WorldWideScience

Sample records for quadratic cost function

  1. Multiobjective Optimization Involving Quadratic Functions

    Directory of Open Access Journals (Sweden)

    Oscar Brito Augusto

    2014-01-01

    Full Text Available Multiobjective optimization is nowadays a word of order in engineering projects. Although the idea involved is simple, the implementation of any procedure to solve a general problem is not an easy task. Evolutionary algorithms are widespread as a satisfactory technique to find a candidate set for the solution. Usually they supply a discrete picture of the Pareto front even if this front is continuous. In this paper we propose three methods for solving unconstrained multiobjective optimization problems involving quadratic functions. In the first, for biobjective optimization defined in the bidimensional space, a continuous Pareto set is found analytically. In the second, applicable to multiobjective optimization, a condition test is proposed to check if a point in the decision space is Pareto optimum or not and, in the third, with functions defined in n-dimensional space, a direct noniterative algorithm is proposed to find the Pareto set. Simple problems highlight the suitability of the proposed methods.

  2. Quadratic independence of coordinate functions of certain ...

    Indian Academy of Sciences (India)

    ... are `quadratically independent' in the sense that they do not satisfy any nontrivial homogeneous quadratic relations among them. Using this, it is proved that there is no genuine compact quantum group which can act faithfully on C ( M ) such that the action leaves invariant the linear span of the above coordinate functions.

  3. Quadratic Functionals with General Boundary Conditions

    International Nuclear Information System (INIS)

    Dosla, Z.; Dosly, O.

    1997-01-01

    The purpose of this paper is to give the Reid 'Roundabout Theorem' for quadratic functionals with general boundary conditions. In particular, we describe the so-called coupled point and regularity condition introduced in terms of Riccati equation solutions

  4. orthogonal and scaling transformations of quadratic functions

    African Journals Online (AJOL)

    Preferred Customer

    functions of sub-problems of various nonlinear programming problems that employ methods such as sequential quadratic programming and trust-region methods (Sorensen, 1982; Eldersveld,. 1991; Nocedal and Wright, 1999). Various problems in Algebra, Functional Analysis,. Analytic Geometry and Computational Mathe-.

  5. Temporal quadratic expansion nodal Green's function method

    International Nuclear Information System (INIS)

    Liu Cong; Jing Xingqing; Xu Xiaolin

    2000-01-01

    A new approach is presented to efficiently solve the three-dimensional space-time reactor dynamics equation which overcomes the disadvantages of current methods. In the Temporal Quadratic Expansion Nodal Green's Function Method (TQE/NGFM), the Quadratic Expansion Method (QEM) is used for the temporal solution with the Nodal Green's Function Method (NGFM) employed for the spatial solution. Test calculational results using TQE/NGFM show that its time step size can be 5-20 times larger than that of the Fully Implicit Method (FIM) for similar precision. Additionally, the spatial mesh size with NGFM can be nearly 20 times larger than that using the finite difference method. So, TQE/NGFM is proved to be an efficient reactor dynamics analysis method

  6. A multilevel search algorithm for the maximization of submodular functions applied to the quadratic cost partition problem

    NARCIS (Netherlands)

    Goldengorin, B.; Ghosh, D.

    Maximization of submodular functions on a ground set is a NP-hard combinatorial optimization problem. Data correcting algorithms are among the several algorithms suggested for solving this problem exactly and approximately. From the point of view of Hasse diagrams data correcting algorithms use

  7. Orthogonal and Scaling Transformations of Quadratic Functions with ...

    African Journals Online (AJOL)

    In this paper we present a non-singular transformation that can reduce a given quadratic function defined on Rn to another simpler quadratic function and study the impact of the transformation in relation to the problem of minimization of the function. In particular, we construct a non-singular transformation that can reduce a ...

  8. The stability of quadratic-reciprocal functional equation

    Science.gov (United States)

    Song, Aimin; Song, Minwei

    2018-04-01

    A new quadratic-reciprocal functional equation f ((k +1 )x +k y )+f ((k +1 )x -k y )=2/f (x )f (y )[(k+1 ) 2f (y )+k2f (x )] [(k+1)2f (y )-k2f (x )] 2 is introduced. The Hyers-Ulam stability for the quadratic-reciprocal functional equations is proved in Banach spaces using the direct method and the fixed point method, respectively.

  9. Quadratic programming with fuzzy parameters: A membership function approach

    International Nuclear Information System (INIS)

    Liu, S.-T.

    2009-01-01

    Quadratic programming has been widely applied to solving real world problems. The conventional quadratic programming model requires the parameters to be known constants. In the real world, however, the parameters are seldom known exactly and have to be estimated. This paper discusses the fuzzy quadratic programming problems where the cost coefficients, constraint coefficients, and right-hand sides are represented by convex fuzzy numbers. Since the parameters in the program are fuzzy numbers, the derived objective value is a fuzzy number as well. Using Zadeh's extension principle, a pair of two-level mathematical programs is formulated to calculate the upper bound and lower bound of the objective values of the fuzzy quadratic program. Based on the duality theorem and by applying the variable transformation technique, the pair of two-level mathematical programs is transformed into a family of conventional one-level quadratic programs. Solving the pair of quadratic programs produces the fuzzy objective values of the problem. An example illustrates method proposed in this paper.

  10. Subgroups of class groups of algebraic quadratic function fields

    International Nuclear Information System (INIS)

    Wang Kunpeng; Zhang Xianke

    2001-09-01

    Ideal class groups H(K) of algebraic quadratic function fields K are studied, by using mainly the theory of continued fractions of algebraic functions. Properties of such continued fractions are discussed first. Then a necessary and sufficient condition is given for the class group H(K) to contain a cyclic subgroup of any order n, this criterion condition holds true for both real and imaginary fields K. Furthermore, several series of function fields K, including real, inertia imaginary, as well as ramified imaginary quadratic function fields, are given, and their class groups H(K) are proved to contain cyclic subgroups of order n. (author)

  11. ON WEIGHTED GENERALIZED FUNCTIONS ASSOCIATED WITH QUADRATIC FORMS

    Directory of Open Access Journals (Sweden)

    E. L. Shishkina

    2016-12-01

    Full Text Available In this article we consider certain types of weighted generalized functions associated with nondegenerate quadratic forms. Such functions and their derivatives are used for constructing fundamental solutions of iterated ultra-hyperbolic equations with the Bessel operator and for constructing negative real powers of ultra-hyperbolic operators with the Bessel operator.

  12. Linear versus quadratic portfolio optimization model with transaction cost

    Science.gov (United States)

    Razak, Norhidayah Bt Ab; Kamil, Karmila Hanim; Elias, Siti Masitah

    2014-06-01

    Optimization model is introduced to become one of the decision making tools in investment. Hence, it is always a big challenge for investors to select the best model that could fulfill their goal in investment with respect to risk and return. In this paper we aims to discuss and compare the portfolio allocation and performance generated by quadratic and linear portfolio optimization models namely of Markowitz and Maximin model respectively. The application of these models has been proven to be significant and popular among others. However transaction cost has been debated as one of the important aspects that should be considered for portfolio reallocation as portfolio return could be significantly reduced when transaction cost is taken into consideration. Therefore, recognizing the importance to consider transaction cost value when calculating portfolio' return, we formulate this paper by using data from Shariah compliant securities listed in Bursa Malaysia. It is expected that, results from this paper will effectively justify the advantage of one model to another and shed some lights in quest to find the best decision making tools in investment for individual investors.

  13. Dhage Iteration Method for Generalized Quadratic Functional Integral Equations

    Directory of Open Access Journals (Sweden)

    Bapurao C. Dhage

    2015-01-01

    Full Text Available In this paper we prove the existence as well as approximations of the solutions for a certain nonlinear generalized quadratic functional integral equation. An algorithm for the solutions is developed and it is shown that the sequence of successive approximations starting at a lower or upper solution converges monotonically to the solutions of related quadratic functional integral equation under some suitable mixed hybrid conditions. We rely our main result on Dhage iteration method embodied in a recent hybrid fixed point theorem of Dhage (2014 in partially ordered normed linear spaces. An example is also provided to illustrate the abstract theory developed in the paper.

  14. Quadratic independence of coordinate functions of certain ...

    Indian Academy of Sciences (India)

    ... functions of certain homogeneous spaces and action of compact quantum groups ..... Let A be a unital commutative C∗ algebra and x1,...,xn be self-adjoint elements of A ..... 2 in the power series expansion of ξ(·). The coefficient of .... his work on coadjoint orbits, which gave the author the motivation to consider the prob-.

  15. General quadratic gauge theory: constraint structure, symmetries and physical functions

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V [Lebedev Physics Institute, Moscow (Russian Federation)

    2005-06-17

    How can we relate the constraint structure and constraint dynamics of the general gauge theory in the Hamiltonian formulation to specific features of the theory in the Lagrangian formulation, especially relate the constraint structure to the gauge transformation structure of the Lagrangian action? How can we construct the general expression for the gauge charge if the constraint structure in the Hamiltonian formulation is known? Whether we can identify the physical functions defined as commuting with first-class constraints in the Hamiltonian formulation and the physical functions defined as gauge invariant functions in the Lagrangian formulation? The aim of the present paper is to consider the general quadratic gauge theory and to answer the above questions for such a theory in terms of strict assertions. To fulfil such a programme, we demonstrate the existence of the so-called superspecial phase-space variables in terms of which the quadratic Hamiltonian action takes a simple canonical form. On the basis of such a representation, we analyse a functional arbitrariness in the solutions of the equations of motion of the quadratic gauge theory and derive the general structure of symmetries by analysing a symmetry equation. We then use these results to identify the two definitions of physical functions and thus prove the Dirac conjecture.

  16. Fast, multiple optimizations of quadratic dose objective functions in IMRT

    International Nuclear Information System (INIS)

    Breedveld, Sebastiaan; Storchi, Pascal R M; Keijzer, Marleen; Heijmen, Ben J M

    2006-01-01

    Inverse treatment planning for intensity-modulated radiotherapy may include time consuming, multiple minimizations of an objective function. In this paper, methods are presented to speed up the process of (repeated) minimization of the well-known quadratic dose objective function, extended with a smoothing term that ensures generation of clinically acceptable beam profiles. In between two subsequent optimizations, the voxel-dependent importance factors of the quadratic terms will generally be adjusted, based on an intermediate plan evaluation. The objective function has been written in matrix-vector format, facilitating the use of a recently published, fast quadratic minimization algorithm, instead of commonly applied gradient-based methods. This format also reduces the calculation time in between subsequent minimizations, related to adjustment of the voxel-dependent importance factors. Sparse matrices are used to limit the required amount of computer memory. For three patients, comparisons have been made with a gradient method. Mean speed improvements of up to a factor of 37 have been achieved

  17. Cost Cumulant-Based Control for a Class of Linear Quadratic Tracking Problems

    National Research Council Canada - National Science Library

    Pham, Khanh D

    2007-01-01

    .... For instance, the present paper extends the application of cost-cumulant controller design to control of a wide class of linear-quadratic tracking systems where output measurements of a tracker...

  18. On bent and semi-bent quadratic Boolean functions

    DEFF Research Database (Denmark)

    Charpin, P.; Pasalic, Enes; Tavernier, C.

    2005-01-01

    correlation and high nonlinearity. We say that such a sequence is generated by a semi-bent function. Some new families of such function, represented by f(x) = Sigma(i=1)(n-1/2) c(i)Tr(x(2t+1)), n odd and c(i) is an element of F-2, have recently (2002) been introduced by Khoo et al. We first generalize......The maximum-length sequences, also called m-sequences, have received a lot of attention since the late 1960s. In terms of linear-feedback shift register (LFSR) synthesis they are usually generated by certain power polynomials over a finite field and in addition are characterized by a low cross...... their results to even n. We further investigate the conditions on the choice of ci for explicit definitions of new infinite families having three and four trace terms. Also, a class of nonpermutation polynomials whose composition with a quadratic function yields again a quadratic semi-bent function is specified...

  19. Lipschitz stability of the K-quadratic functional equation | Chahbi ...

    African Journals Online (AJOL)

    Let N be the set of all positive integers, G an Abelian group with a metric d and E a normed space. For any f : G → E we define the k-quadratic difference of the function f by the formula Qk ƒ(x; y) := 2ƒ(x) + 2k2ƒ(y) - f(x + ky) - f(x - ky) for x; y ∈ G and k ∈ N. Under some assumptions about f and Qkƒ we prove that if Qkƒ is ...

  20. SPEECH EMOTION RECOGNITION USING MODIFIED QUADRATIC DISCRIMINATION FUNCTION

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Quadratic Discrimination Function(QDF)is commonly used in speech emotion recognition,which proceeds on the premise that the input data is normal distribution.In this Paper,we propose a transformation to normalize the emotional features,then derivate a Modified QDF(MQDF) to speech emotion recognition.Features based on prosody and voice quality are extracted and Principal Component Analysis Neural Network (PCANN) is used to reduce dimension of the feature vectors.The results show that voice quality features are effective supplement for recognition.and the method in this paper could improve the recognition ratio effectively.

  1. Piece-wise quadratic approximations of arbitrary error functions for fast and robust machine learning.

    Science.gov (United States)

    Gorban, A N; Mirkes, E M; Zinovyev, A

    2016-12-01

    Most of machine learning approaches have stemmed from the application of minimizing the mean squared distance principle, based on the computationally efficient quadratic optimization methods. However, when faced with high-dimensional and noisy data, the quadratic error functionals demonstrated many weaknesses including high sensitivity to contaminating factors and dimensionality curse. Therefore, a lot of recent applications in machine learning exploited properties of non-quadratic error functionals based on L 1 norm or even sub-linear potentials corresponding to quasinorms L p (0application of min-plus algebra. The approach can be applied in most of existing machine learning methods, including methods of data approximation and regularized and sparse regression, leading to the improvement in the computational cost/accuracy trade-off. We demonstrate that on synthetic and real-life datasets PQSQ-based machine learning methods achieve orders of magnitude faster computational performance than the corresponding state-of-the-art methods, having similar or better approximation accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The wave function and minimum uncertainty function of the bound quadratic Hamiltonian system

    Science.gov (United States)

    Yeon, Kyu Hwang; Um, Chung IN; George, T. F.

    1994-01-01

    The bound quadratic Hamiltonian system is analyzed explicitly on the basis of quantum mechanics. We have derived the invariant quantity with an auxiliary equation as the classical equation of motion. With the use of this invariant it can be determined whether or not the system is bound. In bound system we have evaluated the exact eigenfunction and minimum uncertainty function through unitary transformation.

  3. Differences between quadratic equations and functions: Indonesian pre-service secondary mathematics teachers’ views

    Science.gov (United States)

    Aziz, T. A.; Pramudiani, P.; Purnomo, Y. W.

    2018-01-01

    Difference between quadratic equation and quadratic function as perceived by Indonesian pre-service secondary mathematics teachers (N = 55) who enrolled at one private university in Jakarta City was investigated. Analysis of participants’ written responses and interviews were conducted consecutively. Participants’ written responses highlighted differences between quadratic equation and function by referring to their general terms, main characteristics, processes, and geometrical aspects. However, they showed several obstacles in describing the differences such as inappropriate constraints and improper interpretations. Implications of the study are discussed.

  4. Rational quadratic trigonometric Bézier curve based on new basis with exponential functions

    Directory of Open Access Journals (Sweden)

    Wu Beibei

    2017-06-01

    Full Text Available We construct a rational quadratic trigonometric Bézier curve with four shape parameters by introducing two exponential functions into the trigonometric basis functions in this paper. It has the similar properties as the rational quadratic Bézier curve. For given control points, the shape of the curve can be flexibly adjusted by changing the shape parameters and the weight. Some conics can be exactly represented when the control points, the shape parameters and the weight are chosen appropriately. The C0, C1 and C2 continuous conditions for joining two constructed curves are discussed. Some examples are given.

  5. Synchronising chaotic Chua's circuit using switching feedback control based on piecewise quadratic Lyapunov functions

    International Nuclear Information System (INIS)

    Hong-Bin, Zhang; Jian-Wei, Xia; Yong-Bin, Yu; Chuang-Yin, Dang

    2010-01-01

    This paper investigates the chaos synchronisation between two coupled chaotic Chua's circuits. The sufficient condition presented by linear matrix inequalities (LMIs) of global asymptotic synchronisation is attained based on piecewise quadratic Lyapunov functions. First, we obtain the piecewise linear differential inclusions (pwLDIs) model of synchronisation error dynamics, then we design a switching (piecewise-linear) feedback control law to stabilise it based on the piecewise quadratic Laypunov functions. Then we give some numerical simulations to demonstrate the effectiveness of our theoretical results

  6. Remarks on the stability of some quadratic functional equations

    Directory of Open Access Journals (Sweden)

    Zygfryd Kominek

    2008-01-01

    Full Text Available Stability problems concerning the functional equations of the form \\[f(2x+y=4f(x+f(y+f(x+y-f(x-y,\\tag{1}\\] and \\[f(2x+y+f(2x-y=8f(x+2f(y\\tag{2}\\] are investigated. We prove that if the norm of the difference between the LHS and the RHS of one of equations \\((1\\ or \\((2\\, calculated for a function \\(g\\ is say, dominated by a function \\(\\varphi\\ in two variables having some standard properties then there exists a unique solution \\(f\\ of this equation and the norm of the difference between \\(g\\ and \\(f\\ is controlled by a function depending on \\(\\varphi\\.

  7. Stability of Pexiderized Quadratic Functional Equation in Random 2-Normed Spaces

    Directory of Open Access Journals (Sweden)

    Mohammed A. Alghamdi

    2015-01-01

    Full Text Available The aim of this paper is to investigate the stability of Hyers-Ulam-Rassias type theorems by considering the pexiderized quadratic functional equation in the setting of random 2-normed spaces (RTNS, while the concept of random 2-normed space has been recently studied by Goleţ (2005.

  8. Using Localised Quadratic Functions on an Irregular Grid for Pricing High-Dimensional American Options

    NARCIS (Netherlands)

    Berridge, S.J.; Schumacher, J.M.

    2004-01-01

    We propose a method for pricing high-dimensional American options on an irregular grid; the method involves using quadratic functions to approximate the local effect of the Black-Scholes operator.Once such an approximation is known, one can solve the pricing problem by time stepping in an explicit

  9. Failures and Inabilities of High School Students about Quadratic Equations and Functions

    Science.gov (United States)

    Memnun, Dilek Sezgin; Aydin, Bünyamin; Dinç, Emre; Çoban, Merve; Sevindik, Fatma

    2015-01-01

    In this research study, it was aimed to examine failures and inabilities of eleventh grade students about quadratic equations and functions. For this purpose, these students were asked ten open-ended questions. The analysis of the answers given by the students to these questions indicated that a significant part of these students had failures and…

  10. Differentiated Learning Environment--A Classroom for Quadratic Equation, Function and Graphs

    Science.gov (United States)

    Dinç, Emre

    2017-01-01

    This paper will cover the design of a learning environment as a classroom regarding the Quadratic Equations, Functions and Graphs. The goal of the learning environment offered in the paper is to design a classroom where students will enjoy the process, use their skills they already have during the learning process, control and plan their learning…

  11. Time evolution of a Gaussian class of quasi-distribution functions under quadratic Hamiltonian.

    Science.gov (United States)

    Ginzburg, D; Mann, A

    2014-03-10

    A Lie algebraic method for propagation of the Wigner quasi-distribution function (QDF) under quadratic Hamiltonian was presented by Zoubi and Ben-Aryeh. We show that the same method can be used in order to propagate a rather general class of QDFs, which we call the "Gaussian class." This class contains as special cases the well-known Wigner, Husimi, Glauber, and Kirkwood-Rihaczek QDFs. We present some examples of the calculation of the time evolution of those functions.

  12. Emotion suppression moderates the quadratic association between RSA and executive function.

    Science.gov (United States)

    Spangler, Derek P; Bell, Martha Ann; Deater-Deckard, Kirby

    2015-09-01

    There is uncertainty about whether respiratory sinus arrhythmia (RSA), a cardiac marker of adaptive emotion regulation, is involved in relatively low or high executive function performance. In the present study, we investigated (a) whether RSA during rest and tasks predict both relatively low and high executive function within a larger quadratic association among the two variables, and (b) the extent to which this quadratic trend was moderated by individual differences in emotion regulation. To achieve these aims, a sample of ethnically and socioeconomically diverse women self-reported reappraisal and emotion suppression. They next experienced a 2-min resting period during which electrocardiogram (ECG) was continually assessed. In the next phase, the women completed an array of executive function and nonexecutive cognitive tasks while ECG was measured throughout. As anticipated, resting RSA showed a quadratic association with executive function that was strongest for high suppression. These results suggest that relatively high resting RSA may predict poor executive function ability when emotion regulation consumes executive control resources needed for ongoing cognitive performance. © 2015 Society for Psychophysiological Research.

  13. The Optimization on Ranks and Inertias of a Quadratic Hermitian Matrix Function and Its Applications

    Directory of Open Access Journals (Sweden)

    Yirong Yao

    2013-01-01

    Full Text Available We solve optimization problems on the ranks and inertias of the quadratic Hermitian matrix function subject to a consistent system of matrix equations and . As applications, we derive necessary and sufficient conditions for the solvability to the systems of matrix equations and matrix inequalities , and in the Löwner partial ordering to be feasible, respectively. The findings of this paper widely extend the known results in the literature.

  14. The Effects of an Undergraduate Algebra Course on Prospective Middle School Teachers' Understanding of Functions, Especially Quadratic Functions

    Science.gov (United States)

    Duarte, Jonathan T.

    2010-01-01

    Although current reform movements have stressed the importance of developing prospective middle school mathematics teachers' subject matter knowledge and understandings, there is a dearth of research studies with regard to prospective middle school teachers' confidence and knowledge with respect to quadratic functions. This study was intended to…

  15. Optimal Quadratic Programming Algorithms

    CERN Document Server

    Dostal, Zdenek

    2009-01-01

    Quadratic programming (QP) is one technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This title presents various algorithms for solving large QP problems. It is suitable as an introductory text on quadratic programming for graduate students and researchers

  16. A generalization of Baker's quadratic formulae for hyperelliptic p-functions

    International Nuclear Information System (INIS)

    Athorne, Chris

    2011-01-01

    We present a generalization of a compact form, due to Baker, for quadratic identities satisfied by the three-index p-functions on curves of genus g=2, and a further generalization of a new result in genus g=3. The compact forms involve a bordered determinant containing 2(g-1)(g+1) free parameters. -- Highlights: → Properties of Weierstrass P-functions for hyperelliptic curves. → Generalization of result of H.F. Baker for genus two case. → Compact formulae with maximal number of parameters in genus two and three cases.

  17. New results for time reversed symplectic dynamic systems and quadratic functionals

    Directory of Open Access Journals (Sweden)

    Roman Simon Hilscher

    2012-05-01

    Full Text Available In this paper, we examine time scale symplectic (or Hamiltonian systems and the associated quadratic functionals which contain a forward shift in the time variable. Such systems and functionals have a close connection to Jacobi systems for calculus of variations and optimal control problems on time scales. Our results, among which we consider the Reid roundabout theorem, generalize the corresponding classical theory for time reversed discrete symplectic systems, as well as they complete the recently developed theory of time scale symplectic systems.

  18. Asymptotically Stable Solutions of a Generalized Fractional Quadratic Functional-Integral Equation of Erdélyi-Kober Type

    Directory of Open Access Journals (Sweden)

    Mohamed Abdalla Darwish

    2014-01-01

    Full Text Available We study a generalized fractional quadratic functional-integral equation of Erdélyi-Kober type in the Banach space BC(ℝ+. We show that this equation has at least one asymptotically stable solution.

  19. Piecewise quadratic Lyapunov functions for stability verification of approximate explicit MPC

    Directory of Open Access Journals (Sweden)

    Morten Hovd

    2010-04-01

    Full Text Available Explicit MPC of constrained linear systems is known to result in a piecewise affine controller and therefore also piecewise affine closed loop dynamics. The complexity of such analytic formulations of the control law can grow exponentially with the prediction horizon. The suboptimal solutions offer a trade-off in terms of complexity and several approaches can be found in the literature for the construction of approximate MPC laws. In the present paper a piecewise quadratic (PWQ Lyapunov function is used for the stability verification of an of approximate explicit Model Predictive Control (MPC. A novel relaxation method is proposed for the LMI criteria on the Lyapunov function design. This relaxation is applicable to the design of PWQ Lyapunov functions for discrete-time piecewise affine systems in general.

  20. A Novel Shape-Free Plane Quadratic Polygonal Hybrid Stress-Function Element

    Directory of Open Access Journals (Sweden)

    Pei-Lei Zhou

    2015-01-01

    Full Text Available A novel plane quadratic shape-free hybrid stress-function (HS-F polygonal element is developed by employing the principle of minimum complementary energy and the fundamental analytical solutions of the Airy stress function. Without construction of displacement interpolation function, the formulations of the new model are much simpler than those of the displacement-based polygonal elements and can be degenerated into triangular or quadrilateral elements directly. In particular, it is quite insensitive to various mesh distortions and even can keep precision when element shape is concave. Furthermore, the element does not show any spurious zero energy modes. Numerical examples show the excellent performance of the new element, denoted by HSF-AP-19β, in both displacement and stress solutions.

  1. Technical report. The application of probability-generating functions to linear-quadratic radiation survival curves.

    Science.gov (United States)

    Kendal, W S

    2000-04-01

    To illustrate how probability-generating functions (PGFs) can be employed to derive a simple probabilistic model for clonogenic survival after exposure to ionizing irradiation. Both repairable and irreparable radiation damage to DNA were assumed to occur by independent (Poisson) processes, at intensities proportional to the irradiation dose. Also, repairable damage was assumed to be either repaired or further (lethally) injured according to a third (Bernoulli) process, with the probability of lethal conversion being directly proportional to dose. Using the algebra of PGFs, these three processes were combined to yield a composite PGF that described the distribution of lethal DNA lesions in irradiated cells. The composite PGF characterized a Poisson distribution with mean, chiD+betaD2, where D was dose and alpha and beta were radiobiological constants. This distribution yielded the conventional linear-quadratic survival equation. To test the composite model, the derived distribution was used to predict the frequencies of multiple chromosomal aberrations in irradiated human lymphocytes. The predictions agreed well with observation. This probabilistic model was consistent with single-hit mechanisms, but it was not consistent with binary misrepair mechanisms. A stochastic model for radiation survival has been constructed from elementary PGFs that exactly yields the linear-quadratic relationship. This approach can be used to investigate other simple probabilistic survival models.

  2. Dynamical correlation functions of the quadratic coupling spin-Boson model

    Science.gov (United States)

    Zheng, Da-Chuan; Tong, Ning-Hua

    2017-06-01

    The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method. We focus on the dynamical auto-correlation functions {C}O(ω ), with the operator \\hat{O} taken as {\\hat{{{σ }}}}x, {\\hat{{{σ }}}}z, and \\hat{X}, respectively. In the weak-coupling regime α qualitatively, showing enhanced dephasing at the spin flip point. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB921704), the National Natural Science Foundation of China (Grant No. 11374362), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 15XNLQ03).

  3. Analysis of projectile motion with quadratic air resistance from a nonzero height using the Lambert W function

    Directory of Open Access Journals (Sweden)

    Chokri Hadj Belgacem

    2017-03-01

    Full Text Available Using the Lambert W function, the quadratic resisted projectile motion with an approximation of low-angle trajectory has been studied where the launching point is assumed to be higher than the landing point. Analytical solutions for the range and the time of flight are presented in terms of the secondary branch of the Lambert function W−1.

  4. A Conjugate Gradient Algorithm with Function Value Information and N-Step Quadratic Convergence for Unconstrained Optimization.

    Directory of Open Access Journals (Sweden)

    Xiangrong Li

    Full Text Available It is generally acknowledged that the conjugate gradient (CG method achieves global convergence--with at most a linear convergence rate--because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method.

  5. A Conjugate Gradient Algorithm with Function Value Information and N-Step Quadratic Convergence for Unconstrained Optimization.

    Science.gov (United States)

    Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang

    2015-01-01

    It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence--with at most a linear convergence rate--because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method.

  6. The regular indefinite linear-quadratic problem with linear endpoint constraints

    NARCIS (Netherlands)

    Soethoudt, J.M.; Trentelman, H.L.

    1989-01-01

    This paper deals with the infinite horizon linear-quadratic problem with indefinite cost. Given a linear system, a quadratic cost functional and a subspace of the state space, we consider the problem of minimizing the cost functional over all inputs for which the state trajectory converges to that

  7. Quadratic Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

  8. The Penalty Cost Functional for the Two-Dimensional

    Directory of Open Access Journals (Sweden)

    Victor Onomza WAZIRI

    2006-07-01

    Full Text Available This paper constructs the penalty cost functional for optimizing the two-dimensional control operator of the energized wave equation. In some multiplier methods such as the Lagrange multipliers and Pontrygean maximum principle, the cost of merging the constraint equation to the integral quadratic objective functional to obtain an unconstraint equation is normally guessed or obtained from the first partial derivatives of the unconstrained equation. The Extended Conjugate Gradient Method (ECGM necessitates that the penalty cost be sequentially obtained algebraically. The ECGM problem contains a functional which is completely given in terms of state and time spatial dependent variables.

  9. Quadratic solitons for negative effective second-harmonic diffraction as nonlocal solitons with periodic nonlocal response function

    DEFF Research Database (Denmark)

    Esbensen, B.K.; Bache, Morten; Krolikowski, W.

    2012-01-01

    We employ the formal analogy between quadratic and nonlocal solitons to investigate analytically the properties of solitons and soliton bound states in second-harmonic generation in the regime of negative diffraction or dispersion of the second harmonic. We show that in the nonlocal description...... this regime corresponds to a periodic nonlocal response function. We then use the strongly nonlocal approximation to find analytical solutions of the families of single bright solitons and their bound states in terms of Mathieu functions....

  10. Hidden conic quadratic representation of some nonconvex quadratic optimization problems

    NARCIS (Netherlands)

    Ben-Tal, A.; den Hertog, D.

    The problem of minimizing a quadratic objective function subject to one or two quadratic constraints is known to have a hidden convexity property, even when the quadratic forms are indefinite. The equivalent convex problem is a semidefinite one, and the equivalence is based on the celebrated

  11. A Trust-region-based Sequential Quadratic Programming Algorithm

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints.......This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints....

  12. Minimization of the root of a quadratic functional under a system of affine equality constraints with application to portfolio management

    Science.gov (United States)

    Landsman, Zinoviy

    2008-10-01

    We present an explicit closed form solution of the problem of minimizing the root of a quadratic functional subject to a system of affine constraints. The result generalizes Z. Landsman, Minimization of the root of a quadratic functional under an affine equality constraint, J. Comput. Appl. Math. 2007, to appear, see sciencedirect.com/science/journal/03770427>, articles in press, where the optimization problem was solved under only one linear constraint. This is of interest for solving significant problems pertaining to financial economics as well as some classes of feasibility and optimization problems which frequently occur in tomography and other fields. The results are illustrated in the problem of optimal portfolio selection and the particular case when the expected return of finance portfolio is certain is discussed.

  13. Cost function estimation

    DEFF Research Database (Denmark)

    Andersen, C K; Andersen, K; Kragh-Sørensen, P

    2000-01-01

    on these criteria, a two-part model was chosen. In this model, the probability of incurring any costs was estimated using a logistic regression, while the level of the costs was estimated in the second part of the model. The choice of model had a substantial impact on the predicted health care costs, e...

  14. Optimum Dispatch of Hybrid Solar Thermal (HSTP Electric Power Plant Using Non-Smooth Cost Function and Emission Function for IEEE-30 Bus System

    Directory of Open Access Journals (Sweden)

    Saroj Kumar Dash

    2016-07-01

    Full Text Available The basic objective of economic load dispatch (ELD is to optimize the total fuel cost of hybrid solar thermal electric power plant (HSTP. In ELD problems the cost function for each generator has been approximated by a single quadratic cost equation. As cost of coal increases, it becomes even more important have a good model for the production cost of each generator for the solar thermal hybrid system. A more accurate formulation is obtained for the ELD problem by expressing the generation cost function as a piece wise quadratic cost function. However, the solution methods for ELD problem with piece wise quadratic cost function requires much complicated algorithms such as the hierarchical structure approach along with evolutionary computations (ECs. A test system comprising of 10 units with 29 different fuel [7] cost equations is considered in this paper. The applied genetic algorithm method will provide optimal solution for the given load demand.

  15. Quadratic function between arterial partial oxygen pressure and mortality risk in sepsis patients: an interaction with simplified acute physiology score.

    Science.gov (United States)

    Zhang, Zhongheng; Ji, Xuqing

    2016-10-13

    Oxygen therapy is widely used in emergency and critical care settings, while there is little evidence on its real therapeutic effect. The study aimed to explore the impact of arterial oxygen partial pressure (PaO 2 ) on clinical outcomes in patients with sepsis. A large clinical database was employed for the study. Subjects meeting the diagnostic criteria of sepsis were eligible for the study. All measurements of PaO 2 were extracted. The primary endpoint was death from any causes during hospital stay. Survey data analysis was performed by using individual ICU admission as the primary sampling unit. Quadratic function was assumed for PaO 2 and its interaction with other covariates were explored. A total of 199,125 PaO 2 samples were identified for 11,002 ICU admissions. Each ICU stay comprised 18 PaO 2 samples in average. The fitted multivariable model supported our hypothesis that the effect of PaO 2 on mortality risk was in quadratic form. There was significant interaction between PaO 2 and SAPS-I (p = 0.007). Furthermore, the main effect of PaO 2 on SOFA score was nonlinear. The study shows that the effect of PaO 2 on mortality risk is in quadratic function form, and there is significant interaction between PaO 2 and severity of illness.

  16. Quadratic algebras

    CERN Document Server

    Polishchuk, Alexander

    2005-01-01

    Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.

  17. Legendre-tau approximation for functional differential equations. II - The linear quadratic optimal control problem

    Science.gov (United States)

    Ito, Kazufumi; Teglas, Russell

    1987-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  18. Legendre-tau approximation for functional differential equations. Part 2: The linear quadratic optimal control problem

    Science.gov (United States)

    Ito, K.; Teglas, R.

    1984-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  19. Separable quadratic stochastic operators

    International Nuclear Information System (INIS)

    Rozikov, U.A.; Nazir, S.

    2009-04-01

    We consider quadratic stochastic operators, which are separable as a product of two linear operators. Depending on properties of these linear operators we classify the set of the separable quadratic stochastic operators: first class of constant operators, second class of linear and third class of nonlinear (separable) quadratic stochastic operators. Since the properties of operators from the first and second classes are well known, we mainly study the properties of the operators of the third class. We describe some Lyapunov functions of the operators and apply them to study ω-limit sets of the trajectories generated by the operators. We also compare our results with known results of the theory of quadratic operators and give some open problems. (author)

  20. A Quasi-Dynamic Optimal Control Strategy for Non-Linear Multivariable Processes Based upon Non-Quadratic Objective Functions

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1984-10-01

    Full Text Available The problem of systematic derivation of a quasi-dynamic optimal control strategy for a non-linear dynamic process based upon a non-quadratic objective function is investigated. The wellknown LQG-control algorithm does not lead to an optimal solution when the process disturbances have non-zero mean. The relationships between the proposed control algorithm and LQG-control are presented. The problem of how to constrain process variables by means of 'penalty' - terms in the objective function is dealt with separately.

  1. Do Cost Functions for Tracking Error Generalize across Tasks with Different Noise Levels?

    Directory of Open Access Journals (Sweden)

    Jonathon Sensinger

    Full Text Available Control of human-machine interfaces are well modeled by computational control models, which take into account the behavioral decisions people make in estimating task dynamics and state for a given control law. This control law is optimized according to a cost function, which for the sake of mathematical tractability is typically represented as a series of quadratic terms. Recent studies have found that people actually use cost functions for reaching tasks that are slightly different than a quadratic function, but it is unclear which of several cost functions best explain human behavior and if these cost functions generalize across tasks of similar nature but different scale. In this study, we used an inverse-decision-theory technique to reconstruct the cost function from empirical data collected on 24 able-bodied subjects controlling a myoelectric interface. Compared with previous studies, this experimental paradigm involved a different control source (myoelectric control, which has inherently large multiplicative noise, a different control interface (control signal was mapped to cursor velocity, and a different task (the tracking position dynamically moved on the screen throughout each trial. Several cost functions, including a linear-quadratic; an inverted Gaussian, and a power function, accurately described the behavior of subjects throughout this experiment better than a quadratic cost function or other explored candidate cost functions (p<0.05. Importantly, despite the differences in the experimental paradigm and a substantially larger scale of error, we found only one candidate cost function whose parameter was consistent with the previous studies: a power function (cost ∝ errorα with a parameter value of α = 1.69 (1.53-1.78 interquartile range. This result suggests that a power-function is a representative function of user's error cost over a range of noise amplitudes for pointing and tracking tasks.

  2. On Convex Quadratic Approximation

    NARCIS (Netherlands)

    den Hertog, D.; de Klerk, E.; Roos, J.

    2000-01-01

    In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of

  3. A revisit to quadratic programming with fuzzy parameters

    International Nuclear Information System (INIS)

    Liu, S.-T.

    2009-01-01

    Quadratic programming has been widely applied to solving real-world problems. Recently, Liu describes a solution method for solving a class of fuzzy quadratic programming problems, where the cost coefficients of the linear terms in objective function, constraint coefficients, and right-hand sides are fuzzy numbers [Liu ST. Quadratic programming with fuzzy parameters: a membership function approach. Chaos, Solitons and Fractals 2009;40:237-45]. In this paper, we generalize Liu's method to a more general fuzzy quadratic programming problem, where the cost coefficients in objective function, constraint coefficients, and right-hand sides are all fuzzy numbers. A pair of two-level mathematical programs is formulated to calculate the upper bound and lower bound of the objective values of the fuzzy quadratic program. Based on the duality theorem and by applying the variable transformation technique, the pair of two-level mathematical programs is transformed into a family of conventional one-level quadratic programs. Solving the pair of quadratic programs produces the fuzzy objective values of the problem. With the ability of calculating the fuzzy objective value developed in this paper, it might help initiate wider applications.

  4. A quadratically regularized functional canonical correlation analysis for identifying the global structure of pleiotropy with NGS data.

    Science.gov (United States)

    Lin, Nan; Zhu, Yun; Fan, Ruzong; Xiong, Momiao

    2017-10-01

    Investigating the pleiotropic effects of genetic variants can increase statistical power, provide important information to achieve deep understanding of the complex genetic structures of disease, and offer powerful tools for designing effective treatments with fewer side effects. However, the current multiple phenotype association analysis paradigm lacks breadth (number of phenotypes and genetic variants jointly analyzed at the same time) and depth (hierarchical structure of phenotype and genotypes). A key issue for high dimensional pleiotropic analysis is to effectively extract informative internal representation and features from high dimensional genotype and phenotype data. To explore correlation information of genetic variants, effectively reduce data dimensions, and overcome critical barriers in advancing the development of novel statistical methods and computational algorithms for genetic pleiotropic analysis, we proposed a new statistic method referred to as a quadratically regularized functional CCA (QRFCCA) for association analysis which combines three approaches: (1) quadratically regularized matrix factorization, (2) functional data analysis and (3) canonical correlation analysis (CCA). Large-scale simulations show that the QRFCCA has a much higher power than that of the ten competing statistics while retaining the appropriate type 1 errors. To further evaluate performance, the QRFCCA and ten other statistics are applied to the whole genome sequencing dataset from the TwinsUK study. We identify a total of 79 genes with rare variants and 67 genes with common variants significantly associated with the 46 traits using QRFCCA. The results show that the QRFCCA substantially outperforms the ten other statistics.

  5. Permutation flow-shop scheduling problem to optimize a quadratic objective function

    Science.gov (United States)

    Ren, Tao; Zhao, Peng; Zhang, Da; Liu, Bingqian; Yuan, Huawei; Bai, Danyu

    2017-09-01

    A flow-shop scheduling model enables appropriate sequencing for each job and for processing on a set of machines in compliance with identical processing orders. The objective is to achieve a feasible schedule for optimizing a given criterion. Permutation is a special setting of the model in which the processing order of the jobs on the machines is identical for each subsequent step of processing. This article addresses the permutation flow-shop scheduling problem to minimize the criterion of total weighted quadratic completion time. With a probability hypothesis, the asymptotic optimality of the weighted shortest processing time schedule under a consistency condition (WSPT-CC) is proven for sufficiently large-scale problems. However, the worst case performance ratio of the WSPT-CC schedule is the square of the number of machines in certain situations. A discrete differential evolution algorithm, where a new crossover method with multiple-point insertion is used to improve the final outcome, is presented to obtain high-quality solutions for moderate-scale problems. A sequence-independent lower bound is designed for pruning in a branch-and-bound algorithm for small-scale problems. A set of random experiments demonstrates the performance of the lower bound and the effectiveness of the proposed algorithms.

  6. Cost functions of greenhouse models

    International Nuclear Information System (INIS)

    Linderoth, H.

    2000-01-01

    The benchmark is equal to the cost (D) caused by an increase in temperature since the middle of the nineteenth century (T) of nearly 2.5 deg. C. According to mainstream economists, the benchmark is 1-2% of GDP, but very different estimates can also be found. Even though there appears to be agreement among a number of economists that the benchmark is 1-2% of GDP, major differences exist when it comes to estimating D for different sectors. One of the main problems is how to estimate non-market activities. Normally, the benchmark is the best guess, but due to the possibility of catastrophic events this can be considerable smaller than the mean. Certainly, the cost function is skewed to the right. The benchmark is just one point on the cost curve. To a great extent, cost functions are alike in greenhouse models (D = α ''.T'' λ). Cost functions are region and sector dependent in several models. In any case, both α (benchmark) and λ are rough estimates. Besides being dependent on α and λ, the marginal emission cost depends on the discount rate. In fact, because emissions have effects continuing for many years, the discount rate is clearly the most important parameter. (au) (au)

  7. Stochastic Linear Quadratic Optimal Control Problems

    International Nuclear Information System (INIS)

    Chen, S.; Yong, J.

    2001-01-01

    This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well

  8. On solvability of some quadratic functional-integral equation in Banach algebra

    International Nuclear Information System (INIS)

    Darwish, M.A.

    2007-08-01

    Using the technique of a suitable measure of non-compactness in Banach algebra, we prove an existence theorem for some functional-integral equations which contain, as particular cases, a lot of integral and functional-integral equations that arise in many branches of nonlinear analysis and its applications. Also, the famous Chandrasekhar's integral equation is considered as a special case. (author)

  9. A study about teaching quadratic functions using mathematical models and free software

    Science.gov (United States)

    Nepomucena, T. V.; da Silva, A. C.; Jardim, D. F.; da Silva, J. M.

    2017-12-01

    In the face of the reality of teaching Mathematics in Basic Education in Brazil, specially relating teach functions focusing their relevance to the student’s academic development in Basic and Superior Education, this work proposes the use of educational software to help the teaching of functions in Basic Education since the computers and software show as an outstanding option to help the teaching and learning processes. On the other hand, the study also proposes the use of Didactic Transposition as a methodology investigation and research. Along with this survey, some teaching interventions were applied to detect the main difficulties in the teaching process of functions in the Basic Education, analyzing the results obtained along the interventions in a qualitative form. Considering the discussion of the results at the end of the didactic interventions, it was verified that the results obtained were satisfactory.

  10. Steepest descent with momentum for quadratic functions is a version of the conjugate gradient method.

    Science.gov (United States)

    Bhaya, Amit; Kaszkurewicz, Eugenius

    2004-01-01

    It is pointed out that the so called momentum method, much used in the neural network literature as an acceleration of the backpropagation method, is a stationary version of the conjugate gradient method. Connections with the continuous optimization method known as heavy ball with friction are also made. In both cases, adaptive (dynamic) choices of the so called learning rate and momentum parameters are obtained using a control Liapunov function analysis of the system.

  11. Excited-state absorption in tetrapyridyl porphyrins: comparing real-time and quadratic-response time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, David N. [Department of Chemistry; Supercomputing Institute and Chemical Theory Center; University of Minnesota; Minneapolis; USA; Asher, Jason C. [Department of Chemistry; Supercomputing Institute and Chemical Theory Center; University of Minnesota; Minneapolis; USA; Fischer, Sean A. [William R. Wiley Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratory; P.O. Box 999; Richland; USA; Cramer, Christopher J. [Department of Chemistry; Supercomputing Institute and Chemical Theory Center; University of Minnesota; Minneapolis; USA; Govind, Niranjan [William R. Wiley Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratory; P.O. Box 999; Richland; USA

    2017-01-01

    Threemeso-substituted tetrapyridyl porphyrins (free base, Ni(ii), and Cu(ii)) were investigated for their optical limiting (OL) capabilities using real-time (RT-), linear-response (LR-), and quadratic-response (QR-) time-dependent density functional theory (TDDFT) methods.

  12. Method to obtain g-functions for multiple precast quadratic pile heat exchangers

    DEFF Research Database (Denmark)

    Pagola, Maria Alberdi; Jensen, Rasmus Lund; Madsen, Søren

    The average fluid temperature circulating through the ground loop is one of the main parameters required when choosing the most adequate heat pump for a ground source heat pump installation. Besides, the analysis of the fluid temperature over time will show the sustainability of the energy supply...... over the lifetime of the installation. The average fluid temperature is subjected to the type of ground heat exchangers and the thermal interactions between them, which also depend on the soil thermal properties. For the case of precast piles, the thermal interactions become significant...... as they are usually placed within short distances (0.5 to 4 metres). Fast models that can account for these interactions are required to enable feasibility studies and support the design phase. Besides, since pile heat exchangers have a main structural role, it is also relevant to develop models that can determine...... the temperature changes that the foundation might be subjected to, to assess thermo-mechanical implications. 3D finite element model (FEM) computation of the thermal behaviour of multiple pile heat exchanger foundations is not cost effective nor for feasibility studies, nor for most design applications. Therefore...

  13. A Sequential Quadratically Constrained Quadratic Programming Method of Feasible Directions

    International Nuclear Information System (INIS)

    Jian Jinbao; Hu Qingjie; Tang Chunming; Zheng Haiyan

    2007-01-01

    In this paper, a sequential quadratically constrained quadratic programming method of feasible directions is proposed for the optimization problems with nonlinear inequality constraints. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving only one subproblem which consist of a convex quadratic objective function and simple quadratic inequality constraints without the second derivatives of the functions of the discussed problems, and such a subproblem can be formulated as a second-order cone programming which can be solved by interior point methods. To overcome the Maratos effect, an efficient higher-order correction direction is obtained by only one explicit computation formula. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions without the strict complementarity. Finally, some preliminary numerical results are reported

  14. On Characterization of Quadratic Splines

    DEFF Research Database (Denmark)

    Chen, B. T.; Madsen, Kaj; Zhang, Shuzhong

    2005-01-01

    that the representation can be refined in a neighborhood of a non-degenerate point and a set of non-degenerate minimizers. Based on these characterizations, many existing algorithms for specific convex quadratic splines are also finite convergent for a general convex quadratic spline. Finally, we study the relationship...... between the convexity of a quadratic spline function and the monotonicity of the corresponding LCP problem. It is shown that, although both conditions lead to easy solvability of the problem, they are different in general....

