. Sustained attention was evaluated on the basis of the Integrated Visual and Auditory Continuous Performance Test using Integrated Visual and Auditory software. A single 24-h dietary recall questionnaire was used for DD assessment. Dietary diversity scores (DDS) were determined using the FAO guidelines. The mean visual and auditory sustained attention scores were 40·2 (sd 35·2) and 42·5 (sd 38), respectively. The mean DDS was 4·7 (sd 1·5). After adjusting for age, education years, physical activity, energy intake and BMI, mean visual and auditory sustained attention showed a significant increase as the quartiles of DDS increased (P=0·001). In addition, the mean subscales of attention, including auditory consistency and vigilance, visual persistence, visual and auditory focus, speed, comprehension and full attention, increased significantly with increasing DDS (Pvisual and auditory sustained attention.

  4. Cognitive Training Enhances Auditory Attention Efficiency in Older Adults

    Directory of Open Access Journals (Sweden)

    Jennifer L. O’Brien

    2017-10-01

    Full Text Available Auditory cognitive training (ACT improves attention in older adults; however, the underlying neurophysiological mechanisms are still unknown. The present study examined the effects of ACT on the P3b event-related potential reflecting attention allocation (amplitude and speed of processing (latency during stimulus categorization and the P1-N1-P2 complex reflecting perceptual processing (amplitude and latency. Participants completed an auditory oddball task before and after 10 weeks of ACT (n = 9 or a no contact control period (n = 15. Parietal P3b amplitudes to oddball stimuli decreased at post-test in the trained group as compared to those in the control group, and frontal P3b amplitudes show a similar trend, potentially reflecting more efficient attentional allocation after ACT. No advantages for the ACT group were evident for auditory perceptual processing or speed of processing in this small sample. Our results provide preliminary evidence that ACT may enhance the efficiency of attention allocation, which may account for the positive impact of ACT on the everyday functioning of older adults.

  5. Simultaneity and Temporal Order Judgments Are Coded Differently and Change With Age: An Event-Related Potential Study

    Directory of Open Access Journals (Sweden)

    Aysha Basharat

    2018-04-01

    Full Text Available Multisensory integration is required for a number of daily living tasks where the inability to accurately identify simultaneity and temporality of multisensory events results in errors in judgment leading to poor decision-making and dangerous behavior. Previously, our lab discovered that older adults exhibited impaired timing of audiovisual events, particularly when making temporal order judgments (TOJs. Simultaneity judgments (SJs, however, were preserved across the lifespan. Here, we investigate the difference between the TOJ and SJ tasks in younger and older adults to assess neural processing differences between these two tasks and across the lifespan. Event-related potentials (ERPs were studied to determine between-task and between-age differences. Results revealed task specific differences in perceiving simultaneity and temporal order, suggesting that each task may be subserved via different neural mechanisms. Here, auditory N1 and visual P1 ERP amplitudes confirmed that unisensory processing of audiovisual stimuli did not differ between the two tasks within both younger and older groups, indicating that performance differences between tasks arise either from multisensory integration or higher-level decision-making. Compared to younger adults, older adults showed a sustained higher auditory N1 ERP amplitude response across SOAs, suggestive of broader response properties from an extended temporal binding window. Our work provides compelling evidence that different neural mechanisms subserve the SJ and TOJ tasks and that simultaneity and temporal order perception are coded differently and change with age.

  6. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina; Parbery-Clark, Alexandra; Ashley, Richard

    2010-03-01

    A growing body of research suggests that cognitive functions, such as attention and memory, drive perception by tuning sensory mechanisms to relevant acoustic features. Long-term musical experience also modulates lower-level auditory function, although the mechanisms by which this occurs remain uncertain. In order to tease apart the mechanisms that drive perceptual enhancements in musicians, we posed the question: do well-developed cognitive abilities fine-tune auditory perception in a top-down fashion? We administered a standardized battery of perceptual and cognitive tests to adult musicians and non-musicians, including tasks either more or less susceptible to cognitive control (e.g., backward versus simultaneous masking) and more or less dependent on auditory or visual processing (e.g., auditory versus visual attention). Outcomes indicate lower perceptual thresholds in musicians specifically for auditory tasks that relate with cognitive abilities, such as backward masking and auditory attention. These enhancements were observed in the absence of group differences for the simultaneous masking and visual attention tasks. Our results suggest that long-term musical practice strengthens cognitive functions and that these functions benefit auditory skills. Musical training bolsters higher-level mechanisms that, when impaired, relate to language and literacy deficits. Thus, musical training may serve to lessen the impact of these deficits by strengthening the corticofugal system for hearing. 2009 Elsevier B.V. All rights reserved.

  7. Quantifying temporal ventriloquism in audiovisual synchrony perception

    NARCIS (Netherlands)

    Kuling, I.A.; Kohlrausch, A.G.; Juola, J.F.

    2013-01-01

    The integration of visual and auditory inputs in the human brain works properly only if the components are perceived in close temporal proximity. In the present study, we quantified cross-modal interactions in the human brain for audiovisual stimuli with temporal asynchronies, using a paradigm from

  8. Impaired theta phase-resetting underlying auditory N1 suppression in chronic alcoholism.

    Science.gov (United States)

    Fuentemilla, Lluis; Marco-Pallarés, Josep; Gual, Antoni; Escera, Carles; Polo, Maria Dolores; Grau, Carles

    2009-02-18

    It has been suggested that chronic alcoholism may lead to altered neural mechanisms related to inhibitory processes. Here, we studied auditory N1 suppression phenomena (i.e. amplitude reduction with repetitive stimuli) in chronic alcoholic patients as an early-stage information-processing brain function involving inhibition by the analysis of the N1 event-related potential and time-frequency computation (spectral power and phase-resetting). Our results showed enhanced neural theta oscillatory phase-resetting underlying N1 generation in suppressed N1 event-related potential. The present findings suggest that chronic alcoholism alters neural oscillatory synchrony dynamics at very early stages of information processing.

  9. Training leads to increased auditory brain-computer interface performance of end-users with motor impairments.

    Science.gov (United States)

    Halder, S; Käthner, I; Kübler, A

    2016-02-01

    Auditory brain-computer interfaces are an assistive technology that can restore communication for motor impaired end-users. Such non-visual brain-computer interface paradigms are of particular importance for end-users that may lose or have lost gaze control. We attempted to show that motor impaired end-users can learn to control an auditory speller on the basis of event-related potentials. Five end-users with motor impairments, two of whom with additional visual impairments, participated in five sessions. We applied a newly developed auditory brain-computer interface paradigm with natural sounds and directional cues. Three of five end-users learned to select symbols using this method. Averaged over all five end-users the information transfer rate increased by more than 1800% from the first session (0.17 bits/min) to the last session (3.08 bits/min). The two best end-users achieved information transfer rates of 5.78 bits/min and accuracies of 92%. Our results show that an auditory BCI with a combination of natural sounds and directional cues, can be controlled by end-users with motor impairment. Training improves the performance of end-users to the level of healthy controls. To our knowledge, this is the first time end-users with motor impairments controlled an auditory brain-computer interface speller with such high accuracy and information transfer rates. Further, our results demonstrate that operating a BCI with event-related potentials benefits from training and specifically end-users may require more than one session to develop their full potential. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Effect of hearing loss on semantic access by auditory and audiovisual speech in children.

    Science.gov (United States)

    Jerger, Susan; Tye-Murray, Nancy; Damian, Markus F; Abdi, Hervé

    2013-01-01

    This research studied whether the mode of input (auditory versus audiovisual) influenced semantic access by speech in children with sensorineural hearing impairment (HI). Participants, 31 children with HI and 62 children with normal hearing (NH), were tested with the authors' new multimodal picture word task. Children were instructed to name pictures displayed on a monitor and ignore auditory or audiovisual speech distractors. The semantic content of the distractors was varied to be related versus unrelated to the pictures (e.g., picture distractor of dog-bear versus dog-cheese, respectively). In children with NH, picture-naming times were slower in the presence of semantically related distractors. This slowing, called semantic interference, is attributed to the meaning-related picture-distractor entries competing for selection and control of the response (the lexical selection by competition hypothesis). Recently, a modification of the lexical selection by competition hypothesis, called the competition threshold (CT) hypothesis, proposed that (1) the competition between the picture-distractor entries is determined by a threshold, and (2) distractors with experimentally reduced fidelity cannot reach the CT. Thus, semantically related distractors with reduced fidelity do not produce the normal interference effect, but instead no effect or semantic facilitation (faster picture naming times for semantically related versus unrelated distractors). Facilitation occurs because the activation level of the semantically related distractor with reduced fidelity (1) is not sufficient to exceed the CT and produce interference but (2) is sufficient to activate its concept, which then strengthens the activation of the picture and facilitates naming. This research investigated whether the proposals of the CT hypothesis generalize to the auditory domain, to the natural degradation of speech due to HI, and to participants who are children. Our multimodal picture word task allowed us

  11. Irrelevant Auditory and Visual Events Induce a Visual Attentional Blink

    NARCIS (Netherlands)

    Van der Burg, Erik; Nieuwenstein, Mark R.; Theeuwes, Jan; Olivers, Christian N. L.

    2013-01-01

    In the present study we investigated whether a task-irrelevant distractor can induce a visual attentional blink pattern. Participants were asked to detect only a visual target letter (A, B, or C) and to ignore the preceding auditory, visual, or audiovisual distractor. An attentional blink was

  12. The effect of automatic blink correction on auditory evoked potentials.

    Science.gov (United States)

    Korpela, Jussi; Vigário, Ricardo; Huotilainen, Minna

    2012-01-01

    The effects of blink correction on auditory event-related potential (ERP) waveforms is assessed. Two blink correction strategies are compared. ICA-SSP combines independent component analysis (ICA) with signal space projection (SSP) and ICA-EMD uses empirical mode decomposition (EMD) to improve the performance of the standard ICA method. Five voluntary subjects performed an auditory oddball task. The resulting ERPs are used to compare the two blink correction methods to each other and against blink rejection. The results suggest that both methods qualitatively preserve the ERP waveform but that they underestimate some of the peak amplitudes. ICA-EMD performs slightly better than ICA-SSP. In conclusion, the use of blink correction is justified, especially if blink rejection leads to severe data loss.

  13. Listen, you are writing!Speeding up online spelling with a dynamic auditory BCI

    Directory of Open Access Journals (Sweden)

    Martijn eSchreuder

    2011-10-01

    Full Text Available Representing an intuitive spelling interface for Brain-Computer Interfaces (BCI in the auditory domain is not straightforward. In consequence, all existing approaches based on event-related potentials (ERP rely at least partially on a visual representation of the interface. This online study introduces an auditory spelling interface that eliminates the necessity for such a visualization. In up to two sessions, a group of healthy subjects (N=21 was asked to use a text entry application, utilizing the spatial cues of the AMUSE paradigm (Auditory Multiclass Spatial ERP. The speller relies on the auditory sense both for stimulation and the core feedback. Without prior BCI experience, 76% of the participants were able to write a full sentence during the first session. By exploiting the advantages of a newly introduced dynamic stopping method, a maximum writing speed of 1.41 characters/minute (7.55 bits/minute could be reached during the second session (average: .94 char/min, 5.26 bits/min. For the first time, the presented work shows that an auditory BCI can reach performances similar to state-of-the-art visual BCIs based on covert attention. These results represent an important step towards a purely auditory BCI.

  14. Neural basis of the time window for subjective motor-auditory integration

    Directory of Open Access Journals (Sweden)

    Koichi eToida

    2016-01-01

    Full Text Available Temporal contiguity between an action and corresponding auditory feedback is crucial to the perception of self-generated sound. However, the neural mechanisms underlying motor–auditory temporal integration are unclear. Here, we conducted four experiments with an oddball paradigm to examine the specific event-related potentials (ERPs elicited by delayed auditory feedback for a self-generated action. The first experiment confirmed that a pitch-deviant auditory stimulus elicits mismatch negativity (MMN and P300, both when it is generated passively and by the participant’s action. In our second and third experiments, we investigated the ERP components elicited by delayed auditory feedback of for a self-generated action. We found that delayed auditory feedback elicited an enhancement of P2 (enhanced-P2 and a N300 component, which were apparently different from the MMN and P300 components observed in the first experiment. We further investigated the sensitivity of the enhanced-P2 and N300 to delay length in our fourth experiment. Strikingly, the amplitude of the N300 increased as a function of the delay length. Additionally, the N300 amplitude was significantly correlated with the conscious detection of the delay (the 50% detection point was around 200 ms, and hence reduction in the feeling of authorship of the sound (the sense of agency. In contrast, the enhanced-P2 was most prominent in short-delay (≤ 200 ms conditions and diminished in long-delay conditions. Our results suggest that different neural mechanisms are employed for the processing of temporally-deviant and pitch-deviant auditory feedback. Additionally, the temporal window for subjective motor–auditory integration is likely about 200 ms, as indicated by these auditory ERP components.

  15. Animal models for auditory streaming

    Science.gov (United States)

    Itatani, Naoya

    2017-01-01

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons’ response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044022

  16. Differential sensory cortical involvement in auditory and visual sensorimotor temporal recalibration: Evidence from transcranial direct current stimulation (tDCS).

    Science.gov (United States)

    Aytemür, Ali; Almeida, Nathalia; Lee, Kwang-Hyuk

    2017-02-01

    Adaptation to delayed sensory feedback following an action produces a subjective time compression between the action and the feedback (temporal recalibration effect, TRE). TRE is important for sensory delay compensation to maintain a relationship between causally related events. It is unclear whether TRE is a sensory modality-specific phenomenon. In 3 experiments employing a sensorimotor synchronization task, we investigated this question using cathodal transcranial direct-current stimulation (tDCS). We found that cathodal tDCS over the visual cortex, and to a lesser extent over the auditory cortex, produced decreased visual TRE. However, both auditory and visual cortex tDCS did not produce any measurable effects on auditory TRE. Our study revealed different nature of TRE in auditory and visual domains. Visual-motor TRE, which is more variable than auditory TRE, is a sensory modality-specific phenomenon, modulated by the auditory cortex. The robustness of auditory-motor TRE, unaffected by tDCS, suggests the dominance of the auditory system in temporal processing, by providing a frame of reference in the realignment of sensorimotor timing signals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Auditory-vocal mirroring in songbirds.

    Science.gov (United States)

    Mooney, Richard

    2014-01-01

    Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory-vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory-vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory-vocal mirroring in the songbird's brain.

  18. Non-linear laws of echoic memory and auditory change detection in humans

    OpenAIRE

    Inui, Koji; Urakawa, Tomokazu; Yamashiro, Koya; Otsuru, Naofumi; Nishihara, Makoto; Takeshima, Yasuyuki; Keceli, Sumru; Kakigi, Ryusuke

    2010-01-01

    Abstract Background The detection of any abrupt change in the environment is important to survival. Since memory of preceding sensory conditions is necessary for detecting changes, such a change-detection system relates closely to the memory system. Here we used an auditory change-related N1 subcomponent (change-N1) of event-related brain potentials to investigate cortical mechanisms underlying change detection and echoic memory. Results Change-N1 was elicited by a simple paradigm with two to...

  19. Attending to auditory memory.

    Science.gov (United States)

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Construction and Updating of Event Models in Auditory Event Processing

    Science.gov (United States)

    Huff, Markus; Maurer, Annika E.; Brich, Irina; Pagenkopf, Anne; Wickelmaier, Florian; Papenmeier, Frank

    2018-01-01

    Humans segment the continuous stream of sensory information into distinct events at points of change. Between 2 events, humans perceive an event boundary. Present theories propose changes in the sensory information to trigger updating processes of the present event model. Increased encoding effort finally leads to a memory benefit at event…

  1. Odors bias time perception in visual and auditory modalities

    Directory of Open Access Journals (Sweden)

    Zhenzhu eYue

    2016-04-01

    Full Text Available Previous studies have shown that emotional states alter our perception of time. However, attention, which is modulated by a number of factors, such as emotional events, also influences time perception. To exclude potential attentional effects associated with emotional events, various types of odors (inducing different levels of emotional arousal were used to explore whether olfactory events modulated time perception differently in visual and auditory modalities. Participants were shown either a visual dot or heard a continuous tone for 1000 ms or 4000 ms while they were exposed to odors of jasmine, lavender, or garlic. Participants then reproduced the temporal durations of the preceding visual or auditory stimuli by pressing the spacebar twice. Their reproduced durations were compared to those in the control condition (without odor. The results showed that participants produced significantly longer time intervals in the lavender condition than in the jasmine or garlic conditions. The overall influence of odor on time perception was equivalent for both visual and auditory modalities. The analysis of the interaction effect showed that participants produced longer durations than the actual duration in the short interval condition, but they produced shorter durations in the long interval condition. The effect sizes were larger for the auditory modality than those for the visual modality. Moreover, by comparing performance across the initial and the final blocks of the experiment, we found odor adaptation effects were mainly manifested as longer reproductions for the short time interval later in the adaptation phase, and there was a larger effect size in the auditory modality. In summary, the present results indicate that odors imposed differential impacts on reproduced time durations, and they were constrained by different sensory modalities, valence of the emotional events, and target durations. Biases in time perception could be accounted for by a

  2. Auditory interfaces: The human perceiver

    Science.gov (United States)

    Colburn, H. Steven

    1991-01-01

    A brief introduction to the basic auditory abilities of the human perceiver with particular attention toward issues that may be important for the design of auditory interfaces is presented. The importance of appropriate auditory inputs to observers with normal hearing is probably related to the role of hearing as an omnidirectional, early warning system and to its role as the primary vehicle for communication of strong personal feelings.

  3. Is GABA neurotransmission enhanced in auditory thalamus relative to inferior colliculus?

    Science.gov (United States)

    Cai, Rui; Kalappa, Bopanna I.; Brozoski, Thomas J.; Ling, Lynne L.

    2013-01-01

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central auditory system. Sensory thalamic structures show high levels of non-desensitizing extrasynaptic GABAA receptors (GABAARs) and a reduction in the redundancy of coded information. The present study compared the inhibitory potency of GABA acting at GABAARs between the inferior colliculus (IC) and the medial geniculate body (MGB) using quantitative in vivo, in vitro, and ex vivo experimental approaches. In vivo single unit studies compared the ability of half maximal inhibitory concentrations of GABA to inhibit sound-evoked temporal responses, and found that GABA was two to three times (P GABA levels and suggested a trend towards higher GABA concentrations in MGB than in IC. Collectively, these studies suggest that, per unit GABA, high affinity extrasynaptic and synaptic GABAARs confer a significant inhibitory GABAAR advantage to MGB neurons relative to IC neurons. This increased GABA sensitivity likely underpins the vital filtering role of auditory thalamus. PMID:24155003

  4. Psychoacoustic and cognitive aspects of auditory roughness: definitions, models, and applications

    Science.gov (United States)

    Vassilakis, Pantelis N.; Kendall, Roger A.

    2010-02-01

    The term "auditory roughness" was first introduced in the 19th century to describe the buzzing, rattling auditory sensation accompanying narrow harmonic intervals (i.e. two tones with frequency difference in the range of ~15-150Hz, presented simultaneously). A broader definition and an overview of the psychoacoustic correlates of the auditory roughness sensation, also referred to as sensory dissonance, is followed by an examination of efforts to quantify it over the past one hundred and fifty years and leads to the introduction of a new roughness calculation model and an application that automates spectral and roughness analysis of sound signals. Implementation of spectral and roughness analysis is briefly discussed in the context of two pilot perceptual experiments, designed to assess the relationship among cultural background, music performance practice, and aesthetic attitudes towards the auditory roughness sensation.

  5. P300 as a measure of processing capacity in auditory and visual domains in specific language impairment.

    Science.gov (United States)

    Evans, Julia L; Selinger, Craig; Pollak, Seth D

    2011-05-10

    This study examined the electrophysiological correlates of auditory and visual working memory in children with Specific Language Impairments (SLI). Children with SLI and age-matched controls (11;9-14;10) completed visual and auditory working memory tasks while event-related potentials (ERPs) were recorded. In the auditory condition, children with SLI performed similarly to controls when the memory load was kept low (1-back memory load). As expected, when demands for auditory working memory were higher, children with SLI showed decreases in accuracy and attenuated P3b responses. However, children with SLI also evinced difficulties in the visual working memory tasks. In both the low (1-back) and high (2-back) memory load conditions, P3b amplitude was significantly lower for the SLI as compared to CA groups. These data suggest a domain-general working memory deficit in SLI that is manifested across auditory and visual modalities. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Construction and updating of event models in auditory event processing.

    Science.gov (United States)

    Huff, Markus; Maurer, Annika E; Brich, Irina; Pagenkopf, Anne; Wickelmaier, Florian; Papenmeier, Frank

    2018-02-01

    Humans segment the continuous stream of sensory information into distinct events at points of change. Between 2 events, humans perceive an event boundary. Present theories propose changes in the sensory information to trigger updating processes of the present event model. Increased encoding effort finally leads to a memory benefit at event boundaries. Evidence from reading time studies (increased reading times with increasing amount of change) suggest that updating of event models is incremental. We present results from 5 experiments that studied event processing (including memory formation processes and reading times) using an audio drama as well as a transcript thereof as stimulus material. Experiments 1a and 1b replicated the event boundary advantage effect for memory. In contrast to recent evidence from studies using visual stimulus material, Experiments 2a and 2b found no support for incremental updating with normally sighted and blind participants for recognition memory. In Experiment 3, we replicated Experiment 2a using a written transcript of the audio drama as stimulus material, allowing us to disentangle encoding and retrieval processes. Our results indicate incremental updating processes at encoding (as measured with reading times). At the same time, we again found recognition performance to be unaffected by the amount of change. We discuss these findings in light of current event cognition theories. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Using auditory pre-information to solve the cocktail-party problem: electrophysiological evidence for age-specific differences.

    Science.gov (United States)

    Getzmann, Stephan; Lewald, Jörg; Falkenstein, Michael

    2014-01-01

    Speech understanding in complex and dynamic listening environments requires (a) auditory scene analysis, namely auditory object formation and segregation, and (b) allocation of the attentional focus to the talker of interest. There is evidence that pre-information is actively used to facilitate these two aspects of the so-called "cocktail-party" problem. Here, a simulated multi-talker scenario was combined with electroencephalography to study scene analysis and allocation of attention in young and middle-aged adults. Sequences of short words (combinations of brief company names and stock-price values) from four talkers at different locations were simultaneously presented, and the detection of target names and the discrimination between critical target values were assessed. Immediately prior to speech sequences, auditory pre-information was provided via cues that either prepared auditory scene analysis or attentional focusing, or non-specific pre-information was given. While performance was generally better in younger than older participants, both age groups benefited from auditory pre-information. The analysis of the cue-related event-related potentials revealed age-specific differences in the use of pre-cues: Younger adults showed a pronounced N2 component, suggesting early inhibition of concurrent speech stimuli; older adults exhibited a stronger late P3 component, suggesting increased resource allocation to process the pre-information. In sum, the results argue for an age-specific utilization of auditory pre-information to improve listening in complex dynamic auditory environments.

  8. Using auditory pre-information to solve the cocktail-party problem: electrophysiological evidence for age-specific differences

    Directory of Open Access Journals (Sweden)

    Stephan eGetzmann

    2014-12-01

    Full Text Available Speech understanding in complex and dynamic listening environments requires (a auditory scene analysis, namely auditory object formation and segregation, and (b allocation of the attentional focus to the talker of interest. There is evidence that pre-information is actively used to facilitate these two aspects of the so-called cocktail-party problem. Here, a simulated multi-talker scenario was combined with electroencephalography to study scene analysis and allocation of attention in young and middle-aged adults. Sequences of short words (combinations of brief company names and stock-price values from four talkers at different locations were simultaneously presented, and the detection of target names and the discrimination between critical target values were assessed. Immediately prior to speech sequences, auditory pre-information was provided via cues that either prepared auditory scene analysis or attentional focusing, or non-specific pre-information was given. While performance was generally better in younger than older participants, both age groups benefited from auditory pre-information. The analysis of the cue-related event-related potentials revealed age-specific differences in the use of pre-cues: Younger adults showed a pronounced N2 component, suggesting early inhibition of concurrent speech stimuli; older adults exhibited a stronger late P3 component, suggesting increased resource allocation to process the pre-information. In sum, the results argue for an age-specific utilization of auditory pre-information to improve listening in complex dynamic auditory environments.

  9. Series distance – an intuitive metric to quantify hydrograph similarity in terms of occurrence, amplitude and timing of hydrological events

    Directory of Open Access Journals (Sweden)

    U. Ehret

    2011-03-01

    Full Text Available Applying metrics to quantify the similarity or dissimilarity of hydrographs is a central task in hydrological modelling, used both in model calibration and the evaluation of simulations or forecasts. Motivated by the shortcomings of standard objective metrics such as the Root Mean Square Error (RMSE or the Mean Absolute Peak Time Error (MAPTE and the advantages of visual inspection as a powerful tool for simultaneous, case-specific and multi-criteria (yet subjective evaluation, we propose a new objective metric termed Series Distance, which is in close accordance with visual evaluation. The Series Distance quantifies the similarity of two hydrographs neither in a time-aggregated nor in a point-by-point manner, but on the scale of hydrological events. It consists of three parts, namely a Threat Score which evaluates overall agreement of event occurrence, and the overall distance of matching observed and simulated events with respect to amplitude and timing. The novelty of the latter two is the way in which matching point pairs on the observed and simulated hydrographs are identified: not by equality in time (as is the case with the RMSE, but by the same relative position in matching segments (rise or recession of the event, indicating the same underlying hydrological process. Thus, amplitude and timing errors are calculated simultaneously but separately, from point pairs that also match visually, considering complete events rather than only individual points (as is the case with MAPTE. Relative weights can freely be assigned to each component of the Series Distance, which allows (subjective customization of the metric to various fields of application, but in a traceable way. Each of the three components of the Series Distance can be used in an aggregated or non-aggregated way, which makes the Series Distance a suitable tool for differentiated, process-based model diagnostics.

    After discussing the applicability of established time series

  10. Visual-induced expectations modulate auditory cortical responses

    Directory of Open Access Journals (Sweden)

    Virginie evan Wassenhove

    2015-02-01

    Full Text Available Active sensing has important consequences on multisensory processing (Schroeder et al. 2010. Here, we asked whether in the absence of saccades, the position of the eyes and the timing of transient colour changes of visual stimuli could selectively affect the excitability of auditory cortex by predicting the where and the when of a sound, respectively. Human participants were recorded with magnetoencephalography (MEG while maintaining the position of their eyes on the left, right, or centre of the screen. Participants counted colour changes of the fixation cross while neglecting sounds which could be presented to the left, right or both ears. First, clear alpha power increases were observed in auditory cortices, consistent with participants’ attention directed to visual inputs. Second, colour changes elicited robust modulations of auditory cortex responses (when prediction seen as ramping activity, early alpha phase-locked responses, and enhanced high-gamma band responses in the contralateral side of sound presentation. Third, no modulations of auditory evoked or oscillatory activity were found to be specific to eye position. Altogether, our results suggest that visual transience can automatically elicit a prediction of when a sound will occur by changing the excitability of auditory cortices irrespective of the attended modality, eye position or spatial congruency of auditory and visual events. To the contrary, auditory cortical responses were not significantly affected by eye position suggesting that where predictions may require active sensing or saccadic reset to modulate auditory cortex responses, notably in the absence of spatial orientation to sounds.

  11. Perceiving temporal regularity in music: The role of auditory event-related potentials (ERPs) in probing beat perception

    NARCIS (Netherlands)

    Honing, H.; Bouwer, F.L.; Háden, G.P.; Merchant, H.; de Lafuente, V.

    2014-01-01

    The aim of this chapter is to give an overview of how the perception of a regular beat in music can be studied in humans adults, human newborns, and nonhuman primates using event-related brain potentials (ERPs). Next to a review of the recent literature on the perception of temporal regularity in

  12. Stability of auditory discrimination and novelty processing in physiological aging.

    Science.gov (United States)

    Raggi, Alberto; Tasca, Domenica; Rundo, Francesco; Ferri, Raffaele

    2013-01-01

    Complex higher-order cognitive functions and their possible changes with aging are mandatory objectives of cognitive neuroscience. Event-related potentials (ERPs) allow investigators to probe the earliest stages of information processing. N100, Mismatch negativity (MMN) and P3a are auditory ERP components that reflect automatic sensory discrimination. The aim of the present study was to determine if N100, MMN and P3a parameters are stable in healthy aged subjects, compared to those of normal young adults. Normal young adults and older participants were assessed using standardized cognitive functional instruments and their ERPs were obtained with an auditory stimulation at two different interstimulus intervals, during a passive paradigm. All individuals were within the normal range on cognitive tests. No significant differences were found for any ERP parameters obtained from the two age groups. This study shows that aging is characterized by a stability of the auditory discrimination and novelty processing. This is important for the arrangement of normative for the detection of subtle preclinical changes due to abnormal brain aging.

  13. Neurophysiological evidence for context-dependent encoding of sensory input in human auditory cortex.

    Science.gov (United States)

    Sussman, Elyse; Steinschneider, Mitchell

    2006-02-23

    Attention biases the way in which sound information is stored in auditory memory. Little is known, however, about the contribution of stimulus-driven processes in forming and storing coherent sound events. An electrophysiological index of cortical auditory change detection (mismatch negativity [MMN]) was used to assess whether sensory memory representations could be biased toward one organization over another (one or two auditory streams) without attentional control. Results revealed that sound representations held in sensory memory biased the organization of subsequent auditory input. The results demonstrate that context-dependent sound representations modulate stimulus-dependent neural encoding at early stages of auditory cortical processing.

  14. Human-assisted sound event recognition for home service robots.

    Science.gov (United States)

    Do, Ha Manh; Sheng, Weihua; Liu, Meiqin

    This paper proposes and implements an open framework of active auditory learning for a home service robot to serve the elderly living alone at home. The framework was developed to realize the various auditory perception capabilities while enabling a remote human operator to involve in the sound event recognition process for elderly care. The home service robot is able to estimate the sound source position and collaborate with the human operator in sound event recognition while protecting the privacy of the elderly. Our experimental results validated the proposed framework and evaluated auditory perception capabilities and human-robot collaboration in sound event recognition.

  15. Auditory mismatch negativity in schizophrenia: topographic evaluation with a high-density recording montage.

    Science.gov (United States)

    Hirayasu, Y; Potts, G F; O'Donnell, B F; Kwon, J S; Arakaki, H; Akdag, S J; Levitt, J J; Shenton, M E; McCarley, R W

    1998-09-01

    The mismatch negativity, a negative component in the auditory event-related potential, is thought to index automatic processes involved in sensory or echoic memory. The authors' goal in this study was to examine the topography of auditory mismatch negativity in schizophrenia with a high-density, 64-channel recording montage. Mismatch negativity topography was evaluated in 23 right-handed male patients with schizophrenia who were receiving medication and in 23 nonschizophrenic comparison subjects who were matched in age, handedness, and parental socioeconomic status. The Positive and Negative Syndrome Scale was used to measure psychiatric symptoms. Mismatch negativity amplitude was reduced in the patients with schizophrenia. They showed a greater left-less-than-right asymmetry than comparison subjects at homotopic electrode pairs near the parietotemporal junction. There were correlations between mismatch negativity amplitude and hallucinations at left frontal electrodes and between mismatch negativity amplitude and passive-apathetic social withdrawal at left and right frontal electrodes. Mismatch negativity was reduced in schizophrenia, especially in the left hemisphere. This finding is consistent with abnormalities of primary or adjacent auditory cortex involved in auditory sensory or echoic memory.

  16. Using Complex Auditory-Visual Samples to Produce Emergent Relations in Children with Autism

    Science.gov (United States)

    Groskreutz, Nicole C.; Karsina, Allen; Miguel, Caio F.; Groskreutz, Mark P.

    2010-01-01

    Six participants with autism learned conditional relations between complex auditory-visual sample stimuli (dictated words and pictures) and simple visual comparisons (printed words) using matching-to-sample training procedures. Pre- and posttests examined potential stimulus control by each element of the complex sample when presented individually…

  17. Neuroscience illuminating the influence of auditory or phonological intervention on language-related deficits

    Directory of Open Access Journals (Sweden)

    Sari eYlinen

    2015-02-01

    Full Text Available Remediation programs for language-related learning deficits are urgently needed to enable equal opportunities in education. To meet this need, different training and intervention programs have been developed. Here we review, from an educational perspective, studies that have explored the neural basis of behavioral changes induced by auditory or phonological training in dyslexia, specific language impairment (SLI, and language-learning impairment (LLI. Training has been shown to induce plastic changes in deficient neural networks. In dyslexia, these include, most consistently, increased or normalized activation of previously hypoactive inferior frontal and occipito-temporal areas. In SLI and LLI, studies have shown the strengthening of previously weak auditory brain responses as a result of training. The combination of behavioral and brain measures of remedial gains has potential to increase the understanding of the causes of language-related deficits, which may help to target remedial interventions more accurately to the core problem.

  18. Neural effects of cognitive control load on auditory selective attention.

    Science.gov (United States)

    Sabri, Merav; Humphries, Colin; Verber, Matthew; Liebenthal, Einat; Binder, Jeffrey R; Mangalathu, Jain; Desai, Anjali

    2014-08-01

    Whether and how working memory disrupts or alters auditory selective attention is unclear. We compared simultaneous event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) responses associated with task-irrelevant sounds across high and low working memory load in a dichotic-listening paradigm. Participants performed n-back tasks (1-back, 2-back) in one ear (Attend ear) while ignoring task-irrelevant speech sounds in the other ear (Ignore ear). The effects of working memory load on selective attention were observed at 130-210ms, with higher load resulting in greater irrelevant syllable-related activation in localizer-defined regions in auditory cortex. The interaction between memory load and presence of irrelevant information revealed stronger activations primarily in frontal and parietal areas due to presence of irrelevant information in the higher memory load. Joint independent component analysis of ERP and fMRI data revealed that the ERP component in the N1 time-range is associated with activity in superior temporal gyrus and medial prefrontal cortex. These results demonstrate a dynamic relationship between working memory load and auditory selective attention, in agreement with the load model of attention and the idea of common neural resources for memory and attention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The auditory comprehension changes over time after sport-related concussion can indicate multisensory processing dysfunctions.

    Science.gov (United States)

    Białuńska, Anita; Salvatore, Anthony P

    2017-12-01

    Although science findings and treatment approaches of a concussion have changed in recent years, there continue to be challenges in understanding the nature of the post-concussion behavior. There is growing a body of evidence that some deficits can be related to an impaired auditory processing. To assess auditory comprehension changes over time following sport-related concussion (SRC) in young athletes. A prospective, repeated measures mixed-design was used. A sample of concussed athletes ( n  = 137) and the control group consisted of age-matched, non-concussed athletes ( n  = 143) were administered Subtest VIII of the Computerized-Revised Token Test (C-RTT). The 88 concussed athletes selected for final analysis (neither previous history of brain injury, neurological, psychiatric problems, nor auditory deficits) were evaluated after injury during three sessions (PC1, PC2, and PC3); controls were tested once. Between- and within-group comparisons using RMANOVA were performed on the C-RTT Efficiency Score (ES). ES of the SRC athletes group improved over consecutive testing sessions ( F  =   14.7, p   2.0, Ps integration and/or motor execution can be compromised after a concussion.

  20. The Impacts of Language Background and Language-Related Disorders in Auditory Processing Assessment

    Science.gov (United States)

    Loo, Jenny Hooi Yin; Bamiou, Doris-Eva; Rosen, Stuart

    2013-01-01

    Purpose: To examine the impact of language background and language-related disorders (LRDs--dyslexia and/or language impairment) on performance in English speech and nonspeech tests of auditory processing (AP) commonly used in the clinic. Method: A clinical database concerning 133 multilingual children (mostly with English as an additional…

  1. Selective attention modulates human auditory brainstem responses: relative contributions of frequency and spatial cues.

    Directory of Open Access Journals (Sweden)

    Alexandre Lehmann

    Full Text Available Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.

  2. Musical metaphors: evidence for a spatial grounding of non-literal sentences describing auditory events.

    Science.gov (United States)

    Wolter, Sibylla; Dudschig, Carolin; de la Vega, Irmgard; Kaup, Barbara

    2015-03-01

    This study investigated whether the spatial terms high and low, when used in sentence contexts implying a non-literal interpretation, trigger similar spatial associations as would have been expected from the literal meaning of the words. In three experiments, participants read sentences describing either a high or a low auditory event (e.g., The soprano sings a high aria vs. The pianist plays a low note). In all Experiments, participants were asked to judge (yes/no) whether the sentences were meaningful by means of up/down (Experiments 1 and 2) or left/right (Experiment 3) key press responses. Contrary to previous studies reporting that metaphorical language understanding differs from literal language understanding with regard to simulation effects, the results show compatibility effects between sentence implied pitch height and response location. The results are in line with grounded models of language comprehension proposing that sensory motor experiences are being elicited when processing literal as well as non-literal sentences. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Psychometric intelligence and P3 of the event-related potentials studied with a 3-stimulus auditory oddball task

    NARCIS (Netherlands)

    Wronka, E.A.; Kaiser, J.; Coenen, A.M.L.

