WorldWideScience

Sample records for quadruple suspension design

  1. Quadruple suspension design for Advanced LIGO

    International Nuclear Information System (INIS)

    Robertson, N A; Cagnoli, G; Crooks, D R M; Elliffe, E; Faller, J E; Fritschel, P; Gossler, S; Grant, A; Heptonstall, A; Hough, J; Lueck, H; Mittleman, R; Perreur-Lloyd, M; Plissi, M V; Rowan, S; Shoemaker, D H; Sneddon, P H; Strain, K A; Torrie, C I; Ward, H; Willems, P

    2002-01-01

    In this paper, we describe the conceptual design for the suspension system for the test masses for Advanced LIGO, the planned upgrade to LIGO, the US laser interferometric gravitational-wave observatory. The design is based on the triple pendulum design developed for GEO 600 - the German/UK interferometric gravitational wave detector. The GEO design incorporates fused silica fibres of circular cross-section attached to the fused silica mirror (test mass) in the lowest pendulum stage, in order to minimize the thermal noise from the pendulum modes. The damping of the low-frequency modes of the triple pendulum is achieved by using co-located sensors and actuators at the highest mass of the triple pendulum. Another feature of the design is that global control forces acting on the mirrors, used to maintain the output of the interferometer on a dark fringe, are applied via a triple reaction pendulum, so that these forces can be implemented via a seismically isolated platform. These techniques have been extended to meet the more stringent noise levels planned for in Advanced LIGO. In particular, the Advanced LIGO baseline design requires a quadruple pendulum with a final stage consisting of a 40 kg sapphire mirror, suspended on fused silica ribbons or fibres. The design is chosen to aim to reach a target noise contribution from the suspension corresponding to a displacement sensitivity of 10 -19 m Hz -1/2 at 10 Hz at each of the test masses

  2. Update on quadruple suspension design for Advanced LIGO

    International Nuclear Information System (INIS)

    Aston, S M; Carbone, L; Cutler, R M; Hoyland, D; Barton, M A; Bland, B; Bell, A S; Beveridge, N; Cagnoli, G; Cantley, C A; Cumming, A V; Cunningham, L; Hammond, G D; Haughian, K; Hough, J; Brummitt, A J; Greenhalgh, R J S; Hayler, T M; Heptonstall, A; Heefner, J

    2012-01-01

    We describe the design of the suspension systems for the major optics for Advanced LIGO, the upgrade to LIGO—the Laser Interferometric Gravitational-Wave Observatory. The design is based on that used in GEO600—the German/UK interferometric gravitational wave detector, with further development to meet the more stringent noise requirements for Advanced LIGO. The test mass suspensions consist of a four-stage or quadruple pendulum for enhanced seismic isolation. To minimize suspension thermal noise, the final stage consists of a silica mirror, 40 kg in mass, suspended from another silica mass by four silica fibres welded to silica ears attached to the sides of the masses using hydroxide-catalysis bonding. The design is chosen to achieve a displacement noise level for each of the seismic and thermal noise contributions of 10 −19 m/√Hz at 10 Hz, for each test mass. We discuss features of the design which has been developed as a result of experience with prototypes and associated investigations. (paper)

  3. Optimal Design of a Center Support Quadruple Mass Gyroscope (CSQMG

    Directory of Open Access Journals (Sweden)

    Tian Zhang

    2016-04-01

    Full Text Available This paper reports a more complete description of the design process of the Center Support Quadruple Mass Gyroscope (CSQMG, a gyro expected to provide breakthrough performance for flat structures. The operation of the CSQMG is based on four lumped masses in a circumferential symmetric distribution, oscillating in anti-phase motion, and providing differential signal extraction. With its 4-fold symmetrical axes pattern, the CSQMG achieves a similar operation mode to Hemispherical Resonant Gyroscopes (HRGs. Compared to the conventional flat design, four Y-shaped coupling beams are used in this new pattern in order to adjust mode distribution and enhance the synchronization mechanism of operation modes. For the purpose of obtaining the optimal design of the CSQMG, a kind of applicative optimization flow is developed with a comprehensive derivation of the operation mode coordination, the pseudo mode inhibition, and the lumped mass twisting motion elimination. The experimental characterization of the CSQMG was performed at room temperature, and the center operation frequency is 6.8 kHz after tuning. Experiments show an Allan variance stability 0.12°/h (@100 s and a white noise level about 0.72°/h/√Hz, which means that the CSQMG possesses great potential to achieve navigation grade performance.

  4. Robust Tensioned Kevlar Suspension Design

    Science.gov (United States)

    Young, Joseph B.; Naylor, Bret J.; Holmes, Warren A.

    2012-01-01

    One common but challenging problem in cryogenic engineering is to produce a mount that has excellent thermal isolation but is also rigid. Such mounts can be achieved by suspending the load from a network of fibers or strings held in tension. Kevlar fibers are often used for this purpose owing to their high strength and low thermal conductivity. A suite of compact design elements has been developed to improve the reliability of suspension systems made of Kevlar.

  5. Design and reliability, availability, maintainability, and safety analysis of a high availability quadruple vital computer system

    Institute of Scientific and Technical Information of China (English)

    Ping TAN; Wei-ting HE; Jia LIN; Hong-ming ZHAO; Jian CHU

    2011-01-01

    With the development of high-speed railways in China,more than 2000 high-speed trains will be put into use.Safety and efficiency of railway transportation is increasingly important.We have designed a high availability quadruple vital computer (HAQVC) system based on the analysis of the architecture of the traditional double 2-out-of-2 system and 2-out-of-3 system.The HAQVC system is a system with high availability and safety,with prominent characteristics such as fire-new internal architecture,high efficiency,reliable data interaction mechanism,and operation state change mechanism.The hardware of the vital CPU is based on ARM7 with the real-time embedded safe operation system (ES-OS).The Markov modeling method is designed to evaluate the reliability,availability,maintainability,and safety (RAMS) of the system.In this paper,we demonstrate that the HAQVC system is more reliable than the all voting triple modular redundancy (AVTMR) system and double 2-out-of-2 system.Thus,the design can be used for a specific application system,such as an airplane or high-speed railway system.

  6. Design of dual band FSS by using quadruple L-slot technique

    Science.gov (United States)

    Fauzi, Noor Azamiah Md; Aziz, Mohamad Zoinol Abidin Abd.; Said, Maizatul Alice Meor; Othman, Mohd Azlishah; Ahmad, Badrul Hisham; Malek, Mohd Fareq Abd

    2015-05-01

    This paper presents a new design of dual band frequency selective surface (FSS) for band pass microwave transmission application. FSS can be used on energy saving glass to improve the transmission of wireless communication signals through the glass. The microwave signal will be attenuate when propagate throughout the different structure such as building. Therefore, some of the wireless communication system cannot be used in the optimum performance. The aim of this paper is designed, simulated and analyzed the new dual band FSS structure for microwave transmission. This design is based on a quadruple L slot combined with cross slot to produce pass band at 900 MHz and 2.4 GHz. The vertical of pair inverse L slot is used as the band pass for the frequency of 2.4GHz. While, the horizontal of pair inverse L slot is used as the band pass at frequency 900MHz. This design is simulated and analyzed by using Computer Simulation Technology (CST) Microwave Studio (MWS) software. The characteristics of the transmission (S21) and reflection (S11) of the dual band FSS were simulater and analyzed. The bandwidth of the first band is 118.91MHz which covered the frequency range from 833.4MHz until 952.31MHz. Meanwhile, the bandwidth for the second band is 358.84MHz which covered the frequency range from 2.1475GHz until 2.5063GHz. The resonance/center frequency of this design is obtained at 900MHz with a 26.902dB return loss and 2.37GHz with 28.506dB a return loss. This FSS is suitable as microwave filter for GSM900 and WLAN 2.4GHz application.

  7. Design analysis of formula student race car suspension system

    Science.gov (United States)

    Wirawan, Julian Wisnu; Ubaidillah, Aditra, Rama; Alnursyah, Rafli; Rahman, Rizki Abdul; Cahyono, Sukmaji Indro

    2018-02-01

    Design analysis of suspension especially for racecar suspension is very crucial to achieve maximum performance and handling. Suspension design may vary depending on the road terrain and the vehicle purpose itself, such as high speed or off-road vehicle. This paper focused on the suspension which used for racecar vehicle. The suspension type used was unequal double wishbone. This model is used because of its stability for high-speed usage compared to another kind of suspension. The suspension parameter was calculated to achieve desired performance. The result is the motion ratio of the designed suspension geometry. The obtained value of motion ratio was 1:2 for front suspension and 1:1 for the rear suspension. These calculation result the front suspension is still too soft, which the optimal motion ratio should be kept around 1:1 for better handling. This problem caused by the lack of space for suspension linkage.

  8. Reduction of measurement uncertainty by experimental design in high-order (double, triple, and quadruple) isotope dilution mass spectrometry: application to GC-MS measurement of bromide.

    Science.gov (United States)

    Pagliano, Enea; Mester, Zoltán; Meija, Juris

    2013-03-01

    Since its introduction a century ago, isotope dilution analysis has played a central role in developments of analytical chemistry. This method has witnessed many elaborations and developments over the years. To date, we have single, double, and even triple isotope dilution methods. In this manuscript, we summarize the conceptual aspects of isotope dilution methods and introduce the quadruple dilution and the concept of exact matching triple and quadruple dilutions. The comparison of isotope dilution methods is performed by determination of bromide ions in groundwater using novel ethyl-derivatization chemistry in conjunction with GC/MS. We show that the benefits of higher-order isotope dilution methods are countered with a greater need for careful experimental design of the isotopic blends. Just as for ID(2)MS, ID(3)MS and ID(4)MS perform best when the isotope ratio of one sample/spike blend is matched with that of a standard/spike blend (exact matching).

  9. Design of a suspension system and determining suspension parameters of a medium downforce small Formula type car

    Directory of Open Access Journals (Sweden)

    Biswal Sadjyot

    2017-01-01

    Full Text Available The focus of the paper is on designing a suspension system for a medium downforce small Formula type race car. The paper not only focusses on step by step design for a double wishbone type suspension but will also show the use and role of kinematics software in determining the optimized suspension of the car. The paper will also focus on the use of tire data in determining suspension parameters and the design of the double wishbone suspension. Various parameters, their design importance and the process to optimize them according to suspension design goals will be covered. The easiest and best ways to change the suspension parameters to get the best results will also be covered.

  10. 3D modeling design and engineering analysis of automotive suspension beam

    Directory of Open Access Journals (Sweden)

    Ju Zhi Lan

    2016-01-01

    Full Text Available Automotive suspension is an important device for transmission and torque. The main parameters and dimensions of 40 tons of heavy duty truck spring suspension system are designed in the paper. According to the data, the 3D modeling and virtual assembly of the leaf spring suspension are carried out by using parametric design. Structural stress of spring suspension is analyzed which can provide a guide and basis for the design of the leaf spring suspension.

  11. Design and analysis of the SSC [Superconducting Super Collider] dipole magnet suspension system

    International Nuclear Information System (INIS)

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1989-03-01

    The design of the suspension system for Superconducting Super Collider (SSC) dipole magnets has been driven by rigorous thermal and structural requirements. The current system, designed to meet those requirements, represents a significant departure from previous superconducting magnet suspension system designs. This paper will present a summary of the design and analysis of the vertical and lateral suspension as well as the axial anchor system employed in SSC dipole magnets. 5 refs., 9 figs., 4 tabs

  12. Design and analysis of an intelligent controller for active geometry suspension systems

    Science.gov (United States)

    Goodarzi, Avesta; Oloomi, Ehsan; Esmailzadeh, Ebrahim

    2011-02-01

    An active geometry suspension (AGS) system is a device to optimise suspension-related factors such as toe angle and roll centre height by controlling vehicle's suspension geometry. The suspension geometry could be changed through control of suspension mounting point's position. In this paper, analysis and control of an AGS system is addressed. First, the effects of suspension geometry change on roll centre height and toe angle are studied. Then, based on an analytical approach, the improvement of the vehicle's stability and handling due to the control of suspension geometry is investigated. In the next section, an eight-degree-of-freedom handling model of a sport utility vehicle equipped with an AGS system is introduced. Finally, a self-tuning proportional-integral controller has been designed, using the fuzzy control theory, to control the actuator that changes the geometry of the suspension system. The simulation results show that an AGS system can improve the handling and stability of the vehicle.

  13. Comfort-oriented vehicle suspension design with skyhook inerter configuration

    Science.gov (United States)

    Hu, Yinlong; Chen, Michael Z. Q.; Sun, Yonghui

    2017-09-01

    This paper is concerned with the comfort-oriented vehicle suspension design problem by using a skyhook inerter configuration. The rationale of the skyhook inerter is to use a grounded inerter to virtually increase the sprung mass of a vehicle, as it is analytically demonstrated that increasing the sprung mass can always improve the ride comfort performance. Semi-active means to realize the skyhook inerter configuration are investigated by using semi-active inerters. Three control laws, that is the on-off control, the anti-chatter on-off control, and the continuous control, are proposed for the semi-active inerter to approximate the skyhook inerter. Numerical simulations are performed to demonstrate the effectiveness and performances of these control laws. It is shown that the semi-active realizations of the skyhook inerter by using the proposed control laws can achieve over 10% improvement compared with the traditional strut, and similar performances are obtained for these control laws, with slight differences with respect to different static stiffnesses of the suspension system.

  14. Design and test of a novel magnetic lead screw for active suspension system in a vehicle

    DEFF Research Database (Denmark)

    Berg, Nick Ilsø; Holm, Rasmus Koldborg; Rasmussen, Peter Omand

    2014-01-01

    . Furthermore the Magnetic Lead Screw is introduced and its benefits when used with an active suspension system are discussed. Based on a model of a quarter car, the design specifications for the MLS active suspension system are found, which leads to a design study. The design study investigates the relation...

  15. Integrated quadruple stress echocardiography.

    Science.gov (United States)

    Picano, Eugenio; Morrone, Doralisa; Scali, Maria C; Huqi, Alda; Coviello, Katia; Ciampi, Quirino

    2018-04-11

    Stress Echocardiography (SE) is an established diagnostic technique. For 40 years, the cornerstone of the technique has been the detection of regional wall motion abnormalities (RWMA), due to the underlying physiologically-relevant epicardial coronary artery stenosis. In the last decade, three new parameters (more objective than RWMA) have shown the potential to integrate and comple- ment RWMA: 1- B-lines, also known as ultrasound lung comets, as a marker of extra-vascular lung water, measured using lung ultrasound with the 4-site simplified scan symmetrically of the antero- lateral thorax on the third intercostal space, from mid-axillary to anterior axillary and mid- clavicular line; 2-left ventricular contractile reserve (LVCR), assessed as the peak stress/rest ratio of left ventricular force, also known as elastance (systolic arterial pressure by cuff sphygmomanome- ter/end-systolic volume from 2D echocardiography); 3- coronary flow velocity reserve (CFVR) on left anterior descending coronary artery, calculated as peak stress/rest ratio of diastolic peak flow velocity assessed using pulsed-wave Doppler. The 4 parameters (RWMA, B-lines, LVCR and CFVR) now converge conceptually, logistically, and methodologically in the Integrated Quadruple (IQ)-SE. IQ-SE optimizes the versatility of SE to include in a one-stop shop the core "ABCD" (Asynergy+B-lines+Contractile reserve+Doppler flowmetry) protocol. It allows a synoptic assess- ment of parameters mirroring the epicardial artery stenosis (RWMA), interstitial lung water (B- lines), myocardial function (LVCR) and small coronary vessels (CFVR). Each variable has a clear clinical correlate, different and complementary to all others: RWMA identify an ischemic vs non- ischemic heart; B-lines a wet vs dry lung; LVCR a strong vs weak heart; CFVR a warm vs cold heart. IQ-SE is highly feasible, with minimal increase in the imaging and analysis time, and obvi- ous diagnostic and prognostic impact also beyond coronary artery

  16. Design considerations for a semi-active electromagnetic suspension system

    NARCIS (Netherlands)

    Paulides, J.J.H.; Encica, L.; Lomonova, E.A.; Vandenput, A.J.A.

    2006-01-01

    Vehicle manufacturers always strive to improve the vehicle handling and passenger safety and comfort. One of the focus points for the automotive industry is the (semi-)active suspension system for which various commercial technologies are existing, varying from pneumatic to hydraulic. This paper

  17. Design of LQG Controller for Active Suspension without Considering Road Input Signals

    Directory of Open Access Journals (Sweden)

    Hui Pang

    2017-01-01

    Full Text Available As the road conditions are completely unknown in the design of a suspension controller, an improved linear quadratic and Gaussian distributed (LQG controller is proposed for active suspension system without considering road input signals. The main purpose is to optimize the vehicle body acceleration, pitching angular acceleration, displacement of suspension system, and tire dynamic deflection comprehensively. Meanwhile, it will extend the applicability of the LQG controller. Firstly, the half-vehicle and road input mathematical models of an active suspension system are established, with the weight coefficients of each evaluating indicator optimized by using genetic algorithm (GA. Then, a simulation model is built in Matlab/Simulink environment. Finally, a comparison of simulation is conducted to illustrate that the proposed LQG controller can obtain the better comprehensive performance of vehicle suspension system and improve riding comfort and handling safety compared to the conventional one.

  18. Microfluidic Fabrication Solutions for Tailor-Designed Fiber Suspensions

    Directory of Open Access Journals (Sweden)

    Helene Berthet

    2016-11-01

    Full Text Available Fibers are widely used in different industrial processes, for example in paper manufacturing or lost circulation problems in the oil industry. Recently, interest towards the use of fibers at the microscale has grown, driven by research in bio-medical applications or drug delivery systems. Microfluidic systems are not only directly relevant for lab-on-chip applications, but have also proven to be good model systems to tackle fundamental questions about the flow of fiber suspensions. It has therefore become necessary to provide fiber-like particles with an excellent control of their properties. We present here two complementary in situ methods to fabricate controlled micro-fibers allowing for an embedded fabrication and flow-on-a-chip platform. The first one, based on a photo-lithography principle, can be used to make isolated fibers and dilute fiber suspensions at specific locations of interest inside a microchannel. The self-assembly property of super-paramagnetic colloids is the principle of the second fabrication method, which enables the fabrication of concentrated suspensions of more flexible fibers. We propose a flow gallery with several examples of fiber flow illustrating the two methods’ capabilities and a range of recent laminar flow results.

  19. Kineto-dynamic design optimisation for vehicle-specific seat-suspension systems

    Science.gov (United States)

    Shangguan, Wen-Bin; Shui, Yijie; Rakheja, Subhash

    2017-11-01

    Designs and analyses of seat-suspension systems are invariably performed considering effective vertical spring rate and damping properties, while neglecting important contributions due to kinematics of the widely used cross-linkage mechanism. In this study, a kineto-dynamic model of a seat-suspension is formulated to obtain relations for effective vertical suspension stiffness and damping characteristics as functions of those of the air spring and the hydraulic damper, respectively. The proposed relations are verified through simulations of the multi-body dynamic model of the cross-linkage seat-suspension in the ADAMS platform. The validity of the kineto-dynamic model is also demonstrated through comparisons of its vibration transmission response with the experimental data. The model is used to identify optimal air spring coordinates to attain nearly constant natural frequency of the suspension, irrespective of the seated body mass and seated height. A methodology is further proposed to identify optimal damping requirements for vehicle-specific suspension designs to achieve minimal seat effective amplitude transmissibility (SEAT) and vibration dose value (VDV) considering vibration spectra of different classes of earthmoving vehicles. The shock and vibration isolation performance potentials of the optimal designs are evaluated under selected vehicle vibration superimposed with shock motions. Results show that the vehicle-specific optimal designs could provide substantial reductions in the SEAT and VDV values for the vehicle classes considered.

  20. Time response analysis in suspension system design of a high-speed car

    Science.gov (United States)

    Pagwiwoko, Cosmas Pandit

    2010-03-01

    A land speed record vehicle is designed to run on a flat surface like salt lake where the wheels are normally made from solid metal with a special suspension system. The suspension is designed to provide a stable platform to keep the wheel treads on tract, to insulate the car and the driver from the surface irregularities and to take part of good handling properties. The surface condition of the lake beds is basically flat without undulations but with inconsistent surface textures and ridges. Spring with nonlinear rate is used with the reason that the resistance builds up roughly proportional to the aerodynamic download for keeping the height more nearly constant. The objective of the work is to produce an efficient method for assisting the design of suspension system. At the initial step, the stiffness and the damping constants are determined based on RMS optimization by following the optimization strategy i.e. to minimize the absolute acceleration respect to the relative displacement of the suspension. Power bond graph technique is then used to model the nonlinearity of the components i.e. spring and dashpot of the suspension system. This technique also enables to incorporate the interactions of dynamic response of the vehicle's body with aerodynamic flow as a result of the base excitation of the ground to the wheels. The simulation is conducted on the platform of Simulink-MATLAB and the interactions amongst the components within the system are observed in time domain to evaluate the effectiveness of the suspension.

  1. Rear suspension design for an in-wheel-drive electric car

    NARCIS (Netherlands)

    George, Ashwin Dayal; Besselink, Igo

    2016-01-01

    The in-wheel motor configuration can provide more flexibility to electric car design, making the car more compact and lightweight. However, current suspension systems are not designed to incorporate an in-wheel powertrain, and studies have shown deterioration in ride comfort and handling when more

  2. Multiobjective Robust Design of the Double Wishbone Suspension System Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Xianfu Cheng

    2014-01-01

    Full Text Available The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system.

  3. Multiobjective Robust Design of the Double Wishbone Suspension System Based on Particle Swarm Optimization

    Science.gov (United States)

    Lin, Yuqun

    2014-01-01

    The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system. PMID:24683334

  4. Multiobjective robust design of the double wishbone suspension system based on particle swarm optimization.

    Science.gov (United States)

    Cheng, Xianfu; Lin, Yuqun

    2014-01-01

    The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system.

  5. Stiffness Parameter Design of Suspension Element of Under-Chassis-Equipment for A Rail Vehicle

    Science.gov (United States)

    Ma, Menglin; Wang, Chengqiang; Deng, Hai

    2017-06-01

    According to the frequency configuration requirements of the vibration of railway under-chassis-equipment, the three- dimension stiffness of the suspension elements of under-chassis-equipment is designed based on the static principle and dynamics principle. The design results of the concrete engineering case show that, compared with the design method based on the static principle, the three- dimension stiffness of the suspension elements designed by the dynamic principle design method is more uniform. The frequency and decoupling degree analysis show that the calculation frequency of under-chassis-equipment under the two design methods is basically the same as the predetermined frequency. Compared with the design method based on the static principle, the design method based on the dynamic principle is adopted. The decoupling degree can be kept high, and the coupling vibration of the corresponding vibration mode can be reduced effectively, which can effectively reduce the fatigue damage of the key parts of the hanging element.

  6. Optimization of Casting Design Parameters on Fabrication of Reliable Semi-Solid Aluminum Suspension Control Arm

    Science.gov (United States)

    Ragab, Kh. A.; Bouaicha, A.; Bouazara, M.

    2017-09-01

    The semi-solid casting process has the advantage of providing reliable mechanical aluminum parts that work continuously in dynamic as control arm of the suspension system in automotive vehicles. The quality performance of dynamic control arm is related to casting mold and gating system designs that affect the fluidity of semi-solid metal during filling the mold. Therefore, this study focuses on improvement in mechanical performance, depending on material characterization, and casting design optimization, of suspension control arms made of A357 aluminum semi-solid alloys. Mechanical and design analyses, applied on the suspension arm, showed the occurrence of mechanical failures at unexpected weak points. Metallurgical analysis showed that the main reason lies in the difficult flow of semi-solid paste through the thin thicknesses of a complex geometry. A design modification procedure is applied to the geometry of the suspension arm to avoid this problem and to improve its quality performance. The design modification of parts was carried out by using SolidWorks design software, evaluation of constraints with ABAQUS, and simulation of flow with ProCast software. The proposed designs showed that the modified suspension arm, without ribs and with a central canvas designed as Z, is considered as a perfect casting design showing an increase in the structural strength of the component. In this case, maximum von Mises stress is 199 MPa that is below the yield strength of the material. The modified casting mold design shows a high uniformity and minim turbulence of molten metal flow during semi-solid casting process.

  7. Design and Optimization of Intelligent Service Robot Suspension System Using Dynamic Model

    International Nuclear Information System (INIS)

    Choi, Seong Hoon; Park, Tae Won; Lee, Soo Ho; Jung, Sung Pil; Jun, Kab Jin; Yoon, J. W.

    2010-01-01

    Recently, an intelligent service robot is being developed for use in guiding and providing information to visitors about the building at public institutions. The intelligent robot has a sensor at the bottom to recognize its location. Four wheels, which are arranged in the form of a lozenge, support the robot. This robot cannot be operated on uneven ground because its driving parts are attached to its main body that contains the important internal components. Continuous impact with the ground can change the precise positions of the components and weaken the connection between each structural part. In this paper, the design of the suspension system for such a robot is described. The dynamic model of the robot is created, and the driving characteristics of the robot with the designed suspension system are simulated. Additionally, the suspension system is optimized to reduce the impact for the robot components

  8. DESIGN AND APPLICATION OF MAGNETIC BEARING SUSPENSION SYSTEM IN A THREE PHASE INDUCTION MOTOR

    Directory of Open Access Journals (Sweden)

    Osman GÜRDAL

    1998-03-01

    Full Text Available The current popularity of suspension and levitation stems no doubt the possibilities in high-speed ground transportation schemes. Although these are both challenging and exciting, there is considerable scope for application of suspension techniques to achieving frictionless bearing. The requirement in this case is often for close tolerances, low power consumption, small airgaps and ingeneral, compactness. Thus, magnetic suspension using DC electromagnets schemes have received more attention than the other techniques of repulsion levitation. Proposed prototype system consists of a conventional stator and its rotor without iron core, set of electromagnets for suspension of rotor shaft and set of compensation circuits feedbacked by optical-transducers. Prototyped system is aimed as a laboratory demonstration tool so there is no challenging to exceed the speeds of 1500 rev/min that is the speed of motor with mechanical bearings. Magnetic bearing suspension system provides a high impact visual demonstration of many principles in undergraduate educational programs in electrical education, e.g., electromagnetic design, PD controlled compensation of a unstable control system and power amplifier design. The system is capable of giving a good comparison between mechanical and magnetic bearing up to speeds 350 rev/min. Power losses without load show about 15% reduction with magnetic bearing. The noise of the motor is also decreased to a low level.

  9. 34 CFR 395.17 - Suspension of designation as State licensing agency.

    Science.gov (United States)

    2010-07-01

    ... protection of Federal property on which vending machines subject to the requirements of § 395.32 are located in the State. Upon the suspension of such designation, vending machine income from vending machines... maintenance, operation and protection of the Federal property on which such vending machines are located...

  10. Design aspects of an active electromagnetic suspension system for automotive applications

    NARCIS (Netherlands)

    Gysen, B.L.J.; Janssen, J.L.G.; Paulides, J.J.H.; Lomonova, E.A.

    2008-01-01

    This paper is concerned with the design aspects of an active electromagnet suspension system for automotive applications which combines a brushless tubular permanent magnet actuator (TPMA) with a passive spring. This system provides for additional stability and safety by performing active roll and

  11. Design aspects of an active electromagnetic suspension system for automotive applications

    NARCIS (Netherlands)

    Gysen, B.L.J.; Janssen, J.L.G.; Paulides, J.J.H.; Lomonova, E.

    2009-01-01

    This paper is concerned with the design aspects of an active electromagnet suspension system for automotive applications which combines a brushless tubular permanent-magnet actuator with a passive spring. This system provides for additional stability and safety by performing active roll and pitch

  12. The Design and Simulation of the Modular Vehicle Air Suspension Height Control System Based on ECAS

    Directory of Open Access Journals (Sweden)

    Yang Peigang

    2014-02-01

    Full Text Available Based on ECAS, this paper intended to develop a modular air suspension height control system with WABCO4728800010 two-position three way solenoid valves and Free scale MC9S12D64 microprocessor as its core components. And a simulation test was conducted in MATLAB/Simulink environment. The air suspension height control strategy of this system was divided into four modules: start control module, dynamic adjustment module, manual adjustment module and errors adjustment module, which were controlled by module select switch. Simulation tests indicated that the air suspension height control strategy is featured by its logical control accuracy and debug convenience, and the modular design greatly reduced the system complexity and software development cycle and costs as well.

  13. Decoupling Control Design for the Module Suspension Control System in Maglev Train

    Directory of Open Access Journals (Sweden)

    Guang He

    2015-01-01

    Full Text Available An engineering oriented decoupling control method for the module suspension system is proposed to solve the coupling issues of the two levitation units of the module in magnetic levitation (maglev train. According to the format of the system transfer matrix, a modified adjoint transfer matrix based decoupler is designed. Then, a compensated controller is obtained in the light of a desired close loop system performance. Optimization between the performance index and robustness index is also carried out to determine the controller parameters. However, due to the high orders and complexity of the obtained resultant controller, model reduction method is adopted to get a simplified controller with PID structure. Considering the modeling errors of the module suspension system as the uncertainties, experiments have been performed to obtain the weighting function of the system uncertainties. By using this, the robust stability of the decoupled module suspension control system is checked. Finally, the effectiveness of the proposed decoupling design method is validated by simulations and physical experiments. The results illustrate that the presented decoupling design can result in a satisfactory decoupling and better dynamic performance, especially promoting the reliability of the suspension control system in practical engineering application.

  14. DESIGN AN INTELLIGENT CONTROLLER FOR FULL VEHICLE NONLINEAR ACTIVE SUSPENSION SYSTEMS

    OpenAIRE

    Aldair, A. A.; Wang, W. J.

    2011-01-01

    The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF) technique to design a robust controller to meet the control objectives....

  15. Design and experiment study of a semi-active energy-regenerative suspension system

    International Nuclear Information System (INIS)

    Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie

    2015-01-01

    A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration. (paper)

  16. Formulation design of oral pediatric Acetazolamide suspension: dose uniformity and physico-chemical stability study.

    Science.gov (United States)

    Santoveña, Ana; Suárez-González, Javier; Martín-Rodríguez, Cristina; Fariña, José B

    2017-03-01

    The formulation of an active pharmaceutical ingredient (API) as oral solution or suspension in pediatrics is a habitual practice, due to the non-existence of many commercialized medicines in pediatric doses. It is also the simplest way to prepare and administer them to this vulnerable population. The design of a formulation that assures the dose and the system stability depends on the physico-chemical properties of the API. In this study, we formulate a class IV API, Acetazolamide (AZM) as suspension for oral administration to pediatric population. The suspension must comply attributes of quality, safety and efficacy for this route of administration. We use simple compounding procedures, as well as fewer pure excipients, as recommended for children. Mass and uniformity content assays and physical and chemical stability studies were performed. To quantify the API an UPLC method was used. We verified the physico-chemical stability of the suspensions and that they passed the mass test of the European Pharmacopeia (EP), but not the dose uniformity test. This reveals that AZM must be formulated as liquid forms with a more complex system of excipients (not usually indicated in pediatrics), or otherwise solid forms capable of assuring uniformity of mass and dose for every dosage unit.

  17. Nonlinear reset integrator control design: Application to the active suspension control of vehicles

    OpenAIRE

    Acho Zuppa, Leonardo

    2014-01-01

    We present an unexampled reset integrator control design based on the Clegg integrator system. Using an appropriate mathematical model of our Clegg integrator controller, stability proof of the closed-loop system applied to the vibration control problem of a second-order system is shown without invoking hybrid system theory. Furthermore, we illustrate the pplicability of our controller, from the numerical experiment point of view, to the suspension vibration control of vehicles.

  18. Optimization of Automotive Suspension System by Design of Experiments: A Nonderivative Method

    Directory of Open Access Journals (Sweden)

    Anirban C. Mitra

    2016-01-01

    Full Text Available A lot of health issues like low back pain, digestive disorders, and musculoskeletal disorders are caused as a result of the whole body vibrations induced by automobiles. This paper is concerned with the enhancement and optimization of suspension performance by using factorial methods of Design of Experiments, a nonderivative method. It focuses on the optimization of ride comfort and determining the parameters which affect the suspension behavior significantly as per the guidelines stated in ISO 2631-1:1997 standards. A quarter car test rig integrated with a LabVIEW based data acquisition system was developed to understand the real time behavior of a vehicle. In the pilot experiment, only three primary suspension parameters, that is, spring-stiffness, damping, and sprung mass, were considered and the full factorial method was implemented for the purpose of optimization. But the regression analysis of the data obtained rendered a very low goodness of fit which indicated that other parameters are likely to influence the response. Subsequently, steering geometry angles, camber and toe and tire pressure, were included in the design. Fractional factorial method with six factors was implemented to optimize ride comfort. The resultant optimum combination was then verified on the test rig with high correlation.

  19. Design of a New Integrated Structure of the Active Suspension System and Emergency Lane Change Test

    Science.gov (United States)

    Zhao, Jing-bo; Liu, Hai-mei; Zhang, Lan-chun; Bei, Shao-yi

    2017-09-01

    An integrated structure of the active suspension system was proposed in order to solve the problem of the individual control of the height of the body or the adjustable damping of the active suspension system of the electric vehicle, which improve the vibration reduction performance of the vehicle. The air bag was used to replace the traditional spiral spring, and the traditional shock absorber was replaced by the damping adjustable shock absorber, and the control module received the body acceleration sensor and the horizontal height sensor signal. The system controlled adjustable damping coefficient of shock absorber through the height of the car body the output of the air pump relay and the height control valve and the output of the electromagnetic valve of the adjustable damping shock absorber, and the emergency lane change test was carried out under different modes of speed of 60km/h. The experimental results indicated that the damping value was greater, average roll angle, yaw angle and average vehicle lateral acceleration were small when vehicle body was in the state of emergency lane change, which verified the feasibility of the integrated control strategy and structure design of the active suspension system. The research has important theoretical research value and engineering application prospect for designing and controlling strategy of vehicle chassis integrated control system.

  20. Design and characterization of an electromagnetic energy harvester for vehicle suspensions

    International Nuclear Information System (INIS)

    Zuo, Lei; Scully, Brian; Shestani, Jurgen; Zhou, Yu

    2010-01-01

    During the everyday usage of an automobile, only 10–16% of the fuel energy is used to drive the car—to overcome the resistance from road friction and air drag. One important loss is the dissipation of vibration energy by shock absorbers in the vehicle suspension under the excitation of road irregularity and vehicle acceleration or deceleration. In this paper we design, characterize and test a retrofit regenerative shock absorber which can efficiently recover the vibration energy in a compact space. Rare-earth permanent magnets and high permeable magnetic loops are used to configure a four-phase linear generator with increased efficiency and reduced weight. The finite element method is used to analyze the magnetic field and guide the design optimization. A theoretical model is created to analytically characterize the waveforms and regenerated power of the harvester at various vibration amplitudes, frequencies, equilibrium positions and design parameters. It was found that the waveform and RMS voltage of the individual coils will depend on the equilibrium position but the total energy will not. Experimental studies of a 1:2 scale prototype are conducted and the results agree very well with the theoretical predictions. Such a regenerative shock absorber will be able to harvest 16–64 W power at 0.25–0.5 m s −1 RMS suspension velocity

  1. System concept definition of the Grumman superconducting Electromagnetic Suspension (EMS) Maglev design

    Science.gov (United States)

    Proise, M.

    1994-01-01

    Grumman, under contract to the Army Corps of Engineers, completed a System Concept Definition (SCD) study to design a high-speed 134 m/s (300 m.p.h.) magnetically levitated (Maglev) transportation system. The primary development goals were to design a Maglev that is safe, reliable, environmentally acceptable, and low-cost. The cost issue was a predominant one, since previous studies have shown that an economically viable Maglev system (one that is attractive to investors for future models of passenger and/or freight transportation) requires a cost that is about $12.4 M/km ($20 Million per mile). The design is based on the electromagnetic suspension (EMS) system using superconducting iron-core magnets mounted along both sides of the vehicle. The EMS system has several advantages compared to the electrodynamic suspension (EDS) Maglev systems such as low stray magnetic fields in the passenger cabin and the surrounding areas, uniform load distribution along the full length of the vehicle, and small pole pitch for smoother propulsion and ride comfort. It is also levitated at all speeds and incorporates a wrap-around design of safer operation. The Grumman design has all the advantages of an EMS system identified above, while eliminating (or significantly improving) drawbacks associated with normal magnet powered EMS systems. Improvements include larger gap clearance, lighter weight, lower number of control servos, and higher off line switching speeds. The design also incorporates vehicle tilt (plus or minus 9 deg) for higher coordinated turn and turn out speed capability.

  2. Optimal design of MR shock absorber and application to vehicle suspension

    International Nuclear Information System (INIS)

    Nguyen, Quoc-Hung; Choi, Seung-Bok

    2009-01-01

    This paper presents an optimal design of a magnetorheological (MR) shock absorber based on finite element analysis. The MR shock absorber is constrained in a specific volume and the optimization problem identifies geometric dimensions of the shock absorber that minimize a multi-objective function. The objective function is proposed by considering the damping force, dynamic range and the inductive time constant of the shock absorber. After describing the configuration of the MR shock absorber, a quasi-static modeling of the shock absorber is performed based on the Bingham model of an MR fluid. The initial geometric dimensions of the shock absorber are then determined based on the assumption of constant magnetic flux density throughout the magnetic circuit. The objective function of the optimization problem is derived based on the solution of the initial shock absorber. An optimization procedure using a golden-section algorithm and a local quadratic fitting technique is constructed via a commercial finite element method parametric design language. Using the developed optimization tool, optimal solutions of the MR shock absorber, which is constrained in a specific cylindrical volume defined by its radius and height, are determined. Subsequently, a quarter-car suspension model with the optimized MR shock absorber is formulated and the vibration control performance of the suspension is evaluated under bump and sinusoidal road conditions

  3. Influence analysis of design parameters of suspensions on the technical specifications of conveyor with suspended belt and distributed drive

    Directory of Open Access Journals (Sweden)

    Lagerev A.V.

    2016-09-01

    Full Text Available Using the basic design of the conveyor with suspended belt and distributed drive, a series of numerical calculations was performed. As a result, the influence of friction and mass-dimensional design parameters of suspensions on the main technical parameters of the conveyor was established. Recommendations on the choice of rational parameters were formulated.

  4. An innovative magnetorheological damper for automotive suspension: from design to experimental characterization

    Science.gov (United States)

    Sassi, Sadok; Cherif, Khaled; Mezghani, Lotfi; Thomas, Marc; Kotrane, Asma

    2005-08-01

    The development of a powerful new magnetorheological fluid (MRF), together with recent progress in the understanding of the behavior of such fluids, has convinced researchers and engineers that MRF dampers are among the most promising devices for semi-active automotive suspension vibration control, because of their large force capacity and their inherent ability to provide a simple, fast and robust interface between electronic controls and mechanical components. In this paper, theoretical and experimental studies are performed for the design, development and testing of a completely new MRF damper model that can be used for the semi-active control of automotive suspensions. The MR damper technology presented in this paper is based on a completely new approach where, in contrast to in the conventional solutions where the coil axis is usually superposed on the damper axis and where the inner cylindrical housing is part of the magnetic circuit, the coils are wound in a direction perpendicular to the damper axis. The paper investigates approaches to optimizing the dynamic response and provides experimental verification. Both experimental and theoretical results have shown that, if this particular model is filled with an 'MRF 336AG' MR fluid, it can provide large controllable damping forces that require only a small amount of energy. For a magnetizing system with four coils, the damping coefficient could be increased by up to three times for an excitation current of only 2 A. Such current could be reduced to less than 1 A if the magnetizing system used eight small cores. In this case, the magnetic field will be more powerful and more regularly distributed. In the presence of harmonic excitation, such a design will allow the optimum compromise between comfort and stability to be reached over different intervals of the excitation frequencies.

  5. Vibration isolation analysis of new design OEM damper for malaysia vehicle suspension system featuring MR fluid

    Science.gov (United States)

    Unuh, M. H.; Muhamad, P.; Norfazrina, H. M. Y.; Ismail, M. A.; Tanasta, Z.

    2018-01-01

    The applications of semi-active damper employing magnetorheological (MR) fluids keep increasing in fulfilling the demand to control undesired vibration effect. The aim of this study is to introduce the new design of damper for Malaysian vehicle model as well to evaluate its effectiveness in promoting comfort. The vibration isolation performance of the OEM damper featuring MR fluid was analysed physically under real road profile excitation experimentally. An experiment using quarter car rig suspension and LMS SCADAS Mobile was conducted to demonstrate the influence of current in controlling the characteristics of MR fluid in alter the damping behaviour under 5 cm bump impact. Subsequently, the displacement values were measured with respect to time. The new design OEM damper featuring MR fluid was validated by comparing the data with original equipment manufacturer (OEM) passive damper results under the same approach of testing. Comparison of numerical data of the new design OEM damper shown that it can reduce the excitation amplitude up to 40% compared to those obtained by OEM passive damper. Finally, the new design OEM damper featuring MR fluid has effectively isolated the disturbance from the road profile and control the output force.

  6. Design and Trajectory Analysis of Incompletely Restrained Cable-Suspension Swing System Driven by Two Cables

    Directory of Open Access Journals (Sweden)

    Naige Wang

    2015-12-01

    Full Text Available In order to simulate the swing conditions of a suspended platform of a construction shaft, marine ships, cars, etc., an incompletely restrained cable-suspension swing system driven by two cables (IRCSWs2 was designed and parameter trajectories of displacements, angles and tensions were systematically investigated. Firstly, the motion mechanism of the IRCSWs2 is described and the corresponding kinematic model is established. For further evaluating the analytical expressions, the ADAMS simulation model and the physical prototype experimental model were developed. The basic consistency and slight difference among the three models are illustrated by a comparison of different parameters. The approximately linear relationship between the driving displacements of two cables and the swing angles of the platform was obtained. Finally, the effects of various parameters on displacements, angles and tensions were analysed, and the results indicate that the translation of a suspended platform is slight during its swing and that the novel IRCSWs2 can be used to drive heavy loads using a relatively small driving force, which is useful for simulating swing environmental conditions long-term, in addition to being cost-effective.

  7. Design and development of a MLS based compact active suspension system, featuring air spring and energy harvesting capabilities

    DEFF Research Database (Denmark)

    Berg, Nick Ilsø; Holm, Rasmus Koldborg; Rasmussen, Peter Omand

    2016-01-01

    This paper describes the design and development of an novel Magnetic Lead Screw based active suspension system for passenger vehicles, using a new MLS topology. The design is based on performance specifications found from ISO road profiles, with a maximum harvested energy approach. By integrating...... the PMSM motor with the MLS, it possible to construct a very compact design with an integrated air spring. The prototype is build and frictional losses and efficiency for the MLS damper unit are measured. Additional the stall force and stall torque are measured for the build prototype to validate...

  8. Combining support vector machines with linear quadratic regulator adaptation for the online design of an automotive active suspension system

    International Nuclear Information System (INIS)

    Chiou, J-S; Liu, M-T

    2008-01-01

    As a powerful machine-learning approach to pattern recognition problems, the support vector machine (SVM) is known to easily allow generalization. More importantly, it works very well in a high-dimensional feature space. This paper presents a nonlinear active suspension controller which achieves a high level performance by compensating for actuator dynamics. We use a linear quadratic regulator (LQR) to ensure optimal control of nonlinear systems. An LQR is used to solve the problem of state feedback and an SVM is used to address the question of the estimation and examination of the state. These two are then combined and designed in a way that outputs feedback control. The real-time simulation demonstrates that an active suspension using the combined SVM-LQR controller provides passengers with a much more comfortable ride and better road handling

  9. Compressible Fluid Suspension Performance Testing

    National Research Council Canada - National Science Library

    Hoogterp, Francis

    2003-01-01

    ... compressible fluid suspension system that was designed and installed on the vehicle by DTI. The purpose of the tests was to evaluate the possible performance benefits of the compressible fluid suspension system...

  10. Preliminary investigations of design philosophies and features applicable to large magnetic suspension and balance systems

    Science.gov (United States)

    Britcher, C. P.; Fortescue, P. W.; Allcock, G. A.; Goodyer, M. J.

    1979-01-01

    The technology which is required to allow the principles of magnetic suspension and balance systems (MSBS) to be applied to the high Reynolds number transonic testing of aircraft models is examined. A test facility is presented as comprising a pressurized transonic cryogenic wind tunnel, with the MSBS providing full six degree of freedom control. The electro-magnets which are superconducting and fed from quiet, bipolar power supplies are examined. A model control system having some self adaptive characteristics is discussed.

  11. The Parameters Optimizing Design of Double Suspension Arm Torsion Bar in the Electric Sight-Seeing Car by Random Vibration Analyzing Method

    Directory of Open Access Journals (Sweden)

    Shui-Ting Zhou

    2017-01-01

    Full Text Available This study is about the impact of the performance and the sensitivity analysis for parameters of the torsion bar suspension in the electric sight-seeing car, which the authors’ laboratory designed and which is used in the authors’ university. The suspension stiffness was calculated by using the virtual work principle, the vector algebra, and tensor of finite rotation methods and was verified by the ADAMS software. Based on the random vibration analysis method, the paper analyzed the dynamic tire load (DTL, suspension working space (SWS, and comfort performance parameters. For the purpose of decreasing the displacement of the suspension and limiting the frequency of impacting the stop block, the paper examined the three parameters and optimized the basic parameters of the torsion bar. The results show that the method achieves a great effect and contributes an accurate value for the general layout design.

  12. Controlling active cabin suspensions in commercial vehicles

    NARCIS (Netherlands)

    Evers, W.J.E.; Besselink, I.J.M.; Teerhuis, A.P.; Knaap, van der A.C.M.; Nijmeijer, H.

    2009-01-01

    The field of automotive suspensions is changing. Semi-active and active suspensions are starting to become viable options for vehicle designers. Suspension design for commercial vehicles is especially interesting given its potential. An active cabin suspension for a heavy-duty truck is considered,

  13. Effects of transients in LIGO suspensions on searches for gravitational waves.

    Science.gov (United States)

    Walker, M; Abbott, T D; Aston, S M; González, G; Macleod, D M; McIver, J; Abbott, B P; Abbott, R; Adams, C; Adhikari, R X; Anderson, S B; Ananyeva, A; Appert, S; Arai, K; Ballmer, S W; Barker, D; Barr, B; Barsotti, L; Bartlett, J; Bartos, I; Batch, J C; Bell, A S; Betzwieser, J; Billingsley, G; Birch, J; Biscans, S; Biwer, C; Blair, C D; Bork, R; Brooks, A F; Ciani, G; Clara, F; Countryman, S T; Cowart, M J; Coyne, D C; Cumming, A; Cunningham, L; Danzmann, K; Da Silva Costa, C F; Daw, E J; DeBra, D; DeRosa, R T; DeSalvo, R; Dooley, K L; Doravari, S; Driggers, J C; Dwyer, S E; Effler, A; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fair, H; Fernández Galiana, A; Fisher, R P; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Giaime, J A; Giardina, K D; Goetz, E; Goetz, R; Gras, S; Gray, C; Grote, H; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, E D; Hammond, G; Hanks, J; Hanson, J; Hardwick, T; Harry, G M; Heintze, M C; Heptonstall, A W; Hough, J; Izumi, K; Jones, R; Kandhasamy, S; Karki, S; Kasprzack, M; Kaufer, S; Kawabe, K; Kijbunchoo, N; King, E J; King, P J; Kissel, J S; Korth, W Z; Kuehn, G; Landry, M; Lantz, B; Lockerbie, N A; Lormand, M; Lundgren, A P; MacInnis, M; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martin, I W; Martynov, D V; Mason, K; Massinger, T J; Matichard, F; Mavalvala, N; McCarthy, R; McClelland, D E; McCormick, S; McIntyre, G; Mendell, G; Merilh, E L; Meyers, P M; Miller, J; Mittleman, R; Moreno, G; Mueller, G; Mullavey, A; Munch, J; Nuttall, L K; Oberling, J; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ottaway, D J; Overmier, H; Palamos, J R; Paris, H R; Parker, W; Pele, A; Penn, S; Phelps, M; Pierro, V; Pinto, I; Principe, M; Prokhorov, L G; Puncken, O; Quetschke, V; Quintero, E A; Raab, F J; Radkins, H; Raffai, P; Reid, S; Reitze, D H; Robertson, N A; Rollins, J G; Roma, V J; Romie, J H; Rowan, S; Ryan, K; Sadecki, T; Sanchez, E J; Sandberg, V; Savage, R L; Schofield, R M S; Sellers, D; Shaddock, D A; Shaffer, T J; Shapiro, B; Shawhan, P; Shoemaker, D H; Sigg, D; Slagmolen, B J J; Smith, B; Smith, J R; Sorazu, B; Staley, A; Strain, K A; Tanner, D B; Taylor, R; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Torrie, C I; Traylor, G; Tuyenbayev, D; Vajente, G; Valdes, G; van Veggel, A A; Vecchio, A; Veitch, P J; Venkateswara, K; Vo, T; Vorvick, C; Ward, R L; Warner, J; Weaver, B; Weiss, R; Weßels, P; Willke, B; Wipf, C C; Worden, J; Wu, G; Yamamoto, H; Yancey, C C; Yu, Hang; Yu, Haocun; Zhang, L; Zucker, M E; Zweizig, J

    2017-12-01

    This paper presents an analysis of the transient behavior of the Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) suspensions used to seismically isolate the optics. We have characterized the transients in the longitudinal motion of the quadruple suspensions during Advanced LIGO's first observing run. Propagation of transients between stages is consistent with modeled transfer functions, such that transient motion originating at the top of the suspension chain is significantly reduced in amplitude at the test mass. We find that there are transients seen by the longitudinal motion monitors of quadruple suspensions, but they are not significantly correlated with transient motion above the noise floor in the gravitational wave strain data, and therefore do not present a dominant source of background noise in the searches for transient gravitational wave signals. Using the suspension transfer functions, we compared the transients in a week of gravitational wave strain data with transients from a quadruple suspension. Of the strain transients between 10 and 60 Hz, 84% are loud enough that they would have appeared above the sensor noise in the top stage quadruple suspension monitors if they had originated at that stage at the same frequencies. We find no significant temporal correlation with the suspension transients in that stage, so we can rule out suspension motion originating at the top stage as the cause of those transients. However, only 3.2% of the gravitational wave strain transients are loud enough that they would have been seen by the second stage suspension sensors, and none of them are above the sensor noise levels of the penultimate stage. Therefore, we cannot eliminate the possibility of transient noise in the detectors originating in the intermediate stages of the suspension below the sensing noise.

  14. Whole-body Vibration Exposure Intervention among Professional Bus and Truck Drivers: A Laboratory Evaluation of Seat-suspension Designs.

    Science.gov (United States)

    Blood, Ryan P; Yost, Michael G; Camp, Janice E; Ching, Randal P

    2015-01-01

    Long-term exposure to seated whole-body vibration (WBV) is one of the leading risk factors for the development of low back disorders. Professional bus and truck drivers are regularly exposed to continuous WBV, since they spend the majority of their working hours driving heavy vehicles. This study measured WBV exposures among professional bus and truck drivers and evaluated the effects of seat-suspension designs using simulated field-collected data on a vibration table. WBV exposures were measured and compared across three different seat designs: an air-ride bus seat, an air-ride truck seat, and an electromagnetically active (EM-active) seat. Air-ride seats use a compressed-air bladder to attenuate vibrations, and they have been in operation throughout the transportation industry for many years. The EM-active seat is a relatively new design that incorporates a microprocessor-controlled actuator to dampen vibration. The vibration table simulated seven WBV exposure scenarios: four segments of vertical vibration and three scenarios that used field-collected driving data on different road surfaces-a city street, a freeway, and a section of rough roadway. The field scenarios used tri-axial WBV data that had been collected at the seat pan and at the driver's sternum, in accordance with ISO 2631-1 and 2631-5. This study found that WBV was significantly greater in the vertical direction (z-axis) than in the lateral directions (x-and y-axes) for each of the three road types and each of the three types of seats. Quantitative comparisons of the results showed that the floor-to-seat-pan transmissibility was significantly lower for the EM-active seat than for either the air-ride bus seat or the air-ride truck seat, across all three road types. This study also demonstrated that seat-suspension designs have a significant effect on the vibrations transmitted to vehicle operators, and the study's results may prove useful in designing future seat suspensions.

  15. Design of Immune-Algorithm-Based Adaptive Fuzzy Controllers for Active Suspension Systems

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Shieh

    2014-04-01

    Full Text Available The aim of this paper is to integrate the artificial immune systems and adaptive fuzzy control for the automobile suspension system, which is regarded as a multiobjective optimization problem. Moreover, the fuzzy control rules and membership controls are then introduced for identification and memorization. It leads fast convergence in the search process. Afterwards, by using the diversity of the antibody group, trapping into local optimum can be avoided, and the system possesses a global search capacity and a faster local search for finding a global optimal solution. Experimental results show that the artificial immune system with the recognition and memory functions allows the system to rapidly converge and search for the global optimal approximate solutions.

  16. Quadrupling Inhaled Glucocorticoid Dose to Abort Asthma Exacerbations.

    Science.gov (United States)

    McKeever, Tricia; Mortimer, Kevin; Wilson, Andrew; Walker, Samantha; Brightling, Christopher; Skeggs, Andrew; Pavord, Ian; Price, David; Duley, Lelia; Thomas, Mike; Bradshaw, Lucy; Higgins, Bernard; Haydock, Rebecca; Mitchell, Eleanor; Devereux, Graham; Harrison, Timothy

    2018-03-08

    Asthma exacerbations are frightening for patients and are occasionally fatal. We tested the concept that a plan for patients to manage their asthma (self-management plan), which included a temporary quadrupling of the dose of inhaled glucocorticoids when asthma control started to deteriorate, would reduce the incidence of severe asthma exacerbations among adults and adolescents with asthma. We conducted a pragmatic, unblinded, randomized trial involving adults and adolescents with asthma who were receiving inhaled glucocorticoids, with or without add-on therapy, and who had had at least one exacerbation in the previous 12 months. We compared a self-management plan that included an increase in the dose of inhaled glucocorticoids by a factor of 4 (quadrupling group) with the same plan without such an increase (non-quadrupling group), over a period of 12 months. The primary outcome was the time to a first severe asthma exacerbation, defined as treatment with systemic glucocorticoids or an unscheduled health care consultation for asthma. A total of 1922 participants underwent randomization, of whom 1871 were included in the primary analysis. The number of participants who had a severe asthma exacerbation in the year after randomization was 420 (45%) in the quadrupling group as compared with 484 (52%) in the non-quadrupling group, with an adjusted hazard ratio for the time to a first severe exacerbation of 0.81 (95% confidence interval, 0.71 to 0.92; P=0.002). The rate of adverse effects, which were related primarily to local effects of inhaled glucocorticoids, was higher in the quadrupling group than in the non-quadrupling group. In this trial involving adults and adolescents with asthma, a personalized self-management plan that included a temporary quadrupling of the dose of inhaled glucocorticoids when asthma control started to deteriorate resulted in fewer severe asthma exacerbations than a plan in which the dose was not increased. (Funded by the Health Technology

  17. Hydropneumatic suspension systems

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Wolfgang

    2011-07-01

    Hydropneumatic suspensions systems combine the excellent properties of gas springs with the favourable damping properties of hydraulic fluids. The advantages of these systems are particularly appropriate for automotive applications, such as passenger cars, trucks and agricultural equipment. In this book, Dr. Bauer provides an extensive overview of hydropneumatic suspension systems. Starting with a comparison of different types of suspension systems, the author subsequently describes the theoretical background associated with spring and damping characteristics of hydropneumatic systems and furthermore explains the design of the most important system components. Additionally he gives an overview of level control systems and various special functions. Finally the technology is illustrated by design examples and the outlook for future hydropneumatic suspensions is discussed. (orig.)

  18. Modeling and Simulation of a Modified Quadruple Tank System

    DEFF Research Database (Denmark)

    Mohd. Azam, Sazuan Nazrah; Jørgensen, John Bagterp

    2015-01-01

    to model and control. In this paper, a modified quadruple-tank system has been described, all the important variables has been outlined and a mathematical model has been presented. We developed deterministic and stochastic models using differential equations and simulate the models using Matlab...

  19. Pattern optimizing verification of self-align quadruple patterning

    Science.gov (United States)

    Yamato, Masatoshi; Yamada, Kazuki; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shouhei; Koike, Kyohei; Yaegashi, Hidetami

    2017-03-01

    Lithographic scaling continues to advance by extending the life of 193nm immersion technology, and spacer-type multi-patterning is undeniably the driving force behind this trend. Multi-patterning techniques such as self-aligned double patterning (SADP) and self-aligned quadruple patterning (SAQP) have come to be used in memory devices, and they have also been adopted in logic devices to create constituent patterns in the formation of 1D layout designs. Multi-patterning has consequently become an indispensible technology in the fabrication of all advanced devices. In general, items that must be managed when using multi-patterning include critical dimension uniformity (CDU), line edge roughness (LER), and line width roughness (LWR). Recently, moreover, there has been increasing focus on judging and managing pattern resolution performance from a more detailed perspective and on making a right/wrong judgment from the perspective of edge placement error (EPE). To begin with, pattern resolution performance in spacer-type multi-patterning is affected by the process accuracy of the core (mandrel) pattern. Improving the controllability of CD and LER of the mandrel is most important, and to reduce LER, an appropriate smoothing technique should be carefully selected. In addition, the atomic layer deposition (ALD) technique is generally used to meet the need for high accuracy in forming the spacer film. Advances in scaling are accompanied by stricter requirements in the controllability of fine processing. In this paper, we first describe our efforts in improving controllability by selecting the most appropriate materials for the mandrel pattern and spacer film. Then, based on the materials selected, we present experimental results on a technique for improving etching selectivity.

  20. The Relationship between Preeclampsia and Quadruple Screening Test in Nuliparous

    Directory of Open Access Journals (Sweden)

    Farnaz Zand Vakili

    2017-01-01

    Full Text Available Introduction: Early diagnosis and prediction of preeclampsia needs appropriate obstetric care. Preeclampsia predicting methods are important. This study was designed to determine the correlation between preeclampsia and quadruple screening test in the nulliparous. Materials and Methods:  This case - control study was conducted on 54 pregnant women with preeclampsia (case group and 108 healthy pregnant women (control group who referred to health centers in Sanandaj, Iran. Ultrasonography was performed to determine the gestational age by a radiologist. Maternal serum levels of alpha fetoprotein (AFP, human chorionic gonadotropin (hCG, unconjugated estriol (uE3, and inhibin-A were measured in the second trimester of pregnancy. Data were analyzed using SPSS statistical software and Chi-square test, T-test, sensitivity, specificity, positive and negative predictive values. Results: The results showed that the sensitivity and specificity for the diagnosis of preeclampsia in pregnant women for hCG were 35.2% and 79.6 respectively. These findings for estriol were 20.4% and 88.9%, for inhibin-A were 38.8% and 88% and for alpha fetoprotein were 38.8% and 74.1%. The positive predictive value for hCG, estriol, inhibin-A and alpha fetoprotein were 46.3%, 47.8%, 61.8% and 42.9% respectively. The negative predictive value for hCG, estriol, inhibin-A and alpha fetoprotein were also 71%, 69.1%, 74.2% and 70.8% respectively. Conclusion: There was a relationship between preeclampsia and high levels of inhibin-A and hCG. Further studies on these markers and evaluating their usefulness in the diagnosis and management of preeclampsia are recommended.