  15. License or entry decision for innovator in international duopoly with convex cost functions

    OpenAIRE

    Hattori, Masahiko; Tanaka, Yasuhito

    2017-01-01

    We consider a choice of options for a foreign innovating firm to license its new cost-reducing technology to a domestic incumbent firm or to enter the domestic market with or without license under convex cost functions. With convex cost functions the domestic market and the foreign market are not separated, and the results depend on the relative size of those markets. In a specific case with linear demand and quadratic cost, entry without license strategy is never the optimal strategy for the...

  16. Computing the full spectrum of large sparse palindromic quadratic eigenvalue problems arising from surface Green's function calculations

    Science.gov (United States)

    Huang, Tsung-Ming; Lin, Wen-Wei; Tian, Heng; Chen, Guan-Hua

    2018-03-01

    Full spectrum of a large sparse ⊤-palindromic quadratic eigenvalue problem (⊤-PQEP) is considered arguably for the first time in this article. Such a problem is posed by calculation of surface Green's functions (SGFs) of mesoscopic transistors with a tremendous non-periodic cross-section. For this problem, general purpose eigensolvers are not efficient, nor is advisable to resort to the decimation method etc. to obtain the Wiener-Hopf factorization. After reviewing some rigorous understanding of SGF calculation from the perspective of ⊤-PQEP and nonlinear matrix equation, we present our new approach to this problem. In a nutshell, the unit disk where the spectrum of interest lies is broken down adaptively into pieces small enough that they each can be locally tackled by the generalized ⊤-skew-Hamiltonian implicitly restarted shift-and-invert Arnoldi (G⊤SHIRA) algorithm with suitable shifts and other parameters, and the eigenvalues missed by this divide-and-conquer strategy can be recovered thanks to the accurate estimation provided by our newly developed scheme. Notably the novel non-equivalence deflation is proposed to avoid as much as possible duplication of nearby known eigenvalues when a new shift of G⊤SHIRA is determined. We demonstrate our new approach by calculating the SGF of a realistic nanowire whose unit cell is described by a matrix of size 4000 × 4000 at the density functional tight binding level, corresponding to a 8 × 8nm2 cross-section. We believe that quantum transport simulation of realistic nano-devices in the mesoscopic regime will greatly benefit from this work.

  17. Configuration space analysis of common cost functions in radiotherapy beam-weight optimization algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Rowbottom, Carl Graham [Joint Department of Physics, Institute of Cancer Research and the Royal Marsden NHS Trust, Sutton, Surrey (United Kingdom); Webb, Steve [Joint Department of Physics, Institute of Cancer Research and the Royal Marsden NHS Trust, Sutton, Surrey (United Kingdom)

    2002-01-07

    The successful implementation of downhill search engines in radiotherapy optimization algorithms depends on the absence of local minima in the search space. Such techniques are much faster than stochastic optimization methods but may become trapped in local minima if they exist. A technique known as 'configuration space analysis' was applied to examine the search space of cost functions used in radiotherapy beam-weight optimization algorithms. A downhill-simplex beam-weight optimization algorithm was run repeatedly to produce a frequency distribution of final cost values. By plotting the frequency distribution as a function of final cost, the existence of local minima can be determined. Common cost functions such as the quadratic deviation of dose to the planning target volume (PTV), integral dose to organs-at-risk (OARs), dose-threshold and dose-volume constraints for OARs were studied. Combinations of the cost functions were also considered. The simple cost function terms such as the quadratic PTV dose and integral dose to OAR cost function terms are not susceptible to local minima. In contrast, dose-threshold and dose-volume OAR constraint cost function terms are able to produce local minima in the example case studied. (author)

  18. Quadratic theory and feedback controllers for linear time delay systems

    International Nuclear Information System (INIS)

    Lee, E.B.

    1976-01-01

    Recent research on the design of controllers for systems having time delays is discussed. Results for the ''open loop'' and ''closed loop'' designs will be presented. In both cases results for minimizing a quadratic cost functional are given. The usefulness of these results is not known, but similar results for the non-delay case are being routinely applied. (author)

  19. Comparison of Generalized Estimating Equations and Quadratic Inference Functions in superior versus inferior Ahmed Glaucoma Valve implantation

    Directory of Open Access Journals (Sweden)

    Razieh Khajeh-Kazemi

    2011-01-01

    Full Text Available Background: The celebrated generalized estimating equations (GEE approach is often used in longitudinal data analysis While this method behaves robustly against misspecification of the working correlation structure, it has some limitations on efficacy of estimators, goodness-of-fit tests and model selection criteria The quadratic inference functions (QIF is a new statistical methodology that overcomes these limitations Methods : We administered the use of QIF and GEE in comparing the superior and inferior Ahmed glaucoma valve (AGV implantation, while our focus was on the efficiency of estimation and using model selection criteria, we compared the effect of implant location on intraocular pressure (IOP in refractory glaucoma patients We modeled the relationship between IOP and implant location, patient′s sex and age, best corrected visual acuity, history of cataract surgery, preoperative IOP and months after surgery with assuming unstructured working correlation Results : 63 eyes of 63 patients were included in this study, 28 eyes in inferior group and 35 eyes in superior group The GEE analysis revealed that preoperative IOP has a significant effect on IOP (p = 0 011 However, QIF showed that preoperative IOP, months after surgery and squared months are significantly associated with IOP after surgery (p < 0 05 Overall, estimates from QIF are more efficient than GEE (RE = 1 272 Conclusions : In the case of unstructured working correlation, the QIF is more efficient than GEE There were no considerable difference between these locations, our results confirmed previously published works which mentioned it is better that glaucoma patients undergo superior AGV implantation

  20. Locally optimal control under unknown dynamics with learnt cost function: application to industrial robot positioning

    Science.gov (United States)

    Guérin, Joris; Gibaru, Olivier; Thiery, Stéphane; Nyiri, Eric

    2017-01-01

    Recent methods of Reinforcement Learning have enabled to solve difficult, high dimensional, robotic tasks under unknown dynamics using iterative Linear Quadratic Gaussian control theory. These algorithms are based on building a local time-varying linear model of the dynamics from data gathered through interaction with the environment. In such tasks, the cost function is often expressed directly in terms of the state and control variables so that it can be locally quadratized to run the algorithm. If the cost is expressed in terms of other variables, a model is required to compute the cost function from the variables manipulated. We propose a method to learn the cost function directly from the data, in the same way as for the dynamics. This way, the cost function can be defined in terms of any measurable quantity and thus can be chosen more appropriately for the task to be carried out. With our method, any sensor information can be used to design the cost function. We demonstrate the efficiency of this method through simulating, with the V-REP software, the learning of a Cartesian positioning task on several industrial robots with different characteristics. The robots are controlled in joint space and no model is provided a priori. Our results are compared with another model free technique, consisting in writing the cost function as a state variable.

  1. Self-Replicating Quadratics

    Science.gov (United States)

    Withers, Christopher S.; Nadarajah, Saralees

    2012-01-01

    We show that there are exactly four quadratic polynomials, Q(x) = x [superscript 2] + ax + b, such that (x[superscript 2] + ax + b) (x[superscript 2] - ax + b) = (x[superscript 4] + ax[superscript 2] + b). For n = 1, 2, ..., these quadratic polynomials can be written as the product of N = 2[superscript n] quadratic polynomials in x[superscript…

  2. An example in linear quadratic optimal control

    NARCIS (Netherlands)

    Weiss, George; Zwart, Heiko J.

    1998-01-01

    We construct a simple example of a quadratic optimal control problem for an infinite-dimensional linear system based on a shift semigroup. This system has an unbounded control operator. The cost is quadratic in the input and the state, and the weighting operators are bounded. Despite its extreme

  3. Optimality Conditions for Fuzzy Number Quadratic Programming with Fuzzy Coefficients

    Directory of Open Access Journals (Sweden)

    Xue-Gang Zhou

    2014-01-01

    Full Text Available The purpose of the present paper is to investigate optimality conditions and duality theory in fuzzy number quadratic programming (FNQP in which the objective function is fuzzy quadratic function with fuzzy number coefficients and the constraint set is fuzzy linear functions with fuzzy number coefficients. Firstly, the equivalent quadratic programming of FNQP is presented by utilizing a linear ranking function and the dual of fuzzy number quadratic programming primal problems is introduced. Secondly, we present optimality conditions for fuzzy number quadratic programming. We then prove several duality results for fuzzy number quadratic programming problems with fuzzy coefficients.

  4. On a linear-quadratic problem with Caputo derivative

    Directory of Open Access Journals (Sweden)

    Dariusz Idczak

    2016-01-01

    Full Text Available In this paper, we study a linear-quadratic optimal control problem with a fractional control system containing a Caputo derivative of unknown function. First, we derive the formulas for the differential and gradient of the cost functional under given constraints. Next, we prove an existence result and derive a maximum principle. Finally, we describe the gradient and projection of the gradient methods for the problem under consideration.

  5. Quadratic prediction of factor scores

    NARCIS (Netherlands)

    Wansbeek, T

    1999-01-01

    Factor scores are naturally predicted by means of their conditional expectation given the indicators y. Under normality this expectation is linear in y but in general it is an unknown function of y. II is discussed that under nonnormality factor scores can be more precisely predicted by a quadratic

  6. Quadratic divergences and dimensional regularisation

    International Nuclear Information System (INIS)

    Jack, I.; Jones, D.R.T.

    1990-01-01

    We present a detailed analysis of quadratic and quartic divergences in dimensionally regulated renormalisable theories. We perform explicit three-loop calculations for a general theory of scalars and fermions. We find that the higher-order quartic divergences are related to the lower-order ones by the renormalisation group β-functions. (orig.)

  7. Gravitation and quadratic forms

    International Nuclear Information System (INIS)

    Ananth, Sudarshan; Brink, Lars; Majumdar, Sucheta; Mali, Mahendra; Shah, Nabha

    2017-01-01

    The light-cone Hamiltonians describing both pure (N=0) Yang-Mills and N=4 super Yang-Mills may be expressed as quadratic forms. Here, we show that this feature extends to theories of gravity. We demonstrate how the Hamiltonians of both pure gravity and N=8 supergravity, in four dimensions, may be written as quadratic forms. We examine the effect of residual reparametrizations on the Hamiltonian and the resulting quadratic form.

  8. Gravitation and quadratic forms

    Energy Technology Data Exchange (ETDEWEB)

    Ananth, Sudarshan [Indian Institute of Science Education and Research,Pune 411008 (India); Brink, Lars [Department of Physics, Chalmers University of Technology,S-41296 Göteborg (Sweden); Institute of Advanced Studies and Department of Physics & Applied Physics,Nanyang Technological University,Singapore 637371 (Singapore); Majumdar, Sucheta [Indian Institute of Science Education and Research,Pune 411008 (India); Mali, Mahendra [School of Physics, Indian Institute of Science Education and Research,Thiruvananthapuram, Trivandrum 695016 (India); Shah, Nabha [Indian Institute of Science Education and Research,Pune 411008 (India)

    2017-03-31

    The light-cone Hamiltonians describing both pure (N=0) Yang-Mills and N=4 super Yang-Mills may be expressed as quadratic forms. Here, we show that this feature extends to theories of gravity. We demonstrate how the Hamiltonians of both pure gravity and N=8 supergravity, in four dimensions, may be written as quadratic forms. We examine the effect of residual reparametrizations on the Hamiltonian and the resulting quadratic form.

  9. Sibling curves of quadratic polynomials | Wiggins | Quaestiones ...

    African Journals Online (AJOL)

    Sibling curves were demonstrated in [1, 2] as a novel way to visualize the zeroes of real valued functions. In [3] it was shown that a polynomial of degree n has n sibling curves. This paper focuses on the algebraic and geometric properites of the sibling curves of real and complex quadratic polynomials. Key words: Quadratic ...

  10. Faithfully quadratic rings

    CERN Document Server

    Dickmann, M

    2015-01-01

    In this monograph the authors extend the classical algebraic theory of quadratic forms over fields to diagonal quadratic forms with invertible entries over broad classes of commutative, unitary rings where -1 is not a sum of squares and 2 is invertible. They accomplish this by: (1) Extending the classical notion of matrix isometry of forms to a suitable notion of T-isometry, where T is a preorder of the given ring, A, or T = A^2. (2) Introducing in this context three axioms expressing simple properties of (value) representation of elements of the ring by quadratic forms, well-known to hold in

  11. Rescuing Quadratic Inflation

    CERN Document Server

    Ellis, John; Sueiro, Maria

    2014-01-01

    Inflationary models based on a single scalar field $\\phi$ with a quadratic potential $V = \\frac{1}{2} m^2 \\phi^2$ are disfavoured by the recent Planck constraints on the scalar index, $n_s$, and the tensor-to-scalar ratio for cosmological density perturbations, $r_T$. In this paper we study how such a quadratic inflationary model can be rescued by postulating additional fields with quadratic potentials, such as might occur in sneutrino models, which might serve as either curvatons or supplementary inflatons. Introducing a second scalar field reduces but does not remove the pressure on quadratic inflation, but we find a sample of three-field models that are highly compatible with the Planck data on $n_s$ and $r_T$. We exhibit a specific three-sneutrino example that is also compatible with the data on neutrino mass difference and mixing angles.

  12. A Finite Continuation Algorithm for Bound Constrained Quadratic Programming

    DEFF Research Database (Denmark)

    Madsen, Kaj; Nielsen, Hans Bruun; Pinar, Mustafa C.

    1999-01-01

    The dual of the strictly convex quadratic programming problem with unit bounds is posed as a linear $\\ell_1$ minimization problem with quadratic terms. A smooth approximation to the linear $\\ell_1$ function is used to obtain a parametric family of piecewise-quadratic approximation problems...

  13. On Quadratic Variation of Martingales

    Indian Academy of Sciences (India)

    where D ( [ 0 , ∞ ) , R ) denotes the class of real valued r.c.l.l. functions on [ 0 , ∞ ) such that for a locally square integrable martingale ( M t ) with r.c.l.l. paths,. Ψ ( M . ( ) ) = A . ( ). gives the quadratic variation process (written usually as [ M , M ] t ) of ( M t ) . We also show that this process ( A t ) is the unique increasing ...

  14. Linear-quadratic control and quadratic differential forms for multidimensional behaviors

    NARCIS (Netherlands)

    Napp, D.; Trentelman, H.L.

    2011-01-01

    This paper deals with systems described by constant coefficient linear partial differential equations (nD-systems) from a behavioral point of view. In this context we treat the linear-quadratic control problem where the performance functional is the integral of a quadratic differential form. We look

  15. Experimental determination of the anisotropy function for the Model 200 103Pd 'light seed' and derivation of the anisotropy constant based upon the linear quadratic model

    International Nuclear Information System (INIS)

    Yue Ning; Nath, Ravinder

    2002-01-01

    Since the publication of the AAPM Task Group 43 report in 1995, Model 200 103 Pd seed, which has been widely used in prostate seed implants and other brachytherapy procedures, has undergone some changes in its internal geometry resulting from the manufacturer's transition from lower specific activity reactor-produced 103 Pd ('heavy seeds') to higher specific activity accelerator-produced radioactive material ('light seeds'). Based on previously reported theoretical calculations and measurements, the dose rate constants and the radial dose functions of the two types of seeds are nearly the same and have already been reported. In this work, the anisotropy function of the 'light seed' was experimentally measured and an averaging method for the determination of the anisotropy constant from distance-dependent values of anisotropy factors is presented based upon the continuous low dose rate irradiation linear quadratic model for cell killing. The anisotropy function of Model 200 103 Pd 'light seeds' was measured in a Solid Water trade mark sign phantom using 1x1x1 mm micro LiF TLD chips at radial distances of 1, 2, 3, 4, 5, and 6 cm and at angles from 0 to 90 deg. with respect to the longitudinal axis of the seeds. At a radial distance of 1 cm, the measured anisotropy function of the 103 Pd 'light seed' is considerably lower than that of the 103 Pd 'heavy seed' reported in the TG 43 report. Our measured values at all radial distances are in excellent agreement with the results of a Monte Carlo simulation reported by Weaver, except for points along and near the seed longitudinal axis. The anisotropy constant of the 103 Pd 'light seed' was calculated using the linear quadratic biological model for cell killing in 30 clinical implants. For the model 200 ''light seed,'' it has a value of 0.865. However, our biological model calculations lead us to conclude that if the anisotropy factors of an interstitial brachytherapy seed vary significantly over radial distances anisotropy

  16. Robust Improvement in Estimation of a Covariance Matrix in an Elliptically Contoured Distribution Respect to Quadratic Loss Function

    Directory of Open Access Journals (Sweden)

    Z. Khodadadi

    2008-03-01

    Full Text Available Let S be matrix of residual sum of square in linear model Y = Aβ + e where matrix e is distributed as elliptically contoured with unknown scale matrix Σ. In present work, we consider the problem of estimating Σ with respect to squared loss function, L(Σˆ , Σ = tr(ΣΣˆ −1 −I 2 . It is shown that improvement of the estimators were obtained by James, Stein [7], Dey and Srivasan [1] under the normality assumption remains robust under an elliptically contoured distribution respect to squared loss function

  17. Aspects of Quadratic Gravity

    CERN Document Server

    Alvarez-Gaume, Luis; Kounnas, Costas; Lust, Dieter; Riotto, Antonio

    2016-01-01

    We discuss quadratic gravity where terms quadratic in the curvature tensor are included in the action. After reviewing the corresponding field equations, we analyze in detail the physical propagating modes in some specific backgrounds. First we confirm that the pure $R^2$ theory is indeed ghost free. Then we point out that for flat backgrounds the pure $R^2$ theory propagates only a scalar massless mode and no spin-two tensor mode. However, the latter emerges either by expanding the theory around curved backgrounds like de Sitter or anti-de Sitter, or by changing the long-distance dynamics by introducing the standard Einstein term. In both cases, the theory is modified in the infrared and a propagating graviton is recovered. Hence we recognize a subtle interplay between the UV and IR properties of higher order gravity. We also calculate the corresponding Newton's law for general quadratic curvature theories. Finally, we discuss how quadratic actions may be obtained from a fundamental theory like string- or M-...

  18. A Quadratic Spring Equation

    Science.gov (United States)

    Fay, Temple H.

    2010-01-01

    Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…

  19. Binary classification posed as a quadratically constrained quadratic ...

    Indian Academy of Sciences (India)

    Binary classification is posed as a quadratically constrained quadratic problem and solved using the proposed method. Each class in the binary classification problem is modeled as a multidimensional ellipsoid to forma quadratic constraint in the problem. Particle swarms help in determining the optimal hyperplane or ...

  20. Factorization method of quadratic template

    Science.gov (United States)

    Kotyrba, Martin

    2017-07-01

    Multiplication of two numbers is a one-way function in mathematics. Any attempt to distribute the outcome to its roots is called factorization. There are many methods such as Fermat's factorization, Dixońs method or quadratic sieve and GNFS, which use sophisticated techniques fast factorization. All the above methods use the same basic formula differing only in its use. This article discusses a newly designed factorization method. Effective implementation of this method in programs is not important, it only represents and clearly defines its properties.

  1. Modeling of Mean-VaR portfolio optimization by risk tolerance when the utility function is quadratic

    Science.gov (United States)

    Sukono, Sidi, Pramono; Bon, Abdul Talib bin; Supian, Sudradjat

    2017-03-01

    The problems of investing in financial assets are to choose a combination of weighting a portfolio can be maximized return expectations and minimizing the risk. This paper discusses the modeling of Mean-VaR portfolio optimization by risk tolerance, when square-shaped utility functions. It is assumed that the asset return has a certain distribution, and the risk of the portfolio is measured using the Value-at-Risk (VaR). So, the process of optimization of the portfolio is done based on the model of Mean-VaR portfolio optimization model for the Mean-VaR done using matrix algebra approach, and the Lagrange multiplier method, as well as Khun-Tucker. The results of the modeling portfolio optimization is in the form of a weighting vector equations depends on the vector mean return vector assets, identities, and matrix covariance between return of assets, as well as a factor in risk tolerance. As an illustration of numeric, analyzed five shares traded on the stock market in Indonesia. Based on analysis of five stocks return data gained the vector of weight composition and graphics of efficient surface of portfolio. Vector composition weighting weights and efficient surface charts can be used as a guide for investors in decisions to invest.

  2. The Quadratic Selective Travelling Salesman Problem

    DEFF Research Database (Denmark)

    Thomadsen, Tommy; Stidsen, Thomas K.

    2003-01-01

    A well-known extension of the Travelling Salesman Problem (TSP) is the Selective TSP (STSP): Each node has an associated profit and instead of visiting all nodes, the most profitable set of nodes, taking into account the tour cost, is visited. The Quadratic STSP (QSTSP) adds the additional...

  3. Quadratic Diophantine equations

    CERN Document Server

    Andreescu, Titu

    2015-01-01

    This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.

  4. Isotropy of quadratic forms

    Indian Academy of Sciences (India)

    V. Suresh University Of Hyderabad Hyderabad

    2008-10-31

    Oct 31, 2008 ... We say that (a1,··· ,an) is a zero of the polynomial f if f (a1,··· ,an) = 0. One of the main problems in Mathematics is to determine whether the given polynomial has a (non-trivial) zero or not. For example, let us recall the Fermat's last theorem: V. Suresh University Of Hyderabad Hyderabad. Isotropy of quadratic ...

  5. Specification errors in estimating cost functions: the case of the nuclear-electric-generating industry

    International Nuclear Information System (INIS)

    Jorgensen, E.J.

    1987-01-01

    This study is an application of production-cost duality theory. Duality theory is reviewed for the competitive and rate-of-return regulated firm. The cost function is developed for the nuclear electric-power-generating industry of the United States using capital, fuel, and labor factor inputs. A comparison is made between the Generalized Box-Cox (GBC) and Fourier Flexible (FF) functional forms. The GBC functional form nests the Generalized Leontief, Generalized Square Root Quadratic and Translog functional forms, and is based upon a second-order Taylor-series expansion. The FF form follows from a Fourier-series expansion in sine and cosine terms using the Sobolev norm as the goodness-of-fit measure. The Sobolev norm takes into account first and second derivatives. The cost function and two factor shares are estimated as a system of equations using maximum-likelihood techniques, with Additive Standard Normal and Logistic Normal error distributions. In summary, none of the special cases of the GBC function form are accepted. Homotheticity of the underlying production technology can be rejected for both GBC and FF forms, leaving only the unrestricted versions supported by the data. Residual analysis indicates a slight improvement in skewness and kurtosis for univariate and multivariate cases when the Logistic Normal distribution is used

  6. Quadratic Frequency Modulation Signals Parameter Estimation Based on Two-Dimensional Product Modified Parameterized Chirp Rate-Quadratic Chirp Rate Distribution.

    Science.gov (United States)

    Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong

    2018-05-19

    In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.

  7. Guises and disguises of quadratic divergences

    Energy Technology Data Exchange (ETDEWEB)

    Cherchiglia, A.L., E-mail: adriano@fisica.ufmg.br [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Vieira, A.R., E-mail: arvieira@fisica.ufmg.br [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Hiller, Brigitte, E-mail: brigitte@teor.fis.uc.pt [Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Baêta Scarpelli, A.P., E-mail: scarpelli.apbs@dpf.gov.br [Setor Técnico-Científico, Departamento de Polícia Federal, Rua Hugo D’Antola, 95 - Lapa, São Paulo (Brazil); Sampaio, Marcos, E-mail: marcos.sampaio@durham.ac.uk [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Centre for Particle Theory, Department of Mathematical Sciences, Durham University, South Road Durham DH1 3LE (United Kingdom)

    2014-12-15

    In this contribution, we present a new perspective on the control of quadratic divergences in quantum field theory, in general, and in the Higgs naturalness problem, in particular. Our discussion is essentially based on an approach where UV divergences are parameterized, after being reduced to basic divergent integrals (BDI) in one internal momentum, as functions of a cutoff and a renormalization group scale λ. We illustrate our proposal with well-known examples, such as the gluon vacuum self energy of QCD and the Higgs decay in two photons within this approach. We also discuss frameworks in effective low-energy QCD models, where quadratic divergences are indeed fundamental.

  8. PSQP: Puzzle Solving by Quadratic Programming.

    Science.gov (United States)

    Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome

    2017-02-01

    In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.

  9. Bound constrained quadratic programming via piecewise

    DEFF Research Database (Denmark)

    Madsen, Kaj; Nielsen, Hans Bruun; Pinar, M. C.

    1999-01-01

    of a symmetric, positive definite matrix, and is solved by Newton iteration with line search. The paper describes the algorithm and its implementation including estimation of lambda/sub 1/ , how to get a good starting point for the iteration, and up- and downdating of Cholesky factorization. Results of extensive......We consider the strictly convex quadratic programming problem with bounded variables. A dual problem is derived using Lagrange duality. The dual problem is the minimization of an unconstrained, piecewise quadratic function. It involves a lower bound of lambda/sub 1/ , the smallest eigenvalue...

  10. Eigenfunctions of quadratic hamiltonians in Wigner representation

    International Nuclear Information System (INIS)

    Akhundova, Eh.A.; Dodonov, V.V.; Man'ko, V.I.

    1984-01-01

    Exact solutions of the Schroedinger equation in Wigner representation are obtained for an arbitrary non-stationary N-dimensional quadratic Hamiltonian. It is shown that the complete system of the solutions can always be chosen in the form of the products of Laguerre polynomials, the arguments of which are the quadratic integrals of motion of the corresponding classical problem. The generating function is found for the transition probabilities between Fock states which represent a many-dimensional generatization of a well-known Husimi formula for the oscillator of variable frequency. As an example, the motion of a charged particle in an uniform alternate electromagnetic field is considered in detail

  11. Comparison of generalized estimating equations and quadratic inference functions using data from the National Longitudinal Survey of Children and Youth (NLSCY database

    Directory of Open Access Journals (Sweden)

    Browne Dillon

    2008-05-01

    Full Text Available Abstract Background The generalized estimating equations (GEE technique is often used in longitudinal data modeling, where investigators are interested in population-averaged effects of covariates on responses of interest. GEE involves specifying a model relating covariates to outcomes and a plausible correlation structure between responses at different time periods. While GEE parameter estimates are consistent irrespective of the true underlying correlation structure, the method has some limitations that include challenges with model selection due to lack of absolute goodness-of-fit tests to aid comparisons among several plausible models. The quadratic inference functions (QIF method extends the capabilities of GEE, while also addressing some GEE limitations. Methods We conducted a comparative study between GEE and QIF via an illustrative example, using data from the "National Longitudinal Survey of Children and Youth (NLSCY" database. The NLSCY dataset consists of long-term, population based survey data collected since 1994, and is designed to evaluate the determinants of developmental outcomes in Canadian children. We modeled the relationship between hyperactivity-inattention and gender, age, family functioning, maternal depression symptoms, household income adequacy, maternal immigration status and maternal educational level using GEE and QIF. Basis for comparison include: (1 ease of model selection; (2 sensitivity of results to different working correlation matrices; and (3 efficiency of parameter estimates. Results The sample included 795, 858 respondents (50.3% male; 12% immigrant; 6% from dysfunctional families. QIF analysis reveals that gender (male (odds ratio [OR] = 1.73; 95% confidence interval [CI] = 1.10 to 2.71, family dysfunctional (OR = 2.84, 95% CI of 1.58 to 5.11, and maternal depression (OR = 2.49, 95% CI of 1.60 to 2.60 are significantly associated with higher odds of hyperactivity-inattention. The results remained robust

  12. Quadratic spatial soliton interactions

    Science.gov (United States)

    Jankovic, Ladislav

    Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO 3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the fundamental component only, showed a broad angular acceptance bandwidth which was important for the soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation was observed for the first time. The influence on the multi-soliton patterns generated of the input intensity and beam symmetry was investigated. The combined experimental and theoretical efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton patterns. Another research direction pursued was intensity dependent soliton routing by using of a specially engineered quadratically nonlinear interface within a periodically poled KTP sample. This was the first time demonstration of the self-reflection phenomenon in a system with a quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton routing and manipulation by engineered structures. A detailed investigation was conducted on two soliton interaction and collision processes. Birth of an additional soliton resulting from a two soliton collision was observed and characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 30

  13. Quadratic soliton self-reflection at a quadratically nonlinear interface

    Science.gov (United States)

    Jankovic, Ladislav; Kim, Hongki; Stegeman, George; Carrasco, Silvia; Torner, Lluis; Katz, Mordechai

    2003-11-01

    The reflection of bulk quadratic solutions incident onto a quadratically nonlinear interface in periodically poled potassium titanyl phosphate was observed. The interface consisted of the boundary between two quasi-phase-matched regions displaced from each other by a half-period. At high intensities and small angles of incidence the soliton is reflected.

  14. Facets for the Cardinality Constrained Quadratic Knapsack Problem and the Quadratic Selective Travelling Salesman Problem

    DEFF Research Database (Denmark)

    Mak, Vicky; Thomadsen, Tommy

    2004-01-01

    A well-known extension of the Travelling Salesman Problem (TSP) is the Selective (or Prize-collecting) TSP: In addition to the edge-costs, each node has an associated reward (denoted the node-reward) and instead of visiting all nodes, only profitable nodes are visited. The Quadratic Selective TSP...

  15. Quadratic brackets from symplectic forms

    International Nuclear Information System (INIS)

    Alekseev, Anton Yu.; Todorov, Ivan T.

    1994-01-01

    We give a physicist oriented survey of Poisson-Lie symmetries of classical systems. We consider finite-dimensional geometric actions and the chiral WZNW model as examples for the general construction. An essential point is the appearance of quadratic Poisson brackets for group-like variables. It is believed that upon quantization they lead to quadratic exchange algebras. ((orig.))

  16. Students' Understanding of Quadratic Equations

    Science.gov (United States)

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-01-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

  17. DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers

    Science.gov (United States)

    Mokhtari, Aryan; Shi, Wei; Ling, Qing; Ribeiro, Alejandro

    2016-10-01

    This paper considers decentralized consensus optimization problems where nodes of a network have access to different summands of a global objective function. Nodes cooperate to minimize the global objective by exchanging information with neighbors only. A decentralized version of the alternating directions method of multipliers (DADMM) is a common method for solving this category of problems. DADMM exhibits linear convergence rate to the optimal objective but its implementation requires solving a convex optimization problem at each iteration. This can be computationally costly and may result in large overall convergence times. The decentralized quadratically approximated ADMM algorithm (DQM), which minimizes a quadratic approximation of the objective function that DADMM minimizes at each iteration, is proposed here. The consequent reduction in computational time is shown to have minimal effect on convergence properties. Convergence still proceeds at a linear rate with a guaranteed constant that is asymptotically equivalent to the DADMM linear convergence rate constant. Numerical results demonstrate advantages of DQM relative to DADMM and other alternatives in a logistic regression problem.

  18. Lambda-lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, O.; Schultz, U.P.

    2004-01-01

    -lifting transforms a block-structured program into a set of recursive equations, one for each local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters......Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...

  19. Cost Functions for Airframe Production Programs.

    Science.gov (United States)

    1982-07-01

    0 : 666QOOO 66u666=6L66 𔃺" ~ JM. ~ ~ OJ M %~ 0v Z𔃾:O 14% tqv6 Z6 6 𔃺 *1 199 REFERENCES 1. Alchian, Armen A. "Costs and Outputs." In, The...Allocation of Economic Resources, Edited by Moses Abramovitz. Stanford, California: Stanford University Press, 1959. 2. Alchian, Armen A. "Reliability of

  20. On quadratic residue codes and hyperelliptic curves

    Directory of Open Access Journals (Sweden)

    David Joyner

    2008-01-01

    Full Text Available For an odd prime p and each non-empty subset S⊂GF(p, consider the hyperelliptic curve X S defined by y 2 =f S (x, where f S (x = ∏ a∈S (x-a. Using a connection between binary quadratic residue codes and hyperelliptic curves over GF(p, this paper investigates how coding theory bounds give rise to bounds such as the following example: for all sufficiently large primes p there exists a subset S⊂GF(p for which the bound |X S (GF(p| > 1.39p holds. We also use the quasi-quadratic residue codes defined below to construct an example of a formally self-dual optimal code whose zeta function does not satisfy the ``Riemann hypothesis.''

  1. Quadratic Interpolation and Linear Lifting Design

    Directory of Open Access Journals (Sweden)

    Joel Solé

    2007-03-01

    Full Text Available A quadratic image interpolation method is stated. The formulation is connected to the optimization of lifting steps. This relation triggers the exploration of several interpolation possibilities within the same context, which uses the theory of convex optimization to minimize quadratic functions with linear constraints. The methods consider possible knowledge available from a given application. A set of linear equality constraints that relate wavelet bases and coefficients with the underlying signal is introduced in the formulation. As a consequence, the formulation turns out to be adequate for the design of lifting steps. The resulting steps are related to the prediction minimizing the detail signal energy and to the update minimizing the l2-norm of the approximation signal gradient. Results are reported for the interpolation methods in terms of PSNR and also, coding results are given for the new update lifting steps.

  2. Quadratic tracer dynamical models tobacco growth

    International Nuclear Information System (INIS)

    Qiang Jiyi; Hua Cuncai; Wang Shaohua

    2011-01-01

    In order to study the non-uniformly transferring process of some tracer dosages, we assume that the absorption of some tracer by tobacco is a quadratic function of the tracer quantity of the tracer in the case of fast absorption, whereas the exclusion of the tracer from tobacco is a linear function of the tracer quantity in the case of slow exclusion, after the tracer is introduced into tobacco once at zero time. A single-compartment quadratic dynamical model of Logistic type is established for the leaves of tobacco. Then, a two-compartment quadratic dynamical model is established for leaves and calms of the tobacco. Qualitative analysis of the models shows that the tracer applied to the leaves of the tobacco is excluded finally; however, the tracer stays at the tobacco for finite time. Two methods are also given for computing the parameters in the models. Finally, the results of the models are verified by the 32 P experiment for the absorption of tobacco. (authors)

  3. Stability in quadratic torsion theories

    Energy Technology Data Exchange (ETDEWEB)

    Vasilev, Teodor Borislavov; Cembranos, Jose A.R.; Gigante Valcarcel, Jorge; Martin-Moruno, Prado [Universidad Complutense de Madrid, Departamento de Fisica Teorica I, Madrid (Spain)

    2017-11-15

    We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)

  4. Stability in quadratic torsion theories

    International Nuclear Information System (INIS)

    Vasilev, Teodor Borislavov; Cembranos, Jose A.R.; Gigante Valcarcel, Jorge; Martin-Moruno, Prado

    2017-01-01

    We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)

  5. Tail-constraining stochastic linear–quadratic control: a large deviation and statistical physics approach

    International Nuclear Information System (INIS)

    Chertkov, Michael; Kolokolov, Igor; Lebedev, Vladimir

    2012-01-01

    The standard definition of the stochastic risk-sensitive linear–quadratic (RS-LQ) control depends on the risk parameter, which is normally left to be set exogenously. We reconsider the classical approach and suggest two alternatives, resolving the spurious freedom naturally. One approach consists in seeking for the minimum of the tail of the probability distribution function (PDF) of the cost functional at some large fixed value. Another option suggests minimizing the expectation value of the cost functional under a constraint on the value of the PDF tail. Under the assumption of resulting control stability, both problems are reduced to static optimizations over a stationary control matrix. The solutions are illustrated using the examples of scalar and 1D chain (string) systems. The large deviation self-similar asymptotic of the cost functional PDF is analyzed. (paper)

  6. On quadratic variation of martingales

    Indian Academy of Sciences (India)

    On quadratic variation of martingales. 459. The proof relied on the theory of stochastic integration. Subsequently, in Karandikar. [4], the formula was derived using only Doob's maximal inequality. Thus this could be the starting point for the development of stochastic calculus for continuous semimartingales without bringing in ...

  7. Impurity solitons with quadratic nonlinearities

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis

    1998-01-01

    We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton...

  8. Marginal costs for road maintenance and operation - a cost function approach

    OpenAIRE

    Haraldsson, Mattias

    2007-01-01

    Using observational data covering the whole Swedish national road network for the period 1998-2002, this paper estimates a set of maintenance and operation cost functions. It is found that costs for all operation and maintenance measures increase with traffic intensity, with two exceptions; total operation and winter operation measures are fixed cost activities. All other operation and maintenance measures have short run elasticities in the range 0.25-0.60. The impact of an additional vehicle...

  9. Environmental change and hedonic cost functions for automobiles.

    Science.gov (United States)

    Berry, S; Kortum, S; Pakes, A

    1996-11-12

    This paper focuses on how changes in the economic and regulatory environment have affected production costs and product characteristics in the automobile industry. We estimate "hedonic cost functions" that relate product-level costs to their characteristics. Then we examine how this cost surface has changed over time and how these changes relate to changes in gas prices and in emission standard regulations. We also briefly consider the related questions of how changes in automobile characteristics, and in the rate of patenting, are related to regulations and gas prices.

  10. Optimizing cost-efficiency in mean exposure assessment--cost functions reconsidered.

    Science.gov (United States)

    Mathiassen, Svend Erik; Bolin, Kristian

    2011-05-21

    Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods.For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set. The analysis procedures developed in the present study can be used

  11. Controlling for quality in the hospital cost function.

    Science.gov (United States)

    Carey, Kathleen; Stefos, Theodore

    2011-06-01

    This paper explores the relationship between the cost and quality of hospital care from the perspective of applied microeconomics. It addresses both theoretical and practical complexities entailed in incorporating hospital quality into the estimation of hospital cost functions. That literature is extended with an empirical analysis that examines the use of 15 Patient Safety Indicators (PSIs) as measures of hospital quality. A total operating cost function is estimated on 2,848 observations from five states drawn from the period 2001 to 2007. In general, findings indicate that the PSIs are successful in capturing variation in hospital cost due to adverse patient safety events. Measures that rely on the aggregate number of adverse events summed over PSIs are found to be superior to risk-adjusted rates for individual PSIs. The marginal cost of an adverse event is estimated to be $22,413. The results contribute to a growing business case for inpatient safety in hospital services.

  12. Quadratic third-order tensor optimization problem with quadratic constraints

    Directory of Open Access Journals (Sweden)

    Lixing Yang

    2014-05-01

    Full Text Available Quadratically constrained quadratic programs (QQPs problems play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Semidenite programming (SDP relaxations often provide good approximate solutions to these hard problems. For several special cases of QQP, e.g., convex programs and trust region subproblems, SDP relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex objective.In this paper, we consider a certain QQP where the variable is neither vector nor matrix but a third-order tensor. This problem can be viewed as a generalization of the ordinary QQP with vector or matrix as it's variant. Under some mild conditions, we rst show that SDP relaxation provides exact optimal solutions for the original problem. Then we focus on two classes of homogeneous quadratic tensor programming problems which have no requirements on the constraints number. For one, we provide an easily implemental polynomial time algorithm to approximately solve the problem and discuss the approximation ratio. For the other, we show there is no gap between the SDP relaxation and itself.

  13. Special cases of the quadratic shortest path problem

    NARCIS (Netherlands)

    Sotirov, Renata; Hu, Hao

    2017-01-01

    The quadratic shortest path problem (QSPP) is the problem of finding a path with prespecified start vertex s and end vertex t in a digraph such that the sum of weights of arcs and the sum of interaction costs over all pairs of arcs on the path is minimized. We first consider a variant of the QSPP

  14. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.084025

  15. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals. aps .org/prd/abstract/10.1103/PhysRevD.95.084025

  16. Orthogonality preserving infinite dimensional quadratic stochastic operators

    International Nuclear Information System (INIS)

    Akın, Hasan; Mukhamedov, Farrukh

    2015-01-01

    In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators

  17. Extending the Scope of Robust Quadratic Optimization

    NARCIS (Netherlands)

    Marandi, Ahmadreza; Ben-Tal, A.; den Hertog, Dick; Melenberg, Bertrand

    In this paper, we derive tractable reformulations of the robust counterparts of convex quadratic and conic quadratic constraints with concave uncertainties for a broad range of uncertainty sets. For quadratic constraints with convex uncertainty, it is well-known that the robust counterpart is, in

  18. Modeling the lowest-cost splitting of a herd of cows by optimizing a cost function

    Science.gov (United States)

    Gajamannage, Kelum; Bollt, Erik M.; Porter, Mason A.; Dawkins, Marian S.

    2017-06-01

    Animals live in groups to defend against predation and to obtain food. However, for some animals—especially ones that spend long periods of time feeding—there are costs if a group chooses to move on before their nutritional needs are satisfied. If the conflict between feeding and keeping up with a group becomes too large, it may be advantageous for some groups of animals to split into subgroups with similar nutritional needs. We model the costs and benefits of splitting in a herd of cows using a cost function that quantifies individual variation in hunger, desire to lie down, and predation risk. We model the costs associated with hunger and lying desire as the standard deviations of individuals within a group, and we model predation risk as an inverse exponential function of the group size. We minimize the cost function over all plausible groups that can arise from a given herd and study the dynamics of group splitting. We examine how the cow dynamics and cost function depend on the parameters in the model and consider two biologically-motivated examples: (1) group switching and group fission in a herd of relatively homogeneous cows, and (2) a herd with an equal number of adult males (larger animals) and adult females (smaller animals).

  19. Quality-Adjusted Cost Functions for Child-Care Centers.

    OpenAIRE

    Mocan, H Naci

    1995-01-01

    Using a newly compiled data set, this paper estimates multi- product translog cost functions for 399 child care centers from California, Colorado, Connecticut, and North Carolina. Quality of child care is controlled by a quality index, which has been shown to be positively related to child outcomes by previous research. Nonprofit centers that receive public money, either from the state or federal government, (which is tied to higher standards), have total variable costs that are 18 percent hi...

  20. Cost of product functions using analysis of value

    Directory of Open Access Journals (Sweden)

    Luminita Parv

    2016-09-01

    Full Text Available The value of use is a specific notion but of a great generality that makes the product be regarded as a complex system that transforms itself in time, thus undergoing evolution. Therefore, the product is important not in itself, but for the sake of the requirements it satisfies and for the functions it provides. In the analysis of value there are connections of a technical nature that implicitly lead to connections of an economic nature. Thus, the method of the ”analysis of value” will actually examine the cost of product functions, the aim of the method being the balance of functions costs on the basis of their importance for the product. Identifying the functions represents one of the important stages of the analysis of value. The difficulty in fixing the functions derives from the fact that there are not any rules clear enough for this activity, but only principles

  1. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2002-01-01

    Lambda-lifting is a program transformation used in compilers and in partial evaluators and that operates in cubic time. In this article, we show how to reduce this complexity to quadratic time. Lambda-lifting transforms a block-structured program into a set of recursive equations, one for each...... local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters that yields the cubic factor in the traditional formulation of lambda-lifting, which...... is not needed. We therefore simplify the search for extra parameters by treating each strongly connected component instead of each function as a unit, thereby reducing the time complexity of lambda-lifting from O(n 3 log n)toO(n2 log n), where n is the size of the program. Since a lambda-lifter can output...

  2. Multiple function benefit - cost comparison of conservation buffer placement strategies

    Science.gov (United States)

    Z. Qiu; M.G. Dosskey

    2012-01-01

    Conservation buffers are considered to be effective practices for repairing impaired streams and restoring multiple ecosystem functions in degraded agricultural watersheds. Six different planning strategies for targeting their placement within watersheds were compared in terms of cost-effectiveness for environmental improvement in the 144 km² Neshanic River...

  3. Coherent states for quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Contreras-Astorga, Alonso; Fernandez C, David J; Velazquez, Mercedes

    2011-01-01

    The coherent states for a set of quadratic Hamiltonians in the trap regime are constructed. A matrix technique which allows us to directly identify the creation and annihilation operators will be presented. Then, the coherent states as simultaneous eigenstates of the annihilation operators will be derived, and will be compared with those attained through the displacement operator method. The corresponding wavefunction will be found, and a general procedure for obtaining several mean values involving the canonical operators in these states will be described. The results will be illustrated through the asymmetric Penning trap.

  4. Quadratic Variation by Markov Chains

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Horel, Guillaume

    We introduce a novel estimator of the quadratic variation that is based on the the- ory of Markov chains. The estimator is motivated by some general results concerning filtering contaminated semimartingales. Specifically, we show that filtering can in prin- ciple remove the effects of market...... microstructure noise in a general framework where little is assumed about the noise. For the practical implementation, we adopt the dis- crete Markov chain model that is well suited for the analysis of financial high-frequency prices. The Markov chain framework facilitates simple expressions and elegant analyti...

  5. Optimal control linear quadratic methods

    CERN Document Server

    Anderson, Brian D O

    2007-01-01

    This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the

  6. A method for determining the non-existence of a common quadratic Lyapunov function for switched linear systems based on particle swarm optimisation

    Czech Academy of Sciences Publication Activity Database

    Duarte-Mermoud, M.A.; Ordonez-Hurtado, R.H.; Zagalak, Petr

    2012-01-01

    Roč. 43, č. 11 (2012), s. 2015-2029 ISSN 0020-7721 R&D Projects: GA ČR(CZ) GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Switched linear systems * Lyapunov function * particle swarm optimization Subject RIV: BC - Control Systems Theory Impact factor: 1.305, year: 2012 http://library.utia.cas.cz/separaty/2012/AS/zagalak-0382169.pdf

  7. Phase space eigenfunctions of multidimensional quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Man'ko, V.I.

    1986-01-01

    We obtain the explicit expressions for phace space eigenfunctions (PSE),i.e. Weyl's symbols of dyadic operators like vertical stroken> ,vertical strokem>, being the solution of the Schroedinger equation with the Hamiltonian which is a quite arbitrary multidimensional quadratic form of the operators of Cartesian coordinates and conjugated to them momenta with time-dependent coefficients. It is shown that for an arbitrary quadratic Hamiltonian one can always construct the set of completely factorized PSE which are products of N factors, each factor being dependent only on two arguments for nnot=m and on a single argument for n=m. These arguments are nothing but constants of motion of the correspondent classical system. PSE are expressed in terms of the associated Laguerre polynomials in the case of a discrete spectrum and in terms of the Airy functions in the continuous spectrum case. Three examples are considered: a harmonic oscillator with a time-dependent frequency, a charged particle in a nonstationary uniform magnetic field, and a particle in a time-dependent uniform potential field. (orig.)