    2013-01-01

    Relationship between psychometric intelligence measured with Raven's Advanced Progressive Matrices (RAPM) and event-related potentials (ERP) was examined using 3-stimulus oddball task. Subjects who had scored higher on RAPM exhibited larger amplitude of P3a component. Additional analysis using the

  4. Auditory Warnings, Signal-Referent Relations, and Natural Indicators: Re-Thinking Theory and Application

    Science.gov (United States)

    Petocz, Agnes; Keller, Peter E.; Stevens, Catherine J.

    2008-01-01

    In auditory warning design the idea of the strength of the association between sound and referent has been pivotal. Research has proceeded via constructing classification systems of signal-referent associations and then testing predictions about ease of learning of different levels of signal-referent relation strength across and within different…

  5. Large-scale synchronized activity during vocal deviance detection in the zebra finch auditory forebrain.

    Science.gov (United States)

    Beckers, Gabriël J L; Gahr, Manfred

    2012-08-01

    Auditory systems bias responses to sounds that are unexpected on the basis of recent stimulus history, a phenomenon that has been widely studied using sequences of unmodulated tones (mismatch negativity; stimulus-specific adaptation). Such a paradigm, however, does not directly reflect problems that neural systems normally solve for adaptive behavior. We recorded multiunit responses in the caudomedial auditory forebrain of anesthetized zebra finches (Taeniopygia guttata) at 32 sites simultaneously, to contact calls that recur probabilistically at a rate that is used in communication. Neurons in secondary, but not primary, auditory areas respond preferentially to calls when they are unexpected (deviant) compared with the same calls when they are expected (standard). This response bias is predominantly due to sites more often not responding to standard events than to deviant events. When two call stimuli alternate between standard and deviant roles, most sites exhibit a response bias to deviant events of both stimuli. This suggests that biases are not based on a use-dependent decrease in response strength but involve a more complex mechanism that is sensitive to auditory deviance per se. Furthermore, between many secondary sites, responses are tightly synchronized, a phenomenon that is driven by internal neuronal interactions rather than by the timing of stimulus acoustic features. We hypothesize that this deviance-sensitive, internally synchronized network of neurons is involved in the involuntary capturing of attention by unexpected and behaviorally potentially relevant events in natural auditory scenes.

  6. Storage of feature conjunctions in transient auditory memory.

    Science.gov (United States)

    Gomes, H; Bernstein, R; Ritter, W; Vaughan, H G; Miller, J

    1997-11-01

    The purpose of this study was to determine whether feature conjunctions are stored in transient auditory memory. The mismatch negativity (MMN), an event-related potential that is elicited by stimuli that differ from a series of preceding stimuli, was used in this endeavour. A tone that differed from the preceding series of stimuli in the conjunction of two of its features, both present in preceding stimuli but in different combinations, was found to elicit the MMN. The data are interpreted to indicate that information about the conjunction of features is stored in the memory.

  7. Neural correlates of auditory temporal predictions during sensorimotor synchronization

    Directory of Open Access Journals (Sweden)

    Nadine ePecenka

    2013-08-01

    Full Text Available Musical ensemble performance requires temporally precise interpersonal action coordination. To play in synchrony, ensemble musicians presumably rely on anticipatory mechanisms that enable them to predict the timing of sounds produced by co-performers. Previous studies have shown that individuals differ in their ability to predict upcoming tempo changes in paced finger-tapping tasks (indexed by cross-correlations between tap timing and pacing events and that the degree of such prediction influences the accuracy of sensorimotor synchronization (SMS and interpersonal coordination in dyadic tapping tasks. The current functional magnetic resonance imaging study investigated the neural correlates of auditory temporal predictions during SMS in a within-subject design. Hemodynamic responses were recorded from 18 musicians while they tapped in synchrony with auditory sequences containing gradual tempo changes under conditions of varying cognitive load (achieved by a simultaneous visual n-back working-memory task comprising three levels of difficulty: observation only, 1-back, and 2-back object comparisons. Prediction ability during SMS decreased with increasing cognitive load. Results of a parametric analysis revealed that the generation of auditory temporal predictions during SMS recruits (1 a distributed network in cortico-cerebellar motor-related brain areas (left dorsal premotor and motor cortex, right lateral cerebellum, SMA proper and bilateral inferior parietal cortex and (2 medial cortical areas (medial prefrontal cortex, posterior cingulate cortex. While the first network is presumably involved in basic sensory prediction, sensorimotor integration, motor timing, and temporal adaptation, activation in the second set of areas may be related to higher-level social-cognitive processes elicited during action coordination with auditory signals that resemble music performed by human agents.

  8. Testing resonating vector strength: Auditory system, electric fish, and noise

    Science.gov (United States)

    Leo van Hemmen, J.; Longtin, André; Vollmayr, Andreas N.

    2011-12-01

    Quite often a response to some input with a specific frequency ν○ can be described through a sequence of discrete events. Here, we study the synchrony vector, whose length stands for the vector strength, and in doing so focus on neuronal response in terms of spike times. The latter are supposed to be given by experiment. Instead of singling out the stimulus frequency ν○ we study the synchrony vector as a function of the real frequency variable ν. Its length turns out to be a resonating vector strength in that it shows clear maxima in the neighborhood of ν○ and multiples thereof, hence, allowing an easy way of determining response frequencies. We study this "resonating" vector strength for two concrete but rather different cases, viz., a specific midbrain neuron in the auditory system of cat and a primary detector neuron belonging to the electric sense of the wave-type electric fish Apteronotus leptorhynchus. We show that the resonating vector strength always performs a clear resonance correlated with the phase locking that it quantifies. We analyze the influence of noise and demonstrate how well the resonance associated with maximal vector strength indicates the dominant stimulus frequency. Furthermore, we exhibit how one can obtain a specific phase associated with, for instance, a delay in auditory analysis.

  9. Transcriptional maturation of the mouse auditory forebrain.

    Science.gov (United States)

    Hackett, Troy A; Guo, Yan; Clause, Amanda; Hackett, Nicholas J; Garbett, Krassimira; Zhang, Pan; Polley, Daniel B; Mirnics, Karoly

    2015-08-14

    The maturation of the brain involves the coordinated expression of thousands of genes, proteins and regulatory elements over time. In sensory pathways, gene expression profiles are modified by age and sensory experience in a manner that differs between brain regions and cell types. In the auditory system of altricial animals, neuronal activity increases markedly after the opening of the ear canals, initiating events that culminate in the maturation of auditory circuitry in the brain. This window provides a unique opportunity to study how gene expression patterns are modified by the onset of sensory experience through maturity. As a tool for capturing these features, next-generation sequencing of total RNA (RNAseq) has tremendous utility, because the entire transcriptome can be screened to index expression of any gene. To date, whole transcriptome profiles have not been generated for any central auditory structure in any species at any age. In the present study, RNAseq was used to profile two regions of the mouse auditory forebrain (A1, primary auditory cortex; MG, medial geniculate) at key stages of postnatal development (P7, P14, P21, adult) before and after the onset of hearing (~P12). Hierarchical clustering, differential expression, and functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all genes. Selected genesets related to neurotransmission, developmental plasticity, critical periods and brain structure were highlighted. An accessible repository of the entire dataset was also constructed that permits extraction and screening of all data from the global through single-gene levels. To our knowledge, this is the first whole transcriptome sequencing study of the forebrain of any mammalian sensory system. Although the data are most relevant for the auditory system, they are generally applicable to forebrain structures in the visual and somatosensory systems, as well. The main findings were: (1) Global gene expression

  10. Logarithmic laws of echoic memory and auditory change detection in humans

    OpenAIRE

    Koji Inui; Tomokazu Urakawa; Koya Yamashiro; Naofumi Otsuru; Yasuyuki Takeshima; Ryusuke Kakigi

    2009-01-01

    The cortical mechanisms underlying echoic memory and change detection were investigated using an auditory change-related component (N100c) of event-related brain potentials. N100c was elicited by paired sound stimuli, a standard followed by a deviant, while subjects watched a silent movie. The amplitude of N100c elicited by a fixed sound pressure deviance (70 dB vs. 75 dB) was negatively correlated with the logarithm of the interval between the standard sound and deviant sound (1 ~ 1000 ms), ...

  11. Subclinical alexithymia modulates early audio-visual perceptive and attentional event-related potentials

    Directory of Open Access Journals (Sweden)

    Dyna eDelle-Vigne

    2014-03-01

    Full Text Available Introduction:Previous studies have highlighted the advantage of audio–visual oddball tasks (instead of unimodal ones in order to electrophysiologically index subclinical behavioral differences. Since alexithymia is highly prevalent in the general population, we investigated whether the use of various bimodal tasks could elicit emotional effects in low- versus high-alexithymic scorers. Methods:Fifty students (33 females were split into groups based on low and high scores on the Toronto Alexithymia Scale. During event-related potential recordings, they were exposed to three kinds of audio–visual oddball tasks: neutral (geometrical forms and bips, animal (dog and cock with their respective shouts, or emotional (faces and voices stimuli. In each condition, participants were asked to quickly detect deviant events occurring amongst a train of frequent matching stimuli (e.g., push a button when a sad face–voice pair appeared amongst a train of neutral face–voice pairs. P100, N100, and P300 components were analyzed: P100 refers to visual perceptive processing, N100 to auditory ones, and the P300 relates to response-related stages. Results:High-alexithymic scorers presented a particular pattern of results when processing the emotional stimulations, reflected in early ERP components by increased P100 and N100 amplitudes in the emotional oddball tasks (P100: pConclusions:Our findings suggest that high-alexithymic scorers require heightened early attentional resources when confronted with emotional stimuli.

  12. Auditory conflict and congruence in frontotemporal dementia.

    Science.gov (United States)

    Clark, Camilla N; Nicholas, Jennifer M; Agustus, Jennifer L; Hardy, Christopher J D; Russell, Lucy L; Brotherhood, Emilie V; Dick, Katrina M; Marshall, Charles R; Mummery, Catherine J; Rohrer, Jonathan D; Warren, Jason D

    2017-09-01

    Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia (SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD groups had impaired semantic and emotional congruity processing (after taking auditory control task performance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive mechanism and neural architecture underpinning frontotemporal dementia syndromes. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Auditory sensory memory as indicated by mismatch negativity in chronic alcoholism.

    Science.gov (United States)

    Grau, C; Polo, M D; Yago, E; Gual, A; Escera, C

    2001-05-01

    A pre-conscious auditory sensory (echoic) memory of about 10 s duration can be studied with the event-related brain potential mismatch negativity (MMN). Previous work indicates that this memory is preserved in abstinent chronic alcoholics for a duration of up to 2 s. The authors' aim was to determine the integrity of auditory sensory memory as indexed by MMN in chronic alcoholism, when this memory has to be functionally active for a longer period of time. The presence of MMN for stimuli that differ in duration was tested at memory probe intervals (MPIs) of 0.4 and 5.0 s in 17 abstinent chronic alcoholic patients and in 17 healthy age-matched control subjects. MMN was similar in alcoholics and controls when the MPI was 0.4 s, whereas MMN could not be observed in the patients when the MPI was increased to 5.0 s. These results provide evidence of an impairment of auditory sensory memory in abstinent chronic alcoholics, whereas the automatic stimulus-change detector mechanism, involved in MMN generation, is preserved.

  14. Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas

    Science.gov (United States)

    Mao, Yu-Ting; Hua, Tian-Miao

    2011-01-01

    Sensory neocortex is capable of considerable plasticity after sensory deprivation or damage to input pathways, especially early in development. Although plasticity can often be restorative, sometimes novel, ectopic inputs invade the affected cortical area. Invading inputs from other sensory modalities may compromise the original function or even take over, imposing a new function and preventing recovery. Using ferrets whose retinal axons were rerouted into auditory thalamus at birth, we were able to examine the effect of varying the degree of ectopic, cross-modal input on reorganization of developing auditory cortex. In particular, we assayed whether the invading visual inputs and the existing auditory inputs competed for or shared postsynaptic targets and whether the convergence of input modalities would induce multisensory processing. We demonstrate that although the cross-modal inputs create new visual neurons in auditory cortex, some auditory processing remains. The degree of damage to auditory input to the medial geniculate nucleus was directly related to the proportion of visual neurons in auditory cortex, suggesting that the visual and residual auditory inputs compete for cortical territory. Visual neurons were not segregated from auditory neurons but shared target space even on individual target cells, substantially increasing the proportion of multisensory neurons. Thus spatial convergence of visual and auditory input modalities may be sufficient to expand multisensory representations. Together these findings argue that early, patterned visual activity does not drive segregation of visual and auditory afferents and suggest that auditory function might be compromised by converging visual inputs. These results indicate possible ways in which multisensory cortical areas may form during development and evolution. They also suggest that rehabilitative strategies designed to promote recovery of function after sensory deprivation or damage need to take into

  15. Auditory temporal preparation induced by rhythmic cues during concurrent auditory working memory tasks.

    Science.gov (United States)

    Cutanda, Diana; Correa, Ángel; Sanabria, Daniel

    2015-06-01

    The present study investigated whether participants can develop temporal preparation driven by auditory isochronous rhythms when concurrently performing an auditory working memory (WM) task. In Experiment 1, participants had to respond to an auditory target presented after a regular or an irregular sequence of auditory stimuli while concurrently performing a Sternberg-type WM task. Results showed that participants responded faster after regular compared with irregular rhythms and that this effect was not affected by WM load; however, the lack of a significant main effect of WM load made it difficult to draw any conclusion regarding the influence of the dual-task manipulation in Experiment 1. In order to enhance dual-task interference, Experiment 2 combined the auditory rhythm procedure with an auditory N-Back task, which required WM updating (monitoring and coding of the information) and was presumably more demanding than the mere rehearsal of the WM task used in Experiment 1. Results now clearly showed dual-task interference effects (slower reaction times [RTs] in the high- vs. the low-load condition). However, such interference did not affect temporal preparation induced by rhythms, with faster RTs after regular than after irregular sequences in the high-load and low-load conditions. These results revealed that secondary tasks demanding memory updating, relative to tasks just demanding rehearsal, produced larger interference effects on overall RTs in the auditory rhythm task. Nevertheless, rhythm regularity exerted a strong temporal preparation effect that survived the interference of the WM task even when both tasks competed for processing resources within the auditory modality. (c) 2015 APA, all rights reserved).

  16. Visually Evoked Visual-Auditory Changes Associated with Auditory Performance in Children with Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Maojin Liang

    2017-10-01

    Full Text Available Activation of the auditory cortex by visual stimuli has been reported in deaf children. In cochlear implant (CI patients, a residual, more intense cortical activation in the frontotemporal areas in response to photo stimuli was found to be positively associated with poor auditory performance. Our study aimed to investigate the mechanism by which visual processing in CI users activates the auditory-associated cortex during the period after cochlear implantation as well as its relation to CI outcomes. Twenty prelingually deaf children with CI were recruited. Ten children were good CI performers (GCP and ten were poor (PCP. Ten age- and sex- matched normal-hearing children were recruited as controls, and visual evoked potentials (VEPs were recorded. The characteristics of the right frontotemporal N1 component were analyzed. In the prelingually deaf children, higher N1 amplitude was observed compared to normal controls. While the GCP group showed significant decreases in N1 amplitude, and source analysis showed the most significant decrease in brain activity was observed in the primary visual cortex (PVC, with a downward trend in the primary auditory cortex (PAC activity, but these did not occur in the PCP group. Meanwhile, higher PVC activation (comparing to controls before CI use (0M and a significant decrease in source energy after CI use were found to be related to good CI outcomes. In the GCP group, source energy decreased in the visual-auditory cortex with CI use. However, no significant cerebral hemispheric dominance was found. We supposed that intra- or cross-modal reorganization and higher PVC activation in prelingually deaf children may reflect a stronger potential ability of cortical plasticity. Brain activity evolution appears to be related to CI auditory outcomes.

  17. Visually Evoked Visual-Auditory Changes Associated with Auditory Performance in Children with Cochlear Implants.

    Science.gov (United States)

    Liang, Maojin; Zhang, Junpeng; Liu, Jiahao; Chen, Yuebo; Cai, Yuexin; Wang, Xianjun; Wang, Junbo; Zhang, Xueyuan; Chen, Suijun; Li, Xianghui; Chen, Ling; Zheng, Yiqing

    2017-01-01

    Activation of the auditory cortex by visual stimuli has been reported in deaf children. In cochlear implant (CI) patients, a residual, more intense cortical activation in the frontotemporal areas in response to photo stimuli was found to be positively associated with poor auditory performance. Our study aimed to investigate the mechanism by which visual processing in CI users activates the auditory-associated cortex during the period after cochlear implantation as well as its relation to CI outcomes. Twenty prelingually deaf children with CI were recruited. Ten children were good CI performers (GCP) and ten were poor (PCP). Ten age- and sex- matched normal-hearing children were recruited as controls, and visual evoked potentials (VEPs) were recorded. The characteristics of the right frontotemporal N1 component were analyzed. In the prelingually deaf children, higher N1 amplitude was observed compared to normal controls. While the GCP group showed significant decreases in N1 amplitude, and source analysis showed the most significant decrease in brain activity was observed in the primary visual cortex (PVC), with a downward trend in the primary auditory cortex (PAC) activity, but these did not occur in the PCP group. Meanwhile, higher PVC activation (comparing to controls) before CI use (0M) and a significant decrease in source energy after CI use were found to be related to good CI outcomes. In the GCP group, source energy decreased in the visual-auditory cortex with CI use. However, no significant cerebral hemispheric dominance was found. We supposed that intra- or cross-modal reorganization and higher PVC activation in prelingually deaf children may reflect a stronger potential ability of cortical plasticity. Brain activity evolution appears to be related to CI auditory outcomes.

  18. DESCRIPTION OF BRAINSTEM AUDITORY EVOKED RESPONSES (AIR AND BONE CONDUCTION IN CHILDREN WITH NORMAL HEARING

    Directory of Open Access Journals (Sweden)

    A. V. Pashkov

    2014-01-01

    Full Text Available Diagnosis of hearing level in small children with conductive hearing loss associated with congenital craniofacial abnormalities, particularly with agenesis of external ear and external auditory meatus is a pressing issue. Conventional methods of assessing hearing in the first years of life, i. e. registration of brainstem auditory evoked responses to acoustic stimuli in the event of air conduction, does not give an indication of the auditory analyzer’s condition due to potential conductive hearing loss in these patients. This study was aimed at assessing potential of diagnosing the auditory analyzer’s function with registering brainstem auditory evoked responses (BAERs to acoustic stimuli transmitted by means of a bone vibrator. The study involved 17 children aged 3–10 years with normal hearing. We compared parameters of registering brainstem auditory evoked responses (peak V depending on the type of stimulus transmission (air/bone in children with normal hearing. The data on thresholds of the BAERs registered to acoustic stimuli in the event of air and bone conduction obtained in this study are comparable; hearing thresholds in the event of acoustic stimulation by means of a bone vibrator correlates with the results of the BAERs registered to the stimuli transmitted by means of air conduction earphones (r = 0.9. High correlation of thresholds of BAERs to the stimuli transmitted by means of a bone vibrator with thresholds of BAERs registered when air conduction earphones were used helps to assess auditory analyzer’s condition in patients with any form of conductive hearing loss.  

  19. Broken Expectations: Violation of Expectancies, Not Novelty, Captures Auditory Attention

    Science.gov (United States)

    Vachon, Francois; Hughes, Robert W.; Jones, Dylan M.

    2012-01-01

    The role of memory in behavioral distraction by auditory attentional capture was investigated: We examined whether capture is a product of the novelty of the capturing event (i.e., the absence of a recent memory for the event) or its violation of learned expectancies on the basis of a memory for an event structure. Attentional capture--indicated…

  20. The attenuation of auditory neglect by implicit cues.

    Science.gov (United States)

    Coleman, A Rand; Williams, J Michael

    2006-09-01

    This study examined implicit semantic and rhyming cues on perception of auditory stimuli among nonaphasic participants who suffered a lesion of the right cerebral hemisphere and auditory neglect of sound perceived by the left ear. Because language represents an elaborate processing of auditory stimuli and the language centers were intact among these patients, it was hypothesized that interactive verbal stimuli presented in a dichotic manner would attenuate neglect. The selected participants were administered an experimental dichotic listening test composed of six types of word pairs: unrelated words, synonyms, antonyms, categorically related words, compound words, and rhyming words. Presentation of word pairs that were semantically related resulted in a dramatic reduction of auditory neglect. Dichotic presentations of rhyming words exacerbated auditory neglect. These findings suggest that the perception of auditory information is strongly affected by the specific content conveyed by the auditory system. Language centers will process a degraded stimulus that contains salient language content. A degraded auditory stimulus is neglected if it is devoid of content that activates the language centers or other cognitive systems. In general, these findings suggest that auditory neglect involves a complex interaction of intact and impaired cerebral processing centers with content that is selectively processed by these centers.

  1. Effects of alcohol on attention orienting and dual-task performance during simulated driving: an event-related potential study.

    Science.gov (United States)

    Wester, Anne E; Verster, Joris C; Volkerts, Edmund R; Böcker, Koen B E; Kenemans, J Leon

    2010-09-01

    Driving is a complex task and is susceptible to inattention and distraction. Moreover, alcohol has a detrimental effect on driving performance, possibly due to alcohol-induced attention deficits. The aim of the present study was to assess the effects of alcohol on simulated driving performance and attention orienting and allocation, as assessed by event-related potentials (ERPs). Thirty-two participants completed two test runs in the Divided Attention Steering Simulator (DASS) with blood alcohol concentrations (BACs) of 0.00%, 0.02%, 0.05%, 0.08% and 0.10%. Sixteen participants performed the second DASS test run with a passive auditory oddball to assess alcohol effects on involuntary attention shifting. Sixteen other participants performed the second DASS test run with an active auditory oddball to assess alcohol effects on dual-task performance and active attention allocation. Dose-dependent impairments were found for reaction times, the number of misses and steering error, even more so in dual-task conditions, especially in the active oddball group. ERP amplitudes to novel irrelevant events were also attenuated in a dose-dependent manner. The P3b amplitude to deviant target stimuli decreased with blood alcohol concentration only in the dual-task condition. It is concluded that alcohol increases distractibility and interference from secondary task stimuli, as well as reduces attentional capacity and dual-task integrality.

  2. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    Science.gov (United States)

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  3. Seeing the sound after visual loss: functional MRI in acquired auditory-visual synesthesia.

    Science.gov (United States)

    Yong, Zixin; Hsieh, Po-Jang; Milea, Dan

    2017-02-01

    Acquired auditory-visual synesthesia (AVS) is a rare neurological sign, in which specific auditory stimulation triggers visual experience. In this study, we used event-related fMRI to explore the brain regions correlated with acquired monocular sound-induced phosphenes, which occurred 2 months after unilateral visual loss due to an ischemic optic neuropathy. During the fMRI session, 1-s pure tones at various pitches were presented to the patient, who was asked to report occurrence of sound-induced phosphenes by pressing one of the two buttons (yes/no). The brain activation during phosphene-experienced trials was contrasted with non-phosphene trials and compared to results obtained in one healthy control subject who underwent the same fMRI protocol. Our results suggest, for the first time, that acquired AVS occurring after visual impairment is associated with bilateral activation of primary and secondary visual cortex, possibly due to cross-wiring between auditory and visual sensory modalities.

  4. Self-recognition Deficits in Schizophrenia Patients With Auditory Hallucinations : A Meta-analysis of the Literature

    NARCIS (Netherlands)

    Waters, Flavie; Woodward, Todd; Allen, Paul; Aleman, Andre; Sommers, Iris

    Theories about auditory hallucinations in schizophrenia suggest that these experiences occur because patients fail to recognize thoughts and mental events as self-generated. Different theoretical models have been proposed about the cognitive mechanisms underlying auditory hallucinations. Regardless

  5. Auditory cortical and hippocampal-system mismatch responses to duration deviants in urethane-anesthetized rats.

    Directory of Open Access Journals (Sweden)

    Timo Ruusuvirta

    Full Text Available Any change in the invariant aspects of the auditory environment is of potential importance. The human brain preattentively or automatically detects such changes. The mismatch negativity (MMN of event-related potentials (ERPs reflects this initial stage of auditory change detection. The origin of MMN is held to be cortical. The hippocampus is associated with a later generated P3a of ERPs reflecting involuntarily attention switches towards auditory changes that are high in magnitude. The evidence for this cortico-hippocampal dichotomy is scarce, however. To shed further light on this issue, auditory cortical and hippocampal-system (CA1, dentate gyrus, subiculum local-field potentials were recorded in urethane-anesthetized rats. A rare tone in duration (deviant was interspersed with a repeated tone (standard. Two standard-to-standard (SSI and standard-to-deviant (SDI intervals (200 ms vs. 500 ms were applied in different combinations to vary the observability of responses resembling MMN (mismatch responses. Mismatch responses were observed at 51.5-89 ms with the 500-ms SSI coupled with the 200-ms SDI but not with the three remaining combinations. Most importantly, the responses appeared in both the auditory-cortical and hippocampal locations. The findings suggest that the hippocampus may play a role in (cortical manifestation of MMN.

  6. What determines auditory distraction? On the roles of local auditory changes and expectation violations.

    Directory of Open Access Journals (Sweden)

    Jan P Röer

    Full Text Available Both the acoustic variability of a distractor sequence and the degree to which it violates expectations are important determinants of auditory distraction. In four experiments we examined the relative contribution of local auditory changes on the one hand and expectation violations on the other hand in the disruption of serial recall by irrelevant sound. We present evidence for a greater disruption by auditory sequences ending in unexpected steady state distractor repetitions compared to auditory sequences with expected changing state endings even though the former contained fewer local changes. This effect was demonstrated with piano melodies (Experiment 1 and speech distractors (Experiment 2. Furthermore, it was replicated when the expectation violation occurred after the encoding of the target items (Experiment 3, indicating that the items' maintenance in short-term memory was disrupted by attentional capture and not their encoding. This seems to be primarily due to the violation of a model of the specific auditory distractor sequences because the effect vanishes and even reverses when the experiment provides no opportunity to build up a specific neural model about the distractor sequence (Experiment 4. Nevertheless, the violation of abstract long-term knowledge about auditory regularities seems to cause a small and transient capture effect: Disruption decreased markedly over the course of the experiments indicating that participants habituated to the unexpected distractor repetitions across trials. The overall pattern of results adds to the growing literature that the degree to which auditory distractors violate situation-specific expectations is a more important determinant of auditory distraction than the degree to which a distractor sequence contains local auditory changes.

  7. Cognitive deficits following exposure to pneumococcal meningitis: an event-related potential study

    Directory of Open Access Journals (Sweden)

    Kihara Michael

    2012-03-01

    Full Text Available Abstract Background Pneumococcal meningitis (PM is a severe and life-threatening disease that is associated with cognitive impairment including learning difficulties, cognitive slowness, short-term memory deficits and poor academic performance. There are limited data on cognitive outcomes following exposure to PM from Africa mainly due to lack of culturally appropriate tools. We report cognitive processes of exposed children as measured by auditory and visual event-related potentials. Methods Sixty-five children (32 male, mean 8.4 years, SD 3.0 years aged between 4-15 years with a history of PM and an age-matched control group of 93 children (46 male; mean 8.4 years, SD 2.7 years were recruited from a well-demarcated study area in Kilifi. In the present study, both baseline to peak and peak-to-peak amplitude differences are reported. Results Children with a history of pneumococcal meningitis had significantly longer auditory P1 and P3a latencies and smaller P1 amplitudes compared to unexposed children. In the visual paradigm, children with PM seemingly lacked a novelty P3a component around 350 ms where control children had a maximum, and showed a lack of stimulus differentiation at Nc. Further, children with exposure to PM had smaller peak to peak amplitude (N2-P1 compared to unexposed children. Conclusion The results suggest that children with a history of PM process novelty differently than do unexposed children, with slower latencies and reduced or absent components. This pattern suggests poorer auditory attention and/or cognitive slowness and poorer visual attention orienting, possibly due to disruption in the functions of the lateral prefrontal and superior temporal cortices. ERPs may be useful for assessment of the development of perceptual-cognitive functions in post brain-injury in African children by providing an alternate way of assessing cognitive development in patient groups for whom more typical standardized neuropsychological

  8. A P300 event related potential technique for assessment of sexually oriented interest.

    Science.gov (United States)

    Vardi, Yoram; Volos, Michal; Sprecher, Elliot; Granovsky, Yelena; Gruenwald, Ilan; Yarnitsky, David

    2006-12-01

    Despite all of the modern, sophisticated tests that exist for diagnosing and assessing male and female sexual disorders, to our knowledge there is no objective psychophysiological test to evaluate sexual arousal and interest. We provide preliminary data showing a decrease in auditory P300 wave amplitude during exposure to sexually explicit video clips and a significant correlation between the auditory P300 amplitude decrease and self-reported scores of sexual arousal and interest in the clips. A total of 30 healthy subjects were exposed to several blocks of auditory stimuli administered using an oddball paradigm. Baseline auditory P300 amplitudes were obtained and auditory stimuli were then delivered while viewing visual clips with 3 types of content, including sport, scenery and sex. Auditory P300 amplitude significantly decreased during viewing clips of all contents. Viewing sexual content clips caused a maximal decrease in P300 amplitude (p <0.0001). In addition, a high correlation was found between the amplitude decrease and scores on the sexual arousal questionnaire regarding the viewed clips (r = 0.61, p <0.001). In addition, the P300 amplitude decrease was significantly related to the sexual interest score (r = 0.37, p = 0.042) but not to interest in clips of nonsexual content. The change in auditory P300 amplitude during exposure to visual stimuli with sexual context seems to be an objective measure of subject sexual interest. This method might be applied to assess therapeutic intervention and as a diagnostic tool for assessing disorders of impaired libido or psychogenic sexual dysfunction.

  9. Acute low-level alcohol consumption reduces phase locking of event-related oscillations in rodents.

    Science.gov (United States)

    Amodeo, Leslie R; Wills, Derek N; Ehlers, Cindy L

    2017-07-14

    Event-related oscillations (EROs) are rhythmic changes that are evoked by a sensory and/or cognitive stimulus that can influence the dynamics of the EEG. EROs are defined by the decomposition of the EEG signal into magnitude (energy) and phase information and can be elicited in both humans and animals. EROs have been linked to several relevant genes associated with ethanol dependence phenotypes in humans and are altered in selectively bred alcohol-preferring rats. However, pharmacological studies are only beginning to emerge investigating the impact low intoxicating doses of ethanol can have on event-related neural oscillations. The main goal of this study was to investigate the effects of low levels of voluntary consumption of ethanol, in rats, on phase locking of EROs in order to give further insight into the acute intoxicating effects of ethanol on the brain. To this end, we allow rats to self-administer unsweetened 20% ethanol over 15 intermittent sessions. This method results in a stable low-dose consumption of ethanol. Using an auditory event-related potential "oddball" paradigm, we investigated the effects of alcohol on the phase variability of EROs from electrodes implanted into the frontal cortex, dorsal hippocampus, and amygdala. We found that intermittent ethanol self-administration was sufficient to produce a significant reduction in overall intraregional synchrony across all targeted regions. These data suggest that phase locking of EROs within brain regions known to be impacted by alcohol may represent a sensitive biomarker of low levels of alcohol intoxication. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex.

    Science.gov (United States)

    Phillips, D P; Farmer, M E

    1990-11-15

    This paper explores the nature of the processing disorder which underlies the speech discrimination deficit in the syndrome of acquired word deafness following from pathology to the primary auditory cortex. A critical examination of the evidence on this disorder revealed the following. First, the most profound forms of the condition are expressed not only in an isolation of the cerebral linguistic processor from auditory input, but in a failure of even the perceptual elaboration of the relevant sounds. Second, in agreement with earlier studies, we conclude that the perceptual dimension disturbed in word deafness is a temporal one. We argue, however, that it is not a generalized disorder of auditory temporal processing, but one which is largely restricted to the processing of sounds with temporal content in the milliseconds to tens-of-milliseconds time frame. The perceptual elaboration of sounds with temporal content outside that range, in either direction, may survive the disorder. Third, we present neurophysiological evidence that the primary auditory cortex has a special role in the representation of auditory events in that time frame, but not in the representation of auditory events with temporal grains outside that range.

  11. Negative emotion provides cues for orienting auditory spatial attention

    Directory of Open Access Journals (Sweden)

    Erkin eAsutay

    2015-05-01

    Full Text Available The auditory stimuli provide information about the objects and events around us. They can also carry biologically significant emotional information (such as unseen dangers and conspecific vocalizations, which provides cues for allocation of attention and mental resources. Here, we investigated whether task-irrelevant auditory emotional information can provide cues for orientation of auditory spatial attention. We employed a covert spatial orienting task: the dot-probe task. In each trial, two task irrelevant auditory cues were simultaneously presented at two separate locations (left-right or front-back. Environmental sounds were selected to form emotional vs. neutral, emotional vs. emotional, and neutral vs. neutral cue pairs. The participants’ task was to detect the location of an acoustic target that was presented immediately after the task-irrelevant auditory cues. The target was presented at the same location as one of the auditory cues. The results indicated that participants were significantly faster to locate the target when it replaced the negative cue compared to when it replaced the neutral cue. The positive cues did not produce a clear attentional bias. Further, same valence pairs (emotional-emotional or neutral-neutral did not modulate reaction times due to a lack of spatial attention capture by one cue in the pair. Taken together, the results indicate that negative affect can provide cues for the orientation of spatial attention in the auditory domain.

  12. Electrophysiological evidence for altered visual, but not auditory, selective attention in adolescent cochlear implant users.

    Science.gov (United States)

    Harris, Jill; Kamke, Marc R

    2014-11-01

    Selective attention fundamentally alters sensory perception, but little is known about the functioning of attention in individuals who use a cochlear implant. This study aimed to investigate visual and auditory attention in adolescent cochlear implant users. Event related potentials were used to investigate the influence of attention on visual and auditory evoked potentials in six cochlear implant users and age-matched normally-hearing children. Participants were presented with streams of alternating visual and auditory stimuli in an oddball paradigm: each modality contained frequently presented 'standard' and infrequent 'deviant' stimuli. Across different blocks attention was directed to either the visual or auditory modality. For the visual stimuli attention boosted the early N1 potential, but this effect was larger for cochlear implant users. Attention was also associated with a later P3 component for the visual deviant stimulus, but there was no difference between groups in the later attention effects. For the auditory stimuli, attention was associated with a decrease in N1 latency as well as a robust P3 for the deviant tone. Importantly, there was no difference between groups in these auditory attention effects. The results suggest that basic mechanisms of auditory attention are largely normal in children who are proficient cochlear implant users, but that visual attention may be altered. Ultimately, a better understanding of how selective attention influences sensory perception in cochlear implant users will be important for optimising habilitation strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Do event-related potentials reveal the mechanism of the auditory sensory memory in the human brain?

    Science.gov (United States)

    Näätänen, R; Paavilainen, P; Alho, K; Reinikainen, K; Sams, M

    1989-03-27

    Event-related brain potentials (ERP) to task-irrelevant tone pips presented at short intervals were recorded from the scalp of normal human subjects. Infrequent decrements in stimulus intensity elicited the mismatch negativity (MMN) which was larger in amplitude and shorter in latency the softer the deviant stimulus was. The results obtained imply memory representations which develop automatically and accurately represent the physical features of the repetitive stimulus. These memory traces appear to be those of the acoustic sensory memory, the 'echoic' memory. When an input does not match with such a trace the MMN is generated.

  14. Nicotine Receptor Subtype-Specific Effects on Auditory Evoked Oscillations and Potentials

    Science.gov (United States)

    Featherstone, Robert E.; Phillips, Jennifer M.; Thieu, Tony; Ehrlichman, Richard S.; Halene, Tobias B.; Leiser, Steven C.; Christian, Edward; Johnson, Edwin; Lerman, Caryn; Siegel, Steven J.

    2012-01-01

    Background Individuals with schizophrenia show increased smoking rates which may be due to a beneficial effect of nicotine on cognition and information processing. Decreased amplitude of the P50 and N100 auditory event-related potentials (ERPs) is observed in patients. Both measures show normalization following administration of nicotine. Recent studies identified an association between deficits in auditory evoked gamma oscillations and impaired information processing in schizophrenia, and there is evidence that nicotine normalizes gamma oscillations. Although the role of nicotine receptor subtypes in augmentation of ERPs has received some attention, less is known about how these receptor subtypes regulate the effect of nicotine on evoked gamma activity. Methodology/Principal Findings We examined the effects of nicotine, the α7 nicotine receptor antagonist methyllycaconitine (MLA) the α4β4/α4β2 nicotine receptor antagonist dihydro-beta-erythroidine (DHβE), and the α4β2 agonist AZD3480 on P20 and N40 amplitude as well as baseline and event-related gamma oscillations in mice, using electrodes in hippocampal CA3. Nicotine increased P20 amplitude, while DHβE blocked nicotine-induced enhancements in P20 amplitude. Conversely, MLA did not alter P20 amplitude either when presented alone or with nicotine. Administration of the α4β2 specific agonist AZD3480 did not alter any aspect of P20 response, suggesting that DHβE blocks the effects of nicotine through a non-α4β2 receptor specific mechanism. Nicotine and AZD3480 reduced N40 amplitude, which was blocked by both DHβE and MLA. Finally, nicotine significantly increased event-related gamma, as did AZD3480, while DHβE but not MLA blocked the effect of nicotine on event-related gamma. Conclusions/Significance These results support findings showing that nicotine-induced augmentation of P20 amplitude occurs via a DHβE sensitive mechanism, but suggests that this does not occur through activation of α4β2

  15. Transmodal comparison of auditory, motor, and visual post-processing with and without intentional short-term memory maintenance.

