WorldWideScience

Sample records for qcd

  1. QCD

    CERN Document Server

    Catani, S; Soper, Davison Eugene; Stirling, William James; Tapprogge, Stefan; Alekhin, S I; Aurenche, Patrick; Balázs, C; Ball, R D; Battistoni, G; Berger, E L; Binoth, T; Brock, R L; Casey, D; Corcella, Gennaro; Del Duca, V; Fabbro, A D; de Roeck, A; Ewerz, C; de Florian, D; Fontannaz, M; Frixione, Stefano; Giele, W T; Grazzini, Massimiliano; Guillet, J P; Marlen-Heinrich, G; Huston, J; Kalk, J; Kataev, A L; Kato, K; Keller, S; Klasen, M; Kosower, D A; Kulesza, A; Kunszt, Zoltán; Kupco, A; Ilyin, V A; Magnea, L; Mangano, Michelangelo L; Martin, A D; Mazumdar, K; Miné, P; Moretti, M; van Neerven, W L; Parente, G; Perret-Gallix, D; Pilon, E; Pukhov, A E; Puljak, I; Pumplin, Jon; Richter-Was, Elzbieta; Roberts, R G; Salam, Gavin P; Seymour, Michael H; Skachkov, N B; Sidorov, A V; Stenzel, H; Stump, D R; Thorne, R S; Treleani, D; Tung, W K; Vogt, A; Webber, Bryan R; Werlen, M; Zmouchko, S; Mine, Ph.

    2000-01-01

    We discuss issues of QCD at the LHC including parton distributions, Monte Carlo event generators, the available next-to-leading order calculations, resummation, photon production, small x physics, double parton scattering, and backgrounds to Higgs production.

  2. QCD Dual

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2009-01-01

    We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...... fixed point. Remarkably this value is identical to the maximum bound predicted in the nonpertubative regime via the all-orders conjectured beta function for nonsupersymmetric gauge theories.......We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...

  3. 13. international QCD conference (QCD 06)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations.

  4. QCD Exotics

    CERN Document Server

    Olsen, Stephen Lars

    2014-01-01

    QCD-motivated models for hadrons predict an assortment of "exotic" hadrons that have structures that are more complex then the quark-antiquark mesons and three-quark baryons of the original quark-parton model. These include pentaquark baryons, the six-quark H-dibaryon, and tetra-quark, hybrid, and glueball mesons. Despite extensive experimental searches, no unambiguous candidates for any of these exotic configurations have yet to be identified. On the other hand, a number of meson states, one that seems to be a proton-antiproton bound state, and others that contain either charmed-anticharmed quark pairs or bottom-antibottom quark pairs, have been recently discovered that neither fit into the quark-antiquark meson picture nor match the expected properties of the QCD-inspired exotics. Here I briefly review results from a recent search for the H-dibaryon, and discuss some properties of the newly discovered states --the so-called XYZ mesons-- and compare them with expectations for conventional quark-antiquark mes...

  5. QCD condensates in ADS/QCD

    DEFF Research Database (Denmark)

    Bechi, Jacopo

    2009-01-01

    This paper focuses on some issues about condensates and renormalization in AdS/QCD models. In particular we consider the consistency of the AdS/QCD approach for scale dependent quantities as the chiral condensate questioned in some recent papers and the 4D meaning of the 5D cosmological constant...... in a model in which the QCD is dual to a 5D gravity theory. We will be able to give some arguments that the cosmological constant is related to the QCD gluon condensate....

  6. QCD results at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Norniella, Olga; /Barcelona, IFAE

    2005-01-01

    Recent QCD measurements from the CDF collaboration at the Tevatron are presented, together with future prospects as the luminosity increases. The measured inclusive jet cross section is compared to pQCD NLO predictions. Precise measurements on jet shapes and hadronic energy flows are compared to different phenomenological models that describe gluon emissions and the underlying event in hadron-hadron interactions.

  7. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  8. Odd sector of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Kampf, Karol [Department of Astronomy and Theoretical Physics, Lund University, Soelvegatan 14A, SE 223-62 Lund (Sweden); Charles University, Faculty of Mathematics and Physics, V Holesovickach 2, Prague (Czech Republic)

    2011-10-15

    A systematic study of the odd-intrinsic parity sector of QCD is presented. We briefly describe different applications including {pi}{sup 0}{yields}{gamma}{gamma} decay, muonic g-2 factor and test of new holographic conjectures.

  9. Resonances in QCD

    Science.gov (United States)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  10. Resonances in QCD

    CERN Document Server

    Lutz, Matthias F M; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B; Metag, Volker; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Steve L; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2015-01-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with ${\\it up}$, ${\\it down}$ and ${\\it strange}$ quark content were considered. For heavy-light and heavy-heavy meson systems, those with ${\\it charm}$ quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  11. The QCD running coupling

    Science.gov (United States)

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-09-01

    We review the present theoretical and empirical knowledge for αs, the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of αs(Q2) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on αs(Q2) at high Q2, as predicted by perturbative QCD, and its analytic behavior at small Q2, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of αs(Q2) in the high momentum transfer domain of QCD. We review how αs is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior αs(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and

  12. Mirror QCD and Cosmological Constant

    CERN Document Server

    Pasechnik, Roman; Teryaev, Oleg

    2016-01-01

    An analog of Quantum Chromo Dynamics (QCD) sector known as mirror QCD (mQCD) can affect the cosmological evolution and help in resolving the Cosmological Constant problem. In this work, we explore an intriguing possibility for a compensation of the negative QCD vacuum contribution to the ground state energy density of the universe by means of a positive contribution from the chromomagnetic gluon condensate in mQCD. The trace anomaly compensation condition and the form of the mQCD coupling constant in the infrared limit have been proposed by analysing a partial non-perturbative solution of the Einstein--Yang-Mills equations of motion.

  13. Phases of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Roessner, Simon

    2009-04-09

    Quantum Chromodynamics (QCD) is the theory of the strong interaction within the Standard Model of elementary particles. Today's research in this area dedicates substantial resources to numeric solutions of the QCD field equations and experimental programs exploring the phases of QCD. This thesis proceeds along a complementary line - that of modelling QCD, with the aim of identifying its dominant degrees of freedom. This is possible by minimally coupling effective potentials for the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields to model chiral symmetry breaking respecting colour confinement. The fermion sign problem resulting from the minimal coupling is addressed in this work establishing a novel, systematically ordered approach. The modifications to the approximative order parameter of colour confinement, the Polyakov loop, are in direct connection with the fermion sign problem. Furthermore an effective coupling of quark densities of different flavours is induced. This mechanism, most likely also present in QCD, produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities are amongst the most promising physical quantities for the experimental exploration of the phase transition at high temperatures and densities. (orig.)

  14. QCD physics at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.

    1992-05-01

    We present measurements of jet production and isolated prompt photon production in p{bar p} collisions at {radical}s = 1.8 TeV from the 1988--89 run of the Collider Detector at Fermilab (CDF). To test QCD with jets, the inclusive jet cross section (p{bar p} {yields} J + X) and two jet angular distributions (p{bar P} {yields} JJ + X) are compared to QCD predictions and are used to search for composite quarks. The ratio of the scaled jet cross sections at two Tevatron collision energies ({radical}s= 546 and 1800 GeV) is compared to QCD predictions for X{sub T} scaling violations. Also, we present the first evidence for QCD interference effects (color coherence) in third jet production (p{bar p} {yields} JJJ + X). To test QCD with photons, we present measurements of the transverse momentum spectrum of single isolated prompt photon production (p{bar p} {yields} {gamma} + X), double isolated prompt photon production (p{bar p} {yields} {gamma}{gamma} + X), and the angular distribution of photon-jet events (p{bar p} {yields} {gamma} J + X). We have also measured the isolated production ratio of {eta} and {pi}{sup 0} mesons (p{bar p} {yields} {eta} + X)/(p{bar p} {yields} {pi}{sup 0} + X) = 1.02 {plus minus} .15(stat) {plus minus} .23(sys).

  15. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F.M., E-mail: m.lutz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Lange, Jens Sören, E-mail: Soeren.Lange@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Pennington, Michael, E-mail: michaelp@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Bettoni, Diego [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, 44122 Ferrara (Italy); Brambilla, Nora [Physik Department, Technische Universität München, D-85747 Garching (Germany); Crede, Volker [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Eidelman, Simon [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Budker Istitute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Gillitzer, Albrecht [Institut für Kernphysik, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Gradl, Wolfgang [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55128 Mainz (Germany); Lang, Christian B. [Institut für Physik, Universität Graz, A-8010 Graz (Austria); Metag, Volker [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Nakano, Takashi [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); and others

    2016-04-15

    We report on the EMMI Rapid Reaction Task Force meeting ‘Resonances in QCD’, which took place at GSI October 12–14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: • What is needed to understand the physics of resonances in QCD? • Where does QCD lead us to expect resonances with exotic quantum numbers? • What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy–light and heavy–heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  16. Knot topology in QCD

    CERN Document Server

    Zou, L P; Pak, D G

    2013-01-01

    We consider topological structure of classical vacuum solutions in quantum chromodynamics. Topologically non-equivalent vacuum configurations are classified by non-trivial second and third homotopy groups for coset of the color group SU(N) (N=2,3) under the action of maximal Abelian stability group. Starting with explicit vacuum knot configurations we study possible exact classical solutions as vacuum excitations. Exact analytic non-static knot solution in a simple CP^1 model in Euclidean space-time has been obtained. We construct an ansatz based on knot and monopole topological vacuum structure for searching new solutions in SU(2) and SU(3) QCD. We show that singular knot-like solutions in QCD in Minkowski space-time can be naturally obtained from knot solitons in integrable CP^1 models. A family of Skyrme type low energy effective theories of QCD admitting exact analytic solutions with non-vanishing Hopf charge is proposed.

  17. Lattice QCD for Cosmology

    CERN Document Server

    Borsanyi, Sz; Kampert, K H; Katz, S D; Kawanai, T; Kovacs, T G; Mages, S W; Pasztor, A; Pittler, F; Redondo, J; Ringwald, A; Szabo, K K

    2016-01-01

    We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to several tens of MeV we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (chi) up to the few GeV temperature region. These two results, EoS and chi, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.

  18. QCD Evolution Workshop

    CERN Document Server

    2015-01-01

    These are the proceedings of the QCD Evolution 2015 Workshop which was held 26–30 May, 2015 at Jefferson Lab, Newport News, Virginia, USA. The workshop is a continuation of a series of workshops held during four consecutive years 2011, 2012, 2013 at Jefferson Lab, and in 2014 in Santa Fe, NM. With the rapid developments in our understanding of the evolution of parton distributions including low-x, TMDs, GPDs, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques we look forward with great enthusiasm to the 2015 meeting. A special attention was also paid to participation of experimentalists as the topics discussed are of immediate importance for the JLab 12 experimental program and a future Electron Ion Collider.

  19. QCD Physics (CMS)

    CERN Document Server

    Cerci, Salim

    2016-01-01

    Jets which are the signatures of quarks and gluons in the detector can be described by Quantum Chromodynamics (QCD) in terms of parton-parton scattering. Jets are abundantly produced at the LHC's high energy scales. Measurements of inclusive jets, dijets and multijets can be used to test perturbative QCD predictions and to constrain parton distribution functions (PDF), as well as to measure the strong coupling constant $\\alpha_{S}$. The measurements use the samples of proton-proton collisions collected with the CMS detector at the LHC at various center-of-mass energies of 7, 8 and 13 TeV.