  8. Quadratic reactivity fuel cycle model

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1985-01-01

    For educational purposes it is highly desirable to provide simple yet realistic models for fuel cycle and fuel economy. In particular, a lumped model without recourse to detailed spatial calculations would be very helpful in providing the student with a proper understanding of the purposes of fuel cycle calculations. A teaching model for fuel cycle studies based on a lumped model assuming the summability of partial reactivities with a linear dependence of reactivity usefully illustrates fuel utilization concepts. The linear burnup model does not satisfactorily represent natural enrichment reactors. A better model, showing the trend of initial plutonium production before subsequent fuel burnup and fission product generation, is a quadratic fit. The study of M-batch cycles, reloading 1/Mth of the core at end of cycle, is now complicated by nonlinear equations. A complete account of the asymptotic cycle for any order of M-batch refueling can be given and compared with the linear model. A complete account of the transient cycle can be obtained readily in the two-batch model and this exact solution would be useful in verifying numerical marching models. It is convenient to treat the parabolic fit rho = 1 - tau 2 as a special case of the general quadratic fit rho = 1 - C/sub tau/ - (1 - C)tau 2 in suitably normalized reactivity and cycle time units. The parabolic results are given in this paper

  9. Large N saddle formulation of quadratic building block theories

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1980-01-01

    I develop a large N saddle point formulation for the broad class of 'theories of quadratic building blocks'. Such theories are those on which the sums over internal indices are contained in quadratic building blocks, e.g. PHI 2 = Σsup(N)sub(a-1)PHi sup(a)sup(a). The formulation applies as well to fermions, derivative coupling and non-polynomial interactions. In a related development, closed Schwinger-Dyson equations for Green functions of the building blocks are derived and solved for large N. (orig.)

  10. Quantum tomography and classical propagator for quadratic quantum systems

    International Nuclear Information System (INIS)

    Man'ko, O.V.

    1999-03-01

    The classical propagator for tomographic probability (which describes the quantum state instead of wave function or density matrix) is presented for quadratic quantum systems and its relation to the quantum propagator is considered. The new formalism of quantum mechanics, based on the probability representation of the state, is applied to particular quadratic systems - the harmonic oscillator, particle's free motion, problems of an ion in a Paul trap and in asymmetric Penning trap, and to the process of stimulated Raman scattering. The classical propagator for these systems is written in an explicit form. (author)

  11. Feedback nash equilibria for linear quadratic descriptor differential games

    NARCIS (Netherlands)

    Engwerda, J.C.; Salmah, S.

    2012-01-01

    In this paper, we consider the non-cooperative linear feedback Nash quadratic differential game with an infinite planning horizon for descriptor systems of index one. The performance function is assumed to be indefinite. We derive both necessary and sufficient conditions under which this game has a

  12. Feedback Nash Equilibria for Linear Quadratic Descriptor Differential Games

    NARCIS (Netherlands)

    Engwerda, J.C.; Salmah, Y.

    2010-01-01

    In this note we consider the non-cooperative linear feedback Nash quadratic differential game with an infinite planning horizon for descriptor systems of index one. The performance function is assumed to be indefinite. We derive both necessary and sufficient conditions under which this game has a

  13. Dynamical invariants for variable quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Suslov, Sergei K

    2010-01-01

    We consider linear and quadratic integrals of motion for general variable quadratic Hamiltonians. Fundamental relations between the eigenvalue problem for linear dynamical invariants and solutions of the corresponding Cauchy initial value problem for the time-dependent Schroedinger equation are emphasized. An eigenfunction expansion of the solution of the initial value problem is also found. A nonlinear superposition principle for generalized Ermakov systems is established as a result of decomposition of the general quadratic invariant in terms of the linear ones.

  14. ACTIVITY-BASED COST ALLOCATION AND FUNCTION ANALYZES IN TRADE

    Directory of Open Access Journals (Sweden)

    TÜNDE VERES

    2011-01-01

    Full Text Available In this paper the author is thinking about the efficiency analyzes of trading. The most important evaluation factors of trade are the sales value, volume and the margin. Of course the easiest and fastest way is to follow the market situation by the turnover but for long term thinking the sales companies need to concentrate also for efficiency. Trading activity has some functions which can deeply effect for the final result and this is the reason to calculate their clear and reliable costs is an important condition of the decision making. The author reviews the cost categories and the basic functions in trading activity to find possible ways getting reliable information.

  15. Availability and cost functions for periodically inspected preventively maintained units

    International Nuclear Information System (INIS)

    Vaurio, J.K.

    1999-01-01

    Unavailability and cost rate functions are developed for components whose failures can occur randomly but they are detected only by periodic testing or inspections. If a failure occurs between consecutive inspections, the unit remains failed until the next inspection. Components are renewed by preventive maintenance periodically, or by repair or replacement after a failure, whichever occurs first (age-replacement). The model takes into account finite repair and maintenance durations as well as costs due to testing, repair, maintenance and lost production or accidents. For normally operating units the time-related penalty is loss of production. For standby safety equipment it is the expected cost of an accident that can happen when the component is down due to a dormant failure, repair or maintenance. The objective of maintenance optimization is to minimize the total cost rate by proper selection of two intervals, one for inspections and one for replacements. General conditions and techniques are developed for solving optimal test and maintenance intervals, with and without constraints on the production loss or accident rate. Insights are gained into how the optimal intervals depend on various cost parameters and reliability characteristics

  16. Quadratically convergent MCSCF scheme using Fock operators

    International Nuclear Information System (INIS)

    Das, G.

    1981-01-01

    A quadratically convergent formulation of the MCSCF method using Fock operators is presented. Among its advantages the present formulation is quadratically convergent unlike the earlier ones based on Fock operators. In contrast to other quadratically convergent schemes as well as the one based on generalized Brillouin's theorem, this method leads easily to a hybrid scheme where the weakly coupled orbitals (such as the core) are handled purely by Fock equations, while the rest of the orbitals are treated by a quadratically convergent approach with a truncated virtual space obtained by the use of the corresponding Fock equations

  17. Geometrical and Graphical Solutions of Quadratic Equations.

    Science.gov (United States)

    Hornsby, E. John, Jr.

    1990-01-01

    Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)

  18. Linear–Quadratic Mean-Field-Type Games: A Direct Method

    Directory of Open Access Journals (Sweden)

    Tyrone E. Duncan

    2018-02-01

    Full Text Available In this work, a multi-person mean-field-type game is formulated and solved that is described by a linear jump-diffusion system of mean-field type and a quadratic cost functional involving the second moments, the square of the expected value of the state, and the control actions of all decision-makers. We propose a direct method to solve the game, team, and bargaining problems. This solution approach does not require solving the Bellman–Kolmogorov equations or backward–forward stochastic differential equations of Pontryagin’s type. The proposed method can be easily implemented by beginners and engineers who are new to the emerging field of mean-field-type game theory. The optimal strategies for decision-makers are shown to be in a state-and-mean-field feedback form. The optimal strategies are given explicitly as a sum of the well-known linear state-feedback strategy for the associated deterministic linear–quadratic game problem and a mean-field feedback term. The equilibrium cost of the decision-makers are explicitly derived using a simple direct method. Moreover, the equilibrium cost is a weighted sum of the initial variance and an integral of a weighted variance of the diffusion and the jump process. Finally, the method is used to compute global optimum strategies as well as saddle point strategies and Nash bargaining solution in state-and-mean-field feedback form.

  19. Quadratic Lagrangians and Legendre transformation

    International Nuclear Information System (INIS)

    Magnano, G.

    1988-01-01

    In recent years interest is grown about the so-called non-linear Lagrangians for gravitation. In particular, the quadratic lagrangians are currently believed to play a fundamental role both for quantum gravity and for the super-gravity approach. The higher order and high degree of non-linearity of these theories make very difficult to extract physical information out of them. The author discusses how the Legendre transformation can be applied to a wide class of non-linear theories: it corresponds to a conformal transformation whenever the Lagrangian depends only on the scalar curvature, while it has a more general form if the Lagrangian depends on the full Ricci tensor

  20. The cost function for the preventive - maintenance replacement problem

    OpenAIRE

    Vilaplana, Jose Perez

    1994-01-01

    Let a discounted continuous review preventive-maintenance replacement model be such that its total discounted cost is given by means of two functional equations. We assume that downtime is caused by equipment breakdowns, and the length of a given downtime is the time necessary to repair the equipment and set it back in operation. The periodic preventive replacement policy is to replace the equipment by a new identical equipment when service age X is reached, or when the equipment ...

  1. Large-scale sequential quadratic programming algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Eldersveld, S.K.

    1992-09-01

    The problem addressed is the general nonlinear programming problem: finding a local minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequality constraints. The methods studied are in the class of sequential quadratic programming (SQP) algorithms, which have previously proved successful for problems of moderate size. Our goal is to devise an SQP algorithm that is applicable to large-scale optimization problems, using sparse data structures and storing less curvature information but maintaining the property of superlinear convergence. The main features are: 1. The use of a quasi-Newton approximation to the reduced Hessian of the Lagrangian function. Only an estimate of the reduced Hessian matrix is required by our algorithm. The impact of not having available the full Hessian approximation is studied and alternative estimates are constructed. 2. The use of a transformation matrix Q. This allows the QP gradient to be computed easily when only the reduced Hessian approximation is maintained. 3. The use of a reduced-gradient form of the basis for the null space of the working set. This choice of basis is more practical than an orthogonal null-space basis for large-scale problems. The continuity condition for this choice is proven. 4. The use of incomplete solutions of quadratic programming subproblems. Certain iterates generated by an active-set method for the QP subproblem are used in place of the QP minimizer to define the search direction for the nonlinear problem. An implementation of the new algorithm has been obtained by modifying the code MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm on a set of 92 test problems.

  2. Using the soil and water assessment tool to estimate dissolved inorganic nitrogen water pollution abatement cost functions in central portugal.

    Science.gov (United States)

    Roebeling, P C; Rocha, J; Nunes, J P; Fidélis, T; Alves, H; Fonseca, S

    2014-01-01

    Coastal aquatic ecosystems are increasingly affected by diffuse source nutrient water pollution from agricultural activities in coastal catchments, even though these ecosystems are important from a social, environmental and economic perspective. To warrant sustainable economic development of coastal regions, we need to balance marginal costs from coastal catchment water pollution abatement and associated marginal benefits from coastal resource appreciation. Diffuse-source water pollution abatement costs across agricultural sectors are not easily determined given the spatial heterogeneity in biophysical and agro-ecological conditions as well as the available range of best agricultural practices (BAPs) for water quality improvement. We demonstrate how the Soil and Water Assessment Tool (SWAT) can be used to estimate diffuse-source water pollution abatement cost functions across agricultural land use categories based on a stepwise adoption of identified BAPs for water quality improvement and corresponding SWAT-based estimates for agricultural production, agricultural incomes, and water pollution deliveries. Results for the case of dissolved inorganic nitrogen (DIN) surface water pollution by the key agricultural land use categories ("annual crops," "vineyards," and "mixed annual crops & vineyards") in the Vouga catchment in central Portugal show that no win-win agricultural practices are available within the assessed BAPs for DIN water quality improvement. Estimated abatement costs increase quadratically in the rate of water pollution abatement, with largest abatement costs for the "mixed annual crops & vineyards" land use category (between 41,900 and 51,900 € tDIN yr) and fairly similar abatement costs across the "vineyards" and "annual crops" land use categories (between 7300 and 15,200 € tDIN yr). Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Estimation of cost function in the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Duk [Korea Energy Economics Institute, Euiwang (Korea)

    1999-02-01

    The natural gas industry in Korea has characteristics of a dual industrial structure with wholesale and retail and a regional monopoly of city gas company. Recently there have been discussions on the restructuring of gas industry and the problems arising from such industrial organization. At this point, the labor and capital cost of KOGAS were analyzed to find out efficiency of KOGAS, the wholesaler and the cost function focusing on distribution was estimated to find out effect of scale of city gas company, the retailer. As a result, in the case of KOGAS, it is prove that enhancing competitive power is needed by improving labor productivity through stabilization of labor structure and by maximizing value-added through stability of capital combination. From the estimation of cost function of city gas companies, the existing regional monopoly of city gas company have effects on its scale only when the area of operation and end users used the same amount per end user are increased. (author). 31 refs., 10 figs., 43 tabs.

  4. Determining the Optimal Solution for Quadratically Constrained Quadratic Programming (QCQP) on Energy-Saving Generation Dispatch Problem

    Science.gov (United States)

    Lesmana, E.; Chaerani, D.; Khansa, H. N.

    2018-03-01

    Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method

  5. Quadratic Boost A-Source Impedance Network

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede; Chub, Andrii

    2016-01-01

    A novel quadratic boost A-source impedance network is proposed to realize converters that demand very high voltage gain. To satisfy the requirement, the network uses an autotransformer where the obtained gain is quadratically dependent on the duty ratio and is unmatched by any existing impedance...

  6. Wavefield reconstruction inversion with a multiplicative cost function

    Science.gov (United States)

    da Silva, Nuno V.; Yao, Gang

    2018-01-01

    We present a method for the automatic estimation of the trade-off parameter in the context of wavefield reconstruction inversion (WRI). WRI formulates the inverse problem as an optimisation problem, minimising the data misfit while penalising with a wave equation constraining term. The trade-off between the two terms is balanced by a scaling factor that balances the contributions of the data-misfit term and the constraining term to the value of the objective function. If this parameter is too large then it implies penalizing for the wave equation imposing a hard constraint in the inversion. If it is too small, then this leads to a poorly constrained solution as it is essentially penalizing for the data misfit and not taking into account the physics that explains the data. This paper introduces a new approach for the formulation of WRI recasting its formulation into a multiplicative cost function. We demonstrate that the proposed method outperforms the additive cost function when the trade-off parameter is appropriately scaled in the latter, when adapting it throughout the iterations, and when the data is contaminated with Gaussian random noise. Thus this work contributes with a framework for a more automated application of WRI.

  7. Cost function approach for estimating derived demand for composite wood products

    Science.gov (United States)

    T. C. Marcin

    1991-01-01

    A cost function approach was examined for using the concept of duality between production and input factor demands. A translog cost function was used to represent residential construction costs and derived conditional factor demand equations. Alternative models were derived from the translog cost function by imposing parameter restrictions.

  8. Are Public Master's Institutions Cost Efficient? A Stochastic Frontier and Spatial Analysis

    Science.gov (United States)

    Titus, Marvin A.; Vamosiu, Adriana; McClure, Kevin R.

    2017-01-01

    The current study examines costs, measured by educational and general (E&G) spending, and cost efficiency at 252 public master's institutions in the United States over a nine-year (2004-2012) period. We use a multi-product quadratic cost function and results from a random-effects model with a first-order autoregressive (AR1) disturbance term…

  9. Quadratic Hedging of Basis Risk

    Directory of Open Access Journals (Sweden)

    Hardy Hulley

    2015-02-01

    Full Text Available This paper examines a simple basis risk model based on correlated geometric Brownian motions. We apply quadratic criteria to minimize basis risk and hedge in an optimal manner. Initially, we derive the Föllmer–Schweizer decomposition for a European claim. This allows pricing and hedging under the minimal martingale measure, corresponding to the local risk-minimizing strategy. Furthermore, since the mean-variance tradeoff process is deterministic in our setup, the minimal martingale- and variance-optimal martingale measures coincide. Consequently, the mean-variance optimal strategy is easily constructed. Simple pricing and hedging formulae for put and call options are derived in terms of the Black–Scholes formula. Due to market incompleteness, these formulae depend on the drift parameters of the processes. By making a further equilibrium assumption, we derive an approximate hedging formula, which does not require knowledge of these parameters. The hedging strategies are tested using Monte Carlo experiments, and are compared with results achieved using a utility maximization approach.

  10. Securing Digital Audio using Complex Quadratic Map

    Science.gov (United States)

    Suryadi, MT; Satria Gunawan, Tjandra; Satria, Yudi

    2018-03-01

    In This digital era, exchanging data are common and easy to do, therefore it is vulnerable to be attacked and manipulated from unauthorized parties. One data type that is vulnerable to attack is digital audio. So, we need data securing method that is not vulnerable and fast. One of the methods that match all of those criteria is securing the data using chaos function. Chaos function that is used in this research is complex quadratic map (CQM). There are some parameter value that causing the key stream that is generated by CQM function to pass all 15 NIST test, this means that the key stream that is generated using this CQM is proven to be random. In addition, samples of encrypted digital sound when tested using goodness of fit test are proven to be uniform, so securing digital audio using this method is not vulnerable to frequency analysis attack. The key space is very huge about 8.1×l031 possible keys and the key sensitivity is very small about 10-10, therefore this method is also not vulnerable against brute-force attack. And finally, the processing speed for both encryption and decryption process on average about 450 times faster that its digital audio duration.

  11. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    Energy Technology Data Exchange (ETDEWEB)

    Szederkenyi, Gabor; Hangos, Katalin M

    2004-04-26

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  12. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    Science.gov (United States)

    Szederkényi, Gábor; Hangos, Katalin M.

    2004-04-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  13. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    International Nuclear Information System (INIS)

    Szederkenyi, Gabor; Hangos, Katalin M.

    2004-01-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities

  14. Does integration of HIV and SRH services achieve economies of scale and scope in practice? A cost function analysis of the Integra Initiative.

    Science.gov (United States)

    Obure, Carol Dayo; Guinness, Lorna; Sweeney, Sedona; Initiative, Integra; Vassall, Anna

    2016-03-01

    Policy-makers have long argued about the potential efficiency gains and cost savings from integrating HIV and sexual reproductive health (SRH) services, particularly in resource-constrained settings with generalised HIV epidemics. However, until now, little empirical evidence exists on whether the hypothesised efficiency gains associated with such integration can be achieved in practice. We estimated a quadratic cost function using data obtained from 40 health facilities, over a 2-year-period, in Kenya and Swaziland. The quadratic specification enables us to determine the existence of economies of scale and scope. The empirical results reveal that at the current output levels, only HIV counselling and testing services are characterised by service-specific economies of scale. However, no overall economies of scale exist as all outputs are increased. The results also indicate cost complementarities between cervical cancer screening and HIV care; post-natal care and HIV care and family planning and sexually transmitted infection treatment combinations only. The results from this analysis reveal that contrary to expectation, efficiency gains from the integration of HIV and SRH services, if any, are likely to be modest. Efficiency gains are likely to be most achievable in settings that are currently delivering HIV and SRH services at a low scale with high levels of fixed costs. The presence of cost complementarities for only three service combinations implies that careful consideration of setting-specific clinical practices and the extent to which they can be combined should be made when deciding which services to integrate. NCT01694862. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. 20 CFR 641.856 - What functions and activities constitute costs of administration?

    Science.gov (United States)

    2010-04-01

    ..., including: (i) Accounting, budgeting, financial, and cash management functions; (ii) Procurement and purchasing functions; (iii) Property management functions; (iv) Personnel management functions; (v) Payroll... management of the program; and (5) Costs of information systems related to administrative functions (for...

  16. linear-quadratic-linear model

    Directory of Open Access Journals (Sweden)

    Tanwiwat Jaikuna

    2017-02-01

    Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  17. Designing Camera Networks by Convex Quadratic Programming

    KAUST Repository

    Ghanem, Bernard; Wonka, Peter; Cao, Yuanhao

    2015-01-01

    be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution

  18. Schur Stability Regions for Complex Quadratic Polynomials

    Science.gov (United States)

    Cheng, Sui Sun; Huang, Shao Yuan

    2010-01-01

    Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)

  19. QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.

    Science.gov (United States)

    Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

    2014-01-01

    We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n -gon, our construction produces 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n ( n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.

  20. Linear quadratic optimization for positive LTI system

    Science.gov (United States)

    Muhafzan, Yenti, Syafrida Wirma; Zulakmal

    2017-05-01

    Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.

  1. Radiotherapy treatment planning linear-quadratic radiobiology

    CERN Document Server

    Chapman, J Donald

    2015-01-01

    Understand Quantitative Radiobiology from a Radiation Biophysics PerspectiveIn the field of radiobiology, the linear-quadratic (LQ) equation has become the standard for defining radiation-induced cell killing. Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology describes tumor cell inactivation from a radiation physics perspective and offers appropriate LQ parameters for modeling tumor and normal tissue responses.Explore the Latest Cell Killing Numbers for Defining Iso-Effective Cancer TreatmentsThe book compil

  2. Solitons in quadratic nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2001-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families....... Because of these induced cubic terms, solitons still exist even when the effective quadratic nonlinearity vanishes and conventional theory predicts that there can be no soliton. We demonstrate that both bright and dark forms of these solitons can propagate stably....

  3. Cost of Czochralski wafers as a function of diameter

    Science.gov (United States)

    Leipold, M. H.; Radics, C.; Kachare, A.

    1980-02-01

    The impact of diameter in the range of 10 to 15 cm on the cost of wafers sliced from Czochralski ingots was analyzed. Increasing silicon waste and decreasing ingot cost with increasing ingot size were estimated along with projected costs. Results indicate a small but continuous decrease in sheet cost with increasing ingot size in this size range. Sheet costs including silicon are projected to be $50 to $60/sq m (1980 $) depending upon technique used.

  4. A Note on 5-bit Quadratic Permutations’ Classification

    OpenAIRE

    Božilov, Dušan; Bilgin, Begül; Sahin, Hacı Ali

    2017-01-01

    Classification of vectorial Boolean functions up to affine equivalence is used widely to analyze various cryptographic and implementation properties of symmetric-key algorithms. We show that there exist 75 affine equivalence classes of 5-bit quadratic permutations. Furthermore, we explore important cryptographic properties of these classes, such as linear and differential properties and degrees of their inverses, together with multiplicative complexity and existence of uniform threshold reali...

  5. Cost function for the natural gas transmission, industry: further considerations

    International Nuclear Information System (INIS)

    Massol, Olivier

    2009-01-01

    This article studies the cost function for the natural gas transmission industry. 60 years ago, Hollis B. Chenery published an important contribution that demonstrated how, in that particular industry, the production function of micro-economic theory can be rewritten with engineering variables (Chenery, 1949). In 2008, an article published in The Engineering Economist (Yepez, 2008) provided a refreshing revival on Chenery's seminal thoughts. In addition to a tribute to the late H.B. Chenery, this document offers some further comments and extensions on Yepez (2008). It provides a statistically estimated characterisation of the long-run scale economies and a discussion on the short-run economics of the duplication of existing equipments. As a first extension, we study the optimal design for infrastructure that is planned to transport a seasonally-varying flow of natural gas. The second extension analyzes the optimal degree of excess capacity to be built into a new infrastructure by a firm that expects a random rise in its output during the infrastructure's lifetime. (author)

  6. SU-E-T-54: Benefits of Biological Cost Functions

    International Nuclear Information System (INIS)

    Demirag, N

    2014-01-01

    Purpose: To verify the benefits of the biological cost functions. Methods: TG166 patients were used for the test case scenarios. Patients were planned using Monaco V5.0 (CMS/Elekta, St.Louis, MO) Monaco has 3 biological and 8 physical CFs. In this study the plans were optimized using 3 different scenarios. 1- Biological CFs only 2-Physical CFs only 3- Combination of Physical and Biological CFsMonaco has 3 biological CFs. Target EUD used for the targets, derived from the poisson cell kill model, has an α value that controls the cold spots inside the target. α values used in the optimization were 0.5 and 0.8. if cold spots needs to be penalized α value increased. Serial CF: it's called serial to mimic the behaviour of the serial organs, if a high k value like 12 or 14 is used it controls the maximum dose. Serial CF has a k parameter that is used to shape the whole dvh curve. K value ranges between 1–20. k:1 is used to control the mean dose, lower k value controls the mean dose, higher k value controls the higher dose, using 2 serial CFs with different k values controls the whole DVH. Paralel CF controls the percentage of the volume that tolerates higher doses than the reference dose to mimic the behaviour of the paralel organs. Results: It was possible to achive clinically accepted plans in all 3 scenarios. The benefit of the biological cost functions were to control the mean dose for target and OAR, to shape the DVH curve using one EUD value and one k value simplifies the optimization process. Using the biological CFs alone, it was hard to control the dose at a point. Conclusion: Biological CFs in Monaco doesn't require the ntcp/tcp values from the labs and useful to shape the whole dvh curve. I work as an applications support specialist for Elekta and I am a Ph.D. Student in Istanbul University for radiation therapy physics

  7. Symmetric coupling of angular momenta, quadratic algebras and discrete polynomials

    International Nuclear Information System (INIS)

    Aquilanti, V; Marinelli, D; Marzuoli, A

    2014-01-01

    Eigenvalues and eigenfunctions of the volume operator, associated with the symmetric coupling of three SU(2) angular momentum operators, can be analyzed on the basis of a discrete Schrödinger–like equation which provides a semiclassical Hamiltonian picture of the evolution of a 'quantum of space', as shown by the authors in [1]. Emphasis is given here to the formalization in terms of a quadratic symmetry algebra and its automorphism group. This view is related to the Askey scheme, the hierarchical structure which includes all hypergeometric polynomials of one (discrete or continuous) variable. Key tool for this comparative analysis is the duality operation defined on the generators of the quadratic algebra and suitably extended to the various families of overlap functions (generalized recoupling coefficients). These families, recognized as lying at the top level of the Askey scheme, are classified and a few limiting cases are addressed

  8. Quadratic grating apodized photon sieves for simultaneous multiplane microscopy

    Science.gov (United States)

    Cheng, Yiguang; Zhu, Jiangping; He, Yu; Tang, Yan; Hu, Song; Zhao, Lixin

    2017-10-01

    We present a new type of imaging device, named quadratic grating apodized photon sieve (QGPS), used as the objective for simultaneous multiplane imaging in X-rays. The proposed QGPS is structured based on the combination of two concepts: photon sieves and quadratic gratings. Its design principles are also expounded in detail. Analysis of imaging properties of QGPS in terms of point-spread function shows that QGPS can image multiple layers within an object field onto a single image plane. Simulated and experimental results in visible light both demonstrate the feasibility of QGPS for simultaneous multiplane imaging, which is extremely promising to detect dynamic specimens by X-ray microscopy in the physical and life sciences.

  9. Quadratic time dependent Hamiltonians and separation of variables

    International Nuclear Information System (INIS)

    Anzaldo-Meneses, A.

    2017-01-01

    Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green’s function is obtained and a comparison with the classical Hamilton–Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei–Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü–Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems. - Highlights: • Exact unitary transformation reducing time dependent quadratic quantum Hamiltonian to zero. • New separation of variables method and simultaneous uncoupling of modes. • Explicit examples of transformations for one to four dimensional problems. • New general evolution equation for quadratic form in the action, respectively Green’s function.

  10. Polyhedral combinatorics of the cardinality constrained quadratic knapsack problem and the quadratic selective travelling salesman problem

    DEFF Research Database (Denmark)

    Mak, Vicky; Thomadsen, Tommy

    2006-01-01

    This paper considers the cardinality constrained quadratic knapsack problem (QKP) and the quadratic selective travelling salesman problem (QSTSP). The QKP is a generalization of the knapsack problem and the QSTSP is a generalization of the travelling salesman problem. Thus, both problems are NP...

  11. Aircraft path planning for optimal imaging using dynamic cost functions

    Science.gov (United States)

    Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin

    2015-05-01

    Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.

  12. STRUCTURE OPTIMIZATION OF RESERVATION BY PRECISE QUADRATIC REGULARIZATION

    Directory of Open Access Journals (Sweden)

    KOSOLAP A. I.

    2015-11-01

    Full Text Available The problem of optimization of the structure of systems redundancy elements. Such problems arise in the design of complex systems. To improve the reliability of operation of such systems of its elements are duplicated. This increases system cost and improves its reliability. When optimizing these systems is maximized probability of failure of the entire system while limiting its cost or the cost is minimized for a given probability of failure-free operation. A mathematical model of the problem is a discrete backup multiextremal. To search for the global extremum of currently used methods of Lagrange multipliers, coordinate descent, dynamic programming, random search. These methods guarantee a just and local solutions are used in the backup tasks of small dimension. In the work for solving redundancy uses a new method for accurate quadratic regularization. This method allows you to convert the original discrete problem to the maximization of multi vector norm on a convex set. This means that the diversity of the tasks given to the problem of redundancy maximize vector norm on a convex set. To solve the problem, a reformed straightdual interior point methods. Currently, it is the best method for local optimization of nonlinear problems. Transformed the task includes a new auxiliary variable, which is determined by dichotomy. There have been numerous comparative numerical experiments in problems with the number of redundant subsystems to one hundred. These experiments confirm the effectiveness of the method of precise quadratic regularization for solving problems of redundancy.

  13. Are Education Cost Functions Ready for Prime Time? An Examination of Their Validity and Reliability

    Science.gov (United States)

    Duncombe, William; Yinger, John

    2011-01-01

    This article makes the case that cost functions are the best available methodology for ensuring consistency between a state's educational accountability system and its education finance system. Because they are based on historical data and well-known statistical methods, cost functions are a particularly flexible and low-cost way to forecast what…

  14. Analytic Expression of Arbitrary Matrix Elements for Boson Exponential Quadratic Polynomial Operators

    Institute of Scientific and Technical Information of China (English)

    XU Xiu-Wei; REN Ting-Qi; LIU Shu-Yan; MA Qiu-Ming; LIU Sheng-Dian

    2007-01-01

    Making use of the transformation relation among usual, normal, and antinormal ordering for the multimode boson exponential quadratic polynomial operators (BEQPO's), we present the analytic expression of arbitrary matrix elements for BEQPO's. As a preliminary application, we obtain the exact expressions of partition function about the boson quadratic polynomial system, matrix elements in particle-number, coordinate, and momentum representation, and P representation for the BEQPO's.

  15. On the Equivalence of Quadratic Optimization Problems Commonly Used in Portfolio Theory

    OpenAIRE

    Taras Bodnar; Nestor Parolya; Wolfgang Schmid

    2012-01-01

    In the paper, we consider three quadratic optimization problems which are frequently applied in portfolio theory, i.e, the Markowitz mean-variance problem as well as the problems based on the mean-variance utility function and the quadratic utility.Conditions are derived under which the solutions of these three optimization procedures coincide and are lying on the efficient frontier, the set of mean-variance optimal portfolios. It is shown that the solutions of the Markowitz optimization prob...

  16. Environmental change and hedonic cost functions for automobiles

    Science.gov (United States)

    Berry, Steven; Kortum, Samuel; Pakes, Ariel

    1996-01-01

    This paper focuses on how changes in the economic and regulatory environment have affected production costs and product characteristics in the automobile industry. We estimate “hedonic cost functions” that relate product-level costs to their characteristics. Then we examine how this cost surface has changed over time and how these changes relate to changes in gas prices and in emission standard regulations. We also briefly consider the related questions of how changes in automobile characteristics, and in the rate of patenting, are related to regulations and gas prices. PMID:8917486

  17. Indirect quantum tomography of quadratic Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Burgarth, Daniel [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom); Maruyama, Koji; Nori, Franco, E-mail: daniel@burgarth.de, E-mail: kmaruyama@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan)

    2011-01-15

    A number of many-body problems can be formulated using Hamiltonians that are quadratic in the creation and annihilation operators. Here, we show how such quadratic Hamiltonians can be efficiently estimated indirectly, employing very few resources. We found that almost all the properties of the Hamiltonian are determined by its surface and that these properties can be measured even if the system can only be initialized to a mixed state. Therefore, our method can be applied to various physical models, with important examples including coupled nano-mechanical oscillators, hopping fermions in optical lattices and transverse Ising chains.

  18. Nonlinear dynamics of quadratically cubic systems

    International Nuclear Information System (INIS)

    Rudenko, O V

    2013-01-01

    We propose a modified form of the well-known nonlinear dynamic equations with quadratic relations used to model a cubic nonlinearity. We show that such quadratically cubic equations sometimes allow exact solutions and sometimes make the original problem easier to analyze qualitatively. Occasionally, exact solutions provide a useful tool for studying new phenomena. Examples considered include nonlinear ordinary differential equations and Hopf, Burgers, Korteweg–de Vries, and nonlinear Schrödinger partial differential equations. Some problems are solved exactly in the space–time and spectral representations. Unsolved problems potentially solvable by the proposed approach are listed. (methodological notes)

  19. Cascaded Quadratic Soliton Compression in Waveguide Structures

    DEFF Research Database (Denmark)

    Guo, Hairun

    between the Kerr nonlinear effects and the dispersive effects in the medium. A Kerr-like nonlinearity is produced through the cascaded phase mismatched quadratic process, e.g. the second harmonic generation process, which can be flexibly tuned in both the sign and the amplitude, making possible a strong......-phase-matching technology is not necessarily needed. In large-RI-changed waveguides, CQSC is extended to the mid-infrared range to generate single-cycle pulses with purely nonlinear interactions, since an all-normal dispersion profile could be achieved within the guidance band. We believe that CQSC in quadratic waveguides...

  20. On orthogonality preserving quadratic stochastic operators

    Energy Technology Data Exchange (ETDEWEB)

    Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd [Department of Computational and Theoretical Sciences, Faculty of Science International Islamic University Malaysia, P.O. Box 141, 25710 Kuantan, Pahang Malaysia (Malaysia)

    2015-05-15

    A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.

  1. On orthogonality preserving quadratic stochastic operators

    International Nuclear Information System (INIS)

    Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd

    2015-01-01

    A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too

  2. 18 CFR 301.7 - Average System Cost methodology functionalization.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Average System Cost... REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST METHODOLOGY FOR SALES FROM UTILITIES TO BONNEVILLE POWER ADMINISTRATION UNDER NORTHWEST POWER...

  3. Uniform sparse bounds for discrete quadratic phase Hilbert transforms

    Science.gov (United States)

    Kesler, Robert; Arias, Darío Mena

    2017-09-01

    For each α \\in T consider the discrete quadratic phase Hilbert transform acting on finitely supported functions f : Z → C according to H^{α }f(n):= \\sum _{m ≠ 0} e^{iα m^2} f(n - m)/m. We prove that, uniformly in α \\in T , there is a sparse bound for the bilinear form for every pair of finitely supported functions f,g : Z→ C . The sparse bound implies several mapping properties such as weighted inequalities in an intersection of Muckenhoupt and reverse Hölder classes.

  4. The Empirical Definition of the Function of Advertising Costs in E-Commerce

    OpenAIRE

    Pursky Oleg I.; Moroz Iryna O.; Mazoha Dmytro P.

    2017-01-01

    In the publication, an empirical study of the advertising costs in the e-commerce market is carried out. In order to determine the type of functional dependency of advertising costs, dynamics of advertising costs in the e-commerce markets of the US, the world, and Ukraine were researched, followed by an approximation of the series of statistical data on the Internet advertising costs. There is a functional dependency on the Internet advertising costs in the form of a power function with two c...

  5. Quadratic mass relations in topological bootstrap theory

    International Nuclear Information System (INIS)

    Jones, C.E.; Uschersohn, J.

    1980-01-01

    From the requirement of reality of discontinuities of scattering amplitudes at the spherical level of the topological bootstrap theory, a large number of mass relations for hadrons is derived. Quadratic mass formulas for the symmetry-breaking pattern of both mesons and baryon is obtained and their relation to conventional models of symmetry breaking is briefly discussed

  6. STABILIZED SEQUENTIAL QUADRATIC PROGRAMMING: A SURVEY

    Directory of Open Access Journals (Sweden)

    Damián Fernández

    2014-12-01

    Full Text Available We review the motivation for, the current state-of-the-art in convergence results, and some open questions concerning the stabilized version of the sequential quadratic programming algorithm for constrained optimization. We also discuss the tools required for its local convergence analysis, globalization challenges, and extentions of the method to the more general variational problems.

  7. Fundamental quadratic variational principle underlying general relativity

    International Nuclear Information System (INIS)

    Atkins, W.K.

    1983-01-01

    The fundamental result of Lanczos is used in a new type of quadratic variational principle whose field equations are the Einstein field equations together with the Yang-Mills type equations for the Riemann curvature. Additionally, a spin-2 theory of gravity for the special case of the Einstein vacuum is discussed

  8. Investigating Students' Mathematical Difficulties with Quadratic Equations

    Science.gov (United States)

    O'Connor, Bronwyn Reid; Norton, Stephen

    2016-01-01

    This paper examines the factors that hinder students' success in working with and understanding the mathematics of quadratic equations using a case study analysis of student error patterns. Twenty-five Year 11 students were administered a written test to examine their understanding of concepts and procedures associated with this topic. The…

  9. Commuting quantum traces for quadratic algebras

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Avan, Jean; Doikou, Anastasia; Rollet, Genevieve

    2005-01-01

    Consistent tensor products on auxiliary spaces, hereafter denoted 'fusion procedures', and commuting transfer matrices are defined for general quadratic algebras, nondynamical and dynamical, inspired by results on reflection algebras. Applications of these procedures then yield integer-indexed families of commuting Hamiltonians

  10. Cost management and cross-functional communication through product architectures

    NARCIS (Netherlands)

    Zwerink, Ruud; Wouters, Marc; Hissel, Paul; Kerssens-van Drongelen, I.C.

    2007-01-01

    Product architecture decisions regarding, for example, product modularity, component commonality, and design re-use, are important for balancing costs, responsiveness, quality, and other important business objectives. Firms are challenged with complex tradeoffs between competing design priorities,

  11. Customer Focused Product Design Using Integrated Model of Target Costing, Quality Function Deployment and Value Engineering

    Directory of Open Access Journals (Sweden)

    Hossein Rezaei Dolatabadi

    2013-01-01

    Full Text Available Target costing by integrating customer requirements, technical attributes and cost information into the product design phase and eliminating the non-value added functions, plays a vital role in different phases of the product life cycle. Quality Function Deployment (QFD and Value Engineering (VE are two techniques which can be used for applying target costing, successfully. The purpose of this paper is to propose an integrated model of target costing, QFD and VE to explore the role of target costing in managing product costs while promoting quality specifications meeting customers’ needs. F indings indicate that the integration of target costing, QFD and VE is an essential technique in managing the costs of production process. Findings also imply that integration of the three techniques provides a competitive cost advantage to companies.

  12. Adaptive Incentive Controls for Stackelberg Games with Unknown Cost Functionals.

    Science.gov (United States)

    1984-01-01

    APR EZT:: F I AN 73S e OsL:-: UNCLASSI?:-- Q4~.’~- .A.., 6, *~*i i~~*~~*.- U ADAPTIVE INCENTIVE CONTROLS FOR STACKELBERG GAMES WITH UNKNOWN COST...AD-A161 885 ADAPTIVE INCENTIVE CONTROLS FOR STACKELBERG GAMES WITH i/1 UNKNOWN COST FUNCTIONALSCU) ILLINOIS UNIV AT URBANA DECISION AND CONTROL LAB T...ORGANIZATION 6b. OFFICE SYMBOL 7.. NAME OF MONITORING ORGANIZATION CoriaeLcenef~pda~ Joint Services Electronics Program Laboratory, Univ. of Illinois N/A

  13. Cost damping and functional form in transport models

    DEFF Research Database (Denmark)

    Rich, Jeppe; Mabit, Stefan Lindhard

    2016-01-01

    out to be an important guidance as the damping rate largely dictates which link functions are appropriate for the data. Thirdly, inspired by the Box–Cox function, we propose alternative linear-in-parameter link functions, some of which are based on interpolation of approximate Box–Cox end points...

  14. Quadratic integrand double-hybrid made spin-component-scaled

    Energy Technology Data Exchange (ETDEWEB)

    Brémond, Éric, E-mail: eric.bremond@iit.it; Savarese, Marika [CompuNet, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genoa (Italy); Sancho-García, Juan C.; Pérez-Jiménez, Ángel J. [Departamento de Química Física, Universidad de Alicante, E-03080 Alicante (Spain); Adamo, Carlo [CompuNet, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genoa (Italy); Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris IRCP, F-75005 Paris (France); Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris (France)

    2016-03-28

    We propose two analytical expressions aiming to rationalize the spin-component-scaled (SCS) and spin-opposite-scaled (SOS) schemes for double-hybrid exchange-correlation density-functionals. Their performances are extensively tested within the framework of the nonempirical quadratic integrand double-hybrid (QIDH) model on energetic properties included into the very large GMTKN30 benchmark database, and on structural properties of semirigid medium-sized organic compounds. The SOS variant is revealed as a less computationally demanding alternative to reach the accuracy of the original QIDH model without losing any theoretical background.

  15. Quadratic Forms and Semiclassical Eigenfunction Hypothesis for Flat Tori

    Science.gov (United States)

    T. Sardari, Naser

    2018-03-01

    Let Q( X) be any integral primitive positive definite quadratic form in k variables, where {k≥4}, and discriminant D. For any integer n, we give an upper bound on the number of integral solutions of Q( X) = n in terms of n, k, and D. As a corollary, we prove a conjecture of Lester and Rudnick on the small scale equidistribution of almost all functions belonging to any orthonormal basis of a given eigenspace of the Laplacian on the flat torus {T^d} for {d≥ 5}. This conjecture is motivated by the work of Berry [2,3] on the semiclassical eigenfunction hypothesis.

  16. Geometric Approaches to Quadratic Equations from Other Times and Places.

    Science.gov (United States)

    Allaire, Patricia R.; Bradley, Robert E.

    2001-01-01

    Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)

  17. Coherent states of systems with quadratic Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G., E-mail: bagrov@phys.tsu.ru [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Gitman, D.M., E-mail: gitman@if.usp.br [Tomsk State University, Tomsk (Russian Federation); Pereira, A.S., E-mail: albertoufcg@hotmail.com [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2015-06-15

    Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)

  18. Coherent states of systems with quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Pereira, A.S.

    2015-01-01

    Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)

  19. Quaternion orders, quadratic forms, and Shimura curves

    CERN Document Server

    Alsina, Montserrat

    2004-01-01

    Shimura curves are a far-reaching generalization of the classical modular curves. They lie at the crossroads of many areas, including complex analysis, hyperbolic geometry, algebraic geometry, algebra, and arithmetic. The text provides an introduction to the subject from a theoretic and algorithmic perspective. The main topics covered in it are Shimura curves defined over the rational number field, the construction of their fundamental domains, and the determination of their complex multiplication points. The study of complex multiplication points in Shimura curves leads to the study of families of binary quadratic forms with algebraic coefficients and to their classification by arithmetic Fuchsian groups. In this regard, the authors develop a theory full of new possibilities which parallels Gauss' theory on the classification of binary quadratic forms with integral coefficients by the action of the modular group. Each topic covered in the book begins with a theoretical discussion followed by carefully worked...

  20. Quadratic hamiltonians and relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Razumov, A.V.; Solov'ev, V.O.; Taranov, A.Yu.

    1981-01-01

    For the case of a charged scalar field described by a quadratic hamiltonian the equivalent relativistic quantum mechanics is constructed in one-particle sector. Complete investigation of a charged relativistic particle motion in the Coulomb field is carried out. Subcritical as well as supercritical cases are considered. In the course of investigation of the charged scalar particle in the Coulomb field the diagonalization of the quadratic hamiltonian describing the charged scalar quantized field interaction with the external Coulomb field has taken place. Mathematically this problem is bound to the construction of self-conjugated expansions of the symmetric operator. The construction of such expansion is necessary at any small external field magnitude [ru

  1. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2002-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

  2. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2003-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

  3. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2004-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

  4. Airport costs and production technology : a translog cost function analysis with implications for economic development.

    Science.gov (United States)

    2011-07-01

    Based upon 50 large and medium hub airports over a 13 year period, this research estimates one and two : output translog models of airport short run operating costs. Output is passengers transported on non-stop : segments and pounds of cargo shipped....

  5. Cheap contouring of costly functions: the Pilot Approximation Trajectory algorithm

    International Nuclear Information System (INIS)

    Huttunen, Janne M J; Stark, Philip B

    2012-01-01

    The Pilot Approximation Trajectory (PAT) contour algorithm can find the contour of a function accurately when it is not practical to evaluate the function on a grid dense enough to use a standard contour algorithm, for instance, when evaluating the function involves conducting a physical experiment or a computationally intensive simulation. PAT relies on an inexpensive pilot approximation to the function, such as interpolating from a sparse grid of inexact values, or solving a partial differential equation (PDE) numerically using a coarse discretization. For each level of interest, the location and ‘trajectory’ of an approximate contour of this pilot function are used to decide where to evaluate the original function to find points on its contour. Those points are joined by line segments to form the PAT approximation of the contour of the original function. Approximating a contour numerically amounts to estimating a lower level set of the function, the set of points on which the function does not exceed the contour level. The area of the symmetric difference between the true lower level set and the estimated lower level set measures the accuracy of the contour. PAT measures its own accuracy by finding an upper confidence bound for this area. In examples, PAT can estimate a contour more accurately than standard algorithms, using far fewer function evaluations than standard algorithms require. We illustrate PAT by constructing a confidence set for viscosity and thermal conductivity of a flowing gas from simulated noisy temperature measurements, a problem in which each evaluation of the function to be contoured requires solving a different set of coupled nonlinear PDEs. (paper)

  6. Production Functions for Water Delivery Systems: Analysis and Estimation Using Dual Cost Function and Implicit Price Specifications

    Science.gov (United States)

    Teeples, Ronald; Glyer, David

    1987-05-01

    Both policy and technical analysis of water delivery systems have been based on cost functions that are inconsistent with or are incomplete representations of the neoclassical production functions of economics. We present a full-featured production function model of water delivery which can be estimated from a multiproduct, dual cost function. The model features implicit prices for own-water inputs and is implemented as a jointly estimated system of input share equations and a translog cost function. Likelihood ratio tests are performed showing that a minimally constrained, full-featured production function is a necessary specification of the water delivery operations in our sample. This, plus the model's highly efficient and economically correct parameter estimates, confirms the usefulness of a production function approach to modeling the economic activities of water delivery systems.

  7. Computation of piecewise affine terminal cost functions for model predictive control

    NARCIS (Netherlands)

    Brunner, F.D.; Lazar, M.; Allgöwer, F.; Fränzle, Martin; Lygeros, John

    2014-01-01

    This paper proposes a method for the construction of piecewise affine terminal cost functions for model predictive control (MPC). The terminal cost function is constructed on a predefined partition by solving a linear program for a given piecewise affine system, a stabilizing piecewise affine

  8. Annual Costs of Care for Pediatric Irritable Bowel Syndrome, Functional Abdominal Pain, and Functional Abdominal Pain Syndrome.