    Science.gov (United States)

    Bender, Stephan; Behringer, Stephanie; Freitag, Christine M; Resch, Franz; Weisbrod, Matthias

    2010-12-01

    To elucidate the contributions of modality-dependent post-processing in auditory, motor and visual cortical areas to short-term memory. We compared late negative waves (N700) during the post-processing of single lateralized stimuli which were separated by long intertrial intervals across the auditory, motor and visual modalities. Tasks either required or competed with attention to post-processing of preceding events, i.e. active short-term memory maintenance. N700 indicated that cortical post-processing exceeded short movements as well as short auditory or visual stimuli for over half a second without intentional short-term memory maintenance. Modality-specific topographies pointed towards sensory (respectively motor) generators with comparable time-courses across the different modalities. Lateralization and amplitude of auditory/motor/visual N700 were enhanced by active short-term memory maintenance compared to attention to current perceptions or passive stimulation. The memory-related N700 increase followed the characteristic time-course and modality-specific topography of the N700 without intentional memory-maintenance. Memory-maintenance-related lateralized negative potentials may be related to a less lateralised modality-dependent post-processing N700 component which occurs also without intentional memory maintenance (automatic memory trace or effortless attraction of attention). Encoding to short-term memory may involve controlled attention to modality-dependent post-processing. Similar short-term memory processes may exist in the auditory, motor and visual systems. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Auditory Reserve and the Legacy of Auditory Experience

    Directory of Open Access Journals (Sweden)

    Erika Skoe

    2014-11-01

    Full Text Available Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function.

  17. Facial Speech Gestures: The Relation between Visual Speech Processing, Phonological Awareness, and Developmental Dyslexia in 10-Year-Olds

    Science.gov (United States)

    Schaadt, Gesa; Männel, Claudia; van der Meer, Elke; Pannekamp, Ann; Friederici, Angela D.

    2016-01-01

    Successful communication in everyday life crucially involves the processing of auditory and visual components of speech. Viewing our interlocutor and processing visual components of speech facilitates speech processing by triggering auditory processing. Auditory phoneme processing, analyzed by event-related brain potentials (ERP), has been shown…

  18. The Effects of Eye-Closure and “Ear-Closure” on Recall of Visual and Auditory Aspects of a Criminal Event

    Directory of Open Access Journals (Sweden)

    Annelies Vredeveldt

    2012-05-01

    Full Text Available Previous research has shown that closing the eyes can facilitate recall of semantic and episodic information. Here, two experiments are presented which investigate the theoretical underpinnings of the eye-closure effect and its auditory equivalent, the “ear-closure” effect. In Experiment 1, participants viewed a violent videotaped event and were subsequently interviewed about the event with eyes open or eyes closed. Eye-closure was found to have modality-general benefits on coarse-grain correct responses, but modality-specific effects on fine-grain correct recall and incorrect recall (increasing the former and decreasing the latter. In Experiment 2, participants viewed the same event and were subsequently interviewed about it, either in quiet conditions or while hearing irrelevant speech. Contrary to expectations, irrelevant speech did not significantly impair recall performance. This null finding might be explained by the absence of social interaction during the interview in Experiment 2. In conclusion, eye-closure seems to involve both general and modality-specific processes. The practical implications of the findings are discussed.

  19. Perceptual consequences of disrupted auditory nerve activity.

    Science.gov (United States)

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique

  20. Quantifying the Influence of Global Warming on Unprecedented Extreme Climate Events

    Science.gov (United States)

    Diffenbaugh, Noah S.; Singh, Deepti; Mankin, Justin S.; Horton, Daniel E.; Swain, Daniel L.; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; hide

    2017-01-01

    Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.

  1. Quantifying the influence of global warming on unprecedented extreme climate events.

    Science.gov (United States)

    Diffenbaugh, Noah S; Singh, Deepti; Mankin, Justin S; Horton, Daniel E; Swain, Daniel L; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; Rajaratnam, Bala

    2017-05-09

    Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.

  2. Timely event-related synchronization fading and phase de-locking and their defects in migraine.

    Science.gov (United States)

    Yum, Myung-Kul; Moon, Jin-Hwa; Kang, Joong Koo; Kwon, Oh-Young; Park, Ki-Jong; Shon, Young-Min; Lee, Il Keun; Jung, Ki-Young

    2014-07-01

    To investigate the characteristics of event-related synchronization (ERS) fading and phase de-locking of alpha waves during passive auditory stimulation (PAS) in the migraine patients. The subjects were 16 adult women with migraine and 16 normal controls. Electroencephalographic (EEG) data obtained during PAS with standard (SS) and deviant stimuli (DS) were used. Alpha ERS fading, the phase locking index (PLI) and de-locking index (DLI) were evaluated from the 10 Hz complex Morlet wavelet components at 100 ms (t100) and 300 ms (t300) after PAS. At t100, significant ERS was found with SS and DS in the migraineurs and controls (P=0.000). At t300 in the controls, ERS faded to zero for DS while in the migraineurs there was no fading for DS. In both groups the PLI for SS and DS was significantly reduced, i.e. de-locked, at t300 compared to t100 (P=0.000). In the migraineurs, the DLI for DS was significantly lower than in the controls (P=0.003). The alpha ERS fading and phase de-locking are defective in migraineurs during passive auditory cognitive processing. The defects in timely alpha ERS fading and in de-locking may play a role in the different attention processing in migraine patients. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Brain dynamics that correlate with effects of learning on auditory distance perception

    Directory of Open Access Journals (Sweden)

    Matthew G. Wisniewski

    2014-12-01

    Full Text Available Accuracy in auditory distance perception can improve with practice and varies for sounds differing in familiarity. Here, listeners were trained to judge the distances of English, Bengali, and backwards speech sources pre-recorded at near (2-m and far (30-m distances. Listeners’ accuracy was tested before and after training. Improvements from pre-test to post-test were greater for forward speech, demonstrating a learning advantage for forward speech sounds. Independent component (IC processes identified in electroencephalographic (EEG data collected during pre- and post-testing revealed three clusters of ICs across subjects with stimulus-locked spectral perturbations related to learning and accuracy. One cluster exhibited a transient stimulus-locked increase in 4-8 Hz power (theta event-related synchronization; ERS that was smaller after training and largest for backwards speech. For a left temporal cluster, 8-12 Hz decreases in power (alpha event-related desynchronization; ERD were greatest for English speech and less prominent after training. In contrast, a cluster of IC processes centered at or near anterior portions of the medial frontal cortex showed learning-related enhancement of sustained increases in 10-16 Hz power (upper-alpha/low-beta ERS. The degree of this enhancement was positively correlated with the degree of behavioral improvements. Results suggest that neural dynamics in non-auditory cortical areas support distance judgments. Further, frontal cortical networks associated with attentional and/or working memory processes appear to play a role in perceptual learning for source distance.

  4. Central auditory processing outcome after stroke in children

    Directory of Open Access Journals (Sweden)

    Karla M. I. Freiria Elias

    2014-09-01

    Full Text Available Objective To investigate central auditory processing in children with unilateral stroke and to verify whether the hemisphere affected by the lesion influenced auditory competence. Method 23 children (13 male between 7 and 16 years old were evaluated through speech-in-noise tests (auditory closure; dichotic digit test and staggered spondaic word test (selective attention; pitch pattern and duration pattern sequence tests (temporal processing and their results were compared with control children. Auditory competence was established according to the performance in auditory analysis ability. Results Was verified similar performance between groups in auditory closure ability and pronounced deficits in selective attention and temporal processing abilities. Most children with stroke showed an impaired auditory ability in a moderate degree. Conclusion Children with stroke showed deficits in auditory processing and the degree of impairment was not related to the hemisphere affected by the lesion.

  5. Auditory cross-modal reorganization in cochlear implant users indicates audio-visual integration.

    Science.gov (United States)

    Stropahl, Maren; Debener, Stefan

    2017-01-01

    There is clear evidence for cross-modal cortical reorganization in the auditory system of post-lingually deafened cochlear implant (CI) users. A recent report suggests that moderate sensori-neural hearing loss is already sufficient to initiate corresponding cortical changes. To what extend these changes are deprivation-induced or related to sensory recovery is still debated. Moreover, the influence of cross-modal reorganization on CI benefit is also still unclear. While reorganization during deafness may impede speech recovery, reorganization also has beneficial influences on face recognition and lip-reading. As CI users were observed to show differences in multisensory integration, the question arises if cross-modal reorganization is related to audio-visual integration skills. The current electroencephalography study investigated cortical reorganization in experienced post-lingually deafened CI users ( n  = 18), untreated mild to moderately hearing impaired individuals (n = 18) and normal hearing controls ( n  = 17). Cross-modal activation of the auditory cortex by means of EEG source localization in response to human faces and audio-visual integration, quantified with the McGurk illusion, were measured. CI users revealed stronger cross-modal activations compared to age-matched normal hearing individuals. Furthermore, CI users showed a relationship between cross-modal activation and audio-visual integration strength. This may further support a beneficial relationship between cross-modal activation and daily-life communication skills that may not be fully captured by laboratory-based speech perception tests. Interestingly, hearing impaired individuals showed behavioral and neurophysiological results that were numerically between the other two groups, and they showed a moderate relationship between cross-modal activation and the degree of hearing loss. This further supports the notion that auditory deprivation evokes a reorganization of the auditory system

  6. Auditory cross-modal reorganization in cochlear implant users indicates audio-visual integration

    Directory of Open Access Journals (Sweden)

    Maren Stropahl

    2017-01-01

    Full Text Available There is clear evidence for cross-modal cortical reorganization in the auditory system of post-lingually deafened cochlear implant (CI users. A recent report suggests that moderate sensori-neural hearing loss is already sufficient to initiate corresponding cortical changes. To what extend these changes are deprivation-induced or related to sensory recovery is still debated. Moreover, the influence of cross-modal reorganization on CI benefit is also still unclear. While reorganization during deafness may impede speech recovery, reorganization also has beneficial influences on face recognition and lip-reading. As CI users were observed to show differences in multisensory integration, the question arises if cross-modal reorganization is related to audio-visual integration skills. The current electroencephalography study investigated cortical reorganization in experienced post-lingually deafened CI users (n = 18, untreated mild to moderately hearing impaired individuals (n = 18 and normal hearing controls (n = 17. Cross-modal activation of the auditory cortex by means of EEG source localization in response to human faces and audio-visual integration, quantified with the McGurk illusion, were measured. CI users revealed stronger cross-modal activations compared to age-matched normal hearing individuals. Furthermore, CI users showed a relationship between cross-modal activation and audio-visual integration strength. This may further support a beneficial relationship between cross-modal activation and daily-life communication skills that may not be fully captured by laboratory-based speech perception tests. Interestingly, hearing impaired individuals showed behavioral and neurophysiological results that were numerically between the other two groups, and they showed a moderate relationship between cross-modal activation and the degree of hearing loss. This further supports the notion that auditory deprivation evokes a reorganization of the

  7. Natural stimuli improve auditory BCIs with respect to ergonomics and performance

    Science.gov (United States)

    Höhne, Johannes; Krenzlin, Konrad; Dähne, Sven; Tangermann, Michael

    2012-08-01

    Moving from well-controlled, brisk artificial stimuli to natural and less-controlled stimuli seems counter-intuitive for event-related potential (ERP) studies. As natural stimuli typically contain a richer internal structure, they might introduce higher levels of variance and jitter in the ERP responses. Both characteristics are unfavorable for a good single-trial classification of ERPs in the context of a multi-class brain-computer interface (BCI) system, where the class-discriminant information between target stimuli and non-target stimuli must be maximized. For the application in an auditory BCI system, however, the transition from simple artificial tones to natural syllables can be useful despite the variance introduced. In the presented study, healthy users (N = 9) participated in an offline auditory nine-class BCI experiment with artificial and natural stimuli. It is shown that the use of syllables as natural stimuli does not only improve the users’ ergonomic ratings; also the classification performance is increased. Moreover, natural stimuli obtain a better balance in multi-class decisions, such that the number of systematic confusions between the nine classes is reduced. Hopefully, our findings may contribute to make auditory BCI paradigms more user friendly and applicable for patients.

  8. Auditory prediction during speaking and listening.

    Science.gov (United States)

    Sato, Marc; Shiller, Douglas M

    2018-02-02

    In the present EEG study, the role of auditory prediction in speech was explored through the comparison of auditory cortical responses during active speaking and passive listening to the same acoustic speech signals. Two manipulations of sensory prediction accuracy were used during the speaking task: (1) a real-time change in vowel F1 feedback (reducing prediction accuracy relative to unaltered feedback) and (2) presenting a stable auditory target rather than a visual cue to speak (enhancing auditory prediction accuracy during baseline productions, and potentially enhancing the perturbing effect of altered feedback). While subjects compensated for the F1 manipulation, no difference between the auditory-cue and visual-cue conditions were found. Under visually-cued conditions, reduced N1/P2 amplitude was observed during speaking vs. listening, reflecting a motor-to-sensory prediction. In addition, a significant correlation was observed between the magnitude of behavioral compensatory F1 response and the magnitude of this speaking induced suppression (SIS) for P2 during the altered auditory feedback phase, where a stronger compensatory decrease in F1 was associated with a stronger the SIS effect. Finally, under the auditory-cued condition, an auditory repetition-suppression effect was observed in N1/P2 amplitude during the listening task but not active speaking, suggesting that auditory predictive processes during speaking and passive listening are functionally distinct. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Changes in regional cerebral blood flow during auditory cognitive tasks

    International Nuclear Information System (INIS)

    Ohyama, Masashi; Kitamura, Shin; Terashi, Akiro; Senda, Michio.

    1993-01-01

    In order to investigate the relation between auditory cognitive function and regional brain activation, we measured the changes in the regional cerebral blood flow (CBF) using positron emission tomography (PET) during the 'odd-ball' paradigm in ten normal healthy volunteers. The subjects underwent 3 tasks, twice for each, while the evoked potential was recorded. In these tasks, the auditory stimulus was a series of pure tones delivered every 1.5 sec binaurally at 75 dB from the earphones. Task A: the stimulus was a series of tones with 1000 Hz only, and the subject was instructed to only hear. Task B: the stimulus was a series of tones with 1000 Hz only, and the subject was instructed to push the button on detecting a tone. Task C: the stimulus was a series of pure tones delivered every 1.5 sec binaurally at 75 dB with a frequency of 1000 Hz (non-target) in 80% and 2000 Hz (target) in 20% at random, and the subject was instructed to push the button on detecting a target tone. The event related potential (P300) was observed in task C (Pz: 334.3±19.6 msec). At each task, the CBF was measured using PET with i.v. injection of 1.5 GBq of O-15 water. The changes in CBF associated with auditory cognition was evaluated by the difference between the CBF images in task C and B. Localized increase was observed in the anterior cingulate cortex (in all subjects), the bilateral associate auditory cortex, the prefrontal cortex and the parietal cortex. The latter three areas had a large individual variation in the location of foci. These results suggested the role of those cortical areas in auditory cognition. The anterior cingulate was most activated (15.0±2.24% of global CBF). This region was not activated in the condition of task B minus task A. The anterior cingulate is a part of Papez's circuit that is related to memory and other higher cortical function. These results suggested that this area may play an important role in cognition as well as in attention. (author)

  10. Age-dependent impairment of auditory processing under spatially focused and divided attention: an electrophysiological study.

    Science.gov (United States)

    Wild-Wall, Nele; Falkenstein, Michael

    2010-01-01

    By using event-related potentials (ERPs) the present study examines if age-related differences in preparation and processing especially emerge during divided attention. Binaurally presented auditory cues called for focused (valid and invalid) or divided attention to one or both ears. Responses were required to subsequent monaurally presented valid targets (vowels), but had to be suppressed to non-target vowels or invalidly cued vowels. Middle-aged participants were more impaired under divided attention than young ones, likely due to an age-related decline in preparatory attention following cues as was reflected in a decreased CNV. Under divided attention, target processing was increased in the middle-aged, likely reflecting compensatory effort to fulfill task requirements in the difficult condition. Additionally, middle-aged participants processed invalidly cued stimuli more intensely as was reflected by stimulus ERPs. The results suggest an age-related impairment in attentional preparation after auditory cues especially under divided attention and latent difficulties to suppress irrelevant information.

  11. Biological impact of music and software-based auditory training

    Science.gov (United States)

    Kraus, Nina

    2012-01-01

    Auditory-based communication skills are developed at a young age and are maintained throughout our lives. However, some individuals – both young and old – encounter difficulties in achieving or maintaining communication proficiency. Biological signals arising from hearing sounds relate to real-life communication skills such as listening to speech in noisy environments and reading, pointing to an intersection between hearing and cognition. Musical experience, amplification, and software-based training can improve these biological signals. These findings of biological plasticity, in a variety of subject populations, relate to attention and auditory memory, and represent an integrated auditory system influenced by both sensation and cognition. Learning outcomes The reader will (1) understand that the auditory system is malleable to experience and training, (2) learn the ingredients necessary for auditory learning to successfully be applied to communication, (3) learn that the auditory brainstem response to complex sounds (cABR) is a window into the integrated auditory system, and (4) see examples of how cABR can be used to track the outcome of experience and training. PMID:22789822

  12. Examination of the Relation between an Assessment of Skills and Performance on Auditory-Visual Conditional Discriminations for Children with Autism Spectrum Disorder

    Science.gov (United States)

    Kodak, Tiffany; Clements, Andrea; Paden, Amber R.; LeBlanc, Brittany; Mintz, Joslyn; Toussaint, Karen A.

    2015-01-01

    The current investigation evaluated repertoires that may be related to performance on auditory-to-visual conditional discrimination training with 9 students who had been diagnosed with autism spectrum disorder. The skills included in the assessment were matching, imitation, scanning, an auditory discrimination, and a visual discrimination. The…

  13. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    Science.gov (United States)

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  14. The definition of exertion-related cardiac events.

    Science.gov (United States)

    Rai, M; Thompson, P D

    2011-02-01

    Vigorous physical activity increases the risk of sudden cardiac death (SCD) and acute myocardial infarction (AMI) but there is no standard definition as to what constitutes an exertion-related cardiac event, specifically the time interval between physical exertion and cardiac event. A systematic review of studies related to exertion-related cardiac events was performed and the time interval between exertion and the event or the symptoms leading to the event was looked for in all the articles selected for inclusion. A total of 12 of 26 articles "suggested" or "defined" exertion-related events as those events whose symptoms started during or within 1 h of exertion. Others used definitions of 0.5 h, 2 h, "during exertion", "during or immediately post exertion" and "during or within several hours after exertion". It is suggested, therefore, that the definition of an exertion-related cardiac event be established as a cardiac event in which symptoms started during or within 1 h of physical exertion.

  15. Verbal Learning and Memory in Cannabis and Alcohol Users: An Event-Related Potential Investigation

    Directory of Open Access Journals (Sweden)

    Janette L. Smith

    2017-12-01

    Full Text Available Aims: Long-term heavy use of cannabis and alcohol are known to be associated with memory impairments. In this study, we used event-related potentials to examine verbal learning and memory processing in a commonly used behavioral task.Method: We conducted two studies: first, a small pilot study of adolescent males, comprising 13 Drug-Naive Controls (DNC, 12 heavy drinkers (HD and 8 cannabis users (CU. Second, a larger study of young adults, comprising 45 DNC (20 female, 39 HD (16 female, and 20 CU (9 female. In both studies, participants completed a modified verbal learning task (the Rey Auditory Verbal Learning Test, RAVLT while brain electrical activity was recorded. ERPs were calculated for words which were subsequently remembered vs. those which were not remembered, and for presentations of learnt words, previously seen words, and new words in a subsequent recognition test. Pre-planned principal components analyses (PCA were used to quantify the ERP components in these recall and recognition phases separately for each study.Results: Memory performance overall was slightly lower than published norms using the standardized RAVLT delivery, but was generally similar and showed the expected changes over trials. Few differences in performance were observed between groups; a notable exception was markedly poorer delayed recall in HD relative to DNC (Study 2. PCA identified components expected from prior research using other memory tasks. At encoding, there were no between-group differences in the usual P2 recall effect (larger for recalled than not-recalled words. However, alcohol-related differences were observed in a larger P540 (indexing recollection in HD than DNC, and cannabis-related differences were observed in a smaller N340 (indexing familiarity and a lack of previously seen > new words effect for P540 in Study 2.Conclusions: This study is the first examination of ERPs in the RAVLT in healthy control participants, as well as substance

  16. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    Science.gov (United States)

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical

  17. Age-related decline of the cytochrome c oxidase subunit expression in the auditory cortex of the mimetic aging rat model associated with the common deletion.

    Science.gov (United States)

    Zhong, Yi; Hu, Yujuan; Peng, Wei; Sun, Yu; Yang, Yang; Zhao, Xueyan; Huang, Xiang; Zhang, Honglian; Kong, Weijia

    2012-12-01

    The age-related deterioration in the central auditory system is well known to impair the abilities of sound localization and speech perception. However, the mechanisms involved in the age-related central auditory deficiency remain unclear. Previous studies have demonstrated that mitochondrial DNA (mtDNA) deletions accumulated with age in the auditory system. Also, a cytochrome c oxidase (CcO) deficiency has been proposed to be a causal factor in the age-related decline in mitochondrial respiratory activity. This study was designed to explore the changes of CcO activity and to investigate the possible relationship between the mtDNA common deletion (CD) and CcO activity as well as the mRNA expression of CcO subunits in the auditory cortex of D-galactose (D-gal)-induced mimetic aging rats at different ages. Moreover, we explored whether peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) were involved in the changes of nuclear- and mitochondrial-encoded CcO subunits in the auditory cortex during aging. Our data demonstrated that d-gal-induced mimetic aging rats exhibited an accelerated accumulation of the CD and a gradual decline in the CcO activity in the auditory cortex during the aging process. The reduction in the CcO activity was correlated with the level of CD load in the auditory cortex. The mRNA expression of CcO subunit III was reduced significantly with age in the d-gal-induced mimetic aging rats. In contrast, the decline in the mRNA expression of subunits I and IV was relatively minor. Additionally, significant increases in the mRNA and protein levels of PGC-1α, NRF-1 and TFAM were observed in the auditory cortex of D-gal-induced mimetic aging rats with aging. These findings suggested that the accelerated accumulation of the CD in the auditory cortex may induce a substantial decline in CcO subunit III and lead to a significant decline in the Cc

  18. Aging increases distraction by auditory oddballs in visual, but not auditory tasks.

    Science.gov (United States)

    Leiva, Alicia; Parmentier, Fabrice B R; Andrés, Pilar

    2015-05-01

    Aging is typically considered to bring a reduction of the ability to resist distraction by task-irrelevant stimuli. Yet recent work suggests that this conclusion must be qualified and that the effect of aging is mitigated by whether irrelevant and target stimuli emanate from the same modalities or from distinct ones. Some studies suggest that aging is especially sensitive to distraction within-modality while others suggest it is greater across modalities. Here we report the first study to measure the effect of aging on deviance distraction in cross-modal (auditory-visual) and uni-modal (auditory-auditory) oddball tasks. Young and older adults were asked to judge the parity of target digits (auditory or visual in distinct blocks of trials), each preceded by a task-irrelevant sound (the same tone on most trials-the standard sound-or, on rare and unpredictable trials, a burst of white noise-the deviant sound). Deviant sounds yielded distraction (longer response times relative to standard sounds) in both tasks and age groups. However, an age-related increase in distraction was observed in the cross-modal task and not in the uni-modal task. We argue that aging might affect processes involved in the switching of attention across modalities and speculate that this may due to the slowing of this type of attentional shift or a reduction in cognitive control required to re-orient attention toward the target's modality.

  19. Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex.

    Directory of Open Access Journals (Sweden)

    Elsa van der Loo

    Full Text Available BACKGROUND: Non-pulsatile tinnitus is considered a subjective auditory phantom phenomenon present in 10 to 15% of the population. Tinnitus as a phantom phenomenon is related to hyperactivity and reorganization of the auditory cortex. Magnetoencephalography studies demonstrate a correlation between gamma band activity in the contralateral auditory cortex and the presence of tinnitus. The present study aims to investigate the relation between objective gamma-band activity in the contralateral auditory cortex and subjective tinnitus loudness scores. METHODS AND FINDINGS: In unilateral tinnitus patients (N = 15; 10 right, 5 left source analysis of resting state electroencephalographic gamma band oscillations shows a strong positive correlation with Visual Analogue Scale loudness scores in the contralateral auditory cortex (max r = 0.73, p<0.05. CONCLUSION: Auditory phantom percepts thus show similar sound level dependent activation of the contralateral auditory cortex as observed in normal audition. In view of recent consciousness models and tinnitus network models these results suggest tinnitus loudness is coded by gamma band activity in the contralateral auditory cortex but might not, by itself, be responsible for tinnitus perception.

  20. Biases in Visual, Auditory, and Audiovisual Perception of Space

    Science.gov (United States)

    Odegaard, Brian; Wozny, David R.; Shams, Ladan

    2015-01-01

    Localization of objects and events in the environment is critical for survival, as many perceptual and motor tasks rely on estimation of spatial location. Therefore, it seems reasonable to assume that spatial localizations should generally be accurate. Curiously, some previous studies have reported biases in visual and auditory localizations, but these studies have used small sample sizes and the results have been mixed. Therefore, it is not clear (1) if the reported biases in localization responses are real (or due to outliers, sampling bias, or other factors), and (2) whether these putative biases reflect a bias in sensory representations of space or a priori expectations (which may be due to the experimental setup, instructions, or distribution of stimuli). Here, to address these questions, a dataset of unprecedented size (obtained from 384 observers) was analyzed to examine presence, direction, and magnitude of sensory biases, and quantitative computational modeling was used to probe the underlying mechanism(s) driving these effects. Data revealed that, on average, observers were biased towards the center when localizing visual stimuli, and biased towards the periphery when localizing auditory stimuli. Moreover, quantitative analysis using a Bayesian Causal Inference framework suggests that while pre-existing spatial biases for central locations exert some influence, biases in the sensory representations of both visual and auditory space are necessary to fully explain the behavioral data. How are these opposing visual and auditory biases reconciled in conditions in which both auditory and visual stimuli are produced by a single event? Potentially, the bias in one modality could dominate, or the biases could interact/cancel out. The data revealed that when integration occurred in these conditions, the visual bias dominated, but the magnitude of this bias was reduced compared to unisensory conditions. Therefore, multisensory integration not only improves the

  1. Biases in Visual, Auditory, and Audiovisual Perception of Space.

    Directory of Open Access Journals (Sweden)

    Brian Odegaard

    2015-12-01

    Full Text Available Localization of objects and events in the environment is critical for survival, as many perceptual and motor tasks rely on estimation of spatial location. Therefore, it seems reasonable to assume that spatial localizations should generally be accurate. Curiously, some previous studies have reported biases in visual and auditory localizations, but these studies have used small sample sizes and the results have been mixed. Therefore, it is not clear (1 if the reported biases in localization responses are real (or due to outliers, sampling bias, or other factors, and (2 whether these putative biases reflect a bias in sensory representations of space or a priori expectations (which may be due to the experimental setup, instructions, or distribution of stimuli. Here, to address these questions, a dataset of unprecedented size (obtained from 384 observers was analyzed to examine presence, direction, and magnitude of sensory biases, and quantitative computational modeling was used to probe the underlying mechanism(s driving these effects. Data revealed that, on average, observers were biased towards the center when localizing visual stimuli, and biased towards the periphery when localizing auditory stimuli. Moreover, quantitative analysis using a Bayesian Causal Inference framework suggests that while pre-existing spatial biases for central locations exert some influence, biases in the sensory representations of both visual and auditory space are necessary to fully explain the behavioral data. How are these opposing visual and auditory biases reconciled in conditions in which both auditory and visual stimuli are produced by a single event? Potentially, the bias in one modality could dominate, or the biases could interact/cancel out. The data revealed that when integration occurred in these conditions, the visual bias dominated, but the magnitude of this bias was reduced compared to unisensory conditions. Therefore, multisensory integration not only

  2. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  3. Enhanced audio-visual interactions in the auditory cortex of elderly cochlear-implant users.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Schulte, Svenja; Hauthal, Nadine; Kantzke, Christoph; Rach, Stefan; Büchner, Andreas; Dengler, Reinhard; Sandmann, Pascale

    2015-10-01

    Auditory deprivation and the restoration of hearing via a cochlear implant (CI) can induce functional plasticity in auditory cortical areas. How these plastic changes affect the ability to integrate combined auditory (A) and visual (V) information is not yet well understood. In the present study, we used electroencephalography (EEG) to examine whether age, temporary deafness and altered sensory experience with a CI can affect audio-visual (AV) interactions in post-lingually deafened CI users. Young and elderly CI users and age-matched NH listeners performed a speeded response task on basic auditory, visual and audio-visual stimuli. Regarding the behavioral results, a redundant signals effect, that is, faster response times to cross-modal (AV) than to both of the two modality-specific stimuli (A, V), was revealed for all groups of participants. Moreover, in all four groups, we found evidence for audio-visual integration. Regarding event-related responses (ERPs), we observed a more pronounced visual modulation of the cortical auditory response at N1 latency (approximately 100 ms after stimulus onset) in the elderly CI users when compared with young CI users and elderly NH listeners. Thus, elderly CI users showed enhanced audio-visual binding which may be a consequence of compensatory strategies developed due to temporary deafness and/or degraded sensory input after implantation. These results indicate that the combination of aging, sensory deprivation and CI facilitates the coupling between the auditory and the visual modality. We suggest that this enhancement in multisensory interactions could be used to optimize auditory rehabilitation, especially in elderly CI users, by the application of strong audio-visually based rehabilitation strategies after implant switch-on. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Childhood traumatic events and types of auditory verbal hallucinations in first-episode schizophrenia patients.

    Science.gov (United States)

    Misiak, Błażej; Moustafa, Ahmed A; Kiejna, Andrzej; Frydecka, Dorota

    2016-04-01

    Evidence is accumulating that childhood trauma might be associated with higher severity of positive symptoms in patients with psychosis and higher incidence of psychotic experiences in non-clinical populations. However, it remains unknown whether the history of childhood trauma might be associated with particular types of auditory verbal hallucinations (AVH). We assessed childhood trauma using the Early Trauma Inventory Self-Report - Short Form (ETISR-SF) in 94 first-episode schizophrenia (FES) patients. Lifetime psychopathology was evaluated using the Operational Criteria for Psychotic Illness (OPCRIT) checklist, while symptoms on the day of assessment were examined using the Positive and Negative Syndrome Scale (PANSS). Based on ETISR-SF, patients were divided into those with and without the history of childhood trauma: FES(+) and FES(-) patients. FES(+) patients had significantly higher total number of AVH types and Schneiderian first-rank AVH as well as significantly higher PANSS P3 item score (hallucinatory behavior) in comparison with FES(-) patients. They experienced significantly more frequently third person AVH and abusive/accusatory/persecutory voices. These differences remained significant after controlling for education, PANSS depression factor score and chlorpromazine equivalent. Linear regression analysis revealed that the total number of AVH types was predicted by sexual abuse score after controlling for above mentioned confounders. This effect was significant only in females. Our results indicate that the history of childhood trauma, especially sexual abuse, is associated with higher number AVH in females but not in males. Third person AVH and abusive/accusatory/persecutory voices, representing Schneiderian first-rank symptoms, might be particularly related to childhood traumatic events. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Differential contribution of visual and auditory information to accurately predict the direction and rotational motion of a visual stimulus.

    Science.gov (United States)

    Park, Seoung Hoon; Kim, Seonjin; Kwon, MinHyuk; Christou, Evangelos A

    2016-03-01

    Vision and auditory information are critical for perception and to enhance the ability of an individual to respond accurately to a stimulus. However, it is unknown whether visual and auditory information contribute differentially to identify the direction and rotational motion of the stimulus. The purpose of this study was to determine the ability of an individual to accurately predict the direction and rotational motion of the stimulus based on visual and auditory information. In this study, we recruited 9 expert table-tennis players and used table-tennis service as our experimental model. Participants watched recorded services with different levels of visual and auditory information. The goal was to anticipate the direction of the service (left or right) and the rotational motion of service (topspin, sidespin, or cut). We recorded their responses and quantified the following outcomes: (i) directional accuracy and (ii) rotational motion accuracy. The response accuracy was the accurate predictions relative to the total number of trials. The ability of the participants to predict the direction of the service accurately increased with additional visual information but not with auditory information. In contrast, the ability of the participants to predict the rotational motion of the service accurately increased with the addition of auditory information to visual information but not with additional visual information alone. In conclusion, this finding demonstrates that visual information enhances the ability of an individual to accurately predict the direction of the stimulus, whereas additional auditory information enhances the ability of an individual to accurately predict the rotational motion of stimulus.

  6. Event-Related Potentials in Parkinson’s Disease: A Review

    Directory of Open Access Journals (Sweden)

    E. Růžička

    1993-01-01

    Full Text Available This article reviews the findings of event-related potentials (ERP in Parkinson's disease (PD published during the last 10 years. Basic principles and methods of ERP are briefly presented with particular regard to the auditory “odd-ball” paradigm almost uniquely employed for the ERP assessment in PD to date. The results of respective studies are overviewed and discussed with respect to three main axes: (1 The slowing down of cognitive processing in PD is reflected by the delays of N2 and P3 components of ERP which are more important in demented than in non-demented patients. The Nl component is delayed in demented patients with PD as well as in other dementias of presumed subcortical origin. (2 Various neuropsychological deficits observed in PD correlate with the delays of ERP evoking the implication of common subcortico-cortical cerebral mechanisms. (3 The variations of ERP under dopaminergic manipulation suggest conflicting effects of levodopa treatment on cognition, at least in certain categories of PD patients. These findings are discussed in the light of current knowledge on neurotransmitter brain systems and some hypothetic explanations are proposed. Finally, an attempt is made to outline further perspectives of clinical and research utilization of ERP in Parkinson's disease.

  7. Mosaic evolution of the mammalian auditory periphery.

    Science.gov (United States)

    Manley, Geoffrey A

    2013-01-01

    The classical mammalian auditory periphery, i.e., the type of middle ear and coiled cochlea seen in modern therian mammals, did not arise as one unit and did not arise in all mammals. It is also not the only kind of auditory periphery seen in modern mammals. This short review discusses the fact that the constituents of modern mammalian auditory peripheries arose at different times over an extremely long period of evolution (230 million years; Ma). It also attempts to answer questions as to the selective pressures that led to three-ossicle middle ears and the coiled cochlea. Mammalian middle ears arose de novo, without an intermediate, single-ossicle stage. This event was the result of changes in eating habits of ancestral animals, habits that were unrelated to hearing. The coiled cochlea arose only after 60 Ma of mammalian evolution, driven at least partly by a change in cochlear bone structure that improved impedance matching with the middle ear of that time. This change only occurred in the ancestors of therian mammals and not in other mammalian lineages. There is no single constellation of structural features of the auditory periphery that characterizes all mammals and not even all modern mammals.

  8. EEG phase reset due to auditory attention: an inverse time-scale approach

    International Nuclear Information System (INIS)

    Low, Yin Fen; Strauss, Daniel J

    2009-01-01

    We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6–10 Hz, termed as theta–alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta–alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis

  9. EEG phase reset due to auditory attention: an inverse time-scale approach.

    Science.gov (United States)

    Low, Yin Fen; Strauss, Daniel J

    2009-08-01

    We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6-10 Hz, termed as theta-alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta-alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis.

  10. Age-related hearing loss: Aquaporin 4 gene expression changes in the mouse cochlea and auditory midbrain

    Science.gov (United States)

    Christensen, Nathan; D'Souza, Mary; Zhu, Xiaoxia; Frisina, Robert D.

    2009-01-01

    Presbycusis – age-related hearing loss, is the number one communication disorder, and one of the top three chronic medical conditions of our aged population. Aquaporins, particularly aquaporin 4 (Aqp4), are membrane proteins with important roles in water and ion flux across cell membranes, including cells of the inner ear and pathways of the brain used for hearing. To more fully understand the biological bases of presbycusis, 39 CBA mice, a well-studied animal model of presbycusis, underwent non-invasive hearing testing as a function of sound frequency (auditory brainstem response – ABR thresholds, and distortion-product otoacoustic emission – DPOAE magnitudes), and were clustered into four groups based on age and hearing ability. Aqp4 gene expression, as determined by genechip microarray analysis and quantitative real-time PCR, was compared to the young adult control group in the three older groups: middle aged with good hearing, old age with mild presbycusis, and old age with severe presbycusis. Linear regression and ANOVA showed statistically significant changes in Aqp4 gene expression and ABR and DPOAE hearing status in the cochlea and auditory midbrain – inferior colliculus. Down-regulation in the cochlea was seen, and an initial down-, then up-regulation was discovered for the inferior colliculus Aqp4 expression. It is theorized that these changes in Aqp4 gene expression represent an age-related disruption of ion flux in the fluids of the cochlea that are responsible for ionic gradients underlying sound transduction in cochlear hair cells necessary for hearing. In regard to central auditory processing at the level of the auditory midbrain, aquaporin gene expression changes may affect neurotransmitter cycling involving supporting cells, thus impairing complex sound neural processing with age. PMID:19070604

  11. The selective processing of emotional visual stimuli while detecting auditory targets : An ERP analysis

    OpenAIRE

    Schupp, Harald Thomas; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I.; Hamm, Alfons O.