  1. Design and evaluation of a suspension seat to reduce vibration exposure of subway operators: a case study.

    Science.gov (United States)

    Marcotte, Pierre; Beaugrand, Sylvie; Boutin, Jérôme; Larue, Christian

    2010-01-01

    Subway operators have complained about discomfort caused by whole-body vibration. To address this problem, a suspension seat with extensive ergonomic features has been adapted to the confined space of the subway operator cab. The suspension was modified from an existing suspension in order to reduce the dominant frequency of the subway vertical vibration (2.4 Hz). The suspension seat has been extensively tested on a vertical hydraulic shaker. These tests have shown that the SEAT value was lower for a higher vibration level, for higher subject weight, and for the suspension adjusted at median height. The seat also produces a lower SEAT value when there was a predominance of the 6 Hz vibration component. The horizontal seat adjustments had no influence on the suspension SEAT value. Removing the suspension damper also decreases the SEAT value for all the tested configurations. The final version of the suspension seat prototype was validated during normal subway operation with 19 different operators having weight in the 5th, 50th and 95th percentile of the operator population. Accelerations were measured with triaxial accelerometers at the seat cushion, above the suspension and on the floor. In addition to the vibration measurements, each operator was asked about his perceived discomfort from vibration exposure. Globally, the suspension seat attenuated the vertical vibration (SEAT values from 0.86 to 0.99), but discomfort due to amplification of the 2.4 Hz component occurred when the suspension height was adjusted at the minimum, even when the global weighted acceleration was lower (SEAT value < 1). These results suggest that in order to reduce the discomfort caused by whole-body vibration, the transmissibility of the seat should also be considered, in particular when there is a dominant frequency in the vibration spectra.

  2. Exploring Optimization Opportunities in Four-Point Suspension Wind Turbine Drivetrains Through Integrated Design Approaches: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-13

    Drivetrain design has significant influence on the costs of wind power generation. Current industry practices usually approach the drivetrain design with loads and system requirements defined by the turbine manufacturer. Several different manufacturers are contracted to supply individual components from the low-speed shaft to the generator - each receiving separate design specifications from the turbine manufacturer. Increasingly, more integrated approaches to turbine design have shown promise for blades and towers. Yet, integrated drivetrain design is a challenging task owing to the complex physical behavior of the important load-bearing components, namely the main bearings, gearbox, and the generator. In this paper we combine two of NREL's systems engineering design tools, DriveSE and GeneratorSE, to enable a comprehensive system-level drivetrain optimization for the IEAWind reference turbine for land-based applications. We compare a more traditional design with integrated approaches employing decoupled and coupled design optimization. It is demonstrated that both approaches have the potential to realize notable mass savings with opportunities to lower the costs of energy.

  3. Exploring Optimization Opportunities in Four-Point Suspension Wind Turbine Drivetrains through Integrated Design Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    Drivetrain design has significant influence on the costs of wind power generation. Current industry practices usually approach the drivetrain design with loads and system requirements defined by the turbine manufacturer. Several different manufacturers are contracted to supply individual components from the low-speed shaft to the generator - each receiving separate design specifications from the turbine manufacturer. Increasingly, more integrated approaches to turbine design have shown promise for blades and towers. Yet, integrated drivetrain design is a challenging task owing to the complex physical behavior of the important load-bearing components, namely the main bearings, gearbox, and the generator. In this paper we combine two of NREL's systems engineering design tools, DriveSE and GeneratorSE, to enable a comprehensive system-level drivetrain optimization for the IEAWind reference turbine for land-based applications. We compare a more traditional design with integrated approaches employing decoupled and coupled design optimization. It is demonstrated that both approaches have the potential to realize notable mass savings with opportunities to lower the costs of energy.

  4. FEATURES OF DESIGN OF TIED-ARCH BRIDGES WITH FLEXIBLE INCLINED SUSPENSION HANGERS

    Directory of Open Access Journals (Sweden)

    V. O. Samosvat

    2017-10-01

    Full Text Available Purpose. Investigation and analysis of the hanger arrangement and the structural stability of a Network arch bridge – a tied-arch bridge with inclined hangers that cross each other at least twice. It is also necessary to make a comparative analysis with other types of hanger arrangements. Methodology. The authors in their research investigated a large number of parameters to determine their influence in the force distribution in the arch. Eventually they determined optimal values for all parameters. These optimal values allowed developing a design guide that leads to optimal arch design. When solving this problem, the authors used three-dimensional finite element models and the objective was to determine the most suitable solution for a road bridge, with a span of 100 meters, consisting of two inclined steel arches, located on a road with two traffic lanes, subjected to medium traffic. The virtual prototype of the model is performed by finite element simulator Midas Civil. Findings. In this study, for the bridge deck, a concrete tie appears to be the best solution considering the structural behavior of network arches, but economic advantages caused by easier erection may lead to steel or a composite bridge deck as better alternatives. Design requirements and local conditions of each particular bridge project will decide the most economic deck design.Originality. To ensure passenger comfort and the stability and continuity of the track, deformations of bridges are constricted. A network arch is a stiff structure with small deflections and therefore suitable to comply with such demands even for high speed railway traffic.
A network arch bridge with a concrete tie usually saves more than half the steel required for tied arches with vertical hangers and concrete ties. Practical value. Following the study design advice given in this article leads to savings of about 60 % of structural steel compared with conventional tied arch bridges with

  5. Hybrid superconducting magnetic suspensions

    International Nuclear Information System (INIS)

    Tixador, P.; Hiebel, P.; Brunet, Y.; Chaud, X.; Gautier-Picard, P.

    1996-01-01

    Superconductors, especially high T c ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO

  6. Multiobjective suspension control problem

    NARCIS (Netherlands)

    Jager, de A.G.

    1995-01-01

    The paper describes a (controller) design problem in the field of suspension systems for transport vehicles. A ten degrees-of-freedom model for a tractor-semitrailer vehicle is presented, using parameters derived from a real vehicle, which should be used for design and verification purposes. Road

  7. Integration of uniform design and quantum-behaved particle swarm optimization to the robust design for a railway vehicle suspension system under different wheel conicities and wheel rolling radii

    Science.gov (United States)

    Cheng, Yung-Chang; Lee, Cheng-Kang

    2017-10-01

    This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system.

  8. Facing the facts: the suspension of a design requirement applicable to nuclear power reactor effluents

    International Nuclear Information System (INIS)

    Amado, Valeria; Biaggio, Alfredo; Canoba, Analia; Curti, Adriana

    2008-01-01

    A design requirement aimed at limiting the discharge of globally dispersed long-lived radionuclides released by nuclear power reactors was in force in Argentine since 1979 till recently. The practical results of such regulatory measure was the need to retain C-14 in the PHWR under construction, as well as in furniture heavy water reactors to be built in the country. This paper explains the basis of such requirement, which was formulated as a collective dose constraint per unit of energy generated, and the main assumptions that triggered it. The differences between the assumptions made at the time and the reality of nuclear power generation at the beginning of the 21 st century, as well as their implications in relation to the requirement are described, including the Suess effect and its impact in the total dose due to C-14. Finally, the facts that made no longer reasonable to keep in force the above mentioned requirement are presented. (author)

  9. Quadruple labelled dual oxygen and pH-sensitive ratiometric nanosensors

    Directory of Open Access Journals (Sweden)

    Veeren M. Chauhan

    2016-05-01

    Full Text Available Nanosensors capable of simultaneously measuring dissolved oxygen concentrations from 0 to 100% saturation and pH over the full physiological range, from pH 3.5 to 7.5, that advance the methods towards understanding of key biological gradients, were synthesised. A library of water soluble oxygen-sensitive porphyrins, with three substituted charged functional groups and a chemically flexible carboxylate functional group were spectroscopically analysed to assess their sensitivity to changes in dissolved oxygen concentrations as free species in solution and in suspension as nanoparticle conjugates. A platinum cationic porphyrin was taken forward to fabricate ratiometric oxygen-sensitive nanosensors, using 5-(and-6-carboxytetramethylrhodamine (TAMRA as internal standard. In addition, quadruple labelled dual oxygen and pH-sensitive nanosensors were synthesised using the cationic Pt porphyrin, pH-sensitive fluorescein dyes, carboxyfluorescein (FAM and Oregon Green (OG, in a 1:1 ratio, and TAMRA. We envisage the dual oxygen and pH nanosensors will find broad utility in the characterisation of diverse microenvironments, where there are complex interactions between molecular oxygen and pH. Keywords: Fluorescent, Phosphorescent, Nanosensor, Oxygen, pH, Ratiometric, Platinum metalloporphyrin

  10. Bio-inspired particle separator design based on the food retention mechanism by suspension-feeding fish

    International Nuclear Information System (INIS)

    Hung, Tien-Chieh; Piedrahita, Raul H; Cheer, Angela

    2012-01-01

    A new particle separator is designed using a crossflow filtration mechanism inspired by suspension-feeding fish in this study. To construct the model of the bio-inspired particle separator, computational fluid dynamics techniques are used, and parameters related to separator shape, fluid flow and particle properties that might affect the performance in removing particles from the flow, are varied and tested. The goal is to induce a flow rotation which enhances the separation of particles from the flow, reduce the particle-laden flow that exits via a collection zone at the lower/posterior end of the separator, while at the same time increase the concentration of particles in that flow. Based on preliminary particle removal efficiency tests, an exiting flow through the collection zone of about 8% of the influent flow rate is selected for all the performance tests of the separator including trials with particles carried by air flow instead of water. Under this condition, the simulation results yield similar particle removal efficiencies in water and air but with different particle properties. Particle removal efficiencies (percentage of influent particles that exit through the collection zone) were determined for particles ranging in size from 1 to 1500 µm with a density between 1000 and 1150 kg m −3 in water and 2 and 19 mm and 68 and 2150 kg m −3 in air. As an example, removal efficiencies are 66% and 64% for 707 µm diameter particles with a density of 1040 kg m −3 in water and for 2 mm particles with a density of 68 kg m −3 in air, respectively. No significant performance difference is found by geometrically scaling the inlet diameter of the separator up or down in the range from 2.5 to 10 cm. (paper)

  11. The extension of quadrupled xed point results in K-metric spaces

    Directory of Open Access Journals (Sweden)

    Ghasem Soleimani Rad

    2014-05-01

    Full Text Available Recently, Rahimi et al. [Comp. Appl. Math. 2013, In press] dened the conceptof quadrupled xed point in K-metric spaces and proved several quadrupled  xed point theorems for solid cones on K-metric spaces. In this paper some quadrupled xed point results for T-contraction on K-metric spaces without normality condition are proved. Obtained results extend and generalize well-known comparable results in the literature.

  12. V379 Cephei: a quadruple system of two binaries

    Czech Academy of Sciences Publication Activity Database

    Harmanec, P.; Mayer, P.; Prša, A.; Božić, H.; Eenens, P.; Guinan, E. F.; McCook, G.; Koubský, Pavel; Ruždjak, D.; Engle, S.; Sudar, D.; Škoda, Petr; Šlechta, Miroslav; Wolf, M.; Yang, S.

    2007-01-01

    Roč. 463, č. 3 (2007), s. 1061-1069 ISSN 0004-6361 R&D Projects: GA ČR GA205/03/0788; GA ČR GA205/06/0584 Grant - others:US National Science Foundation(US) NSF/RUI AST-0507536. Institutional research plan: CEZ:AV0Z10030501 Source of funding: V - iné verejné zdroje Keywords : V379 Cep * quadruple systems Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.259, year: 2007

  13. 75 FR 43039 - Fresh Prunes Grown in Designated Counties in Washington and in Umatilla County, OR; Suspension of...

    Science.gov (United States)

    2010-07-23

    ... marketing of fresh prunes over the past four years. Based on its analysis, the Committee has determined that... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 924 [Doc. No. AMS-FV-10-0054...; Suspension of Reporting and Assessment Requirements AGENCY: Agricultural Marketing Service, USDA. ACTION...

  14. EDITORIAL: Colloidal suspensions Colloidal suspensions

    Science.gov (United States)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    grateful recipients of many such notes ourselves. Visitors to Henk's office would often be treated to a demonstration experiment (for instance, birefringent suspensions) and a range of hand-made models designed to illustrate complex concepts (such as multidimensional phase diagrams). Henk's relationship with his students usually extends well after graduation, and many have benefitted from Henk's advice as a mentor. In spite of his scientific standing, Henk is down to earth; he is a pleasant and warm person, with a deep interest in people. He has many friends all over the world. At the same time, he does not eschew scientific debate. He takes a dim view of pretentious work, especially when it seems that inconvenient data has been neglected. Typically though he will comment in a way that avoids embarrassment and that motivates a redoubled effort. Henk's career will be celebrated at a symposium to be held in Amsterdam in June 2011. This special issue contains invited contributions by speakers at this symposium, as well as by other collaborators, colleagues, former students, and friends. The authors were free to choose their topics. We have grouped their contributions into a number of themes. The wide range of subjects mirrors Henk's interests and the research themes reviewed above are well represented. Henk, this special issue is for you—we hope you will enjoy it! References [1] Lekkerkerker H N W, Poon W C-K, Pusey P N, Stroobants A and Warren P B 1992 Europhys. Lett. 20 559 [2] Aarts D G A L, Schmidt M and Lekkerkerker H N W 2004 Science 304 847 [3] Frenkel D, Lekkerkerker H N W and Stroobants A 1988 Nature 332 822 [4] Vroege G J and Lekkerkerker H N W 1992 Rep. Prog. Phys. 55 1241 [5] Buining P A, Pathmamanoharan C, Jansen J B H and Lekkerkerker H N W 1991 J. Am. Ceram. Soc. 74 1303 [6] van der Kooij F M and Lekkerkerker H N W 1998 J. Phys. Chem. B 102 7829 [7] van der Kooij F M, Kassapidou K and Lekkerkerker H N W 2000 Nature 406 868 [8] Anderson V J and Lekkerkerker H

  15. Preparation of supramolecular polymers by copolymerization of monomers containing quadruple hydrogen bonding units with regular monomers

    NARCIS (Netherlands)

    2004-01-01

    The invention relates to the synthesis of polymers containing self-complementary quadruple hydrogen groups by copolymerizing monomers containing a quadruple hydrogen bonding group with one or more monomers of choice. The resulting polymers show unique new characteristics due to the presence of

  16. Preparation of supramolecular polymers by copolymerization of monomers containing quadruple hydrogen bonding units with regular monomers

    NARCIS (Netherlands)

    2004-01-01

    The invention relates to the synthesis of polymers contg. self-complementary quadruple H groups by copolymg. monomers contg. a quadruple H bonding group with ³1 monomers of choice. The resulting polymers show unique new characteristics due to the presence of addnl. phys. interactions between the

  17. Attractive and repulsive magnetic suspension systems overview

    Science.gov (United States)

    Cope, David B.; Fontana, Richard R.

    1992-01-01

    Magnetic suspension systems can be used in a wide variety of applications. The decision of whether to use an attractive or repulsive suspension system for a particular application is a fundamental one which must be made during the design process. As an aid to the designer, we compare and contrast attractive and repulsive magnetic suspension systems and indicate whether and under what conditions one or the other system is preferred.

  18. Prilog optimalnom projektovanju aktivnog sistema za oslanjanje vozila / A contribution to optimal design of vehicle active suspension system

    Directory of Open Access Journals (Sweden)

    Miroslav Demić

    2005-05-01

    Full Text Available U ovom radu prikazanje sistem za aktivno oslanjanje vozila, uz korišćenje ravanskog modela vozila, bez filtera u povratnim spregama sistema za regulaciju. Za optimizaciju parametara PI kontrolera korišćena je metoda stohastičke parametarske optimizacije. Cilj optimizacije bio je istovremeno minimiziranje vibracijskih ubrzanja oslonjene mase i standardnog odstupanja sila u kontaktima točkova i tla, što poboljšava udobnost i ponašanje vozila na putu. / In this paper, an active suspension system is developed by use of a vehicle plane model without feedback filters in control system. A method of stochastic parameters optimization has been utilized in order to optimize PI controller parameters. The basic optimization goal was a simultaneous minimization of sprung mass acceleration and standard deviation of forces in tire-to-ground contact area, so as to improve vehicle comfort and handling performances.

  19. A child with acute encephalopathy associated with quadruple viral infection

    Directory of Open Access Journals (Sweden)

    Keiko eNakata

    2015-04-01

    Full Text Available infection does not always result in AE. The risk factors for developing infantile AE upon such infection remain to be determined. Here we report an infant with AE coinfected with human herpesvirus 6 (HHV-6 and three picornaviruses: coxsackievirus A6 (CVA6, enterovirus D68 (EV-D68, and human parechovirus (HPeV. EV-D68 was vertically transmitted to the infant from his mother. CVA6 and HPeV were likely transmitted to the infant at the nursery school. HHV-6 might have been re-activated in the patient. It remains undetermined which pathogen played the central role in the AE pathogenesis. However, active, simultaneous infection by four viruses likely evoke a cytokine storm, leading to the pathogenesis of AE. Conclusion: Infant cases with active quadruple infection by potentially AE-causing viruses have seldom been reported, partly because systematic nucleic acid-based laboratory tests on picornaviruses are not common. We propose that simultaneous viral infection may serve as a risk factor for the development of AE.

  20. Sandwich-type tetrakis(phthalocyaninato) dysprosium-cadmium quadruple-decker SMM.

    Science.gov (United States)

    Wang, Hailong; Qian, Kang; Wang, Kang; Bian, Yongzhong; Jiang, Jianzhuang; Gao, Song

    2011-09-14

    Homoleptic tetrakis[2,3,9,10,16,17,23,24-octa(butyloxy)phthalocyaninato] dysprosium-cadmium quadruple-decker complex 1 was isolated in relatively good yield of 43% from a simple one-pot reaction. This compound represents the first sandwich-type tetrakis(phthalocyaninato) rare earth-cadmium quadruple-decker SMM that has been structurally characterized. This journal is © The Royal Society of Chemistry 2011

  1. The closest M-dwarf quadruple system to the Sun

    International Nuclear Information System (INIS)

    Davison, Cassy L.; White, R. J.; Jao, W.-C.; Henry, T. J.; Quinn, S. N.; Cantrell, J. R.; Winters, J. G.; Bailey, J. I. III; Riedel, A. R.; Subasavage, J. P.; Crockett, C. J.

    2014-01-01

    We report new infrared radial velocity measurements obtained with CSHELL at NASA's Infrared Telescope Facility that reveal the M3.5 dwarf GJ 867B to be a single-lined spectroscopic binary with a period of 1.795 ± 0.017 days. Its velocity semi-amplitude of 21.4 ± 0.5 km s –1 corresponds to a minimum mass of 61 ± 7 M JUP ; the new companion, which we call GJ 867D, could be a brown dwarf. Stable astrometric measurements of GJ 867BD obtained with CTIO's 0.9 m telescope over the last decade exclude the presence of any massive planetary companions (7-18 M JUP ) with longer orbital periods (2-10 yr) for the majority of orientations. These complementary observations are also used to determine the trigonometric distance and proper motion of GJ 867BD; the measurements are consistent with the HIPPARCOS measured values of the M2 dwarf GJ 867AC, which is itself a 4.1 day double-lined spectroscopic binary at a projected separation of 24.''5 (216 AU) from GJ 867BD. These new measurements strengthen the case that GJ 867AC and GJ 867BD are physically associated, making the GJ 867 system one of only four quadruple systems within 10 pc of the Sun (d = 8.82 ± 0.08 pc) and the only among these with all M-dwarf (or cooler) components.

  2. Self-powered suspension criterion and energy regeneration implementation scheme of motor-driven active suspension

    Science.gov (United States)

    Yan, Shuai; Sun, Weichao

    2017-09-01

    Active suspension systems have advantages on mitigating the effects of vehicle vibration caused by road roughness, which are one of the most important component parts in influencing the performances of vehicles. However, high amount of energy consumption restricts the application of active suspension systems. From the point of energy saving, this paper presents a self-powered criterion of the active suspension system to judge whether a motor-driven suspension can be self-powered or not, and then a motor parameter condition is developed as a reference to design a self-powered suspension. An energy regeneration implementation scheme is subsequently proposed to make the active suspension which has the potential to be self-powered achieve energy-saving target in the real application. In this implementation scheme, operating electric circuits are designed based on different working status of the actuator and power source and it is realizable to accumulate energy from road vibration and supply energy to the actuator by switching corresponding electric circuits. To apply the self-powered suspension criterion and energy regeneration implementation scheme, an active suspension system is designed with a constrained H∞ controller and calculation results indicate that it has the capability to be self-powered. Simulation results show that the performances of the self-powered active suspension are nearly the same as those of the active suspension with an external energy source and can achieve energy regeneration at the same time.

  3. Helicobacter pylori second-line rescue therapy with levofloxacin- and bismuth-containing quadruple therapy, after failure of standard triple or non-bismuth quadruple treatments.

    Science.gov (United States)

    Gisbert, J P; Romano, M; Gravina, A G; Solís-Muñoz, P; Bermejo, F; Molina-Infante, J; Castro-Fernández, M; Ortuño, J; Lucendo, A J; Herranz, M; Modolell, I; Del Castillo, F; Gómez, J; Barrio, J; Velayos, B; Gómez, B; Domínguez, J L; Miranda, A; Martorano, M; Algaba, A; Pabón, M; Angueira, T; Fernández-Salazar, L; Federico, A; Marín, A C; McNicholl, A G

    2015-04-01

    The most commonly used second-line Helicobacter pylori eradication regimens are bismuth-containing quadruple therapy and levofloxacin-containing triple therapy, both offering suboptimal results. Combining bismuth and levofloxacin may enhance the efficacy of rescue eradication regimens. To evaluate the efficacy and tolerability of a second-line quadruple regimen containing levofloxacin and bismuth in patients whose previous H. pylori eradication treatment failed. This was a prospective multicenter study including patients in whom a standard triple therapy (PPI-clarithromycin-amoxicillin) or a non-bismuth quadruple therapy (PPI-clarithromycin-amoxicillin-metronidazole, either sequential or concomitant) had failed. Esomeprazole (40 mg b.d.), amoxicillin (1 g b.d.), levofloxacin (500 mg o.d.) and bismuth (240 mg b.d.) was prescribed for 14 days. Eradication was confirmed by (13) C-urea breath test. Compliance was determined through questioning and recovery of empty medication envelopes. Incidence of adverse effects was evaluated by questionnaires. 200 patients were included consecutively (mean age 47 years, 67% women, 13% ulcer). Previous failed therapy included: standard clarithromycin triple therapy (131 patients), sequential (32) and concomitant (37). A total of 96% took all medications correctly. Per-protocol and intention-to-treat eradication rates were 91.1% (95%CI = 87-95%) and 90% (95%CI = 86-94%). Cure rates were similar regardless of previous (failed) treatment or country of origin. Adverse effects were reported in 46% of patients, most commonly nausea (17%) and diarrhoea (16%); 3% were intense but none was serious. Fourteen-day bismuth- and levofloxacin-containing quadruple therapy is an effective (≥90% cure rate), simple and safe second-line strategy in patients whose previous standard triple or non-bismuth quadruple (sequential or concomitant) therapies have failed. © 2015 John Wiley & Sons Ltd.

  4. High-precision quadruple isotope dilution method for simultaneous determination of nitrite and nitrate in seawater by GCMS after derivatization with triethyloxonium tetrafluoroborate

    Energy Technology Data Exchange (ETDEWEB)

    Pagliano, Enea, E-mail: enea.pagliano@nrc-cnrc.gc.ca; Meija, Juris; Mester, Zoltán

    2014-05-01

    Highlights: • High-precision determination of nitrite and nitrate in seawater. • Use of quadruple isotope dilution. • Aqueous Et₃O⁺BF₄]⁻ derivatization chemistry for GCMS analysis of nitrite and nitrate. Abstract: Quadruple isotope dilution mass spectrometry (ID⁴MS) has been applied for simultaneous determination of nitrite and nitrate in seawater. ID⁴MS allows high-precision measurements and entails the use of isotopic internal standards (¹⁸O-nitrite and ¹⁵N-nitrate). We include a tutorial on ID⁴MS outlining optimal experimental design which generates results with low uncertainties and obviates the need for direct (separate) evaluation of the procedural blank. Nitrite and nitrate detection was achieved using a headspace GCMS procedure based on single-step aqueous derivatization with triethyloxonium tetrafluoroborate at room temperature. In this paper the sample preparation was revised and fundamental aspects of this chemistry are presented. The proposed method has detection limits in the low parts-per-billion for both analytes, is reliable, precise, and has been validated using a seawater certified reference material (MOOS-2). Simplicity of the experimental design, low detection limits, and the use of quadruple isotope dilution makes the present method superior to the state-of-the-art for determination of nitrite and nitrate, and an ideal candidate for reference measurements of these analytes in seawater.

  5. 26 CFR 301.6503(j)-1 - Suspension of running of period of limitations; extension in case of designated and related...

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Suspension of running of period of limitations... ADMINISTRATION Limitations Limitations on Assessment and Collection § 301.6503(j)-1 Suspension of running of... running of the applicable period of limitations on assessment provided for in section 6501 is suspended...

  6. Quadruple Cone Coil with improved focality than Figure-8 coil in Transcranial Magnetic Stimulation

    Science.gov (United States)

    Rastogi, Priyam; Lee, Erik G.; Hadimani, Ravi L.; Jiles, David C.

    Transcranial Magnetic Stimulation (TMS) is a non-invasive therapy which uses a time varying magnetic field to induce an electric field in the brain and to cause neuron depolarization. Magnetic coils play an important role in the TMS therapy since their coil geometry determines the focality and penetration's depth of the induced electric field in the brain. Quadruple Cone Coil (QCC) is a novel coil with an improved focality when compared to commercial Figure-8 coil. The results of this newly designed QCC coil are compared with the Figure-8 coil at two different positions of the head - vertex and dorsolateral prefrontal cortex, over the 50 anatomically realistic MRI derived head models. Parameters such as volume of stimulation, maximum electric, area of stimulation and location of maximum electric field are determined with the help of computer modelling of both coils. There is a decrease in volume of brain stimulated by 11.6 % and a modest improvement of 8 % in the location of maximum electric field due to QCC in comparison to the Figure-8 coil. The Carver Charitable Trust and The Galloway Foundation.

  7. Fuzzy logic control of vehicle suspensions with dry friction nonlinearity

    Indian Academy of Sciences (India)

    We design and investigate the performance of fuzzy logic-controlled (FLC) active suspensions on a nonlinear vehicle model with four degrees of freedom, without causing any degeneration in suspension working limits. Force actuators were mounted parallel to the suspensions. In this new approach, linear combinations of ...

  8. Flow structure and heat transfer in a square duct fitted with dual/quadruple twisted-tapes: Influence of tape configuration

    International Nuclear Information System (INIS)

    Eiamsa-ard, S.; Changcharoen, W.

    2015-01-01

    Numerical predictions reported of thermohydraulic characteristics of square ducts equipped with dual and quadruple twisted tapes (DTs and QTs) with different configurations. The studied cases include (1) dual co-tapes (Co-DTs), (2) dual counter-tapes (C-DTs), (3) diagonal dual counter-tapes (C-DDTs), (4) diagonal dual co-tapes (Co-DDTs), (5) quadruple co-tapes (Co-QTs), (6) quadruple counter tapes (CC-QTs) and (7) quadruple counter-tapes (PC-QTs). The results of these cases are compared with those of a smooth duct (a duct without tape insert) and also the one with a single tape (ST). The prediction involves using the RNG k-ε turbulent model under constant wall heat flux condition in the turbulent flow regime for the Reynolds number ranging from 6000 to 14000. The prediction indicates that thermohydraulic characteristics in ducts with twisted tape are strongly dependent on number and configuration of tapes. However, the influence of tape number is more significant than that of tape configuration. Heat transfer and friction increase as tape number increases. QTs offer superior heat transfer to DTs but their thermal performance factors are lower. For the tape inserts determined, DTs with diagonal configuration (Co-DDTs and C-DDTs) is the best design as the tapes offer the best thermal performance. The highest thermal performance factors given by Co-DTs, Co-DDTs, C-DTs, C-DDTs, Co-QTs, PC-QTs and CC-QTs, are around 1.21, 1.35, 1.25, 1.38, 1.08, 1.18, and 1.22, respectively

  9. Optimal platform design using non-dominated sorting genetic algorithm II and technique for order of preference by similarity to ideal solution; application to automotive suspension system

    Science.gov (United States)

    Shojaeefard, Mohammad Hassan; Khalkhali, Abolfazl; Faghihian, Hamed; Dahmardeh, Masoud

    2018-03-01

    Unlike conventional approaches where optimization is performed on a unique component of a specific product, optimum design of a set of components for employing in a product family can cause significant reduction in costs. Increasing commonality and performance of the product platform simultaneously is a multi-objective optimization problem (MOP). Several optimization methods are reported to solve these MOPs. However, what is less discussed is how to find the trade-off points among the obtained non-dominated optimum points. This article investigates the optimal design of a product family using non-dominated sorting genetic algorithm II (NSGA-II) and proposes the employment of technique for order of preference by similarity to ideal solution (TOPSIS) method to find the trade-off points among the obtained non-dominated results while compromising all objective functions together. A case study for a family of suspension systems is presented, considering performance and commonality. The results indicate the effectiveness of the proposed method to obtain the trade-off points with the best possible performance while maximizing the common parts.

  10. Simulation of growing grains under orientation relation - dependent quadruple point dragging

    International Nuclear Information System (INIS)

    Ito, K

    2015-01-01

    The growth behaviour of a specified grain embedded in matrix grains, for which the migration mobility of the quadruple points depended on the relation between the orientations of the growing and shrinking grains, was studied using a modified Potts MC-type threedimensional simulation. Large embedded grains continued to grow without being overcome by coarsening matrix grains, whereas small embedded grains disappeared, under the influence of the relative mobilities of the quadruple points, the composition of the matrix grain texture and the width of the grain size distribution of the matrix grains. These results indicate that orientation relation-dependent quadruple point dragging can affect the recrystallization texture during the grain coarsening stage. (paper)

  11. [Influence of Saccharomyces boulardii Sachets combined with bismuth quadruple therapy for initial Helicobacter pylori eradication].

    Science.gov (United States)

    Zhu, X Y; Du, J; Wu, J; Zhao, L W; Meng, X; Liu, G F

    2017-08-08

    Objective: To evaluate the efficacy and safety of Saccharomyces boulardii Sachets combined with bismuth quadruple therapy for initial Helicobacter pylori ( H . pylori ) eradication. Methods: From March 2014 to March 2015, 240 participants from the third hospital of Hebei medical university with H . pylori infection were recruited and randomized into three groups: Quadruple therapy group received bismuth potassium citrate 220 mg bid + Rabeprazole 10 mg bid + amoxicillin 1 000 mg bid+ furazolidone 100 mg bid for 10 days. Short-term group and long-term group received the same quadruple therapy for 10 days as above, as well as Saccharomyces boulardii Sachets 500 mg bid for 14 days and 28 days, respectively. H . pylori eradication was confirmed by (13)C/(14)C-UBT at least 4 weeks after completion of therapy. And side effects were investigated during the therapy. Results: The H . pylori eradication rates in quadruple therapy, short-term and long-term group were 80%, 87.5% and 87.5% by ITT analysis ( P =0.321) and 92.8%, 94.6% and 95.9% by PP analysis ( P =0.717), respectively. The overall side effect rate and occurrence of diarrhea and abdominal distension were significantly lower in short-term or long-term group as compared with quadruple therapy group( P =0.007, 0.003, 0.004), but there was no significant difference between the two probiotics groups. Conclusions: Both short and long-term Saccharomyces boulardii Sachets reduced the overall side effect rate and occurrence of diarrhea or abdominal distension when combined with bismuth quadruple therapy for initial H . pylori eradication and no difference was observed in efficacy or safety between the two groups.

  12. The Quadruple Helix Model Enhancing Innovative Performance Of Indonesian Creative Industry

    Directory of Open Access Journals (Sweden)

    Sri Wahyu Lelly Hana Setyanti

    2017-11-01

    Full Text Available The creative industry in Indonesia has contributed positively to the national economic growth. Creative industry grows from the creativity and innovation performance of the business actors. The challenge of creative industry is how to completely understand the creative and innovative processes in business management. Therefore it requires an approach that combines the synergy between academicians entrepreneurs government and society in a quadruple helix model. The objective of this research is to develop a creativity model through a quadruple helix model in improving innovation performance of the creative industry.

  13. Design and suspension experiments of the full-size active magnetic bearing test rig for the HTR-10GT

    International Nuclear Information System (INIS)

    Lu Qiyue; Shi Lei; Zhao Lei; Yu Suyuan

    2005-01-01

    In this paper, we introduce the fundamental properties of the full-size active magnetic bearing experimental set system (AMB-F), including control unit, data I/O channel, feedback unit and executor. Besides, the 72-hours continuously running experiment of the AMB-F, with special attention to the vibration of stators' shell, is presented. This experiment is designed mainly for validating the total system's stability. It is the basis of further characteristic experiments. (authors)

  14. A new quadruple gravitational lens system : CLASS B0128+437

    NARCIS (Netherlands)

    Phillips, PM; Norbury, MA; Koopmans, LVE; Browne, IWA; Jackson, NJ; Wilkinson, PN; Biggs, AD; Blandford, RD; de Bruyn, AG; Fassnacht, CD; Helbig, P; Mao, S; Marlow, DR; Myers, ST; Pearson, TJ; Readhead, ACS; Rusin, D; Xanthopoulos, E

    2000-01-01

    High-resolution MERLIN observations of a newly discovered four-image gravitational lens system, B0128+437, are presented. The system was found after a careful re-analysis of the entire CLASS data set. The MERLIN observations resolve four components in a characteristic quadruple-image configuration;

  15. Control the length of beam trajectory with a quadruple triplet for heavy ion accelerator

    International Nuclear Information System (INIS)

    Zhang, Zhan; Wei, Shaoqing; Lee, Sang Jin; Kim, Do Gyun; Kim, Jang Youl

    2016-01-01

    Beam trajectory is needed to be controlled in heavy ion accelerator system. Quadruple magnets are widely used in heavy ion accelerator for focusing the transporting particles. A quadruple triplet system which consists of three consecutive quadrupoles, Q1, Q2 and Q3, is used to control beam trajectory at a focused position. Q1 and Q3 have symmetry with respect to Q2. The beam trajectory in magnet system is affected by higher order fields existed in real fields. For quadrupoles, the representation simulation of beam trajectory was carried out to study the beam trajectory and to estimate an effect of higher order field in triplet system. SCALA program was used to simulate the beam trajectory in OperaTM. SCALA can analyze a large number of beam trajectories at the same time by adjusting the size of finite element of the emitter. With OperaTM and MatlabTM programs, the position of focused beam spot in quadruple triplet system can be increased or decreased using evolution strategy (ES) method, therefore the length of triplet system can be controlled. Finally, the quadruple triplet system with the appropriate length and expected beam spot range was suggested in this paper

  16. Control the length of beam trajectory with a quadruple triplet for heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhan; Wei, Shaoqing; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of); Kim, Do Gyun; Kim, Jang Youl [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-12-15

    Beam trajectory is needed to be controlled in heavy ion accelerator system. Quadruple magnets are widely used in heavy ion accelerator for focusing the transporting particles. A quadruple triplet system which consists of three consecutive quadrupoles, Q1, Q2 and Q3, is used to control beam trajectory at a focused position. Q1 and Q3 have symmetry with respect to Q2. The beam trajectory in magnet system is affected by higher order fields existed in real fields. For quadrupoles, the representation simulation of beam trajectory was carried out to study the beam trajectory and to estimate an effect of higher order field in triplet system. SCALA program was used to simulate the beam trajectory in OperaTM. SCALA can analyze a large number of beam trajectories at the same time by adjusting the size of finite element of the emitter. With OperaTM and MatlabTM programs, the position of focused beam spot in quadruple triplet system can be increased or decreased using evolution strategy (ES) method, therefore the length of triplet system can be controlled. Finally, the quadruple triplet system with the appropriate length and expected beam spot range was suggested in this paper.

  17. EPIC 219217635: A Doubly Eclipsing Quadruple System Containing an Evolved Binary

    DEFF Research Database (Denmark)

    Borkovits, T.; Albrecht, S.; Rappaport, S.

    2018-01-01

    We have discovered a doubly eclipsing, bound, quadruple star system in the field of K2 Campaign 7. EPIC 219217635 is a stellar image with Kp = 12.7 that contains an eclipsing binary (‘EB’) with PA = 3.59470 d and a second EB with PB = 0.61825 d. We have obtained followup radial-velocity (‘RV’) sp...

  18. Filterless low-phase-noise frequency-quadrupled microwave generation based on a multimode optoelectronic oscillator

    Science.gov (United States)

    Teng, Yichao; Zhang, Pin; Zhang, Baofu; Chen, Yiwang

    2018-02-01

    A scheme to realize low-phase-noise frequency-quadrupled microwave generation without any filter is demonstrated. In this scheme, a multimode optoelectronic oscillator is mainly contributed by dual-parallel Mach-Zehnder modulators, fiber, photodetector, and microwave amplifier. The local source signal is modulated by a child MZM (MZMa), which is worked at maximum transmission point. Through properly adjusting the bias voltages of the other child MZM (MZMb) and the parent MZM (MZMc), optical carrier is effectively suppressed and second sidebands are retained, then the survived optical signal is fed back to the photodetector and MZMb to form an optoelectronic hybrid resonator and realize frequency-quadrupled signal generation. Due to the high Q-factor and mode selection effect of the optoelectronic hybrid resonator, compared with the source signal, the generated frequency-quadrupled signal has a lower phase noise. The approach has verified by experiments, and 18, 22, and 26 GHz frequency-quadrupled signal are generated by 4.5, 5.5, and 6.5 GHz local source signals. Compared with 4.5 GHz source signal, the phase noise of generated 18 GHz signal at 10 kHz frequency offset has 26.5 dB reduction.

  19. Dynamics of quadruple systems composed of two binaries: stars, white dwarfs, and implications for Ia supernovae

    Science.gov (United States)

    Fang, Xiao; Thompson, Todd A.; Hirata, Christopher M.

    2018-05-01

    We investigate the long-term secular dynamics and Lidov-Kozai (LK) eccentricity oscillations of quadruple systems composed of two binaries at quadrupole and octupole orders in the perturbing Hamiltonian. We show that the fraction of systems reaching high eccentricities is enhanced relative to triple systems, over a broader range of parameter space. We show that this fraction grows with time, unlike triple systems evolved at quadrupole order. This is fundamentally because with their additional degrees of freedom, quadruple systems do not have a maximal set of commuting constants of the motion, even in secular theory at quadrupole order. We discuss these results in the context of star-star and white dwarf-white dwarf (WD) binaries, with emphasis on WD-WD mergers and collisions relevant to the Type Ia supernova problem. For star-star systems, we find that more than 30 per cent of systems reach high eccentricity within a Hubble time, potentially forming triple systems via stellar mergers or close binaries. For WD-WD systems, taking into account general relativistic and tidal precession and dissipation, we show that the merger rate is enhanced in quadruple systems relative to triple systems by a factor of 3.5-10, and that the long-term evolution of quadruple systems leads to a delay-time distribution ˜1/t for mergers and collisions. In gravitational wave-driven mergers of compact objects, we classify the mergers by their evolutionary patterns in phase space and identify a regime in about 8 per cent of orbital shrinking mergers, where eccentricity oscillations occur on the general relativistic precession time-scale, rather than the much longer LK time-scale. Finally, we generalize previous treatments of oscillations in the inner binary eccentricity (evection) to eccentric mutual orbits. We assess the merger rate in quadruple and triple systems and the implications for their viability as progenitors of stellar mergers and Type Ia supernovae.

  20. Particle Suspension Mechanisms - Supplemental Material

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, M B

    2011-03-03

    This supplemental material provides a brief introduction to particle suspension mechanisms that cause exfoliated skin cells to become and remain airborne. The material presented here provides additional context to the primary manuscript and serves as background for designing possible future studies to assess the impact of skin cells as a source of infectious aerosols. This introduction is not intended to be comprehensive and interested readers are encouraged to consult the references cited.

  1. Suspension trauma; Le traumatisme de suspension

    Energy Technology Data Exchange (ETDEWEB)

    Trudel, S. [Le Centre de sante et de services sociaux du rocher Perce, Chandler, PQ (Canada)

    2010-07-01

    This presentation discussed the precautions that should be taken to avoid falls from wind turbines or transmission towers. Suspension trauma was explained by a medical doctor in terms of physiology and the body's normal circulation and the elements that disturb normal physiology when in suspension. The trauma occurs following a fall, which carries the risk of 1or more disorders, such as massive hemorrhage, high cardiac pulse, and constriction of blood vessels. Nausea, vertigo, cardiac arrhythmia and sweating occur 15 to 20 minutes following the fall. The presentation emphasized the importance of having qualified personnel at the site and wearing proper harnesses and equipment that supports the neck. figs.

  2. Experimental Evaluation of Mountain Bike Suspension Systems

    Directory of Open Access Journals (Sweden)

    J. Titlestad

    2003-01-01

    Full Text Available A significant distinction between competitive mountain bikes is whether they have a suspension system. Research studies indicate that a suspension system gives advantages, but it is difficult to quantify the benefits because they depend on so many variables, including the physiology and psychology of the cyclist, the roughness of the track and the design of the suspension system. A laboratory based test rig has been built that allows the number of variables in the system to be reduced and test conditions to be controlled. The test rig simulates regular impacts of the rear wheel with bumps in a rolling road. The physiological variables of oxygen consumption and heart rate were measured, together with speeds and forces at various points in the system. Physiological and mechanical test results both confirm a significant benefit in using a suspension system on the simulated rough track, with oxygen consumption reduced by around 30 % and power transmitted through the pedals reduced by 30 % to 60 %.

  3. Application of the RPN methodology for quantification of the operability of the quadruple-tank process

    Directory of Open Access Journals (Sweden)

    J.O. Trierweiler

    2002-04-01

    Full Text Available The RPN indicates how potentially difficult it is for a given system to achieve the desired performance robustly. It reflects both the attainable performance of a system and its degree of directionality. Two new indices, RPN ratio and RPN difference are introduced to quantify how realizable a given desired performance can be. The predictions made by RPN are verified by closed-loop simulations. These indices are applied to quantify the IO-controllability of the quadruple-tank process.

  4. Comparison of Second-Line Quadruple Therapies with or without Bismuth for Helicobacter pylori Infection

    Directory of Open Access Journals (Sweden)

    Guang-Hong Jheng

    2015-01-01

    Full Text Available The bismuth-based quadruple regimen has been applied in Helicobacter pylori rescue therapy worldwide. The non-bismuth-based quadruple therapy or “concomitant therapy” is an alternative option in first-line eradication but has not been used in second-line therapy. Discovering a valid regimen for rescue therapy in bismuth-unavailable countries is important. We conducted a randomized controlled trial to compare the efficacies of the standard quadruple therapy and a modified concomitant regimen. One hundred and twenty-four patients were randomly assigned into two groups: RBTM (rabeprozole 20 mg bid., bismuth subcitrate 120 mg qid, tetracycline 500 mg qid, and metronidazole 250 mg qid and RATM (rabeprozole 20 mg bid., amoxicillin 1 g bid., tetracycline 500 mg qid, and metronidazole 250 mg qid for 10 days. The eradication rate of the RBTM and RATM regimen was 92.1% and 90.2%, respectively, in intention-to-treat analysis. Patients in both groups had good compliance (~96%. The overall incidence of adverse events was higher in the RATM group (42.6% versus 22.2%, P=0.02, but only seven patients (11.5% experienced grades 2-3 events. In conclusion, both regimens had good efficacy, compliance, and acceptable side effects. The 10-day RATM treatment could be an alternative rescue therapy in bismuth-unavailable countries.

  5. Rheology of organoclay suspension

    CSIR Research Space (South Africa)

    Hato, MJ

    2011-05-01

    Full Text Available The authors have studied the rheological properties of clay suspensions in silicone oil, where clay surfaces were modified with three different types of surfactants. Dynamic oscillation measurements showed a plateau-like behavior for all...

  6. Suspension Trauma / Orthostatic Intolerance

    Science.gov (United States)

    ... Suspension Trauma/Orthostatic Intolerance Safety and Health Information Bulletin SHIB 03-24-2004, updated 2011 This Safety ... the harness, the environmental conditions, and the worker's psychological state all may increase the onset and severity ...

  7. The Mystical Suspension

    Directory of Open Access Journals (Sweden)

    Héctor Santiesteban Oliva

    2016-11-01

    Full Text Available Mistical suspension, silence, time, absolute, ontology, ineffability, aletheiaIn the mystical ecstasy there is a sensorial and intellectual suspension when contemplating the absolute, the ontological Being. Silence is not only significant: it is revealing. The greatest expression of experience inner silence . The word is insufficient when the ontological reality is revealed. Revelation or truth , the Greek concept of aletheia, takes on greater significance in that transcendental experience. It is also suspended phenomenological time and remains eternity open.

  8. Failure analysis of thermally cycled columnar thermal barrier coatings produced by high-velocity-air fuel and axial-suspension-plasma spraying: A design perspective

    Czech Academy of Sciences Publication Activity Database

    Ganvir, A.; Vaidhyanathan, V.; Markocsan, N.; Gupta, M.; Pala, Zdeněk; Lukáč, František

    2018-01-01

    Roč. 44, č. 3 (2018), s. 3161-3172 ISSN 0272-8842 Institutional support: RVO:61389021 Keywords : Columnar Thermal Barrier Coatings * Axial Suspension Plasma spraying * Thermal Cyclic Fatigue * High Velocity Air Fuel Spraying Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.986, year: 2016 https://www.sciencedirect.com/science/article/pii/S0272884217325403

  9. Evaluation of indeterminacy of initial data for cad system of electric engine suspension

    Science.gov (United States)

    Antipin, D. Ya; Izmerov, O. V.; Shorokhov, S. G.; Nadtochey, D. G.

    2018-03-01

    The research of the variants of the suspension of the traction electric motor of diesel locomotives was performed. It was found that the method of designing the suspension does not take into consideration the possible changes of the characteristics of the parts in operation conditions. Variants of the suspension design were proposed and patented, which provide the work reliability despite the operating conditions.

  10. Simulation study on control of spill structure of slow extracted beam from a medical synchrotron with feed-forward and feedback using a fast quadruple magnet and RF-knockout system

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Ryo; Nakanishi, Tetsuya, E-mail: nakanishi.tetsuya@nihon-u.ac.jp

    2017-02-21

    A feedback control of the spill structure for the slow beam extraction from the medical synchrotron using a fast quadruple and radio frequency (RF)-knockout (QAR method) is studied to obtain the designed spill structure. In addition the feed-forward control is used so that the feedback control is performed effectively. In this extraction method, the spill of several ms are extracted continuously with an interval time of less than 1 ms. Beam simulation showed that a flat spill structure was effectively obtained with feed-forward and feedback control system as well as a step-wise structure which is useful for the shortening of an irradiation time in a spot scanning operation. The effect of current ripples from main quadruple magnet's power supplies could be also reduced with the feedback control application.

  11. Magnetic suspension and guidance of high speed vehicles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alston, I A; Clark, J M; Hayden, J T

    1972-12-01

    Technical and economical assessments of magnetic suspensions for high speed vehicles and transport systems are reported. In these suspensions the suspending magnet takes the form of a powerful superconducting electromagnet that induces currents while it moves over conducting sheets or loops. A number of vehicle track designs are evaluated for operating cost effectiveness. It is shown that propulsion systems using power collected from the track are more expensive than those using power generated onboard the vehicle, and that the conducting sheet suspension is slightly more expensive than the null flux suspension.

  12. Magnetic suspension of a rotating system. Application to inertial flywheels

    International Nuclear Information System (INIS)

    Lemarquand, Guy

    1984-01-01

    The various possible magnetic suspension configurations compatible with rotating mechanical systems are defined from studies of the characteristics of different types of magnetic bearings. The results obtained are used in the design and realization of a magnetic suspension for an inertial flywheel. (author) [fr

  13. Investigation of shape, position, and permeability of shielding material in quadruple butterfly coil for focused transcranial magnetic stimulation

    Science.gov (United States)

    Rastogi, Priyam; Zhang, Bowen; Tang, Yalun; Lee, Erik G.; Hadimani, Ravi L.; Jiles, David C.

    2018-05-01

    Transcranial magnetic stimulation has been gaining popularity in the therapy for several neurological disorders. A time-varying magnetic field is used to generate electric field in the brain. As the development of TMS methods takes place, emphasis on the coil design increases in order to improve focal stimulation. Ideally reduction of stimulation of neighboring regions of the target area is desired. This study, focused on the improvement of the focality of the Quadruple Butterfly Coil (QBC) with supplemental use of different passive shields. Parameters such as shape, position and permeability of the shields have been explored to improve the focus of stimulation. Results have been obtained with the help of computer modelling of a MRI derived heterogeneous head model over the vertex position and the dorsolateral prefrontal cortex position using a finite element tool. Variables such as maximum electric field induced on the grey matter and scalp, volume and area of stimulation above half of the maximum value of electric field on the grey matter, and ratio of the maximum electric field in the brain versus the scalp have been investigated.

  14. Magnetic Suspension Technology Workshop

    International Nuclear Information System (INIS)

    Keckler, C.R.; Groom, N.J.; Britcher, C.P.

    1993-01-01

    In order to identify the state of magnetic suspension technology in such areas as rotating systems, pointing of experiments or subsystems, payload isolation, and superconducting materials, a workshop on Magnetic Suspension Technology was held at the Langley Research Center in Hampton, Virginia, on 2-4 Feb. 1988. The workshop included five technical sessions in which a total of 24 papers were presented. The technical sessions covered the areas of pointing, isolation, and measurement, rotating systems, modeling and control, and superconductors. A list of attendees is provided. Separate abstracts have been prepared for articles from this report

  15. A Lagrangian framework for deriving triples and quadruples corrections to the CCSD energy

    DEFF Research Database (Denmark)

    Eriksen, Janus Juul; Kristensen, Kasper; Kjærgaard, Thomas

    2014-01-01

    Using the coupled cluster Lagrangian technique, we have determined perturbative corrections to the coupled cluster singles and doubles (CCSD) energy that converge towards the coupled cluster singles, doubles, and triples (CCSDT) and coupled cluster singles, doubles, triples, and quadruples (CCSDTQ......) energies, considering the CCSD state as the unperturbed reference state and the fluctua- tion potential as the perturbation. Since the Lagrangian technique is utilized, the energy corrections satisfy Wigner’s 2n + 1 rule for the cluster amplitudes and the 2n + 2 rule for the Lagrange multi- pliers...

  16. Alternatives to School Disciplinary and Suspension Problems.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Div. of Instruction.

    Policies and procedures for disciplining students should be designed to teach them responsibility, rather than simply punish them. Providing educational opportunities to behavioral deviants is a problem that does not have a simple solution. However, alternatives to suspension or expulsion must be attempted before these disciplinary actions are…

  17. Intelligent systems of the vehicles’ suspension

    Science.gov (United States)

    Yurlin, D.

    2018-02-01

    The article is devoted to the current condition of car’s active suspension system. It presents the tendencies in development of the active systems of suspension system, adjustable elements incorporated in them and the companies succeeded in designing such systems. It also mirrors the problem of impact of active systems on car’s safety and their importance for the driver. Advantages and disadvantages of the most common types of active elements are being described, analyzed and compared. The author concludes about the perspectives of these systems’ development.

  18. Impact of Relational Coordination on Nurse Job Satisfaction, Work Engagement and Burnout: Achieving the Quadruple Aim.

    Science.gov (United States)

    Havens, Donna Sullivan; Gittell, Jody Hoffer; Vasey, Joseph

    2018-03-01

    To explore how relational coordination, known to enhance quality and efficiency outcomes for patients and hospitals, impacts direct care nurse outcomes such as burnout, work engagement, and job satisfaction, addressing the "Quadruple Aim," to improve the experience of providing care. Hospitals are complex organizations in which multiple providers work interdependently, under conditions of uncertainty and time constraints, to deliver safe quality care despite differences in specialization, training, and status. Relational coordination-communicating and relating for the purpose of task integration-is known to improve quality, safety, and efficiency under these conditions, but less is known about its impact on the well-being of direct care providers themselves. Surveys measuring relational coordination among nurses and other types of providers as well as job-related outcomes in 5 acute care community hospitals were completed by direct care RNs. Relational coordination was significantly related to increased job satisfaction, increased work engagement, and reduced burnout. Relational coordination contributes to the well-being of direct care nurses, addressing the Quadruple Aim by improving the experience of providing care.

  19. Tensile properties of quadruple melted Zr-2.5Nb pressure tubes evaluated from pressure tube offcuts

    International Nuclear Information System (INIS)

    Shah, Priti Kotak; Dubey, J.S.; Anantharaman, S.

    2013-12-01

    Rajasthan Atomic Power Station-2 (RAPS-2) is the first Pressurised Heavy Water Reactor (PHWR) in India having quadruple melted Zr-2.5Nb pressure tubes. Front-end and back-end off-cuts of sixteen pressure tubes were selected for studying the mechanical properties in axial and transverse directions of the tube. Tension tests were carried out at room temperature and at 300℃ using miniature tensile test specimens. The report presents the experimental details and discusses the base line tensile property data for the quadruple melted pressure tubes of RAPS-2. This data will be useful for the reactor life management. (author)

  20. Design and Measurements of Dual-Polarized Wideband Constant-Beamwidth Quadruple-Ridged Flared Horn

    Science.gov (United States)

    Akgiray, Ahmed; Weinreb, Sander; Imbriale, William

    2011-01-01

    A quad-ridged, flared horn achieving nearly constant beamwidth and excellent return loss over a 6:1 frequency bandwidth is presented. Radiation pattern measurements show excellent beamwidth stability from 2 to 12 GHz. Measured return loss is > 10 dB over the entire band and > 15 dB from 2.5 to 11 GHz. Using a custom physical optics code, system performance of a radio telescope is computed and predicted performance is average 70% aperture efficiency and 10 Kelvin of antenna noise temperature.

  1. Analysis of a front suspension system for UniART FSAE car using FEA

    Science.gov (United States)

    Zaidie, M. N. A.; Hashim, M. S. M.; Tasyrif, M.; Basha, M. H.; Ibrahim, I.; Kamaruddin, N. S.; Shahriman, A. B.

    2017-10-01

    In recent years, many research works from institutions that participated in Formula SAE had highlighted on suspension systems. The aim is to improve the system in term of performance and robustness. However, every suspension system for a racing car is tailored to the car itself. Thus, this paper proposes a new design for front suspension system for UniART FSAE car. The new design was than being compared to the previous suspension system for enhancement. The analysis covered in this paper based on several conditions such as braking, cornering and bumping condition and was carried out using finite element analysis. Each main component for the suspension system such as lower arm, upper arm and knuckle has been analysed in term of strength and performance. From the results, the proposed new design of the suspension system has improved in term of strength and performance compared to the previous suspension system.

  2. A universal suspension test rig for electrohydraulic active and passive automotive suspension system

    Directory of Open Access Journals (Sweden)

    Mahmoud Omar

    2017-12-01

    Full Text Available A fully active electro-hydraulic and passive automotive quarter car suspensions with their experimental test-rigs are designed and implemented. Investigation of the active performance compared against the passive is performed experimentally and numerically utilizing SIMULINK's Simscape library. Both systems are modeled as single-degree-of-freedom in order to simplify the validation process. Economic considerations were considered during the rig's implementation. The rig consists of two identical platforms fixed side by side allowing testing two independent suspensions simultaneously. Position sensors for sprung and unsprung masses on both platforms are installed. The road input is introduced by a cam and a roller follower mechanism driven by 1.12 kW single phase induction motor with speed reduction assembly. The active hydraulic cylinder was the most viable choice due to its high power-to-weight ratio. The active control is of the proportional-integral-differential (PID type. Though this technique is quite simple and not new, yet the emphasis of this paper is the engineering, design and implementation of the experimental setup and controller. A successful validation process is performed. Ride comfort significantly improved with active suspension, as shown by the results; 24.8% sprung mass vibration attenuation is achieved. The details of the developed system with the analytical and experimental results are presented. Keywords: Active suspension, Passive suspension, Servo, Hydraulic, Control, PID

  3. Network synthesis and parameter optimization for vehicle suspension with inerter

    Directory of Open Access Journals (Sweden)

    Long Chen

    2016-12-01

    Full Text Available In order to design a comfortable-oriented vehicle suspension structure, the network synthesis method was utilized to transfer the problem into solving a timing robust control problem and determine the structure of “inerter–spring–damper” suspension. Bilinear Matrix Inequality was utilized to obtain the timing transfer function. Then, the transfer function of suspension system can be physically implemented by passive elements such as spring, damper, and inerter. By analyzing the sensitivity and quantum genetic algorithm, the optimized parameters of inerter–spring–damper suspension were determined. A quarter-car model was established. The performance of the inerter–spring–damper suspension was verified under random input. The simulation results manifested that the dynamic performance of the proposed suspension was enhanced in contrast with traditional suspension. The root mean square of vehicle body acceleration decreases by 18.9%. The inerter–spring–damper suspension can inhibit the vertical vibration within the frequency of 1–3 Hz effectively and enhance the performance of ride comfort significantly.

  4. Research on Dynamic Optimization for Road-friendly Vehicle Suspension

    Directory of Open Access Journals (Sweden)

    Lu Yongjie

    2014-10-01

    Full Text Available The heavy vehicle brings large dynamic loads to the road surface, which would reduce vehicle ride comfort and shorten road service life. The structure characteristic of heavy vehicle suspension has a significant impact on vehicle performance. Based on the D'Alembert principle, the dynamics models of independent and integral balanced suspension are proposed considering mass and inertia of balancing rod. The sprung mass acceleration and the tire dynamic force for two kinds of balanced suspension and the traditional quarter vehicle model are compared in frequency-domain and time-domain respectively. It is concluded that a quarter vehicle model simplified for balanced suspension could be used to evaluate the ride comfort of vehicle well, but it has some limitations in assessing the vehicle road-friendliness. Then, the sprung mass acceleration and the road damage coefficients are also analyzed under different vehicle design and running parameters at detail. Some conclusions are obtained: low suspension stiffness, high suspension damping and low tire stiffness are all favorable to improve vehicle performance; there is a saturation range of suspension damping enhancing vehicle performance; improving the road surface roughness and avoiding the no-load running are two effective methods to accomplish the better ride comfort and road-friendliness. The suspension stiffness and damping parameters are chosen for optimal parameters matching of road friendliness based on the approximation optimization method.

  5. Particle interactions in concentrated suspensions

    International Nuclear Information System (INIS)

    Mondy, L.A.; Graham, A.L.; Abbott, J.R.; Brenner, H.