    Science.gov (United States)

    Hoekman, Daniël R; Rutten, Juliette M T M; Vlieger, Arine M; Benninga, Marc A; Dijkgraaf, Marcel G W

    2015-11-01

    To estimate annual medical and nonmedical costs of care for children diagnosed with irritable bowel syndrome (IBS) or functional abdominal pain (syndrome; FAP/FAPS). Baseline data from children with IBS or FAP/FAPS who were included in a multicenter trial (NTR2725) in The Netherlands were analyzed. Patients' parents completed a questionnaire concerning usage of healthcare resources, travel costs, out-of-pocket expenses, productivity loss of parents, and supportive measures at school. Use of abdominal pain related prescription medication was derived from case reports forms. Total annual costs per patient were calculated as the sum of direct and indirect medical and nonmedical costs. Costs of initial diagnostic investigations were not included. A total of 258 children, mean age 13.4 years (±5.5), were included, and 183 (70.9%) were female. Total annual costs per patient were estimated to be €2512.31. Inpatient and outpatient healthcare use were major cost drivers, accounting for 22.5% and 35.2% of total annual costs, respectively. Parental productivity loss accounted for 22.2% of total annual costs. No difference was found in total costs between children with IBS or FAP/FAPS. Pediatric abdominal pain related functional gastrointestinal disorders impose a large economic burden on patients' families and healthcare systems. More than one-half of total annual costs of IBS and FAP/FAPS consist of inpatient and outpatient healthcare use. Netherlands Trial Registry: NTR2725. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Walking solitons in quadratic nonlinear media

    OpenAIRE

    Torner Sabata, Lluís; Mazilu, D; Mihalache, Dumitru

    1996-01-01

    We study self-action of light in parametric wave interactions in nonlinear quadratic media. We show the existence of stationary solitons in the presence of Poynting vector beam walk-off or different group velocities between the waves. We discover that the new solitons constitute a two-parameter family, and they exist for different wave intensities and transverse velocities. We discuss the properties of the walking solitons and their experimental implications. Peer Reviewed

  10. Quadratic Term Structure Models in Discrete Time

    OpenAIRE

    Marco Realdon

    2006-01-01

    This paper extends the results on quadratic term structure models in continuos time to the discrete time setting. The continuos time setting can be seen as a special case of the discrete time one. Recursive closed form solutions for zero coupon bonds are provided even in the presence of multiple correlated underlying factors. Pricing bond options requires simple integration. Model parameters may well be time dependent without scuppering such tractability. Model estimation does not require a r...

  11. Least Squares Problems with Absolute Quadratic Constraints

    Directory of Open Access Journals (Sweden)

    R. Schöne

    2012-01-01

    Full Text Available This paper analyzes linear least squares problems with absolute quadratic constraints. We develop a generalized theory following Bookstein's conic-fitting and Fitzgibbon's direct ellipse-specific fitting. Under simple preconditions, it can be shown that a minimum always exists and can be determined by a generalized eigenvalue problem. This problem is numerically reduced to an eigenvalue problem by multiplications of Givens' rotations. Finally, four applications of this approach are presented.

  12. Graphical Solution of the Monic Quadratic Equation with Complex Coefficients

    Science.gov (United States)

    Laine, A. D.

    2015-01-01

    There are many geometrical approaches to the solution of the quadratic equation with real coefficients. In this article it is shown that the monic quadratic equation with complex coefficients can also be solved graphically, by the intersection of two hyperbolas; one hyperbola being derived from the real part of the quadratic equation and one from…

  13. Solitary pulmonary nodules: impact of functional CT on the cost-effectiveness of FDG-PET

    International Nuclear Information System (INIS)

    Miles, K.A.; Keith, C.J.; Wong, D.C.; Griffiths, M.R.

    2002-01-01

    Full text: FDG-PET has been shown to be cost-effective for the evaluation of solitary pulmonary nodules (SPNs) in Australia. This study evaluates the impact on cost-effectiveness produced by incorporating a novel CT technique, functional CT, into diagnostic algorithms for characterisation of SPNs. Four diagnostic strategies were evaluated using decision tree sensitivity analysis. The first strategy comprised patients undergoing conventional CT alone (CT). The second comprised conventional CT followed by functional CT study (FCT), when the SPN was not benign on conventional CT. The third strategy comprised conventional CT, which if positive is followed by FDG-PET (PET) and a fourth strategy where patients with a positive conventional CT undergo functional CT, which if positive also undergo FDG-PET (FCT+PET). Values for disease prevalence and diagnostic accuracy of PET, CT and functional CT were obtained from a literature review, using Australia values where available. Procedure costs were derived from the Medicare Benefits Schedule and DRG Cost Weights for Australian public hospitals. The cost per patient, accuracy and Incremental Cost-Accuracy Ratio (ICAR) were determined for each strategy. Sensitivity analysis evaluated the effect of disease prevalence on cost-effectiveness. Results: At the prevalence of malignancy reported from Australian series (54%), the FCT strategy incurs the least cost ($5560/patient), followed by the FCT+PET ($5910/patient). The FCT+PET strategy is the most cost-effective strategy with an ICAR of $12059/patient, followed by the PET strategy with an ICAR of $12300/patient. At levels of disease prevalence below 54% the above relationship for cost-effectiveness remains the same. For high levels of disease prevalence, CT or FCT are found to be more cost-effective. At typical prevalence of malignancy the cost-effectiveness of PET is enhanced by the addition of functional CT, but at high prevalence functional CT alone is most cost

  14. Storage functions for dissipative linear systems are quadratic state functions

    NARCIS (Netherlands)

    Trentelman, Harry L.; Willems, Jan C.

    1997-01-01

    This paper deals with dissipative dynamical systems. Dissipative dynamical systems can be used as models for physical phenomena in which energy exchange with their environment plays a role. In a dissipative dynamical system, the book-keeping of energy is done via the supply rate and a storage

  15. A Wavelet Bicoherence-Based Quadratic Nonlinearity Feature for Translational Axis Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Yong Li

    2014-01-01

    Full Text Available The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features.

  16. An application of nonlinear programming to the design of regulators of a linear-quadratic formulation

    Science.gov (United States)

    Fleming, P.

    1983-01-01

    A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a nonlinear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer. One concerns helicopter longitudinal dynamics and the other the flight dynamics of an aerodynamically unstable aircraft.

  17. OPTIMAL SHRINKAGE ESTIMATION OF MEAN PARAMETERS IN FAMILY OF DISTRIBUTIONS WITH QUADRATIC VARIANCE.

    Science.gov (United States)

    Xie, Xianchao; Kou, S C; Brown, Lawrence

    2016-03-01

    This paper discusses the simultaneous inference of mean parameters in a family of distributions with quadratic variance function. We first introduce a class of semi-parametric/parametric shrinkage estimators and establish their asymptotic optimality properties. Two specific cases, the location-scale family and the natural exponential family with quadratic variance function, are then studied in detail. We conduct a comprehensive simulation study to compare the performance of the proposed methods with existing shrinkage estimators. We also apply the method to real data and obtain encouraging results.

  18. Inelastic scattering in a local polaron model with quadratic coupling to bosons

    DEFF Research Database (Denmark)

    Olsen, Thomas

    2009-01-01

    We calculate the inelastic scattering probabilities in the wide band limit of a local polaron model with quadratic coupling to bosons. The central object is a two-particle Green's function which is calculated exactly using a purely algebraic approach. Compared with the usual linear interaction term...... a quadratic interaction term gives higher probabilities for inelastic scattering involving a large number of bosons. As an application we consider the problem hot-electron-mediated energy transfer at surfaces and use the delta self-consistent field extension of density-functional theory to calculate...

  19. An L∞/L1-Constrained Quadratic Optimization Problem with Applications to Neural Networks

    International Nuclear Information System (INIS)

    Leizarowitz, Arie; Rubinstein, Jacob

    2003-01-01

    Pattern formation in associative neural networks is related to a quadratic optimization problem. Biological considerations imply that the functional is constrained in the L ∞ norm and in the L 1 norm. We consider such optimization problems. We derive the Euler-Lagrange equations, and construct basic properties of the maximizers. We study in some detail the case where the kernel of the quadratic functional is finite-dimensional. In this case the optimization problem can be fully characterized by the geometry of a certain convex and compact finite-dimensional set

  20. A methodology for financial evaluation of biogas technology in India using cost functions

    International Nuclear Information System (INIS)

    Rubab, S.; Kandpal, T.C.

    1996-01-01

    A methodology for financial evaluation of biogas technology for domestic use in India using recently developed cost functions is reported. Analytical expressions for the unit cost of biogas and cost per unit of useful energy delivered by a biogas plant in combination with other suitable technologies have been developed. Net present value and discounted pay-back period have been calculated. The sensitivity of the unit cost of biogas, the cost per unit of useful energy, and the net present value with respect to a number of variables is also reported. (author)

  1. Relationship between functional disability and costs one and two years post stroke

    Science.gov (United States)

    Lekander, Ingrid; Willers, Carl; von Euler, Mia; Lilja, Mikael; Sunnerhagen, Katharina S.; Pessah-Rasmussen, Hélène; Borgström, Fredrik

    2017-01-01

    Background and purpose Stroke affects mortality, functional ability, quality of life and incurs costs. The primary objective of this study was to estimate the costs of stroke care in Sweden by level of disability and stroke type (ischemic (IS) or hemorrhagic stroke (ICH)). Method Resource use during first and second year following a stroke was estimated based on a research database containing linked data from several registries. Costs were estimated for the acute and post-acute management of stroke, including direct (health care consumption and municipal services) and indirect (productivity losses) costs. Resources and costs were estimated per stroke type and functional disability categorised by Modified Rankin Scale (mRS). Results The results indicated that the average costs per patient following a stroke were 350,000SEK/€37,000–480,000SEK/€50,000, dependent on stroke type and whether it was the first or second year post stroke. Large variations were identified between different subgroups of functional disability and stroke type, ranging from annual costs of 100,000SEK/€10,000–1,100,000SEK/€120,000 per patient, with higher costs for patients with ICH compared to IS and increasing costs with more severe functional disability. Conclusion Functional outcome is a major determinant on costs of stroke care. The stroke type associated with worse outcome (ICH) was also consistently associated to higher costs. Measures to improve function are not only important to individual patients and their family but may also decrease the societal burden of stroke. PMID:28384164

  2. Relationship between functional disability and costs one and two years post stroke.

    Directory of Open Access Journals (Sweden)

    Ingrid Lekander

    Full Text Available Stroke affects mortality, functional ability, quality of life and incurs costs. The primary objective of this study was to estimate the costs of stroke care in Sweden by level of disability and stroke type (ischemic (IS or hemorrhagic stroke (ICH.Resource use during first and second year following a stroke was estimated based on a research database containing linked data from several registries. Costs were estimated for the acute and post-acute management of stroke, including direct (health care consumption and municipal services and indirect (productivity losses costs. Resources and costs were estimated per stroke type and functional disability categorised by Modified Rankin Scale (mRS.The results indicated that the average costs per patient following a stroke were 350,000SEK/€37,000-480,000SEK/€50,000, dependent on stroke type and whether it was the first or second year post stroke. Large variations were identified between different subgroups of functional disability and stroke type, ranging from annual costs of 100,000SEK/€10,000-1,100,000SEK/€120,000 per patient, with higher costs for patients with ICH compared to IS and increasing costs with more severe functional disability.Functional outcome is a major determinant on costs of stroke care. The stroke type associated with worse outcome (ICH was also consistently associated to higher costs. Measures to improve function are not only important to individual patients and their family but may also decrease the societal burden of stroke.

  3. Process-Costing, Job-Order-Costing, Operation Costing (også kaldet Batch Costing og Functional Costing - Når Systemtankegangen ligger til grund for økonomistyringen og dens beslutninger)

    DEFF Research Database (Denmark)

    Nielsen, Steen

    2005-01-01

    De tre begreber process-costing, job-order-costing, operation-costing samt functional-based costing er faktisk historiske begreber som stammer langt tilbage i økonomistyringslitteraturen, faktisk tilbage til Scientific Management bevægelsen fra 20'erne og 30'erne. Man kan derfor ikke sige, at disse...... ordreregnskabet, f.eks. som dette er analyseret hos Palle Hansen og Vagn Madsen. Begrebet operational costing anvendes også, men dette dækker i realiteten over, hvordan og hvilke elementer der indgår i hele virksomhedens regnskabs-information-system. Dvs. at dette mere er et spørgsmål om, hvordan systemerne er...... Aktivitets-Baseret Cost Management systemerne. Det er derfor vigtigt dels at kende sin historie på området, dels at gøre sig klart, om de under visse antagelser stadig har deres berettigelse. De samme begreber har også deres pendant til de danske begreber, afdelings- eller funktionsregnskabet samt...

  4. Improving the quantum cost of reversible Boolean functions using reorder algorithm

    Science.gov (United States)

    Ahmed, Taghreed; Younes, Ahmed; Elsayed, Ashraf

    2018-05-01

    This paper introduces a novel algorithm to synthesize a low-cost reversible circuits for any Boolean function with n inputs represented as a Positive Polarity Reed-Muller expansion. The proposed algorithm applies a predefined rules to reorder the terms in the function to minimize the multi-calculation of common parts of the Boolean function to decrease the quantum cost of the reversible circuit. The paper achieves a decrease in the quantum cost and/or the circuit length, on average, when compared with relevant work in the literature.

  5. Quadratic stochastic operators: Results and open problems

    International Nuclear Information System (INIS)

    Ganikhodzhaev, R.N.; Rozikov, U.A.

    2009-03-01

    The history of the quadratic stochastic operators can be traced back to the work of S. Bernshtein (1924). For more than 80 years this theory has been developed and many papers were published. In recent years it has again become of interest in connection with numerous applications in many branches of mathematics, biology and physics. But most results of the theory were published in non English journals, full text of which are not accessible. In this paper we give a brief description of the results and discuss several open problems. (author)

  6. Sequential Quadratic Programming Algorithms for Optimization

    Science.gov (United States)

    1989-08-01

    quadratic program- ma ng (SQ(2l ) aIiatain.seenis to be relgarded aIs tie( buest choice for the solution of smiall. dlense problema (see S tour L)toS...For the step along d, note that a < nOing + 3 szH + i3.ninA A a K f~Iz,;nd and from Id1 _< ,,, we must have that for some /3 , np , 11P11 < dn"p. 5.2...Nevertheless, many of these problems are considered hard to solve. Moreover, for some of these problems the assumptions made in Chapter 2 to establish the

  7. Model reduction by weighted Component Cost Analysis

    Science.gov (United States)

    Kim, Jae H.; Skelton, Robert E.

    1990-01-01

    Component Cost Analysis considers any given system driven by a white noise process as an interconnection of different components, and assigns a metric called 'component cost' to each component. These component costs measure the contribution of each component to a predefined quadratic cost function. A reduced-order model of the given system may be obtained by deleting those components that have the smallest component costs. The theory of Component Cost Analysis is extended to include finite-bandwidth colored noises. The results also apply when actuators have dynamics of their own. Closed-form analytical expressions of component costs are also derived for a mechanical system described by its modal data. This is very useful to compute the modal costs of very high order systems. A numerical example for MINIMAST system is presented.

  8. Wave propagation in elastic medium with heterogeneous quadratic nonlinearity

    International Nuclear Information System (INIS)

    Tang Guangxin; Jacobs, Laurence J.; Qu Jianmin

    2011-01-01

    This paper studies the one-dimensional wave propagation in an elastic medium with spatially non-uniform quadratic nonlinearity. Two problems are solved analytically. One is for a time-harmonic wave propagating in a half-space where the displacement is prescribed on the surface of the half-space. It is found that spatial non-uniformity of the material nonlinearity causes backscattering of the second order harmonic, which when combined with the forward propagating waves generates a standing wave in steady-state wave motion. The second problem solved is the reflection from and transmission through a layer of finite thickness embedded in an otherwise linearly elastic medium of infinite extent, where it is assumed that the layer has a spatially non-uniform quadratic nonlinearity. The results show that the transmission coefficient for the second order harmonic is proportional to the spatial average of the nonlinearity across the thickness of the layer, independent of the spatial distribution of the nonlinearity. On the other hand, the coefficient of reflection is proportional to a weighted average of the nonlinearity across the layer thickness. The weight function in this weighted average is related to the propagating phase, thus making the coefficient of reflection dependent on the spatial distribution of the nonlinearity. Finally, the paper concludes with some discussions on how to use the reflected and transmitted second harmonic waves to evaluate the variance and autocorrelation length of nonlinear parameter β when the nonlinearity distribution in the layer is a stochastic process.

  9. Sequential Optimization of Paths in Directed Graphs Relative to Different Cost Functions

    KAUST Repository

    Mahayni, Malek A.

    2011-01-01

    developed to solve the optimal paths problem with different kinds of graphs. An algorithm that solves the problem of paths’ optimization in directed graphs relative to different cost functions is described in [1]. It follows an approach extended from

  10. Appling a Novel Cost Function to Hopfield Neural Network for Defects Boundaries Detection of Wood Image

    Directory of Open Access Journals (Sweden)

    Qi Dawei

    2010-01-01

    Full Text Available A modified Hopfield neural network with a novel cost function was presented for detecting wood defects boundary in the image. Different from traditional methods, the boundary detection problem in this paper was formulated as an optimization process that sought the boundary points to minimize a cost function. An initial boundary was estimated by Canny algorithm first. The pixel gray value was described as a neuron state of Hopfield neural network. The state updated till the cost function touches the minimum value. The designed cost function ensured that few neurons were activated except the neurons corresponding to actual boundary points and ensured that the activated neurons are positioned in the points which had greatest change in gray value. The tools of Matlab were used to implement the experiment. The results show that the noises of the image are effectively removed, and our method obtains more noiseless and vivid boundary than those of the traditional methods.

  11. Sequential Optimization of Paths in Directed Graphs Relative to Different Cost Functions

    KAUST Repository

    Abubeker, Jewahir Ali; Chikalov, Igor; Hussain, Shahid; Moshkov, Mikhail

    2011-01-01

    This paper is devoted to the consideration of an algorithm for sequential optimization of paths in directed graphs relative to di_erent cost functions. The considered algorithm is based on an extension of dynamic programming which allows

  12. On a quadratic inverse eigenvalue problem

    International Nuclear Information System (INIS)

    Cai, Yunfeng; Xu, Shufang

    2009-01-01

    This paper concerns the quadratic inverse eigenvalue problem (QIEP) of constructing real symmetric matrices M, C and K of size n × n, with M nonsingular, so that the quadratic matrix polynomial Q(λ) ≡ λ 2 M + λC + K has a completely prescribed set of eigenvalues and eigenvectors. It is shown via construction that the QIEP has a solution if and only if r 0, where r and δ are computable from the prescribed spectral data. A necessary and sufficient condition for the existence of a solution to the QIEP with M being positive definite is also established in a constructive way. Furthermore, two algorithms are developed: one is to solve the QIEP; another is to find a particular solution to the QIEP with the leading coefficient matrix being positive definite, which also provides us an approach to a simultaneous reduction of real symmetric matrix triple (M, C, K) by real congruence. Numerical results show that the two algorithms are feasible and numerically reliable

  13. Quadratic forms for Feynman-Kac semigroups

    International Nuclear Information System (INIS)

    Hibey, Joseph L.; Charalambous, Charalambos D.

    2006-01-01

    Some problems in a stochastic setting often involve the need to evaluate the Feynman-Kac formula that follows from models described in terms of stochastic differential equations. Equivalent representations in terms of partial differential equations are also of interest, and these establish the well-known connection between probabilistic and deterministic formulations of these problems. In this Letter, this connection is studied in terms of the quadratic form associated with the Feynman-Kac semigroup. The probability measures that naturally arise in this approach, and thus define how Brownian motion is killed at a specified rate while exiting a set, are interpreted as a random time change of the original stochastic differential equation. Furthermore, since random time changes alter the diffusion coefficients in stochastic differential equations while Girsanov-type measure transformations alter their drift coefficients, their simultaneous use should lead to more tractable solutions for some classes of problems. For example, the minimization of some quadratic forms leads to solutions that satisfy certain partial differential equations and, therefore, the techniques discussed provide a variational approach for finding these solutions

  14. Sequential optimization of matrix chain multiplication relative to different cost functions

    KAUST Repository

    Chikalov, Igor; Hussain, Shahid; Moshkov, Mikhail

    2011-01-01

    In this paper, we present a methodology to optimize matrix chain multiplication sequentially relative to different cost functions such as total number of scalar multiplications, communication overhead in a multiprocessor environment, etc. For n matrices our optimization procedure requires O(n 3) arithmetic operations per one cost function. This work is done in the framework of a dynamic programming extension that allows sequential optimization relative to different criteria. © 2011 Springer-Verlag Berlin Heidelberg.

  15. featsel: A framework for benchmarking of feature selection algorithms and cost functions

    OpenAIRE

    Marcelo S. Reis; Gustavo Estrela; Carlos Eduardo Ferreira; Junior Barrera

    2017-01-01

    In this paper, we introduce featsel, a framework for benchmarking of feature selection algorithms and cost functions. This framework allows the user to deal with the search space as a Boolean lattice and has its core coded in C++ for computational efficiency purposes. Moreover, featsel includes Perl scripts to add new algorithms and/or cost functions, generate random instances, plot graphs and organize results into tables. Besides, this framework already comes with dozens of algorithms and co...

  16. Oral nutritional support in malnourished elderly decreases functional limitations with no extra costs.

    Science.gov (United States)

    Neelemaat, Floor; Bosmans, Judith E; Thijs, Abel; Seidell, Jaap C; van Bokhorst-de van der Schueren, Marian A E

    2012-04-01

    Older people are vulnerable to malnutrition which leads to increased health care costs. The aim of this study was to evaluate the cost-effectiveness of nutritional supplementation from a societal perspective. This randomized controlled trial included hospital admitted malnourished elderly (≥ 60 y) patients. Patients in the intervention group received nutritional supplementation (energy and protein enriched diet, oral nutritional support, calcium-vitamin D supplement, telephone counselling by a dietician) until three months after discharge from hospital. Patients in the control group received usual care (control). Primary outcomes were Quality Adjusted Life Years (QALYs), physical activities and functional limitations. Measurements were performed at hospital admission and three months after discharge. Data were analyzed according to the intention-to-treat principle and multiple imputation was used to impute missing data. Incremental cost-effectiveness ratios were calculated and bootstrapping was applied to evaluate cost-effectiveness. Cost-effectiveness was expressed by cost-effectiveness planes and cost-effectiveness acceptability curves. 210 patients were included, 105 in each group. After three months, no statistically significant differences in quality of life and physical activities were observed between groups. Functional limitations decreased significantly more in the intervention group (mean difference -0.72, 95% CI-1.15; -0.28). There were no differences in costs between groups. Cost-effectiveness for QALYs and physical activities could not be demonstrated. For functional limitations we found a 0.95 probability that the intervention is cost-effective in comparison with usual care for ceiling ratios > €6500. A multi-component nutritional intervention to malnourished elderly patients for three months after hospital discharge leads to significant improvement in functional limitations and is neutral in costs. A follow-up of three months is probably too

  17. Sequential Optimization of Paths in Directed Graphs Relative to Different Cost Functions

    KAUST Repository

    Mahayni, Malek A.

    2011-07-01

    Finding optimal paths in directed graphs is a wide area of research that has received much of attention in theoretical computer science due to its importance in many applications (e.g., computer networks and road maps). Many algorithms have been developed to solve the optimal paths problem with different kinds of graphs. An algorithm that solves the problem of paths’ optimization in directed graphs relative to different cost functions is described in [1]. It follows an approach extended from the dynamic programming approach as it solves the problem sequentially and works on directed graphs with positive weights and no loop edges. The aim of this thesis is to implement and evaluate that algorithm to find the optimal paths in directed graphs relative to two different cost functions ( , ). A possible interpretation of a directed graph is a network of roads so the weights for the function represent the length of roads, whereas the weights for the function represent a constraint of the width or weight of a vehicle. The optimization aim for those two functions is to minimize the cost relative to the function and maximize the constraint value associated with the function. This thesis also includes finding and proving the relation between the two different cost functions ( , ). When given a value of one function, we can find the best possible value for the other function. This relation is proven theoretically and also implemented and experimented using Matlab®[2].

  18. Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems with Jumps

    Directory of Open Access Journals (Sweden)

    Minsong Zhang

    2014-01-01

    Full Text Available This paper investigates the problems of finite-time stability and finite-time stabilization for nonlinear quadratic systems with jumps. The jump time sequences here are assumed to satisfy some given constraints. Based on Lyapunov function and a particular presentation of the quadratic terms, sufficient conditions for finite-time stability and finite-time stabilization are developed to a set containing bilinear matrix inequalities (BLIMs and linear matrix inequalities (LMIs. Numerical examples are given to illustrate the effectiveness of the proposed methodology.

  19. Exact solutions for oscillators with quadratic damping and mixed-parity nonlinearity

    International Nuclear Information System (INIS)

    Lai, S K; Chow, K W

    2012-01-01

    Exact vibration modes of a nonlinear oscillator, which contains both quadratic friction and a mixed-parity restoring force, are derived analytically. Two families of exact solutions are obtained in terms of rational expressions for classical Jacobi elliptic functions. The present solutions allow the investigation of the dynamical behaviour of the system in response to changes in physical parameters that concern nonlinearity. The physical significance of the signs (i.e. attractive or repulsive nature) of the linear, quadratic and cubic restoring forces is discussed. A qualitative analysis is also conducted to provide valuable physical insight into the nature of the system. (paper)

  20. Geometric Methods in the Algebraic Theory of Quadratic Forms : Summer School

    CERN Document Server

    2004-01-01

    The geometric approach to the algebraic theory of quadratic forms is the study of projective quadrics over arbitrary fields. Function fields of quadrics have been central to the proofs of fundamental results since the renewal of the theory by Pfister in the 1960's. Recently, more refined geometric tools have been brought to bear on this topic, such as Chow groups and motives, and have produced remarkable advances on a number of outstanding problems. Several aspects of these new methods are addressed in this volume, which includes - an introduction to motives of quadrics by Alexander Vishik, with various applications, notably to the splitting patterns of quadratic forms under base field extensions; - papers by Oleg Izhboldin and Nikita Karpenko on Chow groups of quadrics and their stable birational equivalence, with application to the construction of fields which carry anisotropic quadratic forms of dimension 9, but none of higher dimension; - a contribution in French by Bruno Kahn which lays out a general fra...

  1. Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras

    Directory of Open Access Journals (Sweden)

    Madjid Eshaghi Gordji

    2012-01-01

    Full Text Available Let n>1 be an integer, let A be an algebra, and X be an A-module. A quadratic function D:A→X is called a quadratic n-derivation if D(∏i=1nai=D(a1a22⋯an2+a12D(a2a32⋯an2+⋯+a12a22⋯an−12D(an for all a1,...,an∈A. We investigate the Hyers-Ulam stability of quadratic n-derivations from non-Archimedean Banach algebras into non-Archimedean Banach modules by using the Banach fixed point theorem.

  2. Finite element method with quadratic quadrilateral unit for solving two dimensional incompressible N-S equation

    International Nuclear Information System (INIS)

    Tao Ganqiang; Yu Qing; Xiao Xiao

    2011-01-01

    Viscous and incompressible fluid flow is important for numerous engineering mechanics problems. Because of high non linear and incompressibility for Navier-Stokes equation, it is very difficult to solve Navier-Stokes equation by numerical method. According to its characters of Navier-Stokes equation, quartic derivation controlling equation of the two dimensional incompressible Navier-Stokes equation is set up firstly. The method solves the problem for dealing with vorticity boundary and automatically meets incompressibility condition. Then Finite Element equation for Navier-Stokes equation is proposed by using quadratic quadrilateral unit with 8 nodes in which the unit function is quadratic and non linear.-Based on it, the Finite Element program of quadratic quadrilateral unit with 8 nodes is developed. Lastly, numerical experiment proves the accuracy and dependability of the method and also shows the method has good application prospect in computational fluid mechanics. (authors)

  3. Economies of scale in the Korean district heating system: A variable cost function approach

    International Nuclear Information System (INIS)

    Park, Sun-Young; Lee, Kyoung-Sil; Yoo, Seung-Hoon

    2016-01-01

    This paper aims to investigate the cost efficiency of South Korea’s district heating (DH) system by using a variable cost function and cost-share equation. We employ a seemingly unrelated regression model, with quarterly time-series data from the Korea District Heating Corporation (KDHC)—a public utility that covers about 59% of the DH system market in South Korea—over the 1987–2011 period. The explanatory variables are price of labor, price of material, capital cost, and production level. The results indicate that economies of scale are present and statistically significant. Thus, expansion of its DH business would allow KDHC to obtain substantial economies of scale. According to our forecasts vis-à-vis scale economies, the KDHC will enjoy cost efficiency for some time yet. To ensure a socially efficient supply of DH, it is recommended that the KDHC expand its business proactively. With regard to informing policy or regulations, our empirical results could play a significant role in decision-making processes. - Highlights: • We examine economies of scale in the South Korean district heating sector. • We focus on Korea District Heating Corporation (KDHC), a public utility. • We estimate a translog cost function, using a variable cost function. • We found economies of scale to be present and statistically significant. • KDHC will enjoy cost efficiency and expanding its supply is socially efficient.

  4. Estimation of Finite Population Mean in Multivariate Stratified Sampling under Cost Function Using Goal Programming

    Directory of Open Access Journals (Sweden)

    Atta Ullah

    2014-01-01

    Full Text Available In practical utilization of stratified random sampling scheme, the investigator meets a problem to select a sample that maximizes the precision of a finite population mean under cost constraint. An allocation of sample size becomes complicated when more than one characteristic is observed from each selected unit in a sample. In many real life situations, a linear cost function of a sample size nh is not a good approximation to actual cost of sample survey when traveling cost between selected units in a stratum is significant. In this paper, sample allocation problem in multivariate stratified random sampling with proposed cost function is formulated in integer nonlinear multiobjective mathematical programming. A solution procedure is proposed using extended lexicographic goal programming approach. A numerical example is presented to illustrate the computational details and to compare the efficiency of proposed compromise allocation.

  5. The Empirical Definition of the Function of Advertising Costs in E-Commerce

    Directory of Open Access Journals (Sweden)

    Pursky Oleg I.

    2017-06-01

    Full Text Available In the publication, an empirical study of the advertising costs in the e-commerce market is carried out. In order to determine the type of functional dependency of advertising costs, dynamics of advertising costs in the e-commerce markets of the US, the world, and Ukraine were researched, followed by an approximation of the series of statistical data on the Internet advertising costs. There is a functional dependency on the Internet advertising costs in the form of a power function with two coefficients that relate to the level of consumer awareness of goods and services in the e-commerce market and the level of saturation of the e-commerce market for advertising investments. The use of the power function of advertising costs has allowed to theoretical definition and statistical confirmation of existence of the effect of saturation of the developed e-commerce markets with advertising, where the growth of investment volumes in the Internet advertising begin with an increase, then peak and start to decline. The optimal level of advertising costs is determined by the condition of the full consumer awareness and the maximum saturation of the e-commerce market with advertising.

  6. Quadratic residues and non-residues selected topics

    CERN Document Server

    Wright, Steve

    2016-01-01

    This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

  7. An efficient cost function for the optimization of an n-layered isotropic cloaked cylinder

    International Nuclear Information System (INIS)

    Paul, Jason V; Collins, Peter J; Coutu, Ronald A Jr

    2013-01-01

    In this paper, we present an efficient cost function for optimizing n-layered isotropic cloaked cylinders. Cost function efficiency is achieved by extracting the expression for the angle independent scatterer contribution of an associated Green's function. Therefore, since this cost function is not a function of angle, accounting for every bistatic angle is not necessary and thus more efficient than other cost functions. With this general and efficient cost function, isotropic cloaked cylinders can be optimized for many layers and material parameters. To demonstrate this, optimized cloaked cylinders made of 10, 20 and 30 equal thickness layers are presented for TE and TM incidence. Furthermore, we study the effect layer thickness has on optimized cloaks by optimizing a 10 layer cloaked cylinder over the material parameters and individual layer thicknesses. The optimized material parameters in this effort do not exhibit the dual nature that is evident in the ideal transformation optics design. This indicates that the inevitable field penetration and subsequent PEC boundary condition at the cylinder must be taken into account for an optimal cloaked cylinder design. Furthermore, a more effective cloaked cylinder can be designed by optimizing both layer thickness and material parameters than by additional layers alone. (paper)

  8. On the dynamic Stability of a quadratic-cubic elastic model structure ...

    African Journals Online (AJOL)

    The main substance of this investigation is the determination of the dynamic buckling load of an imperfect quadratic-cubic elastic model structure , which ,in itself, is a Mathematical generalization of some of the many physical structures normally encountered in engineering practice and allied fields. The load function in ...

  9. Quadratic maximization on the unit simplex: structure, stability, genericity and application in biology

    NARCIS (Netherlands)

    Still, Georg J.; Ahmed, F.

    The paper deals with the simple but important problem of maximizing a (nonconvex) quadratic function on the unit simplex. This program is directly related to the concept of evolutionarily stable strategies (ESS) in biology. We discuss this relation and study optimality conditions, stability and

  10. Non-Archimedean Hyers-Ulam Stability of an Additive-Quadratic Mapping

    Directory of Open Access Journals (Sweden)

    Hassan Azadi Kenary

    2012-01-01

    Full Text Available Using fixed point method and direct method, we prove the Hyers-Ulam stability of the following additive-quadratic functional equation 2((++/+2((−+/+2((+−/+2((−++/=4(+4(+4(, where is a positive real number, in non-Archimedean normed spaces.

  11. Temperature-based ascendancy derived from a cost or reward function

    International Nuclear Information System (INIS)

    Collins, Dennis

    2001-01-01

    Ulanowicz defines ascendancy in terms of departure from maximum-entropy (proportional) flow; however he does not explain what may cause this departure. Here the ascendancy is derived by minimizing a cost function. At high temperatures (small α>0) the first (min of negative entropy=max entropy) term dominates, but as α increases (temperature decreases), the cost function dominates, causing a departure from maximum entropy, or ascendancy. Riverbed analogy: At high temperature (fast flows) the flow is mostly uniform (max entropy) across the river bed, but at low temperatures (limited flow), the structure of the riverbed (cost function) becomes more important, with some channels being cut off, or evaporated by too much sun, some flows being diverted by rocks, and so on. Also, if the total cost (or reward) term is held constant, the parameter can be considered a Lagrange multiplier, and the problem can be reduced (similar to a Legendre transformation) to a maximum entropy problem, subject to constraints

  12. Exact cancellation of quadratic divergences in top condensation models

    International Nuclear Information System (INIS)

    Blumhofer, A.

    1995-01-01

    We discuss the hierarchy problem and the corresponding quadratic divergences in the top mode Standard Model. Quadratic divergences appear at each order 1/N c since fermionic and bosonic contributions are of different order 1/N c . It is shown that the full dynamical system to all orders in 1/N c admits a solution, where the sum of all quadratic divergent contributions disappears. ((orig.))

  13. ON A COURNOT DUOPOLY GAME WITH DIFFERENTIATED GOODS, HETEROGENEOUS EXPECTATIONS AND A COST FUNCTION INCLUDING EMISSION COSTS

    Directory of Open Access Journals (Sweden)

    Georges SARAFOPOULOS

    2017-07-01

    Full Text Available In this study we investigate the dynamics of a nonlinear Cournot- type duopoly game with differentiated goods, linear demand and a cost function that includes emission costs. The game is modeled with a system of two difference equations. Existence and stability of equilibria of this system are studied. We show that the model gives more complex chaotic and unpredictable trajectories as a consequence of change in the parameter of horizontal product differentiation and a higher (lower degree of product differentiation (weaker or fiercer competition destabilize (stabilize the economy. The chaotic features are justified numerically via computing Lyapunov numbers and sensitive dependence on initial conditions. Also, we show that in this case there are stable trajectories and a higher (lower degree of product differentiation does not tend to destabilize the economy.

  14. Functional Impairment: An Unmeasured Marker of Medicare Costs for Postacute Care of Older Adults.

    Science.gov (United States)

    Greysen, S Ryan; Stijacic Cenzer, Irena; Boscardin, W John; Covinsky, Kenneth E

    2017-09-01

    To assess the effects of preadmission functional impairment on Medicare costs of postacute care up to 365 days after hospital discharge. Longitudinal cohort study. Health and Retirement Study (HRS). Nationally representative sample of 16,673 Medicare hospitalizations of 8,559 community-dwelling older adults from 2000 to 2012. The main outcome was total Medicare costs in the year after hospital discharge, assessed according to Medicare claims data. The main predictor was functional impairment (level of difficulty or dependence in activities of daily living (ADLs)), determined from HRS interview preceding hospitalization. Multivariable linear regression was performed, adjusted for age, race, sex, income, net worth, and comorbidities, with clustering at the individual level to characterize the association between functional impairment and costs of postacute care. Unadjusted mean Medicare costs for 1 year after discharge increased with severity of impairment in a dose-response fashion (P < .001 for trend); 68% had no functional impairment ($25,931), 17% had difficulty with one ADL ($32,501), 7% had dependency in one ADL ($39,928), and 8% had dependency in two or more ADLs ($45,895). The most severely impaired participants cost 77% more than those with no impairment; adjusted analyses showed attenuated effect size (33% more) but no change in trend. Considering costs attributable to comorbidities, only three conditions were more expensive than severe functional impairment (lymphoma, metastatic cancer, paralysis). Functional impairment is associated with greater Medicare costs for postacute care and may be an unmeasured but important marker of long-term costs that cuts across conditions. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  15. Distance matrices and quadratic embedding of graphs

    Directory of Open Access Journals (Sweden)

    Nobuaki Obata

    2018-04-01

    Full Text Available A connected graph is said to be of QE class if it admits  a quadratic embedding in a Hilbert space, or equivalently, if the distance matrix is conditionally negative definite. Several criteria for a graph to be of QE class are derived from the point of view of graph operations. For a quantitative criterion the QE constant is introduced and concrete examples are shown with explicit calculation. If the distance matrix admits a constant row sum, the QE constant coincides with the second largest eigenvalue of the distance matrix. The QE constants are determined for all graphs on $n$ vertices with $n\\le5$, among which two are not of QE class.

  16. Low-rank quadratic semidefinite programming

    KAUST Repository

    Yuan, Ganzhao

    2013-04-01

    Low rank matrix approximation is an attractive model in large scale machine learning problems, because it can not only reduce the memory and runtime complexity, but also provide a natural way to regularize parameters while preserving learning accuracy. In this paper, we address a special class of nonconvex quadratic matrix optimization problems, which require a low rank positive semidefinite solution. Despite their non-convexity, we exploit the structure of these problems to derive an efficient solver that converges to their local optima. Furthermore, we show that the proposed solution is capable of dramatically enhancing the efficiency and scalability of a variety of concrete problems, which are of significant interest to the machine learning community. These problems include the Top-k Eigenvalue problem, Distance learning and Kernel learning. Extensive experiments on UCI benchmarks have shown the effectiveness and efficiency of our proposed method. © 2012.

  17. Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers

    International Nuclear Information System (INIS)

    Konorov, S.O.; Akimov, D.A.; Ivanov, A.A.; Petrov, A.N.; Alfimov, M.V.; Yakimanskii, A.V.; Smirnov, N.N.; Ivanova, V.N.; Kudryavtsev, V.V.; Podshivalov, A.A.; Sokolova, I.M.; Zheltikov, A.M.

    2005-01-01

    The polarization properties of second harmonic and sum-frequency signals generated by femtosecond laser pulses in films of polymers containing covalent groups of an azobenzothiazole chromophore polarized by an external electric field are investigated. It is shown that the methods of polarization nonlinear optics make it possible to determine the structure of oriented molecular dipoles and reveal important properties of the motion of collectivized πelectrons in organic molecules with strong optical nonlinearities. The polarization measurements show that the tensor of quadratic nonlinear optical susceptibility of chromophore fragments oriented by an external field in macromolecules of the noted azopolymers has a degenerate form. This is indicative of a predominantly one-dimensional character of motion of collectivized π electrons along an extended group of atoms in such molecules

  18. Gain scheduled linear quadratic control for quadcopter

    Science.gov (United States)

    Okasha, M.; Shah, J.; Fauzi, W.; Hanouf, Z.

    2017-12-01

    This study exploits the dynamics and control of quadcopters using Linear Quadratic Regulator (LQR) control approach. The quadcopter’s mathematical model is derived using the Newton-Euler method. It is a highly manoeuvrable, nonlinear, coupled with six degrees of freedom (DOF) model, which includes aerodynamics and detailed gyroscopic moments that are often ignored in many literatures. The linearized model is obtained and characterized by the heading angle (i.e. yaw angle) of the quadcopter. The adopted control approach utilizes LQR method to track several reference trajectories including circle and helix curves with significant variation in the yaw angle. The controller is modified to overcome difficulties related to the continuous changes in the operating points and eliminate chattering and discontinuity that is observed in the control input signal. Numerical non-linear simulations are performed using MATLAB and Simulink to illustrate to accuracy and effectiveness of the proposed controller.

  19. Charged black holes in quadratic gravity

    International Nuclear Information System (INIS)

    Matyjasek, Jerzy; Tryniecki, Dariusz

    2004-01-01

    Iterative solutions to fourth-order gravity describing static and electrically charged black holes are constructed. The obtained solutions are parametrized by two integration constants which are related to the electric charge and the exact location of the event horizon. Special emphasis is put on the extremal black holes. It is explicitly demonstrated that in the extremal limit the exact location of the (degenerate) event horizon is given by r + =|e|. Similarly to the classical Reissner-Nordstroem solution, the near-horizon geometry of the charged black holes in quadratic gravity, when expanded into the whole manifold, is simply that of Bertotti and Robinson. Similar considerations have been carried out for boundary conditions of the second type which employ the electric charge and the mass of the system as seen by a distant observer. The relations between results obtained within the framework of each method are briefly discussed

  20. Low-rank quadratic semidefinite programming

    KAUST Repository

    Yuan, Ganzhao; Zhang, Zhenjie; Ghanem, Bernard; Hao, Zhifeng

    2013-01-01

    Low rank matrix approximation is an attractive model in large scale machine learning problems, because it can not only reduce the memory and runtime complexity, but also provide a natural way to regularize parameters while preserving learning accuracy. In this paper, we address a special class of nonconvex quadratic matrix optimization problems, which require a low rank positive semidefinite solution. Despite their non-convexity, we exploit the structure of these problems to derive an efficient solver that converges to their local optima. Furthermore, we show that the proposed solution is capable of dramatically enhancing the efficiency and scalability of a variety of concrete problems, which are of significant interest to the machine learning community. These problems include the Top-k Eigenvalue problem, Distance learning and Kernel learning. Extensive experiments on UCI benchmarks have shown the effectiveness and efficiency of our proposed method. © 2012.

  1. A ''quadratized'' augmented plane wave method

    International Nuclear Information System (INIS)

    Smrcka, L.

    1982-02-01

    The exact radial solution inside the muffin-tin sphere is replaced by its Taylor expansion with respect to the energy, truncated after the quadratic term. Making use of it the energy independent augmented plane waves are formed which lead to the secular equations linear in energy. The method resembles the currently used linearized APW method but yields higher accuracy. The analysis of solution inside one muffin-tin sphere shows that the eigenvalue error is proportional to (E-E 0 ) 6 as compared with (E-E 0 ) 4 for LAPW. The error of eigenfunctions is (E-E 0 ) 3 ((E-E 0 ) 2 for LAPW). These conclusions are confirmed by direct numerical calculation of band structure of Cu and Al. (author)

  2. Quadratic gravity in first order formalism

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Enrique; Anero, Jesus; Gonzalez-Martin, Sergio, E-mail: enrique.alvarez@uam.es, E-mail: jesusanero@gmail.com, E-mail: sergio.gonzalez.martin@uam.es [Departamento de Física Teórica and Instituto de Física Teórica (IFT-UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid (Spain)

    2017-10-01

    We consider the most general action for gravity which is quadratic in curvature. In this case first order and second order formalisms are not equivalent. This framework is a good candidate for a unitary and renormalizable theory of the gravitational field; in particular, there are no propagators falling down faster than 1/ p {sup 2}. The drawback is of course that the parameter space of the theory is too big, so that in many cases will be far away from a theory of gravity alone. In order to analyze this issue, the interaction between external sources was examined in some detail. We find that this interaction is conveyed mainly by propagation of the three-index connection field. At any rate the theory as it stands is in the conformal invariant phase; only when Weyl invariance is broken through the coupling to matter can an Einstein-Hilbert term (and its corresponding Planck mass scale) be generated by quantum corrections.

  3. Optimal Piecewise-Linear Approximation of the Quadratic Chaotic Dynamics

    Directory of Open Access Journals (Sweden)

    J. Petrzela

    2012-04-01

    Full Text Available This paper shows the influence of piecewise-linear approximation on the global dynamics associated with autonomous third-order dynamical systems with the quadratic vector fields. The novel method for optimal nonlinear function approximation preserving the system behavior is proposed and experimentally verified. This approach is based on the calculation of the state attractor metric dimension inside a stochastic optimization routine. The approximated systems are compared to the original by means of the numerical integration. Real electronic circuits representing individual dynamical systems are derived using classical as well as integrator-based synthesis and verified by time-domain analysis in Orcad Pspice simulator. The universality of the proposed method is briefly discussed, especially from the viewpoint of the higher-order dynamical systems. Future topics and perspectives are also provided

  4. Quadratic time dependent Hamiltonians and separation of variables

    Science.gov (United States)

    Anzaldo-Meneses, A.

    2017-06-01

    Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.

  5. Organizational Perspectives on Rapid Response Team Structure, Function, and Cost: A Qualitative Study.

    Science.gov (United States)

    Smith, Patricia L; McSweeney, Jean

    Understanding how an organization determines structure and function of a rapid response team (RRT), as well as cost evaluation and implications, can provide foundational knowledge to guide decisions about RRTs. The objectives were to (1) identify influencing factors in organizational development of RRT structure and function and (2) describe evaluation of RRT costs. Using a qualitative, ethnographic design, nurse executives and experts in 15 moderate-size hospitals were interviewed to explore their decision-making processes in determining RRT structure and function. Face-to-face interviews were audio recorded and transcribed verbatim and verified for accurateness. Using content analysis and constant comparison, interview data were analyzed. Demographic data were analyzed using descriptive statistics. The sample included 27 participants from 15 hospitals in 5 south-central states. They described a variety of RRT responders and functions, with the majority of hospitals having a critical care charge nurse attending all RRT calls for assistance. Others described a designated RRT nurse with primary RRT duties as responder to all RRT calls. Themes of RRT development from the data included influencers, decision processes, and thoughts about cost. It is important to understand how hospitals determine optimal structure and function to enhance support of quality nursing care. Determining the impact of an RRT on costs and benefits is vital in balancing patient safety and limited resources. Future research should focus on clarifying differences between team structure and function in outcomes as well as the most effective means to estimate costs and benefits.