  20. Twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2007-07-15

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  1. STU/QCD Correspondence

    CERN Document Server

    Sadeghi, Jafar

    2012-01-01

    In this review article we consider a special case of D=5, $\\mathcal{N}=2$ supergravity called the STU model. We apply the gauge/gravity correspondence to the STU model to gain insight into properties of the quark-gluon plasma. Given that the quark-gluon plasma is in reality described by QCD, therefore we call our study STU/QCD correspondence. First, we investigate the thermodynamics and hydrodynamics of the STU background. Then we use dual picture of the theory, which is type IIB string theory, to obtain the drag force and jet-quenching parameter of an external probe quark.

  2. QCD and Hadron Physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.

    2015-02-26

    This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.

  3. QCD at colliders

    CERN Document Server

    Mueller, Katharina

    2016-01-01

    Recent measurements from the ATLAS, CMS and LHCb collaborations are testing QCD with unprecedented precision and in a new energy regime. Inclusive jet, isolated photon, vector boson and heavy quark production cross section measurements are reported here including a selection of first results at the new frontier collision energy of 13 TeV.

  4. The Phases of QCD

    CERN Document Server

    Shuryak, E V

    1996-01-01

    In the recent years we have learned that light quarks play a crucial role in QCD-like theories, transforming it to many different phases. We review what is known about them, both from lattice and non-lattice approaches. A particularly simple mechanism of the QCD chiral restoration phase transition is discussed first: it suggests that it is a transition from randomly placed tunneling events (instantons) at low T to strongly localized tunneling-anti-tunneling pairs at high T. Many features of the transition found on the lattice can be explained in this simple picture. Very relevant for RHIC, this approach predicts a strong non-perturbative interaction between quarks $above$ the phase transition. It also predicts that QGP-like phase sets in at $zero$ temperature, provided few more light quark flavors are added to QCD. Finally, we also discuss possible experimental signatures of the QCD phase transition. One issue is CERN dilepton data, possibly related with ``dropping'' masses of $\\rho, A_1$ mesons. Another is d...

  5. Phenomenology from lattice QCD

    CERN Document Server

    Lellouch, L P

    2003-01-01

    After a short presentation of lattice QCD and some of its current practical limitations, I review recent progress in applications to phenomenology. Emphasis is placed on heavy-quark masses and on hadronic weak matrix elements relevant for constraining the CKM unitarity triangle. The main numerical results are highlighted in boxes.

  6. CL2QCD - Lattice QCD based on OpenCL

    CERN Document Server

    Philipsen, Owe; Sciarra, Alessandro; Bach, Matthias

    2014-01-01

    We present the Lattice QCD application CL2QCD, which is based on OpenCL and can be utilized to run on Graphic Processing Units as well as on common CPUs. We focus on implementation details as well as performance results of selected features. CL2QCD has been successfully applied in LQCD studies at finite temperature and density and is available at http://code.compeng.uni-frankfurt.de/projects/clhmc.

  7. Introduction to lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.

    1998-12-31

    The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.

  8. Hadron Resonances from QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Jozef [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-01

    I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel πK, ηK scattering. The very recent extension to the case where an external current acts is also presented, considering the reaction πγ* → ππ, from which the unstable ρ → πγ transition form factor is extracted. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.

  9. Towards Quantum Simulating QCD

    CERN Document Server

    Wiese, Uwe-Jens

    2014-01-01

    Quantum link models provide an alternative non-perturbative formulation of Abelian and non-Abelian lattice gauge theories. They are ideally suited for quantum simulation, for example, using ultracold atoms in an optical lattice. This holds the promise to address currently unsolvable problems, such as the real-time and high-density dynamics of strongly interacting matter, first in toy-model gauge theories, and ultimately in QCD.

  10. Towards quantum simulating QCD

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Uwe-Jens

    2014-11-15

    Quantum link models provide an alternative non-perturbative formulation of Abelian and non-Abelian lattice gauge theories. They are ideally suited for quantum simulation, for example, using ultracold atoms in an optical lattice. This holds the promise to address currently unsolvable problems, such as the real-time and high-density dynamics of strongly interacting matter, first in toy-model gauge theories, and ultimately in QCD.

  11. Future directions for QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, J.D.

    1996-10-01

    New directions for exploring QCD at future high-energy colliders are sketched. These include jets within jets. BFKL dynamics, soft and hard diffraction, searches for disoriented chiral condensate, and doing a better job on minimum bias physics. The new experimental opportunities include electron-ion collisions at HERA, a new collider detector at the C0 region of the TeVatron, and the FELIX initiative at the LHC.

  12. The QCD Running Coupling

    CERN Document Server

    Deur, A; de Teramond, G F

    2016-01-01

    We review the present knowledge for $\\alpha_s$, the fundamental coupling underlying the interactions of quarks and gluons in QCD. The dependence of $\\alpha_s(Q^2)$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics -from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on $\\alpha_s(Q^2)$ at high $Q^2$, as predicted by perturbative QCD, and its analytic behavior at small $Q^2$, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of $\\alpha_s$, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of $\\alpha_s(Q^2)$ in the high $Q^2$ domain of QCD. We review how $\\alpha_s$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as ...

  13. Light-Front QCD

    CERN Document Server

    Brodsky, S J

    2004-01-01

    In these lectures, I survey a number of applications of light-front methods to hadron and nuclear physics phenomenology and dynamics, Light-front Fock-state wavefunctions provide a frame-independent representation of hadrons in terms of their fundamental quark and gluon degrees of freedom. Nonperturbative methods for computing LFWFs in QCD are discussed, including string/gauge duality which predicts the power-law fall-off at high momentum transfer of light-front Fock-state hadronic wavefunctions with an arbitrary number of constituents and orbital angular momentum. The AdS/CFT correspondence has important implications for hadron phenomenology in the conformal limit, including an all-orders derivation of counting rules for exclusive processes. One can also compute the hadronic spectrum of near-conformal QCD assuming a truncated AdS/CFT space. The quantum fluctuations represented by the light-front Fock expansion leads to novel QCD phenomena such as color transparency, intrinsic heavy quark distributions, diffr...

  14. Experimental application of QCD antennas

    Energy Technology Data Exchange (ETDEWEB)

    Bobrovskyi, Sergei

    2010-02-15

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  15. Renormalization of Extended QCD$_2$

    CERN Document Server

    Fukaya, Hidenori

    2015-01-01

    Extended QCD (XQCD) proposed by Kaplan [1] is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low energy hadronic models. We analyze the renormalization group flow of two-dimensional (X)QCD, which is solvable in the limit of large number of colors Nc, to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low energy region.

  16. Novel QCD Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins

    2011-08-12

    I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation. Such 'direct' processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed x{sub T} = 2p{sub T}/{radical}s, as well as the 'baryon anomaly', the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, the soft-gluon rescattering associated with its Wilson line, lead to Bjorken-scaling single-spin asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish 'static' structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus 'dynamical' structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. Eliminating the renormalization scale ambiguity greatly improves the precision of QCD predictions and increases the sensitivity of

  17. Test of QCD at colliders

    CERN Document Server

    Shimizu, Shima; The ATLAS collaboration

    2016-01-01

    The ATLAS and CMS collaborations measure QCD processes in a wide kinematic range using proton--proton colliding data at the Large Hadron Collider (LHC). A variety of recent results is presented. The results provide validation of the current understanding of QCD, such as the proton structure and interactions and radiations of partons.

  18. QCD: Questions, challenges, and dilemmas

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, J.

    1996-11-01

    An introduction to some outstanding issues in QCD is presented, with emphasis on work by Diakonov and co-workers on the influence of the instanton vacuum on low-energy QCD observables. This includes the calculation of input valence-parton distributions for deep-inelastic scattering. 35 refs., 3 figs.

  19. String effect and QCD coherence

    Energy Technology Data Exchange (ETDEWEB)

    Azimov, Ya.I.; Dokshitzer, Yu.L.; Khoze, V.A.; Troyan, S.I.

    1985-12-19

    In the framework of the idea of local parton-hadron duality we discuss the asymptotic predictions of QCD perturbation theory for angular distributions of hadron flows in the three-jet events, e/sup +/e/sup -/->qanti qg->hadrons. The coherence of soft gluon emission provides the QCD explanation of the string effect observed in experiments. (orig.).

  20. Introduction to QCD Sum Rules

    Science.gov (United States)

    Dominguez, C. A.

    2013-08-01

    A general, and very basic introduction to QCD sum rules is presented, with emphasis on recent issues to be described at length in other papers in this issue. Collectively, these papers constitute the proceedings of the International Workshop on Determination of the Fundamental Parameters of QCD, Singapore, March 2013.

  1. Kenneth Wilson and lattice QCD

    CERN Document Server

    Ukawa, Akira

    2015-01-01

    We discuss the physics and computation of lattice QCD, a space-time lattice formulation of quantum chromodynamics, and Kenneth Wilson's seminal role in its development. We start with the fundamental issue of confinement of quarks in the theory of the strong interactions, and discuss how lattice QCD provides a framework for understanding this phenomenon. A conceptual issue with lattice QCD is a conflict of space-time lattice with chiral symmetry of quarks. We discuss how this problem is resolved. Since lattice QCD is a non-linear quantum dynamical system with infinite degrees of freedom, quantities which are analytically calculable are limited. On the other hand, it provides an ideal case of massively parallel numerical computations. We review the long and distinguished history of parallel-architecture supercomputers designed and built for lattice QCD. We discuss algorithmic developments, in particular the difficulties posed by the fermionic nature of quarks, and their resolution. The triad of efforts toward b...

  2. Mapping the QCD phase diagram

    CERN Document Server

    Rajagopal, K

    1999-01-01

    The QCD vacuum in which we live, which has the familiar hadrons as its excitations, is but one phase of QCD, and far from the simplest one at that. One way to better understand this phase and the nonperturbative dynamics of QCD more generally is to study other phases and the transitions between phases. We are engaged in a voyage of exploration, mapping the QCD phase diagram as a function of temperature T and baryon number chemical potential mu . Because of asymptotic freedom, the high temperature and high baryon density phases of QCD are more simply and more appropriately described in terms of quarks and gluons as degrees of freedom, rather than hadrons. The chiral symmetry breaking condensate which characterizes the vacuum phase melts away. At high densities, quarks form Cooper pairs and new condensates develop. The formation of such superconducting phases requires only weak attractive interactions; these phases may nevertheless break chiral symmetry and have excitations which are indistinguishable from thos...

  3. QCD, with Strings Attached

    CERN Document Server

    Guijosa, Alberto

    2016-01-01

    In the nearly twenty years that have elapsed since its discovery, the gauge-gravity correspondence has become established as an efficient tool to explore the physics of a large class of strongly-coupled field theories. A brief overview is given here of its formulation and a few of its applications, emphasizing attempts to emulate aspects of the strong-coupling regime of quantum chromodynamics (QCD). To the extent possible, the presentation is self-contained, and in particular, it does not presuppose knowledge of string theory.

  4. QCD at Fixed Topology

    CERN Document Server

    Brower, Richard C; Negele, John W; Wiese, U J

    2003-01-01

    Since present Monte Carlo algorithms for lattice QCD may become trapped in a fixed topological charge sector, it is important to understand the effect of calculating at fixed topology. In this work, we show that although the restriction to a fixed topological sector becomes irrelevant in the infinite volume limit, it gives rise to characteristic finite size effects due to contributions from all $\\theta$-vacua. We calculate these effects and show how to extract physical results from numerical data obtained at fixed topology.

  5. Bounding Noncommutative QCD

    CERN Document Server

    Carlson, C E; Lebed, R F; Carlson, Carl E.; Carone, Christopher D.; Lebed, Richard F.