    2008-01-01

    Event-related potential studies revealed an early posterior negativity (EPN) for emotional compared to neutral pictures. Exploring the emotion-attention relationship, a previous study observed that a primary visual discrimination task interfered with the emotional modulation of the EPN component. To specify the locus of interference, the present study assessed the fate of selective visual emotion processing while attention is directed towards the auditory modality. While simply viewing a rapi...

  12. ERP evidence that auditory-visual speech facilitates working memory in younger and older adults.

    Science.gov (United States)

    Frtusova, Jana B; Winneke, Axel H; Phillips, Natalie A

    2013-06-01

    Auditory-visual (AV) speech enhances speech perception and facilitates auditory processing, as measured by event-related brain potentials (ERPs). Considering a perspective of shared resources between perceptual and cognitive processes, facilitated speech perception may render more resources available for higher-order functions. This study examined whether AV speech facilitation leads to better working memory (WM) performance in 23 younger and 20 older adults. Participants completed an n-back task (0- to 3-back) under visual-only (V-only), auditory-only (A-only), and AV conditions. The results showed faster responses across all memory loads and improved accuracy in the most demanding conditions (2- and 3-back) during AV compared with unisensory conditions. Older adults benefited from the AV presentation to the same extent as younger adults. WM performance of older adults during the AV presentation did not differ from that of younger adults in the A-only condition, suggesting that an AV presentation can help to counteract some of the age-related WM decline. The ERPs showed a decrease in the auditory N1 amplitude during the AV compared with A-only presentation in older adults, suggesting that the facilitation of perceptual processing becomes especially beneficial with aging. Additionally, the N1 occurred earlier in the AV than in the A-only condition for both age groups. These AV-induced modulations of auditory processing correlated with improvement in certain behavioral and ERP measures of WM. These results support an integrated model between perception and cognition, and suggest that processing speech under AV conditions enhances WM performance of both younger and older adults. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  13. Multivariate evaluation of brain function by measuring regional cerebral blood flow and event-related potentials

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Yoshihiko; Mochida, Masahiko; Shutara, Yoshikazu; Nakagawa, Kazumi [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine; Nagata, Ken

    1998-07-01

    To measure the effect of events on human cognitive function, effects of odors by measurement regional cerebral blood flow (rCBF) and P300 were evaluated during the auditory odd-ball exercise. PET showed the increase in rCBF on the right hemisphere of the brain by coffee aroma. rCBF was measured by PET in 9 of right-handed healthy adults men, and P300 was by event-related potential (ERP) in each sex of 20 right-handed healthy adults. ERP showed the difference of the P300 amplitude between men and women, and showed the tendency, by odors except the lavender oil, that women had higher in the P300 amplitude than men. These results suggest the presence of effects on the cognitive function through emotional actions. Next, the relationship between rCBF and ERP were evaluated. The subjects were 9 of the right-handed healthy adults (average: 25.6{+-}3.4 years old). rCBF by PET and P300 amplitude by ERP were simultaneously recorded during the auditory odd-ball exercise using the tone-burst method (2 kHz of the low frequency aimed stimuli and 1 kHz of the high frequency non-aimed stimuli). The rCBF value was the highest at the transverse gyrus of Heschl and the lowest at the piriform cortex among 24 regions of interest (ROI) from both sides. The difference of P300 peak latent time among ROI was almost the same. The brain waves from Cz and Pz were similar and the average amplitude was highest at Pz. We found the high correlation in the right piriform cortex (Fz), and right (Fz, Cz) and left (Cz, Pz) transverse gyrus of Heschl between the P300 amplitude and rCBF. (K.H.)

  14. Multivariate evaluation of brain function by measuring regional cerebral blood flow and event-related potentials

    International Nuclear Information System (INIS)

    Koga, Yoshihiko; Mochida, Masahiko; Shutara, Yoshikazu; Nakagawa, Kazumi; Nagata, Ken

    1998-01-01

    To measure the effect of events on human cognitive function, effects of odors by measurement regional cerebral blood flow (rCBF) and P300 were evaluated during the auditory odd-ball exercise. PET showed the increase in rCBF on the right hemisphere of the brain by coffee aroma. rCBF was measured by PET in 9 of right-handed healthy adults men, and P300 was by event-related potential (ERP) in each sex of 20 right-handed healthy adults. ERP showed the difference of the P300 amplitude between men and women, and showed the tendency, by odors except the lavender oil, that women had higher in the P300 amplitude than men. These results suggest the presence of effects on the cognitive function through emotional actions. Next, the relationship between rCBF and ERP were evaluated. The subjects were 9 of the right-handed healthy adults (average: 25.6±3.4 years old). rCBF by PET and P300 amplitude by ERP were simultaneously recorded during the auditory odd-ball exercise using the tone-burst method (2 kHz of the low frequency aimed stimuli and 1 kHz of the high frequency non-aimed stimuli). The rCBF value was the highest at the transverse gyrus of Heschl and the lowest at the piriform cortex among 24 regions of interest (ROI) from both sides. The difference of P300 peak latent time among ROI was almost the same. The brain waves from Cz and Pz were similar and the average amplitude was highest at Pz. We found the high correlation in the right piriform cortex (Fz), and right (Fz, Cz) and left (Cz, Pz) transverse gyrus of Heschl between the P300 amplitude and rCBF. (K.H.)

  15. Cognitive deficits in amyotrophic lateral sclerosis evaluated by event-related potentials.

    Science.gov (United States)

    Ogawa, Tomohiro; Tanaka, Hideaki; Hirata, Koichi

    2009-04-01

    To determine the cognitive profiles in non-demented, relatively less handicapped patients with early-stage sporadic amyotrophic lateral sclerosis (ALS) by using neuropsychological tests, event-related potentials (ERPs) and clinical scale. We recruited 19 patients with sporadic ALS (eight with limb-onset, 11 with bulbar-onset) and 19 controls. In addition to the mini-mental state examination and the Wechsler adult intelligence scale-revised, we assessed the frontal lobe function with Wisconsin card sorting test, Stroop test and trail making test. We used auditory 'oddball' counting paradigm for the ERPs under 20-channel electroencephalogram (EEG) recording. Global field power (GFP) was computed, and its peak amplitudes and latencies of N1/N2/P3 were determined. The results of ERP and neuropsychological tests were correlated with respiratory function and clinical scale. No global cognitive impairment except for subtle frontal dysfunction was detected, although N1/N2/P3 GFP latencies were significantly prolonged in ALS patients than in the controls. Vital capacity correlated with P3 GFP amplitude, and the relative bulbar functional rating scale correlated with P3 GFP latency. Our findings indicated the presence of sub-clinical cognitive deficits in non-demented, sporadic ALS patients. In addition, clinical sub-types and respiratory function dependently influenced cognitive function in patients with sporadic ALS. ERP confirmed cognitive impairment in patients with sporadic ALS.

  16. A Longitudinal Investigation of Mandarin-speaking Preschoolers' Relation of Events in Narratives: From Unrelated to Related Events

    Directory of Open Access Journals (Sweden)

    Wen-hui Sah

    2007-06-01

    Full Text Available This study focuses on the way preschoolers relate events in a story. Twelve Mandarin-speaking preschoolers served as subjects; their narratives were elicited through the use of a picture book, Frog, where are you? Our data suggest that children’s progression from treating single, unrelated events to related ones requires proper linguistic and cognitive capacities. The data also support earlier findings that most 5-year-olds are not able to relate a chain of events well. Additionally, it is found that there is dissociation in abilities for producing linguistic expressions and for inferring relations between events. We try to interpret the dissociation in terms of Karmiloff-Smith’s problem-solving model.

  17. Music lessons improve auditory perceptual and cognitive performance in deaf children.

    Science.gov (United States)

    Rochette, Françoise; Moussard, Aline; Bigand, Emmanuel

    2014-01-01

    Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5-4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  18. Music lessons improve auditory perceptual and cognitive performance in deaf children

    Directory of Open Access Journals (Sweden)

    Françoise eROCHETTE

    2014-07-01

    Full Text Available Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5 to 4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically-trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  19. Age-related differences in auditory evoked potentials as a function of task modulation during speech-nonspeech processing.

    Science.gov (United States)

    Rufener, Katharina Simone; Liem, Franziskus; Meyer, Martin

    2014-01-01

    Healthy aging is typically associated with impairment in various cognitive abilities such as memory, selective attention or executive functions. Less well observed is the fact that also language functions in general and speech processing in particular seems to be affected by age. This impairment is partly caused by pathologies of the peripheral auditory nervous system and central auditory decline and in some part also by a cognitive decay. This cross-sectional electroencephalography (EEG) study investigates temporally early electrophysiological correlates of auditory related selective attention in young (20-32 years) and older (60-74 years) healthy adults. In two independent tasks, we systematically modulate the subjects' focus of attention by presenting words and pseudowords as targets and white noise stimuli as distractors. Behavioral data showed no difference in task accuracy between the two age samples irrespective of the modulation of attention. However, our work is the first to show that the N1-and the P2 component evoked by speech and nonspeech stimuli are specifically modulated in older adults and young adults depending on the subjects' focus of attention. This finding is particularly interesting in that the age-related differences in AEPs may be reflecting levels of processing that are not mirrored by the behavioral measurements.

  20. The development of involuntary and voluntary attention from childhood to adulthood: a combined behavioral and event-related potential study.

    Science.gov (United States)

    Wetzel, Nicole; Widmann, Andreas; Berti, Stefan; Schröger, Erich

    2006-10-01

    This study investigated auditory involuntary and voluntary attention in children aged 6-8, 10-12 and young adults. The strength of distracting stimuli (20% and 5% pitch changes) and the amount of allocation of attention were varied. In an auditory distraction paradigm event-related potentials (ERPs) and behavioral data were measured from subjects either performing a sound duration discrimination task or watching a silent video. Pitch changed sounds caused prolonged reaction times and decreased hit rates in all age groups. Larger distractors (20%) caused stronger distraction in children, but not in adults. The amplitudes of mismatch negativity (MMN), P3a, and reorienting negativity (RON) were modulated by age and by voluntary attention. P3a was additionally affected by distractor strength. Maturational changes were also observed in the amplitudes of P1 (decreasing with age) and N1 (increasing with age). P2-modulation by voluntary attention was opposite in young children and adults. Results suggest quantitative and qualitative changes in auditory voluntary and involuntary attention and distraction during development. The processing steps involved in distraction (pre-attentive change detection, attention switch, reorienting) are functional in children aged 6-8 but reveal characteristic differences to those of young adults. In general, distractibility as indicated by behavioral and ERP measures decreases from childhood to adulthood. Behavioral and ERP markers for different processing stages involved in voluntary and involuntary attention reveal characteristic developmental changes from childhood to young adulthood.

  1. Quantifying and estimating the predictive accuracy for censored time-to-event data with competing risks.

    Science.gov (United States)

    Wu, Cai; Li, Liang

    2018-05-15

    This paper focuses on quantifying and estimating the predictive accuracy of prognostic models for time-to-event outcomes with competing events. We consider the time-dependent discrimination and calibration metrics, including the receiver operating characteristics curve and the Brier score, in the context of competing risks. To address censoring, we propose a unified nonparametric estimation framework for both discrimination and calibration measures, by weighting the censored subjects with the conditional probability of the event of interest given the observed data. The proposed method can be extended to time-dependent predictive accuracy metrics constructed from a general class of loss functions. We apply the methodology to a data set from the African American Study of Kidney Disease and Hypertension to evaluate the predictive accuracy of a prognostic risk score in predicting end-stage renal disease, accounting for the competing risk of pre-end-stage renal disease death, and evaluate its numerical performance in extensive simulation studies. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Relations Between the Intelligibility of Speech in Noise and Psychophysical Measures of Hearing Measured in Four Languages Using the Auditory Profile Test Battery

    NARCIS (Netherlands)

    van Esch, T. E. M.; Dreschler, W. A.

    2015-01-01

    The aim of the present study was to determine the relations between the intelligibility of speech in noise and measures of auditory resolution, loudness recruitment, and cognitive function. The analyses were based on data published earlier as part of the presentation of the Auditory Profile, a test

  3. Detection of stimulus deviance within primate primary auditory cortex: intracortical mechanisms of mismatch negativity (MMN) generation.

    Science.gov (United States)

    Javitt, D C; Steinschneider, M; Schroeder, C E; Vaughan, H G; Arezzo, J C

    1994-12-26

    Mismatch negativity (MMN) is a cognitive, auditory event-related potential (AEP) that reflects preattentive detection of stimulus deviance and indexes the operation of the auditory sensory ('echoic') memory system. MMN is elicited most commonly in an auditory oddball paradigm in which a sequence of repetitive standard stimuli is interrupted infrequently and unexpectedly by a physically deviant 'oddball' stimulus. Electro- and magnetoencephalographic dipole mapping studies have localized the generators of MMN to supratemporal auditory cortex in the vicinity of Heschl's gyrus, but have not determined the degree to which MMN reflects activation within primary auditory cortex (AI) itself. The present study, using moveable multichannel electrodes inserted acutely into superior temporal plane, demonstrates a significant contribution of AI to scalp-recorded MMN in the monkey, as reflected by greater response of AI to loud or soft clicks presented as deviants than to the same stimuli presented as repetitive standards. The MMN-like activity was localized primarily to supragranular laminae within AI. Thus, standard and deviant stimuli elicited similar degrees of initial, thalamocortical excitation. In contrast, responses within supragranular cortex were significantly larger to deviant stimuli than to standards. No MMN-like activity was detected in a limited number to passes that penetrated anterior and medial to AI. AI plays a well established role in the decoding of the acoustic properties of individual stimuli. The present study demonstrates that primary auditory cortex also plays an important role in processing the relationships between stimuli, and thus participates in cognitive, as well as purely sensory, processing of auditory information.

  4. Beneficial auditory and cognitive effects of auditory brainstem implantation in children.

    Science.gov (United States)

    Colletti, Liliana

    2007-09-01

    This preliminary study demonstrates the development of hearing ability and shows that there is a significant improvement in some cognitive parameters related to selective visual/spatial attention and to fluid or multisensory reasoning, in children fitted with auditory brainstem implantation (ABI). The improvement in cognitive paramenters is due to several factors, among which there is certainly, as demonstrated in the literature on a cochlear implants (CIs), the activation of the auditory sensory canal, which was previously absent. The findings of the present study indicate that children with cochlear or cochlear nerve abnormalities with associated cognitive deficits should not be excluded from ABI implantation. The indications for ABI have been extended over the last 10 years to adults with non-tumoral (NT) cochlear or cochlear nerve abnormalities that cannot benefit from CI. We demonstrated that the ABI with surface electrodes may provide sufficient stimulation of the central auditory system in adults for open set speech recognition. These favourable results motivated us to extend ABI indications to children with profound hearing loss who were not candidates for a CI. This study investigated the performances of young deaf children undergoing ABI, in terms of their auditory perceptual development and their non-verbal cognitive abilities. In our department from 2000 to 2006, 24 children aged 14 months to 16 years received an ABI for different tumour and non-tumour diseases. Two children had NF2 tumours. Eighteen children had bilateral cochlear nerve aplasia. In this group, nine children had associated cochlear malformations, two had unilateral facial nerve agenesia and two had combined microtia, aural atresia and middle ear malformations. Four of these children had previously been fitted elsewhere with a CI with no auditory results. One child had bilateral incomplete cochlear partition (type II); one child, who had previously been fitted unsuccessfully elsewhere

  5. Spatial and Semantic Processing between Audition and Vision: An Event-Related Potential Study

    Directory of Open Access Journals (Sweden)

    Xiaoxi Chen

    2011-10-01

    Full Text Available Using a crossmodal priming paradigm, this study investigated how the brain bound the spatial and semantic features in multisensory processing. The visual stimuli (pictures of animals were presented after the auditory stimuli (sounds of animals, and the stimuli from different modalities may match spatially (or semantically or not. Participants were required to detect the head orientation of the visual target (an oddball paradigm. The event-related potentials (ERPs to the visual stimuli was enhanced by spatial attention (150–170 ms irrespectively of semantic information. The early crossmodal attention effect for the visual stimuli was more negative in the spatial-congruent condition than in the spatial-incongruent condition. By contrast, the later effects of spatial ERPs were significant only for the semantic- congruent condition (250–300 ms. These findings indicated that spatial attention modulated early visual processing, and semantic and spatial features were simultaneously used to orient attention and modulate later processing stages.

  6. Reduced auditory processing capacity during vocalization in children with Selective Mutism.

    Science.gov (United States)

    Arie, Miri; Henkin, Yael; Lamy, Dominique; Tetin-Schneider, Simona; Apter, Alan; Sadeh, Avi; Bar-Haim, Yair

    2007-02-01

    Because abnormal Auditory Efferent Activity (AEA) is associated with auditory distortions during vocalization, we tested whether auditory processing is impaired during vocalization in children with Selective Mutism (SM). Participants were children with SM and abnormal AEA, children with SM and normal AEA, and normally speaking controls, who had to detect aurally presented target words embedded within word lists under two conditions: silence (single task), and while vocalizing (dual task). To ascertain specificity of auditory-vocal deficit, effects of concurrent vocalizing were also examined during a visual task. Children with SM and abnormal AEA showed impaired auditory processing during vocalization relative to children with SM and normal AEA, and relative to control children. This impairment is specific to the auditory modality and does not reflect difficulties in dual task per se. The data extends previous findings suggesting that deficient auditory processing is involved in speech selectivity in SM.

  7. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    Science.gov (United States)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  8. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments

    Directory of Open Access Journals (Sweden)

    Brishna Soraya Kamal

    2013-09-01

    Full Text Available Age-related impairments in the primary auditory cortex (A1 include poor tuning selectivity, neural desynchronization and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function.

  9. Auditory hallucinations.

    Science.gov (United States)

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments. © 2015 Elsevier B.V. All rights reserved.

  10. Auditory-Motor Control of Vocal Production during Divided Attention: Behavioral and ERP Correlates.

    Science.gov (United States)

    Liu, Ying; Fan, Hao; Li, Jingting; Jones, Jeffery A; Liu, Peng; Zhang, Baofeng; Liu, Hanjun

    2018-01-01

    When people hear unexpected perturbations in auditory feedback, they produce rapid compensatory adjustments of their vocal behavior. Recent evidence has shown enhanced vocal compensations and cortical event-related potentials (ERPs) in response to attended pitch feedback perturbations, suggesting that this reflex-like behavior is influenced by selective attention. Less is known, however, about auditory-motor integration for voice control during divided attention. The present cross-modal study investigated the behavioral and ERP correlates of auditory feedback control of vocal pitch production during divided attention. During the production of sustained vowels, 32 young adults were instructed to simultaneously attend to both pitch feedback perturbations they heard and flashing red lights they saw. The presentation rate of the visual stimuli was varied to produce a low, intermediate, and high attentional load. The behavioral results showed that the low-load condition elicited significantly smaller vocal compensations for pitch perturbations than the intermediate-load and high-load conditions. As well, the cortical processing of vocal pitch feedback was also modulated as a function of divided attention. When compared to the low-load and intermediate-load conditions, the high-load condition elicited significantly larger N1 responses and smaller P2 responses to pitch perturbations. These findings provide the first neurobehavioral evidence that divided attention can modulate auditory feedback control of vocal pitch production.

  11. Auditory hallucinations and PTSD in ex-POWS

    DEFF Research Database (Denmark)

    Crompton, Laura; Lahav, Yael; Solomon, Zahava

    2017-01-01

    (PTSD) symptoms, over time. Former prisoners of war (ex-POWs) from the 1973 Yom Kippur War (n = 99) with and without PTSD and comparable veterans (n = 103) were assessed twice, in 1991 (T1) and 2003 (T2) in regard to auditory hallucinations and PTSD symptoms. Findings indicated that ex-POWs who suffered...... from PTSD reported higher levels of auditory hallucinations at T2 as well as increased hallucinations over time, compared to ex-POWs without PTSD and combatants who did not endure captivity. The relation between PTSD and auditory hallucinations was unidirectional, so that the PTSD overall score at T1...... predicted an increase in auditory hallucinations between T1 and T2, but not vice versa. Assessing the role of PTSD clusters in predicting hallucinations revealed that intrusion symptoms had a unique contribution, compared to avoidance and hyperarousal symptoms. The findings suggest that auditory...

  12. Auditory agnosia due to long-term severe hydrocephalus caused by spina bifida - specific auditory pathway versus nonspecific auditory pathway.

    Science.gov (United States)

    Zhang, Qing; Kaga, Kimitaka; Hayashi, Akimasa

    2011-07-01

    A 27-year-old female showed auditory agnosia after long-term severe hydrocephalus due to congenital spina bifida. After years of hydrocephalus, she gradually suffered from hearing loss in her right ear at 19 years of age, followed by her left ear. During the time when she retained some ability to hear, she experienced severe difficulty in distinguishing verbal, environmental, and musical instrumental sounds. However, her auditory brainstem response and distortion product otoacoustic emissions were largely intact in the left ear. Her bilateral auditory cortices were preserved, as shown by neuroimaging, whereas her auditory radiations were severely damaged owing to progressive hydrocephalus. Although she had a complete bilateral hearing loss, she felt great pleasure when exposed to music. After years of self-training to read lips, she regained fluent ability to communicate. Clinical manifestations of this patient indicate that auditory agnosia can occur after long-term hydrocephalus due to spina bifida; the secondary auditory pathway may play a role in both auditory perception and hearing rehabilitation.

  13. Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise

    DEFF Research Database (Denmark)

    Papakonstantinou, Alexandra; Strelcyk, Olaf; Dau, Torsten

    2011-01-01

    This study investigates behavioural and objective measures of temporal auditory processing and their relation to the ability to understand speech in noise. The experiments were carried out on a homogeneous group of seven hearing-impaired listeners with normal sensitivity at low frequencies (up to 1...... kHz) and steeply sloping hearing losses above 1 kHz. For comparison, data were also collected for five normalhearing listeners. Temporal processing was addressed at low frequencies by means of psychoacoustical frequency discrimination, binaural masked detection and amplitude modulation (AM......) detection. In addition, auditory brainstem responses (ABRs) to clicks and broadband rising chirps were recorded. Furthermore, speech reception thresholds (SRTs) were determined for Danish sentences in speechshaped noise. The main findings were: (1) SRTs were neither correlated with hearing sensitivity...

  14. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  15. Extensive Tonotopic Mapping across Auditory Cortex Is Recapitulated by Spectrally Directed Attention and Systematically Related to Cortical Myeloarchitecture.

    Science.gov (United States)

    Dick, Frederic K; Lehet, Matt I; Callaghan, Martina F; Keller, Tim A; Sereno, Martin I; Holt, Lori L

    2017-12-13

    Auditory selective attention is vital in natural soundscapes. But it is unclear how attentional focus on the primary dimension of auditory representation-acoustic frequency-might modulate basic auditory functional topography during active listening. In contrast to visual selective attention, which is supported by motor-mediated optimization of input across saccades and pupil dilation, the primate auditory system has fewer means of differentially sampling the world. This makes spectrally-directed endogenous attention a particularly crucial aspect of auditory attention. Using a novel functional paradigm combined with quantitative MRI, we establish in male and female listeners that human frequency-band-selective attention drives activation in both myeloarchitectonically estimated auditory core, and across the majority of tonotopically mapped nonprimary auditory cortex. The attentionally driven best-frequency maps show strong concordance with sensory-driven maps in the same subjects across much of the temporal plane, with poor concordance in areas outside traditional auditory cortex. There is significantly greater activation across most of auditory cortex when best frequency is attended, versus ignored; the same regions do not show this enhancement when attending to the least-preferred frequency band. Finally, the results demonstrate that there is spatial correspondence between the degree of myelination and the strength of the tonotopic signal across a number of regions in auditory cortex. Strong frequency preferences across tonotopically mapped auditory cortex spatially correlate with R 1 -estimated myeloarchitecture, indicating shared functional and anatomical organization that may underlie intrinsic auditory regionalization. SIGNIFICANCE STATEMENT Perception is an active process, especially sensitive to attentional state. Listeners direct auditory attention to track a violin's melody within an ensemble performance, or to follow a voice in a crowded cafe. Although

  16. Perceiving temporal regularity in music: the role of auditory event-related potentials (ERPs) in probing beat perception.

    Science.gov (United States)

    Honing, Henkjan; Bouwer, Fleur L; Háden, Gábor P

    2014-01-01

    The aim of this chapter is to give an overview of how the perception of a regular beat in music can be studied in humans adults, human newborns, and nonhuman primates using event-related brain potentials (ERPs). Next to a review of the recent literature on the perception of temporal regularity in music, we will discuss in how far ERPs, and especially the component called mismatch negativity (MMN), can be instrumental in probing beat perception. We conclude with a discussion on the pitfalls and prospects of using ERPs to probe the perception of a regular beat, in which we present possible constraints on stimulus design and discuss future perspectives.

  17. Rapid measurement of auditory filter shape in mice using the auditory brainstem response and notched noise.

    Science.gov (United States)

    Lina, Ioan A; Lauer, Amanda M

    2013-04-01

    The notched noise method is an effective procedure for measuring frequency resolution and auditory filter shapes in both human and animal models of hearing. Briefly, auditory filter shape and bandwidth estimates are derived from masked thresholds for tones presented in noise containing widening spectral notches. As the spectral notch widens, increasingly less of the noise falls within the auditory filter and the tone becomes more detectible until the notch width exceeds the filter bandwidth. Behavioral procedures have been used for the derivation of notched noise auditory filter shapes in mice; however, the time and effort needed to train and test animals on these tasks renders a constraint on the widespread application of this testing method. As an alternative procedure, we combined relatively non-invasive auditory brainstem response (ABR) measurements and the notched noise method to estimate auditory filters in normal-hearing mice at center frequencies of 8, 11.2, and 16 kHz. A complete set of simultaneous masked thresholds for a particular tone frequency were obtained in about an hour. ABR-derived filter bandwidths broadened with increasing frequency, consistent with previous studies. The ABR notched noise procedure provides a fast alternative to estimating frequency selectivity in mice that is well-suited to high through-put or time-sensitive screening. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Rapid Auditory System Adaptation Using a Virtual Auditory Environment

    Directory of Open Access Journals (Sweden)

    Gaëtan Parseihian

    2011-10-01

    Full Text Available Various studies have highlighted plasticity of the auditory system from visual stimuli, limiting the trained field of perception. The aim of the present study is to investigate auditory system adaptation using an audio-kinesthetic platform. Participants were placed in a Virtual Auditory Environment allowing the association of the physical position of a virtual sound source with an alternate set of acoustic spectral cues or Head-Related Transfer Function (HRTF through the use of a tracked ball manipulated by the subject. This set-up has the advantage to be not being limited to the visual field while also offering a natural perception-action coupling through the constant awareness of one's hand position. Adaptation process to non-individualized HRTF was realized through a spatial search game application. A total of 25 subjects participated, consisting of subjects presented with modified cues using non-individualized HRTF and a control group using individual measured HRTFs to account for any learning effect due to the game itself. The training game lasted 12 minutes and was repeated over 3 consecutive days. Adaptation effects were measured with repeated localization tests. Results showed a significant performance improvement for vertical localization and a significant reduction in the front/back confusion rate after 3 sessions.

  19. A novel 9-class auditory ERP paradigm driving a predictive text entry system

    Directory of Open Access Journals (Sweden)

    Johannes eHöhne

    2011-08-01

    Full Text Available Brain-Computer Interfaces (BCIs based on Event Related Potentials (ERPs strive for offering communication pathways which are independent of muscle activity. While most visual ERP-based BCI paradigms require good control of the user's gaze direction, auditory BCI paradigms overcome this restriction. The present work proposes a novel approach using Auditory Evoked Potentials (AEP for the example of a multiclass text spelling application. To control the ERP speller, BCI users focus their attention to two-dimensional auditory stimuli that vary in both, pitch (high/medium/low and direction (left/middle/right and that are presented via headphones. The resulting nine different control signals are exploited to drive a predictive text entry system. It enables the user to spell a letter by a single 9-class decision plus two additional decisions to confirm a spelled word.This paradigm - called PASS2D - was investigated in an online study with twelve healthy participants. Users spelled with more than 0.8 characters per minute on average (3.4 bits per minute which makes PASS2D a competitive method. It could enrich the toolbox of existing ERP paradigms for BCI end users like late-stage ALS patients.

  20. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory

    Science.gov (United States)

    Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan

    2015-01-01

    Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ (EM) or ‘group motion’ (GM). In “EM,” the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in “GM,” both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50–230 ms) in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role. PMID:26042055

  1. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory

    Directory of Open Access Journals (Sweden)

    Qingcui eWang

    2015-05-01

    Full Text Available Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ or ‘group motion’. In element motion, the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in group motion, both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside. Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of group motion as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50-230 ms in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps. The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role.

  2. Fundamental deficits of auditory perception in Wernicke's aphasia.

    Science.gov (United States)

    Robson, Holly; Grube, Manon; Lambon Ralph, Matthew A; Griffiths, Timothy D; Sage, Karen

    2013-01-01

    This work investigates the nature of the comprehension impairment in Wernicke's aphasia (WA), by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. WA, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional-imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis. We examined analysis of basic acoustic stimuli in WA participants (n = 10) using auditory stimuli reflective of theories of cortical auditory processing and of speech cues. Auditory spectral, temporal and spectro-temporal analysis was assessed using pure-tone frequency discrimination, frequency modulation (FM) detection and the detection of dynamic modulation (DM) in "moving ripple" stimuli. All tasks used criterion-free, adaptive measures of threshold to ensure reliable results at the individual level. Participants with WA showed normal frequency discrimination but significant impairments in FM and DM detection, relative to age- and hearing-matched controls at the group level (n = 10). At the individual level, there was considerable variation in performance, and thresholds for both FM and DM detection correlated significantly with auditory comprehension abilities in the WA participants. These results demonstrate the co-occurrence of a deficit in fundamental auditory processing of temporal and spectro-temporal non-verbal stimuli in WA, which may have a causal contribution to the auditory language comprehension impairment. Results are discussed in the context of traditional neuropsychology and current models of cortical auditory processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Auditory, visual, and auditory-visual perceptions of emotions by young children with hearing loss versus children with normal hearing.

    Science.gov (United States)

    Most, Tova; Michaelis, Hilit

    2012-08-01

    This study aimed to investigate the effect of hearing loss (HL) on emotion-perception ability among young children with and without HL. A total of 26 children 4.0-6.6 years of age with prelingual sensory-neural HL ranging from moderate to profound and 14 children with normal hearing (NH) participated. They were asked to identify happiness, anger, sadness, and fear expressed by an actress when uttering the same neutral nonsense sentence. Their auditory, visual, and auditory-visual perceptions of the emotional content were assessed. The accuracy of emotion perception among children with HL was lower than that of the NH children in all 3 conditions: auditory, visual, and auditory-visual. Perception through the combined auditory-visual mode significantly surpassed the auditory or visual modes alone in both groups, indicating that children with HL utilized the auditory information for emotion perception. No significant differences in perception emerged according to degree of HL. In addition, children with profound HL and cochlear implants did not perform differently from children with less severe HL who used hearing aids. The relatively high accuracy of emotion perception by children with HL may be explained by their intensive rehabilitation, which emphasizes suprasegmental and paralinguistic aspects of verbal communication.

  4. Effect of delayed auditory feedback on stuttering with and without central auditory processing disorders.

    Science.gov (United States)

    Picoloto, Luana Altran; Cardoso, Ana Cláudia Vieira; Cerqueira, Amanda Venuti; Oliveira, Cristiane Moço Canhetti de

    2017-12-07

    To verify the effect of delayed auditory feedback on speech fluency of individuals who stutter with and without central auditory processing disorders. The participants were twenty individuals with stuttering from 7 to 17 years old and were divided into two groups: Stuttering Group with Auditory Processing Disorders (SGAPD): 10 individuals with central auditory processing disorders, and Stuttering Group (SG): 10 individuals without central auditory processing disorders. Procedures were: fluency assessment with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF), assessment of the stuttering severity and central auditory processing (CAP). Phono Tools software was used to cause a delay of 100 milliseconds in the auditory feedback. The "Wilcoxon Signal Post" test was used in the intragroup analysis and "Mann-Whitney" test in the intergroup analysis. The DAF caused a statistically significant reduction in SG: in the frequency score of stuttering-like disfluencies in the analysis of the Stuttering Severity Instrument, in the amount of blocks and repetitions of monosyllabic words, and in the frequency of stuttering-like disfluencies of duration. Delayed auditory feedback did not cause statistically significant effects on SGAPD fluency, individuals with stuttering with auditory processing disorders. The effect of delayed auditory feedback in speech fluency of individuals who stutter was different in individuals of both groups, because there was an improvement in fluency only in individuals without auditory processing disorder.

  5. Maturation of the auditory t-complex brain response across adolescence.

    Science.gov (United States)

    Mahajan, Yatin; McArthur, Genevieve

    2013-02-01

    Adolescence is a time of great change in the brain in terms of structure and function. It is possible to track the development of neural function across adolescence using auditory event-related potentials (ERPs). This study tested if the brain's functional processing of sound changed across adolescence. We measured passive auditory t-complex peaks to pure tones and consonant-vowel (CV) syllables in 90 children and adolescents aged 10-18 years, as well as 10 adults. Across adolescence, Na amplitude increased to tones and speech at the right, but not left, temporal site. Ta amplitude decreased at the right temporal site for tones, and at both sites for speech. The Tb remained constant at both sites. The Na and Ta appeared to mature later in the right than left hemisphere. The t-complex peaks Na and Tb exhibited left lateralization and Ta showed right lateralization. Thus, the functional processing of sound continued to develop across adolescence and into adulthood. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  6. Using Facebook to Reach People Who Experience Auditory Hallucinations

    OpenAIRE

    Crosier, Benjamin Sage; Brian, Rachel Marie; Ben-Zeev, Dror

    2016-01-01

    Background Auditory hallucinations (eg, hearing voices) are relatively common and underreported false sensory experiences that may produce distress and impairment. A large proportion of those who experience auditory hallucinations go unidentified and untreated. Traditional engagement methods oftentimes fall short in reaching the diverse population of people who experience auditory hallucinations. Objective The objective of this proof-of-concept study was to examine the viability of leveraging...

  7. Using naturalistic driving data to explore the association between traffic safety-related events and crash risk at driver level.

    Science.gov (United States)

    Wu, Kun-Feng; Aguero-Valverde, Jonathan; Jovanis, Paul P

    2014-11-01

    There has been considerable research conducted over the last 40 years using traffic safety-related events to support road safety analyses. Dating back to traffic conflict studies from the 1960s these observational studies of driver behavior have been criticized due to: poor quality data; lack of available and useful exposure measures linked to the observations; the incomparability of self-reported safety-related events; and, the difficulty in assessing culpability for safety-related events. This study seeks to explore the relationships between driver characteristics and traffic safety-related events, and between traffic safety-related events and crash involvement while mitigating some of those limitations. The Virginia Tech Transportation Institute 100-Car Naturalistic Driving Study dataset, in which the participants' vehicles were instrumented with various cameras and sensors during the study period, was used for this study. The study data set includes 90 drivers observed for 12-13 months driving. This study focuses on single vehicle run-off-road safety-related events only, including 14 crashes and 182 safety-related events (30 near crashes, and 152 crash-relevant incidents). Among the findings are: (1) drivers under age 25 are significantly more likely to be involved in safety-related events and crashes; and (2) significantly positive correlations exist between crashes, near crashes, and crash-relevant incidents. Although there is still much to learn about the factors affecting the positive correlation between safety-related events and crashes, a Bayesian multivariate Poisson log-normal model is shown to be useful to quantify the associations between safety-related events and crash risk while controlling for driver characteristics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia

    Directory of Open Access Journals (Sweden)

    Shenton Martha E

    2009-07-01

    Full Text Available Abstract Background Oscillatory electroencephalogram (EEG abnormalities may reflect neural circuit dysfunction in neuropsychiatric disorders. Previously we have found positive correlations between the phase synchronization of beta and gamma oscillations and hallucination symptoms in schizophrenia patients. These findings suggest that the propensity for hallucinations is associated with an increased tendency for neural circuits in sensory cortex to enter states of oscillatory synchrony. Here we tested this hypothesis by examining whether the 40 Hz auditory steady-state response (ASSR generated in the left primary auditory cortex is positively correlated with auditory hallucination symptoms in schizophrenia. We also examined whether the 40 Hz ASSR deficit in schizophrenia was associated with cross-frequency interactions. Sixteen healthy control subjects (HC and 18 chronic schizophrenia patients (SZ listened to 40 Hz binaural click trains. The EEG was recorded from 60 electrodes and average-referenced offline. A 5-dipole model was fit from the HC grand average ASSR, with 2 pairs of superior temporal dipoles and a deep midline dipole. Time-frequency decomposition was performed on the scalp EEG and source data. Results Phase locking factor (PLF and evoked power were reduced in SZ at fronto-central electrodes, replicating prior findings. PLF was reduced in SZ for non-homologous right and left hemisphere sources. Left hemisphere source PLF in SZ was positively correlated with auditory hallucination symptoms, and was modulated by delta phase. Furthermore, the correlations between source evoked power and PLF found in HC was reduced in SZ for the LH sources. Conclusion These findings suggest that differential neural circuit abnormalities may be present in the left and right auditory cortices in schizophrenia. In addition, they provide further support for the hypothesis that hallucinations are related to cortical hyperexcitability, which is manifested by

  9. INES rating of radiation protection related events

    International Nuclear Information System (INIS)

    Hort, M.