    1993-01-01

    An overview is presented of research that focuses on slow flows of suspensions in which colloidal and inertial effects are negligibly small. The authors describe nuclear magnetic resonance imaging experiments to quantitatively measure particle migration occurring in concentrated suspensions undergoing a flow with a nonuniform shear rate. These experiments address the issue of how the flow field affects the microstructure of suspensions. In order to understand the local viscosity in a suspension with such a flow-induced, spatially varying concentration, one must know how the viscosity of a homogeneous suspension depends on such variables as solids concentration and particle orientation. The authors suggest the technique of falling ball viscometry, using small balls, as a method to determine the effective viscosity of a suspension without affecting the original microstructure significantly. They also describe data from experiments in which the detailed fluctuations of a falling ball's velocity indicate the noncontinuum nature of the suspension and may lead to more insights into the effects of suspension microstructure on macroscopic properties. Finally, they briefly describe other experiments that can be performed in quiescent suspensions (in contrast to the use of conventional shear rotational viscometers) in order to learn more about boundary effects in concentrated suspensions

  6. Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K. [QuTech and Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-07-25

    The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots. This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.

  7. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the lanthanides La–Lu

    NARCIS (Netherlands)

    Dyall, K.G.; Gomes, A.S.P.; Visscher, L.

    2010-01-01

    Relativistic basis sets of double-zeta, triple-zeta, and quadruple-zeta quality have been optimized for the lanthanide elements La-Lu. The basis sets include SCF exponents for the occupied spinors and for the 6p shell, exponents of correlating functions for the valence shells (4f, 5d and 6s) and the

  8. On the rates of type Ia supernovae originating from white dwarf collisions in quadruple star systems

    Science.gov (United States)

    Hamers, Adrian S.

    2018-04-01

    We consider the evolution of stellar hierarchical quadruple systems in the 2+2 (two binaries orbiting each other's barycentre) and 3+1 (triple orbited by a fourth star) configurations. In our simulations, we take into account the effects of secular dynamical evolution, stellar evolution, tidal evolution and encounters with passing stars. We focus on type Ia supernovae (SNe Ia) driven by collisions of carbon-oxygen (CO) white dwarfs (WDs). Such collisions can arise from several channels: (1) collisions due to extremely high eccentricities induced by secular evolution, (2) collisions following a dynamical instability of the system, and (3) collisions driven by semisecular evolution. The systems considered here have initially wide inner orbits, with initial semilatus recti larger than 12 {au}, implying no interaction if the orbits were isolated. However, taking into account dynamical evolution, we find that ≈0.4 (≈0.6) of 2+2 (3+1) systems interact. In particular, Roche Lobe overflow can be triggered possibly in highly eccentric orbits, dynamical instability can ensue due to mass-loss-driven orbital expansion or secular evolution, or a semisecular regime can be entered. We compute the delay-time distributions (DTDs) of collision-induced SNe Ia, and find that they are flatter compared to the observed DTD. Moreover, our combined SNe Ia rates are (3.7± 0.7) × 10^{-6} M_⊙^{-1} and (1.3± 0.2) × 10^{-6} M_⊙^{-1} for 2+2 and 3+1 systems, respectively, three orders of magnitude lower compared to the observed rate, of order 10^{-3} M_⊙^{-1}. The low rates can be ascribed to interactions before the stars evolve to CO WDs. However, our results are lower limits given that we considered a subset of quadruple systems.

  9. THE QUADRUPLE PRE-MAIN-SEQUENCE SYSTEM LkCa 3: IMPLICATIONS FOR STELLAR EVOLUTION MODELS

    International Nuclear Information System (INIS)

    Torres, Guillermo; Latham, David W.; Ruíz-Rodríguez, Dary; Prato, L.; Wasserman, Lawrence H.; Badenas, Mariona; Schaefer, G. H.; Mathieu, Robert D.

    2013-01-01

    We report the discovery that the pre-main-sequence (PMS) object LkCa 3 in the Taurus-Auriga star-forming region is a hierarchical quadruple system of M stars. It was previously known to be a close (∼0.''5) visual pair, with one component being a moderately eccentric 12.94 day single-lined spectroscopic binary. A re-analysis of archival optical spectra complemented by new near-infrared (NIR) spectroscopy shows both visual components to be double lined; the second one has a period of 4.06 days and a circular orbit. In addition to the orbital elements, we determine optical and NIR flux ratios, effective temperatures, and projected rotational velocities for all four stars. Using existing photometric monitoring observations of the system that had previously revealed the rotational period of the primary in the longer-period binary, we also detect the rotational signal of the primary in the 4.06 day binary, which is synchronized with the orbital motion. With only the assumption of coevality, a comparison of all of these constraints with current stellar evolution models from the Dartmouth series points to an age of 1.4 Myr and a distance of 133 pc, consistent with previous estimates for the region and suggesting that the system is on the near side of the Taurus complex. Similar comparisons of the properties of LkCa 3 and the well-known quadruple PMS system GG Tau with the widely used models from the Lyon series for a mixing length parameter of α ML = 1.0 strongly favor the Dartmouth models

  10. BD -22 5866: A Low-Mass, Quadruple-lined Spectroscopic and Eclipsing Binary

    Science.gov (United States)

    Shkolnik, Evgenya; Liu, Michael C.; Reid, I. Neill; Hebb, Leslie; Cameron, Andrew C.; Torres, Carlos A.; Wilson, David M.

    2008-08-01

    We report our discovery of an extremely rare, low-mass, quadruple-lined spectroscopic binary BD -22 5866 (=NLTT 53279, integrated spectral type = M0 V), found during an ongoing search for the youngest M dwarfs in the solar neighborhood. From the cross-correlation function, we are able to measure relative flux levels, estimate the spectral types of the components, and set upper limits on the orbital periods and separations. The resulting system is hierarchical, composed of a K7 + K7 binary and an M1 + M2 binary with semimajor axes of aAsin iA system was unresolved with published adaptive optics imaging, limits the projected physical separation of the two binaries at the time of the observation to dABlesssim 4.1 AU at the photometric distance of 51 pc. The maximum observed radial velocity difference between the A and B binaries limits the orbit to aABsin iAB systems, we speculate that an early dynamical process reduced the size of the system, such as the interaction of the two binaries with a circumquadruple disk. Intensive photometric, spectroscopic, and interferometric monitoring, as well as a parallax measurement of this rare quadruple system, is certainly warranted. Based on observations collected at the W. M. Keck Observatory and the Canada-France-Hawaii Telescope (CFHT). The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation. The CFHT is operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  11. Robustness analysis of bogie suspension components Pareto optimised values

    Science.gov (United States)

    Mousavi Bideleh, Seyed Milad

    2017-08-01

    Bogie suspension system of high speed trains can significantly affect vehicle performance. Multiobjective optimisation problems are often formulated and solved to find the Pareto optimised values of the suspension components and improve cost efficiency in railway operations from different perspectives. Uncertainties in the design parameters of suspension system can negatively influence the dynamics behaviour of railway vehicles. In this regard, robustness analysis of a bogie dynamics response with respect to uncertainties in the suspension design parameters is considered. A one-car railway vehicle model with 50 degrees of freedom and wear/comfort Pareto optimised values of bogie suspension components is chosen for the analysis. Longitudinal and lateral primary stiffnesses, longitudinal and vertical secondary stiffnesses, as well as yaw damping are considered as five design parameters. The effects of parameter uncertainties on wear, ride comfort, track shift force, stability, and risk of derailment are studied by varying the design parameters around their respective Pareto optimised values according to a lognormal distribution with different coefficient of variations (COVs). The robustness analysis is carried out based on the maximum entropy concept. The multiplicative dimensional reduction method is utilised to simplify the calculation of fractional moments and improve the computational efficiency. The results showed that the dynamics response of the vehicle with wear/comfort Pareto optimised values of bogie suspension is robust against uncertainties in the design parameters and the probability of failure is small for parameter uncertainties with COV up to 0.1.

  12. Administrative license suspension: Does length of suspension matter?

    Science.gov (United States)

    Fell, James C; Scherer, Michael

    2017-08-18

    Administrative license revocation (ALR) laws, which provide that the license of a driver with a blood alcohol concentration at or over the illegal limit is subject to an immediate suspension by the state department of motor vehicles, are an example of a traffic law in which the sanction rapidly follows the offense. The power of ALR laws has been attributed to how swiftly the sanction is applied, but does the length of suspension matter? Our objectives were to (a) determine the relationship of the ALR suspension length to the prevalence of drinking drivers relative to sober drivers in fatal crashes and (b) estimate the extent to which the relationship is associated to the general deterrent effect compared to the specific deterrent effect of the law. Data comparing the impact of ALR law implementation and ALR law suspension periods were analyzed using structural equation modeling techniques on the ratio of drinking drivers to nondrinking drivers in fatal crashes from the Fatality Analysis Reporting System (FARS). States with an ALR law with a short suspension period (1-30 days) had a significantly lower drinking driver ratio than states with no ALR law. States with a suspension period of 91-180 days had significantly lower ratios than states with shorter suspension periods, while the three states with suspension lengths of 181 days or longer had significantly lower ratios than states with shorter suspension periods. The implementation of any ALR law was associated with a 13.1% decrease in the drinking/nondrinking driver fatal crash ratio but only a 1.8% decrease in the intoxicated/nonintoxicated fatal crash ratio. The ALR laws and suspension lengths had a significant general deterrent effect, but no specific deterrent effect. States might want to keep (or adopt) ALR laws for their general deterrent effects and pursue alternatives for specific deterrent effects. States with short ALR suspension periods should consider lengthening them to 91 days or longer.

  13. A novel magnetic lead screw active suspension system for vehicles

    DEFF Research Database (Denmark)

    Berg, Nick Ilsø; Holm, Rasmus Koldborg; Rasmussen, Peter Omand

    2014-01-01

    This paper encompasses a detailed study of the redesign of a novel Magnetic Lead Screw (MLS) active suspension system for possible regeneration of the energy dispatched in the suspension system and active control of vehicle body movement. The MLS converts a low speed high force linear motion...... of a translator into a high speed low torque rotational motion of a rotor through helically shaped magnets. The paper describes the drawback of the first MLS prototype v1.0 developed for active suspension system, which lead to a new design of the MLS prototype named v1.5. Furthermore the paper introduces detailed...

  14. The aqueous homogeneous suspension reactor project

    International Nuclear Information System (INIS)

    1975-01-01

    The power of the KSTR reactor has been increased up to 200 kW in the fourth quarter of 1974. A description is given of the behaviour of the reactor at increased power level, safety aspects concerned with this new level, the operation of the reactor, instrumental behavior and mechanical behavior. Irradiation investigation of two types of fuels are reported and results are presented. Progress made on the conceptual design of a 250 MWe suspension reactor is described

  15. Democracy and environment as references for quadruple and quintuple helix innovation systems

    Science.gov (United States)

    Carayannis, Elias G.; Campbell, David F. J.; Orr, Barron J.

    2015-04-01

    The perspective of democracy and the ecological context define key references for knowledge production and innovation in innovation systems. Particularly under conditions of environmental change where enhancing the potential for adaptation is critical, this requires a closer look at ecological responsibility and sensitivity in the different innovation models and governance regimes. The "Quintuple Helix" innovation model is an approach that stresses the necessary socio-ecological transition of society and economy by adding an environment helix to an innovation system already made up of three (university-industry-government) or four (civil society relations) helices in a way that supports adaptation by incorporating global warming as both a challenge to and a driver of innovation. There is the proposition that knowledge production and innovation co-evolve with democracy (Carayannis and Campbell, 2014). In the Triple Helix model (Etzkowitz and Leydesdorff, 2000) the existence of a democracy does not appear to be necessary for knowledge production and innovation. However, the Quadruple Helix (Carayannis and Campbell, 2009, 2010 and 2014) is defined and represented by additional key attributes and components: "media-based and culture-based public", "civil society" and "arts, artistic research and arts-based innovation" (Bast, Carayannis and Campbell, 2015). Implications of this are that the fourth helix in the Quadruple Helix innovation systems brings in and represents the perspective of "dimension of democracy" or the "context of democracy" for knowledge in general and knowledge production and innovation in more particular. Within theories of democracy there is a competition between narrow and broader concepts of democracy (Campbell, 2013). This is particularly true when democracy is to be understood to transcend more substantially the narrow understanding of being primarily based on or being primarily rooted in government institutions (within a Triple Helix

  16. Study on Dynamic Behaviour of Wishbone Suspension System

    International Nuclear Information System (INIS)

    Kamal, M; Rahman, M M

    2012-01-01

    This paper presents the characteristic model of the wishbone suspension system using the quarter car model approach. Suspension system in an automobile provides vehicle control and passenger comfort by providing isolation from road disturbances. This makes it essential that the detailed behavior of suspension should be known to optimize the performance. A kinetic study is performed using multi body system (MBS) analysis. The dirt road profile is considered as an applied loading. The spring constant, damping coefficient and sprung mass are studied on the performance of the suspension system. It can be observed that the spring constant is inversely related with time required to return to initial position and the amount of deformations. The damping ratio affects the suppression of spring oscillations, beyond a certain limit damping ration has the negligible effect. Sprung mass effected the equilibrium position of the suspension system with a small effect on its oscillation behavior. It is shown that the spring constant, damping ratio and sprung mass are significant parameters to design the suspension system. This study is essential for complete understanding of working of the suspension system and a future study with real geometries.

  17. Quadruple-layered perovskite (CuCl)Ca2NaNb4O13

    International Nuclear Information System (INIS)

    Kitada, A.; Tsujimoto, Y.; Yamamoto, T.; Kobayashi, Y.; Narumi, Y.; Kindo, K.; Aczel, A.A.; Luke, G.M.; Uemura, Y.J.; Kiuchi, Y.; Ueda, Y.; Yoshimura, K.; Ajiro, Y.; Kageyama, H.

    2012-01-01

    We will present the synthesis, structure and magnetic properties of a new quadruple-layered perovskite (CuCl)Ca 2 NaNb 4 O 13 . Through a topotactic ion-exchange reaction with CuCl 2 , the precursor RbCa 2 NaNb 4 O 13 presumably having an incoherent octahederal tliting changes into (CuCl)Ca 2 NaNb 4 O 13 with a 2a p ×2a p ×2c p superstructure (tetragonal; a=7.73232(5) Å, c=39.2156(4) Å). The well-defined superstructure for the ion-exchanged product should be stabilized by the inserted CuCl 4 O 2 octahedral layers that firmly connect with neighboring perovskite layers. Magnetic studies show the absence of long-range magnetic ordering down to 2 K despite strong in-plane interactions. Aleksandrov′s group theory and Rietveld refinement of synchrotron X-ray diffraction data suggest the structure to be of I4/mmm space group with in-phase tilting along the a and b axes, a two-tilt system (++0). - Graphical Abstract: We present a quadruple-layered copper oxyhalide (CuCl)Ca 2 NaNb 4 O 13 synthesized through a topotactic ion-exchange reaction of RbCa 2 NaNb 4 O 13 with CuCl 2 . The compound has a well-defined superstructure. Magnetic studies suggest the absence of magnetic order even at 2 K. Highlights: ► (CuCl)Ca 2 NaNb 4 O 13 was prepared by ion-exchange reaction of RbCa 2 NaNb 4 O 13 with CuCl 2 . ► Compound has a 2a p ×2a p ×2c p superstructure (tetragonal; a=7.73 Å, c=39.21 Å). ► Such a well-defined superstructure was not observed in the precursor compound. ► Aleksandrov′s theory and Rietveld study suggest a (++0) octahedral tilting (I4/mmm). ► Magnetic studies revealed the absence of magnetic order down to 2 K.

  18. Generation of CMAHKO/GTKO/shTNFRI-Fc/HO-1 quadruple gene modified pigs.

    Science.gov (United States)

    Kim, Geon A; Lee, Eun Mi; Jin, Jun-Xue; Lee, Sanghoon; Taweechaipaisankul, Anukul; Hwang, Jong Ik; Alam, Zahid; Ahn, Curie; Lee, Byeong Chun

    2017-08-01

    As an alternative source of organs for transplantation into humans, attention has been directed to pigs due to their similarities in biological features and organ size. However, severe immune rejection has prevented successful xenotransplantation using pig organs and tissues. To overcome immune rejection, recently developed genetic engineering systems such as TALEN coupled with somatic cell nuclear transfer (SCNT) to make embryos could be used to produce pigs compatible with xenotransplantation. We used the TALEN system to target the non-Gal antigen cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) gene in pigs that is naturally deleted in humans. Gal-deleted cells expressing both soluble human tumor necrosis factor receptor I IgG 1 -Fc (shTNFRI-Fc) and human hemagglutinin -tagged-human heme oxygenase-1 (hHO-1) were transfected with a TALEN target for CMAH. Cells lacking CMAH were negatively selected using N-glyconeuraminic acid (Neu5Gc)/magnetic beads and the level of Neu5Gc expression of isolated cells were analyzed by FACS and DNA sequencing. Cloned embryos using 3 different genetically modified cell clones were respectively transferred into 3 recipients, with 55.6% (5/9) becoming pregnant and three cloned pigs were produced. Successful genetic disruption of the CMAH gene was confirmed by sequencing, showing lack of expression of CMAH in tail-derived fibroblasts of the cloned piglets. Besides decreased expression of Neu5Gc in piglets produced by SCNT, antibody-mediated complement-dependent cytotoxicity assays and natural antibody binding for examining immuno-reactivity of the quadruple gene modified pigs derived from endothelial cells and fibroblasts were reduced significantly compared to those of wild type animals. We conclude that by combining the TALEN system and transgenic cells, targeting of multiple genes could be useful for generating organs for xenotransplantation. We produced miniature pigs with quadruple modified genes CMAHKO

  19. Magnetorheological suspension electromagnetic brake

    International Nuclear Information System (INIS)

    Bica, Ioan

    2004-01-01

    The magnetorheological suspension (MRS) brake is of the monoblock type. The main part of the electromagnetic brake is an electromagnet, between whose poles two MRS disks are placed. For distances between disks of 0.65x10 -3 m±10%, revolutions of the electric motor, coupled to the electromagnetic brake, ranging between 200 and 1600 rev/min and braking powers of up to 85 W, there are no differences in revolutions between the disks of the electromagnetic brake. For fixed revolutions of the electric motor, the revolution of the parallel disk can be modified continuously by means of the intensity of the magnetic field. In all cases, the quantity of MRS is of 0.35x10 -3 kg

  20. Mixing and solid suspension in a stirred precipitator

    International Nuclear Information System (INIS)

    Chang, T.P.

    1986-04-01

    Full-scale mixing and solid suspension studies have been conducted to determine the optimum agitator design for precipitators used in plutonium processing. Design considerations include the geometry of precipitator vessels, feed locations, flow patterns, and product requirements. Evaluations of various agitator designs are based on their capabilities: (1) to achieve uniform mixing of reactants in minimum time, (2) to suspend slurry uniformly throughout the vessel, and (3) to minimize power consumption without inducing air entrainment. Tests of full-scale agitator designs showed that significant improvements in mixing, solid suspension, and energy consumption were achieved

  1. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials

    International Nuclear Information System (INIS)

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu

    2011-01-01

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  2. The quadruple bottom line: the advantages of incorporating Green Chemistry into the undergraduate chemistry major

    Science.gov (United States)

    Bodner, George M.

    2017-08-01

    When the author first became involved with the Green Chemistry movement, he noted that his colleagues in industry who were involved in one of the ACS Green Chemistry Institute® industrial roundtables emphasized the take-home message they described as the "triple bottom line." They noted that introducing Green Chemistry in industrial settings had economic, social, and environmental benefits. As someone who first went to school at age 5, and has been "going to school" most days for 65 years, it was easy for the author to see why introducing Green Chemistry into academics had similar beneficial effects within the context of economic, social and environmental domains at the college/university level. He was prepared to understand why faculty who had taught traditional courses often saw the advantage of incorporating Green Chemistry into the courses they teach. What was not as obvious is why students who were encountering chemistry for the first time were often equally passionate about the Green Chemistry movement. Recent attention has been paid, however, to a model that brings clarity to the hitherto vague term of "relevance" that might explain why integrating Green Chemistry into the undergraduate chemistry classroom can achieve a "quadruple bottom-line" for students because of potentially positive effects of adding a domain of "relevance" to the existing economic, social, and environmental domains.

  3. Measurement and analysis of quadruple (αγγ) angular correlations for high spin states of 24Mg

    International Nuclear Information System (INIS)

    Wiedenhoever, I.; Wuosmaa, A. H.; Lister, C. J.; Carpenter, M. P.; Janssens, R. V. F.; Amro, H.; Caggiano, J.; Heinz, A.; Kondev, F. G.; Lauritsen, T.; Siem, S.; Sonzogni, A.; Bhattacharyya, P.; Devlin, M.; Sarantites, D. G.; Sobotka, L. G.

    2000-01-01

    The high-lying, α-decaying states in 24 Mg have been studied by measuring the complete decay path of α and γ emissions using five segmented Silicon detectors in conjunction with GAMMASPHERE. The authors analyzed the (αγ) triple angular correlations and, for the first time, (αγγ) quadruple correlations. The data analysis is based on a new Fourier transformation technique. The power of the technique is demonstrated

  4. [Drug susceptibility test guided therapy and novel empirical quadruple therapy for Helicobacter pylori infection: a network Meta-analysis].

    Science.gov (United States)

    Gou, Q Y; Yu, R B; Shi, R H

    2017-05-10

    Objective: To compare the efficacy and the risk of adverse effect of drug susceptibility test guided therapy and novel empirical quadruple therapy for Helicobacter ( H .) pylori infection. Methods: Literature retrieval was conducted by using major databases. Related papers published up to June 2015 were considered eligible if they were randomized control trials comparing different pharmacological formulations for H. pylori infection and used in a network Meta-analysis and a single rate Meta-analysis to evaluate the relative and absolute rates of H. pylori eradication and the risk of adverse effect. The Jadad score was used to evaluate the methodological quality. Funnel plot was constructed to evaluate the risk of publication bias. Begg's rank correlation test or Egger's regression intercept test was done for the asymmetry of funnel plot. Results: Twenty randomized control trials for the treatment of 6 753 initial treated patients with H. pylori infection were included. Drug susceptibility test guided therapy was significantly superior to concomitant therapy, hybrid therapy, sequential therapy and bismuth quadruple therapy. The culture-based therapy had the highest likelihood of improving clinical efficacy, with lowest risk of adverse effect. Concomitant therapy had the highest probability of causing adverse effect despite its effectiveness. Hybrid therapy and bismuth quadruple therapy were associated with lower risk of adverse effect and higher effectiveness. Conclusion: Drug susceptibility test guided therapy showed superiority to other 4 interventions for H. pylori eradication mentioned above. Hybrid therapy and bismuth quadruple therapy might be applied in the settings where the culture-based strategy is not available.

  5. Quadruple-first line drug resistance in Mycobacterium tuberculosis in Vietnam: What can we learn from genes?

    Science.gov (United States)

    Nguyen, Huy Quang; Nguyen, Nhung Viet; Contamin, Lucie; Tran, Thanh Hoa Thi; Vu, Thuong Thi; Nguyen, Hung Van; Nguyen, Ngoc Lan Thi; Nguyen, Son Thai; Dang, Anh Duc; Bañuls, Anne-Laure; Nguyen, Van Anh Thi

    2017-06-01

    In Vietnam, a country with high tuberculosis (137/100.000 population) and multidrug-resistant (MDR)-TB burdens (7.8/100.000 population), little is known about the molecular signatures of drug resistance in general and more particularly of second line drug (SLD) resistance. This study is specifically focused on Mycobacterium tuberculosis isolates resistant to four first-line drugs (FLDs) that make TB much more difficult to treat. The aim is to determine the proportion of SLD resistance in these quadruple drug resistant isolates and the genetic determinants linked to drug resistance to better understand the genetic processes leading to quadruple and extremely drug resistance (XDR). 91 quadruple (rifampicin, isoniazid, ethambutol and streptomycin) FLD resistant and 55 susceptible isolates were included. Spoligotyping and 24-locus MIRU-VNTR techniques were performed and 9 genes and promoters linked to FLD and SLD resistance were sequenced. SLD susceptibility testing was carried out on a subsample of isolates. High proportion of quadruple-FLD resistant isolates was resistant to fluoroquinolones (27%) and second-line injectable drugs (30.2%) by drug susceptibility testing. The sequencing revealed high mutation diversity with prevailing mutations at positions katG315, inhA-15, rpoB531, embB306, rrs1401, rpsL43 and gyrA94. The sensitivity and specificity were high for most drug resistances (>86%), but the sensitivity was lower for injectable drug resistances (resistance. Nevertheless, particular mutation patterns linked to high-level resistance and low fitness costs seem to be favored. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Assessment of the accuracy of coupled cluster perturbation theory for open-shell systems. II. Quadruples expansions.

    Science.gov (United States)

    Eriksen, Janus J; Matthews, Devin A; Jørgensen, Poul; Gauss, Jürgen

    2016-05-21

    We extend our assessment of the potential of perturbative coupled cluster (CC) expansions for a test set of open-shell atoms and organic radicals to the description of quadruple excitations. Namely, the second- through sixth-order models of the recently proposed CCSDT(Q-n) quadruples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the prominent CCSDT(Q) and ΛCCSDT(Q) models. From a comparison of the models in terms of their recovery of total CC singles, doubles, triples, and quadruples (CCSDTQ) energies, we find that the performance of the CCSDT(Q-n) models is independent of the reference used (unrestricted or restricted (open-shell) Hartree-Fock), in contrast to the CCSDT(Q) and ΛCCSDT(Q) models, for which the accuracy is strongly dependent on the spin of the molecular ground state. By further comparing the ability of the models to recover relative CCSDTQ total atomization energies, the discrepancy between them is found to be even more pronounced, stressing how a balanced description of both closed- and open-shell species-as found in the CCSDT(Q-n) models-is indeed of paramount importance if any perturbative CC model is to be of chemical relevance for high-accuracy applications. In particular, the third-order CCSDT(Q-3) model is found to offer an encouraging alternative to the existing choices of quadruples models used in modern computational thermochemistry, since the model is still only of moderate cost, albeit markedly more costly than, e.g., the CCSDT(Q) and ΛCCSDT(Q) models.

  7. Optimal Vibration Control for Tracked Vehicle Suspension Systems

    Directory of Open Access Journals (Sweden)

    Yan-Jun Liang

    2013-01-01

    Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.

  8. Increasing Possibilities of Nano suspension

    International Nuclear Information System (INIS)

    Sutradhar, K.B.; Khatun, S.; Luna, I.P.

    2013-01-01

    Nowadays, a very large proportion of new drug candidates emerging from drug discovery programmes are water insoluble and thus poorly bioavailable. To avoid this problem, nano technology for drug delivery has gained much interest as a way to improve the solubility problems. Nano refers to particles size range of 1-1000 nm. The reduction of drug particles into the submicron range leads to a significant increase in the dissolution rate and therefore enhances bioavailability. Nanosuspensions are part of nano technology. This interacts with the body at subcellular (i.e., molecular) scales with a high degree of specificity and can be potentially translated into targeted cellular and tissue-specific clinical applications designed to achieve maximal therapeutic efficacy with minimal side effects. Production of drugs as nanosuspensions can be developed for drug delivery systems as an oral formulation and no noral administration. Here, this review describes the methods of pharmaceutical nano suspension production including advantages and disadvantages, potential benefits, characterization tests, and pharmaceutical applications in drug delivery

  9. "Point de suspension"

    CERN Multimedia

    2004-01-01

    CERN - Globe of Science and Innovation 20 and 21 October Acrobatics, mime, a cappella singing, projections of images, a magical setting... a host of different tools of a grandeur matching that of the Universe they relate. A camera makes a massive zoom out to reveal the multiple dimensions of Nature. Freeze the frame: half way between the infinitesimally small and the infinitesimally large, a man suspends his everyday life (hence the title "Point de Suspension", which refers to the three dots at the end of an uncompleted sentence) to take a glimpse of the place he occupies in the great history of the Universe. An unusual perspective on what it means to be a human being... This wondrous show in the Globe of Science and Innovation, specially created by the Miméscope* company for the official ceremony marking CERN's fiftieth anniversary, is a gift from the Government of the Republic and Canton of Geneva, which also wishes to share this moment of wonder with the local population. There will be three perfo...

  10. "Point de suspension"

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ CERN - Globe of Science and Innovation 20 and 21 October Acrobatics, mime, a cappella singing, projections of images, a magical setting... a host of different tools of a grandeur matching that of the Universe they relate. A camera makes a massive zoom out to reveal the multiple dimensions of Nature. Freeze the frame: half way between the infinitesimally small and the infinitesimally large, a man suspends his everyday life (hence the title "Point de Suspension", which refers to the three dots at the end of an uncompleted sentence) to take a glimpse of the place he occupies in the great history of the Universe. An unusual perspective on what it means to be a human being... This wondrous show in the Globe of Science and Innovation, specially created by the Miméscope* company for the official ceremony marking CERN's fiftieth anniversary, is a gift from the Government of the Republic and Canton of Geneva, which also wishes to share this moment of wonder with the local pop...

  11. "Point de suspension"

    CERN Multimedia

    2004-01-01

    CERN - Globe of Science and Innovation 20 and 21 October Acrobatics, mime, a cappella singing, projections of images, a magical setting... a host of different tools of a grandeur matching that of the Universe they relate. A camera makes a massive zoom out to reveal the multiple dimensions of Nature. Freeze the frame: half way between the infinitesimally small and the infinitesimally large, a man suspends his everyday life (hence the title "Point de Suspension", which refers to the three dots at the end of an uncompleted sentence) to take a glimpse of the place he occupies in the great history of the Universe. An unusual perspective on what it means to be a human being... This spectacle in the Globe of Science and Innovation, specially created by the Miméscope* company for the official ceremony marking CERN's fiftieth anniversary, is a gift from the Government of the Republic and Canton of Geneva, which also wishes to share this moment of wonder with the local population. There will be three performances for...

  12. Core Muscle Activation in Suspension Training Exercises.

    Science.gov (United States)

    Cugliari, Giovanni; Boccia, Gennaro

    2017-02-01

    A quantitative observational laboratory study was conducted to characterize and classify core training exercises executed in a suspension modality on the base of muscle activation. In a prospective single-group repeated measures design, seventeen active male participants performed four suspension exercises typically associated with core training (roll-out, bodysaw, pike and knee-tuck). Surface electromyographic signals were recorded from lower and upper parts of rectus abdominis, external oblique, internal oblique, lower and upper parts of erector spinae muscles using concentric bipolar electrodes. The average rectified values of electromyographic signals were normalized with respect to individual maximum voluntary isometric contraction of each muscle. Roll-out exercise showed the highest activation of rectus abdominis and oblique muscles compared to the other exercises. The rectus abdominis and external oblique reached an activation higher than 60% of the maximal voluntary contraction (or very close to that threshold, 55%) in roll-out and bodysaw exercises. Findings from this study allow the selection of suspension core training exercises on the basis of quantitative information about the activation of muscles of interest. Roll-out and bodysaw exercises can be considered as suitable for strength training of rectus abdominis and external oblique muscles.

  13. Reassessment and suspension of the nuclear power plant design requirement of the constraint of collective dose per unit of practice. (Requirement 6 (b), Standard AR 3.1.2)

    International Nuclear Information System (INIS)

    Amado, Valeria A.; Canoba, Analia C.; Curti, Adriana R.; Biaggio, Alfredo L.

    2009-01-01

    By the middle of 2005, the Nuclear Regulatory Authority (ARN) decided to re-assess the basis of a design requirement applicable to the limitation of nuclear power reactor radioactive discharges. Such requirement, aimed at restricting the discharge of globally dispersed long-lived radionuclides, was in force in Argentina since 1979 and was expressed as a limitation of the collective dose commitment per unit of electrical energy generated. The practical result of such regulatory action was the need to retain C-14 in the Atucha II power reactor under construction as well as in future heavy water reactors to be built in the country, and, later on, to manage it as to assure its isolation from the biosphere during an appropriate period of time. For the above-mentioned reassessment, an ad hoc task group was created and an internal report was presented to the Board of Directors by the middle of 2007. Because of such report the ARN decided to suspend the application of the requirement (i.e. it is not more mandatory, even for Atucha II). The present work presents the main aspects of that report. In particular, it explains the basis of the design requirement and the most important assumptions that triggered it. The differences between the assumptions made at that time and the reality of nuclear power generation at the beginning of the 21st Century, as well as their implications in relation to the requirement are described, including the Suess effect and its impact in the total dose due to C-14. Finally, after explaining in detail the facts that made no longer reasonable to keep in force the above mentioned requirement, the work presents the conclusions that lead the ARN to the suspension of this requirement. (author) [es

  14. Line roughness improvements on self-aligned quadruple patterning by wafer stress engineering

    Science.gov (United States)

    Liu, Eric; Ko, Akiteru; Biolsi, Peter; Chae, Soo Doo; Hsieh, Chia-Yun; Kagaya, Munehito; Lee, Choongman; Moriya, Tsuyoshi; Tsujikawa, Shimpei; Suzuki, Yusuke; Okubo, Kazuya; Imai, Kiyotaka

    2018-04-01

    In integrated circuit and memory devices, size shrinkage has been the most effective method to reduce production cost and enable the steady increment of the number of transistors per unit area over the past few decades. In order to reduce the die size and feature size, it is necessary to minimize pattern formation in the advance node development. In the node of sub-10nm, extreme ultra violet lithography (EUV) and multi-patterning solutions based on 193nm immersionlithography are the two most common options to achieve the size requirement. In such small features of line and space pattern, line width roughness (LWR) and line edge roughness (LER) contribute significant amount of process variation that impacts both physical and electrical performances. In this paper, we focus on optimizing the line roughness performance by using wafer stress engineering on 30nm pitch line and space pattern. This pattern is generated by a self-aligned quadruple patterning (SAQP) technique for the potential application of fin formation. Our investigation starts by comparing film materials and stress levels in various processing steps and material selection on SAQP integration scheme. From the cross-matrix comparison, we are able to determine the best stack of film selection and stress combination in order to achieve the lowest line roughness performance while obtaining pattern validity after fin etch. This stack is also used to study the step-by-step line roughness performance from SAQP to fin etch. Finally, we will show a successful patterning of 30nm pitch line and space pattern SAQP scheme with 1nm line roughness performance.

  15. Transportal anterior cruciate ligament reconstruction with quadrupled hamstring tendon graft: A prospective outcome study

    Directory of Open Access Journals (Sweden)

    Chandan Kumar

    2017-01-01

    Full Text Available Background: Anterior cruciate ligament (ACL reconstruction has been one of the most commonly performed procedures throughout the world. Unsatisfactory outcome with conventional ACL reconstruction has been attributed to nonanatomic graft placement. Researchers have advised placing the graft in the native footprint of ACL to avoid nonanatomic graft placement. The goal of this study was to analyze the outcome of anatomic single bundle ACL reconstruction using transportal technique. Materials and Methods: This was a prospective outcome study conducted on 85 consecutive patients of ACL reconstruction of which 62 patients met inclusion and exclusion criteria and were analyzed for final results. All the patients underwent ACL reconstruction by quadrupled hamstring tendon graft using transportal technique and the accessory anteromedial (AAM portal for femoral tunnel creation. The graft was fixed with endobutton on femoral side and bioabsorbable screw on the tibial side. Patients were evaluated for range of motion, International Knee Documentation Committee (IKDC score, and Lysholm scores at a minimum followup period of 2 years. The mean pre- and postoperative scores were compared using Wilcoxon signed-rank test. Results: The mean Lysholm and IKDC scores improved significantly (P < 0.0001 from preoperative value. According to IKDC score, 90.3% (n = 56 were either normal or near normal at final followup. According to Lysholm score, 75.8% of patients had excellent and 13.3% had good results. Preoperatively, pivot shift was present in 85.5% (n = 53 of patients which reduced to 4.8% (n = 3 postoperatively. Infection and knee stiffness occurred in two patients, and femoral tunnel blowout and graft re-rupture occurred in one patient each. Conclusion: Anatomic ACL reconstruction by AAM portal is a reproducible technique which gives good clinical outcome at short-term followup.

  16. Compounded Apixaban Suspensions for Enteral Feeding Tubes.

    Science.gov (United States)

    Caraballo, Maria L; Donmez, Seda; Nathan, Kobi; Zhao, Fang

    2017-07-01

    Objective: There is limited information on compounded apixaban formulations for administration via enteral feeding tubes. This study was designed to identify a suitable apixaban suspension formulation that is easy to prepare in a pharmacy setting, is compatible with commonly used feeding tubes, and has a beyond-use date of 7 days. Methods: Apixaban suspensions were prepared from commercially available 5-mg Eliquis tablets. Several vehicles and compounding methods were screened for ease of preparation, dosage accuracy, and tube compatibility. Two tubing types, polyurethane and polyvinyl chloride, with varying lengths and diameters, were included in the study. They were mounted on a peg board during evaluation to mimic the patient body position. A 7-day stability study of the selected formulation was also conducted. Results: Vehicles containing 40% to 60% Ora-Plus in water all exhibited satisfactory flowability through the tubes. The mortar/pestle compounding method was found to produce more accurate and consistent apixaban suspensions than the pill crusher or crushing syringe method. The selected formulation, 0.25 mg/mL apixaban in 50:50 Ora-Plus:water, was compatible with both tubing types, retaining >98% drug in posttube samples. The stability study also confirmed that this formulation was stable physically and chemically over 7 days of storage at room temperature. Conclusions: A suitable apixaban suspension formulation was identified for administration via enteral feeding tubes. The formulation consisted of 0.25 mg/mL apixaban in 50:50 Ora-Plus:water. The stability study results supported a beyond-use date of 7 days at room temperature.

  17. A magneto rheological hybrid damper for railway vehicles suspensions

    Directory of Open Access Journals (Sweden)

    Gheorghe GHITA

    2012-09-01

    Full Text Available High speed railway vehicles features a specific lateral oscillation resulting from the coupled lateral displacement and yaw of the wheelset which leads to a sinusoid movement of the wheelset along the track, transferred to the entire vehicle. The amplitude of this oscillation is strongly dependant on vehicle’s velocity. Over a certain value, namely the critical speed, the instability phenomenon so-called hunting occurs. To raise the vehicle’s critical speed different designs of the suspension all leading to a much stiffer vehicle can be envisaged. Different simulations prove that a stiffer central suspension will decrease the passenger’s comfort in terms of lateral accelerations of the carboy. The authors propose a semi-active magneto rheological suspension to improve the vehicle’s comfort at high speeds. The suspension has as executive elements hybrid magneto rheological dampers operating under sequential control strategy type balance logic. Using an original mathematical model for the lateral dynamics of the vehicle the responses of the system with passive and semi-active suspensions are simulated. It is shown that the semi-active suspension can improve the vehicle performances.

  18. Effect of suspension kinematic on 14 DOF vehicle model

    Science.gov (United States)

    Wongpattananukul, T.; Chantharasenawong, C.

    2017-12-01

    Computer simulations play a major role in shaping modern science and engineering. They reduce time and resource consumption in new studies and designs. Vehicle simulations have been studied extensively to achieve a vehicle model used in minimum lap time solution. Simulation result accuracy depends on the abilities of these models to represent real phenomenon. Vehicles models with 7 degrees of freedom (DOF), 10 DOF and 14 DOF are normally used in optimal control to solve for minimum lap time. However, suspension kinematics are always neglected on these models. Suspension kinematics are defined as wheel movements with respect to the vehicle body. Tire forces are expressed as a function of wheel slip and wheel position. Therefore, the suspension kinematic relation is appended to the 14 DOF vehicle model to investigate its effects on the accuracy of simulate trajectory. Classical 14 DOF vehicle model is chosen as baseline model. Experiment data is collected from formula student style car test runs as baseline data for simulation and comparison between baseline model and model with suspension kinematic. Results show that in a single long turn there is an accumulated trajectory error in baseline model compared to model with suspension kinematic. While in short alternate turns, the trajectory error is much smaller. These results show that suspension kinematic had an effect on the trajectory simulation of vehicle. Which optimal control that use baseline model will result in inaccuracy control scheme.

  19. 5 MJ flywheel based on bulk HTS magnetic suspension

    Science.gov (United States)

    Poltavets, V.; Kovalev, K.; Ilyasov, R.; Glazunov, A.; Maevsky, V.; Verzbitsky, L.; Akhmadyshev, V.; Shikov, A.

    2014-05-01

    Nowadays the flywheel energy storage systems (FES) are developed intensively as uninterruptible power supply (UPS) devices for on-land and transport (especially airborne) applications worldwide. This work is devoted to the FES with magnetic suspension on the base of bulk HTS YBCO elements and permanent magnets. The developed FES is intended to be used as UPS in Russian atomic industry in case of an emergency. For the successful design of the FES the following questions should be solved: design of the motor/generator, design of the rotor (flywheel), design of the bearing system, design of the control system and system of power load matching, design of the cooling system. The developed small-scale FES with the stored energy 0.5 MJ was used to solve these basic questions. The elaborated FES consists of the synchronous electric machine with permanent magnets, the solid flywheel with axial magnetic suspension on the base of YBCO bulks and permanent magnets, the system of control and power load matching, and the system of liquid nitrogen cooling. The results of theoretical modeling of different schematics of magnetic suspension and experimental investigations of the constructed FES are presented. The design of the future full-scale FES with the stored energy ~5 MJ and output power up to 100 kW is described. The test results of the flywheel rotor and HTS magnetic suspension of 5 MJ FES are presented. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry"

  20. A magnetic suspension system for measuring liquid density

    Directory of Open Access Journals (Sweden)

    Luz María Centeno González

    2013-01-01

    Full Text Available Density is a derived quantity of mass and length; it is defined as mass per volume unit and its SI unit is kg/m3. National metrology institutes have been designing and building their own magnetic suspension systems during the last 5 decades for making fluid density measurements; this has allowed them to carry out research into liquids and gases’ physical characteristics. This paper was aimed at designing and developing a magnetic suspension system for a magnetic balance used in determining liquid density to be used in CENAM’s metrology density laboratories.

  1. Efficacy and safety of sequential versus quadruple therapy as second-line treatment for helicobacter pylori infection-A randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Daniela Munteanu

    Full Text Available Quadruple therapy is recommended as second-line treatment for Helicobacter pylori eradication failure. However, high cost, multiple side effects, and low adherence rates are major drawbacks to its routine use. Our aim was to compare the efficacy and safety of sequential versus quadruple regimens as second line treatment for persistent Helicobacter pylori infection.Prospective, randomized, open label trial was conducted at a large academic, tertiary care center in Israel. Patients who previously failed a standard triple treatment eradication course were randomly assigned (1:1 to receive a 10-day sequential therapy course, or a 14-day quadruple regimen. Compliance and adverse events were evaluated by telephone questionnaires. The primary endpoint for analysis was the rate of Helicobacter pylori eradication as defined by either a negative 13C-urea breath-test, or stool antigen test, 4-16 weeks after treatment assessed under the non-inferiority hypothesis. The trial was terminated prematurely due to low recruitment rates. See S1 Checklist for CONSORT checklist.One hundred and one patients were randomized. Per modified intention-to-treat analysis, eradication rate was 49% in the sequential versus 42.5% in the quadruple regimen group (p-value for non-inferiority 0.02. Forty-two (84.0% versus 33 (64.7% patients completed treatment in the sequential and quadruple groups respectively (p 0.027. Gastrointestinal side effects were more common in the quadruple regimen group.Sequential treatment when used as a second line regimen, was non-inferior to the standard of care quadruple regimen in achieving Helicobacter pylori eradication, and was associated with better compliance and fewer adverse effects. Both treatment protocols failed to show an adequate eradication rate in the population of Southern Israel.ClinicalTrials.gov NCT01481844.

  2. Neural control of magnetic suspension systems

    Science.gov (United States)

    Gray, W. Steven

    1993-01-01

    The purpose of this research program is to design, build and test (in cooperation with NASA personnel from the NASA Langley Research Center) neural controllers for two different small air-gap magnetic suspension systems. The general objective of the program is to study neural network architectures for the purpose of control in an experimental setting and to demonstrate the feasibility of the concept. The specific objectives of the research program are: (1) to demonstrate through simulation and experimentation the feasibility of using neural controllers to stabilize a nonlinear magnetic suspension system; (2) to investigate through simulation and experimentation the performance of neural controllers designs under various types of parametric and nonparametric uncertainty; (3) to investigate through simulation and experimentation various types of neural architectures for real-time control with respect to performance and complexity; and (4) to benchmark in an experimental setting the performance of neural controllers against other types of existing linear and nonlinear compensator designs. To date, the first one-dimensional, small air-gap magnetic suspension system has been built, tested and delivered to the NASA Langley Research Center. The device is currently being stabilized with a digital linear phase-lead controller. The neural controller hardware is under construction. Two different neural network paradigms are under consideration, one based on hidden layer feedforward networks trained via back propagation and one based on using Gaussian radial basis functions trained by analytical methods related to stability conditions. Some advanced nonlinear control algorithms using feedback linearization and sliding mode control are in simulation studies.

  3. Differential Evolution-Based PID Control of Nonlinear Full-Car Electrohydraulic Suspensions

    Directory of Open Access Journals (Sweden)

    Jimoh O. Pedro

    2013-01-01

    Full Text Available This paper presents a differential-evolution- (DE- optimized, independent multiloop proportional-integral-derivative (PID controller design for full-car nonlinear, electrohydraulic suspension systems. The multiloop PID control stabilises the actuator via force feedback and also improves the system performance. Controller gains are computed using manual tuning and through DE optimization to minimise a performance index, which addresses suspension travel, road holding, vehicle handling, ride comfort, and power consumption constraints. Simulation results showed superior performance of the DE-optimized PID-controlled active vehicle suspension system (AVSS over the manually tuned PID-controlled AVSS and the passive vehicle suspension system (PVSS.

  4. HH 222: A GIANT HERBIG-HARO FLOW FROM THE QUADRUPLE SYSTEM V380 ORI

    Energy Technology Data Exchange (ETDEWEB)

    Reipurth, Bo; Aspin, Colin; Connelley, M. S. [Institute for Astronomy, University of Hawaii at Manoa, 640 North Aohoku Place, Hilo, HI 96720 (United States); Bally, John [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States); Geballe, T. R. [Gemini Observatory, 670 North Aohoku Place, Hilo, HI 96720 (United States); Kraus, Stefan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States); Appenzeller, Immo [Landessternwarte Heidelberg, Königstuhl 12, D-69117 Heidelberg (Germany); Burgasser, Adam, E-mail: reipurth@ifa.hawaii.edu, E-mail: caa@ifa.hawaii.edu, E-mail: msc@ifa.hawaii.edu, E-mail: John.Bally@colorado.edu, E-mail: tgeballe@gemini.edu, E-mail: stefan.kraus@cfa.harvard.edu, E-mail: iappenze@lsw.uni-heidelberg.de, E-mail: aburgasser@ucsd.edu [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States)

    2013-11-01

    HH 222 is a giant shocked region in the L1641 cloud, and is popularly known as the Orion Streamers or ''the waterfall'' on account of its unusual structure. At the center of these streamers are two infrared sources coincident with a nonthermal radio jet aligned along the principal streamer. The unique morphology of HH 222 has long been associated with this radio jet. However, new infrared images show that the two sources are distant elliptical galaxies, indicating that the radio jet is merely an improbable line-of-sight coincidence. Accurate proper motion measurements of HH 222 reveal that the shock structure is a giant bow shock moving directly away from the well-known, very young, Herbig Be star V380 Ori. The already known Herbig-Haro object HH 35 forms part of this flow. A new Herbig-Haro object, HH 1041, is found precisely in the opposite direction of HH 222 and is likely to form part of a counterflow. The total projected extent of this HH complex is 5.3 pc, making it among the largest HH flows known. A second outflow episode from V380 Ori is identified as a pair of HH objects, HH 1031 to the northwest and the already known HH 130 to the southeast, along an axis that deviates from that of HH 222/HH 1041 by only 3.°7. V380 Ori is a hierarchical quadruple system, including a faint companion of spectral type M5 or M6, which at an age of ∼1 Myr corresponds to an object straddling the stellar-to-brown dwarf boundary. We suggest that the HH 222 giant bow shock is a direct result of the dynamical interactions that led to the conversion from an initial non-hierarchical multiple system into a hierarchical configuration. This event occurred no more than 28,000 yr ago, as derived from the proper motions of the HH 222 giant bow shock.

  5. An efficient sensitivity analysis method for modified geometry of Macpherson suspension based on Pearson correlation coefficient

    Science.gov (United States)

    Shojaeefard, Mohammad Hasan; Khalkhali, Abolfazl; Yarmohammadisatri, Sadegh

    2017-06-01

    The main purpose of this paper is to propose a new method for designing Macpherson suspension, based on the Sobol indices in terms of Pearson correlation which determines the importance of each member on the behaviour of vehicle suspension. The formulation of dynamic analysis of Macpherson suspension system is developed using the suspension members as the modified links in order to achieve the desired kinematic behaviour. The mechanical system is replaced with an equivalent constrained links and then kinematic laws are utilised to obtain a new modified geometry of Macpherson suspension. The equivalent mechanism of Macpherson suspension increased the speed of analysis and reduced its complexity. The ADAMS/CAR software is utilised to simulate a full vehicle, Renault Logan car, in order to analyse the accuracy of modified geometry model. An experimental 4-poster test rig is considered for validating both ADAMS/CAR simulation and analytical geometry model. Pearson correlation coefficient is applied to analyse the sensitivity of each suspension member according to vehicle objective functions such as sprung mass acceleration, etc. Besides this matter, the estimation of Pearson correlation coefficient between variables is analysed in this method. It is understood that the Pearson correlation coefficient is an efficient method for analysing the vehicle suspension which leads to a better design of Macpherson suspension system.

  6. A new variable stiffness suspension system: passive case

    Directory of Open Access Journals (Sweden)

    O. M. Anubi

    2013-02-01

    Full Text Available This paper presents the design, analysis, and experimental validation of the passive case of a variable stiffness suspension system. The central concept is based on a recently designed variable stiffness mechanism. It consists of a horizontal control strut and a vertical strut. The main idea is to vary the load transfer ratio by moving the location of the point of attachment of the vertical strut to the car body. This movement is controlled passively using the horizontal strut. The system is analyzed using an L2-gain analysis based on the concept of energy dissipation. The analyses, simulation, and experimental results show that the variable stiffness suspension achieves better performance than the constant stiffness counterpart. The performance criteria used are; ride comfort, characterized by the car body acceleration, suspension deflection, and road holding, characterized by tire deflection.

  7. Superconducting magnet suspensions in high speed ground transport

    Energy Technology Data Exchange (ETDEWEB)

    Alston, I A

    1973-08-01

    A technical and economic definition of high speed ground transport systems using magnetic suspensions is given. The full range of common superconducting suspensions and of propulsions are covered with designs produced for speeds ranging from 100 m/s (225 miles/hr) to 250 m/s (560 mile/hr). Technical descriptions of the vehicles, their suspensions, propulsions and tracks are given in some detail and operating costs are presented for all the systems together with details of the breakdown of costs and the capital costs involved. The design assumptions, the costing procedure and a cost sensitivity study are presented. It is concluded that the systems are technically feasible; that they are suited to existing duorail track for low speed running and that, in these circumstances, they would be economically viable over many routes.

  8. Linear discrete-time state space realization of a modified quadruple tank system with state estimation using Kalman filter

    DEFF Research Database (Denmark)

    Mohd. Azam, Sazuan Nazrah

    2017-01-01

    In this paper, we used the modified quadruple tank system that represents a multi-input-multi-output (MIMO) system as an example to present the realization of a linear discrete-time state space model and to obtain the state estimation using Kalman filter in a methodical mannered. First, an existing...... part of the Kalman filter is used to estimates the current state, based on the model and the measurements. The static and dynamic Kalman filter is compared and all results is demonstrated through simulations....

  9. SELDI-TOF MS of quadruplicate urine and serum samples to evaluate changes related to storage conditions.

    Science.gov (United States)

    Traum, Avram Z; Wells, Meghan P; Aivado, Manuel; Libermann, Towia A; Ramoni, Marco F; Schachter, Asher D

    2006-03-01

    Proteomic profiling with SELDI-TOF MS has facilitated the discovery of disease-specific protein profiles. However, multicenter studies are often hindered by the logistics required for prompt deep-freezing of samples in liquid nitrogen or dry ice within the clinic setting prior to shipping. We report high concordance between MS profiles within sets of quadruplicate split urine and serum samples deep-frozen at 0, 2, 6, and 24 h after sample collection. Gage R&R results confirm that deep-freezing times are not a statistically significant source of SELDI-TOF MS variability for either blood or urine.

  10. Progress of magnetic-suspension systems and magnetic bearings in the USSR

    International Nuclear Information System (INIS)

    Kuzin, A.V.

    1992-01-01

    This paper traces the development and progress of magnetic suspension systems and magnetic bearings in the USSR. The paper describes magnetic bearings for turbomachines, magnetic suspension systems for vibration isolation, some special measuring devices, wind tunnels, and other applications. The design, principles of operation, and dynamic characteristics of the system are presented

  11. The Electromechanical Low-Power Active Suspension: Modeling, Control, and Prototype Testing

    NARCIS (Netherlands)

    Evers, W.J.E.; Teerhuis, A.P.; Knaap, van der A.C.M.; Besselink, I.J.M.; Nijmeijer, H.

    2011-01-01

    The high energy consumption of market-ready active suspension systems is the limiting factor in the competition with semi-active devices. The variable geometry active suspension is an alternative with a significantly lower power consumption. However, previous designs suffer from packaging problems,

  12. Structure and organ specificity of an anionic peroxidase from Arabidopsis thaliana cell suspension culture

    DEFF Research Database (Denmark)

    Ostergaard, L; Abelskov, A K; Mattsson, O

    1996-01-01

    The predominant peroxidase (pI 3.5) (E.C. 1.11.1.7) of an Arabidopsis thaliana cell suspension culture was purified and partially sequenced. Oligonucleotides were designed and a specific probe was obtained. A cDNA clone was isolated from an Arabidopsis cell suspension cDNA library and completely ...

  13. The electromechanical low-power active suspension: modeling, control, and prototype testing

    NARCIS (Netherlands)

    Evers, W.J.; Teerhuis, A.P.; Knaap, A. van der; Besselink, I.; Nijmeijer, H.

    2011-01-01

    The high energy consumption of market-ready active suspension systems is the limiting factor in the competition with semi-active devices. The variable geometry active suspension is an alternative with a significantly lower power consumption. However, previous designs suffer from packaging problems,

  14. Active Control of Suspension Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper some recent research on active control of very long suspension bridges, is presented. The presentation is based on research work at Aalborg University, Denmark. The active control system is based on movable flaps attached to the bridge girder. Wind load on bridges with or without...... flaps attached to the girder is briefly presented. A simple active control system is discussed. Results from wind tunnel experiments with a bridge section show that flaps can be used effectively to control bridge girder vibrations. Flutter conditions for suspension bridges with and without flaps...

  15. HE 1113-0641: THE SMALLEST-SEPARATION QUADRUPLE LENS IDENTIFIED BY A GROUND-BASED OPTICAL TELESCOPE

    International Nuclear Information System (INIS)

    Blackburne, Jeffrey A.; Schechter, Paul L.; Wisotzki, Lutz

    2008-01-01

    The Hamburg/ESO quasar HE 1113-0641 is found to be a quadruple gravitational lens, based on observations with the twin 6.5 m Magellan telescopes at the Las Campanas Observatory, and subsequently with the Hubble Space Telescope. The z S = 1.235 quasar appears in a cross configuration, with i' band magnitudes ranging from 18.0 to 18.8. With a maximum image separation of 0''.67, this is the smallest-separation quadruple ever identified using a ground-based optical telescope. Point-spread function (PSF) subtraction reveals a faint lensing galaxy. A simple lens model succeeds in predicting the observed positions of the components, but fails to match their observed flux ratios by up to a magnitude. We estimate the redshift of the lensing galaxy to be z L ∼ 0.7. Time delay estimates are on the order of a day, suggesting that the flux ratio anomalies are not due to variability of the quasar, but may result from substructure or microlensing in the lens galaxy.

  16. Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zi; Zheng, Wei; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore); Stephen Hsu, Chin-Ying [Department of Dentistry, Faculty of Dentistry, National University of Singapore and National University Health System, Singapore 119083 (Singapore)

    2015-01-19

    We present an epi-detected quadruple-modal nonlinear optical microscopic imaging technique (i.e., coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), third-harmonic generation (THG), and two-photon excited fluorescence (TPEF)) based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of the tooth. We demonstrate that high contrast ps-CARS images covering both the fingerprint (500–1800 cm{sup −1}) and high-wavenumber (2500–3800 cm{sup −1}) regions can be acquired to uncover the distributions of mineral and organic biomaterials in the tooth, while high quality TPEF, SHG, and THG images of the tooth can also be acquired under ps laser excitation without damaging the samples. The quadruple-modal nonlinear microscopic images (CARS/SHG/THG/TPEF) acquired provide better understanding of morphological structures and biochemical/biomolecular distributions in the dentin, enamel, and the dentin-enamel junction of the tooth without labeling, facilitating optical diagnosis and characterization of the tooth in dentistry.

  17. Light and Electrically Induced Phase Segregation and Its Impact on the Stability of Quadruple Cation High Bandgap Perovskite Solar Cells.

    Science.gov (United States)

    Duong, The; Mulmudi, Hemant Kumar; Wu, YiLiang; Fu, Xiao; Shen, Heping; Peng, Jun; Wu, Nandi; Nguyen, Hieu T; Macdonald, Daniel; Lockrey, Mark; White, Thomas P; Weber, Klaus; Catchpole, Kylie

    2017-08-16

    Perovskite material with a bandgap of 1.7-1.8 eV is highly desirable for the top cell in a tandem configuration with a lower bandgap bottom cell, such as a silicon cell. This can be achieved by alloying iodide and bromide anions, but light-induced phase-segregation phenomena are often observed in perovskite films of this kind, with implications for solar cell efficiency. Here, we investigate light-induced phase segregation inside quadruple-cation perovskite material in a complete cell structure and find that the magnitude of this phenomenon is dependent on the operating condition of the solar cell. Under short-circuit and even maximum power point conditions, phase segregation is found to be negligible compared to the magnitude of segregation under open-circuit conditions. In accordance with the finding, perovskite cells based on quadruple-cation perovskite with 1.73 eV bandgap retain 94% of the original efficiency after 12 h operation at the maximum power point, while the cell only retains 82% of the original efficiency after 12 h operation at the open-circuit condition. This result highlights the need to have standard methods including light/dark and bias condition for testing the stability of perovskite solar cells. Additionally, phase segregation is observed when the cell was forward biased at 1.2 V in the dark, which indicates that photoexcitation is not required to induce phase segregation.

  18. Brugerinvolvering i design af læreprocesser

    DEFF Research Database (Denmark)

    Heilesen, Simon; Helms, Niels Henrik

    2012-01-01

    quadruple helix model. Begrebet "didaktisk design" problematiseres ud fra betragtningen, at der i design-aktiviteter er behov for at medtænke og involvere forskellige tilgange samt forskellige kompetencer hos aktørerne. "Design thinking" inddrages for at pointere, at design er en eksplorativ, dialogisk og...