  6. A cost function analysis of child health services in four districts in Malawi.

    Science.gov (United States)

    Johns, Benjamin; Munthali, Spy; Walker, Damian G; Masanjala, Winford; Bishai, David

    2013-05-10

    Recent analyses show that donor funding for child health is increasing, but little information is available on actual costs to deliver child health care services. Understanding how unit costs scale with service volume in Malawi can help planners allocate budgets as health services expand. Data on facility level inputs and outputs were collected at 24 health centres in four districts of Malawi visiting a random sample of government and a convenience sample of Christian Health Association of Malawi (CHAM) health centres. In the cost function, total outputs, quality, facility ownership, average salaries and case mix are used to predict total cost. Regression analysis identifies marginal cost as the coefficient relating cost to service volume intensity. The marginal cost per patient seen for all health centres surveyed was US$ 0.82 per additional patient visit. Average cost was US$ 7.16 (95% CI: 5.24 to 9.08) at government facilities and US$ 10.36 (95% CI: 4.92 to 15.80) at CHAM facilities per child seen for any service. The first-line anti-malarial drug accounted for over 30% of costs, on average, at government health centres. Donors directly financed 40% and 21% of costs at government and CHAM health centres, respectively. The regression models indicate higher total costs are associated with a greater number of outpatient visits but that many health centres are not providing services at optimal volume given their inputs. They also indicate that CHAM facilities have higher costs than government facilities for similar levels of utilization. We conclude by discussing ways in which efficiency may be improved at health centres. The first option, increasing the total number of patients seen, appears difficult given existing high levels of child utilization; increasing the volume of adult patients may help spread fixed and semi-fixed costs. A second option, improving the quality of services, also presents difficulties but could also usefully improve performance.

  7. A cost function for HIV prevention services: is there a 'u' – shape?

    Directory of Open Access Journals (Sweden)

    Hanson Kara

    2007-11-01

    Full Text Available Abstract Background Global resource needs estimation is a critical part of addressing the HIV/AIDS epidemic. To generate these estimates knowledge of costs and cost structures is required. The evidence base for costs of HIV prevention programmes is limited. Even less is known about the existence of economies scale and whether, as economic theory suggests, average costs form a 'u'-shaped curve as scale increases. Using an econometric analysis, this paper addresses this question by estimating marginal costs and economies of scale for HIV prevention programmes for vulnerable groups in Southern India with different levels of coverage. Methods Two hybrid translog-cost functions were estimated. First, expenditure data from 78 state-funded HIV prevention projects in Andhra Pradesh were used to explore the impact of scale, institutional history and price on costs; second, economic cost data from 16 commercial sex worker projects across Tamil Nadu and Andhra Pradesh were analysed to additionally assess the impact of the value of inputs not reported in expenditure data and location. Coefficient estimates were used to calculate marginal costs and economies of scale. Results The econometric model yielded a good fit (R2 = 0.46, p 2 = 0.79, p Conclusion Econometric analysis of these standardized datasets provides insights into how costs change with coverage, the impact of project location and nature of the project target group. The results demonstrate the importance of understanding the nature of the cost function when designing, budgeting and estimating resource requirements for scaling up coverage of HIV prevention projects.

  8. Annual Costs of Care for Pediatric Irritable Bowel Syndrome, Functional Abdominal Pain, and Functional Abdominal Pain Syndrome

    NARCIS (Netherlands)

    Hoekman, Daniël R.; Rutten, Juliette M. T. M.; Vlieger, Arine M.; Benninga, Marc A.; Dijkgraaf, Marcel G. W.

    2015-01-01

    To estimate annual medical and nonmedical costs of care for children diagnosed with irritable bowel syndrome (IBS) or functional abdominal pain (syndrome; FAP/FAPS). Baseline data from children with IBS or FAP/FAPS who were included in a multicenter trial (NTR2725) in The Netherlands were analyzed.

  9. Excess costs from functional somatic syndromes in Germany - An analysis using entropy balancing.

    Science.gov (United States)

    Grupp, Helen; Kaufmann, Claudia; König, Hans-Helmut; Bleibler, Florian; Wild, Beate; Szecsenyi, Joachim; Herzog, Wolfgang; Schellberg, Dieter; Schäfert, Rainer; Konnopka, Alexander

    2017-06-01

    The aim of this study was to calculate disorder-specific excess costs in patients with functional somatic syndromes (FSS). We compared 6-month direct and indirect costs in a patient group with FSS (n=273) to a control group of the general adult population in Germany without FSS (n=2914). Data on the patient group were collected between 2007 and 2009 in a randomized controlled trial (speciAL). Data on the control group were obtained from a telephone survey, representative for the general German population, conducted in 2014. Covariate balance between the patient group and the control group was achieved using entropy balancing. Excess costs were calculated by estimating generalized linear models and two-part models for direct costs and indirect costs. Further, we estimated excess costs according to the level of somatic symptom severity (SSS). FSS patients differed significantly from the control group regarding 6-month costs of outpatient physicians (+€280) and other outpatient providers (+€74). According to SSS, significantly higher outpatient physician costs were found for mild (+€151), moderate (+€306) and severe (+€376) SSS. We also found significantly higher costs of other outpatient providers in patients with mild, moderate and severe SSS. Regarding costs of rehabilitation and hospital treatments, FSS patients did not differ significantly from the control group for any level of SSS. Indirect costs were significantly higher in patients with severe SSS (+€760). FSS were of major importance in the outpatient sector. Further, we found significantly higher indirect costs in patients with severe SSS. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The Methodical Approach to the Cost-Accounting of the Restaurant Businesses with Catering Functions

    Directory of Open Access Journals (Sweden)

    Yanchev Andrey V.

    2017-05-01

    Full Text Available The article considers the methodical aspects of cost-accounting for the operating activities of restaurant businesses, which organization is influenced by the chosen accounting method (trade, production, or trade and production. The essence of each of the methods has been analyzed and the expediency of the trade and production method in the cost-accounting system has been substantiated due to its most appropriateness for the particularities of activity of restaurant businesses with catering functions. It has been proposed to use a model for methodical support of cost-accounting for restaurant businesses, which will provide to obtain detailed information on the costs by the analytical attributes required by the users of enterprise, for each process of its activity. Emphasis is placed on the logistics costs, which are characteristic of catering businesses with catering functions and need to be reflected in the accounting. A methodical approach to the accounting of logistics costs in terms of business processes for the efficient management of such costs is recommended.

  11. Prospective memory function in late adulthood: affect at encoding and resource allocation costs.

    Directory of Open Access Journals (Sweden)

    Julie D Henry

    Full Text Available Some studies have found that prospective memory (PM cues which are emotionally valenced influence age effects in prospective remembering, but it remains unclear whether this effect reflects the operation of processes implemented at encoding or retrieval. In addition, none of the prior ageing studies of valence on PM function have examined potential costs of engaging in different valence conditions, or resource allocation trade-offs between the PM and the ongoing task. In the present study, younger, young-old and old-old adults completed a PM task in which the valence of the cues varied systematically (positive, negative or neutral at encoding, but was kept constant (neutral at retrieval. The results indicated that PM accuracy did not vary as a function of affect at encoding, and that this effect did not interact with age group. There was also no main or interaction effect of valence on PM reaction time in PM cue trials, indicating that valence costs across the three encoding conditions were equivalent. Old-old adults' PM accuracy was reduced relative to both young-old and younger adults. Prospective remembering incurred dual-task costs for all three groups. Analyses of reaction time data suggested that for both young-old and old-old, these costs were greater, implying differential resource allocation cost trade-offs. However, when reaction time data were expressed as a proportional change that adjusted for the general slowing of the older adults, costs did not differ as a function of group.

  12. Quadratic Twists of Rigid Calabi–Yau Threefolds Over

    DEFF Research Database (Denmark)

    Gouvêa, Fernando Q.; Kiming, Ian; Yui, Noriko

    2013-01-01

    of weight 4 on some Γ 0(N). We show that quadratic twisting of a threefold corresponds to twisting the attached newform by quadratic characters and illustrate with a number of obvious and not so obvious examples. The question is motivated by the deeper question of which newforms of weight 4 on some Γ 0(N...

  13. Approximate *-derivations and approximate quadratic *-derivations on C*-algebras

    Directory of Open Access Journals (Sweden)

    Park Choonkil

    2011-01-01

    Full Text Available Abstract In this paper, we prove the stability of *-derivations and of quadratic *-derivations on Banach *-algebras. We moreover prove the superstability of *-derivations and of quadratic *-derivations on C*-algebras. 2000 Mathematics Subject Classification: 39B52; 47B47; 46L05; 39B72.

  14. A Linear Programming Reformulation of the Standard Quadratic Optimization Problem

    NARCIS (Netherlands)

    de Klerk, E.; Pasechnik, D.V.

    2005-01-01

    The problem of minimizing a quadratic form over the standard simplex is known as the standard quadratic optimization problem (SQO).It is NPhard, and contains the maximum stable set problem in graphs as a special case.In this note we show that the SQO problem may be reformulated as an (exponentially

  15. Effects of Classroom Instruction on Students' Understanding of Quadratic Equations

    Science.gov (United States)

    Vaiyavutjamai, Pongchawee; Clements, M. A.

    2006-01-01

    Two hundred and thirty-one students in six Grade 9 classes in two government secondary schools located near Chiang Mai, Thailand, attempted to solve the same 18 quadratic equations before and after participating in 11 lessons on quadratic equations. Data from the students' written responses to the equations, together with data in the form of…

  16. Analysis of Students' Error in Learning of Quadratic Equations

    Science.gov (United States)

    Zakaria, Effandi; Ibrahim; Maat, Siti Mistima

    2010-01-01

    The purpose of the study was to determine the students' error in learning quadratic equation. The samples were 30 form three students from a secondary school in Jambi, Indonesia. Diagnostic test was used as the instrument of this study that included three components: factorization, completing the square and quadratic formula. Diagnostic interview…

  17. Sketching the General Quadratic Equation Using Dynamic Geometry Software

    Science.gov (United States)

    Stols, G. H.

    2005-01-01

    This paper explores a geometrical way to sketch graphs of the general quadratic in two variables with Geometer's Sketchpad. To do this, a geometric procedure as described by De Temple is used, bearing in mind that this general quadratic equation (1) represents all the possible conics (conics sections), and the fact that five points (no three of…

  18. Tangent Lines without Derivatives for Quadratic and Cubic Equations

    Science.gov (United States)

    Carroll, William J.

    2009-01-01

    In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)

  19. Visualising the Roots of Quadratic Equations with Complex Coefficients

    Science.gov (United States)

    Bardell, Nicholas S.

    2014-01-01

    This paper is a natural extension of the root visualisation techniques first presented by Bardell (2012) for quadratic equations with real coefficients. Consideration is now given to the familiar quadratic equation "y = ax[superscript 2] + bx + c" in which the coefficients "a," "b," "c" are generally…

  20. Sinusoidal Parameter Estimation Using Quadratic Interpolation around Power-Scaled Magnitude Spectrum Peaks

    Directory of Open Access Journals (Sweden)

    Kurt James Werner

    2016-10-01

    Full Text Available The magnitude of the Discrete Fourier Transform (DFT of a discrete-time signal has a limited frequency definition. Quadratic interpolation over the three DFT samples surrounding magnitude peaks improves the estimation of parameters (frequency and amplitude of resolved sinusoids beyond that limit. Interpolating on a rescaled magnitude spectrum using a logarithmic scale has been shown to improve those estimates. In this article, we show how to heuristically tune a power scaling parameter to outperform linear and logarithmic scaling at an equivalent computational cost. Although this power scaling factor is computed heuristically rather than analytically, it is shown to depend in a structured way on window parameters. Invariance properties of this family of estimators are studied and the existence of a bias due to noise is shown. Comparing to two state-of-the-art estimators, we show that an optimized power scaling has a lower systematic bias and lower mean-squared-error in noisy conditions for ten out of twelve common windowing functions.

  1. Rate-cost tradeoffs in control

    KAUST Repository

    Kostina, Victoria

    2017-02-13

    Consider a distributed control problem with a communication channel connecting the observer of a linear stochastic system to the controller. The goal of the controller is minimize a quadratic cost function. The most basic special case of that cost function is the mean-square deviation of the system state from the desired state. We study the fundamental tradeoff between the communication rate r bits/sec and the limsup of the expected cost b, and show a lower bound on the rate necessary to attain b. The bound applies as long as the system noise has a probability density function. If target cost b is not too large, that bound can be closely approached by a simple lattice quantization scheme that only quantizes the innovation, that is, the difference between the controller\\'s belief about the current state and the true state.

  2. AUTOJOM, Quadratic Equation Coefficient for Conic Volume, Parallelepipeds, Wedges, Pyramids. JOMREAD, Check of 3-D Geometry Structure from Quadratic Surfaces

    International Nuclear Information System (INIS)

    2005-01-01

    Nature of physical problem solved: AUTOJOM is a computer program that will generate the coefficients of any quadratic equation used to define conic volumes and also the coefficients of the planes needed to define parallelepipeds, wedges, and pyramids. JOMREAD is a computer code to check any 3D geometry composed of and constructed with quadratic surfaces

  3. Are ghost surfaces quadratic-flux-minimizing?

    International Nuclear Information System (INIS)

    Hudson, S.R.; Dewar, R.L.

    2009-01-01

    Two candidates for 'almost-invariant' toroidal surfaces passing through magnetic islands, namely quadratic-flux-minimizing (QFMin) surfaces and ghost surfaces, use families of periodic pseudo-orbits (i.e. paths for which the action is not exactly extremal). QFMin pseudo-orbits, which are coordinate-dependent, are field lines obtained from a modified magnetic field, and ghost-surface pseudo-orbits are obtained by displacing closed field lines in the direction of steepest descent of magnetic action, ∫A.dl. A generalized Hamiltonian definition of ghost surfaces is given and specialized to the usual Lagrangian definition. A modified Hamilton's Principle is introduced that allows the use of Lagrangian integration for calculation of the QFMin pseudo-orbits. Numerical calculations show QFMin and Lagrangian ghost surfaces give very similar results for a chaotic magnetic field perturbed from an integrable case, and this is explained using a perturbative construction of an auxiliary poloidal angle for which QFMin and Lagrangian ghost surfaces are the same up to second order. While presented in the context of 3-dimensional magnetic field line systems, the concepts are applicable to defining almost-invariant tori in other 11/2 degree-of-freedom nonintegrable Lagrangian/Hamiltonian systems.

  4. Designing Camera Networks by Convex Quadratic Programming

    KAUST Repository

    Ghanem, Bernard

    2015-05-04

    ​In this paper, we study the problem of automatic camera placement for computer graphics and computer vision applications. We extend the problem formulations of previous work by proposing a novel way to incorporate visibility constraints and camera-to-camera relationships. For example, the placement solution can be encouraged to have cameras that image the same important locations from different viewing directions, which can enable reconstruction and surveillance tasks to perform better. We show that the general camera placement problem can be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution is almost as fast as a greedy treatment of the problem, but the quality is significantly higher, so much so that it is comparable to exact solutions that take orders of magnitude more computation time. Because it is computationally attractive, our method also allows users to explore the space of solutions for variations in input parameters. To evaluate its effectiveness, we show a range of 3D results on real-world floorplans (garage, hotel, mall, and airport). ​

  5. Cost-benefit functions for the allocation of security sensors for air contaminants

    International Nuclear Information System (INIS)

    Lambert, James H.; Farrington, Mark W.

    2007-01-01

    In this paper, we study various functional forms of the cost-benefit function in a context of risk analysis and multi-objective decision-making for the allocation of hazard protection. An approach of benefit-cost analysis under uncertainty is used. The study identifies measures of hazard intensity and population exposure as well as additional parameters that influence assessments of benefits and costs. Parameter uncertainties are propagated by numerical interval analysis. Several tiers of the uncertainty of the benefit-to-cost ratio are generated to compare hazard intensity and population exposure in multi-objective tradeoff analysis. We develop an example application with the allocation of chemical, biological, and radiological air contaminant sensors throughout a region. The sensors provide local protection to non-identical sectors of the population that are exposed to non-identical intensities of the hazard. The results illuminate the significance of the cost-benefit function for the allocation of sensors. The paper has implications for anti-terrorism, disaster preparedness, transportation safety, and other areas of public safety

  6. An Analysis of the Cost and Performance of Photovoltaic Systems as a Function of Module Area

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey A.W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Lab. (NREL), Golden, CO (United States); Silverman, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Woodhouse, Mike [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sun, Xingshu [Purdue Univ., West Lafayette, IN (United States); Alam, Mohammed A. [Purdue Univ., West Lafayette, IN (United States)

    2017-04-07

    We investigate the potential effects of module area on the cost and performance of photovoltaic systems. Applying a bottom-up methodology, we analyzed the costs associated with mc-Si and thin-film modules and systems as a function of module area. We calculate a potential for savings of up to $0.04/W, $0.10/W, and $0.13/W in module manufacturing costs for mc-Si, CdTe, and CIGS respectively, with large area modules. We also find that an additional $0.05/W savings in balance-of-systems costs may be achieved. However, these savings are dependent on the ability to maintain efficiency and manufacturing yield as area scales. Lifetime energy yield must also be maintained to realize reductions in the levelized cost of energy. We explore the possible effects of module size on efficiency and energy production, and find that more research is required to understand these issues for each technology. Sensitivity of the $/W cost savings to module efficiency and manufacturing yield is presented. We also discuss non-cost barriers to adoption of large area modules.

  7. Multi-Product Total Cost of Function for Higher Education: A Case of Bible Colleges.

    Science.gov (United States)

    Koshal, Rajindar K.; Koshal, Manjulika; Gupta, Ashok

    2001-01-01

    This study empirically estimates a multiproduct total cost function and output relationship for comprehensive U.S. universities. Statistical results for 184 Bible colleges suggest that there are both economies of scale and of scope in higher education. Additionally, product-specific economies of scope exist for all output levels and activities.…

  8. Resource-recovery facilities: Production and cost functions, and debt-financing issues

    International Nuclear Information System (INIS)

    Simonsen, W.S.

    1991-01-01

    Some of the fiscal questions relating to resource-recovery, or trash-burning, facilities are addressed. Production and cost functions for resource-recovery facilities are estimated using regression analysis. Whether or not there are returns to scale are addressed using the production and cost-function framework. Production functions are also estimated using data envelopment analysis (DEA), and results are compared to the regression results. DEA is a linear-program-based technique that can provide information about the production process. The data used to estimate the production and cost functions were collected from the Resource Recovery Yearbook. Once the decision is made to construct a resource-recovery facility, it needs to be financed. The high cost of these facilities usually prohibits financing construction out of regular operating revenues. Therefore, the issues a government faces when debt is used to finance a resource-recovery facility are analyzed. The most important public policy finding is that increasing economies of scale do not seem to be present for resource-recovery facilities

  9. Robustness analysis of the Zhang neural network for online time-varying quadratic optimization

    International Nuclear Information System (INIS)

    Zhang Yunong; Ruan Gongqin; Li Kene; Yang Yiwen

    2010-01-01

    A general type of recurrent neural network (termed as Zhang neural network, ZNN) has recently been proposed by Zhang et al for the online solution of time-varying quadratic-minimization (QM) and quadratic-programming (QP) problems. Global exponential convergence of the ZNN could be achieved theoretically in an ideal error-free situation. In this paper, with the normal differentiation and dynamics-implementation errors considered, the robustness properties of the ZNN model are investigated for solving these time-varying problems. In addition, linear activation functions and power-sigmoid activation functions could be applied to such a perturbed ZNN model. Both theoretical-analysis and computer-simulation results demonstrate the good ZNN robustness and superior performance for online time-varying QM and QP problem solving, especially when using power-sigmoid activation functions.

  10. An empirical analysis of the quantitative effect of data when fitting quadratic and cubic polynomials

    Science.gov (United States)

    Canavos, G. C.

    1974-01-01

    A study is made of the extent to which the size of the sample affects the accuracy of a quadratic or a cubic polynomial approximation of an experimentally observed quantity, and the trend with regard to improvement in the accuracy of the approximation as a function of sample size is established. The task is made possible through a simulated analysis carried out by the Monte Carlo method in which data are simulated by using several transcendental or algebraic functions as models. Contaminated data of varying amounts are fitted to either quadratic or cubic polynomials, and the behavior of the mean-squared error of the residual variance is determined as a function of sample size. Results indicate that the effect of the size of the sample is significant only for relatively small sizes and diminishes drastically for moderate and large amounts of experimental data.

  11. New generalized conjugate gradient methods for the non-quadratic model in unconstrained optimization

    International Nuclear Information System (INIS)

    Al-Bayati, A.

    2001-01-01

    This paper present two new conjugate gradient algorithms which use the non-quadratic model in unconstrained optimization. The first is a new generalized self-scaling variable metric algorithm based on the sloboda generalized conjugate gradient method which is invariant to a nonlinear scaling of a stricity convex quadratic function; the second is an interleaving between the generalized sloboda method and the first algorithm; all these algorithm use exact line searches. Numerical comparisons over twenty test functions show that the interleaving algorithm is best overall and requires only about half the function evaluations of the Sloboda method: interleaving algorithms are likely to be preferred when the dimensionality of the problem is increased. (author). 29 refs., 1 tab

  12. Exergy costs analysis of water desalination and purification techniques by transfer functions

    International Nuclear Information System (INIS)

    Carrasquer, Beatriz; Martínez-Gracia, Amaya; Uche, Javier

    2016-01-01

    Highlights: • A procedure to estimate the unit exergy cost of water treatment techniques is provided. • Unit exergy costs of water purification and desalination are given as a function of design and operating parameters. • Unit exergy costs range from 3.3 to 6.8 in purification and from 2 to 26 in desalination. • They could be used in their preliminary design as good indicators of their energy efficiency. - Abstract: The unit exergy costs of desalination and purification, which are two alternatives commonly used for water supply and treatment, have been characterized as a function of the energy efficiency of the process by combining the Exergy Cost Analysis with Transfer Function Analysis. An equation to assess the exergy costs of these alternatives is then proposed as a quick guide to know the energy efficiency of any water treatment process under different design and operating conditions. This combination, was satisfactory applied to groundwaters and water transfers. After identifying the boundaries of the system, input and output flows are calculated in exergy values. Next, different examples are analyzed in order to propose a generic equation to assess the exergy cost of the water restoration technologies, attending to their main features. Recovery ratio, energy requirements and salts concentrations (for desalination), and plant capacity and organic matter recovery (for water purification) are introduced in the calculations as their main endogenous parameters. Values obtained for typical operation ranges of commercial plants showed that unit exergy costs of water purification ranged from 3.3 to 6.8; maximum values, as expected, were found at low plant capacities and high organic matter removal ratios. For water desalination, values varied from 2 to 7 in membrane technologies and from 10 to 26 in thermal processes. The recovery ratio and salts concentration in raw water increased the unit exergy costs in membrane techniques. In distillation processes

  13. Relationship between the mechanisms of gamma rhythm generation and the magnitude of the macroscopic phase response function in a population of excitatory and inhibitory modified quadratic integrate-and-fire neurons

    Science.gov (United States)

    Akao, Akihiko; Ogawa, Yutaro; Jimbo, Yasuhiko; Ermentrout, G. Bard; Kotani, Kiyoshi

    2018-01-01

    Gamma oscillations are thought to play an important role in brain function. Interneuron gamma (ING) and pyramidal interneuron gamma (PING) mechanisms have been proposed as generation mechanisms for these oscillations. However, the relation between the generation mechanisms and the dynamical properties of the gamma oscillation are still unclear. Among the dynamical properties of the gamma oscillation, the phase response function (PRF) is important because it encodes the response of the oscillation to inputs. Recently, the PRF for an inhibitory population of modified theta neurons that generate an ING rhythm was computed by the adjoint method applied to the associated Fokker-Planck equation (FPE) for the model. The modified theta model incorporates conductance-based synapses as well as the voltage and current dynamics. Here, we extended this previous work by creating an excitatory-inhibitory (E-I) network using the modified theta model and described the population dynamics with the corresponding FPE. We conducted a bifurcation analysis of the FPE to find parameter regions which generate gamma oscillations. In order to label the oscillatory parameter regions by their generation mechanisms, we defined ING- and PING-type gamma oscillation in a mathematically plausible way based on the driver of the inhibitory population. We labeled the oscillatory parameter regions by these generation mechanisms and derived PRFs via the adjoint method on the FPE in order to investigate the differences in the responses of each type of oscillation to inputs. PRFs for PING and ING mechanisms are derived and compared. We found the amplitude of the PRF for the excitatory population is larger in the PING case than in the ING case. Finally, the E-I population of the modified theta neuron enabled us to analyze the PRFs of PING-type gamma oscillation and the entrainment ability of E and I populations. We found a parameter region in which PRFs of E and I are both purely positive in the case of

  14. Cost-utility of a specific collaborative group intervention for patients with functional somatic syndromes.

    Science.gov (United States)

    Konnopka, Alexander; König, Hans-Helmut; Kaufmann, Claudia; Egger, Nina; Wild, Beate; Szecsenyi, Joachim; Herzog, Wolfgang; Schellberg, Dieter; Schaefert, Rainer

    2016-11-01

    Collaborative group intervention (CGI) in patients with functional somatic syndromes (FSS) has been shown to improve mental quality of life. To analyse incremental cost-utility of CGI compared to enhanced medical care in patients with FSS. An economic evaluation alongside a cluster-randomised controlled trial was performed. 35 general practitioners (GPs) recruited 300 FSS patients. Patients in the CGI arm were offered 10 group sessions within 3months and 2 booster sessions 6 and 12months after baseline. Costs were assessed via questionnaire. Quality adjusted life years (QALYs) were calculated using the SF-6D index, derived from the 36-item short-form health survey (SF-36). We calculated patients' net-monetary-benefit (NMB), estimated the treatment effect via regression, and generated cost-effectiveness acceptability curves. Using intention-to-treat analysis, total costs during the 12-month study period were 5777EUR in the intervention, and 6858EUR in the control group. Controlling for possible confounders, we found a small, but significant positive intervention effect on QALYs (+0.017; p=0.019) and an insignificant cost saving resulting from a cost-increase in the control group (-10.5%; p=0.278). NMB regression showed that the probability of CGI to be cost-effective was 69% for a willingness to pay (WTP) of 0EUR/QALY, increased to 92% for a WTP of 50,000EUR/QALY and reached the level of 95% at a WTP of 70,375EUR/QALY. Subgroup analyses yielded that CGI was only cost-effective in severe somatic symptom severity (PHQ-15≥15). CGI has a high probability to be a cost-effective treatment for FSS, in particular for patients with severe somatic symptom severity. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Algorithms for sparse, symmetric, definite quadratic lambda-matrix eigenproblems

    International Nuclear Information System (INIS)

    Scott, D.S.; Ward, R.C.

    1981-01-01

    Methods are presented for computing eigenpairs of the quadratic lambda-matrix, M lambda 2 + C lambda + K, where M, C, and K are large and sparse, and have special symmetry-type properties. These properties are sufficient to insure that all the eigenvalues are real and that theory analogous to the standard symmetric eigenproblem exists. The methods employ some standard techniques such as partial tri-diagonalization via the Lanczos Method and subsequent eigenpair calculation, shift-and- invert strategy and subspace iteration. The methods also employ some new techniques such as Rayleigh-Ritz quadratic roots and the inertia of symmetric, definite, quadratic lambda-matrices

  16. Optimized Large-scale CMB Likelihood and Quadratic Maximum Likelihood Power Spectrum Estimation

    Science.gov (United States)

    Gjerløw, E.; Colombo, L. P. L.; Eriksen, H. K.; Górski, K. M.; Gruppuso, A.; Jewell, J. B.; Plaszczynski, S.; Wehus, I. K.

    2015-11-01

    We revisit the problem of exact cosmic microwave background (CMB) likelihood and power spectrum estimation with the goal of minimizing computational costs through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al., and here we develop it into a fully functioning computational framework for large-scale polarization analysis, adopting WMAP as a working example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors, and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen-Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked WMAP sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8% at ℓ ≤ 32 and a maximum shift in the mean values of a joint distribution of an amplitude-tilt model of 0.006σ. This compression reduces the computational cost of a single likelihood evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation, which requires less than 3 GB of memory and 2 CPU minutes per iteration for ℓ ≤ 32, rendering low-ℓ QML CMB power spectrum analysis fully tractable on a standard laptop.

  17. A flexible model for the mean and variance functions, with application to medical cost data.

    Science.gov (United States)

    Chen, Jinsong; Liu, Lei; Zhang, Daowen; Shih, Ya-Chen T

    2013-10-30

    Medical cost data are often skewed to the right and heteroscedastic, having a nonlinear relation with covariates. To tackle these issues, we consider an extension to generalized linear models by assuming nonlinear associations of covariates in the mean function and allowing the variance to be an unknown but smooth function of the mean. We make no further assumption on the distributional form. The unknown functions are described by penalized splines, and the estimation is carried out using nonparametric quasi-likelihood. Simulation studies show the flexibility and advantages of our approach. We apply the model to the annual medical costs of heart failure patients in the clinical data repository at the University of Virginia Hospital System. Copyright © 2013 John Wiley & Sons, Ltd.

  18. EVALUATION OF PENALTY FUNCTIONS FOR SEMI-GLOBAL MATCHING COST AGGREGATION

    Directory of Open Access Journals (Sweden)

    C. Banz

    2012-07-01

    Full Text Available The stereo matching method semi-global matching (SGM relies on consistency constraints during the cost aggregation which are enforced by so-called penalty terms. This paper proposes new and evaluates four penalty functions for SGM. Due to mutual dependencies, two types of matching cost calculation, census and rank transform, are considered. Performance is measured using original and degenerated images exhibiting radiometric changes and noise from the Middlebury benchmark. The two best performing penalty functions are inversely proportional and negatively linear to the intensity gradient and perform equally with 6.05% and 5.91% average error, respectively. The experiments also show that adaptive penalty terms are mandatory when dealing with difficult imaging conditions. Consequently, for highest algorithmic performance in real-world systems, selection of a suitable penalty function and thorough parametrization with respect to the expected image quality is essential.

  19. The specification of a hospital cost function. A comment on the recent literature.

    Science.gov (United States)

    Breyer, F

    1987-06-01

    In the empirical estimation of hospital cost functions, two radically different types of specifications have been chosen to date, ad-hoc forms and flexible functional forms based on neoclassical production theory. This paper discusses the respective strengths and weaknesses of both approaches and emphasizes the apparently unreconcilable conflict between the goals of maintaining functional flexibility and keeping the number of variables manageable if at the same time patient heterogeneity is to be adequately reflected in the case mix variables. A new specification is proposed which strikes a compromise between these goals, and the underlying assumptions are discussed critically.

  20. Marginal Abatement Cost of CO2 in China Based on Directional Distance Function: An Industry Perspective

    Directory of Open Access Journals (Sweden)

    Bowen Xiao

    2017-01-01

    Full Text Available Industrial sectors account for around 70% of the total energy-related CO2 emissions in China. It is of great importance to measure the potential for CO2 emissions reduction and calculate the carbon price in industrial sectors covered in the Emissions Trading Scheme and carbon tax. This paper employs the directional distance function to calculate the marginal abatement costs of CO2 emissions during 2005–2011 and makes a comparative analysis between our study and the relevant literature. Our empirical results show that the marginal abatement costs vary greatly from industry to industry: high marginal abatement costs occur in industries with low carbon intensity, and vice versa. In the application of the marginal abatement cost, the abatement distribution scheme with minimum cost is established under different abatement targets. The conclusions of abatement distribution scheme indicate that those heavy industries with low MACs and high carbon intensity should take more responsibility for emissions reduction and vice versa. Finally, the policy implications for marginal abatement cost are provided.

  1. Quantifying recreational value and the functional relationship between travel cost and visiting national park

    DEFF Research Database (Denmark)

    Kawsar, Mahidi Hasan; Al Pavel, Muha Abdullah; Uddin, Mohammad Belal

    2015-01-01

    Estimation of recreational benefits is an important tool for both biodiversity conservation and ecotourism development in national parks and sanctuaries. The design of this work is to estimate the recreational value and to establish functional relationship between travel cost and visitation...... of Lawachara National Park (LNP) in Bangladesh. This study employed zonal approach of the travel cost method. The work is grounded on a sample of 422 visitors of the LNP. Results showed that the total value of environmental assets of the LNP is 55,694,173 Taka/Year. Moreover, our suggestion based on visitors...

  2. Convexity Conditions and the Legendre-Fenchel Transform for the Product of Finitely Many Positive Definite Quadratic Forms

    International Nuclear Information System (INIS)

    Zhao Yunbin

    2010-01-01

    While the product of finitely many convex functions has been investigated in the field of global optimization, some fundamental issues such as the convexity condition and the Legendre-Fenchel transform for the product function remain unresolved. Focusing on quadratic forms, this paper is aimed at addressing the question: When is the product of finitely many positive definite quadratic forms convex, and what is the Legendre-Fenchel transform for it? First, we show that the convexity of the product is determined intrinsically by the condition number of so-called 'scaled matrices' associated with quadratic forms involved. The main result claims that if the condition number of these scaled matrices are bounded above by an explicit constant (which depends only on the number of quadratic forms involved), then the product function is convex. Second, we prove that the Legendre-Fenchel transform for the product of positive definite quadratic forms can be expressed, and the computation of the transform amounts to finding the solution to a system of equations (or equally, finding a Brouwer's fixed point of a mapping) with a special structure. Thus, a broader question than the open 'Question 11' in Hiriart-Urruty (SIAM Rev. 49, 225-273, 2007) is addressed in this paper.

  3. The modeling of quadratic B-splines surfaces for the tomographic reconstruction in the FCC- type-riser

    International Nuclear Information System (INIS)

    Vasconcelos, Geovane Vitor; Dantas, Carlos Costa; Melo, Silvio de Barros; Pires, Renan Ferraz

    2009-01-01

    The 3D tomography reconstruction has been a profitable alternative in the analysis of the FCC-type- riser (Fluid Catalytic Cracking), for appropriately keeping track of the sectional catalyst concentration distribution in the process of oil refining. The method of tomography reconstruction proposed by M. Azzi and colleagues (1991) uses a relatively small amount of trajectories (from 3 to 5) and projections (from 5 to 7) of gamma rays, a desirable feature in the industrial process tomography. Compared to more popular methods, such as the FBP (Filtered Back Projection), which demands a much higher amount of gamma rays projections, the method by Azzi et al. is more appropriate for the industrial process, where the physical limitations and the cost of the process require more economical arrangements. The use of few projections and trajectories facilitates the diagnosis in the flow dynamical process. This article proposes an improvement in the basis functions introduced by Azzi et al., through the use of quadratic B-splines functions. The use of B-splines functions makes possible a smoother surface reconstruction of the density distribution, since the functions are continuous and smooth. This work describes how the modeling can be done. (author)

  4. Linear and Quadratic Interpolators Using Truncated-Matrix Multipliers and Squarers

    Directory of Open Access Journals (Sweden)

    E. George Walters III

    2015-11-01

    Full Text Available This paper presents a technique for designing linear and quadratic interpolators for function approximation using truncated multipliers and squarers. Initial coefficient values are found using a Chebyshev-series approximation and then adjusted through exhaustive simulation to minimize the maximum absolute error of the interpolator output. This technique is suitable for any function and any precision up to 24 bits (IEEE single precision. Designs for linear and quadratic interpolators that implement the 1/x, 1/ √ x, log2(1+2x, log2(x and 2x functions are presented and analyzed as examples. Results show that a proposed 24-bit interpolator computing 1/x with a design specification of ±1 unit in the last place of the product (ulp error uses 16.4% less area and 15.3% less power than a comparable standard interpolator with the same error specification. Sixteen-bit linear interpolators for other functions are shown to use up to 17.3% less area and 12.1% less power, and 16-bit quadratic interpolators are shown to use up to 25.8% less area and 24.7% less power.

  5. Quadratic inner element subgrid scale discretisation of the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Baker, C.M.J.; Buchan, A.G.; Pain, C.C.; Tollit, B.; Eaton, M.D.; Warner, P.

    2012-01-01

    This paper explores the application of the inner element subgrid scale method to the Boltzmann transport equation using quadratic basis functions. Previously, only linear basis functions for both the coarse scale and the fine scale were considered. This paper, therefore, analyses the advantages of using different coarse and subgrid basis functions for increasing the accuracy of the subgrid scale method. The transport of neutral particle radiation may be described by the Boltzmann transport equation (BTE) which, due to its 7 dimensional phase space, is computationally expensive to resolve. Multi-scale methods offer an approach to efficiently resolve the spatial dimensions of the BTE by separating the solution into its coarse and fine scales and formulating a solution whereby only the computationally efficient coarse scales need to be solved. In previous work an inner element subgrid scale method was developed that applied a linear continuous and discontinuous finite element method to represent the solution’s coarse and fine scale components. This approach was shown to generate efficient and stable solutions, and so this article continues its development by formulating higher order quadratic finite element expansions over the continuous and discontinuous scales. Here it is shown that a solution’s convergence can be improved significantly using higher order basis functions. Furthermore, by using linear finite elements to represent coarse scales in combination with quadratic fine scales, convergence can also be improved with only a modest increase in computational expense.

  6. Integrable Hamiltonian systems and interactions through quadratic constraints

    International Nuclear Information System (INIS)

    Pohlmeyer, K.

    1975-08-01

    Osub(n)-invariant classical relativistic field theories in one time and one space dimension with interactions that are entirely due to quadratic constraints are shown to be closely related to integrable Hamiltonian systems. (orig.) [de

  7. A perturbative solution for gravitational waves in quadratic gravity

    International Nuclear Information System (INIS)

    Neto, Edgard C de Rey; Aguiar, Odylio D; Araujo, Jose C N de

    2003-01-01

    We find a gravitational wave solution to the linearized version of quadratic gravity by adding successive perturbations to Einstein's linearized field equations. We show that only the Ricci-squared quadratic invariant contributes to give a different solution to those found in Einstein's general relativity. The perturbative solution is written as a power series in the β parameter, the coefficient of the Ricci-squared term in the quadratic gravitational action. We also show that, for monochromatic waves of a given angular frequency ω, the perturbative solution can be summed out to give an exact solution to the linearized version of quadratic gravity, for 0 1/2 . This result may lead to implications for the predictions for gravitational wave backgrounds of cosmological origin

  8. Accurate nonlocal theory for cascaded quadratic soliton compression

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Moses, Jeffrey

    2007-01-01

    We study soliton compression in bulk quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....

  9. The cost of misremembering: Inferring the loss function in visual working memory.

    Science.gov (United States)

    Sims, Chris R

    2015-03-04

    Visual working memory (VWM) is a highly limited storage system. A basic consequence of this fact is that visual memories cannot perfectly encode or represent the veridical structure of the world. However, in natural tasks, some memory errors might be more costly than others. This raises the intriguing possibility that the nature of memory error reflects the costs of committing different kinds of errors. Many existing theories assume that visual memories are noise-corrupted versions of afferent perceptual signals. However, this additive noise assumption oversimplifies the problem. Implicit in the behavioral phenomena of visual working memory is the concept of a loss function: a mathematical entity that describes the relative cost to the organism of making different types of memory errors. An optimally efficient memory system is one that minimizes the expected loss according to a particular loss function, while subject to a constraint on memory capacity. This paper describes a novel theoretical framework for characterizing visual working memory in terms of its implicit loss function. Using inverse decision theory, the empirical loss function is estimated from the results of a standard delayed recall visual memory experiment. These results are compared to the predicted behavior of a visual working memory system that is optimally efficient for a previously identified natural task, gaze correction following saccadic error. Finally, the approach is compared to alternative models of visual working memory, and shown to offer a superior account of the empirical data across a range of experimental datasets. © 2015 ARVO.

  10. Resolving Actuator Redundancy - Control Allocation vs. Linear Quadratic Control

    OpenAIRE

    Härkegård, Ola

    2004-01-01

    When designing control laws for systems with more inputs than controlled variables, one issue to consider is how to deal with actuator redundancy. Two tools for distributing the control effort among a redundant set of actuators are control allocation and linear quadratic control design. In this paper, we investigate the relationship between these two design tools when a quadratic performance index is used for control allocation. We show that for a particular class of linear systems, they give...

  11. Quadratic measurement and conditional state preparation in an optomechanical system

    DEFF Research Database (Denmark)

    A. Brawley, George; Vanner, Michael A.; Bowen, Warwick P.

    2014-01-01

    We experimentally demonstrate, for the first time, quadratic measurement of mechanical motion in an optomechanical system. We use this nonlinear easurement to conditionally prepare classical non-Gaussian states of motion of a micro-mechanical oscillator.......We experimentally demonstrate, for the first time, quadratic measurement of mechanical motion in an optomechanical system. We use this nonlinear easurement to conditionally prepare classical non-Gaussian states of motion of a micro-mechanical oscillator....

  12. Scale-Invariant Rotating Black Holes in Quadratic Gravity

    Directory of Open Access Journals (Sweden)

    Guido Cognola

    2015-07-01

    Full Text Available Black hole solutions in pure quadratic theories of gravity are interesting since they allow the formulation of a set of scale-invariant thermodynamics laws. Recently, we have proven that static scale-invariant black holes have a well-defined entropy, which characterizes equivalent classes of solutions. In this paper, we generalize these results and explore the thermodynamics of rotating black holes in pure quadratic gravity.

  13. Staff turnover in hotels : exploring the quadratic and linear relationships.

    OpenAIRE

    Mohsin, A.; Lengler, J.F.B.; Aguzzoli, R.L.

    2015-01-01

    The aim of this study is to assess whether the relationship between intention to leave the job and its antecedents is quadratic or linear. To explore those relationships a theoretical model (see Fig. 1) and eight hypotheses are proposed. Each linear hypothesis is followed by an alternative quadratic hypothesis. The alternative hypotheses propose that the relationship between the four antecedent constructs and intention to leave the job might not be linear, as the existing literature suggests....

  14. On wave-packet dynamics in a decaying quadratic potential

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Henriksen, Niels Engholm

    1997-01-01

    We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics.......We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics....

  15. Burgers' turbulence problem with linear or quadratic external potential

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Leonenko, N.N.

    2005-01-01

    We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions.......We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions....

  16. Evaluating C-RAN Fronthaul Functional Splits in Terms of Network Level Energy and Cost Savings

    DEFF Research Database (Denmark)

    Checko, Aleksandra; Popovska Avramova, Andrijana; Berger, Michael Stübert

    2016-01-01

    The placement of the complete baseband processing in a centralized pool results in high data rate requirement and inflexibility of the fronthaul network, which challenges the energy and cost effectiveness of the cloud radio access network (C-RAN). Recently, redesign of the C-RAN through functional...... split in the baseband processing chain has been proposed to overcome these challenges. This paper evaluates, by mathematical and simulation methods, different splits with respect to network level energy and cost efficiency having in the mind the expected quality of service.The proposed mathematical...... model quantifies the multiplexing gains and the trade-offs between centralization and decentralization concerning the cost of the pool, fronthaul network capacity and resource utilization. The event-based simulation captures the influence of the traffic load dynamics and traffic type variation...

  17. A non-linear programming approach to the computer-aided design of regulators using a linear-quadratic formulation

    Science.gov (United States)

    Fleming, P.

    1985-01-01

    A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a non-linear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer-aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer.

  18. Oligopoly games with nonlinear demand and cost functions: Two boundedly rational adjustment processes

    International Nuclear Information System (INIS)

    Naimzada, Ahmad K.; Sbragia, Lucia

    2006-01-01

    We consider a Cournot oligopoly game, where firms produce an homogenous good and the demand and cost functions are nonlinear. These features make the classical best reply solution difficult to be obtained, even if players have full information about their environment. We propose two different kinds of repeated games based on a lower degree of rationality of the firms, on a reduced information set and reduced computational capabilities. The first adjustment mechanism is called 'Local Monopolistic Approximation' (LMA). First firms get the correct local estimate of the demand function and then they use such estimate in a linear approximation of the demand function where the effects of the competitors' outputs are ignored. On the basis of this subjective demand function they solve their profit maximization problem. By using the second adjustment process, that belongs to a class of adaptive mechanisms known in the literature as 'Gradient Dynamics' (GD), firms do not solve any optimization problem, but they adjust their production in the direction indicated by their (correct) estimate of the marginal profit. Both these repeated games may converge to a Cournot-Nash equilibrium, i.e. to the equilibrium of the best reply dynamics. We compare the properties of the two different dynamical systems that describe the time evolution of the oligopoly games under the two adjustment mechanisms, and we analyze the conditions that lead to non-convergence and complex dynamic behaviors. The paper extends the results of other authors that consider similar adjustment processes assuming linear cost functions or linear demand functions

  19. Estimating the cost of improving quality in electricity distribution: A parametric distance function approach

    International Nuclear Information System (INIS)

    Coelli, Tim J.; Gautier, Axel; Perelman, Sergio; Saplacan-Pop, Roxana

    2013-01-01

    The quality of electricity distribution is being more and more scrutinized by regulatory authorities, with explicit reward and penalty schemes based on quality targets having been introduced in many countries. It is then of prime importance to know the cost of improving the quality for a distribution system operator. In this paper, we focus on one dimension of quality, the continuity of supply, and we estimated the cost of preventing power outages. For that, we make use of the parametric distance function approach, assuming that outages enter in the firm production set as an input, an imperfect substitute for maintenance activities and capital investment. This allows us to identify the sources of technical inefficiency and the underlying trade-off faced by operators between quality and other inputs and costs. For this purpose, we use panel data on 92 electricity distribution units operated by ERDF (Electricité de France - Réseau Distribution) in the 2003–2005 financial years. Assuming a multi-output multi-input translog technology, we estimate that the cost of preventing one interruption is equal to 10.7€ for an average DSO. Furthermore, as one would expect, marginal quality improvements tend to be more expensive as quality itself improves. - Highlights: ► We estimate the implicit cost of outages for the main distribution company in France. ► For this purpose, we make use of a parametric distance function approach. ► Marginal quality improvements tend to be more expensive as quality itself improves. ► The cost of preventing one interruption varies from 1.8 € to 69.2 € (2005 prices). ► We estimate that, in average, it lays 33% above the regulated price of quality.