    2009-01-01

    In this presentation, based on the draft Manual, a short review of the use of the INES rating of events concerning radiation protection is given, based on a new INES User's Manual edition. The presentation comprises a brief history of the scale development, general description of the scale and the main principles of the INES rating. Several examples of the use of the scale for radiation protection related events are mentioned. In the presentation, the term 'radiation protection related events' is used for radiation source and transport related events outside the nuclear installations. (authors)

  10. Socio-emotionally Significant Experience and Children’s Processing of Irrelevant Auditory Stimuli

    Science.gov (United States)

    Schermerhorn, Alice C.; Bates, John E.; Puce, Aina; Molfese, Dennis L.

    2017-01-01

    Theory and research indicate considerable influence of socio-emotionally significant experiences on children’s functioning and adaptation. In the current study, we examined neurophysiological correlates of children’s allocation of information processing resources to socio-emotionally significant events, specifically, simulated marital interactions. We presented 9- to 11-year-old children (n = 24; 11 females) with 15 videos of interactions between two actors posing as a married couple. Task-irrelevant brief auditory probes were presented during the videos, and event-related potentials (ERPs) elicited to the auditory probes were measured. As hypothesized, exposure to higher levels of interparental conflict was associated with smaller P1, P2, and N2 ERPs to the probes. This finding is consistent with the idea that children who had been exposed to more interparental conflict attended more to the videos and diverted fewer cognitive resources to processing the probes, thereby producing smaller ERPs to the probes. In addition, smaller N2s were associated with more child behavior problems, suggesting that allocating fewer processing resources to the probes was associated with more problem behavior. Results are discussed in terms of implications of socio-emotionally significant experiences for children’s processing of interpersonal interactions. PMID:27993611

  11. Comparison on driving fatigue related hemodynamics activated by auditory and visual stimulus

    Science.gov (United States)

    Deng, Zishan; Gao, Yuan; Li, Ting

    2018-02-01

    As one of the main causes of traffic accidents, driving fatigue deserves researchers' attention and its detection and monitoring during long-term driving require a new technique to realize. Since functional near-infrared spectroscopy (fNIRS) can be applied to detect cerebral hemodynamic responses, we can promisingly expect its application in fatigue level detection. Here, we performed three different kinds of experiments on a driver and recorded his cerebral hemodynamic responses when driving for long hours utilizing our device based on fNIRS. Each experiment lasted for 7 hours and one of the three specific experimental tests, detecting the driver's response to sounds, traffic lights and direction signs respectively, was done every hour. The results showed that visual stimulus was easier to cause fatigue compared with auditory stimulus and visual stimulus induced by traffic lights scenes was easier to cause fatigue compared with visual stimulus induced by direction signs in the first few hours. We also found that fatigue related hemodynamics caused by auditory stimulus increased fastest, then traffic lights scenes, and direction signs scenes slowest. Our study successfully compared audio, visual color, and visual character stimulus in sensitivity to cause driving fatigue, which is meaningful for driving safety management.

  12. Towards a truly mobile auditory brain-computer interface: exploring the P300 to take away.

    Science.gov (United States)

    De Vos, Maarten; Gandras, Katharina; Debener, Stefan

    2014-01-01

    In a previous study we presented a low-cost, small, and wireless 14-channel EEG system suitable for field recordings (Debener et al., 2012, psychophysiology). In the present follow-up study we investigated whether a single-trial P300 response can be reliably measured with this system, while subjects freely walk outdoors. Twenty healthy participants performed a three-class auditory oddball task, which included rare target and non-target distractor stimuli presented with equal probabilities of 16%. Data were recorded in a seated (control condition) and in a walking condition, both of which were realized outdoors. A significantly larger P300 event-related potential amplitude was evident for targets compared to distractors (pbrain-computer interface (BCI) study. This leads us to conclude that a truly mobile auditory BCI system is feasible. © 2013.

  13. Auditory sensory processing deficits in sensory gating and mismatch negativity-like responses in the social isolation rat model of schizophrenia

    DEFF Research Database (Denmark)

    Witten, Louise; Oranje, Bob; Mørk, Arne

    2014-01-01

    Patients with schizophrenia exhibit disturbances in information processing. These disturbances can be investigated with different paradigms of auditory event related potentials (ERP), such as sensory gating in a double click paradigm (P50 suppression) and the mismatch negativity (MMN) component...... in an auditory oddball paradigm. The aim of the current study was to test if rats subjected to social isolation, which is believed to induce some changes that mimic features of schizophrenia, displays alterations in sensory gating and MMN-like response. Male Lister-Hooded rats were separated into two groups; one...... group socially isolated (SI) for 8 weeks and one group housed (GH). Both groups were then tested in a double click sensory gating paradigm and an auditory oddball paradigm (MMN-like) paradigm. It was observed that the SI animals showed reduced sensory gating of the cortical N1 amplitude. Furthermore...

  14. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  15. Sex differences in memory for timbre: an event-related potential study.

    Science.gov (United States)

    Hantz, E C; Marvin, E W; Kreilick, K G; Chapman, R M

    1996-10-01

    Although female/male cognitive differences have been studied for some time, little is known about such differences relative to music. Highly-trained musicians (15 females and 15 males) performed a memory task for musical timbre modeled after the missing-displaced visual object test known to favor female performance. Subjects were tested on memory for a timbre missing from a previously presented set of synthesized instrumental timbres, and a control series of white noise bursts at two different intensity levels. Subjects were given the missing-displaced visual object test and ERPs were recorded from three midline sites and two lateral sites. Waveforms were subjected to a principal component analysis and analysis of variance. Females and males performed equally well on both of the auditory series and the visual object test. Both auditory series elicited several ERP components: a strong early peak to the white noise, and both early (P3a) and late (P3b) peaks to the timbre series. PCA factor, maximum at 675 ms (P3b), showed a main effect for sex across both series with males > females. PCA factor, maximum at 336 ms (P3a), showed larger Fz to Pz differential for females than males for both auditory series. Females show a greater differentiation between targets and nontargets in the white noise series, suggesting greater sensitivity to changes in intensity. Interactions involving absolute pitch also appeared in the sensory processing time frames. Although the behavioral measures did not show significant sex differences, the ERP measures did show reliable task-related sex differences.

  16. The Role of Auditory Cues in the Spatial Knowledge of Blind Individuals

    Science.gov (United States)

    Papadopoulos, Konstantinos; Papadimitriou, Kimon; Koutsoklenis, Athanasios

    2012-01-01

    The study presented here sought to explore the role of auditory cues in the spatial knowledge of blind individuals by examining the relation between the perceived auditory cues and the landscape of a given area and by investigating how blind individuals use auditory cues to create cognitive maps. The findings reveal that several auditory cues…

  17. Music-induced positive mood broadens the scope of auditory attention.

    Science.gov (United States)

    Putkinen, Vesa; Makkonen, Tommi; Eerola, Tuomas

    2017-07-01

    Previous studies indicate that positive mood broadens the scope of visual attention, which can manifest as heightened distractibility. We used event-related potentials (ERP) to investigate whether music-induced positive mood has comparable effects on selective attention in the auditory domain. Subjects listened to experimenter-selected happy, neutral or sad instrumental music and afterwards participated in a dichotic listening task. Distractor sounds in the unattended channel elicited responses related to early sound encoding (N1/MMN) and bottom-up attention capture (P3a) while target sounds in the attended channel elicited a response related to top-down-controlled processing of task-relevant stimuli (P3b). For the subjects in a happy mood, the N1/MMN responses to the distractor sounds were enlarged while the P3b elicited by the target sounds was diminished. Behaviorally, these subjects tended to show heightened error rates on target trials following the distractor sounds. Thus, the ERP and behavioral results indicate that the subjects in a happy mood allocated their attentional resources more diffusely across the attended and the to-be-ignored channels. Therefore, the current study extends previous research on the effects of mood on visual attention and indicates that even unfamiliar instrumental music can broaden the scope of auditory attention via its effects on mood. © The Author (2017). Published by Oxford University Press.

  18. The Auditory-Visual Speech Benefit on Working Memory in Older Adults with Hearing Impairment

    Directory of Open Access Journals (Sweden)

    Jana B. Frtusova

    2016-04-01

    Full Text Available This study examined the effect of auditory-visual (AV speech stimuli on working memory in hearing impaired participants (HIP in comparison to age- and education-matched normal elderly controls (NEC. Participants completed a working memory n-back task (0- to 2-back in which sequences of digits were presented in visual-only (i.e., speech-reading, auditory-only (A-only, and AV conditions. Auditory event-related potentials (ERP were collected to assess the relationship between perceptual and working memory processing. The behavioural results showed that both groups were faster in the AV condition in comparison to the unisensory conditions. The ERP data showed perceptual facilitation in the AV condition, in the form of reduced amplitudes and latencies of the auditory N1 and/or P1 components, in the HIP group. Furthermore, a working memory ERP component, the P3, peaked earlier for both groups in the AV condition compared to the A-only condition. In general, the HIP group showed a more robust AV benefit; however, the NECs showed a dose-response relationship between perceptual facilitation and working memory improvement, especially for facilitation of processing speed. Two measures, reaction time and P3 amplitude, suggested that the presence of visual speech cues may have helped the HIP to counteract the demanding auditory processing, to the level that no group differences were evident during the AV modality despite lower performance during the A-only condition. Overall, this study provides support for the theory of an integrated perceptual-cognitive system. The practical significance of these findings is also discussed.

  19. Effect of age at cochlear implantation on auditory and speech development of children with auditory neuropathy spectrum disorder.

    Science.gov (United States)

    Liu, Yuying; Dong, Ruijuan; Li, Yuling; Xu, Tianqiu; Li, Yongxin; Chen, Xueqing; Gong, Shusheng

    2014-12-01

    To evaluate the auditory and speech abilities in children with auditory neuropathy spectrum disorder (ANSD) after cochlear implantation (CI) and determine the role of age at implantation. Ten children participated in this retrospective case series study. All children had evidence of ANSD. All subjects had no cochlear nerve deficiency on magnetic resonance imaging and had used the cochlear implants for a period of 12-84 months. We divided our children into two groups: children who underwent implantation before 24 months of age and children who underwent implantation after 24 months of age. Their auditory and speech abilities were evaluated using the following: behavioral audiometry, the Categories of Auditory Performance (CAP), the Meaningful Auditory Integration Scale (MAIS), the Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS), the Standard-Chinese version of the Monosyllabic Lexical Neighborhood Test (LNT), the Multisyllabic Lexical Neighborhood Test (MLNT), the Speech Intelligibility Rating (SIR) and the Meaningful Use of Speech Scale (MUSS). All children showed progress in their auditory and language abilities. The 4-frequency average hearing level (HL) (500Hz, 1000Hz, 2000Hz and 4000Hz) of aided hearing thresholds ranged from 17.5 to 57.5dB HL. All children developed time-related auditory perception and speech skills. Scores of children with ANSD who received cochlear implants before 24 months tended to be better than those of children who received cochlear implants after 24 months. Seven children completed the Mandarin Lexical Neighborhood Test. Approximately half of the children showed improved open-set speech recognition. Cochlear implantation is helpful for children with ANSD and may be a good optional treatment for many ANSD children. In addition, children with ANSD fitted with cochlear implants before 24 months tended to acquire auditory and speech skills better than children fitted with cochlear implants after 24 months. Copyright © 2014

  20. Opposite patterns of hemisphere dominance for early auditory processing of lexical tones and consonants

    OpenAIRE

    Luo, Hao; Ni, Jing-Tian; Li, Zhi-Hao; Li, Xiao-Ou; Zhang, Da-Ren; Zeng, Fan-Gang; Chen, Lin

    2006-01-01

    in tonal languages such as Mandarin Chinese, a lexical tone carries semantic information and is preferentially processed in the left brain hemisphere of native speakers as revealed by the functional MRI or positron emission tomography studies, which likely measure the temporally aggregated neural events including those at an attentive stage of auditory processing. Here, we demonstrate that early auditory processing of a lexical tone at a preattentive stage is actually ...

  1. The importance of individual frequencies of endogenous brain oscillations for auditory cognition - A short review.

    Science.gov (United States)

    Baltus, Alina; Herrmann, Christoph Siegfried

    2016-06-01

    Oscillatory EEG activity in the human brain with frequencies in the gamma range (approx. 30-80Hz) is known to be relevant for a large number of cognitive processes. Interestingly, each subject reveals an individual frequency of the auditory gamma-band response (GBR) that coincides with the peak in the auditory steady state response (ASSR). A common resonance frequency of auditory cortex seems to underlie both the individual frequency of the GBR and the peak of the ASSR. This review sheds light on the functional role of oscillatory gamma activity for auditory processing. For successful processing, the auditory system has to track changes in auditory input over time and store information about past events in memory which allows the construction of auditory objects. Recent findings support the idea of gamma oscillations being involved in the partitioning of auditory input into discrete samples to facilitate higher order processing. We review experiments that seem to suggest that inter-individual differences in the resonance frequency are behaviorally relevant for gap detection and speech processing. A possible application of these resonance frequencies for brain computer interfaces is illustrated with regard to optimized individual presentation rates for auditory input to correspond with endogenous oscillatory activity. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Accident sequence precursor events with age-related contributors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, G.A.; Kohn, W.E.

    1995-12-31

    The Accident Sequence Precursor (ASP) Program at ORNL analyzed about 14.000 Licensee Event Reports (LERs) filed by US nuclear power plants 1987--1993. There were 193 events identified as precursors to potential severe core accident sequences. These are reported in G/CR-4674. Volumes 7 through 20. Under the NRC Nuclear Plant Aging Research program, the authors evaluated these events to determine the extent to which component aging played a role. Events were selected that involved age-related equipment degradation that initiated an event or contributed to an event sequence. For the 7-year period, ORNL identified 36 events that involved aging degradation as a contributor to an ASP event. Except for 1992, the percentage of age-related events within the total number of ASP events over the 7-year period ({approximately}19%) appears fairly consistent up to 1991. No correlation between plant ape and number of precursor events was found. A summary list of the age-related events is presented in the report.

  3. Neural Correlates of Selective Attention With Hearing Aid Use Followed by ReadMyQuips Auditory Training Program.

    Science.gov (United States)

    Rao, Aparna; Rishiq, Dania; Yu, Luodi; Zhang, Yang; Abrams, Harvey

    The objectives of this study were to investigate the effects of hearing aid use and the effectiveness of ReadMyQuips (RMQ), an auditory training program, on speech perception performance and auditory selective attention using electrophysiological measures. RMQ is an audiovisual training program designed to improve speech perception in everyday noisy listening environments. Participants were adults with mild to moderate hearing loss who were first-time hearing aid users. After 4 weeks of hearing aid use, the experimental group completed RMQ training in 4 weeks, and the control group received listening practice on audiobooks during the same period. Cortical late event-related potentials (ERPs) and the Hearing in Noise Test (HINT) were administered at prefitting, pretraining, and post-training to assess effects of hearing aid use and RMQ training. An oddball paradigm allowed tracking of changes in P3a and P3b ERPs to distractors and targets, respectively. Behavioral measures were also obtained while ERPs were recorded from participants. After 4 weeks of hearing aid use but before auditory training, HINT results did not show a statistically significant change, but there was a significant P3a reduction. This reduction in P3a was correlated with improvement in d prime (d') in the selective attention task. Increased P3b amplitudes were also correlated with improvement in d' in the selective attention task. After training, this correlation between P3b and d' remained in the experimental group, but not in the control group. Similarly, HINT testing showed improved speech perception post training only in the experimental group. The criterion calculated in the auditory selective attention task showed a reduction only in the experimental group after training. ERP measures in the auditory selective attention task did not show any changes related to training. Hearing aid use was associated with a decrement in involuntary attention switch to distractors in the auditory selective

  4. Safety related events at nuclear installations in 1995

    DEFF Research Database (Denmark)

    Korsbech, Uffe C C

    1996-01-01

    Nuclear safety related events of significance at least corresponding to level 2 of the International Nuclear Event Scale are described. In 1995 only two events occured at nuclear power plants, and four events occured at plants using ionizing radiation for processing or research.......Nuclear safety related events of significance at least corresponding to level 2 of the International Nuclear Event Scale are described. In 1995 only two events occured at nuclear power plants, and four events occured at plants using ionizing radiation for processing or research....

  5. Multichannel auditory search: toward understanding control processes in polychotic auditory listening.

    Science.gov (United States)

    Lee, M D

    2001-01-01

    Two experiments are presented that serve as a framework for exploring auditory information processing. The framework is referred to as polychotic listening or auditory search, and it requires a listener to scan multiple simultaneous auditory streams for the appearance of a target word (the name of a letter such as A or M). Participants' ability to scan between two and six simultaneous auditory streams of letter and digit names for the name of a target letter was examined using six loudspeakers. The main independent variable was auditory load, or the number of active audio streams on a given trial. The primary dependent variables were target localization accuracy and reaction time. Results showed that as load increased, performance decreased. The performance decrease was evident in reaction time, accuracy, and sensitivity measures. The second study required participants to practice the same task for 10 sessions, for a total of 1800 trials. Results indicated that even with extensive practice, performance was still affected by auditory load. The present results are compared with findings in the visual search literature. The implications for the use of multiple auditory displays are discussed. Potential applications include cockpit and automobile warning displays, virtual reality systems, and training systems.

  6. Reality of auditory verbal hallucinations.

    Science.gov (United States)

    Raij, Tuukka T; Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-11-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency.

  7. Specialized prefrontal auditory fields: organization of primate prefrontal-temporal pathways

    Directory of Open Access Journals (Sweden)

    Maria eMedalla

    2014-04-01

    Full Text Available No other modality is more frequently represented in the prefrontal cortex than the auditory, but the role of auditory information in prefrontal functions is not well understood. Pathways from auditory association cortices reach distinct sites in the lateral, orbital, and medial surfaces of the prefrontal cortex in rhesus monkeys. Among prefrontal areas, frontopolar area 10 has the densest interconnections with auditory association areas, spanning a large antero-posterior extent of the superior temporal gyrus from the temporal pole to auditory parabelt and belt regions. Moreover, auditory pathways make up the largest component of the extrinsic connections of area 10, suggesting a special relationship with the auditory modality. Here we review anatomic evidence showing that frontopolar area 10 is indeed the main frontal auditory field as the major recipient of auditory input in the frontal lobe and chief source of output to auditory cortices. Area 10 is thought to be the functional node for the most complex cognitive tasks of multitasking and keeping track of information for future decisions. These patterns suggest that the auditory association links of area 10 are critical for complex cognition. The first part of this review focuses on the organization of prefrontal-auditory pathways at the level of the system and the synapse, with a particular emphasis on area 10. Then we explore ideas on how the elusive role of area 10 in complex cognition may be related to the specialized relationship with auditory association cortices.

  8. Auditory cortex processes variation in our own speech.

    Directory of Open Access Journals (Sweden)

    Kevin R Sitek

    Full Text Available As we talk, we unconsciously adjust our speech to ensure it sounds the way we intend it to sound. However, because speech production involves complex motor planning and execution, no two utterances of the same sound will be exactly the same. Here, we show that auditory cortex is sensitive to natural variations in self-produced speech from utterance to utterance. We recorded event-related potentials (ERPs from ninety-nine subjects while they uttered "ah" and while they listened to those speech sounds played back. Subjects' utterances were sorted based on their formant deviations from the previous utterance. Typically, the N1 ERP component is suppressed during talking compared to listening. By comparing ERPs to the least and most variable utterances, we found that N1 was less suppressed to utterances that differed greatly from their preceding neighbors. In contrast, an utterance's difference from the median formant values did not affect N1. Trial-to-trial pitch (f0 deviation and pitch difference from the median similarly did not affect N1. We discuss mechanisms that may underlie the change in N1 suppression resulting from trial-to-trial formant change. Deviant utterances require additional auditory cortical processing, suggesting that speaking-induced suppression mechanisms are optimally tuned for a specific production.

  9. Auditory Cortex Processes Variation in Our Own Speech

    Science.gov (United States)

    Sitek, Kevin R.; Mathalon, Daniel H.; Roach, Brian J.; Houde, John F.; Niziolek, Caroline A.; Ford, Judith M.

    2013-01-01

    As we talk, we unconsciously adjust our speech to ensure it sounds the way we intend it to sound. However, because speech production involves complex motor planning and execution, no two utterances of the same sound will be exactly the same. Here, we show that auditory cortex is sensitive to natural variations in self-produced speech from utterance to utterance. We recorded event-related potentials (ERPs) from ninety-nine subjects while they uttered “ah” and while they listened to those speech sounds played back. Subjects' utterances were sorted based on their formant deviations from the previous utterance. Typically, the N1 ERP component is suppressed during talking compared to listening. By comparing ERPs to the least and most variable utterances, we found that N1 was less suppressed to utterances that differed greatly from their preceding neighbors. In contrast, an utterance's difference from the median formant values did not affect N1. Trial-to-trial pitch (f0) deviation and pitch difference from the median similarly did not affect N1. We discuss mechanisms that may underlie the change in N1 suppression resulting from trial-to-trial formant change. Deviant utterances require additional auditory cortical processing, suggesting that speaking-induced suppression mechanisms are optimally tuned for a specific production. PMID:24349399

  10. Early auditory change detection implicitly facilitated by ignored concurrent visual change during a Braille reading task.

    Science.gov (United States)

    Aoyama, Atsushi; Haruyama, Tomohiro; Kuriki, Shinya

    2013-09-01

    Unconscious monitoring of multimodal stimulus changes enables humans to effectively sense the external environment. Such automatic change detection is thought to be reflected in auditory and visual mismatch negativity (MMN) and mismatch negativity fields (MMFs). These are event-related potentials and magnetic fields, respectively, evoked by deviant stimuli within a sequence of standard stimuli, and both are typically studied during irrelevant visual tasks that cause the stimuli to be ignored. Due to the sensitivity of MMN/MMF to potential effects of explicit attention to vision, however, it is unclear whether multisensory co-occurring changes can purely facilitate early sensory change detection reciprocally across modalities. We adopted a tactile task involving the reading of Braille patterns as a neutral ignore condition, while measuring magnetoencephalographic responses to concurrent audiovisual stimuli that were infrequently deviated either in auditory, visual, or audiovisual dimensions; 1000-Hz standard tones were switched to 1050-Hz deviant tones and/or two-by-two standard check patterns displayed on both sides of visual fields were switched to deviant reversed patterns. The check patterns were set to be faint enough so that the reversals could be easily ignored even during Braille reading. While visual MMFs were virtually undetectable even for visual and audiovisual deviants, significant auditory MMFs were observed for auditory and audiovisual deviants, originating from bilateral supratemporal auditory areas. Notably, auditory MMFs were significantly enhanced for audiovisual deviants from about 100 ms post-stimulus, as compared with the summation responses for auditory and visual deviants or for each of the unisensory deviants recorded in separate sessions. Evidenced by high tactile task performance with unawareness of visual changes, we conclude that Braille reading can successfully suppress explicit attention and that simultaneous multisensory changes can

  11. Auditory Connections and Functions of Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Bethany ePlakke

    2014-07-01

    Full Text Available The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC. In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition.

  12. Auditory connections and functions of prefrontal cortex

    Science.gov (United States)

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  13. Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs

    Science.gov (United States)

    Mousikou, Petroula; Mahajan, Yatin; de Lissa, Peter; Thie, Johnson; McArthur, Genevieve

    2013-01-01

    Background. Auditory event-related potentials (ERPs) have proved useful in investigating the role of auditory processing in cognitive disorders such as developmental dyslexia, specific language impairment (SLI), attention deficit hyperactivity disorder (ADHD), schizophrenia, and autism. However, laboratory recordings of auditory ERPs can be lengthy, uncomfortable, or threatening for some participants – particularly children. Recently, a commercial gaming electroencephalography (EEG) system has been developed that is portable, inexpensive, and easy to set up. In this study we tested if auditory ERPs measured using a gaming EEG system (Emotiv EPOC®, www.emotiv.com) were equivalent to those measured by a widely-used, laboratory-based, research EEG system (Neuroscan). Methods. We simultaneously recorded EEGs with the research and gaming EEG systems, whilst presenting 21 adults with 566 standard (1000 Hz) and 100 deviant (1200 Hz) tones under passive (non-attended) and active (attended) conditions. The onset of each tone was marked in the EEGs using a parallel port pulse (Neuroscan) or a stimulus-generated electrical pulse injected into the O1 and O2 channels (Emotiv EPOC®). These markers were used to calculate research and gaming EEG system late auditory ERPs (P1, N1, P2, N2, and P3 peaks) and the mismatch negativity (MMN) in active and passive listening conditions for each participant. Results. Analyses were restricted to frontal sites as these are most commonly reported in auditory ERP research. Intra-class correlations (ICCs) indicated that the morphology of the research and gaming EEG system late auditory ERP waveforms were similar across all participants, but that the research and gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN waveforms (N = 11 out of 21). Peak amplitude and latency measures revealed no significant differences between the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks. Conclusions

  14. Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs

    Directory of Open Access Journals (Sweden)

    Nicholas A. Badcock

    2013-02-01

    Full Text Available Background. Auditory event-related potentials (ERPs have proved useful in investigating the role of auditory processing in cognitive disorders such as developmental dyslexia, specific language impairment (SLI, attention deficit hyperactivity disorder (ADHD, schizophrenia, and autism. However, laboratory recordings of auditory ERPs can be lengthy, uncomfortable, or threatening for some participants – particularly children. Recently, a commercial gaming electroencephalography (EEG system has been developed that is portable, inexpensive, and easy to set up. In this study we tested if auditory ERPs measured using a gaming EEG system (Emotiv EPOC®, www.emotiv.com were equivalent to those measured by a widely-used, laboratory-based, research EEG system (Neuroscan.Methods. We simultaneously recorded EEGs with the research and gaming EEG systems, whilst presenting 21 adults with 566 standard (1000 Hz and 100 deviant (1200 Hz tones under passive (non-attended and active (attended conditions. The onset of each tone was marked in the EEGs using a parallel port pulse (Neuroscan or a stimulus-generated electrical pulse injected into the O1 and O2 channels (Emotiv EPOC®. These markers were used to calculate research and gaming EEG system late auditory ERPs (P1, N1, P2, N2, and P3 peaks and the mismatch negativity (MMN in active and passive listening conditions for each participant.Results. Analyses were restricted to frontal sites as these are most commonly reported in auditory ERP research. Intra-class correlations (ICCs indicated that the morphology of the research and gaming EEG system late auditory ERP waveforms were similar across all participants, but that the research and gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN waveforms (N = 11 out of 21. Peak amplitude and latency measures revealed no significant differences between the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks

  15. Effectiveness of auditory and tactile crossmodal cues in a dual-task visual and auditory scenario.

    Science.gov (United States)

    Hopkins, Kevin; Kass, Steven J; Blalock, Lisa Durrance; Brill, J Christopher

    2017-05-01

    In this study, we examined how spatially informative auditory and tactile cues affected participants' performance on a visual search task while they simultaneously performed a secondary auditory task. Visual search task performance was assessed via reaction time and accuracy. Tactile and auditory cues provided the approximate location of the visual target within the search display. The inclusion of tactile and auditory cues improved performance in comparison to the no-cue baseline conditions. In comparison to the no-cue conditions, both tactile and auditory cues resulted in faster response times in the visual search only (single task) and visual-auditory (dual-task) conditions. However, the effectiveness of auditory and tactile cueing for visual task accuracy was shown to be dependent on task-type condition. Crossmodal cueing remains a viable strategy for improving task performance without increasing attentional load within a singular sensory modality. Practitioner Summary: Crossmodal cueing with dual-task performance has not been widely explored, yet has practical applications. We examined the effects of auditory and tactile crossmodal cues on visual search performance, with and without a secondary auditory task. Tactile cues aided visual search accuracy when also engaged in a secondary auditory task, whereas auditory cues did not.

  16. Auditory enhancement of visual memory encoding is driven by emotional content of the auditory material and mediated by superior frontal cortex.

    Science.gov (United States)

    Proverbio, A M; De Benedetto, F

    2018-02-01

    The aim of the present study was to investigate how auditory background interacts with learning and memory. Both facilitatory (e.g., "Mozart effect") and interfering effects of background have been reported, depending on the type of auditory stimulation and of concurrent cognitive tasks. Here we recorded event related potentials (ERPs) during face encoding followed by an old/new memory test to investigate the effect of listening to classical music (Čajkovskij, dramatic), environmental sounds (rain) or silence on learning. Participants were 15 healthy non-musician university students. Almost 400 (previously unknown) faces of women and men of various age were presented. Listening to music during study led to a better encoding of faces as indexed by an increased Anterior Negativity. The FN400 response recorded during the memory test showed a gradient in its amplitude reflecting face familiarity. FN400 was larger to new than old faces, and to faces studied during rain sound listening and silence than music listening. The results indicate that listening to music enhances memory recollection of faces by merging with visual information. A swLORETA analysis showed the main involvement of Superior Temporal Gyrus (STG) and medial frontal gyrus in the integration of audio-visual information. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A deafening flash! Visual interference of auditory signal detection.

    Science.gov (United States)

    Fassnidge, Christopher; Cecconi Marcotti, Claudia; Freeman, Elliot

    2017-03-01

    In some people, visual stimulation evokes auditory sensations. How prevalent and how perceptually real is this? 22% of our neurotypical adult participants responded 'Yes' when asked whether they heard faint sounds accompanying flash stimuli, and showed significantly better ability to discriminate visual 'Morse-code' sequences. This benefit might arise from an ability to recode visual signals as sounds, thus taking advantage of superior temporal acuity of audition. In support of this, those who showed better visual relative to auditory sequence discrimination also had poorer auditory detection in the presence of uninformative visual flashes, though this was independent of awareness of visually-evoked sounds. Thus a visually-evoked auditory representation may occur subliminally and disrupt detection of real auditory signals. The frequent natural correlation between visual and auditory stimuli might explain the surprising prevalence of this phenomenon. Overall, our results suggest that learned correspondences between strongly correlated modalities may provide a precursor for some synaesthetic abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Using EEG and stimulus context to probe the modelling of auditory-visual speech.

    Science.gov (United States)

    Paris, Tim; Kim, Jeesun; Davis, Chris

    2016-02-01

    We investigated whether internal models of the relationship between lip movements and corresponding speech sounds [Auditory-Visual (AV) speech] could be updated via experience. AV associations were indexed by early and late event related potentials (ERPs) and by oscillatory power and phase locking. Different AV experience was produced via a context manipulation. Participants were presented with valid (the conventional pairing) and invalid AV speech items in either a 'reliable' context (80% AVvalid items) or an 'unreliable' context (80% AVinvalid items). The results showed that for the reliable context, there was N1 facilitation for AV compared to auditory only speech. This N1 facilitation was not affected by AV validity. Later ERPs showed a difference in amplitude between valid and invalid AV speech and there was significant enhancement of power for valid versus invalid AV speech. These response patterns did not change over the context manipulation, suggesting that the internal models of AV speech were not updated by experience. The results also showed that the facilitation of N1 responses did not vary as a function of the salience of visual speech (as previously reported); in post-hoc analyses, it appeared instead that N1 facilitation varied according to the relative time of the acoustic onset, suggesting for AV events N1 may be more sensitive to the relationship of AV timing than form. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  19. Auditory memory function in expert chess players.

    Science.gov (United States)

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert chess players using the Persian version of dichotic auditory-verbal memory test. The Persian version of dichotic auditory-verbal memory test was performed for 30 expert chess players aged 20-35 years and 30 non chess players who were matched by different conditions; the participants in both groups were randomly selected. The performance of the two groups was compared by independent samples t-test using SPSS version 21. The mean score of dichotic auditory-verbal memory test between the two groups, expert chess players and non-chess players, revealed a significant difference (p≤ 0.001). The difference between the ears scores for expert chess players (p= 0.023) and non-chess players (p= 0.013) was significant. Gender had no effect on the test results. Auditory memory function in expert chess players was significantly better compared to non-chess players. It seems that increased auditory memory function is related to strengthening cognitive performances due to playing chess for a long time.

  20. An Improved Dissonance Measure Based on Auditory Memory

    DEFF Research Database (Denmark)

    Jensen, Kristoffer; Hjortkjær, Jens

    2012-01-01

    Dissonance is an important feature in music audio analysis. We present here a dissonance model that accounts for the temporal integration of dissonant events in auditory short term memory. We compare the memory-based dissonance extracted from musical audio sequences to the response of human...... listeners. In a number of tests, the memory model predicts listener’s response better than traditional dissonance measures....

  1. The relation between otoacoustic emissions and the broadening of the auditory filter for higher levels

    NARCIS (Netherlands)

    Leeuw, A. R.; Dreschler, W. A.

    1998-01-01

    The active behaviour of outer hair cells (OHCs) is often used to explain two phenomena, namely otoacoustic emissions (OAEs) and the level dependence of auditory filters. Correlations between these two phenomena may contribute to the evidence of these hypotheses. In this study auditory filters were

  2. Do event-related potentials to infrequent decrements in duration of auditory stimuli demonstrate a memory trace in man?

    Science.gov (United States)

    Näätänen, R; Paavilainen, P; Reinikainen, K

    1989-12-15

    Sequences of identical acoustic stimuli were presented to normal subjects reading a book while event-related brain potentials (ERP) elicited by these stimuli were recorded. Occasional irrelevant decreases and increases in stimulus duration elicited an ERP component called the mismatch negativity (MMN). This component was larger over the right hemisphere irrespective of the ear stimulated. These data implicate memory representations which develop automatically and represent the physical features of the repetitive stimulus accurately. Further, when an input does not match with such a trace the MMN is generated. The memory traces involved appear to be those of the acoustic sensory memory, the 'echoic' memory.

  3. Auditory feedback perturbation in children with developmental speech disorders

    NARCIS (Netherlands)

    Terband, H.R.; van Brenk, F.J.; van Doornik-van der Zee, J.C.

    2014-01-01

    Background/purpose: Several studies indicate a close relation between auditory and speech motor functions in children with speech sound disorders (SSD). The aim of this study was to investigate the ability to compensate and adapt for perturbed auditory feedback in children with SSD compared to

  4. Jet-hadron correlations relative to the event plane at the LHC with ALICE

    Science.gov (United States)

    Mazer, Joel; Alice Collaboration

    2017-11-01

    In ultra relativistic heavy-ion collisions at the Large Hadron Collider (LHC), conditions are met to produce a hot, dense and strongly interacting medium known as the Quark Gluon Plasma (QGP). Quarks and gluons from incoming nuclei collide to produce partons at high momenta early in the collisions. By fragmenting into collimated sprays of hadrons, these partons form 'jets'. The outgoing partons scatter and interact with the medium, leading to a manifestation of medium modifications of jets in the final state, known as jet quenching. Within the framework of perturbative QCD, jet production is well understood in pp collisions. We use jets measured in pp interactions as a baseline reference for comparing to heavy-ion collision systems to detect and study jet quenching. The jet quenching mechanism can be studied through the angular correlations of jets with charged hadrons and is examined in transverse momentum (pT) bins of the jets, pT bins of the associated hadrons, and as a function of collision centrality. A robust and precise background subtraction method is used in this analysis to remove the complex, flow dominated, heavy-ion background. The analysis of angular correlations for different orientations of the jet relative to the event plane allows for the study of the path-length dependence of medium modifications to jets. The event plane dependence of azimuthal angular correlations of charged hadrons with respect to the axis of an R = 0.2 reconstructed full (charged + neutral) jet in Pb-Pb collisions at √{sNN} = 2.76 TeV in ALICE is presented. Results are compared for three angular bins of the jet relative to the event plane in mid-peripheral events. The yields relative to the event plane are presented and then quantified through yield ratio calculations. The results show no significant path-length dependence on the medium modifications.

  5. Influence of age, spatial memory, and ocular fixation on localization of auditory, visual, and bimodal targets by human subjects.