  19. Four-Wheel Vehicle Suspension System

    Science.gov (United States)

    Bickler, Donald B.

    1990-01-01

    Four-wheel suspension system uses simple system of levers with no compliant components to provide three-point suspension of chassis of vehicle while maintaining four-point contact with uneven terrain. Provides stability against tipping of four-point rectangular base, without rocking contact to which rigid four-wheel frame susceptible. Similar to six-wheel suspension system described in "Articulated Suspension Without Springs" (NPO-17354).

  20. Heavy vehicle pitch dynamics and suspension tuning

    OpenAIRE

    Cao, Dongpu; Rakheja, Subhash; Su, Chun-Yi

    2008-01-01

    The influence of suspension tuning of passenger cars on bounce and pitch ride performance has been explored in a number of studies, while only minimal efforts have been made for establishing similar rules for heavy vehicles. This study aims to explore pitch dynamics and suspension tunings of a two-axle heavy vehicle with unconnected suspension, which could also provide valuable information for heavy vehicles with coupled suspensions. Based on a generalised pitch-plane model of a two-axle heav...

  1. 40 CFR 35.2105 - Debarment and suspension.

    Science.gov (United States)

    2010-07-01

    ... unit of government for facilities planning or design work whose name appears on the master list of... applicant should be found non-responsible under part 30 of this subchapter or be the subject of possible debarment or suspension under part 32 of this subchapter. ...

  2. Suspension-Firing of Biomass

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    2012-01-01

    This paper is the second of two papers, describing probe measurements of deposit buildup and removal (shedding), conducted in a 350 MWth suspension-fired boiler, firing straw and wood. Investigations of deposit buildup and shedding have been made by use of an advanced online deposit probe and a s...

  3. Suspension-Firing of Biomass

    DEFF Research Database (Denmark)

    Bashir, Muhammad Shafique; Jensen, Peter Arendt; Frandsen, Flemming

    2012-01-01

    This paper is Part 1 in a series of two describing probe measurements of deposit build-up and removal (shedding) in a 350 MWth suspension boiler, firing straw and wood. The influence of fuel type (straw share in wood), probe exposure time, probe surface temperature (500, 550, and 600 °C), and flu...

  4. Nonlinear models of suspension bridges

    Czech Academy of Sciences Publication Activity Database

    Malík, Josef

    2006-01-01

    Roč. 321, č. 2 (2006), s. 828-850 ISSN 0022-247X Institutional research plan: CEZ:AV0Z30860518 Keywords : suspension bridges * principle of minimum energy Subject RIV: BA - General Mathematics Impact factor: 0.758, year: 2006

  5. Fracture in Kaolinite clay suspensions

    Science.gov (United States)

    Kosgodagan Acharige, Sebastien; Jerolmack, Douglas J.; Arratia, Paulo E.

    2017-11-01

    Clay minerals are involved in many natural (landslides, river channels) and industrial processes (ceramics, cosmetics, oil recovery). They are plate shaped charged colloids and exhibit different flow properties than simpler colloids when suspended in a liquid such as thixotropy and shear-banding. kaolinite platelets are non-swelling, meaning that the stacks formed by the platelets do not have water layers, and thus the suspension does not have a sol-gel transition. However, it has been shown that kaolinite suspensions possesses a non-zero yield stress even at low concentrations, indicating that the particles arrange themselves in a structure through attractive interactions. Here, we experimentally investigate the sedimentation of kaolinite suspensions in a Hele-Shaw cell. The sedimentation of these dilute suspensions can display solid behavior like fracture, revealed in cross-polarized light, which is linked to the failure of the weakly-bonded structure (typical yield stress 10-2 Pa). By changing the interaction potential of the particles (by sonication or introducing salts), we show through these sedimentation experiments, how the fracture pattern can be avoided. Research was sponsored by the Army Research Laboratory and was accomplished under Grant Number 569074.

  6. Optimization of Front Axle Suspension System of Articulated Dump Truck

    DEFF Research Database (Denmark)

    Langer, Thomas Heegaard; Christensen, Brian B.; Mouritsen, Ole Ø.

    2010-01-01

    that has been subjected to comfort improvement is a two axle articulated dump truck. The comfort has been in terms of whole body vibration exposure and the overall improvement has been made possible by adding front axle suspension. However, a hydraulic stabilizing system between the tractor and trailer...... to evaluate the whole body vibrations. By use of a multibody simulation model of the dump truck the whole body vibration exposure has been computed using the predefined work cycle as model input. The design parameters comprise the components of the hydraulic subsystem of the suspension, i.e., the size...

  7. MODELING THE RADIO EMISSION FROM Cyg OB2 NO. 5: A QUADRUPLE SYSTEM?

    International Nuclear Information System (INIS)

    Kennedy, M.; Dougherty, S. M.; Fink, A.; Williams, P. M.

    2010-01-01

    literature suggests reflex motion of the binary due to Star C, for which a mass of 23 +22 -14 M sun is deduced. The natures of NE and Star D are also examined. If NE is a WCR, as suggested by other authors, then the required mass-loss rate is an order of magnitude higher than expected for an early B-type dwarf, and only just consistent with a supergiant. This raises the question of NE as a WCR, but its non-thermal luminosity is consistent with a WCR and a comparison of reddening between Cyg OB2 No. 5 and Star D do not rule out an association, implying Cyg OB2 No. 5 is a quadruple system. Pursuing alternative models for NE, such as an unassociated background source, would require very challenging observations.

  8. The Gaia-ESO Survey: double-, triple-, and quadruple-line spectroscopic binary candidates

    Science.gov (United States)

    Merle, T.; Van Eck, S.; Jorissen, A.; Van der Swaelmen, M.; Masseron, T.; Zwitter, T.; Hatzidimitriou, D.; Klutsch, A.; Pourbaix, D.; Blomme, R.; Worley, C. C.; Sacco, G.; Lewis, J.; Abia, C.; Traven, G.; Sordo, R.; Bragaglia, A.; Smiljanic, R.; Pancino, E.; Damiani, F.; Hourihane, A.; Gilmore, G.; Randich, S.; Koposov, S.; Casey, A.; Morbidelli, L.; Franciosini, E.; Magrini, L.; Jofre, P.; Costado, M. T.; Jeffries, R. D.; Bergemann, M.; Lanzafame, A. C.; Bayo, A.; Carraro, G.; Flaccomio, E.; Monaco, L.; Zaggia, S.

    2017-12-01

    Context. The Gaia-ESO Survey (GES) is a large spectroscopic survey that provides a unique opportunity to study the distribution of spectroscopic multiple systems among different populations of the Galaxy. Aims: Our aim is to detect binarity/multiplicity for stars targeted by the GES from the analysis of the cross-correlation functions (CCFs) of the GES spectra with spectral templates. Methods: We developed a method based on the computation of the CCF successive derivatives to detect multiple peaks and determine their radial velocities, even when the peaks are strongly blended. The parameters of the detection of extrema (DOE) code have been optimized for each GES GIRAFFE and UVES setup to maximize detection. The DOE code therefore allows to automatically detect multiple line spectroscopic binaries (SBn, n ≥ 2). Results: We apply this method on the fourth GES internal data release and detect 354 SBn candidates (342 SB2, 11 SB3, and even one SB4), including only nine SBs known in the literature. This implies that about 98% of these SBn candidates are new because of their faint visual magnitude that can reach V = 19. Visual inspection of the SBn candidate spectra reveals that the most probable candidates have indeed a composite spectrum. Among the SB2 candidates, an orbital solution could be computed for two previously unknown binaries: CNAME 06404608+0949173 (known as V642 Mon) in NGC 2264 and CNAME 19013257-0027338 in Berkeley 81 (Be 81). A detailed analysis of the unique SB4 (four peaks in the CCF) reveals that CNAME 08414659-5303449 (HD 74438) in the open cluster IC 2391 is a physically bound stellar quadruple system. The SB candidates belonging to stellar clusters are reviewed in detail to discard false detections. We suggest that atmospheric parameters should not be used for these system components; SB-specific pipelines should be used instead. Conclusions: Our implementation of an automatic detection of spectroscopic binaries within the GES has allowed the

  9. Development of an Air Pneumatic Suspension System for Transtibial Prostheses

    Directory of Open Access Journals (Sweden)

    Gholamhossein Pirouzi

    2014-09-01

    Full Text Available The suspension system and socket fitting of artificial limbs have major roles and vital effects on the comfort, mobility, and satisfaction of amputees. This paper introduces a new pneumatic suspension system that overcomes the drawbacks of current suspension systems in donning and doffing, change in volume during daily activities, and pressure distribution in the socket-stump interface. An air pneumatic suspension system (APSS for total-contact sockets was designed and developed. Pistoning and pressure distribution in the socket-stump interface were tested for the new APSS. More than 95% of the area between each prosthetic socket and liner was measured using a Tekscan F-Scan pressure measurement which has developed matrix-based pressure sensing systems. The variance in pressure around the stump was 8.76 kPa. APSS exhibits less pressure concentration around the stump, improved pressure distribution, easy donning and doffing, adjustability to remain fitted to the socket during daily activities, and more adaptability to the changes in stump volume. The volume changes were adjusted by utility of air pressure sensor. The vertical displacement point and reliability of suspension were assessed using a photographic method. The optimum pressure in every level of loading weight was 55 kPa, and the maximum displacement was 6 mm when 90 N of weight was loaded.

  10. 49 CFR 570.8 - Suspension systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Suspension systems. 570.8 Section 570.8 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Pounds or Less § 570.8 Suspension systems. (a) Suspension condition. Ball joint seals shall not be cut or...

  11. 49 CFR 570.61 - Suspension system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Suspension system. 570.61 Section 570.61... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE IN USE INSPECTION STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.61 Suspension system. (a) Suspension condition. Ball joint seals shall not be cut...

  12. Vibration control of an energy regenerative seat suspension with variable external resistance

    Science.gov (United States)

    Ning, Donghong; Sun, Shuaishuai; Du, Haiping; Li, Weihua; Zhang, Nong

    2018-06-01

    In this paper, an energy regenerative seat suspension with a variable external resistance is proposed and built, and a semi-active controller for its vibration control is also designed and validated. The energy regenerative seat suspension is built with a three-phase generator and a gear reducer, which are installed in the scissors structure centre of the seat suspension, and the vibration energy is directly harvested from the rotary movement of suspension's scissors structure. The electromagnetic torque of the semi-active seat suspension actuator is controlled by an external variable resistor. An integrated model including the seat suspension's kinematics and the generator is built and proven to match the test result very well. A simplified experimental phenomenon model is also built based on the test results for the controller design. A state feedback H∞ controller is proposed for the regenerative seat suspension's semi-active vibration control. The proposed regenerative seat suspension and its controller are validated with both simulations and experiments. A well-tuned passive seat suspension is applied to evaluate the regenerative seat's performance. Based on ISO 2631-1, the frequency-weighted root mean square (FW-RMS) acceleration of the proposed seat suspension has a 22.84% reduction when compared with the passive one, which indicates the improvement of ride comfort. At the same time, the generated RMS power is 1.21 W. The proposed regenerative seat suspension can greatly improve the driver's ride comfort and has the potential to be developed to a self-powered semi-active system.

  13. Numerical homogenization on approach for stokesian suspensions.

    Energy Technology Data Exchange (ETDEWEB)

    Haines, B. M.; Berlyand, L. V.; Karpeev, D. A. (Mathematics and Computer Science); (Department of Mathematics, Pennsylvania State Univ.)

    2012-01-20

    swimming resulting from bacterial alignment can significantly alter other macroscopic properties of the suspension, such as the oxygen diffusivity and mixing rates. In order to understand the unique macroscopic properties of active suspensions the connection between microscopic swimming and alignment dynamics and the mesoscopic pattern formation must be clarified. This is difficult to do analytically in the fully general setting of moderately dense suspensions, because of the large number of bacteria involved (approx. 10{sup 10} cm{sup -3} in experiments) and the complex, time-dependent geometry of the system. Many reduced analytical models of bacterial have been proposed, but all of them require validation. While comparison with experiment is the ultimate test of a model's fidelity, it is difficult to conduct experiments matched to these models assumptions. Numerical simulation of the microscopic dynamics is an acceptable substitute, but it runs into the problem of having to discretize the fluid domain with a fine-grained boundary (the bacteria) and update the discretization as the domain evolves (bacteria move). This leads to a prohibitively high number of degrees of freedom and prohibitively high setup costs per timestep of simulation. In this technical report we propose numerical methods designed to alleviate these two difficulties. We indicate how to (1) construct an optimal discretization in terms of the number of degrees of freedom per digit of accuracy and (2) optimally update the discretization as the simulation evolves. The technical tool here is the derivation of rigorous error bounds on the error in the numerical solution when using our proposed discretization at the initial time as well as after a given elapsed simulation time. These error bounds should guide the construction of practical discretization schemes and update strategies. Our initial construction is carried out by using a theoretically convenient, but practically prohibitive spectral basis

  14. Suspensions with reduced violin string modes

    International Nuclear Information System (INIS)

    Lee, B H; Ju, L; Blair, D G

    2006-01-01

    We discuss the possibility of significantly reducing the number and Q-factor of violin string modes in the mirror suspension. Simulations of a bar-flexure suspension and an orthogonal ribbon have shown a reduction in the number of violin string modes when compared to a normal ribbon suspension. By calculating the expected suspension thermal noise, we find that the orthogonal ribbon provides a promising suspension alternative. A lower number of violin modes oscillating in the direction of the laser and a reduction in violin mode peak values of at least 23dB can be achieved with a slight increase in thermal noise above 40Hz

  15. Suspensions with reduced violin string modes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B H; Ju, L; Blair, D G [School of Physics, University of Western Australia, Crawley 6009, WA (Australia)

    2006-03-02

    We discuss the possibility of significantly reducing the number and Q-factor of violin string modes in the mirror suspension. Simulations of a bar-flexure suspension and an orthogonal ribbon have shown a reduction in the number of violin string modes when compared to a normal ribbon suspension. By calculating the expected suspension thermal noise, we find that the orthogonal ribbon provides a promising suspension alternative. A lower number of violin modes oscillating in the direction of the laser and a reduction in violin mode peak values of at least 23dB can be achieved with a slight increase in thermal noise above 40Hz.

  16. Chain Dynamics in Magnetorheological Suspensions

    Science.gov (United States)

    Gast, A. P.; Furst, E. M.

    1999-01-01

    Magnetorheological (MR) suspensions are composed of colloidal particles which acquire dipole moments when subjected to an external magnetic field. At sufficient field strengths and concentrations, the dipolar particles rapidly aggregate to form long chains. Subsequent lateral cross-linking of the dipolar chains is responsible for a rapid liquid-to-solid-like rheological transition. The unique, magnetically-activated rheological properties of MR suspensions make them ideal for interfacing mechanical systems to electronic controls. Additionally, the ability to experimentally probe colloidal suspensions interacting through tunable anisotropic potentials is of fundamental interest. Our current experimental work has focused on understanding the fluctuations of dipolar chains. It has been proposed by Halsey and Toor (HT) that the strong Landau-Peierls thermal fluctuations of dipolar chains could be responsible for long-range attractions between chains. Such interactions will govern the long-time relaxation of MR suspensions. We have synthesized monodisperse neutrally buoyant MR suspensions by density matching stabilized ferrofluid emulsion droplets with D2O. This allows us to probe the dynamics of the dipolar chains using light scattering without gravitational, interfacial, and polydispersity effects to resolve the short-wavelength dynamics of the dipolar chains. We used diffusing wave spectroscopy to measure these dynamics. The particle displacements at short times that show an independence to the field strength, but at long times exhibit a constrained, sub-diffusive motion that slows as the dipole strength is increased. The experiments are in good qualitative agreement with Brownian dynamics simulations of dipolar chains. Although there have been several important and detailed studies of the structure and interactions in MR suspensions, there has not been conclusive evidence that supports or contradicts the HT model prediction that long-range interactions exist between

  17. Adaptive magnetorheological seat suspension for shock mitigation

    Science.gov (United States)

    Singh, Harinder Jit

    This research focuses on theoretical and experimental analysis of an adaptive seat suspension employing magnetorheological energy absorber with the objective of minimizing injury potential to seated occupant of different weights subjected to broader crash intensities. The research was segmented into three tasks: (1) development of magnetorheological energy absorber, (2) biodynamic modeling of a seated occupant, and (3) control schemes for shock mitigation. A linear stroking semi-active magnetorheological energy absorber (MREA) was designed, fabricated and tested for intense impact conditions with piston velocities up to 8 m/s. MREA design was optimized on the basis of Bingham-plastic model (BPM model) in order to maximize the energy absorption capabilities at high impact velocities. Computational fluid dynamics and magnetic FE analysis were conducted to validate MREA performance. Subsequently, low-speed cyclic testing (0-2 Hz subjected to 0-5.5 A) and high-speed drop testing (0-4.5 m/s at 0 A) were conducted for quantitative comparison with the numerical simulations. Later, a nonlinear four degrees-of-freedom biodynamic model representing a seated 50th percentile male occupant was developed on the basis of experiments conducted on Hybrid II 50th percentile male anthropomorphic test device. The response of proposed biodynamic model was compared quantitatively against two different biodynamic models from the literature that are heavily implemented for obtaining biodynamic response under impact conditions. The proposed biodynamic model accurately predicts peak magnitude, overall shape and the duration of the biodynamic transient response, with minimal phase shift. The biodynamic model was further validated against 16 impact tests conducted on horizontal accelerator facility at NAVAIR for two different shock intensities. Compliance effects of human body were also investigated on the performance of adaptive seat suspension by comparing the proposed biodynamic model

  18. Application of CaCu3Ti4O12 based quadruple perovskites as a promising candidate for optoelectronic devices

    Science.gov (United States)

    Pal, Kamalesh; Jana, Rajkumar; Dey, Arka; Ray, Partha P.; Seikh, Md Motin; Gayen, Arup

    2018-05-01

    We report the synthesis of nanosized (40-50 nm) CaCu3-xMnxTi4-xMnxO12 (x = 0, 0.5 and 1) quadruple perovskite (QP) semiconductor via a modified combustion method for use as Schottky barrier diode (SBD) at the Al/QP junction. The fabricated SBD is analysed on the basis of thermionic emission theory to observe its quality and some important diode parameters. For insight analysis of charge transport mechanism through metal-semiconductor junction, theory of space charge limited currents is applied and discussed in the light of parameters like carrier concentration, mobility-lifetime product and diffusion length. The Mn-doped exhibit better device performance compared to parent material.

  19. A quadruple quasar coincident with a giant Ly-alpha nebula and a protocluster at z=2

    Science.gov (United States)

    Vignali, Cristian

    2016-09-01

    We propose to observe the only known quadruple AGN system in the Universe, embedded in a giant Ly-alpha nebula at z 2. These active nuclei and the large number of Ly-alpha emitting galaxies at the same redshift are clear indications that this is one of the most overdense protoclusters known z 2. We request a 140 ks Chandra exposure to (a) define the basic X-ray properties of all the AGN and then their bolometric luminosities and Eddington ratios, and compare these with those of "isolated" quasars at similar redshifts/luminosities; (b) detect the hot gas emission in the protocluster. Chandra is unique for this investigation: the close (few arcsec) distance of some of the AGN needs high spatial resolution, and the extended emission requires low background contribution.

  20. Polymorphism in Bacterial Flagella Suspensions

    Science.gov (United States)

    Schwenger, Walter J.

    Bacterial flagella are a type of biological polymer studied for its role in bacterial motility and the polymorphic transitions undertaken to facilitate the run and tumble behavior. The naturally rigid, helical shape of flagella gives rise to novel colloidal dynamics and material properties. This thesis studies methods in which the shape of bacterial flagella can be controlled using in vitro methods and the changes the shape of the flagella have on both single particle dynamics and bulk material properties. We observe individual flagellum in both the dilute and semidilute regimes to observe the effects of solvent condition on the shape of the filament as well as the effect the filament morphology has on reptation through a network of flagella. In addition, we present rheological measurements showing how the shape of filaments effects the bulk material properties of flagellar suspensions. We find that the individual particle dynamics in suspensions of flagella can vary with geometry from needing to reptate linearly via rotation for helical filaments to the prevention of long range diffusion for block copolymer filaments. Similarly, for bulk material properties of flagella suspensions, helical geometries show a dramatic enhancement in elasticity over straight filaments while block copolymers form an elastic gel without the aid of crosslinking agents.

  1. Two-Dimensional Fuzzy Sliding Mode Control of a Field-Sensed Magnetic Suspension System

    Directory of Open Access Journals (Sweden)

    Jen-Hsing Li

    2014-01-01

    Full Text Available This paper presents the two-dimensional fuzzy sliding mode control of a field-sensed magnetic suspension system. The fuzzy rules include both the sliding manifold and its derivative. The fuzzy sliding mode control has advantages of the sliding mode control and the fuzzy control rules are minimized. Magnetic suspension systems are nonlinear and inherently unstable systems. The two-dimensional fuzzy sliding mode control can stabilize the nonlinear systems globally and attenuate chatter effectively. It is adequate to be applied to magnetic suspension systems. New design circuits of magnetic suspension systems are proposed in this paper. ARM Cortex-M3 microcontroller is utilized as a digital controller. The implemented driver, sensor, and control circuits are simpler, more inexpensive, and effective. This apparatus is satisfactory for engineering education. In the hands-on experiments, the proposed control scheme markedly improves performances of the field-sensed magnetic suspension system.

  2. Adaptive magnetorheological seat suspension for the expeditionary fighting vehicle

    International Nuclear Information System (INIS)

    Hiemenz, G J; Hu, W; Wereley, N M

    2009-01-01

    The Expeditionary Fighting Vehicle (EFV) is an amphibious vehicle designed to operate through harsh conditions and at much higher speeds than its predecessors. These unique capabilities and broadly varying operational conditions lead to a complex design and human factors scenario for the forward seating positions that cannot be solved using conventional passive seat suspension systems. Injurious shock loads transmitted to the occupants when traversing over water in high sea states and/or at high speeds, as well as harmful shock and vibration transmitted to the occupants when the vehicle is travelling over land, pose a threat to occupant health and significantly limit mission duration. In this study, a semi-active magnetorheological (MR) seat suspension is developed which adapts to broadly varying operational conditions, as well as occupant weight, to provide optimal protection of EFV occupants. It is shown that this MR seat suspension system will reduce the shock and vibration transmitted to the occupant by up to 33% and 65%, respectively, as compared to the existing passive suspension.

  3. Adaptive magnetorheological seat suspension for the expeditionary fighting vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Hiemenz, G J [Techno-Sciences, Inc., 11750 Beltsville Dr. Ste. 300, Beltsville, MD 20705 (United States); Hu, W; Wereley, N M [Aerospace Engineering, University of Maryland, College Park, MD 20712 (United States)], E-mail: greg@technosci.com, E-mail: wereley@umd.edu

    2009-02-01

    The Expeditionary Fighting Vehicle (EFV) is an amphibious vehicle designed to operate through harsh conditions and at much higher speeds than its predecessors. These unique capabilities and broadly varying operational conditions lead to a complex design and human factors scenario for the forward seating positions that cannot be solved using conventional passive seat suspension systems. Injurious shock loads transmitted to the occupants when traversing over water in high sea states and/or at high speeds, as well as harmful shock and vibration transmitted to the occupants when the vehicle is travelling over land, pose a threat to occupant health and significantly limit mission duration. In this study, a semi-active magnetorheological (MR) seat suspension is developed which adapts to broadly varying operational conditions, as well as occupant weight, to provide optimal protection of EFV occupants. It is shown that this MR seat suspension system will reduce the shock and vibration transmitted to the occupant by up to 33% and 65%, respectively, as compared to the existing passive suspension.

  4. Comparison of cortisol exposures and pharmacodynamic adrenal steroid responses to hydrocortisone suspension vs. commercial tablets.

    Science.gov (United States)

    Sarafoglou, Kyriakie; Gonzalez-Bolanos, Maria T; Zimmerman, Cheryl L; Boonstra, Timothy; Yaw Addo, O; Brundage, Richard

    2015-04-01

    The Endocrine Society Clinical Practice Guidelines on congenital adrenal hyperplasia (CAH) recommend against using hydrocortisone suspension based on a study that examined a commercial suspension. Our objective was to examine the absorption of an extemporaneously prepared hydrocortisone suspension and compare it to tablets. Secondary objectives were to evaluate the 17-hydroxyprogesterone and androstenedione adrenal steroid responses. Using a parallel design, 34 children diagnosed with CAH received either suspension (n = 9; median age 1.8 years) or tablets (n = 25; median age 7.5 years). Patients were given their usual morning hydrocortisone formulation and dose; 12 serial blood samples were obtained and the area under the curve (AUC) was calculated. The mg/m(2) dose-normalized cortisol AUCs were no different in the suspension and tablet groups (P = ·06), nor was there a significant difference in the C(max) or T(max) (P = .08 and P = .41, respectively). Although there were no differences in the 17-hydroxyprogesterone change-from-baseline AUCs, baseline concentrations, or the nadir concentrations when comparing suspension and tablet formulations, the androstenedione values were significantly lower as expected in the younger aged suspension group. Our results offer compelling evidence that an extemporaneously prepared hydrocortisone suspension provides comparable cortisol exposures to commercially available tablet formulations in children and can be used to safely and effectively treat CAH. © 2014, The American College of Clinical Pharmacology.

  5. Ten-day bismuth-containing quadruple therapy is effective as first-line therapy for Helicobacter pylori-related chronic gastritis: a prospective randomized study in China.

    Science.gov (United States)

    Wang, L; Lin, Z; Chen, S; Li, J; Chen, C; Huang, Z; Ye, B; Ding, J; Li, W; Wu, L; Jiang, Y; Meng, L; Du, Q; Si, J

    2017-06-01

    To investigate the effectiveness of 10-day bismuth-containing quadruple (B-quadruple) treatment as first-line therapy in patients with Helicobacter pylori-related chronic gastritis. A randomized controlled trial was conducted from October 2011 to December 2013 in Zhejiang, China, including patients with H. pylori-related chronic gastritis who were randomly provided either 10-day omeprazole-based triple therapy (OM-triple; omeprazole 20 mg twice daily, clarithromycin 500 mg twice daily and amoxicillin 1 g twice daily) or 10-day B-quadruple therapy (OM-triple + bismuth subcitrate 120 mg four times daily). H. pylori status, pathologic findings and dyspeptic symptoms were assessed at baseline and after 3 months. The primary outcome was H. pylori eradication rates by intention-to-treat (ITT) and per-protocol (PP) analyses. The secondary outcomes were the histologic and symptomatic benefits from H. pylori eradication. A total of 351 patients with H. pylori-related chronic gastritis were recruited. The eradication rates of the OM-triple and B-quadruple groups were 58.4% (108/185) and 86.1% (143/166) respectively according to ITT analysis (p gastritis and intestinal metaplasia did not regress in both groups (n=326). The reduction of dyspeptic symptoms score was significantly higher in the B-quadruple group than in the OM-triple group (0.59±0.057 vs. 0.39±0.046) (p gastritis in China. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Introducing Dual Suspension System in Road Vehicles

    OpenAIRE

    Imtiaz Hussain; Jawaid Daudpoto; Ali Asghar Memon

    2013-01-01

    The main objective of suspension system is to reduce the motions of the vehicle body with respect to road disturbances. The conventional suspension systems in road vehicles use passive elements such as springs and dampers to suppress the vibrations induced by the irregularities in the road. But these conventional suspension systems can suppress vibrations to a certain limit. This paper presents a novel idea to improve the ride quality of roads vehicles without compromising vehicle?s stability...

  7. Viscosity of diluted suspensions of vegetal particles in water

    Directory of Open Access Journals (Sweden)

    Szydłowska Adriana

    2017-01-01

    Full Text Available Viscosity and rheological behaviour of sewage as well as sludge are essential while designing apparatuses and operations employed in the sewage treatment process and its processing. With reference to these substances, the bio-suspensions samples of three size fractions ((i 150÷212 μm, (ii 106÷150 μm and (iii below106 μm of dry grass in water with solid volume fraction 8%, 10% and 11% were prepared. After twenty four hours prior to their preparation time, the suspension samples underwent rheometeric measurements with the use of a rotational rheometer with coaxial cylinders. On the basis of the obtained results, flow curves were plotted and described with both the power model and Herschel-Bulkley model. Moreover, the viscosity of the studied substances was determined that allowed to conclude that the studied bio-suspensions display features of viscoelastic fluids. The experimentally established viscosity was compared to the calculated one according to Manley and Manson equation, recommended in the literature. It occurred that the measured viscosity values substantially exceed the calculation viscosity values, even by 105 times. The observations suggest that it stems from water imbibition of fibrous vegetal particles, which causes their swelling and decreases the amount of liquid phase in the suspension.

  8. Time Varying Behavior of the Loudspeaker Suspension

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Agerkvist, Finn T.

    2007-01-01

    The suspension part of the electrodynamic loudspeaker is often modelled as a simple linear spring with viscous damping, however the dynamic behaviour of the suspension is much more complicated than predicted by such a simple model. At higher levels the compliance becomes non-linear and often chan...... changes during excitation at high levels. This paper investigates how the compliance of the suspension depends on the excitation, i.e. level and frequency content. The measurements are compared with other known measurement methods of the suspension....

  9. Introducing Dual Suspension System in Road Vehicles

    Directory of Open Access Journals (Sweden)

    Imtiaz Hussain

    2013-04-01

    Full Text Available The main objective of suspension system is to reduce the motions of the vehicle body with respect to road disturbances. The conventional suspension systems in road vehicles use passive elements such as springs and dampers to suppress the vibrations induced by the irregularities in the road. But these conventional suspension systems can suppress vibrations to a certain limit. This paper presents a novel idea to improve the ride quality of roads vehicles without compromising vehicle?s stability. The paper proposes the use of primary and secondary suspension to suppress the vibrations more effectively.

  10. One-Quarter-Car Active SuspensionModel Verification

    Directory of Open Access Journals (Sweden)

    Hyniova Katerina

    2017-01-01

    Full Text Available Suspension system influences both the comfort and safety of the passengers. In the paper, energy recuperation and management in automotive suspension systems with linear electric motors that are controlled by a designed H∞ controller to generate a variable mechanical force for a car damper is presented. Vehicle shock absorbers in which forces are generated in response to feedback signals by active elements obviously offer increased design flexibility compared to the conventional suspensions with passive elements (springs and dampers. The main advantage of the proposed solution that uses a linear AC motor is the possibility to generate desired forces acting between the unsprung (wheel and sprung (one-quarter of the car body mass masses of the car, providing good insulation of the car sprung mass from the road surface roughness and load disturbances. As shown in the paper, under certain circumstances linear motors as actuators enable to transform mechanical energy of the vertical car vibrations to electrical energy, accumulate it, and use it when needed. Energy flow control enables to reduce or even eliminate the demands on the external power source. In particular, the paper is focused on experiments with active shock absorber that has been taken on the designed test bed and the way we developed an appropriate input signal for the test bed that as real road disturbance acts upon the vibration absorber and the obtained results are evaluated at the end. Another important point the active suspension design should satisfy is energy supply control that is made via standard controller modification, and which allows changing amount of energy required by the system. Functionality of the designed controller modification was verified taking various experiments on the experiment stand as mentioned in the paper.

  11. Multiobjective optimisation of bogie suspension to boost speed on curves

    Science.gov (United States)

    Milad Mousavi-Bideleh, Seyed; Berbyuk, Viktor

    2016-01-01

    To improve safety and maximum admissible speed on different operational scenarios, multiobjective optimisation of bogie suspension components of a one-car railway vehicle model is considered. The vehicle model has 50 degrees of freedom and is developed in multibody dynamics software SIMPACK. Track shift force, running stability, and risk of derailment are selected as safety objective functions. The improved maximum admissible speeds of the vehicle on curves are determined based on the track plane accelerations up to 1.5 m/s2. To attenuate the number of design parameters for optimisation and improve the computational efficiency, a global sensitivity analysis is accomplished using the multiplicative dimensional reduction method (M-DRM). A multistep optimisation routine based on genetic algorithm (GA) and MATLAB/SIMPACK co-simulation is executed at three levels. The bogie conventional secondary and primary suspension components are chosen as the design parameters in the first two steps, respectively. In the last step semi-active suspension is in focus. The input electrical current to magnetorheological yaw dampers is optimised to guarantee an appropriate safety level. Semi-active controllers are also applied and the respective effects on bogie dynamics are explored. The safety Pareto optimised results are compared with those associated with in-service values. The global sensitivity analysis and multistep approach significantly reduced the number of design parameters and improved the computational efficiency of the optimisation. Furthermore, using the optimised values of design parameters give the possibility to run the vehicle up to 13% faster on curves while a satisfactory safety level is guaranteed. The results obtained can be used in Pareto optimisation and active bogie suspension design problems.

  12. An isotropic suspension system for a biaxial accelerometer using electroplated thick metal with a HAR SU-8 mold

    International Nuclear Information System (INIS)

    Lee, Jin Seung; Lee, Seung S

    2008-01-01

    In this paper, a novel approach is developed to design an isotropic suspension system using thick metal freestanding micro-structures combining bulk micro-machining with electroplating based on a HAR SU-8 mold. An omega-shape isotropic suspension system composed of circular curved beams that have free switching of imaginary boundary conditions is proposed. This novel isotropic suspension design is not affected by geometric dimensional parameters and always achieves matching stiffness along the principle axes of elasticity. Using the finite element method, the isotropic suspension system was compared with an S-shaped meandering suspension system. In order to realize the suggested isotropic suspension system, a cost-effective fabrication process using electroplating with the SU-8 mold was developed to avoid expensive equipment and materials such as deep reactive-ion etching (DRIE) or a silicon-on-insulator (SOI) wafer. The fabricated isotropic suspension system was verified by electromagnetic actuation experiments. Finally, a biaxial accelerometer with isotropic suspension system was realized and tested using a vibration generator system. The proposed isotropic suspension system and the modified surface micro-machining technique based on electroplating with an SU-8 mold can contribute towards minimizing the system size, simplifying the system configuration, reducing the system price of and facilitating mass production of various types of low-cost sensors and actuators

  13. Simulation Research on Vehicle Active Suspension Controller Based on G1 Method

    Science.gov (United States)

    Li, Gen; Li, Hang; Zhang, Shuaiyang; Luo, Qiuhui

    2017-09-01

    Based on the order relation analysis method (G1 method), the optimal linear controller of vehicle active suspension is designed. The system of the main and passive suspension of the single wheel vehicle is modeled and the system input signal model is determined. Secondly, the system motion state space equation is established by the kinetic knowledge and the optimal linear controller design is completed with the optimal control theory. The weighting coefficient of the performance index coefficients of the main passive suspension is determined by the relational analysis method. Finally, the model is simulated in Simulink. The simulation results show that: the optimal weight value is determined by using the sequence relation analysis method under the condition of given road conditions, and the vehicle acceleration, suspension stroke and tire motion displacement are optimized to improve the comprehensive performance of the vehicle, and the active control is controlled within the requirements.

  14. Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator

    International Nuclear Information System (INIS)

    Du, Haiping; Li, Weihua; Zhang, Nong

    2011-01-01

    This paper presents a study on continuously variable stiffness control of vehicle seat suspension using a magnetorheological elastomer (MRE) isolator. A concept design for an MRE isolator is proposed in the paper and its behavior is experimentally evaluated. An integrated seat suspension model, which includes a quarter-car suspension and a seat suspension with a driver body model, is used to design a sub-optimal H ∞ controller for an active isolator. The desired control force generated by this active isolator is then emulated by the MRE isolator through its continuously variable stiffness property when the actuating condition is met. The vibration control effect of the MRE isolator is evaluated in terms of driver body acceleration responses under both bump and random road conditions. The results show that the proposed control strategy achieves better vibration reduction performance than conventional on–off control

  15. Using the Quadruple Aim Framework to Measure Impact of Heath Technology Implementation: A Case Study of eConsult.

    Science.gov (United States)

    Liddy, Clare; Keely, Erin

    2018-01-01

    Health technology solutions are too often implemented without a true understanding of the system-level problem they seek to address, resulting in excessive costs, poor adoption, ineffectiveness, and ultimately failure. Before implementing or adopting health care innovations, stakeholders should complete a thorough assessment to ensure effectiveness and value. In this article, we describe how to evaluate the impact of a health technology innovation through the 4 dimensions of care outlined by the Quadruple Aim Framework, using our experience with the Champlain Building Access to Specialists through eConsultation (BASE) eConsult service as a case example. A descriptive overview of data was collected between April 1, 2011, and August 31, 2017, using 4 dimensions of care outlined by the Quadruple Aim Framework: patient experience, provider experience, costs, and population health. Findings were drawn from use data, primary care provider closeout surveys, surveys/interviews with patients and provider, and costing data. Overall, patients have received access to specialist advice within days and find the advice useful in 86% of cases. Provider experience is very positive, with satisfaction ratings of high/very high value in 94% of cases. The service cost a weighted average of $47.35/case, compared with $133.60/case for traditional referrals. In total, 1,299 primary care providers have enrolled in the service, completing 28,838 cases since 2011. Monthly case volumes have grown from an average of 13 cases/month in 2011 to 969 cases/month in 2016. The eConsult service has been widely adopted in our region and is currently expanding to new jurisdictions across Canada. However, although we successfully demonstrated eConsult's impact on patient experience, provider satisfaction, and reducing costs, we met several challenges in evaluating its impact on population health. More work is needed to evaluate eConsult's impact on key population health metrics (eg, mortality, morbidity

  16. Determination of Weight Suspension Rigidity in the Transport-Erector Aggregates

    Directory of Open Access Journals (Sweden)

    V. A. Zverev

    2016-01-01

    Full Text Available The aim is to determine weight suspension rigidity in aggregates designed to perform technological transport-erector operations at the miscellaneous launch complexes.We consider the weight suspension comprising the following distinctive structural components: the executive weight-lowering mechanism, polyspast mechanism, rope, traverse, and rods. A created structural dynamic model of suspension allowed us to define weight suspension rigidity. Within the framework of design analysis of a dynamic model we determined the rigidity of its structural units, i.e. traverse, rope, and polyspast.Known analytical relationships were used to calculate the rope rigidity. To determine rigidity of polyspast and traverse have been created special models based on the finite element method. For each model deformation in the specific points under the test load have been defined. Data obtained were used to determine trigidity of traverses and polyspast, and also rigidity of suspension in total. The rigidity models of polispast mechanism and traverse have been developed and calculated using the software complex "Zenit-95".As the research results, the paper presents a dynamic model of the weight suspension of the transport-erector aggregate, the finite element models of the polispast mechanism and traverse, an algorithm for determining the weight suspension rigidity and relevant analytical relationships.Independent calculation of weight suspension rigidity enables us to simplify further dynamic calculation of the aggregate-weight system because it allows attaining a simpler model of the aggregate-weight system that uses the weight suspension model as an element of equivalent rigidity. Despite this simplification the model allows us to determine correctly weight movement parameters and overloads in the aggregate-weight system in the process of technical operations.

  17. Non-linear dielectric spectroscopy of microbiological suspensions

    Science.gov (United States)

    Treo, Ernesto F; Felice, Carmelo J

    2009-01-01

    observed at the same values. Conclusion Contrary to previous assertions, no repeatable dielectric non-linearity was exhibited in the bulk suspensions tested under the field and frequency condition reported with this recently designed analyzer. Indeed, interface related harmonics were observed and monitored during biochemical stimuli. The changes were coherent with the expected biological response. PMID:19772595

  18. Non-linear dielectric spectroscopy of microbiological suspensions

    Directory of Open Access Journals (Sweden)

    Felice Carmelo J

    2009-09-01

    measurements, but maximum were not observed at the same values. Conclusion Contrary to previous assertions, no repeatable dielectric non-linearity was exhibited in the bulk suspensions tested under the field and frequency condition reported with this recently designed analyzer. Indeed, interface related harmonics were observed and monitored during biochemical stimuli. The changes were coherent with the expected biological response.

  19. 36 CFR 296.10 - Suspension and revocation of permits.

    Science.gov (United States)

    2010-07-01

    ... AGRICULTURE PROTECTION OF ARCHAEOLOGICAL RESOURCES: UNIFORM REGULATIONS § 296.10 Suspension and revocation of... correct the situation which led to suspension of the permit. (b) Suspension or revocation for management...

  20. 39 CFR 320.9 - Revocation or amendment of suspensions.

    Science.gov (United States)

    2010-07-01

    ... SUSPENSION OF THE PRIVATE EXPRESS STATUTES § 320.9 Revocation or amendment of suspensions. These suspensions... of operations (in dollar or volume terms, whichever is larger) lower than that antedating the...

  1. Linear viscoelastic properties of aging suspensions

    NARCIS (Netherlands)

    Purnomo, E.H.; Purnomo, E.H; van den Ende, Henricus T.M.; Mellema, J.; Mugele, Friedrich Gunther

    2006-01-01

    We have examined the linear viscoelastic behavior of poly-N-isopropylacrylamide (PNIPAM) microgel suspensions in order to obtain insight in the aging processes in these densely packed suspensions at various temperatures below the volume transition temperature. The system is found to display a strong

  2. 49 CFR 393.207 - Suspension systems.

    Science.gov (United States)

    2010-10-01

    ... braking system. The vehicle shall be level (not tilting to the left or right). Air leakage shall not be... 49 Transportation 5 2010-10-01 2010-10-01 false Suspension systems. 393.207 Section 393.207... NECESSARY FOR SAFE OPERATION Frames, Cab and Body Components, Wheels, Steering, and Suspension Systems § 393...

  3. 41 CFR 105-74.670 - Suspension.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Suspension. 105-74.670 Section 105-74.670 Public Contracts and Property Management Federal Property Management Regulations System...-GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 105-74.670 Suspension...

  4. 36 CFR 25.3 - Supervision; suspensions.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Supervision; suspensions. 25.3 Section 25.3 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL MILITARY PARKS; LICENSED GUIDE SERVICE REGULATIONS § 25.3 Supervision; suspensions. (a) The guide service will operate under the direction...

  5. Osmotic consolidation of suspensions and gels

    International Nuclear Information System (INIS)

    Miller, K.T.; Zukoski, C.F.

    1994-01-01

    An osmotic method for the consolidation of suspensions of ceramic particles is demonstrated. Concentrated solutions of poly(ethylene oxide) are separated from a suspension of ceramic particles by a semipermeable membrane, creating a gradient in solvent chemical potential. Solvent passes from the suspension into the polymer solution, lowering its free energy and consolidating the suspension. Dispersions of stable 8-nm hydrous zirconia particles were consolidated to over 47% by volume. Suspensions of α-alumina in three states of aggregation (dispersed, weakly flocculated, and strongly flocculated) were consolidated to densities greater than or equal to those produced in conventional pressure filtration. Moreover, the as-consolidated alumina bodies were partially drained of fluid during the osmotic consolidation process, producing cohesive partially dried bodies with improved handling characteristics

  6. Modeling aerosol suspension from soils and oceans as sources of micropollutants to air.

    Science.gov (United States)

    Qureshi, Asif; MacLeod, Matthew; Hungerbühler, Konrad

    2009-10-01

    designed to assess the environmental fate and long-range transport behavior of substances with a range of chemical properties include both aerosol suspension processes, using the mass transfer velocities estimated here.

  7. Self-Focusing of Quadruple Gaussian Laser Beam in an Inhomogenous Magnetized Plasma with Ponderomotive Non-Linearity: Effect of Linear Absorption

    International Nuclear Information System (INIS)

    Aggarwal, Munish; Vij, Shivani; Kant, Niti

    2015-01-01

    The propagation of quadruple Gaussian laser beam in a plasma characterized by axial inhomogeneity and nonlinearity due to ponderomotive force in the paraxial ray approximation is investigated. An appropriate expression for the nonlinear dielectric constant has been developed in the presence of external magnetic field, with linear absorption and due to saturation effects for arbitrary large intensity. The effects of different types of plasma axial inhomogeneities on self-focusing of laser beam have been studied with the typical laser and plasma parameters. Self-focusing of quadruple Gaussian laser beam in the presence of externally applied magnetic field and saturating parameter is found significantly improved in the case of extraordinary mode. Our results reveal that initially converging beam shows oscillatory convergence whereas initially diverging beam shows oscillatory divergence. The beam is more focussed at lower intensity in both cases viz. extraordinary and ordinary mode. (paper)

  8. Development of a non-piston MR suspension rod for variable mass systems

    Science.gov (United States)

    Deng, Huaxia; Han, Guanghui; Zhang, Jin; Wang, Mingxian; Ma, Mengchao; Zhong, Xiang; Yu, Liandong

    2018-06-01

    The semi-active suspension systems for variable mass systems require long work stroke and variable damping, while the currently piston structure limits the work stroke for the magnetorheological (MR) dampers. The main work of this paper is to design a semi-active non-piston MR (NPMR) suspension rod for the reduction of the vibration of an automatic impeller washing machine, which is a typical variable mass system. The designed suspension rod locates in the suspension system that links the internal tub to the washing machine cabinet. The NPMR suspension rod includes a MR part and a air part. The MR part can provide low initial damping force and the unlimited work stroke compared with the piston MR damper. The hysteretic response tests and vibration performance evaluation with different loadings are conducted to verify the dynamic performance for the designed rod. The measured damping force of the MR part varies from 5 to 20 N. Studies of dehydration mode experiments of the washing machine indicate that its vibration acceleration with the NPMR suspension rods can reduce to half of the original passive ones in certain conditions.

  9. Operational Modal Analysis and the Performance Assessment of Vehicle Suspension Systems

    Directory of Open Access Journals (Sweden)

    L. Soria

    2012-01-01

    Full Text Available Comfort, road holding and safety of passenger cars are mainly influenced by an appropriate design of suspension systems. Improvements of the dynamic behaviour can be achieved by implementing semi-active or active suspension systems. In these cases, the correct design of a well-performing suspension control strategy is of fundamental importance to obtain satisfying results. Operational Modal Analysis allows the experimental structural identification in those that are the real operating conditions: Moving from output-only data, leading to modal models linearised around the more interesting working points and, in the case of controlled systems, providing the needed information for the optimal design and verification of the controller performance. All these characters are needed for the experimental assessment of vehicle suspension systems. In the paper two suspension architectures are considered equipping the same car type. The former is a semi-active commercial system, the latter a novel prototypic active system. For the assessment of suspension performance, two different kinds of tests have been considered, proving ground tests on different road profiles and laboratory four poster rig tests. By OMA-processing the signals acquired in the different testing conditions and by comparing the results, it is shown how this tool can be effectively utilised to verify the operation and the performance of those systems, by only carrying out a simple, cost-effective road test.

  10. Applying the Quadruple Process model to evaluate change in implicit attitudinal responses during therapy for panic disorder.

    Science.gov (United States)

    Clerkin, Elise M; Fisher, Christopher R; Sherman, Jeffrey W; Teachman, Bethany A

    2014-01-01

    This study explored the automatic and controlled processes that may influence performance on an implicit measure across cognitive-behavioral group therapy for panic disorder. The Quadruple Process model was applied to error scores from an Implicit Association Test evaluating associations between the concepts Me (vs. Not Me) + Calm (vs. Panicked) to evaluate four distinct processes: Association Activation, Detection, Guessing, and Overcoming Bias. Parameter estimates were calculated in the panic group (n = 28) across each treatment session where the IAT was administered, and at matched times when the IAT was completed in the healthy control group (n = 31). Association Activation for Me + Calm became stronger over treatment for participants in the panic group, demonstrating that it is possible to change automatically activated associations in memory (vs. simply overriding those associations) in a clinical sample via therapy. As well, the Guessing bias toward the calm category increased over treatment for participants in the panic group. This research evaluates key tenets about the role of automatic processing in cognitive models of anxiety, and emphasizes the viability of changing the actual activation of automatic associations in the context of treatment, versus only changing a person's ability to use reflective processing to overcome biased automatic processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Second-line rescue triple therapy with levofloxacin after failure of non-bismuth quadruple "sequential" or "concomitant" treatment to eradicate H. pylori infection.

    Science.gov (United States)

    Gisbert, Javier P; Molina-Infante, Javier; Marin, Alicia C; Vinagre, Gemma; Barrio, Jesus; McNicholl, Adrian Gerald

    2013-06-01

    Non-bismuth quadruple "sequential" and "concomitant" regimens, including a proton pump inhibitor (PPI), amoxicillin, clarithromycin and a nitroimidazole, are increasingly used as first-line treatments for Helicobacter pylori infection. Eradication with rescue regimens may be challenging after failure of key antibiotics such as clarithromycin and nitroimidazoles. To evaluate the efficacy and tolerability of a second-line levofloxacin-containing triple regimen (PPI-amoxicillin-levofloxacin) in the eradication of H. pylori after non-bismuth quadruple-containing treatment failure. prospective multicenter study. in whom a non-bismuth quadruple regimen, administered either sequentially (PPI + amoxicillin for 5 days followed by PPI + clarithromycin + metronidazole for 5 more days) or concomitantly (PPI + amoxicillin + clarithromycin + metronidazole for 10 days) had previously failed. levofloxacin (500 mg b.i.d.), amoxicillin (1 g b.i.d.) and PPI (standard dose b.i.d.) for 10 days. eradication was confirmed with (13)C-urea breath test 4-8 weeks after therapy. Compliance and tolerance: compliance was determined through questioning and recovery of empty medication envelopes. Incidence of adverse effects was evaluated by means of a questionnaire. 100 consecutive patients were included (mean age 50 years, 62% females, 12% peptic ulcer and 88% dyspepsia): 37 after "sequential", and 63 after "concomitant" treatment failure. All patients took all medications correctly. Overall, per-protocol and intention-to-treat H. pylori eradication rates were 75.5% (95% CI 66-85%) and 74% (65-83%). Respective intention-to-treat cure rates for "sequential" and "concomitant" failure regimens were 74.4% and 71.4%, respectively. Adverse effects were reported in six (6%) patients; all of them were mild. Ten-day levofloxacin-containing triple therapy constitutes an encouraging second-line strategy in patients with previous non-bismuth quadruple "sequential" or "concomitant" treatment failure.

  12. Clogging in constricted suspension flows

    Science.gov (United States)

    Marin, Alvaro; Lhuissier, Henri; Rossi, Massimiliano; Kähler, Christian J.

    2018-02-01

    The flow of a charged-stabilized suspension through a single constricted channel is studied experimentally by tracking the particles individually. Surprisingly, the behavior is found to be qualitatively similar to that of inertial dry granular systems: For small values of the neck-to-particle size ratio (D /d reported for granular systems and agree for moderate particle volume fraction (ϕ ≈20 % ) with a simple stochastic model for the number of particles at the neck. For larger neck sizes (D /d >3 ), even at the largest ϕ (≈60 %) achievable in the experiments, an uninterrupted particle flow is observed, which resembles that of an hourglass. This particularly small value of D /d (≃3 ) at the transition to a practically uninterrupted flow is attributed to the low effective friction between the particles, achieved by the particle's functionalization and lubrication.

  13. Next Generation Suspension Dynamics Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, Peter Randall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Higdon, Jonathon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chen, Steven [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    This research project has the objective to extend the range of application, improve the efficiency and conduct simulations with the Fast Lubrication Dynamics (FLD) algorithm for concentrated particle suspensions in a Newtonian fluid solvent. The research involves a combination of mathematical development, new computational algorithms, and application to processing flows of relevance in materials processing. The mathematical developments clarify the underlying theory, facilitate verification against classic monographs in the field and provide the framework for a novel parallel implementation optimized for an OpenMP shared memory environment. The project considered application to consolidation flows of major interest in high throughput materials processing and identified hitherto unforeseen challenges in the use of FLD in these applications. Extensions to the algorithm have been developed to improve its accuracy in these applications.

  14. Graphite suspension in carbon dioxide

    International Nuclear Information System (INIS)

    Roche, R.

    1965-01-01

    Since 1963 the Atomic Division of SNECMA has been conducting, under a contract with the CEA, an experimental work with a two-component fluid comprised of carbon dioxide and small graphite particles. The primary purpose was the determination of basic engineering information pertaining to the stability and the flowability of the suspension. The final form of the experimental loop consists mainly of the following items: a light-phase compressor, a heavy-phase pump, an electrical-resistance type heater section, a cooling heat exchanger, a hairpin loop, a transparent test section and a separator. During the course of the testing, it was observed that the fluid could be circulated quite easily in a broad range of variation of the suspension density and velocity - density from 30 to 170 kg/m 3 and velocity from 2 to 24 m/s. The system could be restarted and circulation maintained without any difficulty, even with the heavy-phase pump alone. The graphite did not have a tendency to pack or agglomerate during operation. No graphite deposition was observed on the wall of the tubing. A long period run (250 hours) has shown the evolution of the particle dimensions. Starting with graphite of surface area around 20 m 2 /g (graphite particles about 1 μ), the powder surface area reaches an asymptotic value of 300 m 2 /g (all the particles less than 0.3 μ). Moisture effect on flow stability, flow distribution between two parallel channels, pressure drop in straight tubes, recompression ratio in diffusers were also investigated. (author) [fr

  15. Augmented Quadruple-Phase Contrast Media Administration and Triphasic Scan Protocol Increases Image Quality at Reduced Radiation Dose During Computed Tomography Urography.

    Science.gov (United States)

    Saade, Charbel; Mohamad, May; Kerek, Racha; Hamieh, Nadine; Alsheikh Deeb, Ibrahim; El-Achkar, Bassam; Tamim, Hani; Abdul Razzak, Farah; Haddad, Maurice; Abi-Ghanem, Alain S; El-Merhi, Fadi

    The aim of this article was to investigate the opacification of the renal vasculature and the urogenital system during computed tomography urography by using a quadruple-phase contrast media in a triphasic scan protocol. A total of 200 patients with possible urinary tract abnormalities were equally divided between 2 protocols. Protocol A used the conventional single bolus and quadruple-phase scan protocol (pre, arterial, venous, and delayed), retrospectively. Protocol B included a quadruple-phase contrast media injection with a triphasic scan protocol (pre, arterial and combined venous, and delayed), prospectively. Each protocol used 100 mL contrast and saline at a flow rate of 4.5 mL. Attenuation profiles and contrast-to-noise ratio of the renal arteries, veins, and urogenital tract were measured. Effective radiation dose calculation, data analysis by independent sample t test, receiver operating characteristic, and visual grading characteristic analyses were performed. In arterial circulation, only the inferior interlobular arteries in both protocols showed a statistical significance (P contrast-to-noise ratio than protocol A (protocol B: 22.68 ± 13.72; protocol A: 14.75 ± 5.76; P contrast media and triphasic scan protocol usage increases the image quality at a reduced radiation dose.

  16. Naratriptan hydrochloride in extemporaneosly compounded oral suspensions.

    Science.gov (United States)

    Zhang, Y P; Trissel, L A; Fox, J L

    2000-01-01

    The purpose of this study was to determine the pharmaceutical acceptability and chemical stability of naratriptan hydrochloride in three extemporaneously compounded suspension formulations. The naratriptan-hydrochloride oral suspensions were prepared from 2.5-mg commercial tablets yielding a nominal naratriptan concentration of 0.5 mg/mL. The suspension vehicles selected for testing were Syrpalta, an equal-parts mixture of Ora-Plus and Ora-Sweet, and an equal-parts mixture of Ora-Plus and Ora-Sweet SF. The tablets were crushed and thoroughly triturated to a fine powder using a porcelain mortar and pestle. The powder was incorporated into a portion of the Syrpalta or Ora-Plus suspension vehicle and mixed until homogeneous. The mixtures were then brought to volume with Syrpalta, Ora-Sweet or Ora-Sweet SF, as appropriate. The suspensions were packaged in amber, plastic, screw-cap prescription bottles and stored at 23 deg C for seven days and 4 deg C for 90 days. An adequate suspension was never achieved in Syrpalta. The crushed-tablet powder did not produce a uniformly dispersed mixture and exhibited clumping and a high rate of sedimentation. A distinct layer of the solid tablet material settled immediately after shaking. Over the next four hours, a densely packed, yellow, caked layer formed at the bottom of the containers, making resuspension difficult. During storage, the caking became worse. Chemical analysis was not performed. The Ora-Plus and Ora-Sweet or Ora-Sweet SF suspensions had a slight greenish cast and were resuspended without difficulty by shaking for approximately ten seconds, yielding easily poured and homogeneous mixtures throughout the study. Visible settling and layering did not begin for four hours with the Ora-Sweet suspension and 24 hours for the Ora-Sweet SF suspension. High pressure liquid chromatographic analysis found that the naratriptan concentration in both suspension-vehicle combinations exhibited little or no loss for seven days at 23

  17. Testing of Prototype Magnetic Suspension Cryogenic Transfer Line

    Science.gov (United States)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.; Sojourner, S. J.; Shu, Q. S.; Cheng, G.; Susta, J. T.

    2006-04-01

    A 6-meter prototype cryogenic transfer line with magnetic suspension was tested for its mechanical and thermal performance at the Cryogenics Test Laboratory of NASA Kennedy Space Center (KSC). A test facility with two cryogenic end-boxes was designed and commissioned for the testing. Suspension mechanisms were verified through a series of tests with liquid nitrogen. The thermal performance of the prototype was determined using the new test apparatus. The tested prototype has incorporated temperature and vacuum pressure data acquisition ports, customized interfaces to cryogenic end-boxes, and instrumentation. All tests were conducted under simulated onsite transfer line working conditions. A static (boiloff rate measurement) testing method was employed to demonstrate the gross heat leak in the tested article. The real-time temperature distribution, vacuum level, levitation distance, and mass flow rate were measured. The main purpose of this paper is to summarize the testing facility design and preparation, test procedure, and primary test results. Special arrangements (such as turning on/off mechanical support units, observing levitation gap, and setting up the flowmeter) in testing of such a magnetically levitated transfer line are also discussed. Preliminary results show that the heat leak reduction of approximately one-third to one-half is achievable through such transfer lines with a magnetic suspension system.

  18. Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading

    Energy Technology Data Exchange (ETDEWEB)

    Riley, D.A.; Ellis, S.; Giometti, C.S.; Hoh, J.F.Y.; Ilyina-Kakueva, E.I.; Oganov, V.S.; Slocum, G.R.; Bain, J.L.W.; Sedlak, F.R. (Argonne National Lab., IL (United States))

    1992-08-01

    Extended exposure of humans to spaceflight produces a progressive loss of skeletal muscle strength. This process must be understood to design effective countermeasures. The present investigation examined hindlimb muscles from flight rats killed as close to landing as possible. Spaceflight and tail suspension-hindlimb unloading (unloaded) produced significant decreases in fiber cross-sectional areas of the adductor longus (AL), a slow-twitch antigravity muscle. However, the mean wet weight of the flight AL muscles was near normal, whereas that of the suspension unloaded AL muscles was significantly reduced. Interstitial edema within the flight AL, but not in the unloaded AL, appeared to account for this apparent disagreement.In both conditions, the slow-twitch oxidative fibers atrophied more than the fast-twitch oxidative-glycolytic fibers. Microcirculation was also compromised by spaceflight, such that there was increased formation of thrombi in the postcapillary venules and capillaries.