    2001-01-01

    Jurco, Moller, Schraml, Schupp, and Wess have shown how to construct noncommutative SU(N) gauge theories from a consistency relation. Within this framework, we present the Feynman rules for noncommutative QCD and compute explicitly the most dangerous Lorentz-violating operator generated through radiative corrections. We find that interesting effects appear at the one-loop level, in contrast to conventional noncommutative U(N) gauge theories, leading to a stringent bound. Our results are consistent with others appearing recently in the literature that suggest collider limits are not competitive with low-energy tests of Lorentz violation for bounding the scale of spacetime noncommutativity.

  6. Finite Density Fat QCD

    CERN Document Server

    Aloisio, R; Di Carlo, G; Galante, A; Grillo, A F

    2000-01-01

    Lattice formulation of Finite Baryon Density QCD is problematic from computer simulation point of view; it is well known that for light quark masses the reconstructed partition function fails to be positive in a wide region of parameter space. For large bare quark masses, instead, it is possible to obtain more sensible results; problems are still present but restricted to a small region. We present evidence for a saturation transition independent from the gauge coupling $\\beta$ and for a transition line that, starting from the temperature critical point at $\\mu=0$, moves towards smaller $\\beta$ with increasing $\\mu$ as expected from simplified phenomenological arguments.

  7. Jets and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kramer, G. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2010-12-15

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e{sup +}e{sup -} collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W{sup {+-}},Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  8. Jets and QCD

    CERN Document Server

    Ali, Ahmed

    2010-01-01

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in $e^+ e^-$ collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in $ep$ and $pp/p\\bar{p}$ collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundam...

  9. QCD and Supernovas

    Science.gov (United States)

    Barnes, T.

    2005-12-01

    In this contribution we briefly summarize aspects of the physics of QCD which are relevant to the supernova problem. The topic of greatest importance is the equation of state (EOS) of nuclear and strongly-interacting matter, which is required to describe the physics of the proto-neutron star (PNS) and the neutron star remnant (NSR) formed during a supernova event. Evaluation of the EOS in the regime of relevance for these systems, especially the NSR, requires detailed knowledge of the spectrum and strong interactions of hadrons of the accessible hadronic species, as well as other possible phases of strongly interacting matter, such as the quark-gluon plasma (QGP). The forces between pairs of baryons (both nonstrange and strange) are especially important in determining the EOS at NSR densities. Predictions for these forces are unfortunately rather model dependent where not constrained by data, and there are several suggestions for the QCD mechanism underlying these short-range hadronic interactions. The models most often employed for determining these strong interactions are broadly of two types, 1) meson exchange models (usually assumed in the existing neutron star and supernova literature), and 2) quark-gluon models (mainly encountered in the hadron, nuclear and heavy-ion literature). Here we will discuss the assumptions made in these models, and discuss how they are applied to the determination of hadronic forces that are relevant to the supernova problem.

  10. QCD Factorization and PDFs from Lattice QCD Calculation

    CERN Document Server

    Ma, Yan-Qing

    2014-01-01

    In this talk, we review a QCD factorization based approach to extract parton distribution and correlation functions from lattice QCD calculation of single hadron matrix elements of quark-gluon operators. We argue that although the lattice QCD calculations are done in the Euclidean space, the nonperturbative collinear behavior of the matrix elements are the same as that in the Minkowski space, and could be systematically factorized into parton distribution functions with infrared safe matching coefficients. The matching coefficients can be calculated perturbatively by applying the factorization formalism on to asymptotic partonic states.

  11. Theta angle in holographic QCD

    CERN Document Server

    Jarvinen, Matti

    2016-01-01

    V-QCD is a class of effective holographic models for QCD which fully includes the backreaction of quarks to gluon dynamics. The physics of the theta-angle and the axial anomaly can be consistently included in these models. We analyze their phase diagrams over ranges of values of the quark mass, N_f/N_c, and theta, computing observables such as the topological susceptibility and the meson masses. At small quark mass, where effective chiral Lagrangians are reliable, they agree with the predictions of V-QCD.

  12. High Density QCD

    CERN Document Server

    Ducati, M B G

    2001-01-01

    The dynamics of high partonic density QCD is presented considering, in the double logarithm approximation, the parton recombination mechanism built in the AGL formalism, developed including unitarity corrections for the nucleon as well for nucleus. It is shown that these corrections are under theoretical control. The resulting non linear evolution equation is solved in the asymptotic regime, and a comprehensive phenomenology concerning Deep Inelastic Scattering like $F_2$, $F_L$, $F_2^c$. $\\partial F_2/ \\partial \\ln Q^2$, $\\partial F^A_2/ \\partial \\ln Q^2$, etc, is presented. The connection of our formalism with the DGLAP and BFKL dynamics, and with other perturbative (K) and non-perturbative (MV-JKLW) approaches is analised in detail. The phenomena of saturation due to shadowing corrections and the relevance of this effect in ion physics and heavy quark production is emphasized. The implications to e-RHIC, HERA-A, and LHC physics and some open questions are mentioned.

  13. String theory meets QCD

    CERN Document Server

    Evans, N

    2003-01-01

    String theory began life in the late 1960s as an attempt to understand the properties of nuclear matter such as protons and neutrons. Although it was not successful it has since developed a life of its own as a possible theory of everything - with the potential to incorporate quantum gravity as well as the other forces of nature. However, in a remarkable about face in the last five years, it has now been discovered that string theory and the standard theory of nuclear matter - QCD - might in fact describe the same physics. This is an exciting development that was the centre of discussion at a major workshop in Seattle in February. After spending 30 years as a possible theory of everything, string theory is returning to its roots to describe the interactions of quarks and gluons. (U.K.)

  14. Nuclear Reactions from Lattice QCD

    CERN Document Server

    Briceño, Raúl A; Luu, Thomas C

    2014-01-01

    One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low- energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path ...

  15. Excited Baryons in Holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins

    2011-11-08

    The light-front holographic QCD approach is used to describe baryon spectroscopy and the systematics of nucleon transition form factors. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. The transition from the hard-scattering perturbative domain to the non-perturbative region is sensitive to the detailed dynamics of confined quarks and gluons. Computations of such phenomena from first principles in QCD are clearly very challenging. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time; however, dynamical observables in Minkowski space-time, such as the time-like hadronic form factors are not amenable to Euclidean numerical lattice computations.

  16. Deconfining transition in Full QCD

    CERN Document Server

    Carmona, J M; Del Debbio, L; Di Giacomo, Adriano; Lucini, B; Paffuti, G; Pica, C

    2002-01-01

    We present evidence that in full QCD with two dynamical quarks confinement is produced by dual superconductivity of the vacuum as in the quenched theory. Preliminary information is obtained on the nature of the deconfining transition.

  17. International Meeting: Excited QCD 2014

    CERN Document Server

    Giacosa, Francesco; Malek, Magdalena; Marinkovic, Marina; Parganlija, Denis

    2014-01-01

    Excited QCD 2014 will take place on the beautiful Bjelasnica mountain located in the vicinity of the Bosnian capital Sarajevo. Bjelasnica was a venue of the XIV Winter Olympic Games and it is situated only 30 kilometers from Sarajevo International Airport. The workshop program will start on February 2 and finish on February 8, 2014, with scientific lectures taking place from February 3 to 7. Workshop participants will be accomodated in Hotel Marsal, only couple of minutes by foot from the Olympic ski slopes. ABOUT THE WORKSHOP This edition is the sixth in a series of workshops that were previously organised in Poland, Slovakia, France and Portugal. Following the succesful meeting in 2013, the Workshop is returning to Sarajevo Olympic mountains in 2014, exactly thirty years after the Games. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-...

  18. Baryon spectroscopy in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Derek B. Leinweber; Wolodymyr Melnitchouk; David Richards; Anthony G. Williams; James Zanotti

    2004-04-01

    We review recent developments in the study of excited baryon spectroscopy in lattice QCD. After introducing the basic methods used to extract masses from correlation functions, we discuss various interpolating fields and lattice actions commonly used in the literature. We present a survey of results of recent calculations of excited baryons in quenched QCD, and outline possible future directions in the study of baryon spectra.

  19. Low temperature relations in QCD

    CERN Document Server

    Agasian, N O

    2002-01-01

    In this talk I discuss the low temperature relations for the trace of the energy-momentum tensor in QCD with two and three quarks. It is shown that the temperature derivatives of the anomalous and normal (quark massive term) contributions to the trace of the energy-momentum tensor in QCD are equal to each other in the low temperature region. Leading corrections connected with $\\pi\\pi$-interactions and thermal excitations of $K$ and $\\eta$ mesons are calculated.

  20. Experimental Summary Moriond QCD 2008

    CERN Document Server

    de Roeck, Albert

    2008-01-01

    2008 was a vintage year for the QCD Moriond meeting. Plenty of new data from Tevatron, HERA, B-Factories and other experiments have been reported. Some brand new results became public just before or even during the conference. A few new hints for New Physics came up in Winter 2008, but these await further scrutiny. This paper is the write-up of the experimental summary talk given at the Moriond QCD March meeting.

  1. QCD at collider energies

    Science.gov (United States)

    Nicolaidis, A.; Bordes, G.

    1986-05-01

    We examine available experimental distributions of transverse energy and transverse momentum, obtained at the CERN pp¯ collider, in the context of quantum chromodynamics. We consider the following. (i) The hadronic transverse energy released during W+/- production. This hadronic transverse energy is made out of two components: a soft component which we parametrize using minimum-bias events and a semihard component which we calculate from QCD. (ii) The transverse momentum of the produced W+/-. If the transverse momentum (or the transverse energy) results from a single gluon jet we use the formalism of Dokshitzer, Dyakonov, and Troyan, while if it results from multiple-gluon emission we use the formalism of Parisi and Petronzio. (iii) The relative transverse momentum of jets. While for W+/- production quarks play an essential role, jet production at moderate pT and present energies is dominated by gluon-gluon scattering and therefore we can study the Sudakov form factor of the gluon. We suggest also how through a Hankel transform of experimental data we can have direct access to the Sudakov form factors of quarks and gluons.

  2. Hadroquarkonium from lattice QCD

    Science.gov (United States)

    Alberti, Maurizio; Bali, Gunnar S.; Collins, Sara; Knechtli, Francesco; Moir, Graham; Söldner, Wolfgang

    2017-04-01

    The hadroquarkonium picture [S. Dubynskiy and M. B. Voloshin, Phys. Lett. B 666, 344 (2008), 10.1016/j.physletb.2008.07.086] provides one possible interpretation for the pentaquark candidates with hidden charm, recently reported by the LHCb Collaboration, as well as for some of the charmoniumlike "X , Y , Z " states. In this picture, a heavy quarkonium core resides within a light hadron giving rise to four- or five-quark/antiquark bound states. We test this scenario in the heavy quark limit by investigating the modification of the potential between a static quark-antiquark pair induced by the presence of a hadron. Our lattice QCD simulations are performed on a Coordinated Lattice Simulations (CLS) ensemble with Nf=2 +1 flavors of nonperturbatively improved Wilson quarks at a pion mass of about 223 MeV and a lattice spacing of about a =0.0854 fm . We study the static potential in the presence of a variety of light mesons as well as of octet and decuplet baryons. In all these cases, the resulting configurations are favored energetically. The associated binding energies between the quarkonium in the heavy quark limit and the light hadron are found to be smaller than a few MeV, similar in strength to deuterium binding. It needs to be seen if the small attraction survives in the infinite volume limit and supports bound states or resonances.

  3. Induced QCD I: theory

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Bastian B. [Institute for Theoretical Physics, Goethe-University of Frankfurt,60438 Frankfurt (Germany); Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany); Lohmayer, Robert; Wettig, Tilo [Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany)

    2016-11-14

    We explore an alternative discretization of continuum SU(N{sub c}) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N{sub b} auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N{sub b} can be as small as N{sub c}. In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U(N{sub c}) to SU(N{sub c}), (ii) derive refined bounds on N{sub b} for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the gauge fields to arrive at a dual formulation of lattice QCD.