    Science.gov (United States)

    Dobreva, Marina S; O'Neill, William E; Paige, Gary D

    2012-12-01

    A common complaint of the elderly is difficulty identifying and localizing auditory and visual sources, particularly in competing background noise. Spatial errors in the elderly may pose challenges and even threats to self and others during everyday activities, such as localizing sounds in a crowded room or driving in traffic. In this study, we investigated the influence of aging, spatial memory, and ocular fixation on the localization of auditory, visual, and combined auditory-visual (bimodal) targets. Head-restrained young and elderly subjects localized targets in a dark, echo-attenuated room using a manual laser pointer. Localization accuracy and precision (repeatability) were quantified for both ongoing and transient (remembered) targets at response delays up to 10 s. Because eye movements bias auditory spatial perception, localization was assessed under target fixation (eyes free, pointer guided by foveal vision) and central fixation (eyes fixed straight ahead, pointer guided by peripheral vision) conditions. Spatial localization across the frontal field in young adults demonstrated (1) horizontal overshoot and vertical undershoot for ongoing auditory targets under target fixation conditions, but near-ideal horizontal localization with central fixation; (2) accurate and precise localization of ongoing visual targets guided by foveal vision under target fixation that degraded when guided by peripheral vision during central fixation; (3) overestimation in horizontal central space (±10°) of remembered auditory, visual, and bimodal targets with increasing response delay. In comparison with young adults, elderly subjects showed (1) worse precision in most paradigms, especially when localizing with peripheral vision under central fixation; (2) greatly impaired vertical localization of auditory and bimodal targets; (3) increased horizontal overshoot in the central field for remembered visual and bimodal targets across response delays; (4) greater vulnerability to

  6. Event-Related Potential Measures of Attention Capture in Adolescent Inpatients With Acute Suicidal Behavior.

    Science.gov (United States)

    Tavakoli, Paniz; Boafo, Addo; Dale, Allyson; Robillard, Rebecca; Greenham, Stephanie L; Campbell, Kenneth

    2018-01-01

    Impaired executive functions, modulated by the frontal lobes, have been suggested to be associated with suicidal behavior. The present study examines one of these executive functions, attentional control, maintaining attention to the task-at-hand. A group of inpatient adolescents with acute suicidal behavior and healthy controls were studied using a passively presented auditory optimal paradigm. This "optimal" paradigm consisted of a series of frequently presented homogenous pure tone "standards" and different "deviants," constructed by changing one or more features of the standard. The optimal paradigm has been shown to be a more time-efficient replacement to the traditional oddball paradigm, which makes it suitable for use in clinical populations. The extent of processing of these "to-be-ignored" auditory stimuli was measured by recording event-related potentials (ERPs). The P3a ERP component is thought to reflect processes associated with the capturing of attention. Rare and novel stimuli may result in an executive decision to switch attention away from the current cognitive task and toward a probe of the potentially more relevant "interrupting" auditory input. On the other hand, stimuli that are quite similar to the standard should not elicit P3a. The P3a has been shown to be larger in immature brains in early compared to later adolescence. An overall enhanced P3a was observed in the suicidal group. The P3a was larger in this group for both the environmental sound and white noise deviants, although only the environmental sound P3a attained significance. Other deviants representing only a small change from the standard did not elicit a P3a in healthy controls. They did elicit a small P3a in the suicidal group. These findings suggest a lowered threshold for the triggering of the involuntary switch of attention in these patients, which may play a role in their reported distractibility. The enhanced P3a is also suggestive of an immature frontal central executive

  7. Event-Related Potential Measures of Attention Capture in Adolescent Inpatients With Acute Suicidal Behavior

    Directory of Open Access Journals (Sweden)

    Paniz Tavakoli

    2018-03-01

    Full Text Available Impaired executive functions, modulated by the frontal lobes, have been suggested to be associated with suicidal behavior. The present study examines one of these executive functions, attentional control, maintaining attention to the task-at-hand. A group of inpatient adolescents with acute suicidal behavior and healthy controls were studied using a passively presented auditory optimal paradigm. This “optimal” paradigm consisted of a series of frequently presented homogenous pure tone “standards” and different “deviants,” constructed by changing one or more features of the standard. The optimal paradigm has been shown to be a more time-efficient replacement to the traditional oddball paradigm, which makes it suitable for use in clinical populations. The extent of processing of these “to-be-ignored” auditory stimuli was measured by recording event-related potentials (ERPs. The P3a ERP component is thought to reflect processes associated with the capturing of attention. Rare and novel stimuli may result in an executive decision to switch attention away from the current cognitive task and toward a probe of the potentially more relevant “interrupting” auditory input. On the other hand, stimuli that are quite similar to the standard should not elicit P3a. The P3a has been shown to be larger in immature brains in early compared to later adolescence. An overall enhanced P3a was observed in the suicidal group. The P3a was larger in this group for both the environmental sound and white noise deviants, although only the environmental sound P3a attained significance. Other deviants representing only a small change from the standard did not elicit a P3a in healthy controls. They did elicit a small P3a in the suicidal group. These findings suggest a lowered threshold for the triggering of the involuntary switch of attention in these patients, which may play a role in their reported distractibility. The enhanced P3a is also suggestive of

  8. Auditory perception of a human walker.

    Science.gov (United States)

    Cottrell, David; Campbell, Megan E J

    2014-01-01

    When one hears footsteps in the hall, one is able to instantly recognise it as a person: this is an everyday example of auditory biological motion perception. Despite the familiarity of this experience, research into this phenomenon is in its infancy compared with visual biological motion perception. Here, two experiments explored sensitivity to, and recognition of, auditory stimuli of biological and nonbiological origin. We hypothesised that the cadence of a walker gives rise to a temporal pattern of impact sounds that facilitates the recognition of human motion from auditory stimuli alone. First a series of detection tasks compared sensitivity with three carefully matched impact sounds: footsteps, a ball bouncing, and drumbeats. Unexpectedly, participants were no more sensitive to footsteps than to impact sounds of nonbiological origin. In the second experiment participants made discriminations between pairs of the same stimuli, in a series of recognition tasks in which the temporal pattern of impact sounds was manipulated to be either that of a walker or the pattern more typical of the source event (a ball bouncing or a drumbeat). Under these conditions, there was evidence that both temporal and nontemporal cues were important in recognising theses stimuli. It is proposed that the interval between footsteps, which reflects a walker's cadence, is a cue for the recognition of the sounds of a human walking.

  9. For Better or Worse: The Effect of Prismatic Adaptation on Auditory Neglect

    Directory of Open Access Journals (Sweden)

    Isabel Tissieres

    2017-01-01

    Full Text Available Patients with auditory neglect attend less to auditory stimuli on their left and/or make systematic directional errors when indicating sound positions. Rightward prismatic adaptation (R-PA was repeatedly shown to alleviate symptoms of visuospatial neglect and once to restore partially spatial bias in dichotic listening. It is currently unknown whether R-PA affects only this ear-related symptom or also other aspects of auditory neglect. We have investigated the effect of R-PA on left ear extinction in dichotic listening, space-related inattention assessed by diotic listening, and directional errors in auditory localization in patients with auditory neglect. The most striking effect of R-PA was the alleviation of left ear extinction in dichotic listening, which occurred in half of the patients with initial deficit. In contrast to nonresponders, their lesions spared the right dorsal attentional system and posterior temporal cortex. The beneficial effect of R-PA on an ear-related performance contrasted with detrimental effects on diotic listening and auditory localization. The former can be parsimoniously explained by the SHD-VAS model (shift in hemispheric dominance within the ventral attentional system; Clarke and Crottaz-Herbette 2016, which is based on the R-PA-induced shift of the right-dominant ventral attentional system to the left hemisphere. The negative effects in space-related tasks may be due to the complex nature of auditory space encoding at a cortical level.

  10. Disruption of Short-Term Memory by Changing and Deviant Sounds: Support for a Duplex-Mechanism Account of Auditory Distraction

    Science.gov (United States)

    Hughes, Robert W.; Vachon, Francois; Jones, Dylan M.

    2007-01-01

    The disruption of short-term memory by to-be-ignored auditory sequences (the changing-state effect) has often been characterized as attentional capture by deviant events (deviation effect). However, the present study demonstrates that changing-state and deviation effects are functionally distinct forms of auditory distraction: The disruption of…

  11. The Auditory-Visual Speech Benefit on Working Memory in Older Adults with Hearing Impairment.

    Science.gov (United States)

    Frtusova, Jana B; Phillips, Natalie A

    2016-01-01

    This study examined the effect of auditory-visual (AV) speech stimuli on working memory in older adults with poorer-hearing (PH) in comparison to age- and education-matched older adults with better hearing (BH). Participants completed a working memory n-back task (0- to 2-back) in which sequences of digits were presented in visual-only (i.e., speech-reading), auditory-only (A-only), and AV conditions. Auditory event-related potentials (ERP) were collected to assess the relationship between perceptual and working memory processing. The behavioral results showed that both groups were faster in the AV condition in comparison to the unisensory conditions. The ERP data showed perceptual facilitation in the AV condition, in the form of reduced amplitudes and latencies of the auditory N1 and/or P1 components, in the PH group. Furthermore, a working memory ERP component, the P3, peaked earlier for both groups in the AV condition compared to the A-only condition. In general, the PH group showed a more robust AV benefit; however, the BH group showed a dose-response relationship between perceptual facilitation and working memory improvement, especially for facilitation of processing speed. Two measures, reaction time and P3 amplitude, suggested that the presence of visual speech cues may have helped the PH group to counteract the demanding auditory processing, to the level that no group differences were evident during the AV modality despite lower performance during the A-only condition. Overall, this study provides support for the theory of an integrated perceptual-cognitive system. The practical significance of these findings is also discussed.

  12. Age-Related Declines in Early Sensory Memory: Identification of Rapid Auditory and Visual Stimulus Sequences.

    Science.gov (United States)

    Fogerty, Daniel; Humes, Larry E; Busey, Thomas A

    2016-01-01

    Age-related temporal-processing declines of rapidly presented sequences may involve contributions of sensory memory. This study investigated recall for rapidly presented auditory (vowel) and visual (letter) sequences presented at six different stimulus onset asynchronies (SOA) that spanned threshold SOAs for sequence identification. Younger, middle-aged, and older adults participated in all tasks. Results were investigated at both equivalent performance levels (i.e., SOA threshold) and at identical physical stimulus values (i.e., SOAs). For four-item sequences, results demonstrated best performance for the first and last items in the auditory sequences, but only the first item for visual sequences. For two-item sequences, adults identified the second vowel or letter significantly better than the first. Overall, when temporal-order performance was equated for each individual by testing at SOA thresholds, recall accuracy for each position across the age groups was highly similar. These results suggest that modality-specific processing declines of older adults primarily determine temporal-order performance for rapid sequences. However, there is some evidence for a second amodal processing decline in older adults related to early sensory memory for final items in a sequence. This selective deficit was observed particularly for longer sequence lengths and was not accounted for by temporal masking.

  13. Perceptual Plasticity for Auditory Object Recognition

    Science.gov (United States)

    Heald, Shannon L. M.; Van Hedger, Stephen C.; Nusbaum, Howard C.

    2017-01-01

    In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples

  14. Are Auditory and Visual Processing Deficits Related to Developmental Dyslexia?

    Science.gov (United States)

    Georgiou, George K.; Papadopoulos, Timothy C.; Zarouna, Elena; Parrila, Rauno

    2012-01-01

    The purpose of this study was to examine if children with dyslexia learning to read a consistent orthography (Greek) experience auditory and visual processing deficits and if these deficits are associated with phonological awareness, rapid naming speed and orthographic processing. We administered measures of general cognitive ability, phonological…

  15. Effects of an NMDA antagonist on the auditory mismatch negativity response to transcranial direct current stimulation.

    Science.gov (United States)

    Impey, Danielle; de la Salle, Sara; Baddeley, Ashley; Knott, Verner

    2017-05-01

    Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a weak constant current to alter cortical excitability and activity temporarily. tDCS-induced increases in neuronal excitability and performance improvements have been observed following anodal stimulation of brain regions associated with visual and motor functions, but relatively little research has been conducted with respect to auditory processing. Recently, pilot study results indicate that anodal tDCS can increase auditory deviance detection, whereas cathodal tDCS decreases auditory processing, as measured by a brain-based event-related potential (ERP), mismatch negativity (MMN). As evidence has shown that tDCS lasting effects may be dependent on N-methyl-D-aspartate (NMDA) receptor activity, the current study investigated the use of dextromethorphan (DMO), an NMDA antagonist, to assess possible modulation of tDCS's effects on both MMN and working memory performance. The study, conducted in 12 healthy volunteers, involved four laboratory test sessions within a randomised, placebo and sham-controlled crossover design that compared pre- and post-anodal tDCS over the auditory cortex (2 mA for 20 minutes to excite cortical activity temporarily and locally) and sham stimulation (i.e. device is turned off) during both DMO (50 mL) and placebo administration. Anodal tDCS increased MMN amplitudes with placebo administration. Significant increases were not seen with sham stimulation or with anodal stimulation during DMO administration. With sham stimulation (i.e. no stimulation), DMO decreased MMN amplitudes. Findings from this study contribute to the understanding of underlying neurobiological mechanisms mediating tDCS sensory and memory improvements.

  16. Age-related changes in auditory and cognitive abilities in elderly persons with hearing aids fitted at the initial stages of hearing loss

    Directory of Open Access Journals (Sweden)

    C. Obuchi

    2011-03-01

    Full Text Available In this study, we investigated the relation between the use of hearing aids at the initial stages of hearing loss and age-related changes in the auditory and cognitive abilities of elderly persons. 12 healthy elderly persons participated in an annual auditory and cognitive longitudinal examination for three years. According to their hearing level, they were divided into 3 subgroups - the normal hearing group, the hearing loss without hearing aids group, and the hearing loss with hearing aids group. All the subjects underwent 4 tests: pure-tone audiometry, syllable intelligibility test, dichotic listening test (DLT, and Wechsler Adult Intelligence Scale-Revised (WAIS-R Short Forms. Comparison between the 3 groups revealed that the hearing loss without hearing aids group showed the lowest scores for the performance tasks, in contrast to the hearing level and intelligibility results. The other groups showed no significant difference in the WAIS-R subtests. This result indicates that prescription of a hearing aid during the early stages of hearing loss is related to the retention of cognitive abilities in such elderly people. However, there were no statistical significant correlations between the auditory and cognitive tasks.

  17. Multisensory object perception in infancy: 4-month-olds perceive a mistuned harmonic as a separate auditory and visual object.

    Science.gov (United States)

    Smith, Nicholas A; Folland, Nicole A; Martinez, Diana M; Trainor, Laurel J

    2017-07-01

    Infants learn to use auditory and visual information to organize the sensory world into identifiable objects with particular locations. Here we use a behavioural method to examine infants' use of harmonicity cues to auditory object perception in a multisensory context. Sounds emitted by different objects sum in the air and the auditory system must figure out which parts of the complex waveform belong to different sources (auditory objects). One important cue to this source separation is that complex tones with pitch typically contain a fundamental frequency and harmonics at integer multiples of the fundamental. Consequently, adults hear a mistuned harmonic in a complex sound as a distinct auditory object (Alain, Theunissen, Chevalier, Batty, & Taylor, 2003). Previous work by our group demonstrated that 4-month-old infants are also sensitive to this cue. They behaviourally discriminate a complex tone with a mistuned harmonic from the same complex with in-tune harmonics, and show an object-related event-related potential (ERP) electrophysiological (EEG) response to the stimulus with mistuned harmonics. In the present study we use an audiovisual procedure to investigate whether infants perceive a complex tone with an 8% mistuned harmonic as emanating from two objects, rather than merely detecting the mistuned cue. We paired in-tune and mistuned complex tones with visual displays that contained either one or two bouncing balls. Four-month-old infants showed surprise at the incongruous pairings, looking longer at the display of two balls when paired with the in-tune complex and at the display of one ball when paired with the mistuned harmonic complex. We conclude that infants use harmonicity as a cue for source separation when integrating auditory and visual information in object perception. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Development of the auditory system

    Science.gov (United States)

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  19. Absence of auditory 'global interference' in autism.

    Science.gov (United States)

    Foxton, Jessica M; Stewart, Mary E; Barnard, Louise; Rodgers, Jacqui; Young, Allan H; O'Brien, Gregory; Griffiths, Timothy D

    2003-12-01

    There has been considerable recent interest in the cognitive style of individuals with Autism Spectrum Disorder (ASD). One theory, that of weak central coherence, concerns an inability to combine stimulus details into a coherent whole. Here we test this theory in the case of sound patterns, using a new definition of the details (local structure) and the coherent whole (global structure). Thirteen individuals with a diagnosis of autism or Asperger's syndrome and 15 control participants were administered auditory tests, where they were required to match local pitch direction changes between two auditory sequences. When the other local features of the sequence pairs were altered (the actual pitches and relative time points of pitch direction change), the control participants obtained lower scores compared with when these details were left unchanged. This can be attributed to interference from the global structure, defined as the combination of the local auditory details. In contrast, the participants with ASD did not obtain lower scores in the presence of such mismatches. This was attributed to the absence of interference from an auditory coherent whole. The results are consistent with the presence of abnormal interactions between local and global auditory perception in ASD.

  20. Precise auditory-vocal mirroring in neurons for learned vocal communication.

    Science.gov (United States)

    Prather, J F; Peters, S; Nowicki, S; Mooney, R

    2008-01-17

    Brain mechanisms for communication must establish a correspondence between sensory and motor codes used to represent the signal. One idea is that this correspondence is established at the level of single neurons that are active when the individual performs a particular gesture or observes a similar gesture performed by another individual. Although neurons that display a precise auditory-vocal correspondence could facilitate vocal communication, they have yet to be identified. Here we report that a certain class of neurons in the swamp sparrow forebrain displays a precise auditory-vocal correspondence. We show that these neurons respond in a temporally precise fashion to auditory presentation of certain note sequences in this songbird's repertoire and to similar note sequences in other birds' songs. These neurons display nearly identical patterns of activity when the bird sings the same sequence, and disrupting auditory feedback does not alter this singing-related activity, indicating it is motor in nature. Furthermore, these neurons innervate striatal structures important for song learning, raising the possibility that singing-related activity in these cells is compared to auditory feedback to guide vocal learning.

  1. Predictive uncertainty in auditory sequence processing

    Directory of Open Access Journals (Sweden)

    Niels Chr. eHansen

    2014-09-01

    Full Text Available Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty - a property of listeners’ prospective state of expectation prior to the onset of an event. We examine the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic expectations reflect probabilistic relationships between sensory events learned implicitly through exposure.Using probability estimates from an unsupervised, variable-order Markov model, 12 melodic contexts high in entropy and 12 melodic contexts low in entropy were selected from two musical repertoires differing in structural complexity (simple and complex. Musicians and non-musicians listened to the stimuli and provided explicit judgments of perceived uncertainty (explicit uncertainty. We also examined an indirect measure of uncertainty computed as the entropy of expectedness distributions obtained using a classical probe-tone paradigm where listeners rated the perceived expectedness of the final note in a melodic sequence (inferred uncertainty. Finally, we simulate listeners’ perception of expectedness and uncertainty using computational models of auditory expectation. A detailed model comparison indicates which model parameters maximize fit to the data and how they compare to existing models in the literature.The results show that listeners experience greater uncertainty in high-entropy musical contexts than low-entropy contexts. This effect is particularly apparent for inferred uncertainty and is stronger in musicians than non-musicians. Consistent with the Statistical Learning Hypothesis, the results suggest that increased domain-relevant training is associated with an increasingly accurate cognitive model of probabilistic structure in music.

  2. Predictive uncertainty in auditory sequence processing.

    Science.gov (United States)

    Hansen, Niels Chr; Pearce, Marcus T

    2014-01-01

    Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty-a property of listeners' prospective state of expectation prior to the onset of an event. We examine the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic expectations reflect probabilistic relationships between sensory events learned implicitly through exposure. Using probability estimates from an unsupervised, variable-order Markov model, 12 melodic contexts high in entropy and 12 melodic contexts low in entropy were selected from two musical repertoires differing in structural complexity (simple and complex). Musicians and non-musicians listened to the stimuli and provided explicit judgments of perceived uncertainty (explicit uncertainty). We also examined an indirect measure of uncertainty computed as the entropy of expectedness distributions obtained using a classical probe-tone paradigm where listeners rated the perceived expectedness of the final note in a melodic sequence (inferred uncertainty). Finally, we simulate listeners' perception of expectedness and uncertainty using computational models of auditory expectation. A detailed model comparison indicates which model parameters maximize fit to the data and how they compare to existing models in the literature. The results show that listeners experience greater uncertainty in high-entropy musical contexts than low-entropy contexts. This effect is particularly apparent for inferred uncertainty and is stronger in musicians than non-musicians. Consistent with the Statistical Learning Hypothesis, the results suggest that increased domain-relevant training is associated with an increasingly accurate cognitive model of probabilistic structure in music.

  3. Spatio-temporal patterns of event-related potentials related to audiovisual synchrony judgments in older adults.

    Science.gov (United States)

    Chan, Yu Man; Pianta, Michael Julian; Bode, Stefan; McKendrick, Allison Maree

    2017-07-01

    Older adults have altered perception of the relative timing between auditory and visual stimuli, even when stimuli are scaled to equate detectability. To help understand why, this study investigated the neural correlates of audiovisual synchrony judgments in older adults using electroencephalography (EEG). Fourteen younger (18-32 year old) and 16 older (61-74 year old) adults performed an audiovisual synchrony judgment task on flash-pip stimuli while EEG was recorded. All participants were assessed to have healthy vision and hearing for their age. Observers responded to whether audiovisual pairs were perceived as synchronous or asynchronous via a button press. The results showed that the onset of predictive sensory information for synchrony judgments was not different between groups. Channels over auditory areas contributed more to this predictive sensory information than visual areas. The spatial-temporal profile of the EEG activity also indicates that older adults used different resources to maintain a similar level of performance in audiovisual synchrony judgments compared with younger adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Psychopathic traits associated with abnormal hemodynamic activity in salience and default mode networks during auditory oddball task.

    Science.gov (United States)

    Anderson, Nathaniel E; Maurer, J Michael; Steele, Vaughn R; Kiehl, Kent A

    2018-06-01

    Psychopathy is a personality disorder accompanied by abnormalities in emotional processing and attention. Recent theoretical applications of network-based models of cognition have been used to explain the diverse range of abnormalities apparent in psychopathy. Still, the physiological basis for these abnormalities is not well understood. A significant body of work has examined psychopathy-related abnormalities in simple attention-based tasks, but these studies have largely been performed using electrocortical measures, such as event-related potentials (ERPs), and they often have been carried out among individuals with low levels of psychopathic traits. In this study, we examined neural activity during an auditory oddball task using functional magnetic resonance imaging (fMRI) during a simple auditory target detection (oddball) task among 168 incarcerated adult males, with psychopathic traits assessed via the Hare Psychopathy Checklist-Revised (PCL-R). Event-related contrasts demonstrated that the largest psychopathy-related effects were apparent between the frequent standard stimulus condition and a task-off, implicit baseline. Negative correlations with interpersonal-affective dimensions (Factor 1) of the PCL-R were apparent in regions comprising default mode and salience networks. These findings support models of psychopathy describing impaired integration across functional networks. They additionally corroborate reports which have implicated failures of efficient transition between default mode and task-positive networks. Finally, they demonstrate a neurophysiological basis for abnormal mobilization of attention and reduced engagement with stimuli that have little motivational significance among those with high psychopathic traits.

  5. Presbycusis and auditory brainstem responses: a review

    Directory of Open Access Journals (Sweden)

    Shilpa Khullar

    2011-06-01

    Full Text Available Age-related hearing loss or presbycusis is a complex phenomenon consisting of elevation of hearing levels as well as changes in the auditory processing. It is commonly classified into four categories depending on the cause. Auditory brainstem responses (ABRs are a type of early evoked potentials recorded within the first 10 ms of stimulation. They represent the synchronized activity of the auditory nerve and the brainstem. Some of the changes that occur in the aging auditory system may significantly influence the interpretation of the ABRs in comparison with the ABRs of the young adults. The waves of ABRs are described in terms of amplitude, latencies and interpeak latency of the different waves. There is a tendency of the amplitude to decrease and the absolute latencies to increase with advancing age but these trends are not always clear due to increase in threshold with advancing age that act a major confounding factor in the interpretation of ABRs.

  6. Auditory and visual spatial impression: Recent studies of three auditoria

    Science.gov (United States)

    Nguyen, Andy; Cabrera, Densil

    2004-10-01

    Auditory spatial impression is widely studied for its contribution to auditorium acoustical quality. By contrast, visual spatial impression in auditoria has received relatively little attention in formal studies. This paper reports results from a series of experiments investigating the auditory and visual spatial impression of concert auditoria. For auditory stimuli, a fragment of an anechoic recording of orchestral music was convolved with calibrated binaural impulse responses, which had been made with the dummy head microphone at a wide range of positions in three auditoria and the sound source on the stage. For visual stimuli, greyscale photographs were used, taken at the same positions in the three auditoria, with a visual target on the stage. Subjective experiments were conducted with auditory stimuli alone, visual stimuli alone, and visual and auditory stimuli combined. In these experiments, subjects rated apparent source width, listener envelopment, intimacy and source distance (auditory stimuli), and spaciousness, envelopment, stage dominance, intimacy and target distance (visual stimuli). Results show target distance to be of primary importance in auditory and visual spatial impression-thereby providing a basis for covariance between some attributes of auditory and visual spatial impression. Nevertheless, some attributes of spatial impression diverge between the senses.

  7. Validation of the Emotiv EPOC(®) EEG gaming system for measuring research quality auditory ERPs.

    Science.gov (United States)

    Badcock, Nicholas A; Mousikou, Petroula; Mahajan, Yatin; de Lissa, Peter; Thie, Johnson; McArthur, Genevieve

    2013-01-01

    Background. Auditory event-related potentials (ERPs) have proved useful in investigating the role of auditory processing in cognitive disorders such as developmental dyslexia, specific language impairment (SLI), attention deficit hyperactivity disorder (ADHD), schizophrenia, and autism. However, laboratory recordings of auditory ERPs can be lengthy, uncomfortable, or threatening for some participants - particularly children. Recently, a commercial gaming electroencephalography (EEG) system has been developed that is portable, inexpensive, and easy to set up. In this study we tested if auditory ERPs measured using a gaming EEG system (Emotiv EPOC(®), www.emotiv.com) were equivalent to those measured by a widely-used, laboratory-based, research EEG system (Neuroscan). Methods. We simultaneously recorded EEGs with the research and gaming EEG systems, whilst presenting 21 adults with 566 standard (1000 Hz) and 100 deviant (1200 Hz) tones under passive (non-attended) and active (attended) conditions. The onset of each tone was marked in the EEGs using a parallel port pulse (Neuroscan) or a stimulus-generated electrical pulse injected into the O1 and O2 channels (Emotiv EPOC(®)). These markers were used to calculate research and gaming EEG system late auditory ERPs (P1, N1, P2, N2, and P3 peaks) and the mismatch negativity (MMN) in active and passive listening conditions for each participant. Results. Analyses were restricted to frontal sites as these are most commonly reported in auditory ERP research. Intra-class correlations (ICCs) indicated that the morphology of the research and gaming EEG system late auditory ERP waveforms were similar across all participants, but that the research and gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN waveforms (N = 11 out of 21). Peak amplitude and latency measures revealed no significant differences between the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks

  8. Touching lips and hearing fingers: effector-specific congruency between tactile and auditory stimulation modulates N1 amplitude and alpha desynchronization.

    Science.gov (United States)

    Shen, Guannan; Meltzoff, Andrew N; Marshall, Peter J

    2018-01-01

    Understanding the interactions between audition and sensorimotor processes is of theoretical importance, particularly in relation to speech processing. Although one current focus in this area is on interactions between auditory perception and the motor system, there has been less research on connections between the auditory and somatosensory modalities. The current study takes a novel approach to this omission by examining specific auditory-tactile interactions in the context of speech and non-speech sound production. Electroencephalography was used to examine brain responses when participants were presented with speech syllables (a bilabial sound /pa/ and a non-labial sound /ka/) or finger-snapping sounds that were simultaneously paired with tactile stimulation of either the lower lip or the right middle finger. Analyses focused on the sensory-evoked N1 in the event-related potential and the extent of alpha band desynchronization elicited by the stimuli. N1 amplitude over fronto-central sites was significantly enhanced when the bilabial /pa/ sound was paired with tactile lip stimulation and when the finger-snapping sound was paired with tactile stimulation of the finger. Post-stimulus alpha desynchronization at central sites was also enhanced when the /pa/ sound was accompanied by tactile stimulation of the lip. These novel findings indicate that neural aspects of somatosensory-auditory interactions are influenced by the congruency between the location of the bodily touch and the bodily origin of a perceived sound.

  9. Improvement of auditory hallucinations and reduction of primary auditory area's activation following TMS

    International Nuclear Information System (INIS)

    Giesel, Frederik L.; Mehndiratta, Amit; Hempel, Albrecht; Hempel, Eckhard; Kress, Kai R.; Essig, Marco; Schröder, Johannes

    2012-01-01

    Background: In the present case study, improvement of auditory hallucinations following transcranial magnetic stimulation (TMS) therapy was investigated with respect to activation changes of the auditory cortices. Methods: Using functional magnetic resonance imaging (fMRI), activation of the auditory cortices was assessed prior to and after a 4-week TMS series of the left superior temporal gyrus in a schizophrenic patient with medication-resistant auditory hallucinations. Results: Hallucinations decreased slightly after the third and profoundly after the fourth week of TMS. Activation in the primary auditory area decreased, whereas activation in the operculum and insula remained stable. Conclusions: Combination of TMS and repetitive fMRI is promising to elucidate the physiological changes induced by TMS.

  10. Cross-modal Association between Auditory and Visuospatial Information in Mandarin Tone Perception in Noise by Native and Non-native Perceivers

    Directory of Open Access Journals (Sweden)

    Beverly Hannah

    2017-12-01

    Full Text Available Speech perception involves multiple input modalities. Research has indicated that perceivers establish cross-modal associations between auditory and visuospatial events to aid perception. Such intermodal relations can be particularly beneficial for speech development and learning, where infants and non-native perceivers need additional resources to acquire and process new sounds. This study examines how facial articulatory cues and co-speech hand gestures mimicking pitch contours in space affect non-native Mandarin tone perception. Native English as well as Mandarin perceivers identified tones embedded in noise with either congruent or incongruent Auditory-Facial (AF and Auditory-FacialGestural (AFG inputs. Native Mandarin results showed the expected ceiling-level performance in the congruent AF and AFG conditions. In the incongruent conditions, while AF identification was primarily auditory-based, AFG identification was partially based on gestures, demonstrating the use of gestures as valid cues in tone identification. The English perceivers’ performance was poor in the congruent AF condition, but improved significantly in AFG. While the incongruent AF identification showed some reliance on facial information, incongruent AFG identification relied more on gestural than auditory-facial information. These results indicate positive effects of facial and especially gestural input on non-native tone perception, suggesting that cross-modal (visuospatial resources can be recruited to aid auditory perception when phonetic demands are high. The current findings may inform patterns of tone acquisition and development, suggesting how multi-modal speech enhancement principles may be applied to facilitate speech learning.

  11. Retrieving self-vocalized information: An event-related potential (ERP) study on the effect of retrieval orientation.

    Science.gov (United States)

    Rosburg, Timm; Johansson, Mikael; Sprondel, Volker; Mecklinger, Axel

    2014-11-18

    Retrieval orientation refers to a pre-retrieval process and conceptualizes the specific form of processing that is applied to a retrieval cue. In the current event-related potential (ERP) study, we sought to find evidence for an involvement of the auditory cortex when subjects attempt to retrieve vocalized information, and hypothesized that adopting retrieval orientation would be beneficial for retrieval accuracy. During study, participants saw object words that they subsequently vocalized or visually imagined. At test, participants had to identify object names of one study condition as targets and to reject object names of the second condition together with new items. Target category switched after half of the test trials. Behaviorally, participants responded less accurately and more slowly to targets of the vocalize condition than to targets of the imagine condition. ERPs to new items varied at a single left electrode (T7) between 500 and 800ms, indicating a moderate retrieval orientation effect in the subject group as a whole. However, whereas the effect was strongly pronounced in participants with high retrieval accuracy, it was absent in participants with low retrieval accuracy. A current source density (CSD) mapping of the retrieval orientation effect indicated a source over left temporal regions. Independently from retrieval accuracy, the ERP retrieval orientation effect was surprisingly also modulated by test order. Findings are suggestive for an involvement of the auditory cortex in retrieval attempts of vocalized information and confirm that adopting retrieval orientation is potentially beneficial for retrieval accuracy. The effects of test order on retrieval-related processes might reflect a stronger focus on the newness of items in the more difficult test condition when participants started with this condition. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Auditory cortical change detection in adults with Asperger syndrome.

    Science.gov (United States)

    Lepistö, Tuulia; Nieminen-von Wendt, Taina; von Wendt, Lennart; Näätänen, Risto; Kujala, Teija

    2007-03-06

    The present study investigated whether auditory deficits reported in children with Asperger syndrome (AS) are also present in adulthood. To this end, event-related potentials (ERPs) were recorded from adults with AS for duration, pitch, and phonetic changes in vowels, and for acoustically matched non-speech stimuli. These subjects had enhanced mismatch negativity (MMN) amplitudes particularly for pitch and duration deviants, indicating enhanced sound-discrimination abilities. Furthermore, as reflected by the P3a, their involuntary orienting was enhanced for changes in non-speech sounds, but tended to be deficient for changes in speech sounds. The results are consistent with those reported earlier in children with AS, except for the duration-MMN, which was diminished in children and enhanced in adults.

  13. Thalamic and parietal brain morphology predicts auditory category learning.

    Science.gov (United States)

    Scharinger, Mathias; Henry, Molly J; Erb, Julia; Meyer, Lars; Obleser, Jonas

    2014-01-01

    Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for adaptively changing listening strategies and directing attention to relevant acoustic cues. Here we assessed adaptive listening behavior, using complex acoustic stimuli with an initially salient (but later degraded) spectral cue and a secondary, duration cue that remained nondegraded. We employed voxel-based morphometry (VBM) to identify cortical and subcortical brain structures whose individual neuroanatomy predicted task performance and the ability to optimally switch to making use of temporal cues after spectral degradation. Behavioral listening strategies were assessed by logistic regression and revealed mainly strategy switches in the expected direction, with considerable individual differences. Gray-matter probability in the left inferior parietal lobule (BA 40) and left precentral gyrus was predictive of "optimal" strategy switch, while gray-matter probability in thalamic areas, comprising the medial geniculate body, co-varied with overall performance. Taken together, our findings suggest that successful auditory categorization relies on domain-specific neural circuits in the ascending auditory pathway, while adaptive listening behavior depends more on brain structure in parietal cortex, enabling the (re)direction of attention to salient stimulus properties. © 2013 Published by Elsevier Ltd.

  14. Reversible induction of phantom auditory sensations through simulated unilateral hearing loss.

    Directory of Open Access Journals (Sweden)

    Roland Schaette

    Full Text Available Tinnitus, a phantom auditory sensation, is associated with hearing loss in most cases, but it is unclear if hearing loss causes tinnitus. Phantom auditory sensations can be induced in normal hearing listeners when they experience severe auditory deprivation such as confinement in an anechoic chamber, which can be regarded as somewhat analogous to a profound bilateral hearing loss. As this condition is relatively uncommon among tinnitus patients, induction of phantom sounds by a lesser degree of auditory deprivation could advance our understanding of the mechanisms of tinnitus. In this study, we therefore investigated the reporting of phantom sounds after continuous use of an earplug. 18 healthy volunteers with normal hearing wore a silicone earplug continuously in one ear for 7 days. The attenuation provided by the earplugs simulated a mild high-frequency hearing loss, mean attenuation increased from 30 dB at 3 and 4 kHz. 14 out of 18 participants reported phantom sounds during earplug use. 11 participants presented with stable phantom sounds on day 7 and underwent tinnitus spectrum characterization with the earplug still in place. The spectra showed that the phantom sounds were perceived predominantly as high-pitched, corresponding to the frequency range most affected by the earplug. In all cases, the auditory phantom disappeared when the earplug was removed, indicating a causal relation between auditory deprivation and phantom sounds. This relation matches the predictions of our computational model of tinnitus development, which proposes a possible mechanism by which a stabilization of neuronal activity through homeostatic plasticity in the central auditory system could lead to the development of a neuronal correlate of tinnitus when auditory nerve activity is reduced due to the earplug.

  15. Long-term pitch memory for music recordings is related to auditory working memory precision.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon Lm; Nusbaum, Howard C

    2018-04-01

    Most individuals have reliable long-term memories for the pitch of familiar music recordings. This pitch memory (1) appears to be normally distributed in the population, (2) does not depend on explicit musical training and (3) only seems to be weakly related to differences in listening frequency estimates. The present experiment was designed to assess whether individual differences in auditory working memory could explain variance in long-term pitch memory for music recordings. In Experiment 1, participants first completed a musical note adjustment task that has been previously used to assess working memory of musical pitch. Afterward, participants were asked to judge the pitch of well-known music recordings, which either had or had not been shifted in pitch. We found that performance on the pitch working memory task was significantly related to performance in the pitch memory task using well-known recordings, even when controlling for overall musical experience and familiarity with each recording. In Experiment 2, we replicated these findings in a separate group of participants while additionally controlling for fluid intelligence and non-pitch-based components of auditory working memory. In Experiment 3, we demonstrated that participants could not accurately judge the pitch of unfamiliar recordings, suggesting that our method of pitch shifting did not result in unwanted acoustic cues that could have aided participants in Experiments 1 and 2. These results, taken together, suggest that the ability to maintain pitch information in working memory might lead to more accurate long-term pitch memory.