  19. Characterization of cell suspensions from solid tumors

    International Nuclear Information System (INIS)

    Pallavicini, M.

    1985-01-01

    The desirable features of cells in suspension will necessarily be dependent upon the use for which the cells were prepared. Adequate cell yield or recovery is defined by the measurement to be performed. Retention of cellular morphology is important for microscopic identification of cell types in a heterogenous cell suspension, and may be used to determine whether the cells in suspension are representative of those in the tumor in situ. Different dispersal protocols may yield cells with different degrees of clonogenicity, as well as altered biochemical features, such as loss of cellular proteins, surface antigens, nucleotide pools, etc. The quality of the cell suspension can be judged by the degree of cell clumping and level of cellular debris, both of which impact on flow cytometric measurements and studies in which the number of cells be known accurately. Finally, if the data measured on the cells in suspension are to be extrapolated to phenomena occurring in the tumor in situ, it is desirable that the cells in suspension are representative of those in the solid tumor in vivo. This report compares characteristics of tumor cell suspensions obtained by different types of selected disaggregation methods. 33 refs., 2 figs., 4 tabs

  20. Computation of magnetic suspension of maglev systems using dynamic circuit theory

    Science.gov (United States)

    He, J. L.; Rote, D. M.; Coffey, H. T.

    1992-01-01

    Dynamic circuit theory is applied to several magnetic suspensions associated with maglev systems. These suspension systems are the loop-shaped coil guideway, the figure-eight-shaped null-flux coil guideway, and the continuous sheet guideway. Mathematical models, which can be used for the development of computer codes, are provided for each of these suspension systems. The differences and similarities of the models in using dynamic circuit theory are discussed in the paper. The paper emphasizes the transient and dynamic analysis and computer simulation of maglev systems. In general, the method discussed here can be applied to many electrodynamic suspension system design concepts. It is also suited for the computation of the performance of maglev propulsion systems. Numerical examples are presented in the paper.

  1. Mixing and solid suspension of up-down agitators in a slab tank

    International Nuclear Information System (INIS)

    Ramsey, C.J.

    1989-01-01

    Seven different up-down agitators were studied for their ability to produce mixing and solid suspension in a slab tank. Mixing times were measured as the time needed to disperse injected dye. The solid suspension studies determined the minimum stroke frequency of the agitators needed for complete off-bottom suspension. The effects of stroke frequency, n; amplitude, a; blade width, w; blade clearance, c; and liquid depth, h, and weight percent solids, X, were studied. The most effective geometry, in terms of mixing, solid suspension and design simplicity, was a single flat blade with minimum off-bottom clearance and a blade width/tank thickness ratio, w/T, of 0.74 at the maximum stroke amplitude studied. 15 refs., 7 figs

  2. Vehicle lateral dynamics stabilization using active suspension

    Directory of Open Access Journals (Sweden)

    Drobný V.

    2008-12-01

    Full Text Available The paper deals with the investigation of active nonlinear suspension control in order to stabilize the lateral vehicle motion in similar way as systems like ESP do. The lateral stabilization of vehicle based on braking forces can be alternatively provided by the different setting of suspension forces. The basis of this control is the nonlinear property of the tyres. The vehicle has at least four wheels and it gives one or more redundant vertical forces that can be used for the different distribution of vertical suspension forces in such a way that resulting lateral and/or longitudinal forces create the required correction moment for lateral dynamic vehicle stabilization.

  3. Suspension for the low frequency facility

    CERN Document Server

    Cella, G; Di Virgilio, A; Gaddi, A; Viceré, A

    2000-01-01

    We introduce the working principles of the VIRGO Low Frequency Facility (LFF), whose main aim is the measurement of the thermal noise in the VIRGO suspension system. We evaluate the displacement thermal noise of a mirror, which is an intermediate element of a double pendulum suspension system. This double pendulum will be suspended to the last stage of a VIRGO Super-Attenuator (SA), the prototype VIRGO suspension system being tested at the Pisa section of INFN. In the proposed configuration, we evaluate the spectrum of the thermal noise for different choices of the parameters: based on this study, we comment on the future directions to be undertaken in the LFF experiment.

  4. Brugerinvolvering i design af læreprocesser – refleksioner over et større forsknings- og udviklingsprojekt

    DEFF Research Database (Denmark)

    Helms, Niels Henrik; Heilesen, Simon

    2012-01-01

    quadruple helix model. Begrebet "didaktisk design" problematiseres ud fra betragtningen, at der i design-aktiviteter er behov for at medtænke og involvere forskellige tilgange samt forskellige kompetencer hos aktørerne. "Design thinking" inddrages for at pointere, at design er en eksplorativ, dialogisk og...

  5. Investigating high-concentration monoclonal antibody powder suspension in nonaqueous suspension vehicles for subcutaneous injection.

    Science.gov (United States)

    Bowen, Mayumi; Armstrong, Nick; Maa, Yuh-Fun

    2012-12-01

    Developing high-concentration monoclonal antibody (mAb) liquid formulations for subcutaneous (s.c.) administration is challenging because increased viscosity makes injection difficult. To overcome this obstacle, we investigated a nonaqueous powder suspension approach. Three IgG1 mAbs were spray dried and suspended at different concentrations in Miglyol® 840, benzyl benzoate, or ethyl lactate. Suspensions were characterized for viscosity, particle size, and syringeability; physical stability was visually inspected. Suspensions generally outperformed liquid solutions for injectability despite higher viscosity at the same mAb concentrations. Powder formulations and properties had little effect on viscosity or injectability. Ethyl lactate suspensions had lowest viscosity (Miglyol® 840 improved overall performance in high mAb concentration suspensions. This study demonstrated the viability of high mAb concentration (>300 mg/mL) in suspension formulations for s.c. administration. Copyright © 2012 Wiley Periodicals, Inc.

  6. Identification of a locus control region for quadruplicated green-sensitive opsin genes in zebrafish

    Science.gov (United States)

    Tsujimura, Taro; Chinen, Akito; Kawamura, Shoji

    2007-01-01

    Duplication of opsin genes has a crucial role in the evolution of visual system. Zebrafish have four green-sensitive (RH2) opsin genes (RH2–1, RH2–2, RH2–3, and RH2–4) arrayed in tandem. They are expressed in the short member of the double cones (SDC) but differ in expression areas in the retina and absorption spectra of their encoding photopigments. The shortest and the second shortest wavelength subtypes, RH2–1 and RH2–2, are expressed in the central-to-dorsal retina. The longer wavelength subtype, RH2–3, is expressed circumscribing the RH2–1/RH2–2 area, and the longest subtype, RH2–4, is expressed further circumscribing the RH2–3 area and mainly occupying the ventral retina. The present report shows that a 0.5-kb region located 15 kb upstream of the RH2 gene array is an essential regulator for their expression. When the 0.5-kb region was deleted from a P1-artificial chromosome (PAC) clone encompassing the four RH2 genes and when one of these genes was replaced with a reporter GFP gene, the GFP expression in SDCs was abolished in the zebrafish to which a series of the modified PAC clones were introduced. Transgenic studies also showed that the 0.5-kb region conferred the SDC-specific expression for promoters of a non-SDC (UV opsin) and a nonretinal (keratin 8) gene. Changing the location of the 0.5-kb region in the PAC clone conferred the highest expression for its proximal gene. The 0.5-kb region was thus designated as RH2-LCR analogous to the locus control region of the L-M opsin genes of primates. PMID:17646658

  7. Clarithromycin vs. Gemifloxacin in Quadruple Therapy Regimens for Empiric Primary Treatment of Helicobacter pylori Infection: A Randomized Clinical Trial

    Science.gov (United States)

    Masoodi, Mohsen; Talebi-Taher, Mahshid; Tabatabaie, Khadijeh; Khaleghi, Siamak; Faghihi, Amir-Hossein; Agah, Shahram; Asadi, Reyhaneh

    2015-01-01

    BACKGROUND Eradication of Helicobacter pylori infection plays a crucial role in the treatment of peptic ulcer. Clarithromycin resistance is a major cause of treatment failure. This randomized clinical trial aimed at evaluating the efficacy of a clarithromycin versus gemifloxacin containing quadruple therapy regimen in eradication of H.pylori infection. METHODS In this randomized double blind clinical trial (RCT 2012102011054N2), a total of 120 patients were randomized to two groups of 60 patients each. Patients with proven H.pylori infection were consecutively assigned into two groups to receive OBAG or OBAC in gastroenterology clinic in Rasoul-e- Akram General Hospital in Tehran, Iran. The patients in the OBAG group received omeprazole (20 mg) twice daily, bismuth subcitrate (240 mg) twice daily, amoxicillin (1 gr) twice daily, and gemifloxacin (320 mg) once daily, and those in the OBAC group received omeprazole (20 mg) twice daily, 240 mg of bismuth subcitrate twice daily, amoxicillin (1 gr) twice daily, and clarithromycin (500 mg) twice daily for 10 days. RESULTS Five patients from each group were excluded from the study because of poor compliance, so 110 patients completed the study. The intention-to-treat eradication rate was 61.6% and 66.6% for the OBAC and OBAG groups, respectively. According to the per protocol analysis, the success rates of eradication of H.pylori infection were 67.2% and 72.7% for OBAC and OBAG groups, respectively (p=0.568). CONCLUSION The results of this study suggest that gemifloxacin containing regimen is at least as effective as clarithromycin regimen; hence, this new treatment could be considered as an alternative for the patients who cannot tolerate clarithromycin. PMID:26106468

  8. A Course in Fluid Mechanics of Suspensions.

    Science.gov (United States)

    Davis, Robert H.

    1989-01-01

    Discusses a course focusing on fluid mechanics and physical chemistry of suspensions. Describes the main themes of the lectures and includes a list of course outlines. Possible textbooks and many journal articles are listed. (YP)

  9. Heat and mass transfer in particulate suspensions

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2013-01-01

    Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...

  10. Crust formation in drying colloidal suspensions

    KAUST Repository

    Style, R. W.; Peppin, S. S. L.

    2010-01-01

    and the equations of poroelasticity, while the equations of colloid physics govern processes in the suspension. We derive new equations describing this process, including unique boundary conditions coupling the two regions, yielding a moving-boundary model

  11. Magnetic suspension characteristics of electromagnetic actuators

    Science.gov (United States)

    Rao, Dantam K.; Dill, J.; Zorzi, E.

    1993-01-01

    Electromagnetic actuators that use a current-carrying coil (which is placed in a magnetic field) to generate mechanical force are conceptually attractive components for active control of rotating shafts. In one concept that is being tested in the laboratory, the control forces from such actuators are applied on the flexibly supported bearing housings of the rotor. Development of this concept into a practical reality requires a clear and thorough understanding of the role of electromechanical parameters of these actuators in delivering the right amount of control force at the right phase into the rotor. The electromechanical parameters of the actuators investigated are the mass of the armature, stiffness of its suspension, electrical resistance, and inductance of the coils. Improper selection of these parameters can result in degradation in their performance, leading to mistuning between the actuator and the rotor. Through a simple analysis, it is shown that use of such mistuned actuators could result in sharp fluctuations in the phase of the control force delivered into the rotor around the critical speeds. These sharp fluctuations in phase, called 'Phase Glitches', are undesirable. Hence, future designs of controllers should take into account the undesirable mistuning effects between the actuator and the rotor caused by the phase glitches.

  12. Suspension scheme for fuel pin

    International Nuclear Information System (INIS)

    Butts, C.E.; Gray, H.C.

    1975-01-01

    A description is presented of a nuclear fuel pin suspension arrangement comprising, in combination, a rod; a first beam member connected to said rod at one end; a plurality of parallel-spaced slidable fuel support plates attached to said first beam member, the longitudinal axis of first beam member being perpendicular to the longitudinal axis of each of said fuel support plates, a first coupling means disposed along the length of the first beam member for permitting slidable fuel support plates parallel movement with respect to the longitudinal axis of said first beam member, a second coupling means located at one end of each of slidable fuel plates for slidably engaging first coupling means of first beam member, a second beam member connected to the other end of each of parallel-spaced slidable fuel support plates and providing an extension, second beam member being provided with a third coupling means disposed along the length of second beam member at one end thereof; and a plurality of fuel pins provided with a fourth coupling means located at one end of each fuel pin for slidably engaging third coupling means of second beam member to permit each fuel pin parallel movement with respect to the longitudinal axis of second beam member. (U.S.)

  13. Characterization of Complex Colloidal Suspensions

    Science.gov (United States)

    Seaman, J. C.; Guerin, M.; Jackson, B. P.; Ranville, J. M.

    2003-04-01

    Surface chemical reactions play a major role in controlling contaminant fate and transport in the subsurface environment. Recent field and laboratory evidence suggests that mobile soil and groundwater colloids may facilitate the migration of sparingly soluble groundwater contaminants. Colloidal suspensions collected in the field or generated in laboratory column experiments tend to be fairly dilute in nature and comprised of relatively small particulates (reserved for studying ideal systems to the characterization of mobile colloids. However, many of these analytical techniques, including total/selective dissolution methods, dynamic light scattering, micro-electrophoresis, streaming potential, and even scanning electron microscopy (SEM), can be biased in of larger size fractions, and therefore, extremely sensitive to sampling, storage, and fractionation artifacts. In addition, surface modifiers such as sorbed oxides or organics can alter particulate appearance, composition, and behavior when compared to synthetic analogues or mineral standards. The current presentation will discuss the limitations and inherent biases associated with a number of analytical characterization techniques that are commonly applied to the study of mobile soil and groundwater colloids, including field flow fractionation (FFF) and acoustic based methods that have only recently become available.

  14. Compressed Air Production Using Vehicle Suspension

    OpenAIRE

    Ninad Arun Malpure; Sanket Nandlal Bhansali

    2015-01-01

    Abstract Generally compressed air is produced using different types of air compressors which consumes lot of electric energy and is noisy. In this paper an innovative idea is put forth for production of compressed air using movement of vehicle suspension which normal is wasted. The conversion of the force energy into the compressed air is carried out by the mechanism which consists of the vehicle suspension system hydraulic cylinder Non-return valve air compressor and air receiver. We are co...

  15. The Active Fractional Order Control for Maglev Suspension System

    Directory of Open Access Journals (Sweden)

    Peichang Yu

    2015-01-01

    Full Text Available Maglev suspension system is the core part of maglev train. In the practical application, the load uncertainties, inherent nonlinearity, and misalignment between sensors and actuators are the main issues that should be solved carefully. In order to design a suitable controller, the attention is paid to the fractional order controller. Firstly, the mathematical model of a single electromagnetic suspension unit is derived. Then, considering the limitation of the traditional PD controller adaptation, the fractional order controller is developed to obtain more excellent suspension specifications and robust performance. In reality, the nonlinearity affects the structure and the precision of the model after linearization, which will degrade the dynamic performance. So, a fractional order controller is addressed to eliminate the disturbance by adjusting the parameters which are added by the fractional order controller. Furthermore, the controller based on LQR is employed to compare with the fractional order controller. Finally, the performance of them is discussed by simulation. The results illustrated the validity of the fractional order controller.

  16. The impact of the provisions of the suspensions on the track of conveyor with suspended belt and distributed drive at jamming rollers

    OpenAIRE

    Tolkachev E.N.

    2018-01-01

    The article is devoted to the topical issue, which is related to simulation of the failures of drives suspensions of the conveyor with suspended belt and distributed drive. Using the developed mathematical model of the failures drives suspensions due to jamming rollers to the reference design of conveyor with suspended belt and distributed drive is performed modelling of dynamic characteristics. Investigation of the influence of the location of the failed drives suspensions on the track on th...

  17. Triple and Quadruple Junctions Thermophotovoltaic Devices Lattice Matched to InP

    Science.gov (United States)

    Bhusal, L.; Freundlich, A.

    2007-01-01

    complications due to the creation of defects and short life of the device or to introduce high content of indium, which again is found problematic due to the difficulties in diluting nitrogen in the presence of high indium [9]. An availability of material of proper band gap and lattice matching on InP are important issues for the development of TPV devices to perform better. To address those issues, recently we have shown that by adjusting the thickness of individual sublayers and the nitrogen composition, strain balanced GaAs(1-x)N(x)/InAs(1-y)N(y) superlattice can be designed to be both lattice matched to InP and have an effective bandgap in the desirable 0.4- 0.7eV range [10,11]. Theoretically the already reduced band gap of GaAs(1-x)N(x), due to the nitrogen effects, can be further reduced by subjecting it to a biaxial tensile strain, for example, by fabricating pseudomorphically strained layers on commonly available InP substrates. While such an approach in principle could allow access to smaller band gap (longer wavelength), only a few atomic monolayers of the material can be grown due to the large lattice mismatch between GaAs(1-x)N(x) and InP (approx.3.8-4.8 % for x<0.05, 300K). This limitation can be avoided using the principle of strain balancing [12], by introducing the alternating layers of InAs(1-y)N(y) with opposite strain (approx.2.4-3.1% for x<0.05, 300K) in combination with GaAs(1-x)N(x). Therefore, even an infinite pseudomorphically strained superlattice thickness can be realized from a sequence of GaAs(1-x)N(x) and InAs(1-y)N(y) layers if the thickness of each layer is kept below the threshold for its lattice relaxation

  18. Flow-induced structure in colloidal suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Vermant, J [Department of Chemical Engineering, K U Leuven, W de Croylaan 46, B-3001 Leuven (Belgium); Solomon, M J [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136 (United States)

    2005-02-02

    We review the sequences of structural states that can be induced in colloidal suspensions by the application of flow. Structure formation during flow is strongly affected by the delicate balance among interparticle forces, Brownian motion and hydrodynamic interactions. The resulting non-equilibrium microstructure is in turn a principal determinant of the suspension rheology. Colloidal suspensions with near hard-sphere interactions develop an anisotropic, amorphous structure at low dimensionless shear rates. At high rates, clustering due to strong hydrodynamic forces leads to shear thickening rheology. Application of steady-shear flow to suspensions with repulsive interactions induces a rich sequence of transitions to one-, two-and three-dimensional order. Oscillatory-shear flow generates metastable ordering in suspensions with equilibrium liquid structure. On the other hand, short-range attractive interactions can lead to a fluid-to-gel transition under quiescent suspensions. Application of flow leads to orientation, breakup, densification and spatial reorganization of aggregates. Using a non-Newtonian suspending medium leads to additional possibilities for organization. We examine the extent to which theory and simulation have yielded mechanistic understanding of the microstructural transitions that have been observed. (topical review)

  19. Analysis of Structural and Material Aspects of Selected Elements of a Hydropneumatic Suspension System in a Passenger Car

    Directory of Open Access Journals (Sweden)

    Konieczny Ł.

    2016-03-01

    Full Text Available The article addresses results of analyses of design solutions and materials commonly used in gas springs for hydropneumatic suspension systems. The authors have discussed main advantages resulting from application of such a design solution in passenger car suspension systems. Fundamental correlations defining the parameters characterising a gas spring with constant gas mass have been referred to. Also materials used in the manufacture of selected gas spring elements have been described

  20. Relative bioavailability, metabolism and tolerability of rectally administered oxcarbazepine suspension.

    Science.gov (United States)

    Clemens, Pamela L; Cloyd, James C; Kriel, Robert L; Remmel, Rory P

    2007-01-01

    Maintenance of effective drug concentrations is essential for adequate treatment of epilepsy. Some antiepileptic drugs can be successfully administered rectally when the oral route of administration is temporarily unavailable. Oxcarbazepine is a newer antiepileptic drug that is rapidly converted to a monohydroxy derivative, the active compound. This study aimed to characterise the bioavailability, metabolism and tolerability of rectally administered oxcarbazepine suspension using a randomised, crossover design in ten healthy volunteers. Two subjects received 300 mg doses of oxcarbazepine suspension via rectal and oral routes and eight received 450 mg doses. A washout period of at least 2 weeks elapsed between doses. The rectal dose was diluted 1:1 with water. Blood samples and urine were collected for 72 hours post-dose. Adverse effects were assessed at each blood collection time-point using a self-administered questionnaire. Plasma was assayed for oxcarbazepine and monohydroxy derivative; urine was assayed for monohydroxy derivative and monohydroxy derivative-glucuronide. Maximum plasma concentration (C(max)) and time to reach C(max) (t(max)) were obtained directly from the plasma concentration-time curves. The areas under the concentration-time curve (AUCs) were determined via non-compartmental analysis. Relative bioavailability was calculated and the C(max) and AUCs were compared using Wilcoxon signed-rank tests. Mean relative bioavailability calculated from plasma AUCs was 8.3% (SD 5.5%) for the monohydroxy derivative and 10.8% (SD 7.3%) for oxcarbazepine. Oxcarbazepine and monohydroxy derivative C(max) and AUC values were significantly lower following rectal administration (p effects were headache and fatigue with no discernible differences between routes. Monohydroxy derivative bioavailability following rectal administration of oxcarbazepine suspension is significantly lower than following oral administration, most likely because of poor oxcarbazepine water

  1. Optimization of damping in the passive automotive suspension system with using two quarter-car models

    Science.gov (United States)

    Lozia, Z.; Zdanowicz, P.

    2016-09-01

    The paper presents the optimization of damping in the passive suspension system of a motor vehicle moving rectilinearly with a constant speed on a road with rough surface of random irregularities, described according to the ISO classification. Two quarter-car 2DoF models, linear and non-linear, were used; in the latter, nonlinearities of spring characteristics of the suspension system and pneumatic tyres, sliding friction in the suspension system, and wheel lift-off were taken into account. The smoothing properties of vehicle tyres were represented in both models. The calculations were carried out for three roads of different quality, with simulating four vehicle speeds. Statistical measures of vertical vehicle body vibrations and of changes in the vertical tyre/road contact force were used as the criteria of system optimization and model comparison. The design suspension displacement limit was also taken into account. The optimum suspension damping coefficient was determined and the impact of undesirable sliding friction in the suspension system on the calculation results was estimated. The results obtained make it possible to evaluate the impact of the structure and complexity of the model used on the results of the optimization.

  2. 21 CFR 1301.36 - Suspension or revocation of registration; suspension of registration pending final order...

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Suspension or revocation of registration; suspension of registration pending final order; extension of registration pending final order. 1301.36... registration pending final order; extension of registration pending final order. (a) For any registration...

  3. Suspension, a Wake-Up Call: Rural Educators' Attitudes toward Suspension.

    Science.gov (United States)

    Henderson, Joan; Friedland, Billie

    Data from the West Virginia Department of Education reveals that from September 1991 to January 1992, school districts reported 18,915 out-of-school suspensions involving 12,997 students. In 1995, the West Virginia State Legislature enacted the Safe Schools Act, which specifically mandates suspension for no less than 12 consecutive months for…

  4. Two-week, high-dose proton pump inhibitor, moxifloxacin triple Helicobacter pylori therapy after failure of standard triple or non-bismuth quadruple treatments.

    Science.gov (United States)

    Gisbert, Javier P; Romano, Marco; Molina-Infante, Javier; Lucendo, Alfredo J; Medina, Enrique; Modolell, Inés; Rodríguez-Tellez, Manuel; Gomez, Blas; Barrio, Jesús; Perona, Monica; Ortuño, Juan; Ariño, Inés; Domínguez-Muñoz, Juan Enrique; Perez-Aisa, Ángeles; Bermejo, Fernando; Domínguez, Jose Luis; Almela, Pedro; Gomez-Camarero, Judith; Millastre, Judith; Martin-Noguerol, Elisa; Gravina, Antonietta G; Martorano, Marco; Miranda, Agnese; Federico, Alessandro; Fernandez-Bermejo, Miguel; Angueira, Teresa; Ferrer-Barcelo, Luis; Fernández, Nuria; Marín, Alicia C; McNicholl, Adrián G

    2015-02-01

    Aim was to evaluate the efficacy and tolerability of a moxifloxacin-containing second-line triple regimen in patients whose previous Helicobacter pylori eradication treatment failed. Prospective multicentre study including patients in whom a triple therapy or a non-bismuth-quadruple-therapy failed. Moxifloxacin (400mg qd), amoxicillin (1g bid), and esomeprazole (40 mg bid) were prescribed for 14 days. Eradication was confirmed by (13)C-urea-breath-test. Compliance was determined through questioning and recovery of empty medication envelopes. 250 patients were consecutively included (mean age 48 ± 15 years, 11% with ulcer). Previous (failed) therapy included: standard triple (n = 179), sequential (n = 27), and concomitant (n = 44); 97% of patients took all medications, 4 were lost to follow-up. Intention-to-treat and per-protocol eradication rates were 82.4% (95% CI, 77-87%) and 85.7% (95% CI, 81-90%). Cure rates were similar independently of diagnosis (ulcer, 77%; dyspepsia, 82%) and previous treatment (standard triple, 83%; sequential, 89%; concomitant, 77%). At multivariate analysis, only age was associated with eradication (OR = 0.957; 95% CI, 0.933-0.981). Adverse events were reported in 25.2% of patients: diarrhoea (9.6%), abdominal pain (9.6%), and nausea (9.2%). 14-day moxifloxacin-containing triple therapy is an effective and safe second-line strategy in patients whose previous standard triple therapy or non-bismuth quadruple (sequential or concomitant) therapy has failed, providing a simple alternative to bismuth quadruple regimen. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  5. Numerical study of suspensions of deformable particles.

    Science.gov (United States)

    Brandt, Luca; Rosti, Marco Edoardo

    2017-11-01

    We consider a model non-Newtonian fluid consisting of a suspension of deformable particles in a Newtonian solvent. Einstein showed in his pioneering work that the relative increase in effective viscosity is a linear function of the particle volume fraction for dilute suspensions of rigid particles. Inertia has been shown to introduce deviations from the behaviour predicted by the different empirical fits, an effect that can be related to an increase of the effective volume fraction. We here focus on the effect of elasticity, i.e. visco-elastic deformable particles. To tackle the problem at hand, we perform three-dimensional Direct Numerical Simulation of a plane Couette flow with a suspension of neutrally buoyant deformable viscous hyper-elastic particles. We show that elasticity produces a shear-thinning effect in elastic suspensions (in comparison to rigid ones) and that it can be understood in terms of a reduction of the effective volume fraction of the suspension. The deformation modifies the particle motion reducing the level of mutual interaction. Normal stress differences will also be considered. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).

  6. Minimally invasive brow suspension for facial paralysis.

    Science.gov (United States)

    Costantino, Peter D; Hiltzik, David H; Moche, Jason; Preminger, Aviva

    2003-01-01

    To report a new technique for unilateral brow suspension for facial paralysis that is minimally invasive, limits supraciliary scar formation, does not require specialized endoscopic equipment or expertise, and has proved to be equal to direct brow suspension in durability and symmetry. Retrospective survey of a case series of 23 patients between January 1997 and December 2000. Metropolitan tertiary care center. Patients with head and neck tumors and brow ptosis caused by facial nerve paralysis. The results of the procedure were determined using the following 3-tier rating system: outstanding (excellent elevation and symmetry); acceptable (good elevation and fair symmetry); and unacceptable (loss of elevation). The results were considered outstanding in 12 patients, acceptable in 9 patients, and unacceptable in only 1 patient. One patient developed a hematoma, and 1 patient required a secondary adjustment. The technique has proved to be superior to standard brow suspension procedures with regard to scar formation and equal with respect to facial symmetry and suspension. These results have caused us to abandon direct brow suspension and to use this minimally invasive method in all cases of brow ptosis due to facial paralysis.

  7. Pitched Blade Turbine Efficiency at Particle Suspension

    Directory of Open Access Journals (Sweden)

    D. Ceres

    2010-01-01

    Full Text Available Mixing suspensions is a very important hydraulic operation. The pitched six-blade turbine is a widely-used axial-flow impeller. This paper deals with effect relative impeller size and particle content on theefficiency of a pitched six-blade turbine at particle suspension. Two pitched six-blade turbines were used in model measurements of just suspension impeller speed. The ratios of the vessel to agitator diameter D/d were 3 and 4.5. The measurements were carried out in a dish-bottomed vessel 300 mm in diameter. The just suspension impeller speeds were measured using an electrochemical method, and were checked visually. A 2.5 % NaCl water solution was used as the liquid phase, and glass particles with four equivalent diameters between 0.18 and 0.89 mmand volumetric concentration from 2.5 % to 40% were usedasthesolid phase. The criterion values πs=Po√Fr'3(d/D7 were calculated from the particle suspension and power consumption measurements. The dependencies of πs on particle content cv show that larger agitators are more efficient for higher particle content.

  8. Nonlinear Robust Observer-Based Fault Detection for Networked Suspension Control System of Maglev Train

    Directory of Open Access Journals (Sweden)

    Yun Li

    2013-01-01

    Full Text Available A fault detection approach based on nonlinear robust observer is designed for the networked suspension control system of Maglev train with random induced time delay. First, considering random bounded time-delay and external disturbance, the nonlinear model of the networked suspension control system is established. Then, a nonlinear robust observer is designed using the input of the suspension gap. And the estimate error is proved to be bounded with arbitrary precision by adopting an appropriate parameter. When sensor faults happen, the residual between the real states and the observer outputs indicates which kind of sensor failures occurs. Finally, simulation results using the actual parameters of CMS-04 maglev train indicate that the proposed method is effective for maglev train.

  9. A new pneumatic suspension system with independent stiffness and ride height tuning capabilities

    Science.gov (United States)

    Yin, Zhihong; Khajepour, Amir; Cao, Dongpu; Ebrahimi, Babak; Guo, Konghui

    2012-12-01

    This paper introduces a new pneumatic spring for vehicle suspension systems, allowing independent tuning of stiffness and ride height according to different vehicle operating conditions and driver preferences. The proposed pneumatic spring comprises a double-acting pneumatic cylinder, two accumulators and a tuning subsystem. This paper presents a detailed description of the pneumatic spring and its working principle. The mathematical model is established based on principles of thermo and fluid dynamics. An experimental setup has been designed and fabricated for testing and evaluating the proposed pneumatic spring. The analytical and experimental results confirm the capability of the new pneumatic spring system for independent tuning of stiffness and ride height. The mathematical model is verified and the capabilities of the pneumatic spring are further proved. It is concluded that this new pneumatic spring provides a more flexible suspension design alternative for meeting various conflicting suspension requirements for ride comfort and performance.

  10. Nested folded-beam suspensions with low longitudinal stiffness for comb-drive actuators

    International Nuclear Information System (INIS)

    Hou, Max T; Huang, Ming-Xian; Chang, Chao-Min

    2014-01-01

    Nested folded-beam suspensions with a low longitudinal spring constant and a high lateral spring constant have been used in comb-drive actuators. In the new design, every two flexible beams and two stiff members form a parallelogram flexure, which is considered as an ‘element’ of the nested folded-beam suspension. A set of these flexures of increasing size were placed one outside another to compose a nested structure. In this way, a serial mechanical connection between adjacent parallelogram flexures was formed; thus, a longer output stroke was obtained by combining the stroke displacements of all flexures in an additive fashion. The designed suspensions were theoretically analyzed and numerically simulated. Furthermore, comb-drive actuators with conventional and new suspensions were fabricated and tested to verify the predicted function. In the testing cases, the longitudinal spring constants of suspensions with two (conventional), three and four parallelogram flexures on each side were measured as 2.77, 1.75 and 1.36 N m −1 . The ratio among these three values was approximately 6:4:3, which is consistent with the theoretical predictions and simulation results. Microfabricated folded beams in series were achieved. (paper)

  11. Vibration control of an MR vehicle suspension system considering both hysteretic behavior and parameter variation

    International Nuclear Information System (INIS)

    Choi, Seung-Bok; Seong, Min-Sang; Ha, Sung-Hoon

    2009-01-01

    This paper presents vibration control responses of a controllable magnetorheological (MR) suspension system considering the two most important characteristics of the system; the field-dependent hysteretic behavior of the MR damper and the parameter variation of the suspension. In order to achieve this goal, a cylindrical MR damper which is applicable to a middle-sized passenger car is designed and manufactured. After verifying the damping force controllability, the field-dependent hysteretic behavior of the MR damper is identified using the Preisach hysteresis model. The full-vehicle suspension model is then derived by considering vertical, pitch and roll motions. An H ∞ controller is designed by treating the sprung mass of the vehicle as a parameter variation and integrating it with the hysteretic compensator which produces additional control input. In order to demonstrate the effectiveness and robustness of the proposed control system, the hardware-in-the-loop simulation (HILS) methodology is adopted by integrating the suspension model with the proposed MR damper. Vibration control responses of the vehicle suspension system such as vertical acceleration are evaluated under both bump and random road conditions

  12. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXI, I--MAINTAINING THE AIR SYSTEM--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING REAR END SUSPENSION.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND REAR AXLE SUSPENSION USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) AIR INDUCTION AND EXHAUST SYSTEM, (2) VALVE MECHANISM, (3) TROUBLESHOOTING THE AIR SYSTEM, (4) PURPOSE OF VEHICLE SUSPENSION, (5) TANDEM…

  13. Modeling Suspension and Continuation of a Process

    Directory of Open Access Journals (Sweden)

    Oleg Svatos

    2012-04-01

    Full Text Available This work focuses on difficulties an analyst encounters when modeling suspension and continuation of a process in contemporary process modeling languages. As a basis there is introduced general lifecycle of an activity which is then compared to activity lifecycles supported by individual process modeling languages. The comparison shows that the contemporary process modeling languages cover the defined general lifecycle of an activity only partially. There are picked two popular process modeling languages and there is modeled real example, which reviews how the modeling languages can get along with their lack of native support of suspension and continuation of an activity. Upon the unsatisfying results of the contemporary process modeling languages in the modeled example, there is presented a new process modeling language which, as demonstrated, is capable of capturing suspension and continuation of an activity in much simpler and precise way.

  14. Phagocytosis in phosphate chromium (III) suspensions

    International Nuclear Information System (INIS)

    Cruz-Arencibia, Jorge; Fano Machín, Yoiz; Cruz-Morales, Ahmed; Tamayo Fuente, Radamés; Morín-Zorrilla, José

    2015-01-01

    Phagocytosis in vivo and in vitro of a suspension of chromic phosphate (III) labeled with 51 Cr and 32 P is studied. The radioactive particles dispersed in a media of 2 % gelatin in acetate buffer pH 4-4.5 have a predominant size of 0.8 μm and 5 μm. According with biodistribution experiments in rats after 30 minutes near the 80 % of radioactivity is registered in the liver, probably associated with phagocytosis of the particles by liver Kupffer cells. Is also showed that the suspension particles are phagocytized in vitro by mouse peritoneal macrophages. This facts indicate that the studied suspension have appropriate characteristics to be used in radiosynoviorthesis according to the principal action mechanism described for this procedure, particles phagocytosis by cells present in the inflamed synovium. (author)

  15. Crust formation in drying colloidal suspensions

    KAUST Repository

    Style, R. W.

    2010-06-30

    During the drying of colloidal suspensions, the desiccation process causes the suspension near the air interface to consolidate into a connected porous matrix or crust. Fluid transport in the porous medium is governed by Darcy\\'s law and the equations of poroelasticity, while the equations of colloid physics govern processes in the suspension. We derive new equations describing this process, including unique boundary conditions coupling the two regions, yielding a moving-boundary model of the concentration and stress profiles during drying. A solution is found for the steady-state growth of a nedimensional crust during constant evaporation rate from the surface. The solution is used to demonstrate the importance of the system boundary conditions on stress profiles and diffusivity in a drying crust. © 2011 The Royal Society.

  16. Laryngeal Force Sensor: Quantifying Extralaryngeal Complications after Suspension Microlaryngoscopy.

    Science.gov (United States)

    Feng, Allen L; Song, Phillip C

    2018-04-01

    Objectives To develop a novel sensor capable of dynamically analyzing the force exerted during suspension microlaryngoscopy and to examine the relationship between force and postoperative tongue complications. Study Design Prospective observational study. Setting Academic tertiary care center. Methods The laryngeal force sensor is a designed for use during microphonosurgery. Prospectively enrolled patients completed pre- and postoperative surveys to assess the development of tongue-related symptoms (dysgeusia, pain, paresthesia, and paresis) or dysphagia (10-item Eating Assessment Tool [EAT-10]). To prevent operator bias, surgeons were blinded to the force recordings during surgery. Results Fifty-six patients completed the study. Of these, 20 (36%) developed postoperative tongue symptoms, and 12 (21%) had abnormal EAT-10 scores. The mean maximum force across all procedures was 164.7 N (95% CI, 141.0-188.4; range, 48.5-402.6), while the mean suspension time was 34.3 minutes (95% CI, 27.4-41.2; range, 7.1-108.1). Multiple logistic regression showed maximum force (odds ratio, 1.15; 95% CI, 1.02-1.29; P = .019) and female sex (30.1%; 95% CI, 22.7%-37.5%; P force (odds ratio, 1.03; 95% CI, 1.00-1.06; P = .045). Conclusions The laryngeal force sensor is capable of providing dynamic force measurements throughout suspension microlaryngoscopy. An increase in maximum force during surgery may be a significant predictor for the development of tongue-related symptoms and an abnormal EAT-10 score. Female patients may also be at greater risk for developing postoperative tongue symptoms.

  17. Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2015-07-01

    Full Text Available Suspension plasma spraying has become an emerging technology for the production of thermal barrier coatings for the gas turbine industry. Presently, though commercial systems for coating production are available, coatings remain in the development stage. Suitable suspension parameters for coating production remain an outstanding question and the influence of suspension properties on the final coatings is not well known. For this study, a number of suspensions were produced with varied solid loadings, powder size distributions and solvents. Suspensions were sprayed onto superalloy substrates coated with high velocity air fuel (HVAF -sprayed bond coats. Plasma spray parameters were selected to generate columnar structures based on previous experiments and were maintained at constant to discover the influence of the suspension behavior on coating microstructures. Testing of the produced thermal barrier coating (TBC systems has included thermal cyclic fatigue testing and thermal conductivity analysis. Pore size distribution has been characterized by mercury infiltration porosimetry. Results show a strong influence of suspension viscosity and surface tension on the microstructure of the produced coatings.

  18. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    Energy Technology Data Exchange (ETDEWEB)

    H.Y. Sohn

    2008-03-31

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  19. Unifying Suspension and Granular flows near Jamming

    Directory of Open Access Journals (Sweden)

    DeGiuli Eric

    2017-01-01

    Full Text Available Rheological properties of dense flows of hard particles are singular as one approaches the jamming threshold where flow ceases, both for granular flows dominated by inertia, and for over-damped suspensions. Concomitantly, the lengthscale characterizing velocity correlations appears to diverge at jamming. Here we review a theoretical framework that gives a scaling description of stationary flows of frictionless particles. Our analysis applies both to suspensions and inertial flows of hard particles. We report numerical results in support of the theory, and show the phase diagram that results when friction is added, delineating the regime of validity of the frictionless theory.

  20. Gravity Drainage Kinetics of Papermaking Fibrous Suspensions

    Directory of Open Access Journals (Sweden)

    Przybysz Piotr

    2014-12-01

    Full Text Available The study analyses application possibilities of filtration and thickening models in evaluation of papermaking suspension drainage rate. The authors proposed their own method to estimate the drainage rate on the basis of an existing Ergun capillary model of liquid flow through a granular material. The proposed model was less sensitive to porosity changes than the Ergun model. An empirical verification proved robustness of the proposed approach. Taking into account discrepancies in the published data concerning how the drainage velocity of papermaking suspension is defined, this study examines which of the commonly applied models matches experimental results the best.

  1. Modeling and Analysis of Static and Dynamic Characteristics of Nonlinear Seat Suspension for Off-Road Vehicles

    OpenAIRE

    Yan, Zhenhua; Zhu, Bing; Li, Xuefei; Wang, Guoqiang

    2015-01-01

    Low-frequency vibrations (0.5–5 Hz) that harm drivers occur in off-road vehicles. Thus, researchers have focused on finding methods to effectively isolate or control low-frequency vibrations. A novel nonlinear seat suspension structure for off-road vehicles is designed, whose static characteristics and seat-human system dynamic response are modeled and analyzed, and experiments are conducted to verify the theoretical solutions. Results show that the stiffness of this nonlinear seat suspension...

  2. Effect of different polymers on in vitro and ex vivo permeability of Ofloxacin from its mucoadhesive suspensions

    OpenAIRE

    Chakraborti, Chandra Kanti; Sahoo, Subhashree; Behera, Pradipta Kumar

    2014-01-01

    Considering the importance of drug permeation from formulations, in vitro and ex vivo drug permeation characteristics of three oral mucoadhesive suspensions of Ofloxacin were designed and compared. Three suspensions of Ofloxacin were prepared by taking two grades of Carbopol polymer such as Carbopol 934 (C934) and Carbopol 940 (C940); and Hydroxypropyl methylcellulose. The permeability study was performed by using a Franz diffusion cell through both synthetic cellulose acetate membrane and ex...

  3. 3+ and [Sb13Se16Br2] 5+ - Double and quadruple spiro cubanes from ionic liquids

    KAUST Repository

    Ahmed, Ejaz

    2014-01-08

    The reaction of antimony and selenium in the bromine-rich Lewis acidic ionic liquid [BMIm]Br·4.7AlBr3 (BMIm: 1-butyl-3- methylimidazolium) in the presence of a small amount of NbCl5 at 160 °C yielded dark-red crystals of [Sb7Se8Br 2][AlX4]3. For X = Cl0.15(1)Br 0.85(1), the compound is isostructural to [Sb7S 8Br2][AlCl4]3 [P212 121, a = 12.5132(5) Å, b = 17.7394(6) Å, c = 18.3013(6) Å]. For a higher chlorine content, X = Cl 0.58(1)Br0.42(1), a slightly disordered variant with a bisected unit cell is found [P21212, a = 12.3757(3) Å, b = 17.4116(5) Å, c = 9.0420(2) Å]. The [Sb 7Se8Br2]3+ heteropolycation (C 2 symmetry) is a spiro double-cubane with an antimony atom on the shared corner. From this distorted octahedrally coordinated central atom, tricoordinate selenium and antimony atoms alternate in the bonding sequence. The terminal antimony atoms each bind to a bromine atom. Quantum chemical calculations confirm polar covalent Sb-Se bonding within the cubes and indicate three-center, four-electron bonds for the six-coordinate spiro atoms. The calculated charge distribution reflects the electron-donor role of the antimony atoms. The use of a chlorine-rich ionic liquid resulted in the formation of triclinic [Sb13Se16Br2][AlX4] 5 with X = Cl0.80(1)Br0.20(1) [P$\\\\bar {1}$, a = 9.0842(5) Å, b = 19.607(1) Å, c = 21.511(1) Å, α = 64.116(6), β = 79.768(7), γ = 88.499(7)]. The cationic cluster [Sb13Se16Br2]5+ is a bromine-terminated spiro quadruple-cubane. This 31 atom concatenation of four cubes is assumed to be the largest known discrete main group polycation. A similar reaction in a chloride-free system yielded [Sb7Se 8Br2][Sb13Se16Br2] [AlBr4]8. In its monoclinic structure [P2/c, a = 27.214(5) Å, b = 9.383(2) Å, c = 22.917(4) Å, β = 101.68(1)], the two types of polycations alternate in layers along the a axis. In the series [Sb4+3nSe4+4nBr2](2+n)+, these cations are the members with n = 1 and 3. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGa

  4. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanping [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the 17O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  5. Decoupling Suspension Controller Based on Magnetic Flux Feedback

    Directory of Open Access Journals (Sweden)

    Wenqing Zhang

    2013-01-01

    Full Text Available The suspension module control system model has been established based on MIMO (multiple input and multiple output state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module’s antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  6. On the Benefits of Semi-Active Suspensions with Inerters

    Directory of Open Access Journals (Sweden)

    Xin-Jie Zhang

    2012-01-01

    Full Text Available Inerters have become a hot topic in recent years especially in vehicle, train, building suspension systems, etc. Eight different layouts of suspensions were analyzed with a quarter-car model in this paper. Dimensionless root mean square (RMS responses of the sprung mass vertical acceleration, the suspension travel, and the tire deflection are derived which were used to evaluate the performance of the quarter-car model. The behaviour of semi-active suspensions with inerters using Groundhook, Skyhook, and Hybrid control has been evaluated and compared to the performance of passive suspensions with inerters. Sensitivity analysis was applied to the development of a high performance semi-active suspension with an inerter. Numerical simulations indicate that a semi-active suspension with an inerter has much better performance than the passive suspension with an inerter, especially with the Hybrid control method, which has the best compromise between comfort and road holding quality.

  7. Decoupling suspension controller based on magnetic flux feedback.

    Science.gov (United States)

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  8. Measurements on an electromagnetic active suspension system for automotive applications

    NARCIS (Netherlands)

    Gysen, B.L.J.; Paulides, J.J.H.; Lomonova, E.A.; Encica, L.; Gysen, B.L.J.; Jansen, J.W.; Krop, D.C.J.

    2008-01-01

    Abstract—This paper describes the specifications for active suspension systems and provides an electromagnetic solution. Electromagnetic actuation and preliminary control strategies are investigated in order to achieve a suspension system with the ability to absorb road irregularities and perform

  9. Fuzzy logic control of vehicle suspensions with dry friction nonlinearity

    Indian Academy of Sciences (India)

    Fuzzy logic control; active vehicle suspension; suspension space. 1. ... surface unevenness, stability and directional control during handling ..... Burton A W, Truscott A J, Wellstead P E 1995 Analysis, modeling and control of an advanced.

  10. Theoretical and FEM analysis of suspension and propulsion system with HTS hybrid electromagnets in an EMS Maglev model

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y.D., E-mail: ydchung@suwon.ac.kr [Department of Electrical Engineering, Suwon University, Bongdang Eup, Hwaseong Si 445-743 (Korea, Republic of); Lee, C.Y. [Korea Railroad Research Institute, Woram Dong, Uiwang Si 437-757 (Korea, Republic of); Jang, J.Y. [Department of Electrical Engineering, Ansan College of Technology, Choji-Dong, Ansan Si 425-792 (Korea, Republic of); Yoon, Y.S. [Department of Electrical and Electronic Engineering, Yonsei University, Sinchon-dong, Seoul 120-749 (Korea, Republic of); Ko, T.K. [Department of Electrical Engineering, Ansan College of Technology, Choji-Dong, Ansan Si 425-792 (Korea, Republic of)

    2011-11-15

    We examine levitation and propulsion forces of the proto-type maglev vehicle system based on 3D FEM. The levitation force increases over 15% due to AC current of the guideway. The levitation force by HTS electromagnet (EM) and AC current is larger over 30% than that of only HTS EM. We have been constructed a proto-type electromagnetic suspension (EMS) based maglev vehicle system. The maglev concept utilizes magnetic forces for noncontact suspension, guidance and propulsion. The suspension system with high temperature superconducting (HTS) hybrid electromagnet (EM) is composed of HTS coils and normal coils, which consume little power to keep large suspension gap. The magnetic forces realize to guide the vehicle, propel the vehicle along the guide-way and assist in braking action. The proto-type EMS-based Maglev model is designed to keep the suspension gap of 20 mm. This paper presents the theoretical analysis of the maglev vehicle based on the EMS model to obtain the designing parameters for levitation and propulsion forces. The magnetic field distributions of the electromagnetic forces with hybrid EM and propulsion stator coils are analyzed based on three dimension (3D) finite element method (FEM) analysis. From the simulation results, appropriately design parameters of the suspension, guidance and propulsion were obtained.

  11. Theoretical and FEM analysis of suspension and propulsion system with HTS hybrid electromagnets in an EMS Maglev model

    International Nuclear Information System (INIS)

    Chung, Y.D.; Lee, C.Y.; Jang, J.Y.; Yoon, Y.S.; Ko, T.K.

    2011-01-01

    We examine levitation and propulsion forces of the proto-type maglev vehicle system based on 3D FEM. The levitation force increases over 15% due to AC current of the guideway. The levitation force by HTS electromagnet (EM) and AC current is larger over 30% than that of only HTS EM. We have been constructed a proto-type electromagnetic suspension (EMS) based maglev vehicle system. The maglev concept utilizes magnetic forces for noncontact suspension, guidance and propulsion. The suspension system with high temperature superconducting (HTS) hybrid electromagnet (EM) is composed of HTS coils and normal coils, which consume little power to keep large suspension gap. The magnetic forces realize to guide the vehicle, propel the vehicle along the guide-way and assist in braking action. The proto-type EMS-based Maglev model is designed to keep the suspension gap of 20 mm. This paper presents the theoretical analysis of the maglev vehicle based on the EMS model to obtain the designing parameters for levitation and propulsion forces. The magnetic field distributions of the electromagnetic forces with hybrid EM and propulsion stator coils are analyzed based on three dimension (3D) finite element method (FEM) analysis. From the simulation results, appropriately design parameters of the suspension, guidance and propulsion were obtained.

  12. SUSPENSION MICROLARYNGOSCOPIC SURGERY AND INDIRECT MICROLARYNGOSTROBOSCOPIC SURGERY FOR BENIGN LESIONS OF THE VOCAL FOLDS

    NARCIS (Netherlands)

    DIKKERS, FG; SULTER, AM

    1994-01-01

    A prospective study was designed to compare the effects on voice capacities after either suspension microlaryngoscopic surgery or indirect microlaryngostroboscopic surgery. Patients where the clinical diagnosis 'dysphonia due to a benign lesion of the vocal fold' was made, and who could be operated

  13. Wheeled Vehicle Drive Lines, Axles, and Suspension Systems. Military Curriculum Materials for Vocational and Technical Education.

    Science.gov (United States)

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    This course is one of several subcourses that make up the entire Army correspondence course on wheeled vehicle maintenance. The subcourse is designed to provide the student with information about the operation, malfunction diagnosis, maintenance, and repair of wheeled vehicle drive lines, axles, and suspension systems. It provides the basic…

  14. Suspension kinematic analysis of UTeM’s FV Malaysia electric vehicle racing car

    NARCIS (Netherlands)

    Abdul Manaf, M.Z.; Latif, M.F.A.; Razak, M.S.A.; Hassan, M.Z.B.; Rosley, M.I.F.

    2016-01-01

    The purpose of this paper is to investigate the kinematic performance of students’ racing car, namely UTeM’s FV Malaysia Electric Vehicle. An elasto-kinematic analysis approach is used to predict the car’s performance during straight line drive and curvature drive. Two suspension design factors

  15. Effects of an Alternative to Suspension Intervention in a Therapeutic High School

    Science.gov (United States)

    Hernandez-Melis, Claudia; Fenning, Pamela; Lawrence, Elizabeth

    2016-01-01

    The purpose of the current study was to assess the effects of an alternative to suspension intervention on students' subsequent major referrals. The intervention included activities designed to teach social coping strategies as well as mediation to resolve interpersonal conflicts. The intervention was implemented in a therapeutic high school, and…

  16. "Restorative Practices" Offer Alternatives to Suspension

    Science.gov (United States)

    Shah, Nirvi

    2012-01-01

    At City Springs and many other schools across the country, restorative practices are about holding students accountable and getting them to right a wrong. The approach is getting more notice than ever as criticism grows of zero-tolerance disciplinary policies that often require out-of-school suspension and expulsion. Educators are turning to…

  17. Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions

    NARCIS (Netherlands)

    Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens

    2018-01-01

    A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute

  18. 75 FR 68704 - Suspension of Community Eligibility

    Science.gov (United States)

    2010-11-09

    ... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency 44 CFR Part 64 [Docket ID FEMA-2010-0003; Internal Agency Docket No. FEMA-8155] Suspension of Community Eligibility AGENCY: Federal.... Acadia Parish. Emerg; February 4, 1981, Reg; November 26, 2010, Susp. Iota, Town of, Acadia 220005...

  19. Suspension of Water Droplets on Individual Pillars

    DEFF Research Database (Denmark)

    Tóth, T.; Ferraro, D.; Chiarello, E.

    2011-01-01

    We report results of extensive experimental and numerical studies on the suspension of water drops deposited on cylindrical pillars having circular and square cross sections and different wettabilities. In the case of circular pillars, the drop contact line is pinned to the whole edge contour unt...

  20. ENHANCEMENT OF DURABILITY OF TRACTOR SUSPENSION AXLES

    Directory of Open Access Journals (Sweden)

    I. Doshchechkina

    2017-12-01

    Full Text Available The ‘soft’ nitriding of the suspension axle surface of the T150K tractor at the depth of 0.08 mm enables us to enhance its constructive strength, to increase its service life by 25 % and have a considerable economic effect.

  1. Pair-correlations in swimmer suspensions

    Science.gov (United States)

    Nambiar, Sankalp; Subramanian, Ganesh

    2017-11-01

    Suspensions of rear-actuated swimming microorganisms, such as E.coli, exhibit several interesting phenomena including spontaneous pattern formation above a critical concentration, novel rheological properties, shear-induced concentration banding etc. Explanations based on mean-field theory are only qualitative, since interactions between swimmers are important for typical experimental concentrations. We analytically characterize the hydrodynamic pair-interactions in a quiescent suspension of slender straight swimmers. The pair-correlation, calculated at leading order by integrating the swimmer velocity disturbances along straight trajectories, decays as 1/r2 for r >> L (L being the swimmer size). This allows us to characterize both polar and nematic correlations in an interacting swimmer suspension. In the absence of correlations, the velocity covariance asymptotes from a constant for r > L, the latter being characteristic of a suspension of non-interacting point force-dipoles. On including correlations, the slow decay of the pair-orientation correlation leads to an additional contribution to the velocity covariance that diverges logarithmically with system size.

  2. Baltimore District Tackles High Suspension Rates

    Science.gov (United States)

    Maxwell, Lesli A.

    2007-01-01

    This article reports on how the Baltimore District tackles its high suspension rates. Driven by an increasing belief that zero-tolerance disciplinary policies are ineffective, more educators are embracing strategies that do not exclude misbehaving students from school for offenses such as insubordination, disrespect, cutting class, tardiness, and…

  3. Absorption Spectra of Gold Nanoparticle Suspensions

    Science.gov (United States)

    Anan'eva, M. V.; Nurmukhametov, D. R.; Zverev, A. S.; Nelyubina, N. V.; Zvekov, A. A.; Russakov, D. M.; Kalenskii, A. V.; Eremenko, A. N.

    2018-02-01

    Three gold nanoparticle suspensions are obtained, and mean radii in distributions - (6.1 ± 0.2), (11.9 ± 0.3), and (17.3 ± 0.7) nm - are determined by the transmission electron microscopy method. The optical absorption spectra of suspensions are obtained and studied. Calculation of spectral dependences of the absorption index of suspensions at values of the gold complex refractive index taken from the literature showed a significant deviation of experimental and calculated data in the region of 450-800 nm. Spectral dependences of the absorption of suspensions are simulated within the framework of the Mie-Drude theory taking into account the interband absorption in the form of an additional term in the imaginary part of the dielectric permittivity of the Gaussian type. It is shown that to quantify the spectral dependences in the region of the plasmon absorption band of nanoparticles, correction of the parameters of the interband absorption is necessary in addition to the increase of the relaxation parameter of the Drude theory. Spectral dependences of the dielectric permittivity of gold in nanodimensional state are refined from the solution of the inverse problem. The results of the present work are important for predicting the special features of operation of photonic devices and optical detonators based on gold nanoparticles.

  4. Yield stress of alumina-zirconia suspensions

    International Nuclear Information System (INIS)

    Ramakrishnan, V.; Pradip; Malghan, S.G.

    1996-01-01

    The yield stress of concentrated suspensions of alumina, zirconia, and mixed alumina-zirconia powders was measured by the vane technique as a function of solids loading, relative amounts of alumina and zirconia, and pH. At the isoelectric point (IEP), the yield stress varied as the fourth power of the solids loading. The relative ratio of alumina and zirconia particles was important in determining the yield stress of the suspension at the IEP. The yield stress of single and mixed suspensions showed a marked variation with pH. The maximum value occurred at or near the IEP of the suspension. The effect of electrical double-layer forces on the yield stress can be described on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. A normalized yield stress--that is, the ratio of the yield stress at a given pH to the yield stress at the IEP predicted by this model--showed good correlation with experimental data

  5. An observational study of the effect of vibration on the caking of suspensions in oily vehicles.

    Science.gov (United States)

    Jain, Rohit; Bork, Olaf; Alawi, Fadil; Nanjan, Karthigeyan; Tucker, Ian G

    2016-11-30

    An oily suspension of penethamate (PNT) that was physically stable on storage, caked solidly during road/air transport. This paper reports on the caking behaviour of PNT oily suspension formulations exposed to vibrations in a lab-based test designed to simulate road/air transport. The lab-test was used to study the effects of container type (glass v PET) and formulation (oil, surfactant type and concentration) on the physical stability of suspension under vibration. Redispersibility of the sediment was lower at longer vibrations times and at higher intensity of vibration. Caking on vibration was strongly influenced by the type of container (caking in glass but not in PET) possibly due to tribo-charging of particles. Caking on vibration was dependent on the formulation: type and concentration of surfactant; type of oil. The physical stability of oily suspensions, and the effect of vibration are two areas which have been largely neglected in the pharmaceutical literature. This paper discusses some potential mechanisms for the observations but studies using fully characterised materials are required. Finally we conclude that static testing of physical stability of oily suspensions is not sufficient and that a vibrational stress test is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Development of a simulation model of semi-active suspension for monorail

    Science.gov (United States)

    Hasnan, K.; Didane, D. H.; Kamarudin, M. A.; Bakhsh, Qadir; Abdulmalik, R. E.

    2016-11-01

    The new Kuala Lumpur Monorail Fleet Expansion Project (KLMFEP) uses semiactive technology in its suspension system. It is recognized that the suspension system influences the ride quality. Thus, among the way to further improve the ride quality is by fine- tuning the semi-active suspension system on the new KL Monorail. The semi-active suspension for the monorail specifically in terms of improving ride quality could be exploited further. Hence a simulation model which will act as a platform to test the design of a complete suspension system particularly to investigate the ride comfort performance is required. MSC Adams software was considered as the tool to develop the simulation platform, where all parameters and data are represented by mathematical equations; whereas the new KL Monorail being the reference model. In the simulation, the model went through step disturbance on the guideway for stability and ride comfort analysis. The model has shown positive results where the monorail is in stable condition as an outcome from stability analysis. The model also scores a Rating 1 classification in ISO 2631 Ride Comfort performance which is very comfortable as an overall outcome from ride comfort analysis. The model is also adjustable, flexibile and understandable by the engineers within the field for the purpose of further development.

  7. Global sensitivity analysis of bogie dynamics with respect to suspension components

    International Nuclear Information System (INIS)

    Mousavi Bideleh, Seyed Milad; Berbyuk, Viktor

    2016-01-01

    The effects of bogie primary and secondary suspension stiffness and damping components on the dynamics behavior of a high speed train are scrutinized based on the multiplicative dimensional reduction method (M-DRM). A one-car railway vehicle model is chosen for the analysis at two levels of the bogie suspension system: symmetric and asymmetric configurations. Several operational scenarios including straight and circular curved tracks are considered, and measurement data are used as the track irregularities in different directions. Ride comfort, safety, and wear objective functions are specified to evaluate the vehicle’s dynamics performance on the prescribed operational scenarios. In order to have an appropriate cut center for the sensitivity analysis, the genetic algorithm optimization routine is employed to optimize the primary and secondary suspension components in terms of wear and comfort, respectively. The global sensitivity indices are introduced and the Gaussian quadrature integrals are employed to evaluate the simplified sensitivity indices correlated to the objective functions. In each scenario, the most influential suspension components on bogie dynamics are recognized and a thorough analysis of the results is given. The outcomes of the current research provide informative data that can be beneficial in design and optimization of passive and active suspension components for high speed train bogies.