  4. Chiral imbalance in QCD

    Directory of Open Access Journals (Sweden)

    Andrianov Alexander

    2017-01-01

    Full Text Available The chiral imbalance (ChI is given by a difference between the numbers of RH and LH quarks which may occur in the fireball after heavy ion collision. To characterize it adiabatically a quark chiral (axial chemical potential must be introduced taking into account emergence of a ChI in such a phase. In this report the phenomenology of formation of Local spatial Parity Breaking (LPB in the hot and dense baryon matter is discussed and its simulation within a number of QCD-inspired models is outlined. The appearance of new states in the spectra of scalar, pseudoscalar and vector particles in such a matter is elucidated. In particular, from the effective vector meson theory in the presence of Chern-Simons interaction it is demonstrated that the spectrum of massive vector mesons splits into three polarization components with different effective masses. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the dilepton invariant mass can serve as a characteristic indication of the LPB in PHENIX, STAR and ALICE experiments.

  5. Understanding Parton Distributions from Lattice QCD

    OpenAIRE

    Renner, Dru B.

    2005-01-01

    I examine the past lattice QCD calculations of three representative observables, the transverse quark distribution, momentum fraction, and axial charge, and emphasize the prospects for not only quantitative comparison with experiment but also qualitative understanding of QCD.

  6. Magnetically induced QCD Kondo effect

    Science.gov (United States)

    Ozaki, Sho; Itakura, Kazunori; Kuramoto, Yoshio

    2016-10-01

    The "QCD Kondo effect" stems from the color exchange interaction in QCD with non-Abelian property, and can be realized in a high-density quark matter containing heavy-quark impurities. We propose a novel type of the QCD Kondo effect induced by a strong magnetic field. In addition to the fact that the magnetic field does not affect the color degrees of freedom, two properties caused by the Landau quantization in a strong magnetic field are essential for the "magnetically induced QCD Kondo effect"; (1) dimensional reduction to 1 +1 -dimensions, and (2) finiteness of the density of states for lowest energy quarks. We demonstrate that, in a strong magnetic field B , the scattering amplitude of a massless quark off a heavy quark impurity indeed shows a characteristic behavior of the Kondo effect. The resulting Kondo scale is estimated as ΛK≃√{eqB }αs1 /3exp {-4 π /Ncαslog (4 π /αs)} where αs and Nc are the fine structure constant of strong interaction and the number of colors in QCD, and eq is the electric charge of light quarks.

  7. QCD Phase Diagram with Imaginary Chemical Potential

    Directory of Open Access Journals (Sweden)

    Nakamura Atsushi

    2012-02-01

    Full Text Available We report our recent results on the QCD phase diagram obtained from the lattice QCD simulation. The location of the phase boundary between hadronic and QGP phases in the two-flavor QCD phase diagram is investigated. The imaginary chemical potential approach is employed, which is based on Monte Carlo simulations of the QCD with imaginary chemical potential and analytic continuation to the real chemical potential region.

  8. Photon structure function in supersymmetric QCD revisited

    Energy Technology Data Exchange (ETDEWEB)

    Sahara, Ryo, E-mail: sahara@scphys.kyoto-u.ac.jp [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Kyoto 606-8502 (Japan); Uematsu, Tsuneo, E-mail: uematsu@scphys.kyoto-u.ac.jp [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Kyoto 606-8502 (Japan); Kitadono, Yoshio, E-mail: kitadono@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei, Taiwan (China)

    2012-02-07

    We investigate the virtual photon structure function in the supersymmetric QCD (SQCD), where we have squarks and gluinos in addition to the quarks and gluons. Taking into account the heavy particle mass effects to the leading order in QCD and SQCD we evaluate the photon structure function and numerically study its behavior for the QCD and SQCD cases.

  9. Photon Structure Function in Supersymmetric QCD Revisited

    CERN Document Server

    Sahara, Ryo; Kitadono, Yoshio

    2011-01-01

    We investigate the virtual photon structure function in the supersymmetric QCD (SQCD), where we have squarks and gluinos in addition to the quarks and gluons. Taking into account the heavy particle mass effects to the leading order in QCD and SQCD we evaluate the photon structure function and numerically study its behavior for the QCD and SQCD cases.

  10. Theoretical summary talk of QCD 2002

    Indian Academy of Sciences (India)

    Rahul Basu

    2003-11-01

    This is a summary of the talks on QCD, not including QCD at finite temperature or density (which are discussed elsewhere) presented at the QCD 2002 meeting held at IIT, Kanpur. I have attempted to give only an overview of the talks since the details may be found in the individual contributions.

  11. Why Use a Hamilton Approach in QCD?

    CERN Document Server

    Kröger, H; Moriarty, K J M

    2000-01-01

    We discuss $QCD$ in the Hamiltonian frame work. We treat finite density $QCD$ in the strong coupling regime. We present a parton-model inspired regularisation scheme to treat the spectrum ($\\theta$-angles) and distribution functions in $QED_{1+1}$. We suggest a Monte Carlo method to construct low-dimensionasl effective Hamiltonians. Finally, we discuss improvement in Hamiltonian $QCD$.

  12. LATTICE QCD THERMODYNAMICS WITH WILSON QUARKS.

    Energy Technology Data Exchange (ETDEWEB)

    EJIRI,S.

    2007-11-20

    We review studies of QCD thermodynamics by lattice QCD simulations with dynamical Wilson quarks. After explaining the basic properties of QCD with Wilson quarks at finite temperature including the phase structure and the scaling properties around the chiral phase transition, we discuss the critical temperature, the equation of state and heavy-quark free energies.

  13. Lattice QCD simulations beyond the quenched approximation

    Energy Technology Data Exchange (ETDEWEB)

    Ukawa, A. (European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.)

    1989-07-01

    Present status of lattice QCD simulations incorporating the effects of dynamical quarks is presented. After a brief review of the formalism of lattice QCD, the dynamical fermion algorithms in use today are described. Recent attempts at the hadron mass calculation are discussed in relation to the quenched results, and current understanding on the finite temperature behavior of QCD is summarized. (orig.).

  14. QCD as topologically ordered system

    CERN Document Server

    Zhitnitsky, Ariel R

    2013-01-01

    We argue that QCD belongs to a topologically ordered phase similar to many well-known condensed matter systems with a gap such as topological insulators or superconductors. Our arguments are based on analysis of the so-called ``deformed QCD" which is a weakly coupled gauge theory, but nevertheless preserves all crucial elements of strongly interacting QCD, including confinement, nontrivial $\\theta$ dependence, degeneracy of the topological sectors, etc. Specifically, we construct the so-called topological ``BF" action which reproduces the well known infrared features of the theory such as non-dispersive contribution to the topological susceptibility which can not be associated with any propagating degrees of freedom. Furthermore, we interpret the well known resolution of the celebrated $U(1)_A$ problem when would be $\\eta'$ Goldstone boson generates its mass as a result of mixing of the Goldstone field with a topological auxiliary field characterizing the system. We identify the non-propagating auxiliary topo...

  15. Modeling the thermodynamics of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Hell, Thomas

    2010-07-26

    Strongly interacting (QCD) matter is expected to exhibit a multifaceted phase structure: a hadron gas at low temperatures, a quark-gluon plasma at very high temperatures, nuclear matter in the low-temperature and high-density region, color superconductors at asymptotically high densities. Most of the conjectured phases cannot yet be scrutinized by experiments. Much of the present picture - particularly concerning the intermediate temperature and density area of the phase diagram of QCD matter - is based on model calculations. Further insights come from Lattice-QCD computations. The present thesis elaborates a nonlocal covariant extension of the Nambu and Jona-Lasinio (NJL) model with built-in constraints from the running coupling of QCD at high-momentum and instanton physics at low-momentum scales. We present this model for two and three quark flavors (in the latter case paying particular attention to the axial anomaly). At finite temperatures and densities, gluon dynamics is incorporated through a gluonic background field, expressed in terms of the Polyakov loop (P). The thermodynamics of this nonlocal PNJL model accounts for both chiral and deconfinement transitions. We obtain results in mean-field approximation and beyond, including additional pionic and kaonic contributions to the chiral condensate, the pressure and other thermodynamic quantities. Finally, the nonlocal PNJL model is applied to the finite-density region of the QCD phase diagram; for three quark flavors we investigate, in particular, the dependence of the critical point appearing in the models on the axial anomaly. The thesis closes with a derivation of the nonlocal PNJL model from first principles of QCD. (orig.)

  16. Neutron star structure from QCD

    Science.gov (United States)

    Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi

    2016-03-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  17. Neutron star structure from QCD

    CERN Document Server

    Fraga, Eduardo S; Vuorinen, Aleksi

    2016-01-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  18. Archeology and evolution of QCD

    CERN Document Server

    De Rújula, A

    2016-01-01

    These are excerpts from the closing talk at the "XIIth Conference on Quark Confinement and the Hadron Spectrum", which took place last Summer in Thessaloniki --an excellent place to enjoy an interest in archeology. A more complete personal view of the early days of QCD and the rest of the Standard Model is given in [1]. Here I discuss a few of the points which --to my judgement-- illustrate well the QCD evolution (in time), both from a scientific and a sociological point of view.

  19. Scalar QCD at nonzero density

    CERN Document Server

    Bruckmann, Falk

    2016-01-01

    We study scalar QCD at nonzero density in the strong coupling limit. It has a sign problem which looks structurally similar to the one in QCD. We show first data for the reweighting factor. After introducing dual variables by integrating out the SU(3) gauge links, we find that at least 3 flavors are needed for a nontrivial dependence on the chemical potential. In this dual representation there is no sign problem remaining. The dual variables are partially constrained, thus we propose to use a hybrid approach for the updates: For unconstrained variables local updates can be used, while for constrained variables using updates based on the worm algorithm is more promising.

  20. Simulating QCD at finite density

    CERN Document Server

    de Forcrand, Philippe

    2009-01-01

    In this review, I recall the nature and the inevitability of the "sign problem" which plagues attempts to simulate lattice QCD at finite baryon density. I present the main approaches used to circumvent the sign problem at small chemical potential. I sketch how one can predict analytically the severity of the sign problem, as well as the numerically accessible range of baryon densities. I review progress towards the determination of the pseudo-critical temperature T_c(mu), and towards the identification of a possible QCD critical point. Some promising advances with non-standard approaches are reviewed.

  1. Hadron scattering, resonances, and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Briceno, Raul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-12-01

    The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.

  2. Neutron star structure from QCD

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil); Kurkela, Aleksi [PH-TH, Case C01600, CERN, Theory Division, Geneva (Switzerland); University of Stavanger, Faculty of Science Technology, Stavanger (Norway); Vuorinen, Aleksi [University of Helsinki, Helsinki Institute of Physics and Department of Physics (Finland)

    2016-03-15

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities. (orig.)

  3. Two-color QCD at high density

    Energy Technology Data Exchange (ETDEWEB)

    Boz, Tamer; Skullerud, Jon-Ivar [Department of Mathematical Physics, Maynooth University, Maynooth, Co. Kildare (Ireland); Centre for the Subatomic Structure of Matter, Adelaide University, Adelaide, SA 5005 (Australia); Giudice, Pietro [Universität Münster, Institut für Theoretische Physik, Münster (Germany); Hands, Simon [Department of Physics, College of Science, Swansea University, Swansea (United Kingdom); Williams, Anthony G. [Centre for the Subatomic Structure of Matter, Adelaide University, Adelaide, SA 5005 (Australia)

    2016-01-22

    QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical potential is referred to as the Gor’kov propagator. We express the Gor’kov propagator in terms of form factors and present recent lattice simulation results.