  16. Spatial Hearing with Incongruent Visual or Auditory Room Cues

    Science.gov (United States)

    Gil-Carvajal, Juan C.; Cubick, Jens; Santurette, Sébastien; Dau, Torsten

    2016-11-01

    In day-to-day life, humans usually perceive the location of sound sources as outside their heads. This externalized auditory spatial perception can be reproduced through headphones by recreating the sound pressure generated by the source at the listener’s eardrums. This requires the acoustical features of the recording environment and listener’s anatomy to be recorded at the listener’s ear canals. Although the resulting auditory images can be indistinguishable from real-world sources, their externalization may be less robust when the playback and recording environments differ. Here we tested whether a mismatch between playback and recording room reduces perceived distance, azimuthal direction, and compactness of the auditory image, and whether this is mostly due to incongruent auditory cues or to expectations generated from the visual impression of the room. Perceived distance ratings decreased significantly when collected in a more reverberant environment than the recording room, whereas azimuthal direction and compactness remained room independent. Moreover, modifying visual room-related cues had no effect on these three attributes, while incongruent auditory room-related cues between the recording and playback room did affect distance perception. Consequently, the external perception of virtual sounds depends on the degree of congruency between the acoustical features of the environment and the stimuli.

  17. Acute auditory agnosia as the presenting hearing disorder in MELAS.

    Science.gov (United States)

    Miceli, Gabriele; Conti, Guido; Cianfoni, Alessandro; Di Giacopo, Raffaella; Zampetti, Patrizia; Servidei, Serenella

    2008-12-01

    MELAS is commonly associated with peripheral hearing loss. Auditory agnosia is a rare cortical auditory impairment, usually due to bilateral temporal damage. We document, for the first time, auditory agnosia as the presenting hearing disorder in MELAS. A young woman with MELAS (A3243G mtDNA mutation) suffered from acute cortical hearing damage following a single stroke-like episode, in the absence of previous hearing deficits. Audiometric testing showed marked central hearing impairment and very mild sensorineural hearing loss. MRI documented bilateral, acute lesions to superior temporal regions. Neuropsychological tests demonstrated auditory agnosia without aphasia. Our data and a review of published reports show that cortical auditory disorders are relatively frequent in MELAS, probably due to the strikingly high incidence of bilateral and symmetric damage following stroke-like episodes. Acute auditory agnosia can be the presenting hearing deficit in MELAS and, conversely, MELAS should be suspected in young adults with sudden hearing loss.

  18. Auditory Perspective Taking

    National Research Council Canada - National Science Library

    Martinson, Eric; Brock, Derek

    2006-01-01

    .... From this knowledge of another's auditory perspective, a conversational partner can then adapt his or her auditory output to overcome a variety of environmental challenges and insure that what is said is intelligible...

  19. Auditory-visual integration modulates location-specific repetition suppression of auditory responses.

    Science.gov (United States)

    Shrem, Talia; Murray, Micah M; Deouell, Leon Y

    2017-11-01

    Space is a dimension shared by different modalities, but at what stage spatial encoding is affected by multisensory processes is unclear. Early studies observed attenuation of N1/P2 auditory evoked responses following repetition of sounds from the same location. Here, we asked whether this effect is modulated by audiovisual interactions. In two experiments, using a repetition-suppression paradigm, we presented pairs of tones in free field, where the test stimulus was a tone presented at a fixed lateral location. Experiment 1 established a neural index of auditory spatial sensitivity, by comparing the degree of attenuation of the response to test stimuli when they were preceded by an adapter sound at the same location versus 30° or 60° away. We found that the degree of attenuation at the P2 latency was inversely related to the spatial distance between the test stimulus and the adapter stimulus. In Experiment 2, the adapter stimulus was a tone presented from the same location or a more medial location than the test stimulus. The adapter stimulus was accompanied by a simultaneous flash displayed orthogonally from one of the two locations. Sound-flash incongruence reduced accuracy in a same-different location discrimination task (i.e., the ventriloquism effect) and reduced the location-specific repetition-suppression at the P2 latency. Importantly, this multisensory effect included topographic modulations, indicative of changes in the relative contribution of underlying sources across conditions. Our findings suggest that the auditory response at the P2 latency is affected by spatially selective brain activity, which is affected crossmodally by visual information. © 2017 Society for Psychophysiological Research.

  20. Brain activity is related to individual differences in the number of items stored in auditory short-term memory for pitch: evidence from magnetoencephalography.

    Science.gov (United States)

    Grimault, Stephan; Nolden, Sophie; Lefebvre, Christine; Vachon, François; Hyde, Krista; Peretz, Isabelle; Zatorre, Robert; Robitaille, Nicolas; Jolicoeur, Pierre

    2014-07-01

    We used magnetoencephalography (MEG) to examine brain activity related to the maintenance of non-verbal pitch information in auditory short-term memory (ASTM). We focused on brain activity that increased with the number of items effectively held in memory by the participants during the retention interval of an auditory memory task. We used very simple acoustic materials (i.e., pure tones that varied in pitch) that minimized activation from non-ASTM related systems. MEG revealed neural activity in frontal, temporal, and parietal cortices that increased with a greater number of items effectively held in memory by the participants during the maintenance of pitch representations in ASTM. The present results reinforce the functional role of frontal and temporal cortices in the retention of pitch information in ASTM. This is the first MEG study to provide both fine spatial localization and temporal resolution on the neural mechanisms of non-verbal ASTM for pitch in relation to individual differences in the capacity of ASTM. This research contributes to a comprehensive understanding of the mechanisms mediating the representation and maintenance of basic non-verbal auditory features in the human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Tracking the time course of word-frequency effects in auditory word recognition with event-related potentials.

    Science.gov (United States)

    Dufour, Sophie; Brunellière, Angèle; Frauenfelder, Ulrich H

    2013-04-01

    Although the word-frequency effect is one of the most established findings in spoken-word recognition, the precise processing locus of this effect is still a topic of debate. In this study, we used event-related potentials (ERPs) to track the time course of the word-frequency effect. In addition, the neighborhood density effect, which is known to reflect mechanisms involved in word identification, was also examined. The ERP data showed a clear frequency effect as early as 350 ms from word onset on the P350, followed by a later effect at word offset on the late N400. A neighborhood density effect was also found at an early stage of spoken-word processing on the PMN, and at word offset on the late N400. Overall, our ERP differences for word frequency suggest that frequency affects the core processes of word identification starting from the initial phase of lexical activation and including target word selection. They thus rule out any interpretation of the word frequency effect that is limited to a purely decisional locus after word identification has been completed. Copyright © 2012 Cognitive Science Society, Inc.

  2. Task-irrelevant auditory feedback facilitates motor performance in musicians

    Directory of Open Access Journals (Sweden)

    Virginia eConde

    2012-05-01

    Full Text Available An efficient and fast auditory–motor network is a basic resource for trained musicians due to the importance of motor anticipation of sound production in musical performance. When playing an instrument, motor performance always goes along with the production of sounds and the integration between both modalities plays an essential role in the course of musical training. The aim of the present study was to investigate the role of task-irrelevant auditory feedback during motor performance in musicians using a serial reaction time task (SRTT. Our hypothesis was that musicians, due to their extensive auditory–motor practice routine during musical training, have a superior performance and learning capabilities when receiving auditory feedback during SRTT relative to musicians performing the SRTT without any auditory feedback. Here we provide novel evidence that task-irrelevant auditory feedback is capable to reinforce SRTT performance but not learning, a finding that might provide further insight into auditory-motor integration in musicians on a behavioral level.

  3. [Effect of Electroacupuncture on Expression of Catechol-O-methyltransferase in the Inferior Colliculus and Auditory Cortex in Age-related Hearing Loss Guinea Pigs].

    Science.gov (United States)

    Liu, Shu-Yun; Deng, Li-Qiang; Yang, Ye; Yin, Ze-Deng

    2017-04-25

    To observe the expression of catechol-O-methyltransferase (COMT) in inferior colliculus and auditory cortex of guinea pigs with age-related hearing loss(AHL) induced by D-galactose, so as to explore the possible mechanism of electroacupuncture(EA) underlying preventing AHL. Thirty 3-month-old guinea pigs were randomly divided into control group, model group and EA group( n =10 in each group), and ten 18-month-old guinea pigs were allocated as elderly group. The AHL model was established by subcutaneous injection of D-galactose. EA was applied to bilateral "Yifeng"(SJ 17) and "Tinggong"(SI 19) for 15 min in the EA group while modeling, once daily for 6 weeks. After treatment, the latency of auditory brainstem response(ABR) Ⅲ wave was measured by a brain-stem evoked potentiometer. The expressions of COMT in the inferior colliculus and auditory cortex were detected by Western blot. Compared with the control group, the latencies of ABR Ⅲ wave were significantly prolonged and the expressions of COMT in the inferior colliculus and auditory cortex were significantly decreased in the model group and the elderly group( P guinea pigs, which may contribute to its effect in up-regulating the expression of COMT in the inferior colliculus and auditory cortex.

  4. Strategy choice mediates the link between auditory processing and spelling.

    Science.gov (United States)

    Kwong, Tru E; Brachman, Kyle J

    2014-01-01

    Relations among linguistic auditory processing, nonlinguistic auditory processing, spelling ability, and spelling strategy choice were examined. Sixty-three undergraduate students completed measures of auditory processing (one involving distinguishing similar tones, one involving distinguishing similar phonemes, and one involving selecting appropriate spellings for individual phonemes). Participants also completed a modified version of a standardized spelling test, and a secondary spelling test with retrospective strategy reports. Once testing was completed, participants were divided into phonological versus nonphonological spellers on the basis of the number of words they spelled using phonological strategies only. Results indicated a) moderate to strong positive correlations among the different auditory processing tasks in terms of reaction time, but not accuracy levels, and b) weak to moderate positive correlations between measures of linguistic auditory processing (phoneme distinction and phoneme spelling choice in the presence of foils) and spelling ability for phonological spellers, but not for nonphonological spellers. These results suggest a possible explanation for past contradictory research on auditory processing and spelling, which has been divided in terms of whether or not disabled spellers seemed to have poorer auditory processing than did typically developing spellers, and suggest implications for teaching spelling to children with good versus poor auditory processing abilities.

  5. Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise.

    Science.gov (United States)

    Ahveninen, Jyrki; Hämäläinen, Matti; Jääskeläinen, Iiro P; Ahlfors, Seppo P; Huang, Samantha; Lin, Fa-Hsuan; Raij, Tommi; Sams, Mikko; Vasios, Christos E; Belliveau, John W

    2011-03-08

    How can we concentrate on relevant sounds in noisy environments? A "gain model" suggests that auditory attention simply amplifies relevant and suppresses irrelevant afferent inputs. However, it is unclear whether this suffices when attended and ignored features overlap to stimulate the same neuronal receptive fields. A "tuning model" suggests that, in addition to gain, attention modulates feature selectivity of auditory neurons. We recorded magnetoencephalography, EEG, and functional MRI (fMRI) while subjects attended to tones delivered to one ear and ignored opposite-ear inputs. The attended ear was switched every 30 s to quantify how quickly the effects evolve. To produce overlapping inputs, the tones were presented alone vs. during white-noise masking notch-filtered ±1/6 octaves around the tone center frequencies. Amplitude modulation (39 vs. 41 Hz in opposite ears) was applied for "frequency tagging" of attention effects on maskers. Noise masking reduced early (50-150 ms; N1) auditory responses to unattended tones. In support of the tuning model, selective attention canceled out this attenuating effect but did not modulate the gain of 50-150 ms activity to nonmasked tones or steady-state responses to the maskers themselves. These tuning effects originated at nonprimary auditory cortices, purportedly occupied by neurons that, without attention, have wider frequency tuning than ±1/6 octaves. The attentional tuning evolved rapidly, during the first few seconds after attention switching, and correlated with behavioral discrimination performance. In conclusion, a simple gain model alone cannot explain auditory selective attention. In nonprimary auditory cortices, attention-driven short-term plasticity retunes neurons to segregate relevant sounds from noise.

  6. Prediction of cognitive outcome based on the progression of auditory discrimination during coma.

    Science.gov (United States)

    Juan, Elsa; De Lucia, Marzia; Tzovara, Athina; Beaud, Valérie; Oddo, Mauro; Clarke, Stephanie; Rossetti, Andrea O

    2016-09-01

    To date, no clinical test is able to predict cognitive and functional outcome of cardiac arrest survivors. Improvement of auditory discrimination in acute coma indicates survival with high specificity. Whether the degree of this improvement is indicative of recovery remains unknown. Here we investigated if progression of auditory discrimination can predict cognitive and functional outcome. We prospectively recorded electroencephalography responses to auditory stimuli of post-anoxic comatose patients on the first and second day after admission. For each recording, auditory discrimination was quantified and its evolution over the two recordings was used to classify survivors as "predicted" when it increased vs. "other" if not. Cognitive functions were tested on awakening and functional outcome was assessed at 3 months using the Cerebral Performance Categories (CPC) scale. Thirty-two patients were included, 14 "predicted survivors" and 18 "other survivors". "Predicted survivors" were more likely to recover basic cognitive functions shortly after awakening (ability to follow a standardized neuropsychological battery: 86% vs. 44%; p=0.03 (Fisher)) and to show a very good functional outcome at 3 months (CPC 1: 86% vs. 33%; p=0.004 (Fisher)). Moreover, progression of auditory discrimination during coma was strongly correlated with cognitive performance on awakening (phonemic verbal fluency: rs=0.48; p=0.009 (Spearman)). Progression of auditory discrimination during coma provides early indication of future recovery of cognitive functions. The degree of improvement is informative of the degree of functional impairment. If confirmed in a larger cohort, this test would be the first to predict detailed outcome at the single-patient level. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Sonic morphology: Aesthetic dimensional auditory spatial awareness

    Science.gov (United States)

    Whitehouse, Martha M.

    The sound and ceramic sculpture installation, " Skirting the Edge: Experiences in Sound & Form," is an integration of art and science demonstrating the concept of sonic morphology. "Sonic morphology" is herein defined as aesthetic three-dimensional auditory spatial awareness. The exhibition explicates my empirical phenomenal observations that sound has a three-dimensional form. Composed of ceramic sculptures that allude to different social and physical situations, coupled with sound compositions that enhance and create a three-dimensional auditory and visual aesthetic experience (see accompanying DVD), the exhibition supports the research question, "What is the relationship between sound and form?" Precisely how people aurally experience three-dimensional space involves an integration of spatial properties, auditory perception, individual history, and cultural mores. People also utilize environmental sound events as a guide in social situations and in remembering their personal history, as well as a guide in moving through space. Aesthetically, sound affects the fascination, meaning, and attention one has within a particular space. Sonic morphology brings art forms such as a movie, video, sound composition, and musical performance into the cognitive scope by generating meaning from the link between the visual and auditory senses. This research examined sonic morphology as an extension of musique concrete, sound as object, originating in Pierre Schaeffer's work in the 1940s. Pointing, as John Cage did, to the corporeal three-dimensional experience of "all sound," I composed works that took their total form only through the perceiver-participant's participation in the exhibition. While contemporary artist Alvin Lucier creates artworks that draw attention to making sound visible, "Skirting the Edge" engages the perceiver-participant visually and aurally, leading to recognition of sonic morphology.

  8. Noise Equally Degrades Central Auditory Processing in 2- and 4-Year-Old Children.

    Science.gov (United States)

    Niemitalo-Haapola, Elina; Haapala, Sini; Kujala, Teija; Raappana, Antti; Kujala, Tiia; Jansson-Verkasalo, Eira

    2017-08-16

    The aim of this study was to investigate developmental and noise-induced changes in central auditory processing indexed by event-related potentials in typically developing children. P1, N2, and N4 responses as well as mismatch negativities (MMNs) were recorded for standard syllables and consonants, frequency, intensity, vowel, and vowel duration changes in silent and noisy conditions in the same 14 children at the ages of 2 and 4 years. The P1 and N2 latencies decreased and the N2, N4, and MMN amplitudes increased with development of the children. The amplitude changes were strongest at frontal electrodes. At both ages, background noise decreased the P1 amplitude, increased the N2 amplitude, and shortened the N4 latency. The noise-induced amplitude changes of P1, N2, and N4 were strongest frontally. Furthermore, background noise degraded the MMN. At both ages, MMN was significantly elicited only by the consonant change, and at the age of 4 years, also by the vowel duration change during noise. Developmental changes indexing maturation of central auditory processing were found from every response studied. Noise degraded sound encoding and echoic memory and impaired auditory discrimination at both ages. The older children were as vulnerable to the impact of noise as the younger children. https://doi.org/10.23641/asha.5233939.

  9. Manipulation of Auditory Inputs as Rehabilitation Therapy for Maladaptive Auditory Cortical Reorganization

    Directory of Open Access Journals (Sweden)

    Hidehiko Okamoto

    2018-01-01

    Full Text Available Neurophysiological and neuroimaging data suggest that the brains of not only children but also adults are reorganized based on sensory inputs and behaviors. Plastic changes in the brain are generally beneficial; however, maladaptive cortical reorganization in the auditory cortex may lead to hearing disorders such as tinnitus and hyperacusis. Recent studies attempted to noninvasively visualize pathological neural activity in the living human brain and reverse maladaptive cortical reorganization by the suitable manipulation of auditory inputs in order to alleviate detrimental auditory symptoms. The effects of the manipulation of auditory inputs on maladaptively reorganized brain were reviewed herein. The findings obtained indicate that rehabilitation therapy based on the manipulation of auditory inputs is an effective and safe approach for hearing disorders. The appropriate manipulation of sensory inputs guided by the visualization of pathological brain activities using recent neuroimaging techniques may contribute to the establishment of new clinical applications for affected individuals.

  10. Top-Down Modulation of Auditory-Motor Integration during Speech Production: The Role of Working Memory.

    Science.gov (United States)

    Guo, Zhiqiang; Wu, Xiuqin; Li, Weifeng; Jones, Jeffery A; Yan, Nan; Sheft, Stanley; Liu, Peng; Liu, Hanjun

    2017-10-25

    Although working memory (WM) is considered as an emergent property of the speech perception and production systems, the role of WM in sensorimotor integration during speech processing is largely unknown. We conducted two event-related potential experiments with female and male young adults to investigate the contribution of WM to the neurobehavioural processing of altered auditory feedback during vocal production. A delayed match-to-sample task that required participants to indicate whether the pitch feedback perturbations they heard during vocalizations in test and sample sequences matched, elicited significantly larger vocal compensations, larger N1 responses in the left middle and superior temporal gyrus, and smaller P2 responses in the left middle and superior temporal gyrus, inferior parietal lobule, somatosensory cortex, right inferior frontal gyrus, and insula compared with a control task that did not require memory retention of the sequence of pitch perturbations. On the other hand, participants who underwent extensive auditory WM training produced suppressed vocal compensations that were correlated with improved auditory WM capacity, and enhanced P2 responses in the left middle frontal gyrus, inferior parietal lobule, right inferior frontal gyrus, and insula that were predicted by pretraining auditory WM capacity. These findings indicate that WM can enhance the perception of voice auditory feedback errors while inhibiting compensatory vocal behavior to prevent voice control from being excessively influenced by auditory feedback. This study provides the first evidence that auditory-motor integration for voice control can be modulated by top-down influences arising from WM, rather than modulated exclusively by bottom-up and automatic processes. SIGNIFICANCE STATEMENT One outstanding question that remains unsolved in speech motor control is how the mismatch between predicted and actual voice auditory feedback is detected and corrected. The present study

  11. Event-related oscillations (EROs) and event-related potentials (ERPs) comparison in facial expression recognition.

    Science.gov (United States)

    Balconi, Michela; Pozzoli, Uberto

    2007-09-01

    The study aims to explore the significance of event-related potentials (ERPs) and event-related brain oscillations (EROs) (delta, theta, alpha, beta, gamma power) in response to emotional (fear, happiness, sadness) when compared with neutral faces during 180-250 post-stimulus time interval. The ERP results demonstrated that the emotional face elicited a negative peak at approximately 230 ms (N2). Moreover, EEG measures showed that motivational significance of face (emotional vs. neutral) could modulate the amplitude of EROs, but only for some frequency bands (i.e. theta and gamma bands). In a second phase, we considered the resemblance of the two EEG measures by a regression analysis. It revealed that theta and gamma oscillations mainly effect as oscillation activity at the N2 latency. Finally, a posterior increased power of theta was found for emotional faces.

  12. Repetition suppression and repetition enhancement underlie auditory memory-trace formation in the human brain: an MEG study.

    Science.gov (United States)

    Recasens, Marc; Leung, Sumie; Grimm, Sabine; Nowak, Rafal; Escera, Carles

    2015-03-01

    The formation of echoic memory traces has traditionally been inferred from the enhanced responses to its deviations. The mismatch negativity (MMN), an auditory event-related potential (ERP) elicited between 100 and 250ms after sound deviation is an indirect index of regularity encoding that reflects a memory-based comparison process. Recently, repetition positivity (RP) has been described as a candidate ERP correlate of direct memory trace formation. RP consists of repetition suppression and enhancement effects occurring in different auditory components between 50 and 250ms after sound onset. However, the neuronal generators engaged in the encoding of repeated stimulus features have received little interest. This study intends to investigate the neuronal sources underlying the formation and strengthening of new memory traces by employing a roving-standard paradigm, where trains of different frequencies and different lengths are presented randomly. Source generators of repetition enhanced (RE) and suppressed (RS) activity were modeled using magnetoencephalography (MEG) in healthy subjects. Our results show that, in line with RP findings, N1m (~95-150ms) activity is suppressed with stimulus repetition. In addition, we observed the emergence of a sustained field (~230-270ms) that showed RE. Source analysis revealed neuronal generators of RS and RE located in both auditory and non-auditory areas, like the medial parietal cortex and frontal areas. The different timing and location of neural generators involved in RS and RE points to the existence of functionally separated mechanisms devoted to acoustic memory-trace formation in different auditory processing stages of the human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Auditory beat stimulation and its effects on cognition and mood states

    Directory of Open Access Journals (Sweden)

    Leila eChaieb

    2015-05-01

    Full Text Available Auditory beat stimulation may be a promising new tool for the manipulation of cognitive processes and the modulation of mood-states. Here we aim to review the literature examining the most current applications of auditory beat stimulation and its targets. We give a brief overview of research on auditory steady-state responses and its relationship to auditory beat stimulation. We have summarized relevant studies investigating the neurophysiological changes related to auditory beat stimulation and how they impact upon the design of appropriate stimulation protocols. Focusing on binaural beat stimulation, we then discuss the role of monaural and binaural beat frequencies in cognition and mood-states, in addition to their efficacy in targeting disease symptoms. We aim to highlight important points concerning stimulation parameters and try to address why there are often contradictory findings with regard to the outcomes of auditory beat stimulation.

  14. Neural plasticity expressed in central auditory structures with and without tinnitus

    Directory of Open Access Journals (Sweden)

    Larry E Roberts

    2012-05-01

    Full Text Available Sensory training therapies for tinnitus are based on the assumption that, notwithstanding neural changes related to tinnitus, auditory training can alter the response properties of neurons in auditory pathways. To address this question, we investigated whether brain changes induced by sensory training in tinnitus sufferers and measured by EEG are similar to those induced in age and hearing loss matched individuals without tinnitus trained on the same auditory task. Auditory training was given using a 5 kHz 40-Hz amplitude-modulated sound that was in the tinnitus frequency region of the tinnitus subjects and enabled extraction of the 40-Hz auditory steady-state response (ASSR and P2 transient response known to localize to primary and nonprimary auditory cortex, respectively. P2 amplitude increased with training equally in participants with tinnitus and in control subjects, suggesting normal remodeling of nonprimary auditory regions in tinnitus. However, training-induced changes in the ASSR differed between the tinnitus and control groups. In controls ASSR phase advanced toward the stimulus waveform by about ten degrees over training, in agreement with previous results obtained in young normal hearing individuals. However, ASSR phase did not change significantly with training in the tinnitus group, although some participants showed phase shifts resembling controls. On the other hand, ASSR amplitude increased with training in the tinnitus group, whereas in controls this response (which is difficult to remodel in young normal hearing subjects did not change with training. These results suggest that neural changes related to tinnitus altered how neural plasticity was expressed in the region of primary but not nonprimary auditory cortex. Auditory training did not reduce tinnitus loudness although a small effect on the tinnitus spectrum was detected.

  15. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... role. Auditory cohesion problems: This is when higher-level listening tasks are difficult. Auditory cohesion skills — drawing inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...

  16. Quantifying fine particle emission events from time-resolved measurements: Method description and application to 18 California low-income apartments.

    Science.gov (United States)

    Chan, W R; Logue, J M; Wu, X; Klepeis, N E; Fisk, W J; Noris, F; Singer, B C

    2018-01-01

    PM 2.5 exposure is associated with significant health risk. Exposures in homes derive from both outdoor and indoor sources, with emissions occurring primarily in discrete events. Data on emission event magnitudes and schedules are needed to support simulation-based studies of exposures and mitigations. This study applied an identification and characterization algorithm to quantify time-resolved PM 2.5 emission events from data collected during 224 days of monitoring in 18 California apartments with low-income residents. We identified and characterized 836 distinct events with median and mean values of 12 and 30 mg emitted mass, 16 and 23 minutes emission duration, 37 and 103 mg/h emission rates, and pseudo-first-order decay rates of 1.3 and 2.0/h. Mean event-averaged concentrations calculated using the determined event characteristics agreed to within 6% of measured values for 14 of the apartments. There were variations in event schedules and emitted mass across homes, with few events overnight and most emissions occurring during late afternoons and evenings. Event characteristics were similar during weekdays and weekends. Emitted mass was positively correlated with number of residents (Spearman coefficient, ρ=.10), bedrooms (ρ=.08), house volume (ρ=.29), and indoor-outdoor CO 2 difference (ρ=.27). The event schedules can be used in probabilistic modeling of PM 2.5 in low-income apartments. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Human visual system automatically encodes sequential regularities of discrete events.

    Science.gov (United States)

    Kimura, Motohiro; Schröger, Erich; Czigler, István; Ohira, Hideki

    2010-06-01

    For our adaptive behavior in a dynamically changing environment, an essential task of the brain is to automatically encode sequential regularities inherent in the environment into a memory representation. Recent studies in neuroscience have suggested that sequential regularities embedded in discrete sensory events are automatically encoded into a memory representation at the level of the sensory system. This notion is largely supported by evidence from investigations using auditory mismatch negativity (auditory MMN), an event-related brain potential (ERP) correlate of an automatic memory-mismatch process in the auditory sensory system. However, it is still largely unclear whether or not this notion can be generalized to other sensory modalities. The purpose of the present study was to investigate the contribution of the visual sensory system to the automatic encoding of sequential regularities using visual mismatch negativity (visual MMN), an ERP correlate of an automatic memory-mismatch process in the visual sensory system. To this end, we conducted a sequential analysis of visual MMN in an oddball sequence consisting of infrequent deviant and frequent standard stimuli, and tested whether the underlying memory representation of visual MMN generation contains only a sensory memory trace of standard stimuli (trace-mismatch hypothesis) or whether it also contains sequential regularities extracted from the repetitive standard sequence (regularity-violation hypothesis). The results showed that visual MMN was elicited by first deviant (deviant stimuli following at least one standard stimulus), second deviant (deviant stimuli immediately following first deviant), and first standard (standard stimuli immediately following first deviant), but not by second standard (standard stimuli immediately following first standard). These results are consistent with the regularity-violation hypothesis, suggesting that the visual sensory system automatically encodes sequential

  18. Auditory and visual sustained attention in Down syndrome.

    Science.gov (United States)

    Faught, Gayle G; Conners, Frances A; Himmelberger, Zachary M

    2016-01-01

    Sustained attention (SA) is important to task performance and development of higher functions. It emerges as a separable component of attention during preschool and shows incremental improvements during this stage of development. The current study investigated if auditory and visual SA match developmental level or are particular challenges for youth with DS. Further, we sought to determine if there were modality effects in SA that could predict those seen in short-term memory (STM). We compared youth with DS to typically developing youth matched for nonverbal mental age and receptive vocabulary. Groups completed auditory and visual sustained attention to response tests (SARTs) and STM tasks. Results indicated groups performed similarly on both SARTs, even over varying cognitive ability. Further, within groups participants performed similarly on auditory and visual SARTs, thus SA could not predict modality effects in STM. However, SA did generally predict a significant portion of unique variance in groups' STM. Ultimately, results suggested both auditory and visual SA match developmental level in DS. Further, SA generally predicts STM, though SA does not necessarily predict the pattern of poor auditory relative to visual STM characteristic of DS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Brain bases for auditory stimulus-driven figure-ground segregation.

    Science.gov (United States)

    Teki, Sundeep; Chait, Maria; Kumar, Sukhbinder; von Kriegstein, Katharina; Griffiths, Timothy D

    2011-01-05

    Auditory figure-ground segregation, listeners' ability to selectively hear out a sound of interest from a background of competing sounds, is a fundamental aspect of scene analysis. In contrast to the disordered acoustic environment we experience during everyday listening, most studies of auditory segregation have used relatively simple, temporally regular signals. We developed a new figure-ground stimulus that incorporates stochastic variation of the figure and background that captures the rich spectrotemporal complexity of natural acoustic scenes. Figure and background signals overlap in spectrotemporal space, but vary in the statistics of fluctuation, such that the only way to extract the figure is by integrating the patterns over time and frequency. Our behavioral results demonstrate that human listeners are remarkably sensitive to the appearance of such figures. In a functional magnetic resonance imaging experiment, aimed at investigating preattentive, stimulus-driven, auditory segregation mechanisms, naive subjects listened to these stimuli while performing an irrelevant task. Results demonstrate significant activations in the intraparietal sulcus (IPS) and the superior temporal sulcus related to bottom-up, stimulus-driven figure-ground decomposition. We did not observe any significant activation in the primary auditory cortex. Our results support a role for automatic, bottom-up mechanisms in the IPS in mediating stimulus-driven, auditory figure-ground segregation, which is consistent with accumulating evidence implicating the IPS in structuring sensory input and perceptual organization.

  20. The self or the voice? Relative contributions of self-esteem and voice appraisal in persistent auditory hallucinations.

    Science.gov (United States)

    Fannon, Dominic; Hayward, Peter; Thompson, Neil; Green, Nicola; Surguladze, Simon; Wykes, Til

    2009-07-01

    Persistent auditory hallucinations are common, disabling and difficult to treat. Cognitive behavioural therapy is recommended in their treatment though there is limited empirical evidence of the role of cognitive factors in the formation and persistence of voices. Low self-esteem is thought to play a causal and maintaining role in a range of clinical disorders, particularly depression, which is prevalent and disabling in schizophrenia. It was hypothesized that low self-esteem is prominent in, and contributes to, depression in voice hearers. Beliefs about persistent auditory hallucinations were investigated in 82 patients using the Beliefs About Voices Questionnaire--revised in a cross-sectional design. Self-esteem and depression were assessed using standardized measures. Depression and low self-esteem were prominent as were beliefs about the omnipotence and malevolence of auditory hallucinations. Beliefs about the uncontrollability and dominance of auditory hallucinations and low self-esteem were significantly correlated with depression. Low self-esteem did not mediate the effect of beliefs about auditory hallucinations--both acted independently to contribute to depression in this sample of patients with schizophrenia and persistent auditory hallucinations. Low self-esteem is of fundamental importance to the understanding of affective disturbance in voice hearers. Therapeutic interventions need to address both the appraisal of self and hallucinations in schizophrenia. Measures which ameliorate low self-esteem can be expected to improve depressed mood in this patient group. Further elucidation of the mechanisms involved can strengthen existing models of positive psychotic symptoms and provide targets for more effective treatments.

  1. Modularity in Sensory Auditory Memory

    OpenAIRE

    Clement, Sylvain; Moroni, Christine; Samson, Séverine

    2004-01-01

    The goal of this paper was to review various experimental and neuropsychological studies that support the modular conception of auditory sensory memory or auditory short-term memory. Based on initial findings demonstrating that verbal sensory memory system can be dissociated from a general auditory memory store at the functional and anatomical levels. we reported a series of studies that provided evidence in favor of multiple auditory sensory stores specialized in retaining eit...

  2. Timing matters: The processing of pitch relations

    Directory of Open Access Journals (Sweden)

    Annekathrin eWeise

    2014-06-01

    Full Text Available The human central auditory system can automatically extract abstract regularities from a variant auditory input. To this end, temporarily separated events need to be related. This study tested whether the timing between events, falling either within or outside the temporal window of integration (~350 ms, impacts the extraction of abstract feature relations. We utilized tone pairs for which tones within but not across pairs revealed a constant pitch relation (e.g. pitch of 2nd tone of a pair higher than pitch of 1st tone, while absolute pitch values varied across pairs. We measured the Mismatch Negativity (MMN; the brain’s error signal to auditory regularity violations to 2nd tones that rarely violated the pitch relation (e.g. pitch of 2nd tone lower. A Short condition in which tone duration (90 ms and stimulus onset asynchrony between the tones of a pair were short (110 ms was compared to two conditions, where this onset asynchrony was long (510 ms. In the Long Gap condition the tone durations were identical to Short (90 ms, but the silent interval was prolonged by 400 ms. In Long Tone the duration of the first tone was prolonged by 400 ms, while the silent interval was comparable to Short (20 ms. Results show a frontocentral MMN of comparable amplitude in all conditions. Thus, abstract pitch relations can be extracted even when the within-pair timing exceeds the integration period. Source analyses indicate MMN generators in the supratemporal cortex. Interestingly, they were located more anterior in Long Gap than in Short and Long Tone. Moreover, frontal generator activity was found for Long Gap and Long Tone. Thus, the way in which the system automatically registers irregular abstract pitch relations depends on the timing of the events to be linked. Pending that the current MMN data mirror established abstract rule representations coding the regular pitch relation, neural processes building these templates vary with timing.

  3. Timing matters: the processing of pitch relations

    Science.gov (United States)

    Weise, Annekathrin; Grimm, Sabine; Trujillo-Barreto, Nelson J.; Schröger, Erich

    2014-01-01

    The human central auditory system can automatically extract abstract regularities from a variant auditory input. To this end, temporarily separated events need to be related. This study tested whether the timing between events, falling either within or outside the temporal window of integration (~350 ms), impacts the extraction of abstract feature relations. We utilized tone pairs for which tones within but not across pairs revealed a constant pitch relation (e.g., pitch of second tone of a pair higher than pitch of first tone, while absolute pitch values varied across pairs). We measured the mismatch negativity (MMN; the brain’s error signal to auditory regularity violations) to second tones that rarely violated the pitch relation (e.g., pitch of second tone lower). A Short condition in which tone duration (90 ms) and stimulus onset asynchrony between the tones of a pair were short (110 ms) was compared to two conditions, where this onset asynchrony was long (510 ms). In the Long Gap condition, the tone durations were identical to Short (90 ms), but the silent interval was prolonged by 400 ms. In Long Tone, the duration of the first tone was prolonged by 400 ms, while the silent interval was comparable to Short (20 ms). Results show a frontocentral MMN of comparable amplitude in all conditions. Thus, abstract pitch relations can be extracted even when the within-pair timing exceeds the integration period. Source analyses indicate MMN generators in the supratemporal cortex. Interestingly, they were located more anterior in Long Gap than in Short and Long Tone. Moreover, frontal generator activity was found for Long Gap and Long Tone. Thus, the way in which the system automatically registers irregular abstract pitch relations depends on the timing of the events to be linked. Pending that the current MMN data mirror established abstract rule representations coding the regular pitch relation, neural processes building these templates vary with timing. PMID:24966823

  4. Auditory-visual integration in fields of the auditory cortex.

    Science.gov (United States)

    Kubota, Michinori; Sugimoto, Shunji; Hosokawa, Yutaka; Ojima, Hisayuki; Horikawa, Junsei

    2017-03-01

    While multimodal interactions have been known to exist in the early sensory cortices, the response properties and spatiotemporal organization of these interactions are poorly understood. To elucidate the characteristics of multimodal sensory interactions in the cerebral cortex, neuronal responses to visual stimuli with or without auditory stimuli were investigated in core and belt fields of guinea pig auditory cortex using real-time optical imaging with a voltage-sensitive dye. On average, visual responses consisted of short excitation followed by long inhibition. Although visual responses were observed in core and belt fields, there were regional and temporal differences in responses. The most salient visual responses were observed in the caudal belt fields, especially posterior (P) and dorsocaudal belt (DCB) fields. Visual responses emerged first in fields P and DCB and then spread rostroventrally to core and ventrocaudal belt (VCB) fields. Absolute values of positive and negative peak amplitudes of visual responses were both larger in fields P and DCB than in core and VCB fields. When combined visual and auditory stimuli were applied, fields P and DCB were more inhibited than core and VCB fields beginning approximately 110 ms after stimuli. Correspondingly, differences between responses to auditory stimuli alone and combined audiovisual stimuli became larger in fields P and DCB than in core and VCB fields after approximately 110 ms after stimuli. These data indicate that visual influences are most salient in fields P and DCB, which manifest mainly as inhibition, and that they enhance differences in auditory responses among fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Assessing the aging effect on auditory-verbal memory by Persian version of dichotic auditory verbal memory test

    Directory of Open Access Journals (Sweden)

    Zahra Shahidipour

    2014-01-01

    Conclusion: Based on the obtained results, significant reduction in auditory memory was seen in aged group and the Persian version of dichotic auditory-verbal memory test, like many other auditory verbal memory tests, showed the aging effects on auditory verbal memory performance.