  8. Energy Conservation Analysis and Control of Hybrid Active Semiactive Suspension with Three Regulating Damping Levels

    Directory of Open Access Journals (Sweden)

    Long Chen

    2016-01-01

    Full Text Available Active suspension has not been popularized for high energy consumption. To address this issue, this paper introduces the concept of a new kind of suspension. The linear motor is considered to be integrated into an adjustable shock absorber to form the hybrid active semiactive suspension (HASAS. To realize the superiority of HASAS, its energy consumption and regeneration mechanisms are revealed. And the system controller which is composed of linear quadratic regulator (LQR controller, mode decision and switch controller, and the sliding mode control based thrust controller is developed. LQR controller is designed to maintain the suspension control objectives, while mode decision and switch controller decides the optimal damping level to tune motor thrust. The thrust controller ensures motor thrust tracking. An adjustable shock absorber with three regulating levels to be used in HASAS is trial produced and tested to obtain its working characteristics. Finally, simulation analysis is made with the experimental three damping characteristics. The impacts of adjustable damping on the motor force and energy consumption are investigated. Simulation results demonstrate the advantages of HASAS in energy conservation with various suspension control objectives. Even self-powered active control and energy regenerated to the power source can be realized.

  9. Global sensitivity analysis of bogie dynamics with respect to suspension components

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi Bideleh, Seyed Milad, E-mail: milad.mousavi@chalmers.se; Berbyuk, Viktor, E-mail: viktor.berbyuk@chalmers.se [Chalmers University of Technology, Department of Applied Mechanics (Sweden)

    2016-06-15

    The effects of bogie primary and secondary suspension stiffness and damping components on the dynamics behavior of a high speed train are scrutinized based on the multiplicative dimensional reduction method (M-DRM). A one-car railway vehicle model is chosen for the analysis at two levels of the bogie suspension system: symmetric and asymmetric configurations. Several operational scenarios including straight and circular curved tracks are considered, and measurement data are used as the track irregularities in different directions. Ride comfort, safety, and wear objective functions are specified to evaluate the vehicle’s dynamics performance on the prescribed operational scenarios. In order to have an appropriate cut center for the sensitivity analysis, the genetic algorithm optimization routine is employed to optimize the primary and secondary suspension components in terms of wear and comfort, respectively. The global sensitivity indices are introduced and the Gaussian quadrature integrals are employed to evaluate the simplified sensitivity indices correlated to the objective functions. In each scenario, the most influential suspension components on bogie dynamics are recognized and a thorough analysis of the results is given. The outcomes of the current research provide informative data that can be beneficial in design and optimization of passive and active suspension components for high speed train bogies.

  10. Electrostratic stabilization of suspensions in non-aqueous media

    NARCIS (Netherlands)

    Hoeven, van der P.C.

    1991-01-01

    Concentrated suspensions of detergent powder solids in a liquid nonionic surfactant are considered for practical application as liquid detergent products. If no precautions are taken, upon storage the viscosity of such suspensions increases and the pourability drops because the suspensions are

  11. Preview based control of suspension systems for commercial vehicles

    NARCIS (Netherlands)

    Muijderman, J.H.E.A.; Kok, J.J.; Huisman, R.G.M.; Veldpaus, F.E.; van Heck, J.G.A.M.

    1999-01-01

    An active suspension with preview is developed for the rear axle of a commercial vehicle. The obtained improvements are promising and justify further investigation of the more feasible semi-active suspensions with preview. The inherent non-linearity of semi-active suspensions with switching shock

  12. Professor Jesse W. Beams and the first practical magnetic suspension

    Science.gov (United States)

    Allaire, P. E.; Humphris, R. R.; Lewis, D. W.

    1992-01-01

    Dr. Jesse W. Beams developed the first practical magnetic suspension for high speed rotating devices. The devices included high speed rotating mirrors, ultracentrifuges, and high speed centrifugal field rotors. A brief biography of Dr. Beams is presented, and the following topics are discussed: (1) early axial magnetic suspension for ultracentrifuges; and (2) magnetic suspension for high centrifugal fields.

  13. Behaviour of humic-bentonite aggregates in diluted suspensions ...

    African Journals Online (AJOL)

    Formation and disaggregation of micron-size aggregates in a diluted suspension made up of HSs and bentonite (B) were studied by tracing distribution of aggregate sizes and their counts in freshly prepared and aged suspensions, and at high (10 000) and low (1.0) [HS]/[B] ratios. Diluted HSB suspensions are unstable ...

  14. 15 CFR 2011.207 - Suspension of the certificate system.

    Science.gov (United States)

    2010-01-01

    ..., SYRUPS AND MOLASSES Specialty Sugar § 2011.207 Suspension of the certificate system. (a) Suspension. The.... Notice of such suspension and the effective date thereof shall be published in the Federal Register. (b... such reinstatement and the effective date thereof shall be published in the Federal Register. (c...

  15. 13 CFR 120.660 - Suspension or revocation.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Suspension or revocation. 120.660 Section 120.660 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Secondary Market Suspension Or Revocation of Participant in Secondary Market § 120.660 Suspension or revocation. (a...

  16. 39 CFR 3001.114 - Suspension pending review.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Suspension pending review. 3001.114 Section 3001... Suspension pending review. (a) Application. Application for suspension of a determination of the Postal Service to close or consolidate any post office pending the outcome of an appeal to the Postal Regulatory...

  17. 21 CFR 520.905a - Fenbendazole suspension.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Fenbendazole suspension. 520.905a Section 520.905a... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.905a Fenbendazole suspension. (a) Specifications. Each milliliter of suspension contains 100 milligrams (mg) fenbendazole. (b...

  18. Robust finite-time tracking control for nonlinear suspension systems via disturbance compensation

    Science.gov (United States)

    Pan, Huihui; Jing, Xingjian; Sun, Weichao

    2017-05-01

    This paper focuses on the finite-time tracking control with external disturbance for active suspension systems. In order to compensate unknown disturbance efficiently, a disturbance compensator with finite-time convergence property is studied. By analyzing the discontinuous phenomenon of classical disturbance compensation techniques, this study presents a simple approach to construct a continuous compensator satisfying the finite-time disturbance rejection performance. According to the finite-time separation principle, the design procedures of the nominal controller for the suspension system without disturbance and the disturbance compensator can be implemented in a completely independent manner. Therefore, the overall control law for the closed-loop system is continuous, which offers some distinct advantages over the existing discontinuous ones. From the perspective of practical implementation, the continuous controller can avoid effectively the unexpected chattering in active suspension control. Comparative experimental results are presented and discussed to illustrate the advantage and effectiveness of the proposed control strategy.

  19. Optimization of the flux values in multichannel ceramic membrane microfiltration of Baker`s yeast suspension

    Directory of Open Access Journals (Sweden)

    Milović Nemanja R.

    2016-01-01

    Full Text Available The objective of this work was to estimate the effects of the operating parameters on the baker's yeast microfiltration through multichannel ceramic membrane. The selected parameters were transmembrane pressure, suspension feed flow, and initial suspension concentration. In order to investigate the influence and interaction effects of these parameters on the microfiltration operation, two responses have been chosen: average permeate flux and flux decline. The Box-Behnken experimental design and response surface methodology was used for result processing and process optimization. According to the obtained results, the most important parameter influencing permeate flux during microfiltration is the initial suspension concentration. The maximum average flux value was achieved at an initial concentration of 0.1 g/L, pressure around 1.25 bars and a flow rate at 16 L/h. [Projekat Ministarstva nauke Republike Srbije, br. TR 31002

  20. Performance of a superconducting large-angle magnetic suspension

    International Nuclear Information System (INIS)

    Downer, J.R.; Bushko, D.A.; Gondhalekar, V.; Torti, R.P.

    1992-01-01

    SatCon Technology Corporation is working toward the development of an advanced-concept Control Moment Gyro (CMG). The advanced-concept CMG is sized for use as a slewing actuator for large space-based payloads. The design features a magnetically suspended composite rotor which contains a persistent-mode superconducting solenoid magnet. The rotor is suspended and gimballed by the interaction of the fields produced by the superconductor and an array of cryoresistive coils. The rotor spins in a liquid helium environment, while the control coils are liquid-hydrogen cooled. This design is capable of meeting the requirements of many high-performance slewing applications (27,000 Nm). The use of the magnetic suspension as rotor bearings, gimbal bearings, and gimbal torquers also substantially reduces the mass of the CMG system

  1. Reliable fuzzy H∞ control for active suspension of in-wheel motor driven electric vehicles with dynamic damping

    Science.gov (United States)

    Shao, Xinxin; Naghdy, Fazel; Du, Haiping

    2017-03-01

    A fault-tolerant fuzzy H∞ control design approach for active suspension of in-wheel motor driven electric vehicles in the presence of sprung mass variation, actuator faults and control input constraints is proposed. The controller is designed based on the quarter-car active suspension model with a dynamic-damping-in-wheel-motor-driven-system, in which the suspended motor is operated as a dynamic absorber. The Takagi-Sugeno (T-S) fuzzy model is used to model this suspension with possible sprung mass variation. The parallel-distributed compensation (PDC) scheme is deployed to derive a fault-tolerant fuzzy controller for the T-S fuzzy suspension model. In order to reduce the motor wear caused by the dynamic force transmitted to the in-wheel motor, the dynamic force is taken as an additional controlled output besides the traditional optimization objectives such as sprung mass acceleration, suspension deflection and actuator saturation. The H∞ performance of the proposed controller is derived as linear matrix inequalities (LMIs) comprising three equality constraints which are solved efficiently by means of MATLAB LMI Toolbox. The proposed controller is applied to an electric vehicle suspension and its effectiveness is demonstrated through computer simulation.

  2. Research on magnetorheological damper suspension with permanent magnet and magnetic valve based on developed FOA-optimal control algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Ping; Gao, Hong [Anhui Polytechnic University, Wuhu (China); Niu, Limin [Anhui University of Technology, Maanshan (China)

    2017-07-15

    Due to the fail safe problem, it was difficult for the existing Magnetorheological damper (MD) to be widely applied in automotive suspensions. Therefore, permanent magnets and magnetic valves were introduced to existing MDs so that fail safe problem could be solved by the magnets and damping force could be adjusted easily by the magnetic valve. Thus, a new Magnetorheological damper with permanent magnet and magnetic valve (MDPMMV) was developed and MDPMMV suspension was studied. First of all, mechanical structure of existing magnetorheological damper applied in automobile suspensions was redesigned, comprising a permanent magnet and a magnetic valve. In addition, prediction model of damping force was built based on electromagnetics theory and Bingham model. Experimental research was onducted on the newly designed damper and goodness of fit between experiment results and simulated ones by models was high. On this basis, a quarter suspension model was built. Then, fruit Fly optimization algorithm (FOA)-optimal control algorithm suitable for automobile suspension was designed based on developing normal FOA. Finally, simulation experiments and bench tests with input surface of pulse road and B road were carried out and the results indicated that working erformance of MDPMMV suspension based on FOA-optimal control algorithm was good.

  3. Microstructural Dynamics and Rheology of Suspensions of Rigid Fibers

    Science.gov (United States)

    Butler, Jason E.; Snook, Braden

    2018-01-01

    The dynamics and rheology of suspensions of rigid, non-Brownian fibers in Newtonian fluids are reviewed. Experiments, theories, and computer simulations are considered, with an emphasis on suspensions at semidilute and concentrated conditions. In these suspensions, interactions between the particles strongly influence the microstructure and rheological properties of the suspension. The interactions can arise from hydrodynamic disturbances, giving multibody interactions at long ranges and pairwise lubrication forces over short distances. For concentrated suspensions, additional interactions due to excluded volume (contacts) and adhesive forces are addressed. The relative importance of the various interactions as a function of fiber concentration is assessed.

  4. Shock Absorbers Multi-Modeling and Suspension Optimization

    Directory of Open Access Journals (Sweden)

    LUPU Ciprian

    2013-05-01

    Full Text Available The standard dampers used by more 90% of vehicles have damping coefficients constant along stroke, so they can’t solve simultaneous all of them, situation solving practically using a relative dampingcoefficient able to made compromise between them. This paper design and simulation testing multi-models of two types of Damp (DSA and VZN. To compare the two types of suspension they are simulated in various road and load conditions. Analysis of simulation results is presente a new VZN shock absorber. This is an invention of the Institute of Mechanics of the Romanian Academy, and patented at European and U.S. [1], [2]. This is Called VZN shock absorber, iscoming from Variable Zeta Necessary acronym, for well moving in all road and load Conditions, Where zeta Represents the relative damping, Which is Adjusted automatically, stepwise, According to the piston positions [3,4,5]. Suspension systems are used in all air and ground transportation to protect that building transportation and cargo transported around against shocks and vibrations induced in the systemfrom the road Modifying damping coefficients (Zeta function piston position, being correlated with vehicle load and road unevenness.

  5. CFD simulation of solids suspension in stirred tanks: Review

    Directory of Open Access Journals (Sweden)

    Ochieng Aoyi

    2010-01-01

    Full Text Available Many chemical reactions are carried out using stirred tanks, and the efficiency of such systems depends on the quality of mixing, which has been a subject of research for many years. For solid-liquid mixing, traditionally the research efforts were geared towards determining mixing features such as off-bottom solid suspension using experimental techniques. In a few studies that focused on the determination of solids concentration distribution, some methods that have been used have not been accurate enough to account for some small scale flow mal-distribution such as the existence of dead zones. The present review shows that computational fluid dynamic (CFD techniques can be used to simulate mixing features such as solids off-bottom suspension, solids concentration and particle size distribution and cloud height. Information on the effects of particle size and particle size distribution on the solids concentration distribution is still scarce. Advancement of the CFD modeling is towards coupling the physical and kinetic data to capture mixing and reaction at meso- and micro-scales. Solids residence time distribution is important for the design; however, the current CFD models do not predict this parameter. Some advances have been made in recent years to apply CFD simulation to systems that involve fermentation and anaerobic processes. In these systems, complex interaction between the biochemical process and the hydrodynamics is still not well understood. This is one of the areas that still need more attention.

  6. Structural analysis of compression helical spring used in suspension system

    Science.gov (United States)

    Jain, Akshat; Misra, Sheelam; Jindal, Arun; Lakhian, Prateek

    2017-07-01

    The main aim of this work has to develop a helical spring for shock absorber used in suspension system which is designed to reduce shock impulse and liberate kinetic energy. In a vehicle, it increases comfort by decreasing amplitude of disturbances and it improves ride quality by absorbing and dissipating energy. When a vehicle is in motion on a road and strikes a bump, spring comes into action quickly. After compression, spring will attempt to come to its equilibrium state which is on level road. Helical springs can be made lighter with more strength by reducing number of coils and increasing the area. In this research work, a helical spring is modeled and analyzed to substitute the existing steel spring which is used in suspension. By using different materials, stress and deflection of helical spring can be varied. Comparability between existing spring and newly replaced spring is used to verify the results. For finding detailed stress distribution, finite element analysis is used to find stresses and deflection in both the helical springs. Finite element analysis is a method which is used to find proximate solutions of a physical problem defined in a finite domain. In this research work, modeling of spring is accomplished using Solid Works and analysis on Ansys.

  7. Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings

    Science.gov (United States)

    Podlesak, Harry; Pawlowski, Lech; D'Haese, Romain; Laureyns, Jacky; Lampke, Thomas; Bellayer, Severine

    2010-03-01

    Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.

  8. Quadruple burden of HIV/AIDS, tuberculosis, chronic intestinal parasitoses, and multiple micronutrient deficiency in ethiopia: a summary of available findings.

    Science.gov (United States)

    Amare, Bemnet; Moges, Beyene; Mulu, Andargachew; Yifru, Sisay; Kassu, Afework

    2015-01-01

    Human immunodeficiency virus (HIV), tuberculosis (TB), and helminthic infections are among the commonest public health problems in the sub-Saharan African countries like Ethiopia. Multiple micronutrient deficiencies also known as the "hidden hunger" are common in people living in these countries either playing a role in their pathogenesis or as consequences. This results in a vicious cycle of multiple micronutrient deficiencies and infection/disease progression. As infection is profoundly associated with nutritional status resulting from decreased nutrient intake, decreased nutrient absorption, and nutrient losses, micronutrient deficiencies affect immune system and impact infection and diseases progression. As a result, micronutrients, immunity, and infection are interrelated. The goal of this review is therefore to provide a summary of available findings regarding the "quadruple burden trouble" of HIV, TB, intestinal parasitic infections, and multiple micronutrient deficiencies to describe immune-modulating effects related to disorders.

  9. Identification and quantification of flavonoids and chromes in Baeckea frutescens by using HPLC coupled with diode-array detection and quadruple time-of-flight mass spectrometry.

    Science.gov (United States)

    Jia, Bei-Xi; Huangfu, Qian-Qian; Ren, Feng-Xiao; Jia, Lu; Zhang, Yan-Bing; Liu, Hong-Min; Yang, Jie; Wang, Qiang

    2015-01-01

    This article marks the first report on high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD) and quadruple time-of-flight mass spectrometry (Q-TOF/MS) for the identification and quantification of main bioactive constituents in Baeckea frutescens. In total, 24 compounds were identified or tentatively characterised based on their retention behaviours, UV profiles and MS fragment information. Furthermore, a validated method with good linearity, sensitivity, precision, stability, repeatability and accuracy was successfully applied for simultaneous determination of five flavonoids and one chromone in different plant parts of B. frutescens collected at different harvest times, and their dynamic contents revealed the appropriate harvest times. The established HPLC-DAD-Q-TOF/MS using multi-bioactive markers was proved to be a validated strategy for the quality evaluation on both raw materials and related products of B. frutescens.

  10. Study on kinematic and compliance test of suspension

    Science.gov (United States)

    Jing, Lixin; Wu, Liguang; Li, Xuepeng; Zhang, Yu

    2017-09-01

    Chassis performance development is a major difficulty in vehicle research and development, which is the main factor restricting the independent development of vehicles in China. These years, through a large number of studies, chassis engineers have found that the suspension K&C characteristics as a quasi-static characteristic of the suspension provides a technical route for the suspension performance R&D, and the suspension K&C test has become an important means of vehicle benchmarking, optimization and verification. However, the research on suspension K&C test is less in china, and the test conditions and setting requirements vary greatly from OEM to OEM. In this paper, the influence of different settings on the characteristics of the suspension is obtained through experiments, and the causes of the differences are analyzed; in order to fully reflect the suspension characteristics, the author recommends the appropriate test case and settings.

  11. System and technique for ultrasonic characterization of settling suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Margaret S [Richland, WA; Panetta, Paul D [Richland, WA; Bamberger, Judith A [Richland, WA; Pappas, Richard A [Richland, WA

    2006-11-28

    A system for determining properties of settling suspensions includes a settling container, a mixer, and devices for ultrasonic interrogation transverse to the settling direction. A computer system controls operation of the mixer and the interrogation devices and records the response to the interrogating as a function of settling time, which is then used to determine suspension properties. Attenuation versus settling time for dilute suspensions, such as dilute wood pulp suspension, exhibits a peak at different settling times for suspensions having different properties, and the location of this peak is used as one mechanism for characterizing suspensions. Alternatively or in addition, a plurality of ultrasound receivers are arranged at different angles to a common transmitter to receive scattering responses at a variety of angles during particle settling. Angular differences in scattering as a function of settling time are also used to characterize the suspension.

  12. Nonlinear Predictive Sliding Mode Control for Active Suspension System

    Directory of Open Access Journals (Sweden)

    Dazhuang Wang

    2018-01-01

    Full Text Available An active suspension system is important in meeting the requirements of the ride comfort and handling stability for vehicles. In this work, a nonlinear model of active suspension system and a corresponding nonlinear robust predictive sliding mode control are established for the control problem of active suspension. Firstly, a seven-degree-of-freedom active suspension model is established considering the nonlinear effects of springs and dampers; and secondly, the dynamic model is expanded in the time domain, and the corresponding predictive sliding mode control is established. The uncertainties in the controller are approximated by the fuzzy logic system, and the adaptive controller reduces the approximation error to increase the robustness of the control system. Finally, the simulation results show that the ride comfort and handling stability performance of the active suspension system is better than that of the passive suspension system and the Skyhook active suspension. Thus, the system can obviously improve the shock absorption performance of vehicles.

  13. Influence of vitamin C and E supplementation on the eradication rates of triple and quadruple eradication regimens for Helicobacter pylori infection.

    Science.gov (United States)

    Demirci, Hakan; Uygun İlikhan, Sevil; Öztürk, Kadir; Üstündağ, Yücel; Kurt, Ömer; Bilici, Muammer; Köktürk, Furuzan; Uygun, Ahmet

    2015-11-01

    In our study, we aimed to assess the effect of vitamin E and C supplementation to triple and quadruple Helicobacter pylori eradication regimens. Four hundred patients with H. pylori infection were classified into four groups. Patients in group A (n=100) received amoxicillin, clarithromycin, and lansoprazole for 2 weeks. In group B, patients (n=100) received vitamins C and E for a month, in addition to amoxicillin, clarithromycin, and lansoprazole for 2 weeks. Patients in group C (n=100) received amoxicillin, clarithromycin, lansoprazole, and bismuth subcitrate for 2 weeks, whereas those in group D (n=100) received vitamins C and E for a month, in addition to amoxicillin, clarithromycin, lansoprazole, and bismuth subcitrate for 2 weeks. H. pylori eradication was assessed with the C14 urea breath test 2 months after the end of the therapy. The eradication rate was assessed using per-protocol (PP) and intention-to-treat (ITT) analyses. Three hundred forty-eight patients finished the study. The eradication of H. pylori was achieved in 63 of 84 patients (75%) by PP and 63 of 100 (63%) by ITT analysis in group A, 60 of 84 (71.4%) by PP and 60 of 100 (60%) by ITT analysis in group B, 72 of 89 (80.9 %) by PP and 72 of 100 (72%) by ITT analysis in group C, and 76 of 91 (83.5%) by PP and 76 of 100 (76%) by ITT analysis in group D. There was no remarkable change between groups A and B (p>0.05). Similar results were also found between groups D and C (p>0.05). This study revealed that supplementing vitamins C and E to either the triple or quadruple therapies did not provide an additional advantage for achieving significantly higher eradication rates for H. pylori.

  14. Roughness and uniformity improvements on self-aligned quadruple patterning technique for 10nm node and beyond by wafer stress engineering

    Science.gov (United States)

    Liu, Eric; Ko, Akiteru; O'Meara, David; Mohanty, Nihar; Franke, Elliott; Pillai, Karthik; Biolsi, Peter

    2017-05-01

    Dimension shrinkage has been a major driving force in the development of integrated circuit processing over a number of decades. The Self-Aligned Quadruple Patterning (SAQP) technique is widely adapted for sub-10nm node in order to achieve the desired feature dimensions. This technique provides theoretical feasibility of multiple pitch-halving from 193nm immersion lithography by using various pattern transferring steps. The major concept of this approach is to a create spacer defined self-aligned pattern by using single lithography print. By repeating the process steps, double, quadruple, or octuple are possible to be achieved theoretically. In these small architectures, line roughness control becomes extremely important since it may contribute to a significant portion of process and device performance variations. In addition, the complexity of SAQP in terms of processing flow makes the roughness improvement indirective and ineffective. It is necessary to discover a new approach in order to improve the roughness in the current SAQP technique. In this presentation, we demonstrate a novel method to improve line roughness performances on 30nm pitch SAQP flow. We discover that the line roughness performance is strongly related to stress management. By selecting different stress level of film to be deposited onto the substrate, we can manipulate the roughness performance in line and space patterns. In addition, the impact of curvature change by applied film stress to SAQP line roughness performance is also studied. No significant correlation is found between wafer curvature and line roughness performance. We will discuss in details the step-by-step physical performances for each processing step in terms of critical dimension (CD)/ critical dimension uniformity (CDU)/line width roughness (LWR)/line edge roughness (LER). Finally, we summarize the process needed to reach the full wafer performance targets of LWR/LER in 1.07nm/1.13nm on 30nm pitch line and space pattern.

  15. Third-line rescue therapy with bismuth-containing quadruple regimen after failure of two treatments (with clarithromycin and levofloxacin) for H. pylori infection.

    Science.gov (United States)

    Gisbert, J P; Perez-Aisa, A; Rodrigo, L; Molina-Infante, J; Modolell, I; Bermejo, F; Castro-Fernández, M; Antón, R; Sacristán, B; Cosme, A; Barrio, J; Harb, Y; Gonzalez-Barcenas, M; Fernandez-Bermejo, M; Algaba, A; Marín, A C; McNicholl, A G

    2014-02-01

    Helicobacter pylori eradication therapy with a proton pump inhibitor (PPI), clarithromycin, and amoxicillin fails in >20 % of cases. A rescue therapy with PPI-amoxicillin-levofloxacin still fails in >20 % of patients. To evaluate the efficacy and tolerability of a bismuth-containing quadruple regimen in patients with two consecutive eradication failures. Prospective multicenter study of patients in whom 1st treatment with PPI-clarithromycin-amoxicillin and 2nd with PPI-amoxicillin-levofloxacin had failed. A 3rd eradication regimen with a 7- to 14-day PPI (standard dose b.i.d.), bismuth subcitrate (120 mg q.i.d. or 240 mg b.i.d.), tetracycline (from 250 mg t.i.d. to 500 mg q.i.d.) and metronidazole (from 250 mg t.i.d. to 500 mg q.i.d.). Eradication was confirmed by (13)C-urea-breath-test 4-8 weeks after therapy. Compliance was determined through questioning and recovery of empty medication envelopes. Adverse effects were evaluated by means of a questionnaire. Two hundred patients (mean age 50 years, 55 % females, 20 % peptic ulcer/80 % uninvestigated-functional dyspepsia) were initially included, and two were lost to follow-up. In all, 97 % of patients complied with the protocol. Per-protocol and intention-to-treat eradication rates were 67 % (95 % CI 60-74 %) and 65 % (58-72 %). Adverse effects were reported in 22 % of patients, the most common being nausea (12 %), abdominal pain (11 %), metallic taste (8.5 %), and diarrhea (8 %), none of them severe. A bismuth-containing quadruple regimen is an acceptable third-line strategy and a safe alternative after two previous H. pylori eradication failures with standard clarithromycin- and levofloxacin-containing triple therapies.

  16. Time varying behaviour of the loudspeaker suspension

    DEFF Research Database (Denmark)

    Agerkvist, Finn; Pedersen, Bo Rohde

    2009-01-01

    The compliance of the loudspeaker suspension is known to depend on the recent excitation level history. Previous investigations have shown that the electrical power as well as displacement and velocity plays a role. In this paper the hypothesis that the changes in compliance are caused mainly...... by how much the suspension has been stretched, i.e., the maximum displacement, is investigated. For this purpose the changes in compliance are measured when exposing the loudspeaker to different levels and types of electrical excitation signals, as well as mechanical excitation only. For sinusoidal...... excitation the change in compliance is shown to depend primarily on maximum displacement. But for square pulse excitation the duration of the excitation also plays an important role....

  17. Constraint Embedding for Vehicle Suspension Dynamics

    Directory of Open Access Journals (Sweden)

    Jain Abhinandan

    2016-06-01

    Full Text Available The goal of this research is to achieve close to real-time dynamics performance for allowing auto-pilot in-the-loop testing of unmanned ground vehicles (UGV for urban as well as off-road scenarios. The overall vehicle dynamics performance is governed by the multibody dynamics model for the vehicle, the wheel/terrain interaction dynamics and the onboard control system. The topic of this paper is the development of computationally efficient and accurate dynamics model for ground vehicles with complex suspension dynamics. A challenge is that typical vehicle suspensions involve closed-chain loops which require expensive DAE integration techniques. In this paper, we illustrate the use the alternative constraint embedding technique to reduce the cost and improve the accuracy of the dynamics model for the vehicle.

  18. Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions

    Science.gov (United States)

    Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens

    2018-04-01

    A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute interactions are implemented using a pseudopotential model. The Nernst-Planck equation, describing the kinetics of dissolved ion species, is solved using a finite difference discretization based on the link-flux method. The colloids are resolved on the lattice and coupled to the hydrodynamics and electrokinetics through appropriate boundary conditions. We present the first full integration of these three elements. The model is validated by comparing with known analytic solutions of ionic distributions at fluid interfaces, dielectric droplet deformations, and the electrophoretic mobility of colloidal suspensions. Its possibilities are explored by considering various physical systems, such as breakup of charged and neutral droplets and colloidal dynamics at either planar or spherical fluid interfaces.

  19. Submerged cutting characteristics of abrasive suspension jet

    International Nuclear Information System (INIS)

    Shimizu, Seiji; Peng, Guoyi; Oguma, Yasuyuki; Nishikata, Hiroyuki

    2015-01-01

    An abrasive suspension jet (ASJ) formed by propelling abrasive suspension through a nozzle has a greater cutting capability than the conventional abrasive water jet. However the cutting capability of submerged ASJs decreases drastically with increasing the standoff distance and the pressure around the jet. A sheathed nozzle with ventilation for ASJs has been developed as a mean of extending the effective stand-off distance and improving the cutting capabilities under submerged condition. In the present investigation, cutting tests by ASJs in air and under submerged condition are conducted with specimens of aluminum alloy. Air coated ASJs are formed by using a sheathed nozzle with ventilation. The relative cutting depth is defined as the cutting depth under submerged condition divided by the cutting depth in air at the same standoff distance. The relative cutting depth is arranged effectually by the cavitation number based on the cavity pressure measured at the sheath. (author)

  20. Submerged cutting characteristics of abrasive suspension jet

    International Nuclear Information System (INIS)

    Shimizu, Seiji; Peng, Guoyi; Oguma, Yasuyuki; Nishikata, Hiroki

    2015-01-01

    An abrasive suspension jet (ASJ) formed by propelling abrasive suspension through a nozzle has a greater cutting capability than the conventional abrasive water jet. However the cutting capability of submerged ASJs decreases drastically with increasing the standoff distance and the pressure around the jet. A sheathed nozzle nozzle with ventilation for ASJs has been developed as a mean of extending the effective stand-off distance and improving the cutting capabilities under submerged condition. In the present investigation, cutting tests by ASJs in air and under submerged condition are conducted with specimens of aluminum alloy. Air coated ASJs are formed by using a sheathed nozzle with ventilation. The relative cutting depth is defined as the cutting depth is arranged effectually by the cavitation number based on the cavity pressure measured at the sheath. (author)

  1. Suspensions of colloidal particles and aggregates

    CERN Document Server

    Babick, Frank

    2016-01-01

    This book addresses the properties of particles in colloidal suspensions. It has a focus on particle aggregates and the dependency of their physical behaviour on morphological parameters. For this purpose, relevant theories and methodological tools are reviewed and applied to selected examples. The book is divided into four main chapters. The first of them introduces important measurement techniques for the determination of particle size and interfacial properties in colloidal suspensions. A further chapter is devoted to the physico-chemical properties of colloidal particles—highlighting the interfacial phenomena and the corresponding interactions between particles. The book’s central chapter examines the structure-property relations of colloidal aggregates. This comprises concepts to quantify size and structure of aggregates, models and numerical tools for calculating the (light) scattering and hydrodynamic properties of aggregates, and a discussion on van-der-Waals and double layer interactions between ...

  2. Compressed Air Production Using Vehicle Suspension

    Directory of Open Access Journals (Sweden)

    Ninad Arun Malpure

    2015-08-01

    Full Text Available Abstract Generally compressed air is produced using different types of air compressors which consumes lot of electric energy and is noisy. In this paper an innovative idea is put forth for production of compressed air using movement of vehicle suspension which normal is wasted. The conversion of the force energy into the compressed air is carried out by the mechanism which consists of the vehicle suspension system hydraulic cylinder Non-return valve air compressor and air receiver. We are collecting air in the cylinder and store this energy into the tank by simply driving the vehicle. This method is non-conventional as no fuel input is required and is least polluting.

  3. Characterization of alumina suspensions by electroacoustics

    Energy Technology Data Exchange (ETDEWEB)

    Galassi, C.; Roncari, E.; Greenwood, R.; Piancastelli, A. [CNR, Faenza (Italy). Research Inst. for Ceramics Technology

    1997-12-31

    Using the acoustophoresis technique three different dispersants were selected to investigate the effect of the volume fraction of the suspension on the minimum amount of dispersant required to give the maximum zeta potential. No effect was detected over a volume fraction range 0.11 to 0.35. The acoustosizer was used to screen many dispersants for alumina in a relatively short time. From the viewpoint that the most stable suspensions are those with the greatest zeta potentials, then the following dispersants can be recommended: Reotan LA (0.25 mg/m{sup 2}) Dolapix CA (0.20 mg/m{sup 2}) and Dolapix PC33 (0.30 mg/m{sup 2}). Vanisperse and Borresperse are poor. Polyacrylic acid and polymethacrylic acid were better than some commercially available products. (orig.) 2 refs.

  4. Vibration Reduction System Using Magnetic Suspension Technology

    Directory of Open Access Journals (Sweden)

    Spychała Jarosław

    2015-01-01

    Full Text Available The article presents considerations concerning the construction of vibration reduction system using magnetic suspension technology. Presents the results of simulation, numerical and experimental the bearingless electric motor, for which successfully used this type of solution. Positive results of research and testing have become the basis for the development of the concept of building this type of active vibration reduction system , at the same time acting as a support for a technical object, which is a jet engine. Bearing failures are manifested by loss or distortion of their mass, which leads to a total destruction of the roller bearing, and thus reflected in the security. The article presents the concept of building active magnetic suspension to eliminate the bearing system of classical rolling bearing and replace it with magnetic bearing.

  5. Design

    DEFF Research Database (Denmark)

    Volf, Mette

    This publication is unique in its demystification and operationalization of the complex and elusive nature of the design process. The publication portrays the designer’s daily work and the creative process, which the designer is a part of. Apart from displaying the designer’s work methods...... and design parameters, the publication shows examples from renowned Danish design firms. Through these examples the reader gets an insight into the designer’s reality....

  6. Low Reynolds number suspension gravity currents.

    Science.gov (United States)

    Saha, Sandeep; Salin, Dominique; Talon, Laurent

    2013-08-01

    The extension of a gravity current in a lock-exchange problem, proceeds as square root of time in the viscous-buoyancy phase, where there is a balance between gravitational and viscous forces. In the presence of particles however, this scenario is drastically altered, because sedimentation reduces the motive gravitational force and introduces a finite distance and time at which the gravity current halts. We investigate the spreading of low Reynolds number suspension gravity currents using a novel approach based on the Lattice-Boltzmann (LB) method. The suspension is modeled as a continuous medium with a concentration-dependent viscosity. The settling of particles is simulated using a drift flux function approach that enables us to capture sudden discontinuities in particle concentration that travel as kinematic shock waves. Thereafter a numerical investigation of lock-exchange flows between pure fluids of unequal viscosity, reveals the existence of wall layers which reduce the spreading rate substantially compared to the lubrication theory prediction. In suspension gravity currents, we observe that the settling of particles leads to the formation of two additional fronts: a horizontal front near the top that descends vertically and a sediment layer at the bottom which aggrandises due to deposition of particles. Three phases are identified in the spreading process: the final corresponding to the mutual approach of the two horizontal fronts while the laterally advancing front halts indicating that the suspension current stops even before all the particles have settled. The first two regimes represent a constant and a decreasing spreading rate respectively. Finally we conduct experiments to substantiate the conclusions of our numerical and theoretical investigation.

  7. A Model of Active Roll Vehicle Suspension

    Directory of Open Access Journals (Sweden)

    I. Čech

    2010-01-01

    Full Text Available This paper describes active suspension with active roll for four-wheel vehicle (bus by means of an in-series pump actuator with doubled hydropneumatic springs. It also gives full control law with no sky-craping. Lateral stiffness and solid axle geometry in the mechanical model are not neglected. Responses to lateral input as well as responses to statistical unevennesses show considerable improvement of passengers comfort and safety when cornering.

  8. Magnetic suspension - Today's marvel, tomorrow's tool

    Science.gov (United States)

    Lawing, Pierce L.

    1989-01-01

    NASA's Langley facility has through constant advocacy of magnetic suspension systems (MSSs) for wind-tunnel model positioning obtained a technology-development status for the requisite large magnets, computers, automatic control techniques, and apparatus configurations, to contemplate the construction of MSSs for large wind tunnels. Attention is presently given to the prospects for MSSs in wind tunnels employing superfluid helium atmospheres to obtain very high Reynolds numbers, where the MSS can yield substantial enhancements of wind tunnel productivity.

  9. Geometrical analysis of suspension flows near jamming

    Science.gov (United States)

    Wyart, Matthieu

    2012-02-01

    The viscosity of suspensions was computed early on by Einstein and Batchelor in the dilute regime. At high density however, their rheology remains mystifying. As the packing fraction increases, steric hindrance becomes dominant and particles move under stress in a more and more coordinated way. Eventually, the viscosity diverges as the suspension jams into an amorphous solid. Such a jamming transition is reminiscent of critical points: the rheology displays scaling and a diverging length scale. Jamming bear similarities with the glass transition where steric hindrance is enhanced under cooling, and where the dynamics is also observed to become more and more collective as it slows down. In all these examples, understanding the nature of the collective dynamics and the associated rheology remains a challenge. Recent progress has been made however on a related problem, the unjamming transition where a solid made of repulsive soft particles is isotropically decompressed toward vanishing pressure. In this situation various properties of the amorphous solid, such as elasticity, transport or force propagation, display scaling with the distance to threshold. Theoretically these observations can be shown to stem from the presence of soft modes in the vibrational spectrum, a result that can be extended to thermal colloidal glasses as well. Here we focus on particles driven by shear at zero temperature. We show that if hydrodynamical interactions are neglected an analogy can be made between the rheology of such a suspension and the elasticity of simple networks, building a link between the jamming and the unjamming transition. This analogy enables us to unify in a common framework key aspects of the elasticity of amorphous solids with the rheology of dense suspensions, and to relate features of the latter to the geometry of configurations visited under flow.

  10. Torsional asymmetry in suspension bridge systems

    Czech Academy of Sciences Publication Activity Database

    Malík, Josef

    2015-01-01

    Roč. 60, č. 6 (2015), s. 677-701 ISSN 0862-7940 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : suspension bridge * Hamilton principle * vertical and torsional oscillation * uniqueness * existence Subject RIV: BA - General Mathematics Impact factor: 0.507, year: 2015 http://link.springer.com/article/10.1007%2Fs10492-015-0117-3

  11. Spectral analysis connected with suspension bridge systems

    Czech Academy of Sciences Publication Activity Database

    Malík, Josef

    2016-01-01

    Roč. 81, č. 1 (2016), s. 42-75 ISSN 0272-4960 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : suspension bridge * vertical and torsional oscillation * eigenvalue * eigenvector * flutter Subject RIV: JM - Building Engineering Impact factor: 0.945, year: 2016 http://imamat.oxfordjournals.org/content/early/2015/09/16/imamat.hxv027.short?rss=1

  12. Active Suspension of Truck Seat

    Directory of Open Access Journals (Sweden)

    Masaaki Kawana

    1998-01-01

    Full Text Available The driver’s seat of a heavy duty truck is usually mounted on a spring–damper assembly anchored to the cab floor. To improve riding comfort, this study investigated the effects of mounting a computer-controlled actuator in parallel with the traditional spring–damper assembly. A dynamic model of the seat is represented by a two degree-of-freedom system, including a cushion. In this paper, a control system is designed, using optimal control theory, which minimizes rms vertical acceleration at a point representing the driver’s hip point. In this system, accelerations of the hip point, the seat frame and the cab floor are picked up and integrated to obtain the state variables to be fed back and fed forward to the actuator through a digital computer. The actuator is constructed with electric servo-motor and ball-screw mechanism. The experimental study was carried out on a shaker, which simulates the vibrations of the cab floor in actual service. Results were obtained for both a dummy and a real human body. The vibration test produced rms accelerations of the seat and the hip point of about 1.0 m/s2 without the actuator, while the rms accelerations were suppressed to about 0.5 m/s2 at a rms input voltage to the servo-motor of 1.0 V.

  13. Generating an Engineered Adipose Tissue Flap Using an External Suspension Device.

    Science.gov (United States)

    Wan, Jinlin; Dong, Ziqing; Lei, Chen; Lu, Feng

    2016-07-01

    The tissue-engineering chamber technique can generate large volumes of adipose tissue, which provides a potential solution for the complex reconstruction of large soft-tissue defects. However, major drawbacks of this technique are the foreign-body reaction and the volume limitation imposed by the chamber. In this study, the authors developed a novel tissue-engineering method using a specially designed external suspension device that generates an optimized volume of adipose flap and avoids the implantation of foreign material. The rabbits were processed using two different tissue-engineering methods, the external suspension device technique and the traditional tissue-engineering chamber technique. The adipose flaps generated by the external suspension device had a normal adipose tissue structure that was as good as that generated by the traditional tissue-engineering chamber, but the flap volume was much larger. The final volume of the engineered adipose flap grew between weeks 0 and 36 from 5.1 ml to 30.7 ml in the traditional tissue-engineering chamber group and to 80.5 ml in the external suspension device group. During the generation process, there were no marked differences between the two methods in terms of structural and cellular changes of the flap, except that the flaps in the traditional tissue-engineering chamber group had a thicker capsule at the early stage. In addition, the enlarged flaps generated by the external suspension device could be reshaped into specific shapes by the implant chamber. This minimally invasive external suspension device technique can generate large-volume adipose flaps. Combined with a reshaping method, this technique should facilitate clinical application of adipose tissue engineering.

  14. Assessment of railway wagon suspension characteristics

    Science.gov (United States)

    Soukup, Josef; Skočilas, Jan; Skočilasová, Blanka

    2017-05-01

    The article deals with assessment of railway wagon suspension characteristics. The essential characteristics of a suspension are represented by the stiffness constants of the equivalent springs and the eigen frequencies of the oscillating movements in reference to the main central inertia axes of a vehicle. The premise of the experimental determination of these characteristic is the knowledge of the gravity center position and the knowledge of the main central inertia moments of the vehicle frame. The vehicle frame performs the general spatial movement when the vehicle moves. An analysis of the frame movement generally arises from Euler's equations which are commonly used for the description of the spherical movement. This solution is difficult and it can be simplified by applying the specific assumptions. The eigen frequencies solutions and solutions of the suspension stiffness are presented in the article. The solutions are applied on the railway and road vehicles with the simplifying conditions. A new method which assessed the characteristics is described in the article.

  15. Asystole following Reintubation during Suspension Laryngoscopy

    Directory of Open Access Journals (Sweden)

    Sheryl H. Glassman

    2012-01-01

    Full Text Available Transient increase in heart rate and mean arterial pressure commonly occur during manipulation of the airway via direct laryngoscopy. This phenomenon is understood to be due to a sympathetic nervous system reflex causing an increase in plasma catecholamines. Rarely, severe bradycardia and possible asystole can occur following laryngoscopy. One previous report described asystole during suspension laryngoscopy after uneventful direct laryngoscopy. Here we report a case of asystole occurring at the time of reinsertion and cuff inflation of an endotracheal tube in a patient who had been hemodynamically stable during initial direct laryngoscopy and the ensuing suspension laryngoscopy. The asystole was immediately recognized and successful cardiopulmonary resuscitation was performed with the patient returning to baseline sinus rhythm. Cardiac arrest following laryngoscopy is rare. This case highlights the importance of continued vigilance even after the initial manipulations of the airway by both direct laryngoscopy and suspension laryngoscopy are to be performed. Identifying patients who may benefit from premedication with a vagolytic drug may prevent adversity. Preoperative heart rate analysis can identify patients with strong vagal tone.

  16. Physical gelation of a microfiber suspension.

    Science.gov (United States)

    Perazzo, Antonio; Nunes, Janine K.; Guido, Stefano; Stone, Howard A.

    2015-11-01

    Hydrogels are among the most exploited materials in tissue engineering and there is growing interest in injectable hydrogels, especially as applied to surgical adhesives and bioprinting materials. Here we report a method to produce a hydrogel in a desired location by simply extruding a suspension of high aspect ratio and flexible microfibers from a syringe. The mechanism of gel formation is purely physical and based on irreversible entanglements formed by the microfibers under the action of flow. The single microfibers have been produced and finely tailored by microfluidic methods. Shear rheology has been performed in order to get insights on the entanglements, and results show that the formation of entanglements is related to a shear thickening behavior of the suspension, which in turn depends on shear rate and concentration of fibers. When shearing the suspension, highly non-linear viscoelastic behavior is observed and probed by a highly positive first normal stress difference. We also report the hydrogel swelling behavior and its linear viscoelastic properties as obtained by imposing small oscillatory stress to the material.

  17. Armoring confined bubbles in concentrated colloidal suspensions

    Science.gov (United States)

    Yu, Yingxian; Khodaparast, Sepideh; Stone, Howard

    2016-11-01

    Encapsulation of a bubble with microparticles is known to significantly improve the stability of the bubble. This phenomenon has recently gained increasing attention due to its application in a variety of technologies such as foam stabilization, drug encapsulation and colloidosomes. Nevertheless, the production of such colloidal armored bubble with controlled size and particle coverage ratio is still a great challenge industrially. We study the coating process of a long air bubble by microparticles in a circular tube filled with a concentrated microparticles colloidal suspension. As the bubble proceeds in the suspension of particles, a monolayer of micro-particles forms on the interface of the bubble, which eventually results in a fully armored bubble. We investigate the phenomenon that triggers and controls the evolution of the particle accumulation on the bubble interface. Moreover, we examine the effects of the mean flow velocity, the size of the colloids and concentration of the suspension on the dynamics of the armored bubble. The results of this study can potentially be applied to production of particle-encapsulated bubbles, surface-cleaning techniques, and gas-assisted injection molding.

  18. Inertia Wheel on Low-Noise Active Magnetic Suspension

    Science.gov (United States)

    Carabelli, S.; Genta, G.; Silvagni, M.; Tonoli, A.

    2002-01-01

    Magnetic bearings are particularly suited for space applications for a number of reasons: - they are ideally suited for vacuum applications; - the lack of lubrication and wear enhances the reliability and guaranties a long maintenance-free operation - the low drag torque decreases power consumption and reduces the torque exerted on the stator of the machine. - the possibility of insulating actively the spacecraft from the excitation due to unbalance of the rotating system In the case of reaction wheels, a well designed magnetic suspension allows high speed operation with a very low power consumption and vibration level. Conversely, microgravity (and possibly vacuum) operation is an advantage for magnetic bearings. The absence of static forces allows to operate with low current levels, thus reducing electrical noise and allowing to reach even lower vibration levels than in Earth applications of magnetic bearings. Active magnetic bearings (AMB) allow to adapt the working characteristics of the system to the operating needs: it is possible to use the actuators to lock the system during launch (absence of grabbers) and to stiffen the suspension when the spacecraft is accelerated (impulsive phases), while working in conditions optimised for microgravity when this is needed. Magnetic suspension systems designed for microgravity environment cannot be correctly tested on the ground. Testing in ground conditions results in the need of grossly overdesigning the levitation device; furthermore, in some cases ground testing is completely impossible, if not by introducing devices which compensate for the Earth gravitational field. If the compensation for the gravitational force is supplied by the same actuators used for microgravity operation, the actuators and the power amplifiers must be overdesigned and in some cases the suspension can be altogether impossible. They work in conditions which are much different from nominal ones and, above all, it is impossible to reach the

  19. Mechatronic Design Automation

    DEFF Research Database (Denmark)

    Fan, Zhun

    successfully design analogue filters, vibration absorbers, micro-electro-mechanical systems, and vehicle suspension systems, all in an automatic or semi-automatic way. It also investigates the very important issue of co-designing plant-structures and dynamic controllers in automated design of Mechatronic...

  20. Formulation and Validation of an Efficient Computational Model for a Dilute, Settling Suspension Undergoing Rotational Mixing

    Energy Technology Data Exchange (ETDEWEB)

    Sprague, Michael A.; Stickel, Jonathan J.; Sitaraman, Hariswaran; Crawford, Nathan C.; Fischer, Paul F.

    2017-04-11

    Designing processing equipment for the mixing of settling suspensions is a challenging problem. Achieving low-cost mixing is especially difficult for the application of slowly reacting suspended solids because the cost of impeller power consumption becomes quite high due to the long reaction times (batch mode) or due to large-volume reactors (continuous mode). Further, the usual scale-up metrics for mixing, e.g., constant tip speed and constant power per volume, do not apply well for mixing of suspensions. As an alternative, computational fluid dynamics (CFD) can be useful for analyzing mixing at multiple scales and determining appropriate mixer designs and operating parameters. We developed a mixture model to describe the hydrodynamics of a settling cellulose suspension. The suspension motion is represented as a single velocity field in a computationally efficient Eulerian framework. The solids are represented by a scalar volume-fraction field that undergoes transport due to particle diffusion, settling, fluid advection, and shear stress. A settling model and a viscosity model, both functions of volume fraction, were selected to fit experimental settling and viscosity data, respectively. Simulations were performed with the open-source Nek5000 CFD program, which is based on the high-order spectral-finite-element method. Simulations were performed for the cellulose suspension undergoing mixing in a laboratory-scale vane mixer. The settled-bed heights predicted by the simulations were in semi-quantitative agreement with experimental observations. Further, the simulation results were in quantitative agreement with experimentally obtained torque and mixing-rate data, including a characteristic torque bifurcation. In future work, we plan to couple this CFD model with a reaction-kinetics model for the enzymatic digestion of cellulose, allowing us to predict enzymatic digestion performance for various mixing intensities and novel reactor designs.

  1. Final Technical Progress Report: Development of Low-Cost Suspension Heliostat; December 7, 2011 - December 6, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bender, W.

    2013-01-01

    Final technical progress report of SunShot Incubator Solaflect Energy. The project succeeded in demonstrating that the Solaflect Suspension Heliostat design is viable for large-scale CSP installations. Canting accuracy is acceptable and is continually improving as Solaflect improves its understanding of this design. Cost reduction initiatives were successful, and there are still many opportunities for further development and further cost reduction.

  2. In situ characterization of organo-modified and unmodified montmorillonite aqueous suspensions by UV-visible spectroscopy.

    Science.gov (United States)

    Alin, Jonas; Rubino, Maria; Auras, Rafael

    2015-10-15

    UV-visible (UV-Vis) spectroscopy (Tyndall spectra) was applied and tested for its ability to measure organo-modified and unmodified montmorillonite (MMT) clays in aqueous suspensions. A full factorial design of experiments was used to study the influence of pH, NaCl and clay concentrations on the average particle size of the clay agglomerates. The methodology was evaluated by observing results that were consistent with previous research about the unmodified clay's behavior in aqueous suspensions. The results from this evaluation corresponded to accepted theories about the unmodified clay's behavior, indicating that the methodology is precise enough to distinguish the effects of the studied factors on these clay suspensions. The effect of clay concentration was related to the amount of ions per clay particle for the unmodified clay, but was not significant for the organo-modified MMT. The average particle size of the organo-modified MMT in suspension was significantly larger than that of the unmodified clay. Size of the organo-modified MMT agglomerates in suspension decreased in the presence of NaCl and at both high and low pH; this behavior was opposite to that of the unmodified clay. These results demonstrate that the UV-Vis methodology is well-suited for characterizing clay particle size in aqueous suspensions. The technique also is simple, rapid, and low-cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The effect of linear spring number at side load of McPherson suspension in electric city car

    Science.gov (United States)

    Budi, Sigit Setijo; Suprihadi, Agus; Makhrojan, Agus; Ismail, Rifky; Jamari, J.

    2017-01-01

    The function of the spring suspension on Mc Pherson type is to control vehicle stability and increase ride convenience although having tendencies of side load presence. The purpose of this study is to obtain simulation results of Mc Pherson suspension spring in the electric city car by using the finite element method and determining the side load that appears on the spring suspension. This research is conducted in several stages; they are linear spring designing models with various spring coil and spring suspension modeling using FEM software. Suspension spring is compressed in the vertical direction (z-axis) and at the upper part of the suspension springs will be seen the force that arises towards the x, y, and z-axis to simulate the side load arising on the upper part of the spring. The results of FEM simulation that the side load on the spring toward the x and y-axis which the value gets close to zero is the most stable spring.

  4. Quasi-Static Condensation of Aeroelastic Suspension Bridge Model

    DEFF Research Database (Denmark)

    Møller, Randi N.; Krenk, Steen; N. Svendsen, Martin

    2017-01-01

    For long span bridges the wind-induced dynamic response is a design driving factor and therefore continuously a subject for detailed analysis. Traditionally both buffeting and stability calculations have been considered in the frequency domain. However, this yields alimitation in accounting...... for turbulence when considering the stability limit and further it is not possible to account for non-linear effects. These limitations suggest to do simulations of the aeroelastic response of long span bridges in the time domain. For this it is of interest to have an efficient model while still maintaining...... sufficient accuracy. This contribution is on quasi-static reduction of an aeroelastic finite element model of a 3000m suspension bridge proposed for crossing Sulafjorden in Norway. The model is intended for stability limit calculation where the representation of higher modes is of less importance...

  5. Studies of the setting behavior of cement suspensions

    International Nuclear Information System (INIS)

    Rudolph, G.; Luo, S.; Vejmelka, P.; Koester, R.

    1983-10-01

    The design of process for cementation of radioactive waste solutions is determined not only by the quality of the final product but also by the behavior of the cement grout before and during setting. For these reasons quantitative investigations were performed on the characteristics of the cement suspensions considered for solidification of intermediate-level liquid wastes which are composed mainly of cement, bentonite, simulated waste solution, and water. Particular interest was given to the differences in behavior of the various types of cement. The parameters investigated include viscosity, bleeding, volume change during setting, influence of compacting by vibration, time of setting, heat of hydration. At the end of the report the merits and drawbacks of the different cements are tabulated. These data may serve as a decision aid in selecting an appropriate type of cement

  6. The Challenges of Rehabilitating the Hercilio Luz Suspension Bridge

    Directory of Open Access Journals (Sweden)

    Hermes Carvalho

    Full Text Available Abstract The Hercílio Luz suspension bridge, built in 1926, has been out of service since 1991 due to high corrosion levels and structural element impairment. A complete rehabilitation project was developed which included the replacement of the impaired items and foundation strengthening. For this, an auxiliary structure was employed to support the central span during the rehabilitation process. A carefully studied load transfer process, where the central span loading is transferred from the eye-bar towards the auxiliary structure will be performed. For this purpose, a synchronized jacking sequence will be used, which was predefined by means of numerical model analysis. All structural elements had their designs evaluated and some geometric changes were implemented. This paper presents all the methodology developed in the rehabilitation project of Hercilio Luz bridge, as well as the development stages up to the present date.

  7. Combinatorial designs constructions and analysis

    CERN Document Server

    Stinson, Douglas R

    2004-01-01

    Created to teach students many of the most important techniques used for constructing combinatorial designs, this is an ideal textbook for advanced undergraduate and graduate courses in combinatorial design theory. The text features clear explanations of basic designs, such as Steiner and Kirkman triple systems, mutual orthogonal Latin squares, finite projective and affine planes, and Steiner quadruple systems. In these settings, the student will master various construction techniques, both classic and modern, and will be well-prepared to construct a vast array of combinatorial designs. Design theory offers a progressive approach to the subject, with carefully ordered results. It begins with simple constructions that gradually increase in complexity. Each design has a construction that contains new ideas or that reinforces and builds upon similar ideas previously introduced. A new text/reference covering all apsects of modern combinatorial design theory. Graduates and professionals in computer science, applie...

  8. A multiobjective ? control strategy for energy harvesting in regenerative vehicle suspension systems

    Science.gov (United States)

    Casavola, Alessandro; Di Iorio, Fabio; Tedesco, Francesco

    2018-04-01

    A significant amount of energy induced by road unevenness and vehicle roll and pitch motions is usually dissipated by conventional shock-absorbers. In this paper, a novel active multiobjective ? control design methodology is proposed which explicitly includes, besides the usual control objectives on ride comfort, road handling and suspension stroke, the amount of energy to be harvested as an additional, though conflicting, control objective and allows the designer to directly trade-off among them depending on the application. An electromechanical regenerative suspension system is considered where the viscous damper is replaced by a linear electrical motor which is actively governed. It is shown that the proposed control law is able to achieve remarkable improvements on the amount of the harvested energy with respect to passive or semi-active control strategies while maintaining the other objectives at acceptable levels. Simulative studies undertaken via CarSim are also reported that confirm the potentiality and flexibility of the proposed control design strategy.

  9. Toward a general psychological model of tension and suspense.

    Science.gov (United States)

    Lehne, Moritz; Koelsch, Stefan

    2015-01-01

    Tension and suspense are powerful emotional experiences that occur in a wide variety of contexts (e.g., in music, film, literature, and everyday life). The omnipresence of tension and suspense suggests that they build on very basic cognitive and affective mechanisms. However, the psychological underpinnings of tension experiences remain largely unexplained, and tension and suspense are rarely discussed from a general, domain-independent perspective. In this paper, we argue that tension experiences in different contexts (e.g., musical tension or suspense in a movie) build on the same underlying psychological processes. We discuss key components of tension experiences and propose a domain-independent model of tension and suspense. According to this model, tension experiences originate from states of conflict, instability, dissonance, or uncertainty that trigger predictive processes directed at future events of emotional significance. We also discuss possible neural mechanisms underlying tension and suspense. The model provides a theoretical framework that can inform future empirical research on tension phenomena.

  10. Effective viscous flow properties for fiber suspensions under concentrated conditions

    International Nuclear Information System (INIS)

    Christensen, R.M.

    1993-01-01

    The effective longitudinal and transverse shear viscosities are derived for an aligned fiber suspension. The solutions are valid under very concentrated conditions for a hexagonal arrangement of the single size fibers. The results compliment the classical dilute suspension forms at the other extreme of concentration. Empirical forms are constructed to cover the full range of volume fraction of the fiber phase. Also, single size spherical particle suspensions are given a similar treatment to that of the fiber case

  11. Stability of an extemporaneously prepared thalidomide suspension.

    Science.gov (United States)

    Kraft, Shawna; Johnson, Cary E; Tyler, Ryan P

    2012-01-01

    The short-term physical and chemical stability of an oral suspension of thalidomide 20 mg/mL was studied. An oral suspension of thalidomide 20 mg/mL was prepared by emptying the contents of 12 100-mg thalidomide capsules into a glass mortar; 30 mL of Ora-Plus and 30 mL of Ora-Sweet were mixed and added to the thalidomide powder to make a final volume of 60 mL. Three identical samples of the formulation were prepared and placed in 2-oz amber plastic bottles with child-resistant caps and stored under refrigeration (3-5 °C). A 1-mL sample was withdrawn from each of the three samples with a micropipette immediately after preparation and at 7, 14, 21, 28, and 35 days. After further dilution to an expected concentration of 20 μg/mL with acetonitrile-methanol and then dilution with mobile phase, the samples were assayed in duplicate using stability-indicating high-performance liquid chromatography. Stability was determined by evaluating the percentage of the initial concentration remaining at each time point; stability was defined as the retention of at least 90% of the initial concentration of thalidomide. At least 92% of the initial thalidomide concentration remained throughout the 35-day study period. There were no detectable changes in color, odor, or pH and no visible microbial growth in any sample. An extemporaneously prepared suspension of thalidomide 20 mg/mL in a 1:1 mixture of Ora-Plus and Ora-Sweet was stable for at least 35 days when stored in 2-oz amber plastic bottles under refrigeration.