  20. Solutions to the equations describing materials with competing quadratic and cubic nonlinearities

    International Nuclear Information System (INIS)

    Li-Na, Zhao; Ji, Lin; Zi-Shuang, Tong

    2009-01-01

    The Lie group theoretical method is used to study the equations describing materials with competing quadratic and cubic nonlinearities. The equations share some of the nice properties of soliton equations. From the elliptic functions expansion method, we obtain large families of analytical solutions, in special cases, we have the periodic, kink and solitary solutions of the equations. Furthermore, we investigate the stability of these solutions under the perturbation of amplitude noises by numerical simulation

  1. Ant colony optimisation for economic dispatch problem with non-smooth cost functions

    Energy Technology Data Exchange (ETDEWEB)

    Pothiya, Saravuth; Kongprawechnon, Waree [School of Communication, Instrumentation and Control, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathumthani (Thailand); Ngamroo, Issarachai [Center of Excellence for Innovative Energy Systems, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2010-06-15

    This paper presents a novel and efficient optimisation approach based on the ant colony optimisation (ACO) for solving the economic dispatch (ED) problem with non-smooth cost functions. In order to improve the performance of ACO algorithm, three additional techniques, i.e. priority list, variable reduction, and zoom feature are presented. To show its efficiency and effectiveness, the proposed ACO is applied to two types of ED problems with non-smooth cost functions. Firstly, the ED problem with valve-point loading effects consists of 13 and 40 generating units. Secondly, the ED problem considering the multiple fuels consists of 10 units. Additionally, the results of the proposed ACO are compared with those of the conventional heuristic approaches. The experimental results show that the proposed ACO approach is comparatively capable of obtaining higher quality solution and faster computational time. (author)

  2. Global Approximations to Cost and Production Functions using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Efthymios G. Tsionas

    2009-06-01

    Full Text Available The estimation of cost and production functions in economics relies on standard specifications which are less than satisfactory in numerous situations. However, instead of fitting the data with a pre-specified model, Artificial Neural Networks (ANNs let the data itself serve as evidence to support the modelrs estimation of the underlying process. In this context, the proposed approach combines the strengths of economics, statistics and machine learning research and the paper proposes a global approximation to arbitrary cost and production functions, respectively, given by ANNs. Suggestions on implementation are proposed and empirical application relies on standard techniques. All relevant measures such as Returns to Scale (RTS and Total Factor Productivity (TFP may be computed routinely.

  3. 2D/3D registration using a rotation-invariant cost function based on Zernike moments

    Science.gov (United States)

    Birkfellner, Wolfgang; Yang, Xinhui; Burgstaller, Wolfgang; Baumann, Bernard; Jacob, Augustinus L.; Niederer, Peter F.; Regazzoni, Pietro; Messmer, Peter

    2004-05-01

    We present a novel in-plane rotation invariant cost function for 2D/3D registration utilizing projection-invariant transformation properties and the decomposition of the X-ray nad the DRR under comparision into orhogonal Zernike moments. As a result, only five dof have to be optimized, and the number of iteration necessary for registration can be significantly reduced. Results in a phantom study show that an accuracy of approximately 0.7° and 2 mm can be achieved using this method. We conclude that reduction of coupled dof and usage of linear independent coefficients for cost function evaluation provide intersting new perspectives for the field of 2D/3D registration.

  4. Basic Minimal Dominating Functions of Quadratic Residue Cayley ...

    African Journals Online (AJOL)

    Domination arises in the study of numerous facility location problems where the number of facilities is fixed and one attempt to minimize the number of facilities necessary so that everyone is serviced. This problem reduces to finding a minimum dominating set in the graph corresponding to this network. In this paper we study ...

  5. The Impact of Computer Use on Learning of Quadratic Functions

    Science.gov (United States)

    Pihlap, Sirje

    2017-01-01

    Studies of the impact of various types of computer use on the results of learning and student motivation have indicated that the use of computers can increase learning motivation, and that computers can have a positive effect, a negative effect, or no effect at all on learning outcomes. Some results indicate that it is not computer use itself that…

  6. FGP Approach for Solving Multi-level Multi-objective Quadratic Fractional Programming Problem with Fuzzy parameters

    Directory of Open Access Journals (Sweden)

    m. s. osman

    2017-09-01

    Full Text Available In this paper, we consider fuzzy goal programming (FGP approach for solving multi-level multi-objective quadratic fractional programming (ML-MOQFP problem with fuzzy parameters in the constraints. Firstly, the concept of the ?-cut approach is applied to transform the set of fuzzy constraints into a common deterministic one. Then, the quadratic fractional objective functions in each level are transformed into quadratic objective functions based on a proposed transformation. Secondly, the FGP approach is utilized to obtain a compromise solution for the ML-MOQFP problem by minimizing the sum of the negative deviational variables. Finally, an illustrative numerical example is given to demonstrate the applicability and performance of the proposed approach.

  7. Optimal replacement time estimation for machines and equipment based on cost function

    OpenAIRE

    J. Šebo; J. Buša; P. Demeč; J. Svetlík

    2013-01-01

    The article deals with a multidisciplinary issue of estimating the optimal replacement time for the machines. Considered categories of machines, for which the optimization method is usable, are of the metallurgical and engineering production. Different models of cost function are considered (both with one and two variables). Parameters of the models were calculated through the least squares method. Models testing show that all are good enough, so for estimation of optimal replacement time is ...

  8. Scale Economies and Industry Agglomeration Externalities: A Dynamic Cost Function Approach

    OpenAIRE

    Donald S. Siegel; Catherine J. Morrison Paul

    1999-01-01

    Scale economies and agglomeration externalities are alleged to be important determinants of economic growth. To assess these effects, the authors outline and estimate a microfoundations model based on a dynamic cost function specification. This model provides for the separate identification of the impacts of externalities and cyclical utilization on short- and long-run scale economies and input substitution patterns. The authors find that scale economies are prevalent in U.S manufacturing; co...

  9. Sequential Optimization of Paths in Directed Graphs Relative to Different Cost Functions

    KAUST Repository

    Abubeker, Jewahir Ali

    2011-05-14

    This paper is devoted to the consideration of an algorithm for sequential optimization of paths in directed graphs relative to di_erent cost functions. The considered algorithm is based on an extension of dynamic programming which allows to represent the initial set of paths and the set of optimal paths after each application of optimization procedure in the form of a directed acyclic graph.

  10. Joint pricing and production management: a geometric programming approach with consideration of cubic production cost function

    Science.gov (United States)

    Sadjadi, Seyed Jafar; Hamidi Hesarsorkh, Aghil; Mohammadi, Mehdi; Bonyadi Naeini, Ali

    2015-06-01

    Coordination and harmony between different departments of a company can be an important factor in achieving competitive advantage if the company corrects alignment between strategies of different departments. This paper presents an integrated decision model based on recent advances of geometric programming technique. The demand of a product considers as a power function of factors such as product's price, marketing expenditures, and consumer service expenditures. Furthermore, production cost considers as a cubic power function of outputs. The model will be solved by recent advances in convex optimization tools. Finally, the solution procedure is illustrated by numerical example.

  11. A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems

    Science.gov (United States)

    Shekofteh, Yasser; Jafari, Sajad; Sprott, Julien Clinton; Hashemi Golpayegani, S. Mohammad Reza; Almasganj, Farshad

    2015-02-01

    As we know, many biological systems such as neurons or the heart can exhibit chaotic behavior. Conventional methods for parameter estimation in models of these systems have some limitations caused by sensitivity to initial conditions. In this paper, a novel cost function is proposed to overcome those limitations by building a statistical model on the distribution of the real system attractor in state space. This cost function is defined by the use of a likelihood score in a Gaussian mixture model (GMM) which is fitted to the observed attractor generated by the real system. Using that learned GMM, a similarity score can be defined by the computed likelihood score of the model time series. We have applied the proposed method to the parameter estimation of two important biological systems, a neuron and a cardiac pacemaker, which show chaotic behavior. Some simulated experiments are given to verify the usefulness of the proposed approach in clean and noisy conditions. The results show the adequacy of the proposed cost function.

  12. The use of low cost compact cameras with focus stacking functionality in entomological digitization projects

    Directory of Open Access Journals (Sweden)

    Jan Mertens

    2017-10-01

    Full Text Available Digitization of specimen collections has become a key priority of many natural history museums. The camera systems built for this purpose are expensive, providing a barrier in institutes with limited funding, and therefore hampering progress. An assessment is made on whether a low cost compact camera with image stacking functionality can help expedite the digitization process in large museums or provide smaller institutes and amateur entomologists with the means to digitize their collections. Images of a professional setup were compared with the Olympus Stylus TG-4 Tough, a low-cost compact camera with internal focus stacking functions. Parameters considered include image quality, digitization speed, price, and ease-of-use. The compact camera’s image quality, although inferior to the professional setup, is exceptional considering its fourfold lower price point. Producing the image slices in the compact camera is a matter of seconds and when optimal image quality is less of a priority, the internal stacking function omits the need for dedicated stacking software altogether, further decreasing the cost and speeding up the process. In general, it is found that, aware of its limitations, this compact camera is capable of digitizing entomological collections with sufficient quality. As technology advances, more institutes and amateur entomologists will be able to easily and affordably catalogue their specimens.

  13. Sequential Optimization of Global Sequence Alignments Relative to Different Cost Functions

    KAUST Repository

    Odat, Enas M.

    2011-05-01

    The purpose of this dissertation is to present a methodology to model global sequence alignment problem as directed acyclic graph which helps to extract all possible optimal alignments. Moreover, a mechanism to sequentially optimize sequence alignment problem relative to different cost functions is suggested. Sequence alignment is mostly important in computational biology. It is used to find evolutionary relationships between biological sequences. There are many algo- rithms that have been developed to solve this problem. The most famous algorithms are Needleman-Wunsch and Smith-Waterman that are based on dynamic program- ming. In dynamic programming, problem is divided into a set of overlapping sub- problems and then the solution of each subproblem is found. Finally, the solutions to these subproblems are combined into a final solution. In this thesis it has been proved that for two sequences of length m and n over a fixed alphabet, the suggested optimization procedure requires O(mn) arithmetic operations per cost function on a single processor machine. The algorithm has been simulated using C#.Net programming language and a number of experiments have been done to verify the proved statements. The results of these experiments show that the number of optimal alignments is reduced after each step of optimization. Furthermore, it has been verified that as the sequence length increased linearly then the number of optimal alignments increased exponentially which also depends on the cost function that is used. Finally, the number of executed operations increases polynomially as the sequence length increase linearly.

  14. Provision of Child Care: Cost Functions for Profit-Making and Not-for-Profit Day Care Centers

    OpenAIRE

    Swati Mukerjee; Ann Dryden Witte; Sheila Hollowell

    1990-01-01

    This paper estimates cost functions for day care centers in Massachusetts. The production technology assumed is the generalized homothetic Cobb-Douglas production function. The cost function dual to this production function is estimated separately for profit-making (P1Os) and not-for-profit (NPOs) organizations. The results are discussed in the context of current NPO literature. NPOs are found to be operating at higher average coats than PMOs for most output levels as predicted by the literat...

  15. Cost of reproduction in a long-lived bird: incubation effort reduces immune function and future reproduction

    OpenAIRE

    Hanssen, S A; Hasselquist, Dennis; Folstad, I; Erikstad, K E

    2005-01-01

    Life-history theory predicts that increased current reproductive effort should lead to a fitness cost. This cost of reproduction may be observed as reduced survival or future reproduction, and may be caused by temporal suppression of immune function in stressed or hard-working individuals. In birds, consideration of the costs of incubating eggs has largely been neglected in favour of the costs of brood rearing. We manipulated incubation demand in two breeding seasons (2000 and 2001) in female...

  16. Specific count model for investing the related factors of cost of GERD and functional dyspepsia

    Science.gov (United States)

    Abadi, Alireza; Chaibakhsh, Samira; Safaee, Azadeh; Moghimi-Dehkordi, Bijan

    2013-01-01

    Aim The purpose of this study is to analyze the cost of GERD and functional dyspepsia for investing its related factors. Background Gastro-oesophageal reflux disease GERD and dyspepsia are the most common symptoms of gastrointestinal disorders. Recent studies showed high prevalence and variety of clinical presentation of these two symptoms imposed enormous economic burden to the society. Cost data that related to economics burden have specific characteristics. So this kind of data needs to specific models. Poisson regression (PR) and negative binomial regression (NB) are the models that were used for analyzing cost data in this paper. Patients and methods This study designed as a cross-sectional household survey from May 2006 to December 2007 on a random sample of individual in the Tehran province, Iran to find the prevalence of gastrointestinal symptoms and disorders and its related factors. The Cost in each item was counted. PR and NB were carried out to the data respectively. Likelihood ratio test was performed for comparison between models. Also Log likelihood, Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) were used to compare performance of the models. Results According to Likelihood ratio test and all three criterions that we used to compare performance of the models, NB was the best model for analyzing this cost data. Sex, age and insurance statues were being significant. Conclusion PR and NB models were carried out for this data and according the results improved fit of the NB model over PR, it clearly indicates that over-dispersion is involved due to unobserved heterogeneity and/or clustering. NB model in cost data more appropriate fit than PR. PMID:24834282

  17. An Authentic Task That Models Quadratics

    Science.gov (United States)

    Baron, Lorraine M.

    2015-01-01

    As students develop algebraic reasoning in grades 5 to 9, they learn to recognize patterns and understand expressions, equations, and variables. Linear functions are a focus in eighth-grade mathematics, and by algebra 1, students must make sense of functions that are not linear. This article describes how students worked through a classroom task…

  18. Linear and quadratic exponential modulation of the solutions of the paraxial wave equation

    International Nuclear Information System (INIS)

    Torre, A

    2010-01-01

    A review of well-known transformations, which allow us to pass from one solution of the paraxial wave equation (PWE) (in one transverse space variable) to another, is presented. Such transformations are framed within the unifying context of the Lie algebra formalism, being related indeed to symmetries of the PWE. Due to the closure property of the symmetry group of the PWE we are led to consider as not trivial only the linear and the quadratic exponential modulation (accordingly, accompanied by a suitable shift or scaling of the space variables) of the original solutions of the PWE, which are seen to be just conveyed by a linear and a quadratic exponential modulation of the relevant 'source' functions. We will see that recently introduced solutions of the 1D PWE in both rectangular and polar coordinates can be deduced from already known solutions through the resulting symmetry transformation related schemes

  19. Experiences with the quadratic Korringa-Kohn-Rostoker band theory method

    International Nuclear Information System (INIS)

    Faulkner, J.S.

    1992-01-01

    This paper reports on the Quadratic Korriga-Kohn-Rostoker method which is a fast band theory method in the sense that all eigenvalues for a given k are obtained from one matrix diagonalization, but it differs from other fast band theory methods in that it is derived entirely from multiple-scattering theory, without the introduction of a Rayleigh-Ritz variations step. In this theory, the atomic potentials are shifted by Δσ(r) with Δ equal to E-E 0 and σ(r) equal to one when r is inside the Wigner-Seitz cell and zero otherwise, and it turns out that the matrix of coefficients is an entire function of Δ. This matrix can be terminated to give a linear KKR, quadratic KKR, cubic KKR,..., or not terminated at all to give the pivoted multiple-scattering equations. Full potential are no harder to deal with than potentials with a shape approximation

  20. Modified Emden-type equation with dissipative term quadratic in velocity

    International Nuclear Information System (INIS)

    Ghosh, Subrata; Talukdar, B; Das, Umapada; Saha, Aparna

    2012-01-01

    Based on some physical observation we introduce a generalized modified Emden-type equation (MEE) with a position-dependent dissipative term which is quadratic in velocity. Unlike the usual MEE, the first integral of the proposed generalized MEE is such that one can express the velocity of the system as a function of coordinate for all values of the parameters of the system. This permits us to study the dynamical properties of the system using straightforward analytical methods. The results presented in the phase diagram and plots of vector fields clearly delineate how does the presence of quadratic damping affect the motion of our nonlinear oscillator. From the differential equation provided by the first integral of the generalized MEE, we have found an approximate analytical solution of the equation which reproduces the time variation of the corresponding numerical solution to a fair degree of accuracy. (paper)

  1. Non-chaotic behaviour for a class of quadratic jerk equations

    International Nuclear Information System (INIS)

    Malasoma, J.-M.

    2009-01-01

    It is shown that a class constituted by 27 different types of non-linear third-order differential equations of the form x - =j(x,x . ,x), where j is a quadratic polynomial with only one or two terms, and for which ∂j(x,y,z)/∂z is not a constant function of time, does not exhibit chaos. The three-dimensional dynamical systems associated to these equations are not necessarily dissipative everywhere nor conservative everywhere in the corresponding phase spaces. Our results include and improve some recent results obtained by Yang and Chen who only considered the case where j was a homogeneous quadratic polynomial with two terms.

  2. Equation for disentangling time-ordered exponentials with arbitrary quadratic generators

    International Nuclear Information System (INIS)

    Budanov, V.G.

    1987-01-01

    In many quantum-mechanical constructions, it is necessary to disentangle an operator-valued time-ordered exponential with time-dependent generators quadratic in the creation and annihilation operators. By disentangling, one understands the finding of the matrix elements of the time-ordered exponential or, in a more general formulation. The solution of the problem can also be reduced to calculation of a matrix time-ordered exponential that solves the corresponding classical problem. However, in either case the evolution equations in their usual form do not enable one to take into account explicitly the symmetry of the system. In this paper the methods of Weyl analysis are used to find an ordinary differential equation on a matrix Lie algebra that is invariant with respect to the adjoint action of the dynamical symmetry group of a quadratic Hamiltonian and replaces the operator evolution equation for the Green's function

  3. KENO-VI: A Monte Carlo Criticality Program with generalized quadratic geometry

    International Nuclear Information System (INIS)

    Hollenbach, D.F.; Petrie, L.M.; Landers, N.F.

    1993-01-01

    This report discusses KENO-VI which is a new version of the KENO monte Carlo Criticality Safety developed at Oak Ridge National Laboratory. The purpose of KENO-VI is to provide a criticality safety code similar to KENO-V.a that possesses a more general and flexible geometry package. KENO-VI constructs and processes geometry data as sets of quadratic equations. A lengthy set of simple, easy-to-use geometric functions, similar to those provided in KENO-V.a., and the ability to build more complex geometric shapes represented by sets of quadratic equations are the heart of the geometry package in KENO-VI. The code's flexibility is increased by allowing intersecting geometry regions, hexagonal as well as cuboidal arrays, and the ability to specify an array boundary that intersects the array

  4. Fitting timeseries by continuous-time Markov chains: A quadratic programming approach

    International Nuclear Information System (INIS)

    Crommelin, D.T.; Vanden-Eijnden, E.

    2006-01-01

    Construction of stochastic models that describe the effective dynamics of observables of interest is an useful instrument in various fields of application, such as physics, climate science, and finance. We present a new technique for the construction of such models. From the timeseries of an observable, we construct a discrete-in-time Markov chain and calculate the eigenspectrum of its transition probability (or stochastic) matrix. As a next step we aim to find the generator of a continuous-time Markov chain whose eigenspectrum resembles the observed eigenspectrum as closely as possible, using an appropriate norm. The generator is found by solving a minimization problem: the norm is chosen such that the object function is quadratic and convex, so that the minimization problem can be solved using quadratic programming techniques. The technique is illustrated on various toy problems as well as on datasets stemming from simulations of molecular dynamics and of atmospheric flows

  5. Impact of lung function on exacerbations, health care utilization, and costs among patients with COPD

    Directory of Open Access Journals (Sweden)

    Ke X

    2016-07-01

    Full Text Available Xuehua Ke,1 Jessica Marvel,2 Tzy-Chyi Yu,2 Debra Wertz,1 Caroline Geremakis,1 Liya Wang,1 Judith J Stephenson,1 David M Mannino3 1HealthCore Inc., Wilmington, DE, 2Novartis Pharmaceuticals Corporation, East Hanover, NJ, 3University of Kentucky, Lexington, KY, USA Objective: To evaluate the impact of lung function, measured as forced expiratory volume in 1 second (FEV1 % predicted, on health care resource utilization and costs among patients with COPD in a real-world US managed-care population.Methods: This observational retrospective cohort study utilized administrative claim data augmented with medical record data. The study population consisted of patients with one or more medical claims for pre- and postbronchodilator spirometry during the intake period (July 1, 2012 to June 30, 2013. The index date was the date of the earliest medical claim for pre- and postbronchodilator spirometry. Spirometry results were abstracted from patients’ medical records. Patients were divided into two groups (low FEV1% predicted [<50%] and high FEV1% predicted [≥50%] based on the 2014 Global Initiative for Chronic Obstructive Lung Disease report. Health care resource utilization and costs were based on the prevalence and number of discrete encounters during the 12-month postindex follow-up period. Costs were adjusted to 2014 US dollars.Results: A total of 754 patients were included (n=297 low FEV1% predicted group, n=457 high FEV1% predicted group. COPD exacerbations were more prevalent in the low FEV1% predicted group compared with the high group during the 12-month pre- (52.5% vs 39.6% and postindex periods (49.8% vs 36.8%. Mean (standard deviation follow-up all-cause and COPD-related costs were $27,380 ($38,199 and $15,873 ($29,609 for patients in the low FEV1% predicted group, and $22,075 ($28,108 and $10,174 ($18,521 for patients in the high group. In the multivariable analyses, patients in the low FEV1% predicted group were more likely to have COPD

  6. On the Distribution of Indefinite Quadratic Forms in Gaussian Random Variables

    KAUST Repository

    Al-Naffouri, Tareq Y.

    2015-10-30

    © 2015 IEEE. In this work, we propose a unified approach to evaluating the CDF and PDF of indefinite quadratic forms in Gaussian random variables. Such a quantity appears in many applications in communications, signal processing, information theory, and adaptive filtering. For example, this quantity appears in the mean-square-error (MSE) analysis of the normalized least-meansquare (NLMS) adaptive algorithm, and SINR associated with each beam in beam forming applications. The trick of the proposed approach is to replace inequalities that appear in the CDF calculation with unit step functions and to use complex integral representation of the the unit step function. Complex integration allows us then to evaluate the CDF in closed form for the zero mean case and as a single dimensional integral for the non-zero mean case. Utilizing the saddle point technique allows us to closely approximate such integrals in non zero mean case. We demonstrate how our approach can be extended to other scenarios such as the joint distribution of quadratic forms and ratios of such forms, and to characterize quadratic forms in isotropic distributed random variables.We also evaluate the outage probability in multiuser beamforming using our approach to provide an application of indefinite forms in communications.

  7. Exact solutions for an oscillator with anti-symmetric quadratic nonlinearity

    Science.gov (United States)

    Beléndez, A.; Martínez, F. J.; Beléndez, T.; Pascual, C.; Alvarez, M. L.; Gimeno, E.; Arribas, E.

    2018-04-01

    Closed-form exact solutions for an oscillator with anti-symmetric quadratic nonlinearity are derived from the first integral of the nonlinear differential equation governing the behaviour of this oscillator. The mathematical model is an ordinary second order differential equation in which the sign of the quadratic nonlinear term changes. Two parameters characterize this oscillator: the coefficient of the linear term and the coefficient of the quadratic term. Not only the common case in which both coefficients are positive but also all possible combinations of positive and negative signs of these coefficients which provide periodic motions are considered, giving rise to four different cases. Three different periods and solutions are obtained, since the same result is valid in two of these cases. An interesting feature is that oscillatory motions whose equilibrium points are not at x = 0 are also considered. The periods are given in terms of an incomplete or complete elliptic integral of the first kind, and the exact solutions are expressed as functions including Jacobi elliptic cosine or sine functions.

  8. Renormalization of correlations in a quasiperiodically forced two-level system: quadratic irrationals

    International Nuclear Information System (INIS)

    Mestel, B D; Osbaldestin, A H

    2004-01-01

    Generalizing from the case of golden mean frequency to a wider class of quadratic irrationals, we extend our renormalization analysis of the self-similarity of correlation functions in a quasiperiodically forced two-level system. We give a description of all piecewise-constant periodic orbits of an additive functional recurrence generalizing that present in the golden mean case. We establish a criterion for periodic orbits to be globally bounded, and also calculate the asymptotic height of the main peaks in the correlation function

  9. Relationship between functional fitness, medication costs and mood in elderly people

    Directory of Open Access Journals (Sweden)

    Michelli Luciana Massolini Laureano

    2014-06-01

    Full Text Available Objective: to verify if functional fitness (FF is associated with the annual cost of medication consumption and mood states (MSt in elderly people. Methods: a cross-sectional study with 229 elderly people aged 65 years or more at Santa Casa de Misericórdia de Coimbra, Portugal. Seniors with physical and psychological limitations were excluded, as well as those using medication that limits performance on the tests. The Senior Fitness Test was used to evaluate FF, and the Profile of Mood States - Short Form to evaluate the MSt. The statistical analysis was based on Mancova, with adjustment for age, for comparison between men and women, and adjustment for sex, for comparison between cardiorespiratory fitness quintiles. The association between the variables under study was made with partial correlation, controlling for the effects of age, sex and body mass index. Results: an inverse correlation between cardiorespiratory fitness and the annual cost of medication consumption was found (p < 0.01. FF is also inversely associated with MSt (p < 0.05. Comparisons between cardiorespiratory fitness quintiles showed higher medication consumption costs in seniors with lower aerobic endurance, as well as higher deterioration in MSt (p < 0.01. Conclusion: elderly people with better FF and, specifically, better cardiorespiratory fitness present lower medication consumption costs and a more positive MSt.

  10. Cost function estimates, scale economies and technological progress in the Turkish electricity generation sector

    International Nuclear Information System (INIS)

    Ali Akkemik, K.

    2009-01-01

    Turkish electricity sector has undergone significant institutional changes since 1984. The recent developments since 2001 including the setting up of a regulatory agency to undertake the regulation of the sector and increasing participation of private investors in the field of electricity generation are of special interest. This paper estimates cost functions and investigates the degree of scale economies, overinvestment, and technological progress in the Turkish electricity generation sector for the period 1984-2006 using long-run and short-run translog cost functions. Estimations were done for six groups of firms, public and private. The results indicate existence of scale economies throughout the period of analysis, hence declining long-run average costs. The paper finds empirical support for the Averch-Johnson effect until 2001, i.e., firms overinvested in an environment where there are excess returns to capital. But this effect was reduced largely after 2002. Technological progress deteriorated slightly from 1984-1993 to 1994-2001 but improved after 2002. Overall, the paper found that regulation of the market under the newly established regulating agency after 2002 was effective and there are potential gains from such regulation. (author)

  11. Comparison between linear quadratic and early time dose models

    International Nuclear Information System (INIS)

    Chougule, A.A.; Supe, S.J.

    1993-01-01

    During the 70s, much interest was focused on fractionation in radiotherapy with the aim of improving tumor control rate without producing unacceptable normal tissue damage. To compare the radiobiological effectiveness of various fractionation schedules, empirical formulae such as Nominal Standard Dose, Time Dose Factor, Cumulative Radiation Effect and Tumour Significant Dose, were introduced and were used despite many shortcomings. It has been claimed that a recent linear quadratic model is able to predict the radiobiological responses of tumours as well as normal tissues more accurately. We compared Time Dose Factor and Tumour Significant Dose models with the linear quadratic model for tumour regression in patients with carcinomas of the cervix. It was observed that the prediction of tumour regression estimated by the Tumour Significant Dose and Time Dose factor concepts varied by 1.6% from that of the linear quadratic model prediction. In view of the lack of knowledge of the precise values of the parameters of the linear quadratic model, it should be applied with caution. One can continue to use the Time Dose Factor concept which has been in use for more than a decade as its results are within ±2% as compared to that predicted by the linear quadratic model. (author). 11 refs., 3 figs., 4 tabs

  12. The Functional Breakdown Structure (FBS) and Its Relationship to Life Cycle Cost

    Science.gov (United States)

    DeHoff, Bryan; Levack, Danie J. H.; Rhodes, Russell E.

    2009-01-01

    The Functional Breakdown Structure (FBS) is a structured, modular breakdown of every function that must be addressed to perform a generic mission. It is also usable for any subset of the mission. Unlike a Work Breakdown Structure (WBS), the FBS is a function-oriented tree, not a product-oriented tree. The FBS details not products, but operations or activities that should be performed. The FBS is not tied to any particular architectural implementation because it is a listing of the needed functions, not the elements, of the architecture. The FBS for Space Transportation Systems provides a universal hierarchy of required functions, which include ground and space operations as well as infrastructure - it provides total visibility of the entire mission. By approaching the systems engineering problem from the functional view, instead of the element or hardware view, the SPST has created an exhaustive list of potential requirements which the architecture designers can use to evaluate the completeness of their designs. This is a new approach that will provide full accountability of all functions required to perform the planned mission. It serves as a giant check list to be sure that no functions are omitted, especially in the early architectural design phase. A significant characteristic of a FBS is that if architecture options are compared using this approach, then any missing or redundant elements of each option will be ' identified. Consequently, valid Life Cycle Costs (LCC) comparisons can be made. For example, one architecture option might not need a particular function while another option does. One option may have individual elements to perform each of three functions while another option needs only one element to perform the three functions. Once an architecture has been selected, the FBS will serve as a guide in development of the work breakdown structure, provide visibility of those technologies that need to be further developed to perform required functions

  13. The quadratic reciprocity law a collection of classical proofs

    CERN Document Server

    Baumgart, Oswald

    2015-01-01

    This book is the English translation of Baumgart’s thesis on the early proofs of the quadratic reciprocity law (“Über das quadratische Reciprocitätsgesetz. Eine vergleichende Darstellung der Beweise”), first published in 1885. It is divided into two parts. The first part presents a very brief history of the development of number theory up to Legendre, as well as detailed descriptions of several early proofs of the quadratic reciprocity law. The second part highlights Baumgart’s comparisons of the principles behind these proofs. A current list of all known proofs of the quadratic reciprocity law, with complete references, is provided in the appendix. This book will appeal to all readers interested in elementary number theory and the history of number theory.

  14. Quadratic algebra approach to relativistic quantum Smorodinsky-Winternitz systems

    International Nuclear Information System (INIS)

    Marquette, Ian

    2011-01-01

    There exists a relation between the Klein-Gordon and the Dirac equations with scalar and vector potentials of equal magnitude and the Schroedinger equation. We obtain the relativistic energy spectrum for the four relativistic quantum Smorodinsky-Winternitz systems from their quasi-Hamiltonian and the quadratic algebras studied by Daskaloyannis in the nonrelativistic context. We also apply the quadratic algebra approach directly to the initial Dirac equation for these four systems and show that the quadratic algebras obtained are the same than those obtained from the quasi-Hamiltonians. We point out how results obtained in context of quantum superintegrable systems and their polynomial algebras can be applied to the quantum relativistic case.

  15. The bounds of feasible space on constrained nonconvex quadratic programming

    Science.gov (United States)

    Zhu, Jinghao

    2008-03-01

    This paper presents a method to estimate the bounds of the radius of the feasible space for a class of constrained nonconvex quadratic programmingsE Results show that one may compute a bound of the radius of the feasible space by a linear programming which is known to be a P-problem [N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373-395]. It is proposed that one applies this method for using the canonical dual transformation [D.Y. Gao, Canonical duality theory and solutions to constrained nonconvex quadratic programming, J. Global Optimization 29 (2004) 377-399] for solving a standard quadratic programming problem.

  16. Every storage function is a state function

    NARCIS (Netherlands)

    Trentelman, H.L.; Willems, J.C.

    1997-01-01

    It is shown that for linear dynamical systems with quadratic supply rates, a storage function can always be written as a quadratic function of the state of an associated linear dynamical system. This dynamical system is obtained by combining the dynamics of the original system with the dynamics of

  17. Negative royalty in duopoly and definition of license fee: general demand and cost functions

    OpenAIRE

    Hattori, Masahiko; Tanaka, Yasuhito

    2017-01-01

    We examine the relationship between the definition of license fee and a possibility of negative royalty in a duopoly with an outside innovator which has an option to enter the market and imposes a combination of a royalty per output and a fixed fee under general demand and cost functions. We consider two scenarios about determination of license fee. One is a scenario which does not assume entry of the innovator, and the other is a scenario which takes a possibility of entry of the innovator i...

  18. Sequential Optimization of Global Sequence Alignments Relative to Different Cost Functions

    KAUST Repository

    Odat, Enas M.

    2011-01-01

    The algorithm has been simulated using C#.Net programming language and a number of experiments have been done to verify the proved statements. The results of these experiments show that the number of optimal alignments is reduced after each step of optimization. Furthermore, it has been verified that as the sequence length increased linearly then the number of optimal alignments increased exponentially which also depends on the cost function that is used. Finally, the number of executed operations increases polynomially as the sequence length increase linearly.

  19. Deriving the Quadratic Regression Equation Using Algebra

    Science.gov (United States)

    Gordon, Sheldon P.; Gordon, Florence S.

    2004-01-01

    In discussions with leading educators from many different fields, MAA's CRAFTY (Curriculum Renewal Across the First Two Years) committee found that one of the most common mathematical themes in those other disciplines is the idea of fitting a function to a set of data in the least squares sense. The representatives of those partner disciplines…

  20. Remarks on second-order quadratic systems in algebras

    Directory of Open Access Journals (Sweden)

    Art Sagle

    2017-10-01

    Full Text Available This paper is an addendum to our earlier paper [8], where a systematic study of quadratic systems of second order ordinary differential equations defined in commutative algebras was presented. Here we concentrate on special solutions and energy considerations of some quadratic systems defined in algebras which need not be commutative, however, we shall throughout assume the algebra to be associative. We here also give a positive answer to an open question, concerning periodic motions of such systems, posed in our earlier paper.

  1. New robust chaotic system with exponential quadratic term

    International Nuclear Information System (INIS)

    Bao Bocheng; Li Chunbiao; Liu Zhong; Xu Jianping

    2008-01-01

    This paper proposes a new robust chaotic system of three-dimensional quadratic autonomous ordinary differential equations by introducing an exponential quadratic term. This system can display a double-scroll chaotic attractor with only two equilibria, and can be found to be robust chaotic in a very wide parameter domain with positive maximum Lyapunov exponent. Some basic dynamical properties and chaotic behaviour of novel attractor are studied. By numerical simulation, this paper verifies that the three-dimensional system can also evolve into periodic and chaotic behaviours by a constant controller. (general)

  2. Smoothing optimization of supporting quadratic surfaces with Zernike polynomials

    Science.gov (United States)

    Zhang, Hang; Lu, Jiandong; Liu, Rui; Ma, Peifu

    2018-03-01

    A new optimization method to get a smooth freeform optical surface from an initial surface generated by the supporting quadratic method (SQM) is proposed. To smooth the initial surface, a 9-vertex system from the neighbor quadratic surface and the Zernike polynomials are employed to establish a linear equation system. A local optimized surface to the 9-vertex system can be build by solving the equations. Finally, a continuous smooth optimization surface is constructed by stitching the above algorithm on the whole initial surface. The spot corresponding to the optimized surface is no longer discrete pixels but a continuous distribution.

  3. Compensating the opportunity cost of forest functional zoning - two alternative options for the Romanian forest policy

    Directory of Open Access Journals (Sweden)

    Marian Drăgoi,

    2010-09-01

    Full Text Available An important challenge of the environmental policy is conceivingappropriate economic instruments able to account for the positive externalities provided by forest ecosystems. This issue is extremely important for implementing the provisions of the Romanian Forest Act, which states that forest owners shall be compensated for the opportunity costs of giving up harvesting operations due to various conservation purposes. The paper presents a statistical method based on analytical assessment of the effective forgone revenues brought about by banning the harvesting operations in 96 cases, each case being a distinctive forest management plan conceived for a large forest area, i.e. a production unit. Doing so, the scale effect has been taken into account because all legal provisions referring to forest management planning systems are focused on production units, considered the basic reference elements for sustainable forest management. The multiple regression function produced by the statistical analysis was turned into a simple formula allowing for a straightforward set up of the average compensation worth being paid per year and hectare. In order to better fetch the real opportunity cost paid for each hectare of protected forest, the algorithmwas further improved in order to account for the differences in stumpage residual value. Actually, the average compensation is differentiated onto five categories of hauling distances, using the same algorithm used by the National Forest Administration for differentiating the average reservation price established at national level on the ground of full-cost method stumpage pricing system.

  4. Compensating the opportunity cost of forest functional zoning - two alternative options for the Romanian forest policy

    Directory of Open Access Journals (Sweden)

    Marian Drăgoi

    2010-06-01

    Full Text Available An important challenge of the environmental policy is conceiving appropriate economic instruments able to account for the positive externalities provided by forest ecosystems. This issue is extremely important for implementing the provisions of the Romanian Forest Act, which states that forest owners shall be compensated for the opportunity costs of giving up harvesting operations due to various conservation purposes. The paper presents a statistical method based on analytical assessment of the effective forgone revenues brought about by banning the harvesting operations in 96 cases, each case being a distinctive forest management plan conceived for a large forest area, i.e. a production unit. Doing so, the scale effect has been taken into account because all legal provisions referring to forest management planning systems are focused on production units, considered the basic reference elements for sustainable forest management. The multiple regression function produced by the statistical analysis was turned into a simple formula allowing for a straightforward set up of the average compensation worth being paid per year and hectare. In order to better fetch the real opportunity cost paid for each hectare of protected forest, the algorithm was further improved in order to account for the differences in stumpage residual value. Actually, the average compensation is differentiated onto five categories of hauling distances, using the same algorithm used by the National Forest Administration for differentiating the average reservation price established at national level on the ground of full-cost method stumpage pricing system. 

  5. Quadratic adaptive algorithm for solving cardiac action potential models.

    Science.gov (United States)

    Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing

    2016-10-01

    An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. Copyright © 2016 Elsevier Ltd. All rights

  6. Rigid-Plastic Post-Buckling Analysis of Columns and Quadratic Plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    2008-01-01

    the compressive load as a function of the transverse displacement. An estimate of the magnitude of the transverse displacement prior to the forming of the collapse mechanism is introduced into the compressive load function, determined by the virtual work equation, thereby revealing a qualified estimate...... yield lines accommodate differential rotations of rigid parts and the area “collapse” yield lines accommodate local area changes of the rigid parts thereby preserving compatibility of the rigid parts of a plate. The approach will be illustrated for rigid plastic column analysis and for a quadratic plate...

  7. Inverse treatment planning for intensity modulated radiation therapy: CDVH treatment prescription with integral cost function

    International Nuclear Information System (INIS)

    Carol, M.P.; Nash, R.; Campbell, R.C.; Huber, R.

    1997-01-01

    Purpose/Objective: Inverse planning is a required approach when dealing with the complexity of variables present in an intensity modulated plan. However, an inverse planning system is only as useful as it is 1) easy to use and 2) predictable in its result. This is especially the case when the target goals and structure limits specified by the user all cannot be achieved. We have previously developed two interfaces for specifying how such conflicts should be resolved when they occur, that, although allowing a range of results to be obtained, still require 'trial and error' on the part of the user and are case dependent. A new method is explored with goals of allowing the desired results to be specified in an intuitive manner and producing predictable results that are case independent. Materials and Methods: Target goals and structure limits are specified by entering partial volume data: goal/limit, % under/over goal/limit, minimum, maximum. This data is converted to a CDVH curve for each target/structure. During the simulated annealing process used to produce an optimized solution, the actual CDVHs are compared to the desired CDVHs after each iteration and a cost is computed for the difference between the curves. For each curve, the cost is proportional to the difference in area between the desired and actual curves. This cost is controlled by three variables: offset (amount of difference before there is any cost), scale (the range the cost can take) and shape (the shape of the curve for difference versus cost). A range of values were explored for these variables in order to determine if predictable trade-offs would be made automatically by the system. The cost function was tested against a range of cases: a highly irregularly shaped intracranial lesion, a head and neck case with three target volumes with different prescriptions, and a prostate cancer. Results: By varying the values assigned to the control variables, a variety of predictable results could be

  8. Functional Status, Quality of Life, and Costs Associated With Fibromyalgia Subgroups: A Latent Profile Analysis.

    Science.gov (United States)

    Luciano, Juan V; Forero, Carlos G; Cerdà-Lafont, Marta; Peñarrubia-María, María Teresa; Fernández-Vergel, Rita; Cuesta-Vargas, Antonio I; Ruíz, José M; Rozadilla-Sacanell, Antoni; Sirvent-Alierta, Elena; Santo-Panero, Pilar; García-Campayo, Javier; Serrano-Blanco, Antoni; Pérez-Aranda, Adrián; Rubio-Valera, María

    2016-10-01

    Although fibromyalgia syndrome (FM) is considered a heterogeneous condition, there is no generally accepted subgroup typology. We used hierarchical cluster analysis and latent profile analysis to replicate Giesecke's classification in Spanish FM patients. The second aim was to examine whether the subgroups differed in sociodemographic characteristics, functional status, quality of life, and in direct and indirect costs. A total of 160 FM patients completed the following measures for cluster derivation: the Center for Epidemiological Studies-Depression Scale, the Trait Anxiety Inventory, the Pain Catastrophizing Scale, and the Control over Pain subscale. Pain threshold was measured with a sphygmomanometer. In addition, the Fibromyalgia Impact Questionnaire-Revised, the EuroQoL-5D-3L, and the Client Service Receipt Inventory were administered for cluster validation. Two distinct clusters were identified using hierarchical cluster analysis ("hypersensitive" group, 69.8% and "functional" group, 30.2%). In contrast, the latent profile analysis goodness-of-fit indices supported the existence of 3 FM patient profiles: (1) a "functional" profile (28.1%) defined as moderate tenderness, distress, and pain catastrophizing; (2) a "dysfunctional" profile (45.6%) defined by elevated tenderness, distress, and pain catastrophizing; and (3) a "highly dysfunctional and distressed" profile (26.3%) characterized by elevated tenderness and extremely high distress and catastrophizing. We did not find significant differences in sociodemographic characteristics between the 2 clusters or among the 3 profiles. The functional profile was associated with less impairment, greater quality of life, and lower health care costs. We identified 3 distinct profiles which accounted for the heterogeneity of FM patients. Our findings might help to design tailored interventions for FM patients.

  9. Cost Effectiveness of a Home-Based Intervention That Helps Functionally Vulnerable Older Adults Age in Place at Home

    Directory of Open Access Journals (Sweden)

    Eric Jutkowitz

    2012-01-01

    Full Text Available Evaluating cost effectiveness of interventions for aging in place is essential for adoption in service settings. We present the cost effectiveness of Advancing Better Living for Elders (ABLE, previously shown in a randomized trial to reduce functional difficulties and mortality in 319 community-dwelling elders. ABLE involved occupational and physical therapy sessions and home modifications to address client-identified functional difficulties, performance goals, and home safety. Incremental cost-effectiveness ratio (ICER, expressed as additional cost to bring about one additional year of life, was calculated. Two models were then developed to account for potential cost differences in implementing ABLE. Probabilistic sensitivity analyses were conducted to account for variations in model parameters. By two years, there were 30 deaths (9: ABLE; 21: control. Additional costs for 1 additional year of life was $13,179 for Model 1 and $14,800 for Model 2. Investment in ABLE may be worthwhile depending on society's willingness to pay.

  10. Appraising the Cost Efficiency of Higher Technological and Vocational Education Institutions in Taiwan Using the Metafrontier Cost-Function Model

    Science.gov (United States)

    Lu, Yung-Hsiang; Chen, Ku-Hsieh

    2013-01-01

    This paper aims at appraising the cost efficiency and technology of institutions of higher technological and vocational education. Differing from conventional literature, it considers the potential influence of inherent discrepancies in output quality and characteristics of school systems for institutes of technology (ITs) and universities of…

  11. Estimating quadratic variation using realized variance

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    with a rather general SV model - which is a special case of the semimartingale model. Then QV is integrated variance and we can derive the asymptotic distribution of the RV and its rate of convergence. These results do not require us to specify a model for either the drift or volatility functions, although we...... have to impose some weak regularity assumptions. We illustrate the use of the limit theory on some exchange rate data and some stock data. We show that even with large values of M the RV is sometimes a quite noisy estimator of integrated variance. Copyright © 2002 John Wiley & Sons, Ltd....

  12. Non normal and non quadratic anisotropic plasticity coupled with ductile damage in sheet metal forming: Application to the hydro bulging test

    International Nuclear Information System (INIS)

    Badreddine, Houssem; Saanouni, Khemaies; Dogui, Abdelwaheb

    2007-01-01

    In this work an improved material model is proposed that shows good agreement with experimental data for both hardening curves and plastic strain ratios in uniaxial and equibiaxial proportional loading paths for steel metal until the final fracture. This model is based on non associative and non normal flow rule using two different orthotropic equivalent stresses in both yield criterion and plastic potential functions. For the plastic potential the classical Hill 1948 quadratic equivalent stress is considered while for the yield criterion the Karafillis and Boyce 1993 non quadratic equivalent stress is used taking into account the non linear mixed (kinematic and isotropic) hardening. Applications are made to hydro bulging tests using both circular and elliptical dies. The results obtained with different particular cases of the model such as the normal quadratic and the non normal non quadratic cases are compared and discussed with respect to the experimental results

  13. Decentralized linear quadratic power system stabilizers for multi ...

    Indian Academy of Sciences (India)

    Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not ...

  14. Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip

    2016-01-01

    We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...

  15. Initial post dynamic buckling of a quadratic-cubic column ...

    African Journals Online (AJOL)

    In this investigation, we determine the dynamic buckling load of an imperfect finite column resting on a mixed quadratic-cubic nonlinear elastic foundation trapped by an explicitly time dependent sinusoidally slowly varying dynamic load .The resultant coefficients are dynamically slowly varying and the formulation contains ...

  16. Quadratic algebras in the noncommutative integration method of wave equation

    International Nuclear Information System (INIS)

    Varaksin, O.L.

    1995-01-01

    The paper deals with the investigation of applications of the method of noncommutative integration of linear differential equations by partial derivatives. Nontrivial example was taken for integration of three-dimensions wave equation with the use of non-Abelian quadratic algebras

  17. Propagator of a time-dependent unbound quadratic Hamiltonian system

    International Nuclear Information System (INIS)

    Yeon, K.H.; Kim, H.J.; Um, C.I.; George, T.F.; Pandey, L.N.

    1996-01-01

    The propagator for a time-dependent unbound quadratic Hamiltonian system is explicitly evaluated using the path integral method. Two time-invariant quantities of the system are found where these invariants determine whether or not the system is bound. Several examples are considered to illustrate that the propagator obtained for the unbound systems is correct

  18. On Fredholm-Stieltjes quadratic integral equation with supremum

    International Nuclear Information System (INIS)

    Darwish, M.A.

    2007-08-01

    We prove an existence theorem of monotonic solutions for a quadratic integral equation of Fredholm-Stieltjes type in C[0,1]. The concept of measure of non-compactness and a fixed point theorem due to Darbo are the main tools in carrying out our proof. (author)

  19. Pareto optimality in infinite horizon linear quadratic differential games

    NARCIS (Netherlands)

    Reddy, P.V.; Engwerda, J.C.

    2013-01-01

    In this article we derive conditions for the existence of Pareto optimal solutions for linear quadratic infinite horizon cooperative differential games. First, we present a necessary and sufficient characterization for Pareto optimality which translates to solving a set of constrained optimal

  20. Quadratic Poisson brackets compatible with an algebra structure

    OpenAIRE

    Balinsky, A. A.; Burman, Yu.