  4. Comparing the QCD potential in Perturbative QCD and Lattice QCD at large distances

    CERN Document Server

    Recksiegel, S

    2003-01-01

    We compare the perturbatively calculated QCD potential to that obtained from lattice calculations in the theory without light quark flavours. We examine E_tot(r) = 2 m_pole + V_QCD(r) by re-expressing it in the MSbar mass m = m^MSbar(m^MSbar) and by choosing specific prescriptions for fixing the scale mu (dependent on r and m). By adjusting m so as to maximise the range of convergence, we show that perturbative and lattice calculations agree up to 3 r_0 ~ 7.5 GeV^-1 (r_0 is the Sommer scale) within the perturbative uncertainty of order Lambda^3 r^2.

  5. QCD Phase Transitions, Volume 15

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, T.; Shuryak, E.

    1999-03-20

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  6. Nucleon structure using lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C.; Kallidonis, C. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computational-Based Science and technology Research Center; Constantinou, M.; Hatziyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Drach, V. [DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Jansen, K. [DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Koutsou, G.; Vaquero, A. [The Cyprus Institute, Nicosia (Cyprus). Computational-Based Science and technology Research Center; Leontiou, T. [Frederick Univ, Nicosia (Cyprus). General Dept.

    2013-03-15

    A review of recent nucleon structure calculations within lattice QCD is presented. The nucleon excited states, the axial charge, the isovector momentum fraction and helicity distribution are discussed, assessing the methods applied for their study, including approaches to evaluate the disconnected contributions. Results on the spin carried by the quarks in the nucleon are also presented.

  7. Soft QCD Measurements at LHC

    CERN Document Server

    Tasevsky, Marek; The ATLAS collaboration

    2017-01-01

    Results of recent soft QCD measurements by LHC experiments ALICE, ATLAS, CMS, LHCb, LHCf and TOTEM are reported. The measurements include total, elastic and inelastic cross sections, inclusive and identified particle spectra, underlying event and particle correlations in all three collision systems: pp, pPb and PbPb.

  8. Spin Physics through QCD Instantons

    CERN Document Server

    Qian, Yachao

    2015-01-01

    We review some aspects of spin physics where QCD instantons play an important role. In particular, their large contributions in semi-inclusive deep-inelastic scattering and polarized proton on proton scattering. We also review their possible contribution in the $\\mathcal{P}$-odd pion azimuthal charge correlations in peripheral $AA$ scattering at collider energies.

  9. Abelianization of QCD plasma instabilities

    Science.gov (United States)

    Arnold, Peter; Lenaghan, Jonathan

    2004-12-01

    QCD plasma instabilities appear to play an important role in the equilibration of quark-gluon plasmas in heavy-ion collisions in the theoretical limit of weak coupling (i.e. asymptotically high energy). It is important to understand what nonlinear physics eventually stops the exponential growth of unstable modes. It is already known that the initial growth of plasma instabilities in QCD closely parallels that in QED. However, once the unstable modes of the gauge fields grow large enough for non-Abelian interactions between them to become important, one might guess that the dynamics of QCD plasma instabilities and QED plasma instabilities become very different. In this paper, we give suggestive arguments that non-Abelian self-interactions between the unstable modes are ineffective at stopping instability growth, and that the growing non-Abelian gauge fields become approximately Abelian after a certain stage in their growth. This in turn suggests that understanding the development of QCD plasma instabilities in the nonlinear regime may have close parallels to similar processes in traditional plasma physics. We conjecture that the physics of collisionless plasma instabilities in SU(2) and SU(3) gauge theory becomes equivalent, respectively, to (i) traditional plasma physics, which is U(1) gauge theory, and (ii) plasma physics of U(1)×U(1) gauge theory.

  10. QCD Radiation off Heavy Particles

    CERN Document Server

    Sjöstrand, Torbjörn

    2000-01-01

    An algorithm for an improved description of final-state QCD radiation is introduced. It is matched to the first-order matrix elements for gluon emission in a host of decays, for processes within the Standard Model and the Minimal Supersymmetric extension thereof.

  11. Basics of QCD perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Soper, D.E. [Univ. of Oregon, Eugene, OR (United States). Inst. of Theoretical Science

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  12. Seven topics in perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Buras, A.J.

    1980-09-01

    The following topics of perturbative QCD are discussed: (1) deep inelastic scattering; (2) higher order corrections to e/sup +/e/sup -/ annihilation, to photon structure functions and to quarkonia decays; (3) higher order corrections to fragmentation functions and to various semi-inclusive processes; (4) higher twist contributions; (5) exclusive processes; (6) transverse momentum effects; (7) jet and photon physics.

  13. Hard QCD at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S.

    2008-02-15

    We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W{sup {+-}}/Z-boson, Higgs boson or top quark production. (orig.)

  14. Hybrid Charmonium from Lattice QCD

    CERN Document Server

    Luo, X Q

    2006-01-01

    We review our recent results on the JPC = 0¡¡ exotic hybrid charmonium mass and JPC = 0¡+, 1¡¡ and 1++ nonexotic hybrid charmonium spectrum from anisotropic improved lattice QCD and discuss the relevance to the recent discovery of the Y(4260) state and future experimental search for other states.

  15. Meson Resonances from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-06-01

    There has been recent, significant, advances in the determination of the meson spectrum of QCD. Current efforts have focused on the development and application of finite-volume formalisms that allow for the determination of scattering amplitudes as well as resonance behavior in coupled channel systems. I will review some of these recent developments, and demonstrate the viability of the method in meson systems.

  16. Saturation and High Density QCD

    OpenAIRE

    Mueller, A. H.

    2005-01-01

    Recent progress in understanding general properties of high energy scattering near the unitarity limit, where high density gluon components of the wavefunction are dominant, is reviewed. The similarity of the QCD problem and that of reaction-diffusion processes in statistical physics is emphasized. The energy dependence of the saturation momentum and the status of geometric scaling are discussed.

  17. Two flavor QCD and Confinement

    DEFF Research Database (Denmark)

    D'Elia, M.; Di Giacomo, A.; Pica, Claudio

    2005-01-01

    We argue that the order of the chiral transition for N_f=2 is a sensitive probe of the QCD vacuum, in particular of the mechanism of color confinement. A strategy is developed to investigate the order of the transition by use of finite size scaling analysis. An in-depth numerical investigation is...

  18. Vector meson electroproduction in QCD

    Institute of Scientific and Technical Information of China (English)

    LU Juan; CAI Xian-Hao; ZHOU Li-Juan

    2012-01-01

    Based on the generalized QCD vector meson dominance model,we study the electroproduction of a vector meson off a proton in the QCD inspired eikonalized model.Numerical calculations for the total cross section σtot and differential cross section dσ/dt are performed for p,ω and φ meson electroproduction in this paper.Since gluons interact among themselves (self-interaction),two gluons can form a glueball with quantum numbers IG,JPC =0+,2++,decay width Γt ≈ 100 MeV,and mass of mG=2.23 GeV.The three gluons can form a three-gluon colorless bound state with charge conjugation quantum number C =-1,called the Odderon.The mediators of interactions between projectiles (the quark and antiquark pair fluctuated from the virtual photon) and the proton target (a three-quark system) are the tensor glueball and the Odderon.Our calculated results in the tensor glueball and Odderon exchange model fit to the existing data successfully,which evidently shows that our present QCD mechanism is a good description of meson electroproduction off a proton.It should be emphasized that our mechanism is different from the theoretical framework of Block et al.We also believe that the present study and its success are important for the investigation of other vector meson electro- and photoproduction at high energies,as well as for searching for new particles such as tensor glueballs and Odderons,which have been predicted by QCD and the color glass condensate model (CGC).Therefore,in return,it can test the validity of QCD and the CGC model.

  19. Vector meson electroproduction in QCD

    Science.gov (United States)

    Lu, Juan; Cai, Xian-Hao; Zhou, Li-Juan

    2012-08-01

    Based on the generalized QCD vector meson dominance model, we study the electroproduction of a vector meson off a proton in the QCD inspired eikonalized model. Numerical calculations for the total cross section σtot and differential cross section dσ/dt are performed for ρ, ω and varphi meson electroproduction in this paper. Since gluons interact among themselves (self-interaction), two gluons can form a glueball with quantum numbers IG, JPC = 0+,2++, decay width Γt ≈ 100 MeV, and mass of mG = 2.23 GeV. The three gluons can form a three-gluon colorless bound state with charge conjugation quantum number C = -1, called the Odderon. The mediators of interactions between projectiles (the quark and antiquark pair fluctuated from the virtual photon) and the proton target (a three-quark system) are the tensor glueball and the Odderon. Our calculated results in the tensor glueball and Odderon exchange model fit to the existing data successfully, which evidently shows that our present QCD mechanism is a good description of meson electroproduction off a proton. It should be emphasized that our mechanism is different from the theoretical framework of Block et al. We also believe that the present study and its success are important for the investigation of other vector meson electro- and photoproduction at high energies, as well as for searching for new particles such as tensor glueballs and Odderons, which have been predicted by QCD and the color glass condensate model (CGC). Therefore, in return, it can test the validity of QCD and the CGC model.

  20. QCD with chiral 4-fermion interactions ({chi}QCD)

    Energy Technology Data Exchange (ETDEWEB)

    Kogut, J.B. [Illinois Univ., Urbana, IL (United States). Dept. of Physics; Sinclair, D.K. [Argonne National Lab., IL (United States)

    1996-10-01

    Lattice QCD with staggered quarks is augmented by the addition of a chiral 4-fermion interaction. The Dirac operator is now non-singular at m{sub q}=0, decreasing the computing requirements for light quark simulations by at least an order of magnitude. We present preliminary results from simulations at finite and zero temperatures for m{sub q}=0, with and without gauge fields. Chiral QCD enables simulations at physical u and d quark masses with at least an order of magnitude saving in CPU time. It also enables simulations with zero quark masses which is important for determining the equation of state. A renormalization group analysis will be needed to continue to the continuum limit. 7 refs., 2 figs.

  1. Innovations in Lattice QCD Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinos Orginos

    2006-06-25

    Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today.

  2. Precision QCD measurements at HERA

    Directory of Open Access Journals (Sweden)

    Pirumov Hayk

    2014-01-01

    Full Text Available A review of recent experimental results on perturbative QCD from the HERA experiments H1 and ZEUS is presented. All inclusive deep inelastic cross sections measured by the H1 and ZEUS collaborations in neutral and charged current unpolarised ep scattering are combined. They span six orders of magnitude in negative four-momentum-transfer squared, Q2, and in Bjorken x. This data set is used as the sole input to NLO and NNLO QCD analyses to determine new sets of parton distributions, HERAPDF2.0, with small experimental uncertainties and an estimate of model and parametrisation uncertainties. Also shown are new results on inclusive jet, dijet and trijet differential cross sections measured in neutral current deep inelastic scattering. The precision jet data is used to extract the strong coupling αs at NLO with small experimental errors.

  3. Lattice QCD on nonorientable manifolds

    Science.gov (United States)

    Mages, Simon; Tóth, Bálint C.; Borsányi, Szabolcs; Fodor, Zoltán; Katz, Sándor D.; Szabó, Kálmán K.