  12. Stability of an extemporaneously prepared tadalafil suspension.

    Science.gov (United States)

    Pettit, Rebecca S; Johnson, Cary E; Caruthers, Regine L

    2012-04-01

    The stability of an extemporaneously prepared tadalafil oral suspension was studied. An oral suspension of tadalafil 5 mg/mL was prepared by thoroughly grinding 15 20-mg tadalafil tablets in a glass mortar. Thirty milliliters of Ora-Plus and 30 mL of Ora-Sweet were mixed and added to the powder to make a final volume of 60 mL. Three identical samples of the formulation were prepared and placed in 2-oz amber plastic bottles with child-resistant caps and stored at room temperature (23-25 °C). A 1-mL sample was withdrawn from each of the three bottles with a micropipette immediately after preparation and at 7, 14, 28, 57, and 91 days. After double dilution (1:10 and 0.1:5 v/v) to an expected concentration of 10 μg/mL with methanol and mobile phase, respectively, the samples were assayed in duplicate using stability-indicating high-performance liquid chromatography. The samples were visually examined for any color change and evaluated for pH changes on each day of analysis. Taste evaluation was performed at the beginning and end of the study. Stability was defined as the retention of at least 90% of the initial concentration. At least 99% of the initial tadalafil concentration remained throughout the 91-day study period. There were no detectable changes in color, odor, taste, and pH, and no visible microbial growth was observed in any sample. An extemporaneously prepared suspension of tadalafil 5 mg/mL in a 1:1 mixture of Ora-Plus and Ora-Sweet was stable for at least 91 days when stored in amber plastic bottles at room temperature.

  13. Stability of extemporaneously prepared moxifloxacin oral suspensions.

    Science.gov (United States)

    Hutchinson, David J; Johnson, Cary E; Klein, Kristin C

    2009-04-01

    The stability of extemporaneously prepared moxifloxacin oral suspensions was studied. An oral suspension of moxifloxacin 20 mg/mL was prepared by thoroughly grinding three 400-mg tablets of moxifloxacin in a glass mortar. Thirty milliliters of Ora-Plus and 30 mL of either Ora-Sweet or Ora-Sweet SF were mixed and added to the powder to make a final volume of 60 mL. Three identical samples of each formulation were prepared and placed in 2-oz amber plastic bottles with child-resistant caps and were stored at room temperature (23-25 degrees C). A 1-mL sample was withdrawn from each of the six bottles with a micropipette immediately after preparation and at 7, 14, 28, 60, and 90 days. After further dilution to an expected concentration of 8 microg/ mL with sample diluent, the samples were assayed in duplicate by stability-indicating high-performance liquid chromatography. Stability was defined as the retention of at least 90% of the initial concentration. At least 99% of the initial moxifloxacin remained throughout the 90-day study period in both preparations. There were no detectable changes in color, odor, taste, and pH and no visible microbial growth in any sample. Extemporaneously compounded suspensions of moxifloxacin 20 mg/mL in a 1:1 mixture of Ora-Plus and Ora-Sweet or Ora-Sweet SF were stable for at least 90 days when stored in 2-oz amber plastic bottles at room temperature.

  14. Stability of extemporaneously prepared glycopyrrolate oral suspensions.

    Science.gov (United States)

    Cober, Mary Petrea; Johnson, Cary E; Sudekum, David; Penprase, Kimberly

    2011-05-01

    The stability of extemporaneously prepared glycopyrrolate 0.5-mg/mL suspensions was evaluated. An oral suspension of glycopyrrolate 0.5 mg/mL was prepared by thoroughly grinding 30 1-mg tablets of glycopyrrolate in a glass mortar. Thirty milliliters of Ora-Plus and 30 mL of either Ora-Sweet or Ora-Sweet SF were mixed and added to the powder to make a final volume of 60 mL. Three identical samples of the formulation were prepared and placed in 2-oz amber plastic bottles with child-resistant caps and stored at room temperature (23-25 °C). A 1-mL sample was withdrawn from each of the three bottles with a micropipette immediately after preparation and 7, 15, 30, 60, and 90 days afterward. After further dilution to an expected concentration of 50 μg/mL with sample diluent, the samples were assayed in duplicate by stability-indicating high-performance liquid chromatography. The samples were visually examined for any color change and evaluated for pH on each day of analysis. Taste evaluations were performed at the beginning and end of the study. Stability was defined as the retention of at least 90% of the initial concentration. At least 95% of the initial glycopyrrolate remained throughout the 90-day study period in both preparations. There were no detectable changes in color, odor, taste, and pH, and no visible microbial growth was observed in any sample. Extemporaneously compounded suspensions of glycopyrrolate 0.5 mg/mL in a 1:1 mixture of Ora-Plus/Ora-Sweet or Ora-Plus/Ora-Sweet SF were stable for at least 90 days when stored in amber plastic bottles at room temperature.

  15. Stability of extemporaneously prepared rifaximin oral suspensions.

    Science.gov (United States)

    Cober, Mary Petrea; Johnson, Cary E; Lee, Jordan; Currie, Kenne

    2010-02-15

    The stability of extemporaneously prepared rifaximin oral suspensions was studied. An oral suspension of rifaximin 20 mg/mL was prepared by thoroughly grinding six 200-mg tablets of rifaximin in a glass mortar. Thirty milliliters of Ora-Plus and 30 mL of either Ora-Sweet or Ora-Sweet SF were mixed and added to the powder to make a final volume of 60 mL. Three identical samples of each formulation were prepared and placed in 2-oz amber plastic bottles with child-resistant caps and were stored at room temperature (23-25 degrees C). A 1-mL sample was withdrawn from each of the six bottles with a micropipette immediately after preparation and at 7, 15, 30, and 60 days. After further dilution to an expected concentration of 20 microg/mL with mobile phase, the samples were assayed in duplicate using stability-indicating high-performance liquid chromatography. The samples were visually examined for any color change and pH was tested on each day of analysis. Stability was determined by evaluating the percentage of the initial concentration remaining at each time point and defined as retention of at least 90% of the initial concentration of rifaximin. At least 99% of the initial rifaximin remained throughout the 60-day study period in both preparations. There were no detectable changes in color, odor, taste, or pH and no visible microbial growth in any sample. Extemporaneously prepared suspensions of rifaximin 20 mg/mL in 1:1 mixtures of Ora-Plus with either Ora-Sweet or Ora-Sweet SF were stable for at least 60 days when stored in 2-oz amber plastic bottles at room temperature.

  16. State observer-based sliding mode control for semi-active hydro-pneumatic suspension

    Science.gov (United States)

    Ren, Hongbin; Chen, Sizhong; Zhao, Yuzhuang; Liu, Gang; Yang, Lin

    2016-02-01

    This paper proposes an improved virtual reference model for semi-active suspension to coordinate the vehicle ride comfort and handling stability. The reference model combines the virtues of sky-hook with ground-hook control logic, and the hybrid coefficient is tuned according to the longitudinal and lateral acceleration so as to improve the vehicle stability especially in high-speed condition. Suspension state observer based on unscented Kalman filter is designed. A sliding mode controller (SMC) is developed to track the states of the reference model. The stability of the SMC strategy is proven by means of Lyapunov function taking into account the nonlinear damper characteristics and sprung mass variation of the vehicle. Finally, the performance of the controller is demonstrated under three typical working conditions: the random road excitation, speed bump road and sharp acceleration and braking. The simulation results indicated that, compared with the traditional passive suspension, the proposed control algorithm can offer a better coordination between vehicle ride comfort and handling stability. This approach provides a viable alternative to costlier active suspension control systems for commercial vehicles.

  17. Red blood cell (RBC) suspensions in confined microflows: Pressure-flow relationship.

    Science.gov (United States)

    Stauber, Hagit; Waisman, Dan; Korin, Netanel; Sznitman, Josué

    2017-10-01

    Microfluidic-based assays have become increasingly popular to explore microcirculation in vitro. In these experiments, blood is resuspended to a desired haematocrit level in a buffer solution, where frequent choices for preparing RBC suspensions comprise notably Dextran and physiological buffer. Yet, the rational for selecting one buffer versus another is often ill-defined and lacks detailed quantification, including ensuing changes in RBC flow characteristics. Here, we revisit RBC suspensions in microflows and attempt to quantify systematically some of the differences emanating between buffers. We measure bulk flow rate (Q) of RBC suspensions, using PBS- and Dextran-40, as a function of the applied pressure drop (ΔP) for two hematocrits (∼0% and 23%). Two distinct microfluidic designs of varying dimensions are employed: a straight channel larger than and a network array similar to the size of individual RBCs. Using the resulting pressure-flow curves, we extract the equivalent hydrodynamic resistances and estimate the relative viscosities. These efforts are a first step in rigorously quantifying the influence of the 'background' buffer on RBC flows within microfluidic devices and thereby underline the importance of purposefully selecting buffer suspensions for microfluidic in vitro assays. Copyright © 2017. Published by Elsevier Ltd.

  18. Single Additive Enables 3D Printing of Highly Loaded Iron Oxide Suspensions.

    Science.gov (United States)

    Hodaei, Amin; Akhlaghi, Omid; Khani, Navid; Aytas, Tunahan; Sezer, Dilek; Tatli, Buse; Menceloglu, Yusuf Z; Koc, Bahattin; Akbulut, Ozge

    2018-03-21

    A single additive, a grafted copolymer, is designed to ensure the stability of suspensions of highly loaded iron oxide nanoparticles (IOPs) and to facilitate three-dimensional (3D) printing of these suspensions in the filament form. This poly (ethylene glycol)-grafted copolymer of N-[3(dimethylamino)propyl]methacrylamide and acrylic acid harnesses both electrostatic and steric repulsion to realize an optimum formulation for 3D printing. When used at 1.15 wt % (by the weight of IOPs), the suspension attains ∼81 wt % solid loading-96% of the theoretical limit as calculated by the Krieger-Dougherty equation. Rectangular, thick-walled toroidal, and thin-walled toroidal magnetic cores and a porous lattice structure are fabricated to demonstrate the utilization of this suspension as an ink for 3D printing. The electrical and magnetic properties of the magnetic cores are characterized through impedance spectroscopy (IS) and vibrating sample magnetometry (VSM), respectively. The IS indicates the possibility of utilizing wire-wound 3D printed cores as the inductive coils. The VSM verifies that the magnetic properties of IOPs before and after the ink formulation are kept almost unchanged because of the low dosage of the additive. This particle-targeted approach for the formulation of 3D printing inks allows embodiment of a fully aqueous system with utmost target material content.

  19. The dynamics of monolithic suspensions for advanced detectors: A 3-segment model

    Energy Technology Data Exchange (ETDEWEB)

    Piergiovanni, F; Campagna, E; Cesarini, E; Martelli, F; Vetrano, F; Vicere, A [Universita di Urbino, Via S.Chiara 27, 61029 Urbino (Italy); Lorenzini, M; Cagnoli, G; Losurdo, G, E-mail: piergiovanni@fi.infn.i [INFN, Istituto Nazionale di Fisica Nucleare, Sez. di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino (Italy)

    2010-05-01

    In order to reduce the suspension thermal noise, the second generation GW interferometric detectors will employ monolithic suspensions in fused silica to hold the mirrors. The fibres are produced by melting and pulling apart a fused silica rod, obtaining a long thin wire with two thicker heads. The dynamics of such a fibre is in principle different from that of a cylindrical, regular fibre, because most of the deformation energy is stored in the neck region where the diameter is variable. This is an advantage, since adjusting the neck tapering, a thermoelastic noise cancellation effect can be obtained. Therefore, a careful study of the suspensions behavior is necessary to estimate the overall noise and to optimize the control strategy. To simplify the control design, a simple three segment model for the silica fibres has been developed, fully equivalent to the beam equation at low frequencies. The model, analytically proved for a regular cylindrical fibre, can be extended to a fibre with tapered necks, provided that the equivalent bending length is suitably measured. We developed a tool to measure the position of the bending point for each fibre, thus allowing to experimentally check the validity of the model. A numerical code has been written to solve the beam equation for wires with varying diameter. This code confirms the validity of the three segment model. Moreover, it is possible to extend the solution to higher frequencies thus computing the transfer function and the energy distribution of the suspension system and estimating the thermal noise contribution.

  20. Analysis and experimental validation of an HTS linear synchronous propulsion prototype with HTS magnetic suspension

    International Nuclear Information System (INIS)

    Jin Jianxun; Zheng Luhai; Guo Youguang; Xu Wei; Zhu Jianguo

    2011-01-01

    An HTS linear synchronous propulsion prototype with an HTSLSM drive is developed. The feasibility of combining an HTSLSM with an HTS magnetic suspension system has been verified. Three different PMGs are studied by ECS method and experiment verification to obtain an optimal one. The prototype has been tested to obtain the performance and thrust characteristics of the HTSLSM. The measurement results benefit the optimal design and control scheme development for an HTSLSM. A high temperature superconducting (HTS) linear propulsion system composed of a single-sided HTS linear synchronous motor (HTSLSM) in its middle and HTS magnetic suspension sub-systems on both sides has been developed. The HTSLSM uses an HTS bulk magnet array on the moving secondary, and the field-trapped characteristics of the HTS bulk using different magnetized methods have been measured and compared to identify their magnetization capability. In order to generate a large levitation force for the system, three different types of permanent magnet guideways (PMGs) have been numerically analyzed and experimentally verified to obtain an optimal PMG. Based on comprehensive experimental prototype tests, the results show that the HTS linear propulsion system can run with stable magnetic suspension having a constant air-gap length, and the thrust characteristics versus the exciting current, working frequency and the air-gap length have also been obtained. This work forms the basis for developing a practical HTS linear propulsion system by using HTS bulks both for propulsion and suspension.

  1. Active Electromechanical Suspension System for Planetary Rovers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Balcones Technologies, LLC proposes to adapt actively controlled suspension technology developed by The University of Texas at Austin Center for Electromechanics...

  2. A microsphere suspension model of metamaterial fluids

    Directory of Open Access Journals (Sweden)

    Qian Duan

    2017-05-01

    Full Text Available Drawing an analogy to the liquid phase of natural materials, we theoretically propose a microsphere suspension model to realize a metamaterial fluid with artificial electromagnetic indexes. By immersing high-ε, micrometer-sized dielectric spheres in a low-ε insulating oil, the structured fluid exhibits liquid-like properties from dispersing phase as well as the isotropic negative electromagnetic parameters caused by Mie resonances from dispersed microspheres. The work presented here will benefit the development of structured fluids toward metamaterials.

  3. Stability of extemporaneously prepared rufinamide oral suspensions.

    Science.gov (United States)

    Hutchinson, David J; Liou, Yayin; Best, Robert; Zhao, Fang

    2010-03-01

    Rufinamide is an oral antiepileptic drug indicated for adjunctive therapy in treating generalized seizures associated with Lennox-Gastaut syndrome. Currently, rufinamide is available as 200-mg and 400-mg tablets. A liquid dosage form does not exist at the present time. Lack of a suspension formulation may present an administration problem for many children and adults who are unable to swallow tablets. The availability of a liquid dosage form will provide an easy and accurate way to measure and administer the medication. To determine the stability of both sugar-containing and sugar-free rufinamide suspensions over a 90-day period. A suspension of rufinamide 40 mg/mL was prepared by grinding twelve 400-mg tablets of rufinamide tablets in a glass mortar. Sixty milliliters of Ora-Plus and 60 mL of either Ora-Sweet or Ora-Sweet SF (sugar free) were mixed and added to the powder to make a final volume of 120 mL. Three identical samples of each formulation were prepared and placed in 60-mL amber plastic bottles and were stored at room temperature. A 1-mL sample was withdrawn from each of the 6 bottles with a micropipette immediately after preparation and at 7, 14, 28, 56, and 90 days. After further dilution to an expected concentration of 0.4 mg/mL, the samples were assayed using high-performance liquid chromatography. Stability was defined as the retention of at least 90% of the initial concentration. At least 90% of the initial rufinamide concentration remained throughout the 90-day study period in both preparations. There were no detectable changes in color, odor, taste, and pH and no visible microbial growth. Extemporaneously compounded suspensions of rufinamide 40 mg/mL in a 1:1 mixture of Ora-Plus and Ora-Sweet or Ora-Sweet SF were stable for at least 90 days when stored in 59-mL amber polypropylene plastic bottles at room temperature.

  4. Conductivity maximum in a charged colloidal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, S

    2009-01-27

    Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.

  5. Simulations of magnetorheological suspensions in Poiseuille flow

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, Yannis; Klingenberg, Daniel J. [University of Wisconsin-Madison, Department of Chemical and Biological Engineering, Madison, WI (United States)

    2006-06-15

    Particle-level simulations are conducted to study magnetorheological fluids in plane Poiseuille flow. The importance of the boundary conditions for the particles at the channel walls is examined by considering two extreme cases: no friction and infinite coefficient of friction. The inclusion of friction produces Bingham fluid behavior, as commonly observed experimentally for MR suspensions. Lamellar structures, similar to those reported for electrorheological fluids in shear flow, are observed in the post-yield region for both particle boundary conditions. The formation of these lamellae is accompanied by an increase in the bulk fluid velocity. The slip boundary condition produces higher fluid velocities and thicker lamellar structures. (orig.)

  6. Thermocouple pressure bushing in suspension rod

    International Nuclear Information System (INIS)

    Pasek, J.; Ondreicka, K.

    1975-01-01

    The seal is described of jacket thermocouples located in the pressure reducer in the fuel element suspension rod. The thermocouples are sealed in the pressure reducer with a silicon sealing compound. The sealing compound is compressed between the two reducers with a Bellevile spring and a pressure washer secured in position with a spring. The axial pressure of the inner parts of the reducer on the compound is adjustable by means of a thrust screw. The tightness and alignment of the thermocouples in the pressure reducer is achieved by tightening the thrust screw to the stop of the top reducer and the subsequent setting of the sealing compound. (J.B.)

  7. Intrinsic viscosity of a suspension of cubes

    KAUST Repository

    Mallavajula, Rajesh K.

    2013-11-06

    We report on the viscosity of a dilute suspension of cube-shaped particles. Irrespective of the particle size, size distribution, and surface chemistry, we find empirically that cubes manifest an intrinsic viscosity [η]=3.1±0.2, which is substantially higher than the well-known value for spheres, [η]=2.5. The orientation-dependent intrinsic viscosity of cubic particles is determined theoretically using a finite-element solution of the Stokes equations. For isotropically oriented cubes, these calculations show [η]=3.1, in excellent agreement with our experimental observations. © 2013 American Physical Society.

  8. Effect of suspension characteristics on in-flight particle properties and coating microstructures achieved by suspension plasma spray

    Science.gov (United States)

    Aubignat, E.; Planche, M. P.; Allimant, A.; Billières, D.; Girardot, L.; Bailly, Y.; Montavon, G.

    2014-11-01

    This paper focuses on the influence of suspension properties on the manufacturing of coatings by suspension plasma spraying (SPS). For this purpose, alumina suspensions were formulated with two different liquid phases: water and ethanol. Suspensions were atomized with a twin-fluid nozzle and injected in an atmospheric plasma jet. Suspension injection was optimized thanks to shadowgraphy observations and drop size distribution measurements performed by laser diffraction. In-flight particle velocities were evaluated by particle image velocimetry. In addition, splats were collected on glass substrates, with the same conditions as the ones used during the spray process. Scanning electron microscopy (SEM) and profilometry analyses were then performed to observe the splat morphology and thus to get information on plasma / suspension interactions, such as particle agglomeration. Finally, coatings were manufactured, characterized by SEM and compared to each other.

  9. Drug release from non-aqueous suspensions. II. The release of methylxanthines from paraffin suspensions

    NARCIS (Netherlands)

    Blaey, C.J. de; Fokkens, J.G.

    1984-01-01

    The release of 3 methylxanthines, i.e. caffeine, theobromine and theophylline, from suspensions in liquid paraffin to an aqueous phase was determined in an in vitro apparatus. The release rates were determined as a function of the pH of the aqueous phase. It was proved that the release process was

  10. The Quadruple Helix-Based Innovation Model of Reference Sites for Active and Healthy Ageing in Europe: The Ageing@Coimbra Case Study.

    Science.gov (United States)

    Malva, João O; Amado, Alda; Rodrigues, Alexandra; Mota-Pinto, Anabela; Cardoso, Ana F; Teixeira, Ana M; Todo-Bom, Ana; Devesa, António; Ambrósio, António F; Cunha, António L; Gomes, Bárbara; Dantas, Carina; Abreu, Cidalina; Santana, Isabel; Bousquet, Jean; Apóstolo, João; Santos, Lúcia; Meneses de Almeida, Lúcio; Illario, Maddalena; Veríssimo, Rafaela; Rodrigues, Vitor; Veríssimo, Manuel T

    2018-01-01

    Challenges posed by demographic changes and population aging are key priorities for the Horizon 2020 Program of the European Commission. Aligned with the vision of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA), the development, exchange, and large-scale adoption of innovative good practices is a key element of the responses required to ensure all European citizens remain as active and healthy as possible as they age. Urged by the need of developing scalable disruptive innovation across Europe, the European Commission and the EIP on AHA created the Reference Sites; local coalition of partners that develop good practices to support AHA. Ageing@Coimbra is an example of how this can be achieved at a regional level. The consortium comprises over 70 institutions that develop innovative practices to support AHA in Portugal. Ageing@Coimbra partners support a regional network of stakeholders that build a holistic ecosystem in health and social care, taking into consideration the specificities of the territories, living environments and cultural resources (2,243,934 inhabitants, 530,423 aged 65 or plus live in the Centre Region of Portugal). Good practices in reducing the burden of brain diseases that affect cognition and memory impairment in older people and tackling social isolation in urban and rural areas are among the top priorities of Ageing@Coimbra. Profiting from the collaborative work of academia, business companies, civil society, and authorities, the quadruple helix of Ageing@Coimbra supports: early diagnosis of frailty and disease; care and cure; and active, assisted, and independent living. This paper describes, as a Community Case Study, the creation of a Reference Site of the EIP on AHA, Ageing@Coimbra, and its impact in Portugal. This Reference Site can motivate other regions to develop innovative formulas to federate stakeholders and networks, building consortia at regional level. This growing movement, across Europe, is

  11. Synthesis and properties of a new quadruple perovskite: A-site ordered PbMn{sub 3}Mn{sub 4}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Locherer, T.; Dinnebier, R.; Kremer, R.K. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart (Germany); Greenblatt, M., E-mail: martha@rutchem.rutgers.edu [Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854 (United States); Jansen, M. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart (Germany)

    2012-06-15

    PbMn{sub 3}Mn{sub 4}O{sub 12} a quadruple perovskite was prepared by high pressure and high temperature synthesis. Powder X-ray diffraction (PXD) and differential scanning calorimetry reveal a structural phase transition at {approx}380 K. Rietveld refinement of the synchrotron room temperature data indicate rhombohedral symmetry (R-3) with a=6.43675(4) A and {alpha}=109.556(2) Degree-Sign . Similar 423 K PXD data refined in a body centered cubic cell (Im-3) with a=7.4283(9) A. The temperature variation of magnetization, shows a magnetic field dependent antiferromagnetic-like transition at 68 K, and dynamic fluctuations indicative of magnetic frustration. The semiconducting electrical behavior indicates a large decrease in the conductivity near 68 K. The temperature dependence of the real part of the dielectric constant, {epsilon}{sub real} increases dramatically at {approx}68 K, and shows relaxor-type ferroelectric behavior as a function of frequency. The intimate coupling of magnetic, electrical and dielectric properties at 68 K in PbMn{sub 3}Mn{sub 4}O{sub 12} suggests possible multiferroic behavior. - Graphical abstract: Resistance vs. temperature plot showing drastically increasing resistances at temperatures below 68 K (a). Formation of a frequency dependency of the dielectric constant between 68 K and ambient temperature (b). Sharp cusp in the magnetic susceptibility observed at 68 K which is suppressed with increasing magnetic field (c) indicates coupling of magnetic, electric and dielectric effects. Highlights: Black-Right-Pointing-Pointer PbMn{sub 3}Mn{sub 4}O{sub 12} a quadruple perovskite was prepared at high pressure. Black-Right-Pointing-Pointer A structural transition is seen at 380 K from space group R-3-to-Im-3. Black-Right-Pointing-Pointer An antiferromagnetic transition is observed at 68 K. Black-Right-Pointing-Pointer It is semiconducting with a large decrease in the conductivity near 68 K. Black-Right-Pointing-Pointer The temperature dependence

  12. Influence of intramolecular f-f interactions on nuclear spin driven quantum tunneling of magnetizations in quadruple-decker phthalocyanine complexes containing two terbium or dysprosium magnetic centers.

    Science.gov (United States)

    Fukuda, Takamitsu; Matsumura, Kazuya; Ishikawa, Naoto

    2013-10-10

    Nuclear spin driven quantum tunneling of magnetization (QTM) phenomena, which arise from admixture of more than two orthogonal electronic spin wave functions through the couplings with those of the nuclear spins, are one of the important magnetic relaxation processes in lanthanide single molecule magnets (SMMs) in the low temperature range. Although recent experimental studies have indicated that the presence of the intramolecular f-f interactions affects their magnetic relaxation processes, little attention has been given to their mechanisms and, to the best of our knowledge, no rational theoretical models have been proposed for the interpretations of how the nuclear spin driven QTMs are influenced by the f-f interactions. Since quadruple-decker phthalocyanine complexes with two terbium or dysprosium ions as the magnetic centers show moderate f-f interactions, these are appropriate to investigate the influence of the f-f interactions on the dynamic magnetic relaxation processes. In the present paper, a theoretical model including ligand field (LF) potentials, hyperfine, nuclear quadrupole, magnetic dipolar, and the Zeeman interactions has been constructed to understand the roles of the nuclear spins for the QTM processes, and the resultant Zeeman plots are obtained. The ac susceptibility measurements of the magnetically diluted quadruple-decker monoterbium and diterbium phthalocyanine complexes, [Tb-Y] and [Tb-Tb], have indicated that the presence of the f-f interactions suppresses the QTMs in the absence of the external magnetic field (H(dc)) being consistent with previous reports. On the contrary, the faster magnetic relaxation processes are observed for [Tb-Tb] than [Tb-Y] at H(dc) = 1000 Oe, clearly demonstrating that the QTMs are rather enhanced in the presence of the external magnetic field. Based on the calculated Zeeman diagrams, these observations can be attributed to the enhanced nuclear spin driven QTMs for [Tb-Tb]. At the H(dc) higher than 2000 Oe, the

  13. Multiple Genetic Analysis System-Based Antibiotic Susceptibility Testing in Helicobacter pylori and High Eradication Rate With Phenotypic Resistance-Guided Quadruple Therapy.

    Science.gov (United States)

    Dong, Fangyuan; Ji, Danian; Huang, Renxiang; Zhang, Fan; Huang, Yiqin; Xiang, Ping; Kong, Mimi; Nan, Li; Zeng, Xianping; Wu, Yong; Bao, Zhijun

    2015-11-01

    Antibiotics resistance in Helicobacter pylori (H. pylori) is the major factor for eradication failure. Molecular tests including fluorescence in situ hybridization, PCR-restriction fragment length polymorphism, and dual priming oligonucleotide-PCR (DPO-PCR) play critical roles in the detection of antibiotic susceptibility; however, limited knowledge is known about application of multiple genetic analysis system (MGAS) in the area of H. pylori identification and antibiotics resistance detection.The aim of this study is to determine the antibiotics resistance using different molecular tests and evaluate the treatment outcomes of E-test-based genotypic resistance.A total of 297 patients with dyspepsia complaint were recruited for gastroscopies. Ninety patients with H. pylori culture positive were randomly divided into 2 groups (test group and control group). E-test, general PCR, and MGAS assay were performed in test group. Patients in control group were treated with empirical therapy (rabeprazole + bismuth potassium citrate + amoxicillin [AMX] + clarithromycin [CLR]), whereas patients in test group received quadruple therapy based on E-test results twice daily for 14 consecutive days. The eradication effect of H. pylori was confirmed by C-urea breath test after at least 4 weeks when treatment was finished.Rapid urease test showed 46.5% (128/297) patients with H. pylori infection, whereas 30.3% (90/297) patients were H. pylori culture positive. E-test showed that H. pylori primary resistance rate to CLR, AMX, metronidazole, tetracycline, and levofloxacin (LVX) was 40.0% (18/45), 4.4% (2/45), 53.3% (24/45), 0% (0/45), and 55.6% (25/45), respectively. In addition, there are many multidrug resistant (MDR) phenotypes, and the MDR strains have higher minimum inhibitory concentration than their single-drug resistant counterparts. Considering E-test as the reference test, the sensitivities of general PCR and MGAS in detecting CLR resistance were 83.3% (15/18) and 94.4% (17

  14. The Quadruple Helix-Based Innovation Model of Reference Sites for Active and Healthy Ageing in Europe: The Ageing@Coimbra Case Study

    Directory of Open Access Journals (Sweden)

    João O. Malva

    2018-05-01

    Full Text Available Challenges posed by demographic changes and population aging are key priorities for the Horizon 2020 Program of the European Commission. Aligned with the vision of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA, the development, exchange, and large-scale adoption of innovative good practices is a key element of the responses required to ensure all European citizens remain as active and healthy as possible as they age. Urged by the need of developing scalable disruptive innovation across Europe, the European Commission and the EIP on AHA created the Reference Sites; local coalition of partners that develop good practices to support AHA. Ageing@Coimbra is an example of how this can be achieved at a regional level. The consortium comprises over 70 institutions that develop innovative practices to support AHA in Portugal. Ageing@Coimbra partners support a regional network of stakeholders that build a holistic ecosystem in health and social care, taking into consideration the specificities of the territories, living environments and cultural resources (2,243,934 inhabitants, 530,423 aged 65 or plus live in the Centre Region of Portugal. Good practices in reducing the burden of brain diseases that affect cognition and memory impairment in older people and tackling social isolation in urban and rural areas are among the top priorities of Ageing@Coimbra. Profiting from the collaborative work of academia, business companies, civil society, and authorities, the quadruple helix of Ageing@Coimbra supports: early diagnosis of frailty and disease; care and cure; and active, assisted, and independent living. This paper describes, as a Community Case Study, the creation of a Reference Site of the EIP on AHA, Ageing@Coimbra, and its impact in Portugal. This Reference Site can motivate other regions to develop innovative formulas to federate stakeholders and networks, building consortia at regional level. This growing movement

  15. Boundary Effects and Shear Thickening of Colloidal Suspensions: A study based on measurement of Suspension Microstructure

    Science.gov (United States)

    Perera, M. Tharanga D.

    Microstructure is key to understanding rheological behaviors of flowing particulate suspensions. During the past decade, Stokesian Dynamics simulations have been the dominant method of determining suspension microstructure. Structure results obtained numerically reveal that an anisotropic structure is formed under high Peclet (Pe) number conditions. Researchers have used various experimental techniques such as small angle neutron scattering (SANS) and light scattering methods to validate microstructure. This work outlines an experimental technique based on confocal microscopy to study microstructure of a colloidal suspension in an index-matched fluid flowing in a microchannel. High resolution scans determining individual particle locations in suspensions 30-50 vol % yield quantitative results of the local microstructure in the form of the pair distribution function, g(r). From these experimentally determined g(r), the effect of shear rate, quantified by the Peclet number as a ratio of shear and Brownian stress, on the suspension viscosity and normal stress follow that seen in macroscopic rheological measurements and simulations. It is generally believed that shear thickening behavior of colloidal suspensions is driven by the formation of hydroclusters. From measurements of particle locations, hydroclusters are identified. The number of hydroclusters grows exponentially with increasing Pe, and the onset of shear thickening is driven by the increase in formation of clusters having 5-8 particles. At higher Pe, we notice the emergence of 12 or more particle clusters. The internal structure of these hydroclusters has been investigated, and there is some evidence that particles internal to hydroclusters preferentially align along the 45° and 135° axis. Beyond observations of bulk suspension behavior, the influence of boundaries on suspension microstructure is also investigated. Experiments were performed for suspensions flowing over smooth walls, made of glass

  16. The impact of the provisions of the suspensions on the track of conveyor with suspended belt and distributed drive at jamming rollers

    Directory of Open Access Journals (Sweden)

    Tolkachev E.N.

    2018-03-01

    Full Text Available The article is devoted to the topical issue, which is related to simulation of the failures of drives suspensions of the conveyor with suspended belt and distributed drive. Using the developed mathematical model of the failures drives suspensions due to jamming rollers to the reference design of conveyor with suspended belt and distributed drive is performed modelling of dynamic characteristics. Investigation of the influence of the location of the failed drives suspensions on the track on the main technical characteristics of the conveyor belt with suspended belt was carried out.

  17. The impact of the provisions of the suspensions on the track of conveyor with suspended belt and distributed drive in violation of the power supply of the drives

    Directory of Open Access Journals (Sweden)

    Tolkachev E.N.

    2017-12-01

    Full Text Available The article is devoted to the topical issue, which is related to simulation of the failures of drives suspensions of the conveyor with suspended belt and distributed drive. Using the developed mathematical model of the failures drives suspensions due to the breakage of the electric circuit to the reference design of conveyor with suspended belt and distributed drive is performed modelling of dynamic characteristics. Investigation of the influence of the location of the failed drives suspensions on the track on the main technical characteristics of the conveyor belt with suspended belt was carried out.

  18. Adaptive suspension strategy for a double wishbone suspension through camber and toe optimization

    Directory of Open Access Journals (Sweden)

    C. Kavitha

    2018-02-01

    Full Text Available A suspension system is responsible for the safety of vehicle during its manoeuvre. It serves the dual purpose of providing stability to the vehicle while providing a comfortable ride quality to the occupants. Recent trends in suspension system have focused on improving comfort and handling of vehicles while keeping the cost, space and feasibility of manufacturing in the constraint. This paper proposes a method for improving handling characteristics of a vehicle by controlling camber and toe angle using variable length arms in an adaptive manner. In order to study the effect of dynamic characteristics of the suspension system, a simulation study has been done in this work. A quarter car physical model with double wishbone suspension geometry is modelled in SolidWorks. It is then imported and simulated using SimMechanics platform in MATLAB. The output characteristics of the passive system (without variable length arms were validated on MSC ADAMS software. The adaptive system intends to improve vehicle handling characteristics by controlling the camber and toe angles. This is accomplished by two telescopic arms with an actuator which changes the camber and toe angle of the wheel dynamically to deliver best possible traction and manoeuvrability. Two PID controllers are employed to trigger the actuators based on the camber and toe angle from the sensors for reducing the error existing between the actual and desired value. The arms are driven by actuators in a closed loop feedback manner with help of a separate control system. Comparison between active and passive systems is carried out by analysing graphs of various parameters obtained from MATLAB simulation. From the results, it is observed that there is a reduction of 58% in the camber and 96% in toe gain. Hence, the system provides the scope of considerable adaptive strategy in controlling dynamic characteristics of the suspension system.

  19. Nonlinear Modeling and Coordinate Optimization of a Semi-Active Energy Regenerative Suspension with an Electro-Hydraulic Actuator

    Directory of Open Access Journals (Sweden)

    Farong Kou

    2018-01-01

    Full Text Available In order to coordinate the damping performance and energy regenerative performance of energy regenerative suspension, this paper proposes a structure of a vehicle semi-active energy regenerative suspension with an electro-hydraulic actuator (EHA. In light of the proposed concept, a specific energy regenerative scheme is designed and a mechanical properties test is carried out. Based on the test results, the parameter identification for the system model is conducted using a recursive least squares algorithm. On the basis of the system principle, the nonlinear model of the semi-active energy regenerative suspension with an EHA is built. Meanwhile, linear-quadratic-Gaussian control strategy of the system is designed. Then, the influence of the main parameters of the EHA on the damping performance and energy regenerative performance of the suspension is analyzed. Finally, the main parameters of the EHA are optimized via the genetic algorithm. The test results show that when a sinusoidal is input at the frequency of 2 Hz and the amplitude of 30 mm, the spring mass acceleration root meam square value of the optimized EHA semi-active energy regenerative suspension is reduced by 22.23% and the energy regenerative power RMS value is increased by 40.51%, which means that while meeting the requirements of vehicle ride comfort and driving safety, the energy regenerative performance is improved significantly.

  20. Design

    DEFF Research Database (Denmark)

    Volf, Mette

    Design - proces & metode iBog®  er enestående i sit fokus på afmystificering og operationalisering af designprocessens flygtige og komplekse karakter. Udgivelsen går bag om designerens daglige arbejde og giver et indblik i den kreative skabelsesproces, som designeren er en del af. Udover et bredt...... indblik i designerens arbejdsmetoder og designparametre giver Design - proces & metode en række eksempler fra anerkendte designvirksomheder, der gør det muligt at komme helt tæt på designerens virkelighed....

  1. Hierarchical Control Strategy for Active Hydropneumatic Suspension Vehicles Based on Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Jinzhi Feng

    2015-02-01

    Full Text Available A new hierarchical control strategy for active hydropneumatic suspension systems is proposed. This strategy considers the dynamic characteristics of the actuator. The top hierarchy controller uses a combined control scheme: a genetic algorithm- (GA- based self-tuning proportional-integral-derivative controller and a fuzzy logic controller. For practical implementations of the proposed control scheme, a GA-based self-learning process is initiated only when the defined performance index of vehicle dynamics exceeds a certain debounce time threshold. The designed control algorithm is implemented on a virtual prototype and cosimulations are performed with different road disturbance inputs. Cosimulation results show that the active hydropneumatic suspension system designed in this study significantly improves riding comfort characteristics of vehicles. The robustness and adaptability of the proposed controller are also examined when the control system is subjected to extremely rough road conditions.

  2. Modelling of Influence of Hypersonic Conditions on Gyroscopic Inertial Navigation Sensor Suspension

    Directory of Open Access Journals (Sweden)

    Korobiichuk Igor

    2017-06-01

    Full Text Available The upcoming hypersonic technologies pose a difficult task for air navigation systems. The article presents a designed model of elastic interaction of penetrating acoustic radiation with flat isotropic suspension elements of an inertial navigation sensor in the operational conditions of hypersonic flight. It has been shown that the acoustic transparency effect in the form of a spatial-frequency resonance becomes possible with simultaneous manifestation of the wave coincidence condition in the acoustic field and equality of the natural oscillation frequency of a finite-size plate and a forced oscillation frequency of an infinite plate. The effect can lead to additional measurement errors of the navigation system. Using the model, the worst and best case suspension oscillation frequencies can be determined, which will help during the design of a navigation system.

  3. Thermal transport phenomena in nanoparticle suspensions

    International Nuclear Information System (INIS)

    Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications. (topical review)

  4. Magnetic separation from superparamagnetic particle suspensions

    International Nuclear Information System (INIS)

    Sinha, Ashok; Ganguly, Ranjan; Puri, Ishwar K.

    2009-01-01

    We investigate the magnetophoretic separation of magnetic microparticles from a non-dilute flow in a microfluidic channel and their subsequent field-induced aggregation under the influence of an externally applied magnetic force. This force induces dipolar interactions between the particles that aid in their separation from the flow. Existing analytical models for dilute suspensions cannot be extended to non-dilute suspensions in which interparticle magnetic interactions play an important role. We therefore conduct a parametric investigation of the mechanics of this problem in a microcapillary flow through simulations and experimental visualization. When a magnetic field is applied, the magnetic microparticles form an aggregate on the channel wall that is influenced by the competition between the holding magnetic force and the aggregate-depleting flow shear force. Microparticle collection in the aggregate increases linearly with increasing magnetic field strength and is characterized by distinct buildup and washaway phases. The collected microparticle volume fraction in an aggregate is found to depend on a single dimensional group that depends upon characteristic system parameters.

  5. Standardisation of magnetic nanoparticles in liquid suspension

    Science.gov (United States)

    Wells, James; Kazakova, Olga; Posth, Oliver; Steinhoff, Uwe; Petronis, Sarunas; Bogart, Lara K.; Southern, Paul; Pankhurst, Quentin; Johansson, Christer

    2017-09-01

    Suspensions of magnetic nanoparticles offer diverse opportunities for technology innovation, spanning a large number of industry sectors from imaging and actuation based applications in biomedicine and biotechnology, through large-scale environmental remediation uses such as water purification, to engineering-based applications such as position-controlled lubricants and soaps. Continuous advances in their manufacture have produced an ever-growing range of products, each with their own unique properties. At the same time, the characterisation of magnetic nanoparticles is often complex, and expert knowledge is needed to correctly interpret the measurement data. In many cases, the stringent requirements of the end-user technologies dictate that magnetic nanoparticle products should be clearly defined, well characterised, consistent and safe; or to put it another way—standardised. The aims of this document are to outline the concepts and terminology necessary for discussion of magnetic nanoparticles, to examine the current state-of-the-art in characterisation methods necessary for the most prominent applications of magnetic nanoparticle suspensions, to suggest a possible structure for the future development of standardisation within the field, and to identify areas and topics which deserve to be the focus of future work items. We discuss potential roadmaps for the future standardisation of this developing industry, and the likely challenges to be encountered along the way.

  6. Energy-harvesting potential of automobile suspension

    Science.gov (United States)

    Múčka, Peter

    2016-12-01

    This study is aimed quantify dissipated power in a damper of automobile suspension to predict energy harvesting potential of a passenger car more accurately. Field measurements of power dissipation in a regenerative damper are still rare. The novelty is in using the broad database of real road profiles, a 9 degrees-of-freedom full-car model with real parameters, and a tyre-enveloping contact model. Results were presented as a function of road surface type, velocity and road roughness characterised by International Roughness Index. Results were calculated for 1600 test sections of a total length about 253.5 km. Root mean square of a dissipated power was calculated from 19 to 46 W for all four suspension dampers and velocity 60 km/h and from 24 to 58 W for velocity 90 km/h. Results were compared for a full-car model with a tyre-enveloping road contact, full-car and quarter-car models with a tyre-road point contact. Mean difference among three models in calculated power was a few per cent.

  7. Standardisation of magnetic nanoparticles in liquid suspension

    International Nuclear Information System (INIS)

    Wells, James; Kazakova, Olga; Posth, Oliver; Steinhoff, Uwe; Petronis, Sarunas; Bogart, Lara K; Southern, Paul; Pankhurst, Quentin; Johansson, Christer

    2017-01-01

    Suspensions of magnetic nanoparticles offer diverse opportunities for technology innovation, spanning a large number of industry sectors from imaging and actuation based applications in biomedicine and biotechnology, through large-scale environmental remediation uses such as water purification, to engineering-based applications such as position-controlled lubricants and soaps. Continuous advances in their manufacture have produced an ever-growing range of products, each with their own unique properties. At the same time, the characterisation of magnetic nanoparticles is often complex, and expert knowledge is needed to correctly interpret the measurement data. In many cases, the stringent requirements of the end-user technologies dictate that magnetic nanoparticle products should be clearly defined, well characterised, consistent and safe; or to put it another way—standardised. The aims of this document are to outline the concepts and terminology necessary for discussion of magnetic nanoparticles, to examine the current state-of-the-art in characterisation methods necessary for the most prominent applications of magnetic nanoparticle suspensions, to suggest a possible structure for the future development of standardisation within the field, and to identify areas and topics which deserve to be the focus of future work items. We discuss potential roadmaps for the future standardisation of this developing industry, and the likely challenges to be encountered along the way. (topical review)

  8. Hydrodynamic dispersion of microswimmers in suspension

    Science.gov (United States)

    Martin, Matthieu; Rafaï, Salima; Peyla, Philippe

    2014-11-01

    In our laboratory, we study hydrodynamics of suspensions of micro-swimmers. These micro-organisms are unicellular algae Chlamydomonas Rheinhardii which are able to swim by using their flagella. The swimming dynamics of these micro-swimmers can be seen as a random walk, in absence of any kind of interaction. In addition, these algae have the property of being phototactic, i.e. they swim towards the light. Combining this property with a hydrodynamic flow, we were able to reversibly separate algae from the rest of the fluid. But for sufficiently high volume fraction, these active particles interact with each other. We are now interested in how the coupling of hydrodynamic interactions between swimmers and phototaxis can modify the swimming dynamics at the scale of the suspension. To this aim, we conduct experiments in microfluidic devices to study the dispersion of the micro-organisms in a the liquid phase as a function of the volume fraction. We show that the dispersion of an assembly of puller type microswimmers is quantitatively affected by hydrodynamics interactions. Phd student.

  9. Design

    Science.gov (United States)

    Buchanan, Richard; Cross, Nigel; Durling, David; Nelson, Harold; Owen, Charles; Valtonen, Anna; Boling, Elizabeth; Gibbons, Andrew; Visscher-Voerman, Irene

    2013-01-01

    Scholars representing the field of design were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Richard Buchanan, Nigel Cross, David Durling, Harold Nelson, Charles Owen, and Anna Valtonen. Scholars…

  10. Aqueous homogeneous suspension reactor project. Report over the 4th quarter and the year 1974

    Energy Technology Data Exchange (ETDEWEB)

    1975-07-01

    The power of the KSTR reactor has been increased up to 200 kW in the fourth quarter of 1974. A description is given of the behaviour of the reactor at increased power level, safety aspects concerned with this new level, the operation of the reactor, instrumental behavior and mechanical behavior. Irradiation investigation of two types of fuels are reported and results are presented. Progress made on the conceptual design of a 250 MWe suspension reactor is described.

  11. Formulation of cefuroxime axetil oral suspension and investigation of its pharmaceutical properties

    OpenAIRE

    Valizadeh, Hadi; Farajnia, Aynoor; Zakeri-Milani, Parvin

    2011-01-01

    Purpose: Cefuroxime is the second generation cephalosporin, which its intravenous and oral dosage forms are available. Oral route is the selective method for administration of most of the drugs. The aim of this study was formulating ‘for oral’ cefuroxime axetil suspensions. Methods: Minitab (ver.15) was used to design the formulations containing 125 mg of cefuroxime in 5 ml vehicle. After selecting the acceptable preparations, physical stability tests and other tests such as dissolution rate,...

  12. Light scattering influence in cyanobacteria suspensions inside a photobioreactor

    Science.gov (United States)

    Fanjul-Vélez, F.; Arce-Diego, J. L.

    2018-02-01

    The application of biotechnology is increasing in areas such as agriculture, biochemistry or biomedicine. Growing bacteria or algae could be beneficial for supplying fuel, drugs, food or oxygen, among other products. An adequate knowledge of biological processes is becoming essential to estimate and control products production. Cyanobacteria are particularly appropriate for producing oxygen and biomass, by consuming mainly carbon dioxide and light irradiation. These capacities could be employed to provide human subsistence in adverse environments, as basic breathing and food needs would be satisfied. Cyanobacteria growing is carried out in bioreactors. As light irradiation is quite relevant for their behavior, photobioreactors are needed. Photobioreactors are designed to supply and control the amounts of elements they need, in order to maximize growth. The adequate design of photobioreactors greatly influences production throughput. This design includes, on the optical side, optical illumination and optical measurement of cyanobacteria growth. The influence of optical scattering is fundamental for maximizing cyanobacteria growing, as long as for adequately measure this growth. In this work, optical scattering in cyanobacteria suspensions is analyzed. Optical properties of cyanobacteria and its relationship with concentration is taken into account. Several types of cyanobacteria are considered. The influence of different beam spatial profiles and irradiances is studied by a Monte Carlo approach. The results would allow the consideration of the influence of optical scattering in the detected optical signal employed for growth monitoring, as a function of cyanobacteria type and optical beam parameters.

  13. A new formulation for orally disintegrating tablets using a suspension spray-coating method.

    Science.gov (United States)

    Okuda, Y; Irisawa, Y; Okimoto, K; Osawa, T; Yamashita, S

    2009-12-01

    The aim of this study was to design a new orally disintegrating tablet (ODT) that has high tablet hardness and a fast oral disintegration rate using a new preparation method. To obtain rapid disintegration granules (RDGs), a saccharide, such as trehalose, mannitol, or lactose, was spray-coated with a suspension of corn starch using a fluidized-bed granulator (suspension method). As an additional disintegrant, crospovidone, light anhydrous silicic acid, or hydroxypropyl starch was also included in the suspension. The RDGs obtained possessed extremely large surface areas, narrow particle size distribution, and numerous micro-pores. When tabletting these RDGs, it was found that the RDGs increased tablet hardness by decreasing plastic deformation and increasing the contact frequency between granules. In all tablets, a linear relationship was observed between tablet hardness and oral disintegration time. From each linear correlation line, a slope (D/H value) and an intercept (D/H(0) value) were calculated. Tablets with small D/H and D/H(0) values could disintegrate immediately in the oral cavity regardless of the tablet hardness and were considered to be appropriate for ODTs. Therefore, these values were used as key parameters to select better ODTs. Of all the RDGs prepared in this study, mannitol spray-coated with a suspension of corn starch and crospovidone (2.5:1 w/w ratio) showed most appropriate properties for ODTs; fast in vivo oral disintegration time, and high tablet hardness. In conclusion, this simple method to prepare superior formulations for new ODTs was established by spray-coating mannitol with a suspension of appropriate disintegrants.

  14. Improved understanding of the acoustophoretic focusing of dense suspensions in a microchannel

    Science.gov (United States)

    Karthick, S.; Sen, A. K.

    2017-11-01

    We provide improved understanding of acoustophoretic focusing of a dense suspension (volume fraction φ >10 % ) in a microchannel subjected to an acoustic standing wave using a proposed theoretical model and experiments. The model is based on the theory of interacting continua and utilizes a momentum transport equation for the mixture, continuity equation, and transport equation for the solid phase. The model demonstrates the interplay between acoustic radiation and shear-induced diffusion (SID) forces that is critical in the focusing of dense suspensions. The shear-induced particle migration model of Leighton and Acrivos, coupled with the acoustic radiation force, is employed to simulate the continuum behavior of particles. In the literature, various closures for the diffusion coefficient Dφ* are available for rigid spheres at high concentrations and nonspherical deformable particles [e.g., red blood cells (RBCs)] at low concentrations. Here we propose a closure for Dφ* for dense suspension of RBCs and validate the proposed model with experimental data. While the available closures for Dφ* fail to predict the acoustic focusing of a dense suspension of nonspherical deformable particles like RBCs, the predictions of the proposed model match experimental data within 15%. Both the model and experiments reveal a competition between acoustic radiation and SID forces that gives rise to an equilibrium width w* of a focused stream of particles at some distance Leq* along the flow direction. Using different shear rates, acoustic energy densities, and particle concentrations, we show that the equilibrium width is governed by Péclet number Pe and Strouhal number Stas w*=1.4(PeSt) -0.5 while the length required to obtain the equilibrium-focused width depends on St as Leq*=3.8 /(St)0.6 . The proposed model and correlations would find significance in the design of microchannels for acoustic focusing of dense suspensions such as undiluted blood.

  15. On a clean power generation system with the co-gasification of biomass and coal in a quadruple fluidized bed gasifier.

    Science.gov (United States)

    Yan, Linbo; He, Boshu

    2017-07-01

    A clean power generation system was built based on the steam co-gasification of biomass and coal in a quadruple fluidized bed gasifier. The chemical looping with oxygen uncoupling technology was used to supply oxygen for the calciner. The solid oxide fuel cell and the steam turbine were combined to generate power. The calcium looping and mineral carbonation were used for CO 2 capture and sequestration. The aim of this work was to study the characteristics of this system. The effects of key operation parameters on the system total energy efficiency (ŋ ten ), total exergy efficiency (ŋ tex ) and carbon sequestration rate (R cs ) were detected. The energy and exergy balance calculations were implemented and the corresponding Sankey and Grassmann diagrams were drawn. It was found that the maximum energy and exergy losses occurred in the steam turbine. The system ŋ ten and ŋ tex could be ∼50% and ∼47%, and R cs could be over unit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Profiling analysis of low molecular weight heparins by multiple heart-cutting two dimensional chromatography with quadruple time-of-flight mass spectrometry.

    Science.gov (United States)

    Ouyang, Yilan; Zeng, Yangyang; Rong, Yinxiu; Song, Yue; Shi, Lv; Chen, Bo; Yang, Xinlei; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2015-09-01

    Low molecular weight heparins (LMWHs) are polydisperse and microheterogenous mixtures of polysaccharides used as anticoagulant drugs. Profiling analysis is important for obtaining deeper insights into the structure of LMWHs. Previous oligosaccharide mapping methods are relatively low resolution and are unable to show an entire picture of the structural complexity of LMWHs. In the current study a profiling method was developed relying on multiple heart-cutting, two-dimensional, ultrahigh performance liquid chromatography with quadruple time-of-flight mass spectrometry. This represents an efficient, automated, and robust approach for profiling LMWHs. Using size-exclusion chromatography and ion-pairing reversed-phase chromatography in a two-dimensional separation, LMW components of different sizes and LMW components of the same size but with different charges and polarities can be resolved, providing a more complete picture of a LMWH. Structural information on each component was then obtained with quadrupole time-of-flight mass spectrometry. More than 80 and 120 oligosaccharides were observed and unambiguously assigned from the LMWHs, nadroparin and enoxaparin, respectively. This method might be useful for quality control of LMWHs and as a powerful tool for heparin-related glycomics.

  17. Reduction of a cerium(III) siloxide complex to afford a quadruple-decker arene-bridged cerium(II) sandwich

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Rory P.; Scopelliti, Rosario; Mazzanti, Marinella [Institut des Sciences et Ingenierie Chimiques, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Maron, Laurent [Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquees, Toulouse (France)

    2017-12-04

    Organometallic multi-decker sandwich complexes containing f-elements remain rare, despite their attractive magnetic and electronic properties. The reduction of the Ce{sup III} siloxide complex, [KCeL{sub 4}] (1; L=OSi(OtBu){sub 3}), with excess potassium in a THF/toluene mixture afforded a quadruple-decker arene-bridged complex, [K(2.2.2-crypt)]{sub 2}[{(KL_3Ce)(μ-η"6:η"6-C_7H_8)}{sub 2}Ce] (3). The structure of 3 features a [Ce(C{sub 7}H{sub 8}){sub 2}] sandwich capped by [KL{sub 3}Ce] moieties with a linear arrangement of the Ce ions. Structural parameters, UV/Vis/NIR data, and DFT studies indicate the presence of Ce{sup II} ions involved in δ bonding between the Ce cations and toluene dianions. Complex 3 is a rare lanthanide multi-decker complex and the first containing non-classical divalent lanthanide ions. Moreover, oxidation of 1 by AgOTf (OTf=O{sub 3}SCF{sub 3}) yielded the Ce{sup IV} complex, [CeL{sub 4}] (2), showing that siloxide ligands can stabilize Ce in three oxidation states. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. 17 CFR 32.11 - Suspension of commodity option transactions.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Suspension of commodity option... REGULATION OF COMMODITY OPTION TRANSACTIONS § 32.11 Suspension of commodity option transactions. (a... accept money, securities or property in connection with, the purchase or sale of any commodity option, or...

  19. 15 CFR 14.13 - Debarment and suspension.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Debarment and suspension. 14.13 Section 14.13 Commerce and Foreign Trade Office of the Secretary of Commerce UNIFORM ADMINISTRATIVE... shall comply with the nonprocurement debarment and suspension common rule implementing E.O.s 12549 and...

  20. 12 CFR 19.244 - Automatic removal, suspension, and debarment.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Automatic removal, suspension, and debarment. 19.244 Section 19.244 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY RULES... Services § 19.244 Automatic removal, suspension, and debarment. (a) An independent public accountant or...

  1. 12 CFR 19.243 - Removal, suspension, or debarment.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Removal, suspension, or debarment. 19.243 Section 19.243 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY RULES OF PRACTICE AND PROCEDURE Removal, Suspension, and Debarment of Accountants From Performing Audit Services § 19...

  2. The Evolution of Discipline: Alternative to Suspension Programs.

    Science.gov (United States)

    Streva, Michael A.

    Historically, the chosen method of discipline in United States schools has gone from corporal punishment to an emphasis on suspension. Recently, as principals have become less certain about the extent of their authority to suspend students, many inschool programs have been developed as alternatives to suspension. Among the advantages of such…

  3. In-School Suspension Practices and the Prison Hospital Experience

    Science.gov (United States)

    Wiles, David K.; Rockoff, Edward

    1977-01-01

    Explores the legal implications of in-school suspension practices through consideration of individual versus institutional rights within a special punitive-rehabilitative setting. Argues that the prison hospital model is applicable to in-school suspension programs and discusses a number of legal questions raised by the prison hospital model.…

  4. 12 CFR 513.4 - Suspension and debarment.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Suspension and debarment. 513.4 Section 513.4 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY PRACTICE BEFORE THE OFFICE § 513.4 Suspension and debarment. (a) The Office may censure any person practicing before it or may deny...

  5. 45 CFR 99.4 - Suspension of rules.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Suspension of rules. 99.4 Section 99.4 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PROCEDURE FOR HEARINGS FOR THE CHILD CARE AND DEVELOPMENT FUND General § 99.4 Suspension of rules. With notice to all parties, the...

  6. 2 CFR 180.740 - Are suspension proceedings formal?

    Science.gov (United States)

    2010-01-01

    ... 2 Grants and Agreements 1 2010-01-01 2010-01-01 false Are suspension proceedings formal? 180.740 Section 180.740 Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET GOVERNMENTWIDE GUIDANCE FOR GRANTS... suspension decision. (b) You as a respondent or your representative must submit any documentary evidence you...

  7. 78 FR 15402 - Xytos, Inc.; Order of Suspension of Trading

    Science.gov (United States)

    2013-03-11

    ... SECURITIES AND EXCHANGE COMMISSION [ File No. 500-1] Xytos, Inc.; Order of Suspension of Trading... financial conditions and business operations, and because of potentially manipulative conduct in the trading... investors require a suspension of trading in the securities of the above-listed company. Therefore, it is...

  8. 75 FR 68636 - 8000, Inc.; Order of Suspension of Trading

    Science.gov (United States)

    2010-11-08

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] 8000, Inc.; Order of Suspension of Trading... and the protection of investors require a suspension of trading in the securities of 8000, Inc. Therefore, it is ordered, pursuant to Section 12(k) of the Securities Exchange Act of 1934, that trading in...

  9. 77 FR 16113 - Asiamart, Inc., Order of Suspension of Trading

    Science.gov (United States)

    2012-03-19

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Asiamart, Inc., Order of Suspension of Trading... and the protection of investors require a suspension of trading in the securities of the above-listed... trading in the securities of the above-listed company is suspended for the period from 9:30 a.m. EDT on...

  10. 78 FR 44185 - RVPlus, Inc.; Order of Suspension of Trading

    Science.gov (United States)

    2013-07-23

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] RVPlus, Inc.; Order of Suspension of Trading... and the protection of investors require a suspension of trading in the securities of the above-listed... trading in the securities of the above-listed company is suspended for the period from 9:30 a.m. EDT, on...