    1994-01-01

    Quadratic Poisson brackets on a vector space equipped with a bilinear multiplication are studied. A notion of a bracket compatible with the multiplication is introduced and an effective criterion of such compatibility is given. Among compatible brackets, a subclass of coboundary brackets is described, and such brackets are enumerated in a number of examples.

  1. On misclassication probabilities of linear and quadratic classiers ...

    African Journals Online (AJOL)

    We study the theoretical misclassication probability of linear and quadratic classiers and examine the performance of these classiers under distributional variations in theory and using simulation. We derive expression for Bayes errors for some competing distributions from the same family under location shift. Keywords: ...

  2. A Unified Approach to Teaching Quadratic and Cubic Equations.

    Science.gov (United States)

    Ward, A. J. B.

    2003-01-01

    Presents a simple method for teaching the algebraic solution of cubic equations via completion of the cube. Shows that this method is readily accepted by students already familiar with completion of the square as a method for quadratic equations. (Author/KHR)

  3. Analysis of Quadratic Diophantine Equations with Fibonacci Number Solutions

    Science.gov (United States)

    Leyendekkers, J. V.; Shannon, A. G.

    2004-01-01

    An analysis is made of the role of Fibonacci numbers in some quadratic Diophantine equations. A general solution is obtained for finding factors in sums of Fibonacci numbers. Interpretation of the results is facilitated by the use of a modular ring which also permits extension of the analysis.

  4. Visualising the Complex Roots of Quadratic Equations with Real Coefficients

    Science.gov (United States)

    Bardell, Nicholas S.

    2012-01-01

    The roots of the general quadratic equation y = ax[superscript 2] + bx + c (real a, b, c) are known to occur in the following sets: (i) real and distinct; (ii) real and coincident; and (iii) a complex conjugate pair. Case (iii), which provides the focus for this investigation, can only occur when the values of the real coefficients a, b, and c are…

  5. Nonlocal description of X waves in quadratic nonlinear materials

    DEFF Research Database (Denmark)

    Larsen, Peter Ulrik Vingaard; Sørensen, Mads Peter; Bang, Ole

    2006-01-01

    We study localized light bullets and X-waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multi-dimensional nonlinear waves. For X-waves we show that a local cascading limit in terms of a nonlinear Schrodinger equation...

  6. Linear and quadratic in temperature resistivity from holography

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xian-Hui [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai 200444 (China); Shanghai Key Lab for Astrophysics,100 Guilin Road, 200234 Shanghai (China); Tian, Yu [School of Physics, University of Chinese Academy of Sciences,Beijing, 100049 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai 200444 (China); Wu, Shang-Yu [Department of Electrophysics, National Chiao Tung University,Hsinchu 300 (China); Wu, Shao-Feng [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai 200444 (China); Shanghai Key Lab for Astrophysics,100 Guilin Road, 200234 Shanghai (China)

    2016-11-22

    We present a new black hole solution in the asymptotic Lifshitz spacetime with a hyperscaling violating factor. A novel computational method is introduced to compute the DC thermoelectric conductivities analytically. We find that both the linear-T and quadratic-T contributions to the resistivity can be realized, indicating that a more detailed comparison with experimental phenomenology can be performed in this scenario.

  7. On the Balancing of the SMOS Ocean Salinity Retrieval Cost Function

    Science.gov (United States)

    Sabia, R.; Camps, A.; Portabella, M.; Talone, M.; Ballabrera, J.; Gourrion, J.; Gabarró, C.; Aretxabaleta, A. L.; Font, J.

    2009-04-01

    The Soil Moisture and Ocean Salinity (SMOS) mission will be launched in mid 2009 to provide synoptic sea surface salinity (SSS) measurements with good temporal resolution [1]. To obtain a proper estimation of the SSS fields derived from the multi-angular brightness temperatures (TB) measured by the Microwave Interferometric Radiometer by Aperture Synthesis (MIRAS) sensor, a comprehensive inversion procedure has been defined [2]. Nevertheless, several salinity retrieval issues remain critical, namely: 1) Scene-dependent bias in the simulated TBs, 2) L-band forward geophysical model function definition, 3) Auxiliary data uncertainties, 4) Constraints in the cost function (inversion), especially in salinity term, and 5) Adequate spatio-temporal averaging. These issues will have to be properly addressed in order to meet the proposed accuracy requirement of the mission: a demanding 0.1 psu (practical salinity units) after averaging in a 30-day and 2°x2° spatio-temporal boxes. The salinity retrieval cost function minimizes the difference between the multi-angular measured SMOS TBs (yet simulated, so far) and the modeled TBs, weighted by the corresponding radiometric noise of the measurements. Furthermore, due to the fact that the minimization problem is both non-linear and ill-posed, background reference terms are needed to nudge the solution and ensuring convergence at the same time [3]. Constraining terms in SSS, sea surface temperature (SST) and wind speed are considered with their respective uncertainties. Moreover, whether SSS constraints have to be included or not as part of the retrieval procedure is still a matter of debate. On one hand, neglecting background reference information on SSS might prevent from retrieving salinity with the prescribed accuracy or at least within reasonable error. Conversely, including constraints in SSS, relying for instance on the climatology, may force the retrieved value to be too close to the reference prior values, thus

  8. As Bad as it Gets: How Climate Damage Functions Affect Growth and the Social Cost of Carbon

    OpenAIRE

    Bretschger, Lukas; Pattakou, Aimilia

    2017-01-01

    The paper analyzes the effects of varying climate impacts on the social cost of carbon and economic growth. We use polynomial damage functions in a model of an endogenously growing two-sector economy. The framework includes nonrenewable natural resources which cause greenhouse gas emissions; pollution stock harms capital and reduces economic growth. We find a big effect of the selected damage function on the social cost of carbon and a significant impact on the growth rate. In our calibration...

  9. An Augmented Lagrangian Method for a Class of Inverse Quadratic Programming Problems

    International Nuclear Information System (INIS)

    Zhang Jianzhong; Zhang Liwei

    2010-01-01

    We consider an inverse quadratic programming (QP) problem in which the parameters in the objective function of a given QP problem are adjusted as little as possible so that a known feasible solution becomes the optimal one. We formulate this problem as a minimization problem with a positive semidefinite cone constraint and its dual is a linearly constrained semismoothly differentiable (SC 1 ) convex programming problem with fewer variables than the original one. We demonstrate the global convergence of the augmented Lagrangian method for the dual problem and prove that the convergence rate of primal iterates, generated by the augmented Lagrange method, is proportional to 1/r, and the rate of multiplier iterates is proportional to 1/√r, where r is the penalty parameter in the augmented Lagrangian. As the objective function of the dual problem is a SC 1 function involving the projection operator onto the cone of symmetrically semi-definite matrices, the analysis requires extensive tools such as the singular value decomposition of matrices, an implicit function theorem for semismooth functions, and properties of the projection operator in the symmetric-matrix space. Furthermore, the semismooth Newton method with Armijo line search is applied to solve the subproblems in the augmented Lagrange approach, which is proven to have global convergence and local quadratic rate. Finally numerical results, implemented by the augmented Lagrangian method, are reported.

  10. Network resilience against intelligent attacks constrained by the degree-dependent node removal cost

    International Nuclear Information System (INIS)

    Annibale, A; Coolen, A C C; Bianconi, G

    2010-01-01

    We study the resilience of complex networks against attacks in which nodes are targeted intelligently, but where disabling a node has a cost to the attacker which depends on its degree. Attackers have to meet these costs with limited resources, which constrains their actions. A network's integrity is quantified in terms of the efficacy of the process that it supports. We calculate how the optimal attack strategy and the most attack-resistant network degree statistics depend on the node removal cost function and the attack resources. The resilience of networks against intelligent attacks is found to depend strongly on the node removal cost function faced by the attacker. In particular, if node removal costs increase sufficiently fast with the node degree, power law networks are found to be more resilient than Poissonian ones, even against optimized intelligent attacks. For cost functions increasing quadratically in the node degrees, intelligent attackers cannot damage the network more than random damages would.

  11. Quadratic polynomial interpolation on triangular domain

    Science.gov (United States)

    Li, Ying; Zhang, Congcong; Yu, Qian

    2018-04-01

    In the simulation of natural terrain, the continuity of sample points are not in consonance with each other always, traditional interpolation methods often can't faithfully reflect the shape information which lie in data points. So, a new method for constructing the polynomial interpolation surface on triangular domain is proposed. Firstly, projected the spatial scattered data points onto a plane and then triangulated them; Secondly, A C1 continuous piecewise quadric polynomial patch was constructed on each vertex, all patches were required to be closed to the line-interpolation one as far as possible. Lastly, the unknown quantities were gotten by minimizing the object functions, and the boundary points were treated specially. The result surfaces preserve as many properties of data points as possible under conditions of satisfying certain accuracy and continuity requirements, not too convex meantime. New method is simple to compute and has a good local property, applicable to shape fitting of mines and exploratory wells and so on. The result of new surface is given in experiments.

  12. Cost Function Network-based Design of Protein-Protein Interactions: predicting changes in binding affinity.

    Science.gov (United States)

    Viricel, Clément; de Givry, Simon; Schiex, Thomas; Barbe, Sophie

    2018-02-20

    Accurate and economic methods to predict change in protein binding free energy upon mutation are imperative to accelerate the design of proteins for a wide range of applications. Free energy is defined by enthalpic and entropic contributions. Following the recent progresses of Artificial Intelligence-based algorithms for guaranteed NP-hard energy optimization and partition function computation, it becomes possible to quickly compute minimum energy conformations and to reliably estimate the entropic contribution of side-chains in the change of free energy of large protein interfaces. Using guaranteed Cost Function Network algorithms, Rosetta energy functions and Dunbrack's rotamer library, we developed and assessed EasyE and JayZ, two methods for binding affinity estimation that ignore or include conformational entropic contributions on a large benchmark of binding affinity experimental measures. If both approaches outperform most established tools, we observe that side-chain conformational entropy brings little or no improvement on most systems but becomes crucial in some rare cases. as open-source Python/C ++ code at sourcesup.renater.fr/projects/easy-jayz. thomas.schiex@inra.fr and sophie.barbe@insa-toulouse.fr. Supplementary data are available at Bioinformatics online.

  13. Functional outcome and cost-effectiveness of pulsed electromagnetic fields in the treatment of acute scaphoid fractures: a cost-utility analysis.

    Science.gov (United States)

    Hannemann, Pascal F W; Essers, Brigitte A B; Schots, Judith P M; Dullaert, Koen; Poeze, Martijn; Brink, Peter R G

    2015-04-11

    Physical forces have been widely used to stimulate bone growth in fracture repair. Addition of bone growth stimulation to the conservative treatment regime is more costly than standard health care. However, it might lead to cost-savings due to a reduction of the total amount of working days lost. This economic evaluation was performed to assess the cost-effectiveness of Pulsed Electromagnetic Fields (PEMF) compared to standard health care in the treatment of acute scaphoid fractures. An economic evaluation was carried out from a societal perspective, alongside a double-blind, randomized, placebo-controlled, multicenter trial involving five centres in The Netherlands. One hundred and two patients with a clinically and radiographically proven fracture of the scaphoid were included in the study and randomly allocated to either active bone growth stimulation or standard health care, using a placebo. All costs (medical costs and costs due to productivity loss) were measured during one year follow up. Functional outcome and general health related quality of life were assessed by the EuroQol-5D and PRWHE (patient rated wrist and hand evaluation) questionnaires. Utility scores were derived from the EuroQol-5D. The average total number of working days lost was lower in the active PEMF group (9.82 days) compared to the placebo group (12.91 days) (p = 0.651). Total medical costs of the intervention group (€1594) were significantly higher compared to the standard health care (€875). The total amount of mean QALY's (quality-adjusted life year) for the active PEMF group was 0.84 and 0.85 for the control group. The cost-effectiveness plane shows that the majority of all cost-effectiveness ratios fall into the quadrant where PEMF is not only less effective in terms of QALY's but also more costly. This study demonstrates that the desired effects in terms of cost-effectiveness are not met. When comparing the effects of PEMF to standard health care in terms of QALY's, PEMF

  14. Cost-effective data storage/archival subsystem for functional PACS

    Science.gov (United States)

    Chen, Y. P.; Kim, Yongmin

    1993-09-01

    Not the least of the requirements of a workable PACS is the ability to store and archive vast amounts of information. A medium-size hospital will generate between 1 and 2 TBytes of data annually on a fully functional PACS. A high-speed image transmission network coupled with a comparably high-speed central data storage unit can make local memory and magnetic disks in the PACS workstations less critical and, in an extreme case, unnecessary. Under these circumstances, the capacity and performance of the central data storage subsystem and database is critical in determining the response time at the workstations, thus significantly affecting clinical acceptability. The central data storage subsystem not only needs to provide sufficient capacity to store about ten days worth of images (five days worth of new studies, and on the average, about one comparison study for each new study), but also supplies images to the requesting workstation in a timely fashion. The database must provide fast retrieval responses upon users' requests for images. This paper analyzes both advantages and disadvantages of multiple parallel transfer disks versus RAID disks for short-term central data storage subsystem, as well as optical disk jukebox versus digital recorder tape subsystem for long-term archive. Furthermore, an example high-performance cost-effective storage subsystem which integrates both the RAID disks and high-speed digital tape subsystem as a cost-effective PACS data storage/archival unit are presented.

  15. Optimal replacement time estimation for machines and equipment based on cost function

    Directory of Open Access Journals (Sweden)

    J. Šebo

    2013-01-01

    Full Text Available The article deals with a multidisciplinary issue of estimating the optimal replacement time for the machines. Considered categories of machines, for which the optimization method is usable, are of the metallurgical and engineering production. Different models of cost function are considered (both with one and two variables. Parameters of the models were calculated through the least squares method. Models testing show that all are good enough, so for estimation of optimal replacement time is sufficient to use simpler models. In addition to the testing of models we developed the method (tested on selected simple model which enable us in actual real time (with limited data set to indicate the optimal replacement time. The indicated time moment is close enough to the optimal replacement time t*.

  16. The costs of functional gastrointestinal disorders and related signs and symptoms in infants: a systematic literature review and cost calculation for England.

    Science.gov (United States)

    Mahon, James; Lifschitz, Carlos; Ludwig, Thomas; Thapar, Nikhil; Glanville, Julie; Miqdady, Mohamad; Saps, Miguel; Quak, Seng Hock; Lenoir Wijnkoop, Irene; Edwards, Mary; Wood, Hannah; Szajewska, Hania

    2017-11-14

    To estimate the cost of functional gastrointestinal disorders (FGIDs) and related signs and symptoms in infants to the third party payer and to parents. To estimate the cost of illness (COI) of infant FGIDs, a two-stage process was applied: a systematic literature review and a COI calculation. As no pertinent papers were found in the systematic literature review, a 'de novo' analysis was performed. For the latter, the potential costs for the third party payer (the National Health Service (NHS) in England) and for parents/carers for the treatment of FGIDs in infants were calculated, by using publicly available data. In constructing the calculation, estimates and assumptions (where necessary) were chosen to provide a lower bound (minimum) of the potential overall cost. In doing so, the interpretation of the calculation is that the true COI can be no lower than that estimated. Our calculation estimated that the total costs of treating FGIDs in infants in England were at least £72.3 million per year in 2014/2015 of which £49.1 million was NHS expenditure on prescriptions, community care and hospital treatment. Parents incurred £23.2 million in costs through purchase of over the counter remedies. The total cost presented here is likely to be a significant underestimate as only lower bound estimates were used where applicable, and for example, costs of alternative therapies, inpatient treatments or diagnostic tests, and time off work by parents could not be adequately estimated and were omitted from the calculation. The number and kind of prescribed products and products sold over the counter to treat FGIDs suggest that there are gaps between treatment guidelines, which emphasise parental reassurance and nutritional advice, and their implementation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Semi-Supervised Half-Quadratic Nonnegative Matrix Factorization for Face Recognition

    KAUST Repository

    Alghamdi, Masheal M.

    2014-05-01

    Face recognition is a challenging problem in computer vision. Difficulties such as slight differences between similar faces of different people, changes in facial expressions, light and illumination condition, and pose variations add extra complications to the face recognition research. Many algorithms are devoted to solving the face recognition problem, among which the family of nonnegative matrix factorization (NMF) algorithms has been widely used as a compact data representation method. Different versions of NMF have been proposed. Wang et al. proposed the graph-based semi-supervised nonnegative learning (S2N2L) algorithm that uses labeled data in constructing intrinsic and penalty graph to enforce separability of labeled data, which leads to a greater discriminating power. Moreover the geometrical structure of labeled and unlabeled data is preserved through using the smoothness assumption by creating a similarity graph that conserves the neighboring information for all labeled and unlabeled data. However, S2N2L is sensitive to light changes, illumination, and partial occlusion. In this thesis, we propose a Semi-Supervised Half-Quadratic NMF (SSHQNMF) algorithm that combines the benefits of S2N2L and the robust NMF by the half- quadratic minimization (HQNMF) algorithm.Our algorithm improves upon the S2N2L algorithm by replacing the Frobenius norm with a robust M-Estimator loss function. A multiplicative update solution for our SSHQNMF algorithmis driven using the half- 4 quadratic (HQ) theory. Extensive experiments on ORL, Yale-A and a subset of the PIE data sets for nine M-estimator loss functions for both SSHQNMF and HQNMF algorithms are investigated, and compared with several state-of-the-art supervised and unsupervised algorithms, along with the original S2N2L algorithm in the context of classification, clustering, and robustness against partial occlusion. The proposed algorithm outperformed the other algorithms. Furthermore, SSHQNMF with Maximum Correntropy

  18. Automatic monitoring of ecosystem structure and functions using integrated low-cost near surface sensors

    Science.gov (United States)

    Kim, J.; Ryu, Y.; Jiang, C.; Hwang, Y.

    2016-12-01

    Near surface sensors are able to acquire more reliable and detailed information with higher temporal resolution than satellite observations. Conventional near surface sensors usually work individually, and thus they require considerable manpower from data collection through information extraction and sharing. Recent advances of Internet of Things (IoT) provides unprecedented opportunities to integrate various low-cost sensors as an intelligent near surface observation system for monitoring ecosystem structure and functions. In this study, we developed a Smart Surface Sensing System (4S), which can automatically collect, transfer, process and analyze data, and then publish time series results on public-available website. The system is composed of micro-computer Raspberry pi, micro-controller Arduino, multi-spectral spectrometers made from Light Emitting Diode (LED), visible and near infrared cameras, and Internet module. All components are connected with each other and Raspberry pi intelligently controls the automatic data production chain. We did intensive tests and calibrations in-lab. Then, we conducted in-situ observations at a rice paddy field and a deciduous broadleaf forest. During the whole growth season, 4S obtained landscape images, spectral reflectance in red, green, blue, and near infrared, normalized difference vegetation index (NDVI), fraction of photosynthetically active radiation (fPAR), and leaf area index (LAI) continuously. Also We compared 4S data with other independent measurements. NDVI obtained from 4S agreed well with Jaz hyperspectrometer at both diurnal and seasonal scales (R2 = 0.92, RMSE = 0.059), and 4S derived fPAR and LAI were comparable to LAI-2200 and destructive measurements in both magnitude and seasonal trajectory. We believe that the integrated low-cost near surface sensor could help research community monitoring ecosystem structure and functions closer and easier through a network system.

  19. Simultaneous bilateral anterior cruciate ligament reconstruction: Cost comparison and functional results

    Directory of Open Access Journals (Sweden)

    Matjaž Sajovic

    2014-04-01

    Full Text Available Background: The ideal treatment for patients presenting with bilateral anterior cruciate ligament (ACL deficiency remains controversial. The purpose was to evaluate cost and mid-term functional results after one-stage bilateral ACL reconstruction using either hamstring or patella tendon autograft.Methods: We compared the mid-term outcome of 7 patients (14 knees who had one-stage bilateral ACL reconstruction with that of a matched group of patients who had unilateral reconstruction (21 patients.Results: The median duration of hospital stay was 4 nights (range 3 to 5 for the bilateral group and 2 nights (range, 1 to 4 for the control group. The duration of rehabilitation process in patients from the control group with unilateral ACL reconstruction was one week shorter (9 versus 8 weeks. In the bilateral group, the median Lysholm score was 96 (range 85–100 and in the control group, the median score was 93 (range 81–100. The median time to return to full-time work and to full sports was 9 weeks and 7 months for the simultaneous bilateral group and 8 weeks and 6 months for the unilateral group. Six patients (86 % in the bilateral group and 17 patients (81 % in the control group were still performing at their pre-injury level of activity. The Health Insurance Institute of Slovenia saves EUR 2,925 when we perform simultaneous bilateral ACL reconstruction instead of two stage ACL reconstruction.Conclusions: Mid-term clinical results suggested that simultaneous bilateral ACL reconstruction using either hamstring or patella tendon autograft is clinically effective. For patients presenting with symptomatic bilateral ACL deficient knees, one stage bilateral ACL reconstruction is reproducible, cost effective, and does not compromise functional results.

  20. Stochastic multiresonance for a fractional linear oscillator with time-delayed kernel and quadratic noise

    Science.gov (United States)

    Guo, Feng; Wang, Xue-Yuan; Zhu, Cheng-Yin; Cheng, Xiao-Feng; Zhang, Zheng-Yu; Huang, Xu-Hui

    2017-12-01

    The stochastic resonance for a fractional oscillator with time-delayed kernel and quadratic trichotomous noise is investigated. Applying linear system theory and Laplace transform, the system output amplitude (SPA) for the fractional oscillator is obtained. It is found that the SPA is a periodical function of the kernel delayed-time. Stochastic multiplicative phenomenon appears on the SPA versus the driving frequency, versus the noise amplitude, and versus the fractional exponent. The non-monotonous dependence of the SPA on the system parameters is also discussed.

  1. A sequential quadratic programming algorithm using an incomplete solution of the subproblem

    Energy Technology Data Exchange (ETDEWEB)

    Murray, W. [Stanford Univ., CA (United States). Systems Optimization Lab.; Prieto, F.J. [Universidad `Carlos III` de Madrid (Spain). Dept. de Estadistica y Econometria

    1993-05-01

    We analyze sequential quadratic programming (SQP) methods to solve nonlinear constrained optimization problems that are more flexible in their definition than standard SQP methods. The type of flexibility introduced is motivated by the necessity to deviate from the standard approach when solving large problems. Specifically we no longer require a minimizer of the QP subproblem to be determined or particular Lagrange multiplier estimates to be used. Our main focus is on an SQP algorithm that uses a particular augmented Lagrangian merit function. New results are derived for this algorithm under weaker conditions than previously assumed; in particular, it is not assumed that the iterates lie on a compact set.

  2. Newton-Raphson based modified Laplace Adomian decomposition method for solving quadratic Riccati differential equations

    Directory of Open Access Journals (Sweden)

    Mishra Vinod

    2016-01-01

    Full Text Available Numerical Laplace transform method is applied to approximate the solution of nonlinear (quadratic Riccati differential equations mingled with Adomian decomposition method. A new technique is proposed in this work by reintroducing the unknown function in Adomian polynomial with that of well known Newton-Raphson formula. The solutions obtained by the iterative algorithm are exhibited in an infinite series. The simplicity and efficacy of method is manifested with some examples in which comparisons are made among the exact solutions, ADM (Adomian decomposition method, HPM (Homotopy perturbation method, Taylor series method and the proposed scheme.

  3. The cyclicity of period annulus of a quadratic reversible Lotka–Volterra system

    International Nuclear Information System (INIS)

    Li, Chengzhi; Llibre, Jaume

    2009-01-01

    We prove that by perturbing the periodic annulus of the quadratic polynomial reversible Lotka–Volterra differential system, inside the class of all quadratic polynomial differential systems we can obtain at most two limit cycles

  4. A cost function for the natural gas transmission industry: further considerations

    International Nuclear Information System (INIS)

    Massol, O.

    2009-09-01

    This article studies the cost function for the natural gas transmission industry. 60 years ago, Hollis B. Chenery published an important contribution that demonstrated how, in that particular industry, the production function of micro-economic theory can be rewritten with engineering variables (Chenery, 1949). In 2008, an article published in The Engineering Economist (Yepez, 2008) provided a refreshing revival on Chenery's seminal thoughts. In addition to a tribute to the late H.B. Chenery, this document offers some further comments and extensions on Yepez (2008). It provides a statistically estimated characterisation of the long-run scale economies and a discussion on the short-run economics of the duplication of existing equipments. As a first extension, we study the optimal design for infrastructure that is planned to transport a seasonally-varying flow of natural gas. The second extension analyzes the optimal degree of excess capacity to be built into a new infrastructure by a firm that expects a random rise in its output during the infrastructure's lifetime. (author)

  5. Induced motion of domain walls in multiferroics with quadratic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimchuk, Victor S., E-mail: viktor.gera@gmail.com [National Technical University of Ukraine “Kyiv Polytechnic Institute”, Peremohy Avenue 37, 03056 Kiev (Ukraine); Shitov, Anatoliy A., E-mail: shitov@mail.ru [Donbass National Academy of Civil Engineering, Derzhavina Street 2, 86123 Makeevka, Donetsk Region (Ukraine)

    2013-10-15

    We theoretically study the dynamics of 180-degree domain wall of the ab-type in magnetic materials with quadratic magnetoelectric interaction in external alternating magnetic and electric fields. The features of the oscillatory and translational motions of the domain walls and stripe structures depending on the parameters of external fields and characteristics of the multiferroics are discussed. The possibility of the domain walls drift in a purely electric field is established. - Highlights: • We study DW and stripe DS in multiferroics with quadratic magnetoelectric interaction. • We build up the theory of oscillatory and translational (drift) DW and DS motion. • DW motion can be caused by crossed alternating electric and magnetic fields. • DW motion can be caused by alternating “pure” electric field. • DW drift velocity is formed by the AFM and Dzyaloshinskii interaction terms.

  6. Two healing lengths in a two-band GL-model with quadratic terms: Numerical results

    Science.gov (United States)

    Macias-Medri, A. E.; Rodríguez-Núñez, J. J.

    2018-05-01

    A two-band and quartic interaction order Ginzburg-Landau model in the presence of a single vortex is studied in this work. Interactions of second (quadratic, with coupling parameter γ) and fourth (quartic, with coupling parameter γ˜) order between the two superconducting order parameters (fi with i = 1,2) are incorporated in a functional. Terms beyond quadratic gradient contributions are neglected in the corresponding minimized free energy. The solution of the system of coupled equations is solved by numerical methods to obtain the fi-profiles, where our starting point was the calculation of the superconducting critical temperature Tc. With this at hand, we evaluate fi and the magnetic field along the z-axis, B0, as function of γ, γ˜, the radial distance r/λ1(0) and the temperature T, for T ≈ Tc. The self-consistent equations allow us to compute λ (penetration depth) and the healing lengths of fi (Lhi with i = 1,2) as functions of T, γ and γ˜. At the end, relevant discussions about type-1.5 superconductivity in the compounds we have studied are presented.

  7. Linear Quadratic Controller with Fault Detection in Compact Disk Players

    DEFF Research Database (Denmark)

    Vidal, Enrique Sanchez; Hansen, K.G.; Andersen, R.S.

    2001-01-01

    The design of the positioning controllers in Optical Disk Drives are today subjected to a trade off between an acceptable suppression of external disturbances and an acceptable immunity against surfaces defects. In this paper an algorithm is suggested to detect defects of the disk surface combined...... with an observer and a Linear Quadratic Regulator. As a result, the mentioned trade off is minimized and the playability of the tested compact disk player is considerably enhanced....

  8. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

    Science.gov (United States)

    Acikmese, Ahmet Behcet; Corless, Martin

    2004-01-01

    We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

  9. Information sets as permutation cycles for quadratic residue codes

    Directory of Open Access Journals (Sweden)

    Richard A. Jenson

    1982-01-01

    Full Text Available The two cases p=7 and p=23 are the only known cases where the automorphism group of the [p+1,   (p+1/2] extended binary quadratic residue code, O(p, properly contains PSL(2,p. These codes have some of their information sets represented as permutation cycles from Aut(Q(p. Analysis proves that all information sets of Q(7 are so represented but those of Q(23 are not.

  10. Stationary walking solitons in bulk quadratic nonlinear media

    OpenAIRE

    Mihalache, Dumitru; Mazilu, D; Crasonavn, L C; Torner Sabata, Lluís

    1997-01-01

    We study the mutual trapping of fundamental and second-harmonic light beams propagating in bulk quadratic nonlinear media in the presence of Poynting vector beam walk-off. We show numerically the existence of a two-parameter family of (2 + 1)-dimensional stationary, spatial walking solitons. We have found that the solitons exist at various values of material parameters with different wave intensities and soliton velocities. We discuss the differences between (2 + 1) and (1 + 1)-dimensional wa...

  11. Bifurcation in Z2-symmetry quadratic polynomial systems with delay

    International Nuclear Information System (INIS)

    Zhang Chunrui; Zheng Baodong

    2009-01-01

    Z 2 -symmetry systems are considered. Firstly the general forms of Z 2 -symmetry quadratic polynomial system are given, and then a three-dimensional Z 2 equivariant system is considered, which describes the relations of two predator species for a single prey species. Finally, the explicit formulas for determining the Fold and Hopf bifurcations are obtained by using the normal form theory and center manifold argument.

  12. Design of Linear-Quadratic-Regulator for a CSTR process

    Science.gov (United States)

    Meghna, P. R.; Saranya, V.; Jaganatha Pandian, B.

    2017-11-01

    This paper aims at creating a Linear Quadratic Regulator (LQR) for a Continuous Stirred Tank Reactor (CSTR). A CSTR is a common process used in chemical industries. It is a highly non-linear system. Therefore, in order to create the gain feedback controller, the model is linearized. The controller is designed for the linearized model and the concentration and volume of the liquid in the reactor are kept at a constant value as required.

  13. Integrable systems with quadratic nonlinearity in Fourier space

    International Nuclear Information System (INIS)

    Marikhin, V.G.

    2003-01-01

    The Lax pair representation in Fourier space is used to obtain a list of integrable scalar evolutionary equations with quadratic nonlinearity. The known systems of this type such as KdV, intermediate long-wave equation (ILW), Camassa-Holm and Degasperis-Procesi systems are represented in this list. Some new systems are obtained as well. Two-dimensional and discrete generalizations are discussed

  14. Complex eigenvalues for neutron transport equation with quadratically anisotropic scattering

    International Nuclear Information System (INIS)

    Sjoestrand, N.G.

    1981-01-01

    Complex eigenvalues for the monoenergetic neutron transport equation in the buckling approximation have been calculated for various combinations of linearly and quadratically anisotropic scattering. The results are discussed in terms of the time-dependent case. Tables are given of complex bucklings for real decay constants and of complex decay constants for real bucklings. The results fit nicely into the pattern of real and purely imaginary eigenvalues obtained earlier. (author)

  15. Lead Coolant Test Facility Technical and Functional Requirements, Conceptual Design, Cost and Construction Schedule

    International Nuclear Information System (INIS)

    Soli T. Khericha

    2006-01-01

    This report presents preliminary technical and functional requirements (T and FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements of basis are identified: Develop and Demonstrate Prototype Lead/Lead-Bismuth Liquid Metal Flow Loop Develop and Demonstrate Feasibility of Submerged Heat Exchanger Develop and Demonstrate Open-lattice Flow in Electrically Heated Core Develop and Demonstrate Chemistry Control Demonstrate Safe Operation and Provision for Future Testing. These five broad areas are divided into twenty-one (21) specific requirements ranging from coolant temperature to design lifetime. An overview of project engineering requirements, design requirements, QA and environmental requirements are also presented. The purpose of this T and FRs is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 420 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M. It is also estimated that the facility will require two years to be constructed and ready for operation

  16. Design of reinforced areas of concrete column using quadratic polynomials

    Science.gov (United States)

    Arif Gunadi, Tjiang; Parung, Herman; Rachman Djamaluddin, Abd; Arwin Amiruddin, A.

    2017-11-01

    Designing of reinforced concrete columns mostly carried out by a simple planning method which uses column interaction diagram. However, the application of this method is limited because it valids only for certain compressive strenght of the concrete and yield strength of the reinforcement. Thus, a more applicable method is still in need. Another method is the use of quadratic polynomials as a basis for the approach in designing reinforced concrete columns, where the ratio of neutral lines to the effective height of a cross section (ξ) if associated with ξ in the same cross-section with different reinforcement ratios is assumed to form a quadratic polynomial. This is identical to the basic principle used in the Simpson rule for numerical integral using quadratic polynomials and had a sufficiently accurate level of accuracy. The basis of this approach to be used both the normal force equilibrium and the moment equilibrium. The abscissa of the intersection of the two curves is the ratio that had been mentioned, since it fulfill both of the equilibrium. The application of this method is relatively more complicated than the existing method but provided with tables and graphs (N vs ξN ) and (M vs ξM ) so that its used could be simplified. The uniqueness of these tables are only distinguished based on the compresssive strength of the concrete, so in application it could be combined with various yield strenght of the reinforcement available in the market. This method could be solved by using programming languages such as Fortran.

  17. Measurement of quadratic electrogyration effect in castor oil

    Science.gov (United States)

    Izdebski, Marek; Ledzion, Rafał; Górski, Piotr

    2015-07-01

    This work presents a detailed analysis of electrogyration measurement in liquids with the usage of an optical polarimetric technique. Theoretical analysis of the optical response to an applied electric field is illustrated by experimental data for castor oil which exhibits natural optical activity, quadratic electro-optic effect and quadratic electrogyration effect. Moreover, the experimental data show that interaction of the oil with a pair of flat electrodes induces a significant dichroism and natural linear birefringence. The combination of these effects occurring at the same time complicates the procedure of measurements. It has been found that a single measurement is insufficient to separate the contribution of the electrogyration effect, but it is possible on the basis of several measurements performed with various orientations of the polarizer and the analyser. The obtained average values of the quadratic electrogyration coefficient β13 in castor oil at room temperature are from - 0.92 ×10-22 to - 1.44 ×10-22m2V-2 depending on the origin of the oil. Although this study is focused on measurements in castor oil, the presented analysis is much more general.

  18. An Improved Weise’s Rule for Efficient Estimation of Stand Quadratic Mean Diameter

    Directory of Open Access Journals (Sweden)

    Róbert Sedmák

    2015-07-01

    Full Text Available The main objective of this study was to explore the accuracy of Weise’s rule of thumb applied to an estimation of the quadratic mean diameter of a forest stand. Virtual stands of European beech (Fagus sylvatica L. across a range of structure types were stochastically generated and random sampling was simulated. We compared the bias and accuracy of stand quadratic mean diameter estimates, employing different ranks of measured stems from a set of the 10 trees nearest to the sampling point. We proposed several modifications of the original Weise’s rule based on the measurement and averaging of two different ranks centered to a target rank. In accordance with the original formulation of the empirical rule, we recommend the application of the measurement of the 6th stem in rank corresponding to the 55% sample percentile of diameter distribution, irrespective of mean diameter size and degree of diameter dispersion. The study also revealed that the application of appropriate two-measurement modifications of Weise’s method, the 4th and 8th ranks or 3rd and 9th ranks averaged to the 6th central rank, should be preferred over the classic one-measurement estimation. The modified versions are characterised by an improved accuracy (about 25% without statistically significant bias and measurement costs comparable to the classic Weise method.

  19. Evaluation of a photovoltaic energy mechatronics system with a built-in quadratic maximum power point tracking algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chao, R.M.; Ko, S.H.; Lin, I.H. [Department of Systems and Naval Mechatronics Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China); Pai, F.S. [Department of Electronic Engineering, National University of Tainan (China); Chang, C.C. [Department of Environment and Energy, National University of Tainan (China)

    2009-12-15

    The historically high cost of crude oil price is stimulating research into solar (green) energy as an alternative energy source. In general, applications with large solar energy output require a maximum power point tracking (MPPT) algorithm to optimize the power generated by the photovoltaic effect. This work aims to provide a stand-alone solution for solar energy applications by integrating a DC/DC buck converter to a newly developed quadratic MPPT algorithm along with its appropriate software and hardware. The quadratic MPPT method utilizes three previously used duty cycles with their corresponding power outputs. It approaches the maximum value by using a second order polynomial formula, which converges faster than the existing MPPT algorithm. The hardware implementation takes advantage of the real-time controller system from National Instruments, USA. Experimental results have shown that the proposed solar mechatronics system can correctly and effectively track the maximum power point without any difficulties. (author)

  20. Cost of reproduction in a long-lived bird: incubation effort reduces immune function and future reproduction.

    Science.gov (United States)

    Hanssen, Sveinn Are; Hasselquist, Dennis; Folstad, Ivar; Erikstad, Kjell Einar

    2005-05-22

    Life-history theory predicts that increased current reproductive effort should lead to a fitness cost. This cost of reproduction may be observed as reduced survival or future reproduction, and may be caused by temporal suppression of immune function in stressed or hard-working individuals. In birds, consideration of the costs of incubating eggs has largely been neglected in favour of the costs of brood rearing. We manipulated incubation demand in two breeding seasons (2000 and 2001) in female common eiders (Somateria mollissima) by creating clutches of three and six eggs (natural range 3-6 eggs). The common eider is a long-lived sea-duck where females do not eat during the incubation period. Mass loss increased and immune function (lymphocyte levels and specific antibody response to the non-pathogenic antigens diphtheria and tetanus toxoid) was reduced in females incubating large clutches. The increased incubation effort among females assigned to large incubation demand did not lead to adverse effects on current reproduction or return rate in the next breeding season. However, large incubation demand resulted in long-term fitness costs through reduced fecundity the year after manipulation. Our data show that in eiders, a long-lived species, the cost of high incubation demand is paid in the currency of reduced future fecundity, possibly mediated by reduced immune function.

  1. Hospital costs estimation and prediction as a function of patient and admission characteristics.

    Science.gov (United States)

    Ramiarina, Robert; Almeida, Renan Mvr; Pereira, Wagner Ca

    2008-01-01

    The present work analyzed the association between hospital costs and patient admission characteristics in a general public hospital in the city of Rio de Janeiro, Brazil. The unit costs method was used to estimate inpatient day costs associated to specific hospital clinics. With this aim, three "cost centers" were defined in order to group direct and indirect expenses pertaining to the clinics. After the costs were estimated, a standard linear regression model was developed for correlating cost units and their putative predictors (the patients gender and age, the admission type (urgency/elective), ICU admission (yes/no), blood transfusion (yes/no), the admission outcome (death/no death), the complexity of the medical procedures performed, and a risk-adjustment index). Data were collected for 3100 patients, January 2001-January 2003. Average inpatient costs across clinics ranged from (US$) 1135 [Orthopedics] to 3101 [Cardiology]. Costs increased according to increases in the risk-adjustment index in all clinics, and the index was statistically significant in all clinics except Urology, General surgery, and Clinical medicine. The occupation rate was inversely correlated to costs, and age had no association with costs. The (adjusted) per cent of explained variance varied between 36.3% [Clinical medicine] and 55.1% [Thoracic surgery clinic]. The estimates are an important step towards the standardization of hospital costs calculation, especially for countries that lack formal hospital accounting systems.

  2. Cost functions and the electric utility industry. A contribution to the debate on deregulation

    International Nuclear Information System (INIS)

    Ramos-Real, F.J.

    2005-01-01

    This study analyses the main articles that estimate cost functions in the electricity utility industry with a view to studying of the initial arguments for proposing competition and vertical disintegration. The works reviewed here, in general terms, confirm the initial arguments in favour of the deregulation process, mainly, the exhaustion of scale economies for moderate size firms in generation and the condition of natural monopoly for transmission and distribution. However, the savings obtained from undertaking different activities together should be kept in mind when restructuring the sector. On the other hand, the improvements in productivity deriving from the reforms have not translated into reductions in the price of electricity in many countries. These last two results suggest the need for appropriate market regulation for the deregulation process to translate into an improvement in how the sector works and into benefits for consumers. There is still insufficient empirical literature on these issues due to the fact that the process is still ongoing in many countries and more time will have to transpire before sufficient data is available

  3. DSPSO-TSA for economic dispatch problem with nonsmooth and noncontinuous cost functions

    International Nuclear Information System (INIS)

    Khamsawang, S.; Jiriwibhakorn, S.

    2010-01-01

    This paper proposes a new approach based on particle swarm optimization (PSO) and tabu search algorithm (TSA). This proposed approach is called distributed Sobol PSO and TSA (DSPSO-TSA). In order to improve the convergence characteristic and solution quality of searching process, three mechanisms had been presented. Firstly, the Sobol sequence is applied to generate an inertia factor instead of the existing process. Secondly, a distributed process is used so as to reach the global solution rapidly. The search process is divided to multi-stages and used a short-term memory for recognition the best search history. Finally, to guarantee the global solution, TSA had been activated to adjust the obtained solution of DSPSO algorithm. To show its effectiveness, the proposed DSPSO-TSA is applied to test four case studies of economic dispatch (ED) problem considering nonsmooth and noncontinuous fuel cost functions of generating units. The simulation results obtained from DSPSO-TSA are compared with conventional approaches such as genetic algorithm (GA), TSA, PSO, and others in literatures. The comparison results show that the efficiency of proposed approach can reach higher quality solution and faster computational time than the conventional methods.

  4. Blind polarization demultiplexing by constructing a cost function for coherent optical PDM-OFDM.

    Science.gov (United States)

    Yu, Zhenming; Chen, Minghua; Chen, Hongwei; Yi, Xingwen; Yang, Sigang; Xie, Shizhong

    2015-07-13

    We propose a training symbols-free polarization demultiplexing method by constructing a cost function (CCF-PDM) for coherent optical PDM-OFDM. This method is applicable for high-speed, wide-bandwidth OFDM signals, different subcarrier modulation formats and long-haul transmission. It shows comparable performance with that of conventional method but without overhead and converges fast. Since the neighboring subcarriers experience similar polarization effects, we set the initial matrix parameters by the neighboring subcarrier to reduce the number of iteration for the gradient algorithm and prevent swapping the data of the two orthogonal polarizations. We verify this method in experiment by transmitting 66.6-Gb/s PDM-OFDM signal with 4QAM subcarrier modulation over 5440 km SSMF and 133.3-Gb/s PDM-OFDM signal with 16QAM subcarrier modulation over 960 km SSMF respectively. We compare its performance with that of training symbols. We also analyze the convergence speed of this method.

  5. DSPSO-TSA for economic dispatch problem with nonsmooth and noncontinuous cost functions

    Energy Technology Data Exchange (ETDEWEB)

    Khamsawang, S., E-mail: k_suwit999@yahoo.co [Electrical Engineering Department, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Ladkrabang District 10520, Bangkok (Thailand); Jiriwibhakorn, S., E-mail: kjsomcha@kmitl.ac.t [Electrical Engineering Department, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Ladkrabang District 10520, Bangkok (Thailand)

    2010-02-15

    This paper proposes a new approach based on particle swarm optimization (PSO) and tabu search algorithm (TSA). This proposed approach is called distributed Sobol PSO and TSA (DSPSO-TSA). In order to improve the convergence characteristic and solution quality of searching process, three mechanisms had been presented. Firstly, the Sobol sequence is applied to generate an inertia factor instead of the existing process. Secondly, a distributed process is used so as to reach the global solution rapidly. The search process is divided to multi-stages and used a short-term memory for recognition the best search history. Finally, to guarantee the global solution, TSA had been activated to adjust the obtained solution of DSPSO algorithm. To show its effectiveness, the proposed DSPSO-TSA is applied to test four case studies of economic dispatch (ED) problem considering nonsmooth and noncontinuous fuel cost functions of generating units. The simulation results obtained from DSPSO-TSA are compared with conventional approaches such as genetic algorithm (GA), TSA, PSO, and others in literatures. The comparison results show that the efficiency of proposed approach can reach higher quality solution and faster computational time than the conventional methods.

  6. Improved normal tissue sparing in head and neck radiotherapy using biological cost function based-IMRT.

    Science.gov (United States)

    Anderson, N; Lawford, C; Khoo, V; Rolfo, M; Joon, D L; Wada, M

    2011-12-01

    Intensity-modulated radiotherapy (IMRT) has reduced the impact of acute and late toxicities associated with head and neck radiotherapy. Treatment planning system (TPS) advances in biological cost function based optimization (BBO) and improved segmentation techniques have increased organ at risk (OAR) sparing compared to conventional dose-based optimization (DBO). A planning study was undertaken to compare OAR avoidance in DBO and BBO treatment planning. Simultaneous integrated boost treatment plans were produced for 10 head and neck patients using both planning systems. Plans were compared for tar get coverage and OAR avoidance. Comparisons were made using the BBO TPS Monte Carlo dose engine to eliminate differences due to inherent algorithms. Target coverage (V95%) was maintained for both solutions. BBO produced lower OAR doses, with statistically significant improvement to left (12.3%, p = 0.005) and right parotid mean dose (16.9%, p = 0.004), larynx V50_Gy (71.0%, p = 0.005), spinal cord (21.9%, p < 0.001) and brain stem dose maximums (31.5%, p = 0.002). This study observed improved OAR avoidance with BBO planning. Further investigations will be undertaken to review any clinical benefit of this improved planned dosimetry.

  7. Spatial statistics of pitting corrosion patterning: Quadrat counts and the non-homogeneous Poisson process

    International Nuclear Information System (INIS)

    Lopez de la Cruz, J.; Gutierrez, M.A.

    2008-01-01

    This paper presents a stochastic analysis of spatial point patterns as effect of localized pitting corrosion. The Quadrat Counts method is studied with two empirical pit patterns. The results are dependent on the quadrat size and bias is introduced when empty quadrats are accounted for the analysis. The spatially inhomogeneous Poisson process is used to improve the performance of the Quadrat Counts method. The latter combines Quadrat Counts with distance-based statistics in the analysis of pit patterns. The Inter-Event and the Nearest-Neighbour statistics are here implemented in order to compare their results. Further, the treatment of patterns in irregular domains is discussed

  8. Optimal Cost-Analysis and Design of Circular Footings

    Directory of Open Access Journals (Sweden)

    Prabir K. Basudhar

    2012-10-01

    Full Text Available The study pertains to the optimal cost-analysis and design of a circular footing subjected to generalized loadings using sequential unconstrained minimization technique (SUMT in conjunction with Powell’s conjugate direction method for multidimensional search and quadratic interpolation method for one dimensional minimization. The cost of the footing is minimized satisfying all the structural and geotechnical engineering design considerations. As extended penalty function method has been used to convert the constrained problem into an unconstrained one, the developed technique is capable of handling both feasible and infeasible initial design vector. The net saving in cost starting from the best possible manual design ranges from 10 to 20 %. For all practical purposes, the optimum cost is independent of the initial design point. It was observed that for better convergence, the transition parameter  should be chosen at least 100 times the initial penalty parameter kr .