    2017-05-01

    A common problem in lattice QCD simulations on the torus is the extremely long autocorrelation time of the topological charge when one approaches the continuum limit. The reason is the suppressed tunneling between topological sectors. The problem can be circumvented by replacing the torus with a different manifold, so that the connectivity of the configuration space is changed. This can be achieved by using open boundary conditions on the fields, as proposed earlier. It has the side effect of breaking translational invariance strongly. Here we propose to use a nonorientable manifold and show how to define and simulate lattice QCD on it. We demonstrate in quenched simulations that this leads to a drastic reduction of the autocorrelation time. A feature of the new proposal is that translational invariance is preserved up to exponentially small corrections. A Dirac fermion on a nonorientable manifold poses a challenge to numerical simulations: the fermion determinant becomes complex. We propose two approaches to circumvent this problem.

  4. Sudakov Safety in Perturbative QCD

    CERN Document Server

    Larkoski, Andrew J; Thaler, Jesse

    2015-01-01

    Traditional calculations in perturbative quantum chromodynamics (pQCD) are based on an order-by-order expansion in the strong coupling $\\alpha_s$. Observables that are calculable in this way are known as "safe". Recently, a class of unsafe observables was discovered that do not have a valid $\\alpha_s$ expansion but are nevertheless calculable in pQCD using all-orders resummation. These observables are called "Sudakov safe" since singularities at each $\\alpha_s$ order are regulated by an all-orders Sudakov form factor. In this letter, we give a concrete definition of Sudakov safety based on conditional probability distributions, and we study a one-parameter family of momentum sharing observables that interpolate between the safe and unsafe regimes. The boundary between these regimes is particularly interesting, as the resulting distribution can be understood as the ultraviolet fixed point of a generalized fragmentation function, yielding a leading behavior that is independent of $\\alpha_s$.

  5. QCD matter in extreme environments

    CERN Document Server

    Fukushima, Kenji

    2011-01-01

    We review various theoretical approaches to the states of QCD matter out of quarks and gluons in extreme environments such as the high-temperature states at zero and finite baryon density and the dimensionally reduced state under an intense magnetic field. The topics at high temperature include the Polyakov loop and the 't Hooft loop in the perturbative regime, the Polyakov loop behaviour and the phase transition in some of non-perturbative methods; the strong-coupling expansion, the large-Nc limit and the holographic QCD models. These analyses are extended to hot and dense matter with a finite baryon chemical potential. We point out that the difficulty in the finite-density problem has similarity to that under a strong magnetic field. We make a brief summary of results related to the topological contents probed by the magnetic field and the Chiral Magnetic Effect. We also address the close connection to the (1+1) dimensional system.

  6. QCD Radiation off Heavy Particles

    CERN Document Server

    Norrbin, E

    2001-01-01

    We study QCD radiation in decay processes involving heavy particles. As input, the first-order gluon emission rate is calculated in a number of reactions, and comparisons of the energy flow patterns show a non-negligible process dependence. To proceed further, the QCD parton shower language offers a convenient approach to include multi-gluon emission effects, and to describe exclusive event properties. An existing shower algorithm is extended to take into account the process-dependent mass, spin and parity effects, as given by the matrix element calculations. This allows an improved description of multiple gluon emission effects off b and t quarks, and also off nonstandard particles like squarks and gluinos. Phenomenological applications are presented for bottom production at LEP, Higgs particle decay to heavy flavours, top production and decay at linear colliders, and some simple supersymmetric processes.

  7. Analytic Approach to Perturbative QCD

    CERN Document Server

    Magradze, B

    2000-01-01

    The two-loop invariant (running) coupling of QCD is written in terms of the Lambert W function. The analyticity structure of the coupling in the complex Q^2-plane is established. The corresponding analytic coupling is reconstructed via a dispersion relation. We also consider some other approximations to the QCD beta-function, when the corresponding couplings are solved in terms of the Lambert function. The Landau gauge gluon propagator has been considered in the renormalization group invariant analytic approach (IAA). It is shown that there is a nonperturbative ambiguity in determination of the anomalous dimension function of the gluon field. Several analytic solutions for the propagator at the one-loop order are constructed. Properties of the obtained analytical solutions are discussed.

  8. Qcd Thermodynamics On A Lattice

    CERN Document Server

    Levkova, L A

    2004-01-01

    Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with two flavors of dynamical staggered fermions, where all bare parameters and the renormalized anisotropy are kept constant and the temperature is changed in small steps by varying only the number of time slices. Including results from zero- temperature scale setting simulations, which determine the Karsch coefficients, allows for the calculation of the Equation of State at finite temperatures. We also report on studies of the chiral properties of dynamical domain-wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvemen...

  9. Scale setting in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Rainer [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2014-02-15

    The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.

  10. Lattice QCD: A Brief Introduction

    Science.gov (United States)

    Meyer, H. B.

    A general introduction to lattice QCD is given. The reader is assumed to have some basic familiarity with the path integral representation of quantum field theory. Emphasis is placed on showing that the lattice regularization provides a robust conceptual and computational framework within quantum field theory. The goal is to provide a useful overview, with many references pointing to the following chapters and to freely available lecture series for more in-depth treatments of specifics topics.

  11. Nucleon structure from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon

    2012-11-13

    In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.

  12. A nonperturbative method for QCD

    CERN Document Server

    Jora, Renata

    2015-01-01

    Based on specific properties of the partition function and of the quantum correlators we derive the exact form of the beta function in the background gauge field method for QCD with an arbitrary number of flavors. The all order beta function we obtain through this method has only the first two orders coefficients different than zero and thus is equivalent to the 't Hooft scheme.

  13. Berry phase in lattice QCD

    CERN Document Server

    Yamamoto, Arata

    2016-01-01

    We propose the lattice QCD calculation of the Berry phase which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.

  14. Hadron Physics from Lattice QCD

    OpenAIRE

    2016-01-01

    We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-perturbative level. We comment on selected results, with a focus on hadron masses and the link to Chiral Perturbation Theory. At last we address two outstanding issues: topological freezing and the sign problem.

  15. Lattice gauge theory for QCD

    Energy Technology Data Exchange (ETDEWEB)

    DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics

    1997-06-01

    These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.

  16. QCD Physics Potential of CMS

    CERN Document Server

    Rabbertz, Klaus

    2009-01-01

    In view of the approaching LHC operation the feasibility and accuracy of QCD measurements with the CMS experiment at the Large Hadron Collider (LHC) involving hadrons and jets are discussed. This summary is based on analyses performed at CMS for center-of-mass energies of 10 as well as 14 TeV assuming event numbers ranging from some days of data taking up to 100/pb of integrated luminosity with proton-proton collisions.

  17. Strongly interacting matter from holographic QCD model

    CERN Document Server

    Chen, Yidian; Huang, Mei

    2016-01-01

    We introduce the 5-dimension dynamical holographic QCD model, which is constructed in the graviton-dilaton-scalar framework with the dilaton background field $\\Phi$ and the scalar field $X$ responsible for the gluodynamics and chiral dynamics, respectively. We review our results on the hadron spectra including the glueball and light meson spectra, QCD phase transitions and transport properties in the framework of the dynamical holographic QCD model.

  18. Unified QCD picture of hard diffraction

    CERN Document Server

    Navelet, H

    2001-01-01

    Using a combination of S-Matrix and perturbative QCD properties in the small x_{Bjorken} regime, we propose a formulation of hard diffraction unifying the partonic (Ingelman-Schlein) Pomeron, Soft Colour Interaction and QCD dipole descriptions. In particular, we show that all three approaches give an unique and mutually compatible formula for the proton diffractive structure functions incorporating perturbative and non perturbative QCD features.

  19. FermiQCD A tool kit for parallel lattice QCD applications

    CERN Document Server

    Di Pierro, Massimo

    2002-01-01

    We present here the most recent version of FermiQCD, a collection of C++ classes, functions and parallel algorithms for lattice QCD, based on Matrix Distributed Processing. FermiQCD allows fast development of parallel lattice applications and includes some SSE2 optimizations for clusters of Pentium 4 PCs.

  20. Recent QCD results from ATLAS

    CERN Document Server

    Pleskot, Vojtech; The ATLAS collaboration

    2016-01-01

    ATLAS has has performed several measurements of phenomena connected to QCD at soft scales or at the transition to the hard regime. These include the measurements at different centre-of-mass energies in Run-1 and Run-2 of the elastic, inelastic and total cross sections in pp collisions, the properties of minimum bias and the underlying event interactions, particle production and their correlations, as well as of diffractive and exclusive events. These results are sensitive to non-perturbative models of soft QCD. Jet and photon production cross sections have been measured differentially for inclusive and multi-object final states at 7, 8 and 13 TeV pp collisions with the ATLAS detector and are compared to expectations based on next-to-leading order QCD calculations as well as Monte Carlo simulations. Further studies of jet production properties include the measurements of jet properties, and the determination of the strong coupling constant alpha_s. These measurements provide direct probes of short-distance phy...

  1. QCD thermodynamics on a lattice

    Science.gov (United States)

    Levkova, Ludmila A.

    Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with two flavors of dynamical staggered fermions, where all bare parameters and the renormalized anisotropy are kept constant and the temperature is changed in small steps by varying only the number of time slices. Including results from zero-temperature scale setting simulations, which determine the Karsch coefficients, allows for the calculation of the Equation of State at finite temperatures. We also report on studies of the chiral properties of dynamical domain-wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvements provide for the study of QCD thermodynamics and other simulations at stronger couplings.

  2. Probing QCD at high energy

    CERN Document Server

    Voutilainen, Mikko

    2012-01-01

    We review recent experimental work on probing QCD at high $p_{T}$ at the Tevatron and at the LHC. The Tevatron has just finished a long and illustrious career at the forefront of high energy physics, while the LHC now has its physics program in full swing and is producing results at a quick rate in a new energy regime. Many of the LHC measurements extend well into the TeV range, with potential sensitivity to new physics. The experimental systematics at the LHC are also becoming competitive with the Tevatron, making precision measurements of QCD possible. Measurements of inclusive jet, dijet and isolated prompt photon production can be used to test perturbative QCD predictions and to constrain parton distribution functions, as well as to measure the strong coupling constant. More exclusive topologies are used to constrain aspects of parton shower modeling, initial and final state radiation. Interest in boosted heavy resonances has resulted in novel studies of jet mass and subjet structure that also test pertu...

  3. Moriond QCD 2013 Experimental Summary

    CERN Document Server

    Denisov, Dmitri

    2013-01-01

    The article presents experimental highlights of Moriond 2013 QCD conference. This was fantastic conference and the first Moriond QCD since the discovery of the Higgs boson. Many new results about its properties have been presented at the conference with Higgs-like particle becoming a Higgs as it properties match expected for the Higgs boson pretty well. There were many new results presented in all experimental areas including QCD, elecroweak, studies of the top, bottom and charm quarks, searches for physics beyond Standard Model as well as studies of the heavy ion collisions. 56 experimental talks have been presented at the conference and it is impossible to cover each result in the summary, so highlights are limited to what I was able to present in my summary talk presented on March 16 2013. The proceedings of the conference cover in depth all talks presented and I urge you to get familiar with all of them. Theoretical Summary of the conference was given by Michelangelo Mangano, so theory talks are not cover...

  4. Moriond QCD 2013 Experimental Summary

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Dmitri [Fermilab

    2013-06-28

    The article presents experimental highlights of Moriond 2013 QCD conference. This was fantastic conference and the first Moriond QCD since the discovery of the Higgs boson. Many new results about its properties have been presented at the conference with Higgs-like particle becoming a Higgs as it properties match expected for the Higgs boson pretty well. There were many new results presented in all experimental areas including QCD, elecroweak, studies of the top, bottom and charm quarks, searches for physics beyond Standard Model as well as studies of the heavy ion collisions. 56 experimental talks have been presented at the conference and it is impossible to cover each result in the summary, so highlights are limited to what I was able to present in my summary talk presented on March 16 2013. The proceedings of the conference cover in depth all talks presented and I urge you to get familiar with all of them. Theoretical Summary of the conference was given by Michelangelo Mangano, so theory talks are not covered in the article.