  11. 15 CFR 2011.110 - Suspension of certificate system.

    Science.gov (United States)

    2010-01-01

    ..., SYRUPS AND MOLASSES Certificate of Quota Eligibility § 2011.110 Suspension of certificate system. (a... of such suspension and the effective date thereof shall be published in the Federal Register. (b... such reinstatement and the effective date thereof shall be published in the Federal Register. (c...

  12. 19 CFR 210.23 - Suspension of investigation.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Suspension of investigation. 210.23 Section 210.23 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Motions § 210.23 Suspension of investigation. Any party may move to...

  13. 3 CFR - Suspension of Limitations Under the Jerusalem Embassy Act

    Science.gov (United States)

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Suspension of Limitations Under the Jerusalem... June 5, 2009 Suspension of Limitations Under the Jerusalem Embassy Act Memorandum for the Secretary of... States, including section 7(a) of the Jerusalem Embassy Act of 1995 (Public Law 104-45) (the “Act”), I...

  14. Non-homogeneous flow profiles in sheared bacterial suspensions

    Science.gov (United States)

    Samanta, Devranjan; Cheng, Xiang

    Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.

  15. Both Suspension and Alternatives Work, Depending on One's Aim

    Science.gov (United States)

    Bear, George G.

    2012-01-01

    In this commentary on the special series, I argue that whereas a zero-tolerance approach to school discipline is "something stupid" (Kauffman & Brigham, 2000) the use of suspension might not be. Despite its limitations, suspension and other forms of punishment serve as effective deterrents of behavior problems for most children, especially when…

  16. Tuning a Le Mans Car Suspension in ADAMS

    CSIR Research Space (South Africa)

    Berman, R

    2012-09-01

    Full Text Available An ADAMS model of South Africa’s first ever Le Mans car was developed and used to tune the suspension parameters. Validation of the model is to be done by comparing simulation results to those obtained in track testing. The suspension parameters...

  17. 26 CFR 301.6503(g)-1 - Suspension pending correction.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Suspension pending correction. 301.6503(g)-1 Section 301.6503(g)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED... Collection § 301.6503(g)-1 Suspension pending correction. The running of the periods of limitations provided...

  18. 21 CFR 1314.155 - Suspension pending final order.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Suspension pending final order. 1314.155 Section 1314.155 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE RETAIL SALE OF SCHEDULED LISTED CHEMICAL PRODUCTS Order to Show Cause § 1314.155 Suspension pending final order. (a) The...

  19. 21 CFR 520.1182 - Iron dextran suspension.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iron dextran suspension. 520.1182 Section 520.1182... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1182 Iron dextran suspension... hydroxide in complex with a low molecular weight dextran. (b) Sponsor. See No. 051311 in § 510.600(c) of...

  20. Degradability of aged aquatic suspensions of C60 nanoparticles

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; Buendia, Inmaculada M.; Bak, Jimmy

    2011-01-01

    In this study, aged aqueous suspensions of C(60) (nC(60)) were investigated in the respirometric OECD test for ready biodegradability. Two suspensions of nC(60) were prepared by stirring and aged under indirect exposure to sunlight for 36 months. ATR-FTIR analyses confirmed the presence of C(60)-...

  1. Radiation resistivity of frozen insulin solutions and suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Soboleva, N N; Ivanova, A I; Talrose, V L; Trofimov, V I; Fedotov, V P [AN SSSR, Moscow. Inst. Fizicheskoj Khimii; Research Institute for Biological Testing of Chemicals, Moscow (USSR); Institute of Experimental Endocrinology and Hormon Chemistry, Moscow (USSR))

    1981-10-01

    The effect of great increase in radiation resistance of insulin solutions and suspensions after irradiation at low temperatures in the frozen state was observed by absorption spectrophotometry, paper chromatography and biological analysis. The data obtained suggest irradiation of frozen insulin solutions and suspensions as a method for its sterilization.

  2. 38 CFR 21.3043 - Suspension of program; child.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Suspension of program; child. 21.3043 Section 21.3043 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS... 38 U.S.C. Chapter 35 Eligibility and Entitlement § 21.3043 Suspension of program; child. For an...

  3. Vaginal vault suspension during hysterectomy for benign indications

    DEFF Research Database (Denmark)

    Bonde, Lisbeth; Noer, Mette Calundann; Møller, Lars Alling

    2017-01-01

    Introduction and hypothesis: Several suspension methods are used to try to prevent pelvic organ prolapse (POP) after hysterectomy. We aimed to evaluate agreement on terminology and surgical procedure of these methods. Methods: We randomly chose 532 medical records of women with a history......: Regarding medical records, agreement on terminology was good among patients undergoing pooled suspension in cases of hysterectomy via the abdominal and vaginal route (agreement 78.7, 92.3%). Regarding videos, agreement on surgical procedure was good among pooled suspension patients in cases of hysterectomy...... via the abdominal, laparoscopic, and vaginal routes (agreement 88.9, 97.8, 100%). Agreement on individual suspension methods differed regarding both medical records (agreement 0–90.1%) and videos (agreement 0–100%). Conclusions: Agreement on terminology and surgical procedure regarding suspension...

  4. Preparation of conjugated polymer suspensions by using ultrasonic atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Kazuya, E-mail: tada@eng.u-hyogo.ac.jp; Onoda, Mitsuyoshi

    2010-11-30

    The electrophoretic deposition is a method useful to prepare conjugated polymer films for electronic devices. This method provides high material recovery rate on the substrate from the suspension, in contrast to the conventional spin-coating in which most of the material placed on the substrate is blown away. Although manual reprecipitation technique successfully yields suspensions of various conjugated polymers including polyfluorene derivatives, it is favorable to control the preparation process of suspensions. In this context, this paper reports preliminary results on the preparation of suspension of conjugated polymer by using an ultrasonic atomizer. While the resultant films do not show particular difference due to the preparation methods of the suspension, the electric current profiles during the electrophoretic deposition suggests that the ultrasonic atomization of polymer solution prior to be mixed with poor solvent results in smaller and less uniform colloidal particles than the conventional manual pouring method.

  5. State-observer with low sensitivity and its application to Maglev vehicle suspension control

    Energy Technology Data Exchange (ETDEWEB)

    Breinl, W; Mueller, P C

    1982-12-01

    A linear time-invariant multi-input/multi-output dynamical system with uncertain parameters is considered. In general the separate design of the regulator and of the observer is not possible because the separation principle does not hold for parameter variations. However, in certain cases the observer matrices may be chosen in a special manner that an observer with low sensitivity can be designed. Then the separation principle is also valid for parameter variations. The existence and the design of such insensitive observers are discussed. The theoretical results are illustrated by an application to the suspension control of a Maglev vehicle.

  6. Superconducting electromagnets for large wind tunnel magnetic suspension and balance systems

    International Nuclear Information System (INIS)

    Boom, R.W.; Abdelsalam, M.K.; Bakerek, K.

    1985-01-01

    This paper presents a new design study of a Magnetic Suspension and Balance System (MSBS) for airplane models in a large 8 ft x 8 ft wind tunnel. New developments in the design include: use of a superconducting solenoid as a model core instead of magnetized iron; combination of permanent magnet material in the model wings along with four race-track coils to produce the required roll torque; and mounting of all the magnets in an integral cold structure instead of in separate cryostats. Design of superconducting solenoid model cores and practical experience with a small-scale prototype are discussed

  7. The analysis of silica suspensions atomization

    Energy Technology Data Exchange (ETDEWEB)

    Ochowiak, M., E-mail: Marek.Ochowiak@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Department of Chemical Engineering and Equipment, Poznan (Poland); Broniarz-Press, L.; Woziwodzki, S. [Poznan University of Technology, Faculty of Chemical Technology, Department of Chemical Engineering and Equipment, Poznan (Poland)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The correlation equation for discharge coefficient has been proposed. Black-Right-Pointing-Pointer The spray angle increases with increase in GLR until a maximum value is attained at GLR value of 0.07. Black-Right-Pointing-Pointer The equation for SMD has been proposed. Black-Right-Pointing-Pointer The C{sub D} and SMD are decreasing rapidly as GLR is increased to around 0.07 and thereafter decreasing at a slower rate. - Abstract: The paper contains the results of experimental investigation of air-water and air-silica suspension atomization process in effervescent nozzles with internal mixing obtained by the use of the digital microphotography method. In experiments the different aqueous solutions of silica Aerosil 300 of different concentration have been used. The suspensions containing up to 0.04 (kg solid particles/kg solution) have Newtonian rheological properties. The observations were carried out at liquid flow rates changed from 0.0014 to 0.011 (kg/s) and gas flow rates from 0.00015 to 0.0065 (kg/s). It corresponded to gas to liquid mass ratios (GLR) values from 0.014 to 0.46. The analysis of photos shows that the droplets which have been formed during the liquid atomization have very different sizes. The differences between characteristics of effervescent atomization for water and suspensions used have not been observed. The present study confirmed the previous reports which suggested that the small particles added to solution do not change spray characteristics. The experimental results show that C{sub D} and SMD are non-linear functions of GLR. Their values are decreasing rapidly as GLR is increased from zero to around 0.07 and thereafter decreasing at a slower rate with further increase in GLR. In the same point (GLR = 0.07) the value of {alpha} is maximal. The first regime is characteristic for bubbly flow. The second is typical of annular flow regime. Boundary between bubbly and annular flow regime is observed

  8. Manipulation of nano-entities in suspension by electric fields

    Science.gov (United States)

    Fan, Donglei

    Nanoscale entities, including nanospheres, nanodisks, nanorings, nanowires and nanotubes are potential building blocks for nanoscale devices. Among them, nanowires is an important type of nanoparticles, due to the potential application in microelectronics and bio-diagnosis. Manipulation of nanowires in suspension has been a formidable problem. As described in this thesis, using AC electric fields applied to strategically designed microelectrodes, nanowires in suspension can be driven to align, to chain, to accelerate in directions parallel and perpendicular to its orientation, to concentrate onto designated places, and to disperse in a controlled manner with high efficiency despite an extremely low Reynolds number at the level of 10-5. Randomly oriented nanowires in suspension can be rapidly assembled into extended nonlinear structures within seconds. We show that both the electric field and its gradient play the essential roles of aligning and transporting the nanowires into scaffolds according to the electric field distributions inherent to the geometry of the microelectrodes. The assembling efficiency depends strongly on the frequency of the applied AC voltages and varies as square of the voltage. Furthermore, nanowires have been rotated by AC electric fields applied to strategically designed electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 25000 rpm), definite chirality, and total angle of rotation. This new method has been used to controllably rotate magnetic and non-magnetic nanowires as well as multi-wall carbon nanotubes. We have also produced a micromotor using a rotating nanowire that can drive particles into circular motion. This has application to microfluidic devices, micro-stirrers, and micro electromechanical systems (MEMS). To move and place nanowires onto designated locations with high precision, electrophoretic force has been combined with dielectrophoretic force to

  9. AGS tune jump power supply design and test

    International Nuclear Information System (INIS)

    Mi, J.; Glenn, J.W.; Huang, H.; Marneris, I.; Rosas, P.; Sandberg, J.; Tan, Y.; Zhang, W.

    2011-01-01

    A horizontal tune jump system has been installed to overcome the horizontal intrinsic spin resonances, which requires jumping the horizontal tune 0.04 units 82 times, 41 up and 41 down. Two quadruple magnets have been installed in AGS ring to perform this. The pulsed magnet current ranges from about 140A near injection to about 1400A later. The current pulse rise and fall time are around 100uS and flat tops time is around 4mS. These quadruples have separated supplies. This tune jump pulse power supply employees all semiconductor parts as well as the main switches. During dummy load and magnet testing, the test results showed that the power supply could meet the specification. This article will describe some details of power supply simulation, design and testing. Some test waveforms and pictures are presented in this paper.

  10. Suspending in School Suspension?: Is ISS a Valid Means of Disciplinary Action to Reduce Negative Student Behaviors?

    Science.gov (United States)

    Rahynes, Leron M.

    2015-01-01

    This paper explored whether or not In School Suspensions (ISS) is effective in reducing student behavioral problems. Research was conducted with 6-8th grade students in a rural middle school in the upstate of South Carolina for the purposes of determining if ISS, in its current design a viable and effective method to reduce negative student…

  11. Development of the Nissan hydraulic active suspension. Nissan yuatsu active suspension no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kawarasaki, y.; Fukunaga, Y.; Hasegawa, S.; Okuyama, Y.; Omura, I.; Takahashi, K.; Abe, S.; Tsuruta, E. (Nissan Motor Co. Ltd., Tokyo (Japan))

    1989-12-25

    A hydraulic active suspension system, Nissan original product, was developed and mass produced for the first time in the world. The system incorporates a sufficient power source, a high accuracy sensor and a high response device for continuous and intended vehicle control and at the same time delivers high levels of ride comfort and driving performance. The suspension system has four innovative features: skyhook damping, active roll and pitching control, a frequency-dependent damping mechanism, and active steering characteristics control. Under all road and operating conditions, the system actively suppresses vehicle attitude changes and unnecessary movement, and also gently absorbs inputs from the road. This epoch-making system provides a dramatic improvement in vehicle performance, and has been adopted in the Infiniti Q45 luxury sedan. 2 refs., 20 figs., 4 tabs.

  12. Defect Proliferation in Active Nematic Suspensions

    Science.gov (United States)

    Mishra, Prashant; Bowick, Mark J.; Giomi, Luca; Marchetti, M. Cristina

    2014-03-01

    The rich structure of equilibrium nematic suspensions, with their characteristic disclination defects, is modified when active forces come into play. The uniform nematic state is known to be unstable to splay (extensile) or bend (contractile) deformations above a critical activity. At even higher activity the flow becomes oscillatory and eventually turbulent. Using hydrodynamics, we classify the active flow regimes as functions of activity and order parameter friction for both contractile and extensile systems. The turbulent regime is marked by a non-zero steady state density of mobile defect pairs. The defect density itself scales with an ``active Ericksen number,'' defined as the ratio of the rate at which activity is injected into the system to the relaxation rate of orientational deformations. The work at Syracuse University was supported by the NSF on grant DMR-1004789 and by the Syracuse Soft Matter Program.

  13. Flight suspension for the relativity gyro

    International Nuclear Information System (INIS)

    Patten, R.A. van

    1983-01-01

    A suspension system for levitation and precision positioning of the niobium coated spherical quartz gyro rotor during orbital flight has been simulated. The system employs multiple controllers and estimators with microprocessor (Z80) controlled range switching. The resulting system handles external accelerations up to 1 g in the highest range yet in the lowest range, below 10 -6 g the sensor noise power spectral density produces only 10 -10 g rms in the rotor. The system is capable of automatic emergency switch up within 100 μsec. Switch down is automatic to expected flight levels of ± 5 x 10 -8 g. Positioning accuracy in all ranges including emergency switch up is ± 5 μin. static, and ± 50 μin. dynamic. The average acceleration during the mission should be 10 -10 g to attain the science data accuracy goal. (Auth.)

  14. Mirror suspension system for the TAMA SAS

    CERN Document Server

    Takamori, A; Bertolini, A; Cella, G; DeSalvo, R; Fukushima, M; Iida, Y; Jacquier, F; Kawamura, S; Marka, S; Nishi, Y; Numata, K; Sannibale, V; Somiya, K; Takahashi, R; Tariq, H; Tsubono, K; Ugas, J; Viboud, N; Yamamoto, H; Yoda, T; Wang Chen Yang

    2002-01-01

    Several R and D programmes are ongoing to develop the next generation of interferometric gravitational wave detectors providing the superior sensitivity desired for refined astronomical observations. In order to obtain a wide observation band at low frequencies, the optics need to be isolated from the seismic noise. The TAMA SAS (seismic attenuation system) has been developed within an international collaboration between TAMA, LIGO, and some European institutes, with the main objective of achieving sufficient low-frequency seismic attenuation (-180 dB at 10 HZ). The system suppresses seismic noise well below the other noise levels starting at very low frequencies above 10 Hz. It also includes an active inertial damping system to decrease the residual motion of the optics enough to allow a stable operation of the interferometer. The TAMA SAS also comprises a sophisticated mirror suspension subsystem (SUS). The SUS provides support for the optics and vibration isolation complementing the SAS performance. The SU...

  15. Aeroelastic Stability of Suspension Bridges using CFD

    DEFF Research Database (Denmark)

    Stærdahl, Jesper Winther; Sørensen, Niels; Nielsen, Søren R.K.

    2007-01-01

    using CFD models and the aeroelastic stability boundary has been successfully determined when comparing two-dimensional flow situations using wind tunnel test data and CFD methods for the flow solution and two-degrees-of-freedom structural models in translation perpendicular to the flow direction......In recent years large span suspension bridges with very thin and slender profiles have been built without proportional increasing torsional and bending stiffness. As a consequence large deformations at the mid-span can occur with risk of aeroelastic instability and structural failure. Analysis...... of aeroelastic stability also named flutter stability is mostly based on semi-empirical engineering models, where model specific parameters, the so-called flutter derivatives, need calibration from wind tunnel tests or numerical methods. Several papers have been written about calibration of flutter derivatives...

  16. Modeling and Analysis of Static and Dynamic Characteristics of Nonlinear Seat Suspension for Off-Road Vehicles

    Directory of Open Access Journals (Sweden)

    Zhenhua Yan

    2015-01-01

    Full Text Available Low-frequency vibrations (0.5–5 Hz that harm drivers occur in off-road vehicles. Thus, researchers have focused on finding methods to effectively isolate or control low-frequency vibrations. A novel nonlinear seat suspension structure for off-road vehicles is designed, whose static characteristics and seat-human system dynamic response are modeled and analyzed, and experiments are conducted to verify the theoretical solutions. Results show that the stiffness of this nonlinear seat suspension could achieve real zero stiffness through well-matched parameters, and precompression of the main spring could change the nonlinear seat suspension performance when a driver’s weight changes. The displacement transmissibility curve corresponds with the static characteristic curve of nonlinear suspension, where the middle part of the static characteristic curve is gentler and the resonance frequency of the displacement transmissibility curve and the isolation minimum frequency are lower. Damping should correspond with static characteristics, in which the corresponding suspension damping value should be smaller given a flatter static characteristic curve to prevent vibration isolation performance reduction.

  17. Assessment of drug salt release from solutions, suspensions and in situ suspensions using a rotating dialysis cell

    DEFF Research Database (Denmark)

    Parshad, Henrik; Frydenvang, Karla; Liljefors, Tommy

    2003-01-01

    buffer is used as release media. Generally, the initial release of the drug salt from in situ suspensions occurred faster as compared to conventional suspensions, probably due to incomplete precipitation of the drug salt, and hence formation of supersaturated solutions where the rate of release......A rotating dialysis cell consisting of a small (10 ml) and a large compartment (1000 ml) was used to study the release of drug salt (bupivacaine 9-anthracene carboxylate) from (i). solutions, (ii). suspensions and (iii). in situ formed suspensions. Initial release experiments from suspensions...... indicated that the release of drug salt in deionized water was predominantly limited by the diffusion across the membrane whereas it is essentially dissolution rate controlled in 0.05 M phosphate buffer (pH 7.40). Thus, the in vitro model appears to have a potential in formulation screening when phosphate...

  18. Design

    DEFF Research Database (Denmark)

    Jensen, Ole B.; Pettiway, Keon

    2017-01-01

    In this chapter, Ole B. Jensen takes a situational approach to mobilities to examine how ordinary life activities are structured by technology and design. Using “staging mobilities” as a theoretical approach, Jensen considers mobilities as overlapping, actions, interactions and decisions by desig...... by providing ideas about future research for investigating mobilities in situ as a kind of “staging,” which he notes is influenced by the “material turn” in social sciences....... with a brief description of how movement is studied within social sciences after the “mobilities turn” versus the idea of physical movement in transport geography and engineering. He then explains how “mobilities design” was derived from connections between traffic and architecture. Jensen concludes...

  19. Estimation of Road Loads and Vibration Transmissibility of Torsion Bar Suspension System in a Tracked Vehicle

    Science.gov (United States)

    Gagneza, G. P. S.; Chandramohan, Sujatha

    2018-05-01

    Designing the suspension system of a tracked combat vehicle (CV) is really challenging as it has to satisfy conflicting requirements of good ride comfort, vehicle handling and stability characteristics. Many studies in this field have been reported in literature and it has been found that torsion bars satisfy the designer's conflicting requirements of good ride and handling and thus have reserved a place for themselves as the most widely used suspension system for military track vehicles. Therefore, it is imperative to evaluate the effectiveness of the torsion bar under dynamic conditions of undulating terrain and validating the same by correlating it with computer simulation results. Thus in the present work, the dynamic simulation of a 2N + 4 degrees of freedom (DOF) mathematical model has been carried out using MATLAB Simulink and the vibration levels were also measured experimentally on a 12 wheel stationed high mobility military tracked infantry combat vehicle (ICV BMP-II) traversing different terrain, that is, Aberdeen proving ground (APG) and Sinusoidal, at a constant vehicle speed. The dynamic force transmitted to the hull CG through the 12 torsion bar suspension systems was computed to be around 26,700 N and found to match the measured values. The vibration isolation of the torsion bar in bounce was found to be effective, with a transmissibility from the road wheel to the hull of about 0.6.

  20. Discrete-time sliding mode control for MR vehicle suspension system

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, J W; Choi, S B [Smart Structures and Systems Laboratory, Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Wereley, N M [Smart Structures Laboratory, Department of Aerospace Engineering, University of Maryland, College Park, MD 20742 (United States)], E-mail: seungbok@inha.ac.kr

    2009-02-01

    This paper presents control performance of a full-vehicle suspension system featuring magnetorheological (MR) dampers via a discrete-time sliding mode control algorithm (DSMC). A cylindrical MR damper is designed by incorporating Bingham model of the MR fluid and the field-dependent damping characteristics of the MR damper are evaluated. A full-vehicle suspension model installed with independent four MR dampers is constructed and the governing equations which include vertical, pitch and roll motion are derived. A discrete-time control model is established with considering system uncertainties and a discrete-time sliding mode controller which has inherent robustness to model uncertainty and external disturbance is formulated. Vibration control performances under bump excitation are evaluated and presented.

  1. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    CERN Document Server

    Farhat, Hassan; Kondaraju, Sasidhar

    2014-01-01

    Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann–based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions.   Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the...

  2. Monitoring Technology for Vehicle Loading Status Based on the Analysis of Suspension Vibration Characters

    Directory of Open Access Journals (Sweden)

    Shiwu Li

    2014-01-01

    Full Text Available Monitoring and early warning of vehicle risk status was one of the key technologies of transportation security, and real-time monitoring load status could reduce the transportation accidents effectively. In order to obtain vehicle load status information, vehicle characters of suspension were analyzed and simulated under different working conditions. On the basis of this, the device that can detect suspension load with overload protection structure was designed and a method of monitored vehicle load status was proposed. The monitoring platform of vehicle load status was constructed and developed for a FAW truck and system was tested on level-A road and body twist lane. The results show that the measurement error is less than 5% and horizontal centre-of-mass of vehicle was positioned accurately. The platform enables providing technical support for the real-time monitoring and warning of vehicles risk status in transit.

  3. Suspension Flame Spray Construction of Polyimide-Copper Layers for Marine Antifouling Applications

    Science.gov (United States)

    Liu, Yi; Xu, Xiaomin; Suo, Xinkun; Gong, Yongfeng; Li, Hua

    2018-01-01

    Individual capsule-like polyimide splats have been fabricated by suspension flame spray, and the polyimide splat exhibits hollow structure with an inner pore and a tiny hole on its top surface. Enwrapping of 200-1000-nm copper particles inside the splats is accomplished during the deposition for constrained release of copper for antifouling performances. Antifouling testing of the coatings by 24-h exposure to Escherichia coli-containing artificial seawater shows that the Cu-doped splat already prohibits effectively attachment of the bacteria. The prohibited adhesion of bacteria obviously impedes formation and further development of bacterial biofilm. This capsulated splat with releasing and loading of copper biocides results in dual-functional structures bearing both release-killing and contact-killing mechanisms. The suspension flame spray route and the encapsulated structure of the polyimide-Cu coatings would open a new window for designing and constructing marine antifouling layers for long-term applications.

  4. A mathematical model for batch and continuous thickening of flocculent suspensions in vessels with varying section

    Energy Technology Data Exchange (ETDEWEB)

    Buerger, R.; Damasceno, J.J.R.; Karlesen, K.H.

    2001-10-01

    The phenomenological theory of continuous thickening of flocculated suspensions in an ideal cylindrical thickener is extended to vessels having varying cross-section, including divergent or convergent conical vessels. The purpose of this contribution is to draw attention to the corresponding mathematical model, whose key ingredient is a strongly degenerate parabolic partial differential equation. For ideal (non-flocculated) suspensions, which do not form co compressible sediments, the mathematical model reduces to the kinematic approach by Anestis, who developed a method of construction of exact solution by the method of characteristics. The difficulty lies in the fact that characteristics and iso-concentration lines, unlike the conventional Kynch model for cylindrical vessels, do not coincide, and one has to resort to numerical methods to simulate the thickening process. A numerical algorithm is presented and employed for simulations of continuous thickening. Implications of the mathematical model are also demonstrated by steady-state calculations, which lead to new possibilities in thickener design. (author)

  5. Discrete-time sliding mode control for MR vehicle suspension system

    International Nuclear Information System (INIS)

    Sohn, J W; Choi, S B; Wereley, N M

    2009-01-01

    This paper presents control performance of a full-vehicle suspension system featuring magnetorheological (MR) dampers via a discrete-time sliding mode control algorithm (DSMC). A cylindrical MR damper is designed by incorporating Bingham model of the MR fluid and the field-dependent damping characteristics of the MR damper are evaluated. A full-vehicle suspension model installed with independent four MR dampers is constructed and the governing equations which include vertical, pitch and roll motion are derived. A discrete-time control model is established with considering system uncertainties and a discrete-time sliding mode controller which has inherent robustness to model uncertainty and external disturbance is formulated. Vibration control performances under bump excitation are evaluated and presented.

  6. Bidisperse and polydisperse suspension rheology at large solid fraction

    Energy Technology Data Exchange (ETDEWEB)

    Pednekar, Sidhant [Benjamin Levich Institute and Department of Chemical Engineering, The City College of New York, New York, New York 10031; Chun, Jaehun [Pacific Northwest National Laboratory, Richland, Washington 99352; Morris, Jeffrey F. [Benjamin Levich Institute and Department of Chemical Engineering, The City College of New York, New York, New York 10031

    2018-03-01

    At the same solid volume fraction, bidisperse and polydisperse suspensions display lower viscosities, and weaker normal stress response, compared to monodisperse suspensions. The reduction of viscosity associated with size distribution can be explained by an increase of the maximum flowable, or jamming, solid fraction. In this work, concentrated or "dense" suspensions are simulated under strong shearing, where thermal motion and repulsive forces are negligible, but we allow for particle contact with a mild frictional interaction with interparticle friction coefficient of 0.2. Aspects of bidisperse suspension rheology are first revisited to establish that the approach reproduces established trends; the study of bidisperse suspensions at size ratios of large to small particle radii (2 to 4) shows that a minimum in the viscosity occurs for zeta slightly above 0.5, where zeta=phi_{large}/phi is the fraction of the total solid volume occupied by the large particles. The simple shear flows of polydisperse suspensions with truncated normal and log normal size distributions, and bidisperse suspensions which are statistically equivalent with these polydisperse cases up to third moment of the size distribution, are simulated and the rheologies are extracted. Prior work shows that such distributions with equivalent low-order moments have similar phi_{m}, and the rheological behaviors of normal, log normal and bidisperse cases are shown to be in close agreement for a wide range of standard deviation in particle size, with standard correlations which are functionally dependent on phi/phi_{m} providing excellent agreement with the rheology found in simulation. The close agreement of both viscosity and normal stress response between bi- and polydisperse suspensions demonstrates the controlling in influence of the maximum packing fraction in noncolloidal suspensions. Microstructural investigations and the stress distribution according to particle size are also presented.

  7. Maraviroc/raltegravir simplification strategy following 6 months of quadruple therapy with tenofovir/emtricitabine/maraviroc/raltegravir in treatment-naive HIV patients.

    Science.gov (United States)

    Pradat, Pierre; Durant, Jacques; Brochier, Corinne; Trabaud, Mary-Anne; Cottalorda-Dufayard, Jacqueline; Izopet, Jacques; Raffi, François; Lucht, Frédéric; Gagnieu, Marie-Claude; Gatey, Caroline; Jacomet, Christine; Vassallo, Matteo; Dellamonica, Pierre; Cotte, Laurent

    2016-11-01

    We assessed the virological efficacy of a 6 month maraviroc/raltegravir simplification strategy following 6 months of quadruple therapy combining tenofovir disoproxil fumarate/emtricitabine with maraviroc/raltegravir. HIV-1-infected naive patients were enrolled in an open label, single-arm, Phase 2 trial. All patients received maraviroc 300 mg twice daily, raltegravir 400 mg twice daily and tenofovir/emtricitabine for 24 weeks. Patients with stable HIV-RNA HIV-RNA HIV-RNA was 4.3 log copies/mL. All patients had CCR5-tropic viruses by genotropism and phenotropism assays. All but one patient had an HIV-RNA < 50 copies/mL at W24 and entered the simplification phase. Virological success was maintained at W48 in 88% (90% CI 79%-97%) of patients. N155H mutation was detected at failure in one patient. No tropism switch was observed. Raltegravir and maraviroc plasma exposure were satisfactory in 92% and 79% of 41 samples from 21 patients. Five severe adverse events (SAEs) were observed up to W48; none was related to the study drugs. Four patients presented grade 3 AEs; none was related to the study. No grade 4 AE was observed. No patient died. Maraviroc/raltegravir maintenance therapy following a 6 month induction phase with maraviroc/raltegravir/tenofovir/emtricitabine was well tolerated and maintained virological efficacy in these carefully selected patients. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Modelling nonlinear viscoelastic behaviours of loudspeaker suspensions-like structures

    Science.gov (United States)

    Maillou, Balbine; Lotton, Pierrick; Novak, Antonin; Simon, Laurent

    2018-03-01

    Mechanical properties of an electrodynamic loudspeaker are mainly determined by its suspensions (surround and spider) that behave nonlinearly and typically exhibit frequency dependent viscoelastic properties such as creep effect. The paper aims at characterizing the mechanical behaviour of electrodynamic loudspeaker suspensions at low frequencies using nonlinear identification techniques developed in recent years. A Generalized Hammerstein based model can take into account both frequency dependency and nonlinear properties. As shown in the paper, the model generalizes existing nonlinear or viscoelastic models commonly used for loudspeaker modelling. It is further experimentally shown that a possible input-dependent law may play a key role in suspension characterization.

  9. Correlated particle dynamics in concentrated quasi-two-dimensional suspensions

    International Nuclear Information System (INIS)

    Diamant, H; Cui, B; Lin, B; Rice, S A

    2005-01-01

    We investigate theoretically and experimentally how the hydrodynamically correlated lateral motion of particles in a suspension confined between two surfaces is affected by the suspension concentration. Despite the long range of the correlations (decaying as 1/r 2 with the inter-particle distance r), the concentration effect is present only at short inter-particle distances for which the static pair correlation is nonuniform. This is in sharp contrast with the effect of hydrodynamic screening in unconfined suspensions, where increasing the concentration changes the prefactor of the large-distance correlation

  10. A Kinematic, Kevlar(registered) Suspension System for an ADR

    Science.gov (United States)

    Voellmer, George M.; Jackson, Michael L.; Shirron, Peter J.; Tuttle, James G.

    2003-01-01

    The High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter And Far Infrared Experiment (SAFIRE) will use identical Adiabatic Demagnetization Refrigerators (ADR) to cool their bolometer detectors to 200mK and 100mK, respectively. In order to minimize thermal loads on the salt pill, a Kevlar@ suspension system is used to hold it in place. An innovative, kinematic suspension system is presented. The suspension system is unique in that it consists or two parts that can be assembled and tensioned offline, and later bolted onto the salt pill. The resulting assembly constrains each degree of freedom only once, yielding a kinematic, tensile structure.

  11. On reactive suspension plasma spraying of calcium titanate

    OpenAIRE

    Kotlan, J. (Jiří); Pala, Z. (Zdeněk); Mušálek, R. (Radek); Ctibor, P. (Pavel)

    2016-01-01

    This study shows possibility of preparation of calcium titanate powder and coatings by reactive suspension plasma spraying. Suspension of mixture of calcium carbonate (CaCO3) and titanium dioxide (TiO2) powders in ethanol was fed into hybrid plasma torch with a DC-arc stabilized by a water–argon mixture (WSP-H 500). Various feeding distances and angles were used in order to optimize suspension feeding conditions. In the next step, the coatings were deposited on stainless steel substrates and ...

  12. Ceramic Near-Net Shaped Processing Using Highly-Loaded Aqueous Suspensions

    Science.gov (United States)

    Rueschhoff, Lisa

    Ceramic materials offer great advantages over their metal counterparts, due to their lower density, higher hardness and wear resistance, and higher melting temperatures. However, the use of ceramics in applications where their properties would offer tremendous advantages are often limited due to the difficulty of forming them into complex and near-net shaped parts. Methods that have been developed to injection-mold or cast ceramics into more complicated shapes often use significant volume fractions of a carrier (often greater than 35 vol.% polymer), elevated temperature processing, or less-than-environmentally friendly chemicals where a complex chemical synthesis reaction must be timed perfectly for the approach to work. Furthermore, the continuing maturation of additive manufacturing methods requires a new approach for flowing/placing ceramic powders into useful designs. This thesis addresses the limitations of the current ceramic forming approaches by developing highly-stabilized and therefore high solids loading ceramic suspensions, with the requisite rheology for a variety of complex and near-net shaped forming techniques. Silicon nitride was chosen as a material of focus due to its high fracture toughness compared to other ceramic materials. Designing ceramic suspensions that are flowable at room temperature greatly simplifies processing as neither heating nor cooling are required during forming. Highly-loaded suspensions (>40 vol.%) are desired because all formed ceramic bodies have to be sintered to remove pores. Finally, using aqueous-based suspensions reduces any detrimental effect on the environment and tooling. The preparation of highly-loaded suspensions requires the development of a suitable dispersant through which particle-particle interactions are controlled. However, silicon nitride is difficult to stabilize in water due to complex surface and solution chemistry. In this study, aqueous silicon nitride suspensions up to 45 vol.% solids loading were

  13. DC electrostatic gyro suspension system for the Gravity Probe B experiment

    Science.gov (United States)

    Wu, Chang-Huei

    1994-12-01

    The Gravity Probe B experiment is a satellite-based experiment primarily designed to test two aspects of Einstein's General Theory of Relativity by observing the spin axis drift of near-perfect gyroscopes in a 650-km circular polar orbit. The goal of this experiment is to measure the drift angles to an accuracy of 0.3 milli-arcsec after one year in orbit. As a result, electrostatically suspended free-spinning gyroscopes operating at a very low temperature became the final choice for their ultra-low Newtonian torque-induced drift rate. The Conventional AC current-driven suspension system faces two fundamental difficulties for ground gyro testing. Field emission causes rotor charging and arcing with an imperfect electrode or rotor surfaces because the electric field intensity needed to support a solid rotor in the 1-g field is more than 107 V/m. The system not only becomes unstable at a high rotor charge, which can be more than 500 volts, but may also lose control in case of arcing. Both the high voltage AC suspension signal and the high frequency (1 MHz) signal for rotor position sensing interfere with the superconducting SQUID magnetometer for spin axis readout through inductive coupling. These problems were resolved by using DC voltage to generate a suspension force and a low frequency position sensor. In addition to the Input/Output linearization algorithm developed to remove the system nonlinearity for global stability and dynamic performance, we also minimized the electric field intensity to reduce rotor charging. Experimental results verified the desired global stability and satisfactory dynamic performance. The problem of rotor charging is virtually eliminated. More importantly, the DC system is compatible with the SQUID readout system in the Science Mission configuration. Consequently, experiments in low magnetic field at a sub-micro-gauss level for SQUID design verification and trapped flux distribution study were finally realizable in ground environment

  14. FORGING DEFECTS ANALYSIS IN SUSPENSION ARMAND FLASH CONTROL

    OpenAIRE

    Mr Jadhav Vijay B. , Prof. Mundhe V.L. , Dr. Narve N.G.

    2018-01-01

    The suspension arms in the process of fogging are made by different material and in that processes get various problems are found. In that paper list out that problem and solving flash wastage problem.

  15. Study of shear thickening behavior in colloidal suspensions

    Directory of Open Access Journals (Sweden)

    N Maleki Jirsaraee

    2015-01-01

    Full Text Available We studied the shear thickening behavior of the nano silica suspension (silica nanoparticles 12 nm in size suspended in ethylene glycol under steady shear. The critical shear rate for transition into shear thickening phase was determined at different concentrations and temperatures. The effect of temperature and concentration was studied on the shear thickening behavior. In silica suspension, it was observed that all the samples had a transition into shear thickening phase and also by increasing the temperature, critical shear rate increased and viscosity decreased. Our observations showed that movement in silica suspension was Brownian and temperature could cause a delay in transition into shear thickening phase. Yet, we observed that increasing the concentration would decrease critical shear rate and increase viscosity. Increasing temperature increased Brownian forces and increasing concentration increased hydrodynamic forces, confirming the contrast between these two forces for transition into shear thickening phase for the suspensions containing nano particles

  16. Degradability of aged aquatic suspensions of C60 nanoparticles

    DEFF Research Database (Denmark)

    Hartmann, B.; Buendia, Inmaculada M.; Baun, Anders

    2011-01-01

    While studies of the potential human and environmental effects of C60 and its derivatives are emerging in the scientific literature, the environmental fate of C60 is still largely unknown. In this study, aged aqueous suspensions of C60 (nC60) were investigated in the respirometric OECD test...... for ready biodegradability. Two suspensions of nC60 were prepared by stirring and aged under indirect exposure to sunlight for 36 months, which resulted in relatively stable suspensions with a dark-brown colour. The suspended nC60 could not be extracted into toluene and indicating that the particles were...... no longer present as underivatised nC60 but had undergone a transformation. TEM images and particle tracking analysis showed that the suspension consisted of particle aggregates with a size of 156 nm (SD=54nm) and 139nm (Sd=49), respectively, but also contained smaller aggregates. Samples of the nC60...

  17. Self-Suspended Suspensions of Covalently Grafted Hairy Nanoparticles

    KAUST Repository

    Choudhury, Snehashis; Agrawal, Akanksha; Kim, Sung A; Archer, Lynden A.

    2015-01-01

    length scales. On mesoscopic length scales, the suspensions display exceptional homogeneity and colloidal stability. We attribute this feature to steric repulsions between grafted chains and the space-filling constraint on the tethered chains

  18. Influence of crystal habit on trimethoprim suspension formulation.

    Science.gov (United States)

    Tiwary, A K; Panpalia, G M

    1999-02-01

    The role of crystal habit in influencing the physical stability and pharmacokinetics of trimethoprim suspensions was examined. Different habits for trimethoprim (TMP) were obtained by recrystallizing the commercial sample (PD) utilizing solvent-change precipitation method. Four distinct habits (microscopic observation) belonging to the same polymorphic state (DSC studies) were selected for studies. Preformulation and formulation studies were carried out on suspension dosage forms containing these crystals. The freshly prepared suspensions were also evaluated for their pharmacokinetic behaviour on healthy human volunteers using a cross over study. Variation of crystallization conditions produces different habits of TMP. Among the different crystal habits exhibiting same polymorphic state, the most anisometric crystal showed best physical stability in terms of sedimentation volume and redispersibility. However, habit did not significantly affect the extent of TMP excreted in urine. Modification of surface morphology without significantly altering the polymorphic state can be utilized for improving physical stability of TMP suspensions. However, the pharmacokinetic profile remains unaltered.

  19. Improved production of chlorogenic acid from cell suspension ...

    African Journals Online (AJOL)

    Chlorogenic acid is a free radical scavenger, antibacterial, anti- inflammatory, antiviral, hypoglycemic, and in addition to ... experiments, the effect of various strengths of B5 medium (1/4 .... Growth kinetics of L. macranthoides cell suspension ...

  20. Solution or suspension - Does it matter for lipid based systems?

    DEFF Research Database (Denmark)

    Larsen, A T; Holm, R; Müllertz, A

    2017-01-01

    In this study, the potential of co-administering an aqueous suspension with a placebo lipid vehicle, i.e. chase dosing, was investigated in rats relative to the aqueous suspension alone or a solution of the drug in the lipid vehicle. The lipid investigated in the present study was Labrafil M2125CS...... and three evaluated poorly soluble model compounds, danazol, cinnarizine and halofantrine. For cinnarizine and danazol the oral bioavailability in rats after chase dosing or dosing the compound dissolved in Labrafil M21515CS was similar and significantly higher than for the aqueous suspension....... For halofantrine the chase dosed group had a tendency towards a low bioavailability relative to the Labrafil M2125CS solution, but still a significant higher bioavailability relative to the aqueous suspension. This could be due to factors such as a slower dissolution rate in the intestinal phase of halofantrine...

  1. A simple route to prepare stable hydroxyapatite nanoparticles suspension

    International Nuclear Information System (INIS)

    Han Yingchao; Wang Xinyu; Li Shipu

    2009-01-01

    A simple ultrasound assisted precipitation method with addition of glycosaminoglycans (GAGs) is proposed to prepare stable hydroxyapatite (HAP) nanoparticles suspension from the mixture of Ca(H 2 PO 4 ) 2 solution and Ca(OH) 2 solution. The product was characterized by XRD, FT-IR, TEM, HRTEM and particle size, and zeta potential analyzer. TEM observation shows that the suspension is composed of 10-20 nm x 20-50 nm short rod-like and 10-30 nm similar spherical HAP nanoparticles. The number-averaged particle size of stable suspension is about 30 nm between 11.6 and 110.5 nm and the zeta potential is -60.9 mV. The increase of stability of HAP nanoparticles suspension mainly depends on the electrostatic effect and steric effect of GAGs. The HAP nanoparticles can be easily transported into the cancer cells and exhibit good potential as gene or drug carrier system.

  2. In vitro production of azadirachtin from cell suspension cultures of ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR G

    proven effective in the control of agricultural pests in an environmentally ..... Prakash G and Srivastava A K 2005 Statistical media optimization for cell growth and ... Juss. suspension cultures; Process Biochemistry 40 3795–3800. Prakash G ...

  3. Weakly sheared active suspensions: hydrodynamics, stability, and rheology.

    Science.gov (United States)

    Cui, Zhenlu

    2011-03-01

    We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: the apparent viscosity may decrease with the increase of the concentration.

  4. Large Scale Brownian Dynamics of Confined Suspensions of Rigid Particles

    Science.gov (United States)

    Donev, Aleksandar; Sprinkle, Brennan; Balboa, Florencio; Patankar, Neelesh

    2017-11-01

    We introduce new numerical methods for simulating the dynamics of passive and active Brownian colloidal suspensions of particles of arbitrary shape sedimented near a bottom wall. The methods also apply for periodic (bulk) suspensions. Our methods scale linearly in the number of particles, and enable previously unprecedented simulations of tens to hundreds of thousands of particles. We demonstrate the accuracy and efficiency of our methods on a suspension of boomerang-shaped colloids. We also model recent experiments on active dynamics of uniform suspensions of spherical microrollers. This work was supported in part by the National Science Foundation under award DMS-1418706, and by the U.S. Department of Energy under award DE-SC0008271.

  5. Establishment of the callus and cell suspension culture of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... Full Length Research Paper. Establishment of the callus ... study provided an efficient way for E. angustifolia cell suspension culture to produce secondary metabolite. .... was also observed that in these treatments the stem.

  6. Effective viscosity of 2D suspensions - Confinement effects

    Science.gov (United States)

    Peyla, Philippe; Priem, Stephane; Vincent, Doyeux; Farutin, Alexander; Ismail, Mourad

    2014-11-01

    We study the rheology of a sheared 2D suspension of non-Brownian disks in presence of walls. Although, it is of course possible today with modern computers and powerful algorithms to perform direct numerical simulations that fully account for multiparticle 3D interactions, the analysis of the simple case of a 2D suspension, provides valuable insights and helps to understand 3D results. For instance, we examine the role of particle-wall and particle-particle interactions in determining the rheology of confined sheared suspensions. In addition we evaluate the intrinsic viscosity as well as the contribution of hydrodynamic interactions to the dissipation as a function of a wide range of confinements. Thanks to the direct visualisation of the whole 2D Stokes flow, we are able to give a clear interpretation about the rheology of semi-dilute confined suspensions.

  7. Effect of the crone suspension control system on braking

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, X.; Oustaloup, A. [Bordeaux-1 Univ., Talence (France). Lab. d' Automatique et de Productique; Nouillant, C. [Bordeaux-1 Univ., Talence (France). Lab. d' Automatique et de Productique]|[DRIA-PSA Peugeot Citroen, Velizy - Villacoublay (France)

    2001-07-01

    Semi-active or active suspensions not only increase driving comfort, but also permit the control system to be switched over if required in order to improve the transmission of forces at the points of contact between tire and road surface by minimizing the dynamic wheel loads. It may also be possible to use these systems to control wheel load distribution and, thus, influence braking or steering performance by changing the distribution of normal forces between the front and rear axles. This article examines the effect of the CRONE suspension control system on braking. The central idea is to use continuously variable dampers and fast load levelling devices to distribute the normal forces of tire between the front and rear axles. The basis principle is explained using known dynamic properties of active suspension, vehicles and tires. The effect of active suspension on vehicle response during braking is then evaluated using computer simulations from a two-wheel vehicle model. (orig.)

  8. Establishment of sorghum cell suspension culture system for ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-03-18

    Mar 18, 2008 ... Additionally, sorghum cell suspension cultures have been initiated from the friable ... proteomics technologies. The field of proteomics is .... air dried at room temperature and resuspended in 2 ml of urea buffer [9 M urea, 2 M ...

  9. Structure and rheology of nanoparticle–polymer suspensions

    KAUST Repository

    Srivastava, Samanvaya; Shin, Jung Hwan; Archer, Lynden A.

    2012-01-01

    separation and aggregation than expected from theory for interacting brushes. SAXS and rheology measurements also reveal that at high particle loadings, the stabilizing oligomer brush is significantly compressed and produces jamming in the suspensions

  10. Rheological studies of aqueous stabilised nano-zirconia particle suspensions

    Directory of Open Access Journals (Sweden)

    Asad Ullah Khan

    2012-02-01

    Full Text Available In the present investigation aqueous suspensions of nano- and colloidal range particles are stabilised by changing the ambient pH. Rheology is used to establish the stability of the suspensions and it is found that the rheology of the suspensions is strongly dependent on the pH values. The viscosity is highest close to the iso-electric point of the powders. At the iso-electric point the net surface charge on the powder particles is zero and is the cause of the high viscosity. Away from the iso-electric point, the particles are charged, giving rise to a double layer phenomenon and causing the reduction in viscosity. It is also found that increasing the solid contents of the suspensions reduces the pH region of low viscosity.

  11. Well-dispersed gold nanowire suspension for assembly application

    International Nuclear Information System (INIS)

    Xu Cailing; Zhang Li; Zhang Haoli; Li Hulin

    2005-01-01

    A method for fabricating well-dispersed nanowire suspension has been demonstrated in the paper. Thin gold nanowires were prepared by template synthesis, and then functionalized with sulphonate group-terminated thiols before suspended in different solvents. The degree of aggregation of the obtained suspension was evaluated with transmission electron microscopy (TEM) and UV-vis spectroscopy. It was found that the degree of aggregation was predominated by the solvents, and the best degree of dispersion was obtained when isopropyl alcohol (IPA) was used as the solvent. The gold nanowires from the suspension can be selectively assembled onto chemically patterned substrates. This well-dispersed nanowire suspension is potentially useful for fabricating novel nanodevices

  12. Preparation of Water Suspensions of Nanocalcite for Cultural Heritage Applications

    Directory of Open Access Journals (Sweden)

    Maria-Beatrice Coltelli

    2018-04-01

    Full Text Available The consolidation of degraded carbonate stone used in ancient monuments is an important topic for European cultural heritage conservation. The products most frequently used as consolidants are based on tetraalkoxy- or alkylalkoxy-silanes (in particular tetraethyl-orthosilicate, TEOS, resulting in the formation of relatively stable amorphous silica or alkylated (hydrophobic silica inside the stone pores. However, silica is not chemically compatible with carbonate stones; in this respect, nanocalcite may be a suitable alternative. The present work concerns the preparation of water suspensions of calcite nanoparticles (CCNPs by controlled carbonation of slaked lime using a pilot-scale reactor. A simplified design of experiment was adopted for product optimization. Calcite nanoparticles of narrow size distribution averaging about 30 nm were successfully obtained, the concentration of the interfacial agent and the size of CaO being the most critical parameters. Primary nanoparticle aggregation causing flocculation could be substantially prevented by the addition of polymeric dispersants. Copolymer-based dispersants were produced in situ by controlled heterophase polymerisation mediated by an amphiphilic macro-RAFT (reversible addition-fragmentation transfer agent. The stabilized CCNP aqueous dispersions were then applied on carbonate and silicate substrates; Scanning Electron Microscopy (SEManalysis of cross-sections allowed the evaluation of pore penetration, interfacial binding, and bridging (gap-filling properties of these novel consolidants.

  13. Characteristics on electodynamic suspension simulator with HTS levitation magnet

    International Nuclear Information System (INIS)

    Lee, J.; Bae, D.K.; Sim, K.; Chung, Y.D.; Lee, Y.-S.

    2009-01-01

    High-T c superconducting (HTSC) electrodynamic suspension (EDS) system basically consists of the HTSC levitation magnet and the ground conductor. The levitation force of EDS system is forms by the interaction between the moving magnetic field produced by the onboard levitation magnet and the induced magnetic field produced by eddy current in the ground conductor. This paper deals with the characteristics of the EDS simulators with high-T c superconducting (HTS) levitation magnet. Two EDS simulator systems, rotating type EDS simulator and static type EDS simulator, were studied in this paper. The rotating type EDS simulator consists of a HTS levitation magnet and a 1.5 m diameter rotating ground conductor, a motor, the supporting structure and force measuring devices. In the static type EDS simulator, instead of moving magnetic field, AC current was applied to the fixed HTS levitation magnet to induce the eddy current. The static type EDS simulator consists of a HTS levitation magnet, a ground conductor, force measuring devices and supporting structure. The double-pancake type HTSC levitation magnet was designed, manufactured and tested in the EDS simulator.

  14. Characteristics on electodynamic suspension simulator with HTS levitation magnet

    Science.gov (United States)

    Lee, J.; Bae, D. K.; Sim, K.; Chung, Y. D.; Lee, Y.-S.

    2009-10-01

    High- Tc superconducting (HTSC) electrodynamic suspension (EDS) system basically consists of the HTSC levitation magnet and the ground conductor. The levitation force of EDS system is forms by the interaction between the moving magnetic field produced by the onboard levitation magnet and the induced magnetic field produced by eddy current in the ground conductor. This paper deals with the characteristics of the EDS simulators with high- Tc superconducting (HTS) levitation magnet. Two EDS simulator systems, rotating type EDS simulator and static type EDS simulator, were studied in this paper. The rotating type EDS simulator consists of a HTS levitation magnet and a 1.5 m diameter rotating ground conductor, a motor, the supporting structure and force measuring devices. In the static type EDS simulator, instead of moving magnetic field, AC current was applied to the fixed HTS levitation magnet to induce the eddy current. The static type EDS simulator consists of a HTS levitation magnet, a ground conductor, force measuring devices and supporting structure. The double-pancake type HTSC levitation magnet was designed, manufactured and tested in the EDS simulator.

  15. Sugar transport by maize endosperm suspension cultures

    International Nuclear Information System (INIS)

    Felker, F.C.; Goodwin, J.C.

    1987-01-01

    To determine the mechanism of sugar uptake by suspension cultures derived from developing maize (Zea mays L.) endosperm, incorporation of radioactivity from 14 C-sugars by the tissue in the mid-log phase of growth was examined. Among the sugars tested was l'-deoxy-l'-fluorosucrose (FS), a derivative not hydrolyzed by invertase but recognized by sucrose carriers in other systems. At 40 mM, uptake of label from FS was 23% of that from sucrose, while uptake of label from L-glucose (used as a control for medium carry-over and adsorption) was 16% of that from sucrose. Uptake of label from sucrose did not increase at concentrations above 50 mM, possibly due to a rate-limiting requirement for extracellular hydrolysis. Kinetic analysis revealed both saturable and linear components of uptake for glucose and fructose. The rate of fructose uptake exceeded that of glucose at all concentrations. Fructose uptake at 20 mM was inhibited by NaN 3 , HgCl 2 , dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, and p-chloromercuribenzenesulfonic acid. Results suggest that sucrose is hydrolyzed prior to uptake, and that fructose is transported preferentially by a carrier sensitive to an external sulfhydryl group inhibitor. Metabolic activity is required for sugar uptake. The specificity of the hexose transporter is currently being investigated

  16. Acoustic manipulation of bacteria cells suspensions

    Science.gov (United States)

    GutiéRrez-Ramos, Salomé; Hoyos, Mauricio; Aider, Jean Luc; Ruiz, Carlos; Acoustofluidics Team Team; Soft; Bio Group Collaboration

    An acoustic contacless manipulation gives advantages in the exploration of the complex dynamics enviroment that active matter exhibits. Our works reports the control confinement and dispersion of Escherichia coliRP437-pZA3R-YFP suspensions (M9Glu-Ca) via acoustic levitation.The manipulation of the bacteria bath in a parallel plate resonator is achieved using the acoustic radiation force and the secondary radiation force. The primary radiation force generates levitation of the bacteria cells at the nodal plane of the ultrasonic standing wave generated inside the resonator. On the other side, secondary forces leads to the consolidation of stable aggregates. All the experiments were performed in the acoustic trap described, where we excite the emission plate with a continuous sinusoidal signal at a frequency in the order of MHz and a quartz slide as the reflector plate. In a typical experiment we observed that, before the input of the signal, the bacteria cells exhibit their typical run and tumble behavior and after the sound is turned on all of them displace towards the nodal plane, and instantaneously the aggregation begins in this region. CNRS French National Space Studies, CONACYT Mexico.

  17. Survey of potential applications of superconducting suspensions

    International Nuclear Information System (INIS)

    Rao, D.K.; Bupara, S.S.

    1993-01-01

    The purpose of this report is to survey the recent developments in applying the bulk superconductors to mechanical applications. These applications, called superconducting suspensions, can be broadly divided into three groups - Passive Magnetic Bearings, Passive Superconducting Dampers and Active Superconducting Bearings. Basically, passive magnetic bearings utilize bulk superconductors to support a rotating shaft without contact while active superconducting bearings employ superconducting wires. Passive superconducting dampers, on the other hand, dissipate energy from a vibrating component. Over the past one year, dramatic improvements have been made in processing large-size specimens made of high grade bulk superconductors. As a result, they can meet the size requirements and load capacity requirements of many applications. With this size-scale up, one can utilize them in a wider number of applications than what was possible a few years back. At present several organizations have demonstrated the capability of passive magnetic bearings. The targeted applications include miniature cryoturboexpanders, cryoturbopumps, energy storage wheels and turbomolecular pumps. These demonstrations indicate that the passive magnetic bearings are closer to technology maturity. (orig.)

  18. Mirror suspension system for the TAMA SAS

    International Nuclear Information System (INIS)

    Takamori, Akiteru; Ando, Masaki; Bertolini, Alessandro; Cella, Giancarlo; DeSalvo, Riccardo; Fukushima, Mitsuhiro; Iida, Yukiyoshi; Jacquier, Florian; Kawamura, Seiji; Marka, Szabolcs; Nishi, Yuhiko; Numata, Kenji; Sannibale, Virginio; Somiya, Kentaro; Takahashi, Ryutaro; Tariq, Hareem; Tsubono, Kimio; Ugas, Jose; Viboud, Nicolas; Yamamoto, Hiroaki; Yoda, Tatsuo; Wang Chenyang

    2002-01-01

    Several R and D programmes are ongoing to develop the next generation of interferometric gravitational wave detectors providing the superior sensitivity desired for refined astronomical observations. In order to obtain a wide observation band at low frequencies, the optics need to be isolated from the seismic noise. The TAMA SAS (seismic attenuation system) has been developed within an international collaboration between TAMA, LIGO, and some European institutes, with the main objective of achieving sufficient low-frequency seismic attenuation (-180 dB at 10 HZ). The system suppresses seismic noise well below the other noise levels starting at very low frequencies above 10 Hz. It also includes an active inertial damping system to decrease the residual motion of the optics enough to allow a stable operation of the interferometer. The TAMA SAS also comprises a sophisticated mirror suspension subsystem (SUS). The SUS provides support for the optics and vibration isolation complementing the SAS performance. The SUS is equipped with a totally passive magnetic damper to suppress internal resonances without degrading the thermal noise performance. In this paper we discuss the SUS details and present prototype results

  19. Equation of state of charged latex suspensions

    International Nuclear Information System (INIS)

    Reus, Valerie

    1995-01-01

    We measured the osmotic pressure of charged bromo-polystyrene particles suspensions in the dilute System (0,01-10% in volume fraction). The typical range of differences in water heights varies from one millimeter to a few centimeters. When particles are polydisperse, samples remain always sols but if particles are monodisperse, they can form supramolecular crystals stabilized by electrostatic repulsions. These crystals exist only when the ionic force is very low, about one μmole/l. We determined the structure of these assemblies by light and X-ray scattering as function of the volume fraction. At low volume fractions, crystals adopt a body centered cubic structure; when the concentration increases, they become more compact and we observe face centered cubic structures. After shearing, defects may appear and two dimensional hexagonal structures can be found. This type of study of the osmotic pressure versus distance (in the range 300 nm) is equivalent to a highly precise atomic force measurement, since it allows detection of forces as small as 10 -11 -10 -12 N. (author) [fr

  20. Sedimentation of athermal particles in clay suspensions

    Science.gov (United States)

    Clotet, Xavier; Kudrolli, Arshad

    2015-03-01

    We discuss sedimentation of athermal particles in dense clay suspensions which appear liquid-like to glass-like. These studies are motivated by the physics important to a diverse range of problems including remediation of oil sands after the extraction of hydrocarbons, and formation of filter cakes in bore wells. We approach this problem by first considering collective sedimentation of athermal spherical particles in a viscous liquid in quasi-two dimensional and three dimensional containers. We examine the system using optical and x-ray tomography techniques which gives particle level information besides global information on the evolution of the volume fraction. Unlike sediments in the dilute limit - which can be modeled as isolated particles that sediment with a constant velocity and slow down exponentially as they approach the bottom of the container - we find interaction between the particles through the viscous fluids leads to qualitatively differences. We find significant avalanching behavior and cooperative motion as the grains collectively settle, and non-exponential increase in settling time. We discuss the effect of stirring caused by the sedimenting particles on their viscosity and consequently the sedimentation rates as a function of particle concentration. Supported by Petroleum Research Fund Grant PRF # 54045-ND9.