  6. [Assessment of the efficiency of the auditory training in children with dyslalia and auditory processing disorders].

    Science.gov (United States)

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Skarżyński, Henryk; Piłka, Adam

    2011-01-01

    To assess effectiveness of the auditory training in children with dyslalia and central auditory processing disorders. Material consisted of 50 children aged 7-9-years-old. Children with articulation disorders stayed under long-term speech therapy care in the Auditory and Phoniatrics Clinic. All children were examined by a laryngologist and a phoniatrician. Assessment included tonal and impedance audiometry and speech therapists' and psychologist's consultations. Additionally, a set of electrophysiological examinations was performed - registration of N2, P2, N2, P2, P300 waves and psychoacoustic test of central auditory functions: FPT - frequency pattern test. Next children took part in the regular auditory training and attended speech therapy. Speech assessment followed treatment and therapy, again psychoacoustic tests were performed and P300 cortical potentials were recorded. After that statistical analyses were performed. Analyses revealed that application of auditory training in patients with dyslalia and other central auditory disorders is very efficient. Auditory training may be a very efficient therapy supporting speech therapy in children suffering from dyslalia coexisting with articulation and central auditory disorders and in children with educational problems of audiogenic origin. Copyright © 2011 Polish Otolaryngology Society. Published by Elsevier Urban & Partner (Poland). All rights reserved.

  7. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  8. Clinical measurement of various aspects of hearing impairment and their relation to auditory functioning: the development of an Auditory Profile

    NARCIS (Netherlands)

    van Esch, T.E.M.

    2013-01-01

    In terms of disability and handicap, problems in auditory function involve much more than a reduced sensitivity to soft sounds, the most commonly used measure of hearing impairment. In daily life, many hearing-impaired (HI) listeners suffer more from impaired processing of audible sounds, than from

  9. Evaluating the Precision of Auditory Sensory Memory as an Index of Intrusion in Tinnitus.

    Science.gov (United States)

    Barrett, Doug J K; Pilling, Michael

    The purpose of this study was to investigate the potential of measures of auditory short-term memory (ASTM) to provide a clinical measure of intrusion in tinnitus. Response functions for six normal listeners on a delayed pitch discrimination task were contrasted in three conditions designed to manipulate attention in the presence and absence of simulated tinnitus: (1) no-tinnitus, (2) ignore-tinnitus, and (3) attend-tinnitus. Delayed pitch discrimination functions were more variable in the presence of simulated tinnitus when listeners were asked to divide attention between the primary task and the amplitude of the tinnitus tone. Changes in the variability of auditory short-term memory may provide a novel means of quantifying the level of intrusion associated with the tinnitus percept during listening.

  10. Auditory perceptual learning in adults with and without age-related hearing loss

    Directory of Open Access Journals (Sweden)

    Hanin eKarawani

    2016-02-01

    Full Text Available Introduction: Speech recognition in adverse listening conditions becomes more difficult as we age, particularly for individuals with age-related hearing loss (ARHL. Whether these difficulties can be eased with training remains debated, because it is not clear whether the outcomes are sufficiently general to be of use outside of the training context. The aim of the current study was to compare training-induced learning and generalization between normal-hearing older adults and those with ARHL.Methods: 56 listeners (60-72 y/o, 35 participants with ARHL and 21 normal hearing adults participated in the study. The study design was a cross over design with three groups (immediate-training, delayed-training and no-training group. Trained participants received 13 sessions of home-based auditory training over the course of 4 weeks. Three adverse listening conditions were targeted: (1 Speech-in-noise (2 time compressed speech and (3 competing speakers, and the outcomes of training were compared between normal and ARHL groups. Pre- and post-test sessions were completed by all participants. Outcome measures included tests on all of the trained conditions as well as on a series of untrained conditions designed to assess the transfer of learning to other speech and non-speech conditions. Results: Significant improvements on all trained conditions were observed in both ARHL and normal-hearing groups over the course of training. Normal hearing participants learned more than participants with ARHL in the speech-in-noise condition, but showed similar patterns of learning in the other conditions. Greater pre- to post-test changes were observed in trained than in untrained listeners on all trained conditions. In addition, the ability of trained listeners from the ARHL group to discriminate minimally different pseudowords in noise also improved with training. Conclusions: ARHL did not preclude auditory perceptual learning but there was little generalization to

  11. Beyond the real world: attention debates in auditory mismatch negativity.

    Science.gov (United States)

    Chung, Kyungmi; Park, Jin Young

    2018-04-11

    The aim of this study was to address the potential for the auditory mismatch negativity (aMMN) to be used in applied event-related potential (ERP) studies by determining whether the aMMN would be an attention-dependent ERP component and could be differently modulated across visual tasks or virtual reality (VR) stimuli with different visual properties and visual complexity levels. A total of 80 participants, aged 19-36 years, were assigned to either a reading-task (21 men and 19 women) or a VR-task (22 men and 18 women) group. Two visual-task groups of healthy young adults were matched in age, sex, and handedness. All participants were instructed to focus only on the given visual tasks and ignore auditory change detection. While participants in the reading-task group read text slides, those in the VR-task group viewed three 360° VR videos in a random order and rated how visually complex the given virtual environment was immediately after each VR video ended. Inconsistent with the finding of a partial significant difference in perceived visual complexity in terms of brightness of virtual environments, both visual properties of distance and brightness showed no significant differences in the modulation of aMMN amplitudes. A further analysis was carried out to compare elicited aMMN amplitudes of a typical MMN task and an applied VR task. No significant difference in the aMMN amplitudes was found across the two groups who completed visual tasks with different visual-task demands. In conclusion, the aMMN is a reliable ERP marker of preattentive cognitive processing for auditory deviance detection.

  12. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept.

    Science.gov (United States)

    Scheich, Henning; Brechmann, André; Brosch, Michael; Budinger, Eike; Ohl, Frank W; Selezneva, Elena; Stark, Holger; Tischmeyer, Wolfgang; Wetzel, Wolfram

    2011-01-01

    Two phenomena of auditory cortex activity have recently attracted attention, namely that the primary field can show different types of learning-related changes of sound representation and that during learning even this early auditory cortex is under strong multimodal influence. Based on neuronal recordings in animal auditory cortex during instrumental tasks, in this review we put forward the hypothesis that these two phenomena serve to derive the task-specific meaning of sounds by associative learning. To understand the implications of this tenet, it is helpful to realize how a behavioral meaning is usually derived for novel environmental sounds. For this purpose, associations with other sensory, e.g. visual, information are mandatory to develop a connection between a sound and its behaviorally relevant cause and/or the context of sound occurrence. This makes it plausible that in instrumental tasks various non-auditory sensory and procedural contingencies of sound generation become co-represented by neuronal firing in auditory cortex. Information related to reward or to avoidance of discomfort during task learning, that is essentially non-auditory, is also co-represented. The reinforcement influence points to the dopaminergic internal reward system, the local role of which for memory consolidation in auditory cortex is well-established. Thus, during a trial of task performance, the neuronal responses to the sounds are embedded in a sequence of representations of such non-auditory information. The embedded auditory responses show task-related modulations of auditory responses falling into types that correspond to three basic logical classifications that may be performed with a perceptual item, i.e. from simple detection to discrimination, and categorization. This hierarchy of classifications determine the semantic "same-different" relationships among sounds. Different cognitive classifications appear to be a consequence of learning task and lead to a recruitment of

  13. Intentional switching in auditory selective attention: Exploring age-related effects in a spatial setup requiring speech perception.

    Science.gov (United States)

    Oberem, Josefa; Koch, Iring; Fels, Janina

    2017-06-01

    Using a binaural-listening paradigm, age-related differences in the ability to intentionally switch auditory selective attention between two speakers, defined by their spatial location, were examined. Therefore 40 normal-hearing participants (20 young, Ø 24.8years; 20 older Ø 67.8years) were tested. The spatial reproduction of stimuli was provided by headphones using head-related-transfer-functions of an artificial head. Spoken number words of two speakers were presented simultaneously to participants from two out of eight locations on the horizontal plane. Guided by a visual cue indicating the spatial location of the target speaker, the participants were asked to categorize the target's number word into smaller vs. greater than five while ignoring the distractor's speech. Results showed significantly higher reaction times and error rates for older participants. The relative influence of the spatial switch of the target-speaker (switch or repetition of speaker's direction in space) was identical across age groups. Congruency effects (stimuli spoken by target and distractor may evoke the same answer or different answers) were increased for older participants and depend on the target's position. Results suggest that the ability to intentionally switch auditory attention to a new cued location was unimpaired whereas it was generally harder for older participants to suppress processing the distractor's speech. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Eye Closure Reduces the Cross-Modal Memory Impairment Caused by Auditory Distraction

    Science.gov (United States)

    Perfect, Timothy J.; Andrade, Jackie; Eagan, Irene

    2011-01-01

    Eyewitnesses instructed to close their eyes during retrieval recall more correct and fewer incorrect visual and auditory details. This study tested whether eye closure causes these effects through a reduction in environmental distraction. Sixty participants watched a staged event before verbally answering questions about it in the presence of…

  15. Relations Between the Intelligibility of Speech in Noise and Psychophysical Measures of Hearing Measured in Four Languages Using the Auditory Profile Test Battery

    Directory of Open Access Journals (Sweden)

    T. E. M. Van Esch

    2015-12-01

    Full Text Available The aim of the present study was to determine the relations between the intelligibility of speech in noise and measures of auditory resolution, loudness recruitment, and cognitive function. The analyses were based on data published earlier as part of the presentation of the Auditory Profile, a test battery implemented in four languages. Tests of the intelligibility of speech, resolution, loudness recruitment, and lexical decision making were measured using headphones in five centers: in Germany, the Netherlands, Sweden, and the United Kingdom. Correlations and stepwise linear regression models were calculated. In sum, 72 hearing-impaired listeners aged 22 to 91 years with a broad range of hearing losses were included in the study. Several significant correlations were found with the intelligibility of speech in noise. Stepwise linear regression analyses showed that pure-tone average, age, spectral and temporal resolution, and loudness recruitment were significant predictors of the intelligibility of speech in fluctuating noise. Complex interrelationships between auditory factors and the intelligibility of speech in noise were revealed using the Auditory Profile data set in four languages. After taking into account the effects of pure-tone average and age, spectral and temporal resolution and loudness recruitment had an added value in the prediction of variation among listeners with respect to the intelligibility of speech in noise. The results of the lexical decision making test were not related to the intelligibility of speech in noise, in the population studied.

  16. rTMS Induced Tinnitus Relief Is Related to an Increase in Auditory Cortical Alpha Activity

    Science.gov (United States)

    Müller, Nadia; Lorenz, Isabel; Langguth, Berthold; Weisz, Nathan

    2013-01-01

    Chronic tinnitus, the continuous perception of a phantom sound, is a highly prevalent audiological symptom. A promising approach for the treatment of tinnitus is repetitive transcranial magnetic stimulation (rTMS) as this directly affects tinnitus-related brain activity. Several studies indeed show tinnitus relief after rTMS, however effects are moderate and vary strongly across patients. This may be due to a lack of knowledge regarding how rTMS affects oscillatory activity in tinnitus sufferers and which modulations are associated with tinnitus relief. In the present study we examined the effects of five different stimulation protocols (including sham) by measuring tinnitus loudness and tinnitus-related brain activity with Magnetoencephalography before and after rTMS. Changes in oscillatory activity were analysed for the stimulated auditory cortex as well as for the entire brain regarding certain frequency bands of interest (delta, theta, alpha, gamma). In line with the literature the effects of rTMS on tinnitus loudness varied strongly across patients. This variability was also reflected in the rTMS effects on oscillatory activity. Importantly, strong reductions in tinnitus loudness were associated with increases in alpha power in the stimulated auditory cortex, while an unspecific decrease in gamma and alpha power, particularly in left frontal regions, was linked to an increase in tinnitus loudness. The identification of alpha power increase as main correlate for tinnitus reduction sheds further light on the pathophysiology of tinnitus. This will hopefully stimulate the development of more effective therapy approaches. PMID:23390539

  17. Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model.

    Science.gov (United States)

    Zeng, Lingling; Yang, Yang; Hu, Yujuan; Sun, Yu; Du, Zhengde; Xie, Zhen; Zhou, Tao; Kong, Weijia

    2014-01-01

    Age-related dysfunction of the central auditory system, also known as central presbycusis, can affect speech perception and sound localization. Understanding the pathogenesis of central presbycusis will help to develop novel approaches to prevent or treat this disease. In this study, the mechanisms of central presbycusis were investigated using a mimetic aging rat model induced by chronic injection of D-galactose (D-Gal). We showed that malondialdehyde (MDA) levels were increased and manganese superoxide dismutase (SOD2) activity was reduced in the auditory cortex in natural aging and D-Gal-induced mimetic aging rats. Furthermore, mitochondrial DNA (mtDNA) 4834 bp deletion, abnormal ultrastructure and cell apoptosis in the auditory cortex were also found in natural aging and D-Gal mimetic aging rats. Sirt3, a mitochondrial NAD+-dependent deacetylase, has been shown to play a crucial role in controlling cellular reactive oxygen species (ROS) homeostasis. However, the role of Sirt3 in the pathogenesis of age-related central auditory cortex deterioration is still unclear. Here, we showed that decreased Sirt3 expression might be associated with increased SOD2 acetylation, which negatively regulates SOD2 activity. Oxidative stress accumulation was likely the result of low SOD2 activity and a decline in ROS clearance. Our findings indicate that Sirt3 might play an essential role, via the mediation of SOD2, in central presbycusis and that manipulation of Sirt3 expression might provide a new approach to combat aging and oxidative stress-related diseases.

  18. Effects of multiple congruent cues on concurrent sound segregation during passive and active listening: an event-related potential (ERP) study.

    Science.gov (United States)

    Kocsis, Zsuzsanna; Winkler, István; Szalárdy, Orsolya; Bendixen, Alexandra

    2014-07-01

    In two experiments, we assessed the effects of combining different cues of concurrent sound segregation on the object-related negativity (ORN) and the P400 event-related potential components. Participants were presented with sequences of complex tones, half of which contained some manipulation: one or two harmonic partials were mistuned, delayed, or presented from a different location than the rest. In separate conditions, one, two, or three of these manipulations were combined. Participants watched a silent movie (passive listening) or reported after each tone whether they perceived one or two concurrent sounds (active listening). ORN was found in almost all conditions except for location difference alone during passive listening. Combining several cues or manipulating more than one partial consistently led to sub-additive effects on the ORN amplitude. These results support the view that ORN reflects a combined, feature-unspecific assessment of the auditory system regarding the contribution of two sources to the incoming sound. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Attribution of extreme weather and climate-related events.

    Science.gov (United States)

    Stott, Peter A; Christidis, Nikolaos; Otto, Friederike E L; Sun, Ying; Vanderlinden, Jean-Paul; van Oldenborgh, Geert Jan; Vautard, Robert; von Storch, Hans; Walton, Peter; Yiou, Pascal; Zwiers, Francis W

    2016-01-01

    Extreme weather and climate-related events occur in a particular place, by definition, infrequently. It is therefore challenging to detect systematic changes in their occurrence given the relative shortness of observational records. However, there is a clear interest from outside the climate science community in the extent to which recent damaging extreme events can be linked to human-induced climate change or natural climate variability. Event attribution studies seek to determine to what extent anthropogenic climate change has altered the probability or magnitude of particular events. They have shown clear evidence for human influence having increased the probability of many extremely warm seasonal temperatures and reduced the probability of extremely cold seasonal temperatures in many parts of the world. The evidence for human influence on the probability of extreme precipitation events, droughts, and storms is more mixed. Although the science of event attribution has developed rapidly in recent years, geographical coverage of events remains patchy and based on the interests and capabilities of individual research groups. The development of operational event attribution would allow a more timely and methodical production of attribution assessments than currently obtained on an ad hoc basis. For event attribution assessments to be most useful, remaining scientific uncertainties need to be robustly assessed and the results clearly communicated. This requires the continuing development of methodologies to assess the reliability of event attribution results and further work to understand the potential utility of event attribution for stakeholder groups and decision makers. WIREs Clim Change 2016, 7:23-41. doi: 10.1002/wcc.380 For further resources related to this article, please visit the WIREs website.

  20. Gray matter density of auditory association cortex relates to knowledge of sound concepts in primary progressive aphasia.

    Science.gov (United States)

    Bonner, Michael F; Grossman, Murray

    2012-06-06

    Long-term memory integrates the multimodal information acquired through perception into unified concepts, supporting object recognition, thought, and language. While some theories of human cognition have considered concepts to be abstract symbols, recent functional neuroimaging evidence has supported an alternative theory: that concepts are multimodal representations associated with the sensory and motor systems through which they are acquired. However, few studies have examined the effects of cortical lesions on the sensory and motor associations of concepts. We tested the hypothesis that individuals with disease in auditory association cortex would have difficulty processing concepts with strong sound associations (e.g., thunder). Human participants with the logopenic variant of primary progressive aphasia (lvPPA) performed a recognition task on words with strong associations in three modalities: Sound, Sight, and Manipulation. LvPPA participants had selective difficulty on Sound words relative to other modalities. Structural MRI analysis in lvPPA revealed gray matter atrophy in auditory association cortex, as defined functionally in a separate BOLD fMRI study of healthy adults. Moreover, lvPPA showed reduced gray matter density in the region of auditory association cortex that healthy participants activated when processing the same Sound words in a separate BOLD fMRI experiment. Finally, reduced gray matter density in this region in lvPPA directly correlated with impaired performance on Sound words. These findings support the hypothesis that conceptual memories are represented in the sensory and motor association cortices through which they are acquired.

  1. Using auditory-visual speech to probe the basis of noise-impaired consonant-vowel perception in dyslexia and auditory neuropathy

    Science.gov (United States)

    Ramirez, Joshua; Mann, Virginia

    2005-08-01

    Both dyslexics and auditory neuropathy (AN) subjects show inferior consonant-vowel (CV) perception in noise, relative to controls. To better understand these impairments, natural acoustic speech stimuli that were masked in speech-shaped noise at various intensities were presented to dyslexic, AN, and control subjects either in isolation or accompanied by visual articulatory cues. AN subjects were expected to benefit from the pairing of visual articulatory cues and auditory CV stimuli, provided that their speech perception impairment reflects a relatively peripheral auditory disorder. Assuming that dyslexia reflects a general impairment of speech processing rather than a disorder of audition, dyslexics were not expected to similarly benefit from an introduction of visual articulatory cues. The results revealed an increased effect of noise masking on the perception of isolated acoustic stimuli by both dyslexic and AN subjects. More importantly, dyslexics showed less effective use of visual articulatory cues in identifying masked speech stimuli and lower visual baseline performance relative to AN subjects and controls. Last, a significant positive correlation was found between reading ability and the ameliorating effect of visual articulatory cues on speech perception in noise. These results suggest that some reading impairments may stem from a central deficit of speech processing.

  2. Auditory processing during deep propofol sedation and recovery from unconsciousness.

    Science.gov (United States)

    Koelsch, Stefan; Heinke, Wolfgang; Sammler, Daniela; Olthoff, Derk

    2006-08-01

    Using evoked potentials, this study investigated effects of deep propofol sedation, and effects of recovery from unconsciousness, on the processing of auditory information with stimuli suited to elicit a physical MMN, and a (music-syntactic) ERAN. Levels of sedation were assessed using the Bispectral Index (BIS) and the Modified Observer's Assessment of Alertness and Sedation Scale (MOAAS). EEG-measurements were performed during wakefulness, deep propofol sedation (MOAAS 2-3, mean BIS=68), and a recovery period. Between deep sedation and recovery period, the infusion rate of propofol was increased to achieve unconsciousness (MOAAS 0-1, mean BIS=35); EEG measurements of recovery period were performed after subjects regained consciousness. During deep sedation, the physical MMN was markedly reduced, but still significant. No ERAN was observed in this level. A clear P3a was elicited during deep sedation by those deviants, which were task-relevant during the awake state. As soon as subjects regained consciousness during the recovery period, a normal MMN was elicited. By contrast, the P3a was absent in the recovery period, and the P3b was markedly reduced. Results indicate that the auditory sensory memory (as indexed by the physical MMN) is still active, although strongly reduced, during deep sedation (MOAAS 2-3). The presence of the P3a indicates that attention-related processes are still operating during this level. Processes of syntactic analysis appear to be abolished during deep sedation. After propofol-induced anesthesia, the auditory sensory memory appears to operate normal as soon as subjects regain consciousness, whereas the attention-related processes indexed by P3a and P3b are markedly impaired. Results inform about effects of sedative drugs on auditory and attention-related mechanisms. The findings are important because these mechanisms are prerequisites for auditory awareness, auditory learning and memory, as well as language perception during anesthesia.

  3. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.

    Science.gov (United States)

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2016-12-01

    Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of incongruent auditory and visual room-related cues on sound externalization

    DEFF Research Database (Denmark)

    Carvajal, Juan Camilo Gil; Santurette, Sébastien; Cubick, Jens

    Sounds presented via headphones are typically perceived inside the head. However, the illusion of a sound source located out in space away from the listener’s head can be generated with binaural headphone-based auralization systems by convolving anechoic sound signals with a binaural room impulse...... response (BRIR) measured with miniature microphones placed in the listener’s ear canals. Sound externalization of such virtual sounds can be very convincing and robust but there have been reports that the illusion might break down when the listening environment differs from the room in which the BRIRs were...... recorded [1,2,3]. This may be due to incongruent auditory cues between the recording and playback room during sound reproduction [2]. Alternatively, an expectation effect caused by the visual impression of the room may affect the position of the perceived auditory image [3]. Here, we systematically...

  5. Event-by-event simulation of single-neutron experiments to test uncertainty relations

    International Nuclear Information System (INIS)

    Raedt, H De; Michielsen, K

    2014-01-01

    Results from a discrete-event simulation of a recent single-neutron experiment that tests Ozawa's generalization of Heisenberg's uncertainty relation are presented. The event-based simulation algorithm reproduces the results of the quantum theoretical description of the experiment but does not require the knowledge of the solution of a wave equation, nor does it rely on detailed concepts of quantum theory. In particular, the data from these non-quantum simulations satisfy uncertainty relations derived in the context of quantum theory. (paper)

  6. Learning-dependent plasticity in human auditory cortex during appetitive operant conditioning.

    Science.gov (United States)

    Puschmann, Sebastian; Brechmann, André; Thiel, Christiane M

    2013-11-01

    Animal experiments provide evidence that learning to associate an auditory stimulus with a reward causes representational changes in auditory cortex. However, most studies did not investigate the temporal formation of learning-dependent plasticity during the task but rather compared auditory cortex receptive fields before and after conditioning. We here present a functional magnetic resonance imaging study on learning-related plasticity in the human auditory cortex during operant appetitive conditioning. Participants had to learn to associate a specific category of frequency-modulated tones with a reward. Only participants who learned this association developed learning-dependent plasticity in left auditory cortex over the course of the experiment. No differential responses to reward predicting and nonreward predicting tones were found in auditory cortex in nonlearners. In addition, learners showed similar learning-induced differential responses to reward-predicting and nonreward-predicting tones in the ventral tegmental area and the nucleus accumbens, two core regions of the dopaminergic neurotransmitter system. This may indicate a dopaminergic influence on the formation of learning-dependent plasticity in auditory cortex, as it has been suggested by previous animal studies. Copyright © 2012 Wiley Periodicals, Inc.

  7. A Review of Auditory Prediction and Its Potential Role in Tinnitus Perception.

    Science.gov (United States)

    Durai, Mithila; O'Keeffe, Mary G; Searchfield, Grant D

    2018-06-01

    The precise mechanisms underlying tinnitus perception and distress are still not fully understood. A recent proposition is that auditory prediction errors and related memory representations may play a role in driving tinnitus perception. It is of interest to further explore this. To obtain a comprehensive narrative synthesis of current research in relation to auditory prediction and its potential role in tinnitus perception and severity. A narrative review methodological framework was followed. The key words Prediction Auditory, Memory Prediction Auditory, Tinnitus AND Memory, Tinnitus AND Prediction in Article Title, Abstract, and Keywords were extensively searched on four databases: PubMed, Scopus, SpringerLink, and PsychINFO. All study types were selected from 2000-2016 (end of 2016) and had the following exclusion criteria applied: minimum age of participants article not available in English. Reference lists of articles were reviewed to identify any further relevant studies. Articles were short listed based on title relevance. After reading the abstracts and with consensus made between coauthors, a total of 114 studies were selected for charting data. The hierarchical predictive coding model based on the Bayesian brain hypothesis, attentional modulation and top-down feedback serves as the fundamental framework in current literature for how auditory prediction may occur. Predictions are integral to speech and music processing, as well as in sequential processing and identification of auditory objects during auditory streaming. Although deviant responses are observable from middle latency time ranges, the mismatch negativity (MMN) waveform is the most commonly studied electrophysiological index of auditory irregularity detection. However, limitations may apply when interpreting findings because of the debatable origin of the MMN and its restricted ability to model real-life, more complex auditory phenomenon. Cortical oscillatory band activity may act as

  8. Can echoic memory store two traces simultaneously? A study of event-related brain potentials.

    Science.gov (United States)

    Winkler, I; Paavilainen, P; Näätänen, R

    1992-05-01

    The mismatch negativity, a component of the event-related brain potential elicited by infrequent deviants in sequences of auditory stimuli, is presumably generated by an automatic mismatch process in a mechanism that compares the current stimulus to the trace of the previous one. The present study addressed the possible simultaneous existence of two such traces. Two equiprobable (45% each) frequent stimuli ("standards"), one of 600 Hz and the other of 700 Hz, were presented together with an infrequent (10%), "deviant" stimulus which was of different frequency in different blocks. These deviants elicited a mismatch negativity, though a smaller one than that obtained in corresponding blocks with only one standard stimulus. Two aspects of the present results from the blocks with two standard stimuli implicate two parallel stimulus traces in these blocks: 1) deviants elicited a mismatch negativity (MMN) of approximately the same amplitude when preceded by sequences of four identical standards as when preceded by sequences of four stimuli containing both standards; 2) in contrast to the one-standard condition, the magnitude of stimulus deviance did not affect the MMN component elicited by the different deviants.

  9. Evaluation of peripheral auditory pathways and brainstem in obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Erika Matsumura

    Full Text Available Abstract Introduction Obstructive sleep apnea causes changes in normal sleep architecture, fragmenting it chronically with intermittent hypoxia, leading to serious health consequences in the long term. It is believed that the occurrence of respiratory events during sleep, such as apnea and hypopnea, can impair the transmission of nerve impulses along the auditory pathway that are highly dependent on the supply of oxygen. However, this association is not well established in the literature. Objective To compare the evaluation of peripheral auditory pathway and brainstem among individuals with and without obstructive sleep apnea. Methods The sample consisted of 38 adult males, mean age of 35.8 (±7.2, divided into four groups matched for age and Body Mass Index. The groups were classified based on polysomnography in: control (n = 10, mild obstructive sleep apnea (n = 11 moderate obstructive sleep apnea (n = 8 and severe obstructive sleep apnea (n = 9. All study subjects denied a history of risk for hearing loss and underwent audiometry, tympanometry, acoustic reflex and Brainstem Auditory Evoked Response. Statistical analyses were performed using three-factor ANOVA, 2-factor ANOVA, chi-square test, and Fisher's exact test. The significance level for all tests was 5%. Results There was no difference between the groups for hearing thresholds, tympanometry and evaluated Brainstem Auditory Evoked Response parameters. An association was observed between the presence of obstructive sleep apnea and changes in absolute latency of wave V (p = 0.03. There was an association between moderate obstructive sleep apnea and change of the latency of wave V (p = 0.01. Conclusion The presence of obstructive sleep apnea is associated with changes in nerve conduction of acoustic stimuli in the auditory pathway in the brainstem. The increase in obstructive sleep apnea severity does not promote worsening of responses assessed by audiometry, tympanometry and Brainstem

  10. Attentional modulation of auditory steady-state responses.

    Science.gov (United States)

    Mahajan, Yatin; Davis, Chris; Kim, Jeesun

    2014-01-01

    Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.

  11. Developmental programming of auditory learning

    Directory of Open Access Journals (Sweden)

    Melania Puddu

    2012-10-01

    Full Text Available The basic structures involved in the development of auditory function and consequently in language acquisition are directed by genetic code, but the expression of individual genes may be altered by exposure to environmental factors, which if favorable, orient it in the proper direction, leading its development towards normality, if unfavorable, they deviate it from its physiological course. Early sensorial experience during the foetal period (i.e. intrauterine noise floor, sounds coming from the outside and attenuated by the uterine filter, particularly mother’s voice and modifications induced by it at the cochlear level represent the first example of programming in one of the earliest critical periods in development of the auditory system. This review will examine the factors that influence the developmental programming of auditory learning from the womb to the infancy. In particular it focuses on the following points: the prenatal auditory experience and the plastic phenomena presumably induced by it in the auditory system from the basilar membrane to the cortex;the involvement of these phenomena on language acquisition and on the perception of language communicative intention after birth;the consequences of auditory deprivation in critical periods of auditory development (i.e. premature interruption of foetal life.

  12. Relating binaural pitch perception to the individual listener's auditory profile.

    Science.gov (United States)

    Santurette, Sébastien; Dau, Torsten

    2012-04-01

    The ability of eight normal-hearing listeners and fourteen listeners with sensorineural hearing loss to detect and identify pitch contours was measured for binaural-pitch stimuli and salience-matched monaurally detectable pitches. In an effort to determine whether impaired binaural pitch perception was linked to a specific deficit, the auditory profiles of the individual listeners were characterized using measures of loudness perception, cognitive ability, binaural processing, temporal fine structure processing, and frequency selectivity, in addition to common audiometric measures. Two of the listeners were found not to perceive binaural pitch at all, despite a clear detection of monaural pitch. While both binaural and monaural pitches were detectable by all other listeners, identification scores were significantly lower for binaural than for monaural pitch. A total absence of binaural pitch sensation coexisted with a loss of a binaural signal-detection advantage in noise, without implying reduced cognitive function. Auditory filter bandwidths did not correlate with the difference in pitch identification scores between binaural and monaural pitches. However, subjects with impaired binaural pitch perception showed deficits in temporal fine structure processing. Whether the observed deficits stemmed from peripheral or central mechanisms could not be resolved here, but the present findings may be useful for hearing loss characterization.

  13. Connectivity in the human brain dissociates entropy and complexity of auditory inputs.

    Science.gov (United States)

    Nastase, Samuel A; Iacovella, Vittorio; Davis, Ben; Hasson, Uri

    2015-03-01

    Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators. Copyright © 2014. Published by Elsevier Inc.

  14. Age-related changes in calbindin and calretinin immunoreactivity in the central auditory system of the rat

    Czech Academy of Sciences Publication Activity Database

    Ouda, Ladislav; Burianová, Jana; Syka, Josef

    2012-01-01

    Roč. 47, č. 7 (2012), s. 497-506 ISSN 0531-5565 R&D Projects: GA ČR(CZ) GAP304/12/1342; GA ČR(CZ) GBP304/12/G069 Institutional research plan: CEZ:AV0Z50390512 Institutional support: RVO:68378041 Keywords : central auditory structures * calcium-binding proteins * central auditory structures Subject RIV: FH - Neurology Impact factor: 3.911, year: 2012

  15. Visual Input Enhances Selective Speech Envelope Tracking in Auditory Cortex at a ‘Cocktail Party’

    Science.gov (United States)

    Golumbic, Elana Zion; Cogan, Gregory B.; Schroeder, Charles E.; Poeppel, David

    2013-01-01

    Our ability to selectively attend to one auditory signal amidst competing input streams, epitomized by the ‘Cocktail Party’ problem, continues to stimulate research from various approaches. How this demanding perceptual feat is achieved from a neural systems perspective remains unclear and controversial. It is well established that neural responses to attended stimuli are enhanced compared to responses to ignored ones, but responses to ignored stimuli are nonetheless highly significant, leading to interference in performance. We investigated whether congruent visual input of an attended speaker enhances cortical selectivity in auditory cortex, leading to diminished representation of ignored stimuli. We recorded magnetoencephalographic (MEG) signals from human participants as they attended to segments of natural continuous speech. Using two complementary methods of quantifying the neural response to speech, we found that viewing a speaker’s face enhances the capacity of auditory cortex to track the temporal speech envelope of that speaker. This mechanism was most effective in a ‘Cocktail Party’ setting, promoting preferential tracking of the attended speaker, whereas without visual input no significant attentional modulation was observed. These neurophysiological results underscore the importance of visual input in resolving perceptual ambiguity in a noisy environment. Since visual cues in speech precede the associated auditory signals, they likely serve a predictive role in facilitating auditory processing of speech, perhaps by directing attentional resources to appropriate points in time when to-be-attended acoustic input is expected to arrive. PMID:23345218

  16. Safety in the operating room during orthopedic trauma surgery-incidence of adverse events related to technical equipment and logistics

    NARCIS (Netherlands)

    van Delft, E. A. K.; Schepers, T.; Bonjer, H. J.; Kerkhoffs, G. M. M. J.; Goslings, J. C.; Schep, N. W. L.

    2017-01-01

    Safety in the operating room is widely debated. Adverse events during surgery are potentially dangerous for the patient and staff. The incidence of adverse events during orthopedic trauma surgery is unknown. Therefore, we performed a study to quantify the incidence of these adverse events. Primary

  17. The influence of visual information on auditory processing in individuals with congenital amusia: An ERP study.

    Science.gov (United States)

    Lu, Xuejing; Ho, Hao T; Sun, Yanan; Johnson, Blake W; Thompson, William F

    2016-07-15

    While most normal hearing individuals can readily use prosodic information in spoken language to interpret the moods and feelings of conversational partners, people with congenital amusia report that they often rely more on facial expressions and gestures, a strategy that may compensate for deficits in auditory processing. In this investigation, we used EEG to examine the extent to which individuals with congenital amusia draw upon visual information when making auditory or audio-visual judgments. Event-related potentials (ERP) were elicited by a change in pitch (up or down) between two sequential tones paired with a change in spatial position (up or down) between two visually presented dots. The change in dot position was either congruent or incongruent with the change in pitch. Participants were asked to judge (1) the direction of pitch change while ignoring the visual information (AV implicit task), and (2) whether the auditory and visual changes were congruent (AV explicit task). In the AV implicit task, amusic participants performed significantly worse in the incongruent condition than control participants. ERPs showed an enhanced N2-P3 response to incongruent AV pairings for control participants, but not for amusic participants. However when participants were explicitly directed to detect AV congruency, both groups exhibited enhanced N2-P3 responses to incongruent AV pairings. These findings indicate that amusics are capable of extracting information from both modalities in an AV task, but are biased to rely on visual information when it is available, presumably because they have learned that auditory information is unreliable. We conclude that amusic individuals implicitly draw upon visual information when judging auditory information, even though they have the capacity to explicitly recognize conflicts between these two sensory channels. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Auditory short-term memory in the primate auditory cortex

    OpenAIRE

    Scott, Brian H.; Mishkin, Mortimer

    2015-01-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ���working memory��� bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive sho...

  19. Primate auditory recognition memory performance varies with sound type.

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2009-10-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g., social status, kinship, environment), have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition and/or memory. The present study employs a delayed matching-to-sample task with auditory stimuli to examine auditory memory performance of rhesus macaques (Macaca mulatta), wherein two sounds are determined to be the same or different. Rhesus macaques seem to have relatively poor short-term memory with auditory stimuli, and we examine if particular sound types are more favorable for memory performance. Experiment 1 suggests memory performance with vocalization sound types (particularly monkey), are significantly better than when using non-vocalization sound types, and male monkeys outperform female monkeys overall. Experiment 2, controlling for number of sound exemplars and presentation pairings across types, replicates Experiment 1, demonstrating better performance or decreased response latencies, depending on trial type, to species-specific monkey vocalizations. The findings cannot be explained by acoustic differences between monkey vocalizations and the other sound types, suggesting the biological, and/or ethological meaning of these sounds are more effective for auditory memory. 2009 Elsevier B.V.

  20. Temporal Integration of Auditory Stimulation and Binocular Disparity Signals

    Directory of Open Access Journals (Sweden)

    Marina Zannoli

    2011-10-01

    Full Text Available Several studies using visual objects defined by luminance have reported that the auditory event must be presented 30 to 40 ms after the visual stimulus to perceive audiovisual synchrony. In the present study, we used visual objects defined only by their binocular disparity. We measured the optimal latency between visual and auditory stimuli for the perception of synchrony using a method introduced by Moutoussis & Zeki (1997. Visual stimuli were defined either by luminance and disparity or by disparity only. They moved either back and forth between 6 and 12 arcmin or from left to right at a constant disparity of 9 arcmin. This visual modulation was presented together with an amplitude-modulated 500 Hz tone. Both modulations were sinusoidal (frequency: 0.7 Hz. We found no difference between 2D and 3D motion for luminance stimuli: a 40 ms auditory lag was necessary for perceived synchrony. Surprisingly, even though stereopsis is often thought to be slow, we found a similar optimal latency in the disparity 3D motion condition (55 ms. However, when participants had to judge simultaneity for disparity 2D motion stimuli, it led to larger latencies (170 ms, suggesting that stereo motion detectors are poorly suited to track 2D motion.