  5. Superfluid helium II as the QCD vacuum

    CERN Document Server

    Zhitnitsky, Ariel

    2016-01-01

    We study the winding number susceptibility in superfluid system and the topological susceptibility in QCD. We argue that both correlation functions exhibit similar structures, including the generation of the contact terms. We discuss the nature of the contact term in superfluid system and argue that it has exactly the same origin as in QCD, and it is related to the long distance physics which cannot be associated with conventional microscopical degrees of freedom such as phonons and rotons. We emphasize that the conceptual similarities between superfluid system and QCD may lead, hopefully, to a deeper understanding of the topological features of a superfluid system as well as the QCD vacuum.

  6. Holographic QCD: Past, Present, and Future

    CERN Document Server

    Kim, Youngman; Tsukioka, Takuya

    2012-01-01

    At the dawn of a new theoretical tool based on AdS/CFT for non-perturbative aspects of quantum chromodynamics, we give an interim review on the the new tool, holographic QCD, with some of its accomplishment. We try to give an A-to-Z picture of the holographic QCD, from string theory to a few selected top-down holographic QCD models with one or two physical applications in each model. We may not attempt to collect diverse results from various holographic QCD model studies.

  7. Topology in dynamical lattice QCD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Florian

    2012-08-20

    Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.

  8. Superfluid helium II as the QCD vacuum

    Science.gov (United States)

    Zhitnitsky, Ariel

    2017-03-01

    We study the winding number susceptibility in a superfluid system and the topological susceptibility in QCD. We argue that both correlation functions exhibit similar structures, including the generation of the contact terms. We discuss the nature of the contact term in superfluid system and argue that it has exactly the same origin as in QCD, and it is related to the long distance physics which cannot be associated with conventional microscopical degrees of freedom such as phonons and rotons. We emphasize that the conceptual similarities between superfluid system and QCD may lead, hopefully, to a deeper understanding of the topological features of a superfluid system as well as the QCD vacuum.

  9. Infrared QCD and the Renormalisation Group

    CERN Document Server

    Litim, D F; Nedelko, S; Von Smekal, L; Litim, Daniel F.; Pawlowski, Jan M.; Nedelko, Sergei; Smekal, Lorenz v.

    2004-01-01

    We study the infrared regime of QCD by means of a Wilsonian renormalisation group. We explain how, in general, the infrared structure of Green functions is deduced in this approach. Our reasoning is put to work in Landau gauge QCD, where the leading infrared terms of the propagators are computed. The results support the Kugo-Ojima scenario of confinement. Possible extensions are indicated.

  10. Academic Training Lectures - QCD for Postgraduates

    CERN Multimedia

    Maureen Prola-Tessaur

    2010-01-01

    by Giulia Zanderighi (University of Oxford) Monday 12 to Friday 16 April 2010 From 11:00 to 12:00 - Main Auditorium, Bldg. 500-1-001 Monday 12 - Modern QCD - Lecture 1 Starting from the QCD Lagrangian we will revisit some basic QCD concepts and derive fundamental properties like gauge invariance and isospin symmetry and will discuss the Feynman rules of the theory. We will then focus on the gauge group of QCD and derive the Casimirs CF and CA and some useful color identities. Tuesday 13 - Modern QCD - Lecture 2 We will start discussing the matter content of the theory and revisit the experimental measurements that led to the discovery of quarks. We will then consider a classic QCD observable, the R-ratio, and use it to illustrate the appearance of UV divergences and the need to renormalize the coupling constant of QCD. We will then discuss asymptotic freedom and confinement. Finally, we will examine a case where soft and collinear infrared divergences appear, will discuss the soft approximation in QCD ...

  11. Effective Field Theories and Lattice QCD

    CERN Document Server

    Bernard, C

    2015-01-01

    I describe some of the many connections between lattice QCD and effective field theories, focusing in particular on chiral effective theory, and, to a lesser extent, Symanzik effective theory. I first discuss the ways in which effective theories have enabled and supported lattice QCD calculations. Particular attention is paid to the inclusion of discretization errors, for a variety of lattice QCD actions, into chiral effective theory. Several other examples of the usefulness of chiral perturbation theory, including the encoding of partial quenching and of twisted boundary conditions, are also described. In the second part of the talk, I turn to results from lattice QCD for the low energy constants of the two- and three-flavor chiral theories. I concentrate here on mesonic quantities, but the dependence of the nucleon mass on the pion mass is also discussed. Finally I describe some recent preliminary lattice QCD calculations by the MILC Collaboration relating to the three-flavor chiral limit.

  12. From QCD to nuclear matter saturation

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, Magda [Universite de Lyon, Univ. Lyon 1, CNRS/IN2P3, IPN Lyon, F-69622 Villeurbanne Cedex (France)]|[Theory division, CERN, CH-12111 Geneva (Switzerland); Chanfray, Guy [Universite de Lyon, Univ. Lyon 1, CNRS/IN2P3, IPN Lyon, F-69622 Villeurbanne Cedex (France)

    2007-03-15

    We discuss a relativistic chiral theory of nuclear matter with {sigma} and {omega} exchange using a formulation of the {sigma} model in which all the chiral constraints are automatically fulfilled. We establish a relation between the nuclear response to the scalar field and the QCD one which includes the nucleonic parts. It allows a comparison between nuclear and QCD information. Going beyond the mean field approach we introduce the effects of the pion loops supplemented by the short-range interaction. The corresponding Landau-Migdal parameters are taken from spin-isospin physics results. The parameters linked to the scalar meson exchange are extracted from lattice QCD results. These inputs lead to a reasonable description of the saturation properties, illustrating the link between QCD and nuclear physics. We also derive from the corresponding equation of state the density dependence of the quark condensate and of the QCD susceptibilities. (authors)

  13. Anderson localization in QCD-like theories

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc

    2014-01-01

    We review the present status of the Anderson transition in the spectrum of the Dirac operator of QCD-like theories on the lattice. Localized modes at the low-end of the spectrum have been found in SU(2) Yang-Mills theory with overlap and staggered valence fermions as well as in Nf=2+1 QCD with staggered quarks. We draw an analogy between the transition from localized to delocalized modes in the Dirac spectrum and the Anderson transition in electronic systems. The QCD transition turns out to be in the same universality class as the transition in the corresponding Anderson model. We also speculate on the possible physical relevance of this transition to QCD at high temperature and the possible finite temperature phase transition in QCD-like models with different fermion contents.

  14. Meson Spectroscopy from QCD - Project Results

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Jozef [Old Dominion Univ., Norfolk, VA (United States)

    2017-04-17

    Highlights of the research include: the determination of the form of the lowest energy gluonic excitation within QCD and the spectrum of hybrid hadrons which follows; the first calculation of the spectrum of hybrid baryons within a first-principles approach to QCD; a detailed mapping out of the phase-shift of elastic ππ scattering featuring the ρ resonance at two values of the light quark mass within lattice QCD; the first (and to date, only) determinations of coupled-channel meson-meson scattering within first-principles QCD; the first (and to date, only) determinations of the radiative coupling of a resonant state, the ρ appearing in πγ→ππ; the first (and to date, only) determination of the properties of the broad σ resonance in elastic ππ scattering within QCD without unjustified approximations.

  15. Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD.

    Science.gov (United States)

    Ryttov, Thomas A

    2016-08-12

    We suggest how to consistently calculate the anomalous dimension γ_{*} of the ψ[over ¯]ψ operator in finite order perturbation theory at an infrared fixed point for asymptotically free theories. If the n+1 loop beta function and n loop anomalous dimension are known, then γ_{*} can be calculated exactly and fully scheme independently in a Banks-Zaks expansion through O(Δ_{f}^{n}), where Δ_{f}=N[over ¯]_{f}-N_{f}, N_{f} is the number of flavors, and N[over ¯]_{f} is the number of flavors above which asymptotic freedom is lost. For a supersymmetric theory, the calculation preserves supersymmetry order by order in Δ_{f}. We then compute γ_{*} through O(Δ_{f}^{2}) for supersymmetric QCD in the dimensional reduction scheme and find that it matches the exact known result. We find that γ_{*} is astonishingly well described in perturbation theory already at the few loops level throughout the entire conformal window. We finally compute γ_{*} through O(Δ_{f}^{3}) for QCD and a variety of other nonsupersymmetric fermionic gauge theories. Small values of γ_{*} are observed for a large range of flavors.

  16. Thermodynamics for two flavor QCD

    CERN Document Server

    Bernard, C W; Tar, C D; Gottlieb, S; Heller, U M; Hetrick, J E; Kärkkäinen, L; Neile, C M; Rummukainen, K; Sugar, R L; Toussaint, D; Wingate, M; Gottlieb, Steven

    1996-01-01

    We conclude our analysis of the N_t=6 equation of state for two flavor QCD, first described at last year's conference. We have obtained new runs at am_q=0.025 and improved runs at am_q=0.0125. The results are extrapolated to m_q=0, and we extract the speed of sound as well. We also present evidence for a restoration of the SU(2) X SU(2) chiral symmetry just above the crossover, but not of the axial U(1) chiral symmetry.

  17. Nuclear Physics from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage

    2011-01-01

    We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.

  18. Invisible QCD as Dark Energy

    CERN Document Server

    Alexander, Stephon; Yang, Zhi

    2016-01-01

    We account for the late time acceleration of the Universe by extending the QCD color to a $SU(3)$ invisible sector (IQCD). If the Invisible Chiral symmetry is broken in the early universe, a condensate of dark pions (dpions) and dark gluons (dgluons) forms. The condensate naturally forms due to strong dynamics similar to the Nambu--Jona-Lasinio mechanism. As the Universe evolves from early times to present times the interaction energy between the dgluon and dpion condensate dominates with a negative pressure equation of state and causes late time acceleration. We conclude with a stability analysis of the coupled perturbations of the dark pions and dark gluons.

  19. Hadron structure from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Green, Jeremy [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz (Germany)

    2016-01-22

    Recent progress in lattice QCD calculations of nucleon structure will be presented. Calculations of nucleon matrix elements and form factors have long been difficult to reconcile with experiment, but with advances in both methodology and computing resources, this situation is improving. Some calculations have produced agreement with experiment for key observables such as the axial charge and electromagnetic form factors, and the improved understanding of systematic errors will help to increase confidence in predictions of unmeasured quantities. The long-omitted disconnected contributions are now seeing considerable attention and some recent calculations of them will be discussed.

  20. Hadron Structure from Lattice QCD

    CERN Document Server

    Green, Jeremy

    2014-01-01

    Recent progress in lattice QCD calculations of nucleon structure will be presented. Calculations of nucleon matrix elements and form factors have long been difficult to reconcile with experiment, but with advances in both methodology and computing resources, this situation is improving. Some calculations have produced agreement with experiment for key observables such as the axial charge and electromagnetic form factors, and the improved understanding of systematic errors will help to increase confidence in predictions of unmeasured quantities. The long-omitted disconnected contributions are now seeing considerable attention and some recent calculations of them will be discussed.

  1. QCD studies at LEP I

    CERN Document Server

    Raso, G

    1996-01-01

    The high hadronic event statistics collected at the Z energy (LEP I) allowed a good understanding of the QCD dynamics. The coupling constant \\alpha_s has been measured with several methods giving a global average \\alpha_s(M_Z) = 0.122 \\pm 0.004. The flavour independence of \\alpha_s has been tested obtaining \\alpha_s^b/\\alpha_s^{udsc} = 0.997 \\pm 0.023. Quark-gluon jet differencies has been observed among which _{gluon}/_{quark} = 1.234 \\pm 0.027. A big role has been plaied by the silicon vertex detectors.