  9. An efficient inverse radiotherapy planning method for VMAT using quadratic programming optimization.

    Science.gov (United States)

    Hoegele, W; Loeschel, R; Merkle, N; Zygmanski, P

    2012-01-01

    The purpose of this study is to investigate the feasibility of an inverse planning optimization approach for the Volumetric Modulated Arc Therapy (VMAT) based on quadratic programming and the projection method. The performance of this method is evaluated against a reference commercial planning system (eclipse(TM) for rapidarc(TM)) for clinically relevant cases. The inverse problem is posed in terms of a linear combination of basis functions representing arclet dose contributions and their respective linear coefficients as degrees of freedom. MLC motion is decomposed into basic motion patterns in an intuitive manner leading to a system of equations with a relatively small number of equations and unknowns. These equations are solved using quadratic programming under certain limiting physical conditions for the solution, such as the avoidance of negative dose during optimization and Monitor Unit reduction. The modeling by the projection method assures a unique treatment plan with beneficial properties, such as the explicit relation between organ weightings and the final dose distribution. Clinical cases studied include prostate and spine treatments. The optimized plans are evaluated by comparing isodose lines, DVH profiles for target and normal organs, and Monitor Units to those obtained by the clinical treatment planning system eclipse(TM). The resulting dose distributions for a prostate (with rectum and bladder as organs at risk), and for a spine case (with kidneys, liver, lung and heart as organs at risk) are presented. Overall, the results indicate that similar plan qualities for quadratic programming (QP) and rapidarc(TM) could be achieved at significantly more efficient computational and planning effort using QP. Additionally, results for the quasimodo phantom [Bohsung et al., "IMRT treatment planning: A comparative inter-system and inter-centre planning exercise of the estro quasimodo group," Radiother. Oncol. 76(3), 354-361 (2005)] are presented as an example

  10. Optimization of airfoil-type PCHE for the recuperator of small scale brayton cycle by cost-based objective function

    International Nuclear Information System (INIS)

    Kwon, Jin Gyu; Kim, Tae Ho; Park, Hyun Sun; Cha, Jae Eun; Kim, Moo Hwan

    2016-01-01

    Highlights: • Suggest the Nusselt number and Fanning friction factor correlation for airfoil-type PCHE. • Show that cost-based optimization is available to airfoil-type PCHE. • Suggest the recuperator design for SCIEL test loop at KAERI by cost-based objective function with correlations from numerical analysis. - Abstract: Supercritical carbon dioxide (SCO_2) Brayton cycle gives high efficiency of power cycle with small size. Printed circuit heat exchangers (PCHE) are proper selection for the Brayton cycle because their operability at high temperature and high pressure with small size. Airfoil fin PCHE was suggested by Kim et al. (2008b), it can provide high heat transfer-like zigzag channel PCHE with low pressure drop-like straight channel PCHE. Optimization of the airfoil fin PCHE was not performed like the zigzag channel PCHE. For optimization of the airfoil fin PCHE, the operating condition of the recuperator of SCO_2 Integral Experiment Loop (SCIEL) Brayton cycle test loop at Korea Atomic Energy Research Institute (KAERI) was used. We performed CFD analysis for various airfoil fin configurations using ANSYS CFX 15.0, and made correlations for predicting the Nusselt number and the Fanning friction factor. The recuperator was designed by the simple energy balance code with our correlations. Using the cost-based objective function with production cost and operation cost from size and pressure drop of the recuperator, we evaluated airfoil fin configuration by using total cost and suggested the optimization configuration of the airfoil fin PCHE.

  11. Optimization of airfoil-type PCHE for the recuperator of small scale brayton cycle by cost-based objective function

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jin Gyu [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Tae Ho [Department of Mechanical Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Cha, Jae Eun [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of)

    2016-03-15

    Highlights: • Suggest the Nusselt number and Fanning friction factor correlation for airfoil-type PCHE. • Show that cost-based optimization is available to airfoil-type PCHE. • Suggest the recuperator design for SCIEL test loop at KAERI by cost-based objective function with correlations from numerical analysis. - Abstract: Supercritical carbon dioxide (SCO{sub 2}) Brayton cycle gives high efficiency of power cycle with small size. Printed circuit heat exchangers (PCHE) are proper selection for the Brayton cycle because their operability at high temperature and high pressure with small size. Airfoil fin PCHE was suggested by Kim et al. (2008b), it can provide high heat transfer-like zigzag channel PCHE with low pressure drop-like straight channel PCHE. Optimization of the airfoil fin PCHE was not performed like the zigzag channel PCHE. For optimization of the airfoil fin PCHE, the operating condition of the recuperator of SCO{sub 2} Integral Experiment Loop (SCIEL) Brayton cycle test loop at Korea Atomic Energy Research Institute (KAERI) was used. We performed CFD analysis for various airfoil fin configurations using ANSYS CFX 15.0, and made correlations for predicting the Nusselt number and the Fanning friction factor. The recuperator was designed by the simple energy balance code with our correlations. Using the cost-based objective function with production cost and operation cost from size and pressure drop of the recuperator, we evaluated airfoil fin configuration by using total cost and suggested the optimization configuration of the airfoil fin PCHE.

  12. Equation of costs and function objective for the optimization of the design of nets of flow of liquids to pressure

    International Nuclear Information System (INIS)

    Narvaez R, Paulo Cesar; Galeano P, Haiver

    2002-01-01

    Optimal design problem of liquid distribution systems has been viewed as the selection of pipe sizes and pumps, which will minimize overall costs, accomplishing the flow and pressure constraints. There is a set of methods for least cost design of liquids distribution networks (6). In the last years, some of them have been studied broadly: linear programming (1, 4, 5, 7], non-linear programming [8, 9], and genetic algorithms (3, 10, 13). This paper describes the development of a cost equation and the objective function for liquid distribution networks that together to the mathematical model and the solution method of the flow problem developed by Narvaez (11), were used by in a computer model that involves the application of an genetic algorithm to the problem of least cost design of liquids distribution networks

  13. Vacuum solutions of Bianchi cosmologies in quadratic gravity

    International Nuclear Information System (INIS)

    Deus, Juliano Alves de; Muller, Daniel

    2011-01-01

    Full text: In this work we solve numerically the vacuum solutions of field equations of Bianchi homogeneous universes in the context of Semiclassical theory. Our interest is to study the quadratic theory of gravity with regard in the cosmological description of our universe in periods of intense fields. Bianchi cosmologies are anisotropic homogeneous cosmological models, but can include the isotropic models as particular cases (Bianchi I, VII and IX include homogeneous and isotropic Friedmann models plane, hyperbolic and spherical, respectively). Homogeneous models are good cosmological representations of our universe. With focus in solutions for intense fields, like the early universe, where isotropy is not necessarily required, the adopted scenario is the vacuum solutions, where the geometry is dominant in determining the gravitation. Still following in this way, the Semiclassical theory, which considers quantum matter fields propagating in classical geometrical background, is addressed to give the field equations. This formalism leads to fourth-order ordinary differential equations, in contrast to second-order equations from General Relativity. The Lagrangian of the theory is quadratic in the Ricci scalar and in the Ricci tensor. The equations system is highly non-linear and can be only numerically solved, except perhaps for few particular cases. We obtained numerical solutions for Bianchi V II A evolving to Minkowski and to de Sitter solutions, and also to singularities. The both first and second solutions were obtained choosing initial conditions near from respective exact vacuum solutions from Einstein theory, which are also exact solutions of the quadratic theory. Other Bianchi types are still under study. (author)

  14. Oral nutritional support in malnourished elderly decreases functional limitations with no extra costs

    NARCIS (Netherlands)

    Neelemaat, Floor; Bosmans, Judith E; Thijs, Abel; Seidell, Jaap C; van Bokhorst-de van der Schueren, Marian A E

    2012-01-01

    BACKGROUND & AIMS: Older people are vulnerable to malnutrition which leads to increased health care costs. The aim of this study was to evaluate the cost-effectiveness of nutritional supplementation from a societal perspective. DESIGN: This randomized controlled trial included hospital admitted

  15. BRST operator for superconformal algebras with quadratic nonlinearity

    International Nuclear Information System (INIS)

    Khviengia, Z.; Sezgin, E.

    1993-07-01

    We construct the quantum BRST operators for a large class of superconformal and quasi-superconformal algebras with quadratic nonlinearity. The only free parameter in these algebras is the level of the (super) Kac-Moody sector. The nilpotency of the quantum BRST operator imposes a condition on the level. We find this condition for (quasi) superconformal algebras with a Kac-Moody sector based on a simple Lie algebra and for the Z 2 x Z 2 -graded superconformal algebras with a Kac-Moody sector based on the superalgebra osp(N modul 2M) or sl (N + 2 modul N). (author). 22 refs, 3 tabs

  16. On Exponential Hedging and Related Quadratic Backward Stochastic Differential Equations

    International Nuclear Information System (INIS)

    Sekine, Jun

    2006-01-01

    The dual optimization problem for the exponential hedging problem is addressed with a cone constraint. Without boundedness conditions on the terminal payoff and the drift of the Ito-type controlled process, the backward stochastic differential equation, which has a quadratic growth term in the drift, is derived as a necessary and sufficient condition for optimality via a variational method and dynamic programming. Further, solvable situations are given, in which the value and the optimizer are expressed in closed forms with the help of the Clark-Haussmann-Ocone formula

  17. Abelian groups and quadratic residues in weak arithmetic

    Czech Academy of Sciences Publication Activity Database

    Jeřábek, Emil

    2010-01-01

    Roč. 56, č. 3 (2010), s. 262-278 ISSN 0942-5616 R&D Projects: GA AV ČR IAA1019401; GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10190503 Keywords : bounded arithmetic * abelian group * Fermat's little theorem * quadratic reciprocity Subject RIV: BA - General Mathematics Impact factor: 0.361, year: 2010 http://onlinelibrary.wiley.com/doi/10.1002/malq.200910009/abstract;jsessionid=9F636FFACB84C025FD90C7E6880350DD.f03t03

  18. Analysis of electroperforated materials using the quadrat counts method

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, E; Garzon, C; Garcia-Garcia, J [Departament d' Enginyeria Electronica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); MartInez-Cisneros, C; Alonso, J, E-mail: enrique.miranda@uab.cat [Departament de Quimica AnalItica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2011-06-23

    The electroperforation distribution in thin porous materials is investigated using the quadrat counts method (QCM), a classical statistical technique aimed to evaluate the deviation from complete spatial randomness (CSR). Perforations are created by means of electrical discharges generated by needle-like tungsten electrodes. The objective of perforating a thin porous material is to enhance its air permeability, a critical issue in many industrial applications involving paper, plastics, textiles, etc. Using image analysis techniques and specialized statistical software it is shown that the perforation locations follow, beyond a certain length scale, a homogeneous 2D Poisson distribution.

  19. C1 Rational Quadratic Trigonometric Interpolation Spline for Data Visualization

    Directory of Open Access Journals (Sweden)

    Shengjun Liu

    2015-01-01

    Full Text Available A new C1 piecewise rational quadratic trigonometric spline with four local positive shape parameters in each subinterval is constructed to visualize the given planar data. Constraints are derived on these free shape parameters to generate shape preserving interpolation curves for positive and/or monotonic data sets. Two of these shape parameters are constrained while the other two can be set free to interactively control the shape of the curves. Moreover, the order of approximation of developed interpolant is investigated as O(h3. Numeric experiments demonstrate that our method can construct nice shape preserving interpolation curves efficiently.

  20. Soliton interaction in quadratic and cubic bulk media

    DEFF Research Database (Denmark)

    Johansen, Steffen Kjær; Bang, Ole

    2000-01-01

    Summary form only given. The understanding of how and to what extend the cubic nonlinearity affects beam propagation and spatial soliton formation in quadratic media is of vital importance in fundamental and applied nonlinear physics. We consider beam propagation under type-I SHG conditions...... in lossless bulk second order nonlinear optical materials with a nonvanishing third order nonlinearity. It is known that in pure second order systems a single soliton can never collapse whereas in systems with both nonlinearities and that stable single soliton propagation can only in some circumstances...

  1. Linear-quadratic model predictions for tumor control probability

    International Nuclear Information System (INIS)

    Yaes, R.J.

    1987-01-01

    Sigmoid dose-response curves for tumor control are calculated from the linear-quadratic model parameters α and Β, obtained from human epidermoid carcinoma cell lines, and are much steeper than the clinical dose-response curves for head and neck cancers. One possible explanation is the presence of small radiation-resistant clones arising from mutations in an initially homogeneous tumor. Using the mutation theory of Delbruck and Luria and of Goldie and Coldman, the authors discuss the implications of such radiation-resistant clones for clinical radiation therapy

  2. Sub-quadratic decoding of one-point hermitian codes

    DEFF Research Database (Denmark)

    Nielsen, Johan Sebastian Rosenkilde; Beelen, Peter

    2015-01-01

    We present the first two sub-quadratic complexity decoding algorithms for one-point Hermitian codes. The first is based on a fast realization of the Guruswami-Sudan algorithm using state-of-the-art algorithms from computer algebra for polynomial-ring matrix minimization. The second is a power...... decoding algorithm: an extension of classical key equation decoding which gives a probabilistic decoding algorithm up to the Sudan radius. We show how the resulting key equations can be solved by the matrix minimization algorithms from computer algebra, yielding similar asymptotic complexities....

  3. Field equations for gravity quadratic in the curvature

    International Nuclear Information System (INIS)

    Rose, B.

    1992-01-01

    Vacuum field equations for gravity are studied having their origin in a Lagrangian quadratic in the curvature. The motivation for this choice of the Lagrangian-namely the treating of gravity in a strict analogy to gauge theories of Yang-Mills type-is criticized, especially the implied view of connections as gauge potentials with no dynamical relation to the metric. The correct field equations with respect to variation of the connections and the metric independently are given. We deduce field equations which differs from previous ones by variation of the metric, the torsion, and the nonmetricity from which the connections are built. 6 refs

  4. Quadratic Hamiltonians on non-symmetric Poisson structures

    International Nuclear Information System (INIS)

    Arribas, M.; Blesa, F.; Elipe, A.

    2007-01-01

    Many dynamical systems may be represented in a set of non-canonical coordinates that generate an su(2) algebraic structure. The topology of the phase space is the one of the S 2 sphere, the Poisson structure is the one of the rigid body, and the Hamiltonian is a parametric quadratic form in these 'spherical' coordinates. However, there are other problems in which the Poisson structure losses its symmetry. In this paper we analyze this case and, we show how the loss of the spherical symmetry affects the phase flow and parametric bifurcations for the bi-parametric cases

  5. Functional screen printed radio frequency identification tags on flexible substrates, facilitating low-cost and integrated point-of-care diagnostics

    CSIR Research Space (South Africa)

    Smith, Suzanne

    2018-05-01

    Full Text Available This work explores the practical functionality of ultra-high frequency (UHF) radio frequency identification (RFID) tags screen printed onto various low-cost, flexible substrates. The need for integrated and automated low-cost point...

  6. Effect of fractional parameter on neutron transport in finite disturbed reactors with quadratic scattering

    International Nuclear Information System (INIS)

    Sallah, M.; Margeanu, C. A.

    2016-01-01

    The space-fractional neutron transport equation is used to describe the neutrons transport in finite disturbed reactors. It is approximated using the Pomraning-Eddington technique to yield two space-fractional differential equations, in terms of neutron density and net neutron flux. These resultant equations are coupled into a fractional diffusion-like equation for the neutron density whose solution is obtained by using Laplace transformation method. The solution is represented in terms of the Mittag-Leffler function and its different orders. The scattering is considered as quadratic scattering to offer a more realistic, compact representation of the system, and to increase the accuracy of the estimated neutronic parameters. The results are presented graphically to illustrate the fractional parameter effect in addition to the effect of radiative-transfer properties on the physical parameters of interest (reflection coefficient, transmission coefficient, neutron energy, and net neutron flux). The neutron transport problem in finite disturbed reactor with quadratic scattering is considered in investigating the shielding effectiveness, by using MAVRIC shielding module from SCALE6 programs package. The fractional parameter can be used to adjust the analysed data on neutron energy and flux, both for the theoretical model and the neutron transport application. (authors)

  7. Obstacle Avoidance for Redundant Manipulators Utilizing a Backward Quadratic Search Algorithm

    Directory of Open Access Journals (Sweden)

    Tianjian Hu

    2016-06-01

    Full Text Available Obstacle avoidance can be achieved as a secondary task by appropriate inverse kinematics (IK resolution of redundant manipulators. Most prior literature requires the time-consuming determination of the closest point to the obstacle for every calculation step. Aiming at the relief of computational burden, this paper develops what is termed a backward quadratic search algorithm (BQSA as another option for solving IK problems in obstacle avoidance. The BQSA detects possible collisions based on the root property of a category of quadratic functions, which are derived from ellipse-enveloped obstacles and the positions of each link's end-points. The algorithm executes a backward search for possible obstacle collisions, from the end-effector to the base, and avoids obstacles by utilizing a hybrid IK scheme, incorporating the damped least-squares method, the weighted least-norm method and the gradient projection method. Some details of the hybrid IK scheme, such as values of the damped factor, weights and the clamping velocity, are discussed, along with a comparison of computational load between previous methods and BQSA. Simulations of a planar seven-link manipulator and a PUMA 560 robot verify the effectiveness of BQSA.

  8. ANALYSIS AND PERFORMANCE MEASUREMENT OF EXISTING SOLUTION METHODS OF QUADRATIC ASSIGNMENT PROBLEM

    Directory of Open Access Journals (Sweden)

    Morteza KARAMI

    2014-01-01

    Full Text Available Quadratic Assignment Problem (QAP is known as one of the most difficult combinatorial optimization problems that is classified in the category of NP-hard problems. Quadratic Assignment Problem Library (QAPLIB is a full database of QAPs which contains several problems from different authors and different sizes. Many exact and meta-heuristic solution methods have been introduced to solve QAP. In this study we focus on previously introduced solution methods of QAP e.g. Branch and Bound (B&B, Simulated Annealing (SA Algorithm, Greedy Randomized Adaptive Search Procedure (GRASP for dense and sparse QAPs. The codes of FORTRAN for these methods were downloaded from QAPLIB. All problems of QAPLIB were solved by the abovementioned methods. Several results were obtained from the computational experiments part. The Results show that the Branch and Bound method is able to introduce a feasible solution for all problems while Simulated Annealing Algorithm and GRASP methods are not able to find any solution for some problems. On the other hand, Simulated Annealing and GRASP methods have shorter run time comparing to the Branch and Bound method. In addition, the performance of the methods on the objective function value is discussed.

  9. Cyclic subgroups in class groups of real quadratic fields

    International Nuclear Information System (INIS)

    Washington, L.C.; Zhang Xianke.

    1994-01-01

    While examining the class numbers of the real quadratic field Q(√n 2 + 3n + 9), we observed that the class number is often a multiple of 3. There is a simple explanation for this, namely -27 = (2n + 3) 2 - 4(n 2 + 3n + 9), so the cubes of the prime ideals above 3 are principal. If the prime ideals themselves are non-principal then 3 must divide the class number. In the present paper, we study this idea from a couple different directions. In the first section we present a criterion that allows us to show that the ideal class group of a real quadratic field has a cyclic subgroup of a given order n. We then give several families of fields to which this criterion applies, hence in which the ideal class groups contain elements of order n. In the second section, we discuss the situation where there is only a potential element of order p (=an odd prime) in the class group, such as the situation described above. We present a modification of the Cohen-Lenstra heuristics for the probability that in this situation the class number is actually a multiple of p. We also extend this idea to predict how often the potential element of order p is actually non-trivial. Both of these predictions agree fairly well with the numerical data. (author). 14 refs, 2 tabs

  10. Universality of quadratic to linear magnetoresistance crossover in disordered conductors

    Science.gov (United States)

    Lara, Silvia; Ramakrishnan, Navneeth; Lai, Ying Tong; Adam, Shaffique

    Many experiments measuring Magnetoresistance (MR) showed unsaturating linear behavior at high magnetic fields and quadratic behavior at low fields. In the literature, two very different theoretical models have been used to explain this classical MR as a consequence of sample disorder. The phenomenological Random Resistor Network (RRN) model constructs a grid of four-terminal resistors each with a varying random resistance. The Effective Medium Theory (EMT) model imagines a smoothly varying disorder potential that causes a continuous variation of the local conductivity. In this theoretical work, we demonstrate numerically that both the RRN and EMT models belong to the same universality class, and that a single parameter (the ratio of the fluctuations in the carrier density to the average carrier density) completely determines both the magnitude of the MR and the B-field scale for the crossover from quadratic to linear MR. By considering several experimental data sets in the literature, ranging from thin films of InSb to graphene to Weyl semimetals like Na3Bi, we show that this disorder-induced mechanism for MR is in good agreement with the experiments, and that this comparison of MR with theory reveals information about the spatial carrier density inhomogeneity. This work was supported by the National Research Foundation of Singapore (NRF-NRFF2012-01).

  11. Electroweak vacuum stability and finite quadratic radiative corrections

    Energy Technology Data Exchange (ETDEWEB)

    Masina, Isabella [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN, Sezione di Ferrara (Italy); Southern Denmark Univ., Odense (Denmark). CP3-Origins; Southern Denmark Univ., Odense (Denmark). DIAS; Nardini, Germano [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quiros, Mariano [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); IFAE-IAB, Barcelona (Spain)

    2015-07-15

    If the Standard Model (SM) is an effective theory, as currently believed, it is valid up to some energy scale Λ to which the Higgs vacuum expectation value is sensitive throughout radiative quadratic terms. The latter ones destabilize the electroweak vacuum and generate the SM hierarchy problem. For a given perturbative Ultraviolet (UV) completion, the SM cutoff can be computed in terms of fundamental parameters. If the UV mass spectrum involves several scales the cutoff is not unique and each SM sector has its own UV cutoff Λ{sub i}. We have performed this calculation assuming the Minimal Supersymmetric Standard Model (MSSM) is the SM UV completion. As a result, from the SM point of view, the quadratic corrections to the Higgs mass are equivalent to finite threshold contributions. For the measured values of the top quark and Higgs masses, and depending on the values of the different cutoffs Λ{sub i}, these contributions can cancel even at renormalization scales as low as multi-TeV, unlike the case of a single cutoff where the cancellation only occurs at Planckian energies, a result originally obtained by Veltman. From the MSSM point of view, the requirement of stability of the electroweak minimum under radiative corrections is incorporated into the matching conditions and provides an extra constraint on the Focus Point solution to the little hierarchy problem in the MSSM. These matching conditions can be employed for precise calculations of the Higgs sector in scenarios with heavy supersymmetric fields.

  12. Learning quadratic receptive fields from neural responses to natural stimuli.

    Science.gov (United States)

    Rajan, Kanaka; Marre, Olivier; Tkačik, Gašper

    2013-07-01

    Models of neural responses to stimuli with complex spatiotemporal correlation structure often assume that neurons are selective for only a small number of linear projections of a potentially high-dimensional input. In this review, we explore recent modeling approaches where the neural response depends on the quadratic form of the input rather than on its linear projection, that is, the neuron is sensitive to the local covariance structure of the signal preceding the spike. To infer this quadratic dependence in the presence of arbitrary (e.g., naturalistic) stimulus distribution, we review several inference methods, focusing in particular on two information theory-based approaches (maximization of stimulus energy and of noise entropy) and two likelihood-based approaches (Bayesian spike-triggered covariance and extensions of generalized linear models). We analyze the formal relationship between the likelihood-based and information-based approaches to demonstrate how they lead to consistent inference. We demonstrate the practical feasibility of these procedures by using model neurons responding to a flickering variance stimulus.

  13. AN ECONOMIC STUDY OF ESTIMATING COST FUNCTION DATES PRODUCTION IN MURZUQ, SOUTHWESTERN LIBYA

    Directory of Open Access Journals (Sweden)

    Ahmad ARIDAH

    2014-06-01

    Full Text Available The results showed that fixed cost represented (41% of the total cost of Murzuq, also the variable cost amounted toapproximately (59% the total cost of Murzuq, and that the optimal size of the production of dates amounted toapproximately (2.01 tons per hectare for Murzuq ,and that production was more than the average actualproduction of dates for the Murzuq by nearly (0.37 tons per hectare , while reported results that the production thatmaximize profit of dates have hit (4.25 tons per hectare for Murzuq , and for community sample as a whole andthat production is more than the actual production of dates by (2.61 tons per hectare. It also showed the results ofthe field study that the average price per ton of harvest dates had been hit (1293.50 dinars for the total samplerespectively.

  14. Comparison of seating, powered characteristics and functions and costs of electrically powered wheelchairs in a general population of users.

    Science.gov (United States)

    Dolan, Michael John; Bolton, Megan Jennifer; Henderson, Graham Iain

    2017-10-26

    To profile and compare the seating and powered characteristics and functions of electrically powered wheelchairs (EPWs) in a general user population including equipment costs. Case notes of adult EPW users of a regional NHS service were reviewed retrospectively. Seating equipment complexity and type were categorized using the Edinburgh classification. Powered characteristics and functions, including control device type, were recorded. 482 cases were included; 53.9% female; mean duration EPW use 8.1 years (SD 7.4); rear wheel drive 88.0%; hand joystick 94.8%. Seating complexity: low 73.2%, medium 18.0%, high 8.7%. Most prevalent diagnoses: multiple sclerosis (MS) 25.3%, cerebral palsy (CP) 18.7%, muscular dystrophy (8.5%). Compared to CP users, MS users were significantly older at first use, less experienced, more likely to have mid-wheel drive and less complex seating. Additional costs for muscular dystrophy and spinal cord injury users were 3-4 times stroke users. This is the first large study of a general EPW user population using a seating classification. Significant differences were found between diagnostic groups; nevertheless, there was also high diversity within each group. The differences in provision and the equipment costs across diagnostic groups can be used to improve service planning. Implications for Rehabilitation At a service planning level, knowledge of a population's diagnostic group and age distribution can be used to inform decisions about the number of required EPWs and equipment costs. At a user level, purchasing decisions about powered characteristics and functions of EPWs and specialised seating equipment need to be taken on a case by case basis because of the diversity of users' needs within diagnostic groups. The additional equipment costs for SCI and MD users are several times those of stroke users and add between 60 and 70% of the cost of basic provision.

  15. Risk aversion and uncertainty in cost-effectiveness analysis: the expected-utility, moment-generating function approach.

    Science.gov (United States)

    Elbasha, Elamin H

    2005-05-01

    The availability of patient-level data from clinical trials has spurred a lot of interest in developing methods for quantifying and presenting uncertainty in cost-effectiveness analysis (CEA). Although the majority has focused on developing methods for using sample data to estimate a confidence interval for an incremental cost-effectiveness ratio (ICER), a small strand of the literature has emphasized the importance of incorporating risk preferences and the trade-off between the mean and the variance of returns to investment in health and medicine (mean-variance analysis). This paper shows how the exponential utility-moment-generating function approach is a natural extension to this branch of the literature for modelling choices from healthcare interventions with uncertain costs and effects. The paper assumes an exponential utility function, which implies constant absolute risk aversion, and is based on the fact that the expected value of this function results in a convenient expression that depends only on the moment-generating function of the random variables. The mean-variance approach is shown to be a special case of this more general framework. The paper characterizes the solution to the resource allocation problem using standard optimization techniques and derives the summary measure researchers need to estimate for each programme, when the assumption of risk neutrality does not hold, and compares it to the standard incremental cost-effectiveness ratio. The importance of choosing the correct distribution of costs and effects and the issues related to estimation of the parameters of the distribution are also discussed. An empirical example to illustrate the methods and concepts is provided. Copyright 2004 John Wiley & Sons, Ltd

  16. Non-Gaussian Stochastic Radiation Transfer in Finite Planar Media with Quadratic Scattering

    International Nuclear Information System (INIS)

    Sallah, M.

    2016-01-01

    The stochastic radiation transfer is considered in a participating planar finite continuously fluctuating medium characterized by non-Gaussian variability. The problem is considered for diffuse-reflecting boundaries with quadratic Rayleigh scattering. Random variable transformation (RVT) technique is used to get the complete average for the solution functions that are represented by the probability-density function (PDF) of the solution process. RVT algorithm applies a simple integral transformation to the input stochastic process (the extinction function of the medium). This linear transformation enables us to rewrite the stochastic transport equations in terms of the optical random variable (x) and the optical random thickness (L). Then the radiation transfer equation is solved deterministically to get a closed form for the solution as a function of x and L. So, the solution is used to obtain the PDF of the solution functions applying the RVT technique among the input random variable (L) and the output process (the solution functions). The obtained averages of the solution functions are used to get the complete analytical averages for some interesting physical quantities, namely, reflectivity, transmissivity and partial heat fluxes at the medium boundaries. Numerical results are represented graphically for different non-Gaussian probability distribution functions that compared with the corresponding Gaussian PDF.

  17. Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier

    DEFF Research Database (Denmark)

    Neumeyer, Stefan; Sorokin, Vladislav; Thomsen, Jon Juel

    2016-01-01

    We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing–Mathieu equation with appended quadratic nonlinearity is considered as the model system......, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic...... nonlinearities may generate additional amplitude–frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi...

  18. The global historical and future economic loss and cost of earthquakes during the production of adaptive worldwide economic fragility functions

    Science.gov (United States)

    Daniell, James; Wenzel, Friedemann

    2014-05-01

    Over the past decade, the production of economic indices behind the CATDAT Damaging Earthquakes Database has allowed for the conversion of historical earthquake economic loss and cost events into today's terms using long-term spatio-temporal series of consumer price index (CPI), construction costs, wage indices, and GDP from 1900-2013. As part of the doctoral thesis of Daniell (2014), databases and GIS layers for a country and sub-country level have been produced for population, GDP per capita, net and gross capital stock (depreciated and non-depreciated) using studies, census information and the perpetual inventory method. In addition, a detailed study has been undertaken to collect and reproduce as many historical isoseismal maps, macroseismic intensity results and reproductions of earthquakes as possible out of the 7208 damaging events in the CATDAT database from 1900 onwards. a) The isoseismal database and population bounds from 3000+ collected damaging events were compared with the output parameters of GDP and net and gross capital stock per intensity bound and administrative unit, creating a spatial join for analysis. b) The historical costs were divided into shaking/direct ground motion effects, and secondary effects costs. The shaking costs were further divided into gross capital stock related and GDP related costs for each administrative unit, intensity bound couplet. c) Costs were then estimated based on the optimisation of the function in terms of costs vs. gross capital stock and costs vs. GDP via the regression of the function. Losses were estimated based on net capital stock, looking at the infrastructure age and value at the time of the event. This dataset was then used to develop an economic exposure for each historical earthquake in comparison with the loss recorded in the CATDAT Damaging Earthquakes Database. The production of economic fragility functions for each country was possible using a temporal regression based on the parameters of

  19. Asbestos Utilization Costs on the Example of Functioning Landfill of Hazardous Waste

    Science.gov (United States)

    Polek, Daria

    2017-12-01

    Asbestos is a trademark of mineral fibres, which are the natural minerals found in nature. Products containing asbestos fibres, in accordance with the national and EU legislation, are covered by the production prohibition and forced to be removed. In Poland, the asbestos removal process started with the adaptation of the EU law by the Council of Ministers Treatment Program of the National Asbestos for the years 2009-2032. The purpose of the dissertation was to analyse the costs associated with the disposal of the costs of collection, transport and disposal of waste. Methodology consisted in obtaining information on the raw materials needed to produce asbestos sheets. The analysis allowed us to determine the asbestos removal cost and include state subsidies in the calculations.

  20. The use of lifetime functions in the optimization of interventions on existing bridges considering maintenance and failure costs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung-Ie [Department of Civil, Enviromental, and Architectural Enginnering, University of Colorado, Campus Box 428, Boulder, CO 80309-0428 (United States)]. E-mail: yangsione@dreamwiz.com; Frangopol, Dan M. [Department of Civil, Enviromental, and Architectural Enginnering, University of Colorado, Campus Box 428, Boulder, CO 80309-0428 (United States)]. E-mail: dan.frangopol@colorado.edu; Kawakami, Yoriko [Hanshin Expressway Public Corporation, Kobe Maintenance Department, 16-1 Shinko-cho Chuo-ku Kobe City, Hyogo, 650-0041 (Japan)]. E-mail: yoriko-kawakami@hepc.go.jp; Neves, Luis C. [Department of Civil, Enviromental, and Architectural Enginnering, University of Colorado, Campus Box 428, Boulder, CO 80309-0428 (United States)]. E-mail: lneves@civil.uminho.pt

    2006-06-15

    In the last decade, it became clear that life-cycle cost analysis of existing civil infrastructure must be used to optimally manage the growing number of aging and deteriorating structures. The uncertainties associated with deteriorating structures require the use of probabilistic methods to properly evaluate their lifetime performance. In this paper, the deterioration and the effect of maintenance actions are analyzed considering the performance of existing structures characterized by lifetime functions. These functions allow, in a simple manner, the consideration of the effect of aging on the decrease of the probability of survival of a structure, as well as the effect of maintenance actions. Models for the effects of proactive and reactive preventive maintenance, and essential maintenance actions are presented. Since the probability of failure is different from zero during the entire service life of a deteriorating structure and depends strongly on the maintenance strategy, the cost of failure is included in this analysis. The failure of one component in a structure does not usually lead to failure of the structure and, as a result, the safety of existing structures must be analyzed using a system reliability framework. The optimization consists of minimizing the sum of the cumulative maintenance and expected failure cost during the prescribed time horizon. Two examples of application of the proposed methodology are presented. In the first example, the sum of the maintenance and failure costs of a bridge in Colorado is minimized considering essential maintenance only and a fixed minimum acceptable probability of failure. In the second example, the expected lifetime cost, including maintenance and expected failure costs, of a multi-girder bridge is minimized considering reactive preventive maintenance actions.

  1. The use of lifetime functions in the optimization of interventions on existing bridges considering maintenance and failure costs

    International Nuclear Information System (INIS)

    Yang, Seung-Ie; Frangopol, Dan M.; Kawakami, Yoriko; Neves, Luis C.

    2006-01-01

    In the last decade, it became clear that life-cycle cost analysis of existing civil infrastructure must be used to optimally manage the growing number of aging and deteriorating structures. The uncertainties associated with deteriorating structures require the use of probabilistic methods to properly evaluate their lifetime performance. In this paper, the deterioration and the effect of maintenance actions are analyzed considering the performance of existing structures characterized by lifetime functions. These functions allow, in a simple manner, the consideration of the effect of aging on the decrease of the probability of survival of a structure, as well as the effect of maintenance actions. Models for the effects of proactive and reactive preventive maintenance, and essential maintenance actions are presented. Since the probability of failure is different from zero during the entire service life of a deteriorating structure and depends strongly on the maintenance strategy, the cost of failure is included in this analysis. The failure of one component in a structure does not usually lead to failure of the structure and, as a result, the safety of existing structures must be analyzed using a system reliability framework. The optimization consists of minimizing the sum of the cumulative maintenance and expected failure cost during the prescribed time horizon. Two examples of application of the proposed methodology are presented. In the first example, the sum of the maintenance and failure costs of a bridge in Colorado is minimized considering essential maintenance only and a fixed minimum acceptable probability of failure. In the second example, the expected lifetime cost, including maintenance and expected failure costs, of a multi-girder bridge is minimized considering reactive preventive maintenance actions

  2. The Model and Quadratic Stability Problem of Buck Converter in DCM

    Directory of Open Access Journals (Sweden)

    Li Xiaojing

    2016-01-01

    Full Text Available Quadratic stability is an important performance for control systems. At first, the model of Buck Converter in DCM is built based on the theories of hybrid systems and switched linear systems primarily. Then quadratic stability of SLS and hybrid feedback switching rule are introduced. The problem of Buck Converter’s quadratic stability is researched afterwards. In the end, the simulation analysis and verification are provided. Both experimental verification and theoretical analysis results indicate that the output of Buck Converter in DCM has an excellent performance via quadratic stability control and switching rules.

  3. A Quadratically Convergent O(square root of nL-Iteration Algorithm for Linear Programming

    National Research Council Canada - National Science Library

    Ye, Y; Gueler, O; Tapia, Richard A; Zhang, Y

    1991-01-01

    ...)-iteration complexity while exhibiting superlinear convergence of the duality gap to zero under the assumption that the iteration sequence converges, and quadratic convergence of the duality gap...

  4. A cost of illness study of children with high-functioning autism spectrum disorders and comorbid anxiety disorders as compared to clinically anxious and typically developing children

    NARCIS (Netherlands)

    van Steensel, F.J.A.; Dirksen, C.D.; Bögels, S.M.

    2013-01-01

    The study’s aim was to estimate the societal costs of children with high-functioning ASD and comorbid anxiety disorder(s) (ASD + AD-group; n = 73), and to compare these costs to children with anxiety disorders (AD-group; n = 34), and typically developing children (controls; n = 87). Mean total costs

  5. Describing Quadratic Cremer Point Polynomials by Parabolic Perturbations

    DEFF Research Database (Denmark)

    Sørensen, Dan Erik Krarup

    1996-01-01

    We describe two infinite order parabolic perturbation proceduresyielding quadratic polynomials having a Cremer fixed point. The main ideais to obtain the polynomial as the limit of repeated parabolic perturbations.The basic tool at each step is to control the behaviour of certain externalrays.......Polynomials of the Cremer type correspond to parameters at the boundary of ahyperbolic component of the Mandelbrot set. In this paper we concentrate onthe main cardioid component. We investigate the differences between two-sided(i.e. alternating) and one-sided parabolic perturbations.In the two-sided case, we prove...... the existence of polynomials having an explicitlygiven external ray accumulating both at the Cremer point and at its non-periodicpreimage. We think of the Julia set as containing a "topologists double comb".In the one-sided case we prove a weaker result: the existence of polynomials havingan explicitly given...

  6. Diagonalizing quadratic bosonic operators by non-autonomous flow equations

    CERN Document Server

    Bach, Volker

    2016-01-01

    The authors study a non-autonomous, non-linear evolution equation on the space of operators on a complex Hilbert space. They specify assumptions that ensure the global existence of its solutions and allow them to derive its asymptotics at temporal infinity. They demonstrate that these assumptions are optimal in a suitable sense and more general than those used before. The evolution equation derives from the Brocketâe"Wegner flow that was proposed to diagonalize matrices and operators by a strongly continuous unitary flow. In fact, the solution of the non-linear flow equation leads to a diagonalization of Hamiltonian operators in boson quantum field theory which are quadratic in the field.

  7. Absence of the Gribov ambiguity in a quadratic gauge

    International Nuclear Information System (INIS)

    Raval, Haresh

    2016-01-01

    The Gribov ambiguity exists in various gauges. Algebraic gauges are likely to be ambiguity free. However, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. In addition, they are not generally compatible with the boundary conditions on the gauge fields, which are needed to compactify the space i.e., the ambiguity continues to exist on a compact manifold. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We consider an example of a spherically symmetric gauge field configuration in which we prove that this Lorentz invariant gauge removes the ambiguity on a compact manifold S 3 , when a proper boundary condition on the gauge configuration is taken into account. Thus, we provide one example where the ambiguity is absent on a compact manifold in the algebraic gauge. We also show that the BRST invariance is preserved in this gauge. (orig.)

  8. Absence of the Gribov ambiguity in a quadratic gauge

    Energy Technology Data Exchange (ETDEWEB)

    Raval, Haresh [Indian Institute of Technology, Bombay, Department of Physics, Mumbai (India)

    2016-05-15

    The Gribov ambiguity exists in various gauges. Algebraic gauges are likely to be ambiguity free. However, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. In addition, they are not generally compatible with the boundary conditions on the gauge fields, which are needed to compactify the space i.e., the ambiguity continues to exist on a compact manifold. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We consider an example of a spherically symmetric gauge field configuration in which we prove that this Lorentz invariant gauge removes the ambiguity on a compact manifold S{sup 3}, when a proper boundary condition on the gauge configuration is taken into account. Thus, we provide one example where the ambiguity is absent on a compact manifold in the algebraic gauge. We also show that the BRST invariance is preserved in this gauge. (orig.)

  9. Trajectory generation for manipulators using linear quadratic optimal tracking

    Directory of Open Access Journals (Sweden)

    Olav Egeland

    1989-04-01

    Full Text Available The reference trajectory is normally known in advance in manipulator control which makes it possible to apply linear quadratic optimal tracking. This gives a control system which rounds corners and generates optimal feedforward. The method may be used for references consisting of straight-line segments as an alternative to the two-step method of using splines to smooth the reference and then applying feedforward. In addition, the method can be used for more complex trajectories. The actual dynamics of the manipulator are taken into account, and this results in smooth and accurate tracking. The method has been applied in combination with the computed torque technique and excellent performance was demonstrated in a simulation study. The method has also been applied experimentally to an industrial spray-painting robot where a saw-tooth reference was tracked. The corner was rounded extremely well, and the steady-state tracking error was eliminated by the optimal feedforward.

  10. Quadratic rational rotations of the torus and dual lattice maps

    CERN Document Server

    Kouptsov, K L; Vivaldi, F

    2002-01-01

    We develop a general formalism for computed-assisted proofs concerning the orbit structure of certain non ergodic piecewise affine maps of the torus, whose eigenvalues are roots of unity. For a specific class of maps, we prove that if the trace is a quadratic irrational (the simplest nontrivial case, comprising 8 maps), then the periodic orbits are organized into finitely many renormalizable families, with exponentially increasing period, plus a finite number of exceptional families. The proof is based on exact computations with algebraic numbers, where units play the role of scaling parameters. Exploiting a duality existing between these maps and lattice maps representing rounded-off planar rotations, we establish the global periodicity of the latter systems, for a set of orbits of full density.

  11. Low photon count based digital holography for quadratic phase cryptography.

    Science.gov (United States)

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Ryle, James P; Healy, John J; Lee, Byung-Geun; Sheridan, John T

    2017-07-15

    Recently, the vulnerability of the linear canonical transform-based double random phase encryption system to attack has been demonstrated. To alleviate this, we present for the first time, to the best of our knowledge, a method for securing a two-dimensional scene using a quadratic phase encoding system operating in the photon-counted imaging (PCI) regime. Position-phase-shifting digital holography is applied to record the photon-limited encrypted complex samples. The reconstruction of the complex wavefront involves four sparse (undersampled) dataset intensity measurements (interferograms) at two different positions. Computer simulations validate that the photon-limited sparse-encrypted data has adequate information to authenticate the original data set. Finally, security analysis, employing iterative phase retrieval attacks, has been performed.

  12. Limits to compression with cascaded quadratic soliton compressors

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw

    2008-01-01

    We study cascaded quadratic soliton compressors and address the physical mechanisms that limit the compression. A nonlocal model is derived, and the nonlocal response is shown to have an additional oscillatory component in the nonstationary regime when the group-velocity mismatch (GVM) is strong....... This inhibits efficient compression. Raman-like perturbations from the cascaded nonlinearity, competing cubic nonlinearities, higher-order dispersion, and soliton energy may also limit compression, and through realistic numerical simulations we point out when each factor becomes important. We find......, the simulations show that reaching single-cycle duration is ultimately inhibited by competing cubic nonlinearities as well as dispersive waves, that only show up when taking higher-order dispersion into account....

  13. Wind turbine power tracking using an improved multimodel quadratic approach.

    Science.gov (United States)

    Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier

    2010-07-01

    In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Neural network for solving convex quadratic bilevel programming problems.

    Science.gov (United States)

    He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie

    2014-03-01

    In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Quadratic Finite Element Method for 1D Deterministic Transport

    International Nuclear Information System (INIS)

    Tolar, D R Jr.; Ferguson, J M

    2004-01-01

    In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ((und r)) and angular ((und (Omega))) dependences on the angular flux ψ(und r),(und (Omega))are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of ψ(und r),(und (Omega)). Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable (μ) in developing the one-dimensional (1D) spherical geometry S N equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S N algorithms

  16. Schwarz and multilevel methods for quadratic spline collocation

    Energy Technology Data Exchange (ETDEWEB)

    Christara, C.C. [Univ. of Toronto, Ontario (Canada); Smith, B. [Univ. of California, Los Angeles, CA (United States)

    1994-12-31

    Smooth spline collocation methods offer an alternative to Galerkin finite element methods, as well as to Hermite spline collocation methods, for the solution of linear elliptic Partial Differential Equations (PDEs). Recently, optimal order of convergence spline collocation methods have been developed for certain degree splines. Convergence proofs for smooth spline collocation methods are generally more difficult than for Galerkin finite elements or Hermite spline collocation, and they require stronger assumptions and more restrictions. However, numerical tests indicate that spline collocation methods are applicable to a wider class of problems, than the analysis requires, and are very competitive to finite element methods, with respect to efficiency. The authors will discuss Schwarz and multilevel methods for the solution of elliptic PDEs using quadratic spline collocation, and compare these with domain decomposition methods using substructuring. Numerical tests on a variety of parallel machines will also be presented. In addition, preliminary convergence analysis using Schwarz and/or maximum principle techniques will be presented.

  17. Approximation algorithms for facility location problems with a special class of subadditive cost functions

    NARCIS (Netherlands)

    Gabor, A.F.; Ommeren, van J.C.W.

    2006-01-01

    In this article we focus on approximation algorithms for facility location problems with subadditive costs. As examples of such problems, we present three facility location problems with stochastic demand and exponential servers, respectively inventory. We present a (1+e,1)-reduction of the facility

  18. Approximation algorithms for facility location problems with a special class of subadditive cost functions

    NARCIS (Netherlands)

    Gabor, Adriana F.; van Ommeren, Jan C.W.

    2006-01-01

    In this article we focus on approximation algorithms for facility location problems with subadditive costs. As examples of such problems, we present three facility location problems with stochastic demand and exponential servers, respectively inventory. We present a $(1+\\varepsilon, 1)$-reduction of

  19. Approximation algorithms for facility location problems with discrete subadditive cost functions

    NARCIS (Netherlands)

    Gabor, A.F.; van Ommeren, Jan C.W.

    2005-01-01

    In this article we focus on approximation algorithms for facility location problems with subadditive costs. As examples of such problems, we present two facility location problems with stochastic demand and exponential servers, respectively inventory. We present a $(1+\\epsilon,1)$- reduction of the

  20. Using Excel's Solver Function to Facilitate Reciprocal Service Department Cost Allocations

    Science.gov (United States)

    Leese, Wallace R.

    2013-01-01

    The reciprocal method of service department cost allocation requires linear equations to be solved simultaneously. These computations are often so complex as to cause the abandonment of the reciprocal method in favor of the less sophisticated and theoretically incorrect direct or step-down methods. This article illustrates how Excel's Solver…