  2. Recent QCD Results from ATLAS

    CERN Document Server

    Sinervo, Pekka; The ATLAS collaboration

    2016-01-01

    The ATLAS collaboration has performed studies of a wide range of QCD phenomena, from soft particle to hard photon and jet production. Among recent results are the measurement of Z event shape observables sensitive to the modelling of the underlying event, and the measurement of diffractive dijet production with a large rapidity gap, which tests the interplay of soft and hard phenomena. The inelastic pp cross section, a fundamental property of the strong interaction, is measured. Precision measurements of the isolated high pT inclusive photon cross section at cms energies of 8TeV test the theoretical predictions and constrain parton density functions. An overview of these results is given.

  3. "Quantum Field Theory and QCD"

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, Arthur M.

    2006-02-25

    This grant partially funded a meeting, "QFT & QCD: Past, Present and Future" held at Harvard University, Cambridge, MA on March 18-19, 2005. The participants ranged from senior scientists (including at least 9 Nobel Prize winners, and 1 Fields medalist) to graduate students and undergraduates. There were several hundred persons in attendance at each lecture. The lectures ranged from superlative reviews of past progress, lists of important, unsolved questions, to provocative hypotheses for future discovery. The project generated a great deal of interest on the internet, raising awareness and interest in the open questions of theoretical physics.

  4. Hadron physics from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Andreas [Regensburg Univ. (Germany). Inst. for Theoretical Physics

    2016-11-01

    Particle physics experiments at modern high luminosity particle accelerators achieve orders of magnitude higher count rates than what was possible ten or twenty years ago. This extremely large statistics allows to draw far reaching conclusions even from minute signals, provided that these signals are well understood by theory. This is, however, ever more difficult to achieve. Presently, technical and scientific progress in general and experimental progress in particle physics in particular, shows typically an exponential growth rate. For example, data acquisition and analysis are, among many other factor, driven by the development of ever more efficient computers and thus by Moore's law. Theory has to keep up with this development by also achieving an exponential increase in precision, which is only possible using powerful computers. This is true for both types of calculations, analytic ones as, e.g., in quantum field perturbation theory, and purely numerical ones as in Lattice QCD. As stated above such calculations are absolutely indispensable to make best use of the extremely costly large particle physics experiments. Thus, it is economically reasonable to invest a certain percentage of the cost of accelerators and experiments in related theory efforts. The basic ideas behind Lattice QCD simulations are the following: Because quarks and gluons can never be observed individually but are always ''confined'' into colorless hadrons, like the proton, all quark-gluon states can be expressed in two different systems of basis states, namely in a quark-gluon basis and the basis of hadron states. The proton, e.g., is an eigenstate of the latter, a specific quark-gluon configuration is part of the former. In the quark-gluon basis a physical hadron, like a proton, is given by an extremely complicated multi-particle wave function containing all effects of quantum fluctuations. This state is so complicated that it is basically impossible to model it

  5. Unquenched QCD with Light Quarks

    CERN Document Server

    Duncan, A; Yoo, J

    2003-01-01

    We present recent results in unquenched lattice QCD with two degenerate light sea quarks using the truncated determinant approximation (TDA). In the TDA the infrared modes contributing to the quark determinant are computed exactly up to some cutoff in quark off-shellness (typically 2$\\Lambda_{QCD}$). This approach allows simulations to be performed at much lighter quark masses than possible with conventional hybrid MonteCarlo techniques. Results for the static energy and topological charge distributions are presented using a large ensemble generated on very coarse (6$^4$) but physically large lattices. Preliminary results are also reported for the static energy and meson spectrum on 10$^3$x20 lattices (lattice scale $a^{-1}$=1.15 GeV) at quark masses corresponding to pions of mass $\\leq$ 200 MeV. Using multiboson simulation to compute the ultraviolet part of the quark determinant the TDA approach becomes an exact with essentially no increase in computational effort. Some preliminary results using this fully u...

  6. QCD factorization at forward rapidities

    Science.gov (United States)

    Čepila, J.; Nemchik, J.; Šumbera, M.

    2011-09-01

    We analyze particle production in several reactions on nuclear targets at forward rapidities and different energies. The forward kinematic region at high energies allows to access the smallest Bjorken x. Nuclear effects are then usually interpreted as a result of the coherence effects associated with shadowing or the Color Glass Condensate. QCD factorization of soft and hard interactions requires the nucleus to be an universal filter for different Fock components of the projectile hadron. We demonstrate, however, that this is not the case in the vicinity of the kinematic limit, x → 1, where sharing of energy between the projectile constituents becomes an issue. The rise of suppression of particle production with x is confirmed by the E772 and E886 data on Drell-Yan and heavy quarkonia. We show that this effect can also be treated alternatively as an effective energy loss proportional to initial energy. This leads to a nuclear suppression at any energy, and predicts Feynman xF scaling of the suppression. We demonstrate how the kinematic limit influences the high-pT particle production at mid-rapidity where the Cronin enhancement at medium-high pT switches to a suppression at larger pT violating thus QCD factorization. Such an expectation seems to be confirmed by RHIC data for pion and direct photon production. We show that this effect as an additional large-pT suppression significantly revises calculations for jet quenching in heavy ion collisons at RHIC.

  7. QCD studies in ep collisions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.H. [Univ. of Wisconsin, Madison, WI (United States). Physics Dept.

    1997-06-01

    These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F{sub 2}, which is used to determine the gluon momentum distribution. Both low and high Q{sup 2} regimes are discussed. The low Q{sup 2} transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure {alpha}{sub s}, and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs.

  8. Theta dependence in Holographic QCD

    CERN Document Server

    Bartolini, Lorenzo; Bolognesi, Stefano; Cotrone, Aldo L; Manenti, Andrea

    2016-01-01

    We study the effects of the CP-breaking topological $\\theta$-term in the large $N_c$ QCD model by Witten, Sakai and Sugimoto with $N_f$ degenerate light flavors. We first compute the ground state energy density, the topological susceptibility and the masses of the lowest lying mesons, finding agreement with expectations from the QCD chiral effective action. Then, focusing on the $N_f=2$ case, we consider the baryonic sector and determine, to leading order in the small $\\theta$ regime, the related holographic instantonic soliton solutions. We find that while the baryon spectrum does not receive ${\\cal O}(\\theta)$ corrections, this is not the case for observables like the electromagnetic form factor of the nucleons. In particular, it exhibits a dipole term, which turns out to be vector-meson dominated. The resulting neutron electric dipole moment, which is exactly the opposite as that of the proton, is of the same order of magnitude of previous estimates in the literature. Finally, we compute the CP-violating p...

  9. Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD

    DEFF Research Database (Denmark)

    Ryttov, Thomas A.

    2016-01-01

    We suggest how to consistently calculate the anomalous dimension $\\gamma_*$ of the $\\bar{\\psi}\\psi$ operator in finite order perturbation theory at an infrared fixed point for asymptotically free theories. If the $n+1$ loop beta function and $n$ loop anomalous dimension are known then $\\gamma......_*$ can be calculated exactly and fully scheme independently through $O(\\Delta_f^n )$ where $\\Delta_f = \\bar{N_f} - N_f$ and $N_f$ is the number of flavors and $\\bar{N}_f$ is the number of flavors above which asymptotic freedom is lost. For a supersymmetric theory the calculation preserves supersymmetry...... order by order in $\\Delta_f$. We then compute $\\gamma_*$ through $O(\\Delta_f^2)$ for supersymmetric QCD in the $\\overline{\\text{DR}}$ scheme and find that it matches the exact known result. We find that $\\gamma_*$ is astonishingly well described in perturbation theory already at the few loops level...

  10. Interplay between QCD and nuclear responses

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, Magda [Universite de Lyon, Univ. Lyon 1, CNRS/IN2P3, IPN Lyon, F-69622 Villeurbanne Cedex (France)]|[Theory division, CERN, CH-12111 Geneva (Switzerland); Chanfray, Guy [Universite de Lyon, Univ. Lyon 1, CNRS/IN2P3, IPN Lyon, F-69622 Villeurbanne Cedex (France)

    2007-03-15

    We establish the interrelation between the QCD scalar response of the nuclear medium and its response to a scalar probe coupled to nucleons, such as the scalar meson responsible for the nuclear binding. The relation that we derive applies at the nucleonic as well as at the nuclear levels. Non trivial consequences follow. One concerns the scalar QCD susceptibility of the nucleon. The other opens the possibility of relating medium effects in the scalar meson exchange of nuclear physics to QCD lattice studies of the nucleon mass. (authors)

  11. Quark Virtuality and QCD Vacuum Condensates

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Juan; MA Wei-Xing

    2004-01-01

    @@ Based on the Dyson-Schwinger equations (DSEs) in the ‘rainbow' approximation, we investigate the quark virtuality in the vacuum state and quantum-chromodynamics (QCD) vacuum condensates. In particular, we calculate the local quark vacuum condensate and quark-gluon mixed condensates, and then the virtuality of quark. The calculated quark virtualities are λ2u,d = 0.7 GeV2 for u, d quarks, and 2s 1.6 GeV2 for s quark.Our theoretical predictions are consistent with empirical values used in QCD sum rules, and also fit to lattice QCD predictions.

  12. QCD and a holographic model of hadrons.

    Science.gov (United States)

    Erlich, Joshua; Katz, Emanuel; Son, Dam T; Stephanov, Mikhail A

    2005-12-31

    We propose a five-dimensional framework for modeling low-energy properties of QCD. In the simplest three parameter model we compute masses, decay rates and couplings of the lightest mesons. The model fits experimental data to within 10%. The framework is a holographic version of the QCD sum rules, motivated by the anti-de Sitter/conformal field theory correspondence. The model naturally incorporates properties of QCD dictated by chiral symmetry, which we demonstrate by deriving the Gell-Mann-Oakes-Renner relationship for the pion mass.

  13. Polyakov loop modeling for hot QCD

    Science.gov (United States)

    Fukushima, Kenji; Skokov, Vladimir

    2017-09-01

    We review theoretical aspects of quantum chromodynamics (QCD) at finite temperature. The most important physical variable to characterize hot QCD is the Polyakov loop, which is an approximate order parameter for quark deconfinement in a hot gluonic medium. Additionally to its role as an order parameter, the Polyakov loop has rich physical contents in both perturbative and non-perturbative sectors. This review covers a wide range of subjects associated with the Polyakov loop from topological defects in hot QCD to model building with coupling to the Polyakov loop.

  14. Death to perturbative QCD in exclusive processes?

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, R.; Hansper, J.; Gari, M.F. [Institut fuer Theoretische Physik, Bochum (Germany)

    1994-04-01

    The authors discuss the question of whether perturbative QCD is applicable in calculations of exclusive processes at available momentum transfers. They show that the currently used method of determining hadronic quark distribution amplitudes from QCD sum rules yields wave functions which are completely undetermined because the polynomial expansion diverges. Because of the indeterminacy of the wave functions no statement can be made at present as to whether perturbative QCD is valid. The authors emphasize the necessity of a rigorous discussion of the subject and the importance of experimental data in the range of interest.

  15. Recent Progress in Lattice QCD Thermodynamics

    CERN Document Server

    DeTar, C

    2008-01-01

    This review gives a critical assessment of the current state of lattice simulations of QCD thermodynamics and what it teaches us about hot hadronic matter. It outlines briefly lattice methods for studying QCD at nonzero temperature and zero baryon number density with particular emphasis on assessing and reducing cutoff effects. It discusses a variety of difficulties with methods for determining the transition temperature. It uses results reported recently in the literature and at this conference for illustration, especially those from a major study carried out by the HotQCD collaboration.

  16. Electroweak symmetry breaking via QCD.

    Science.gov (United States)

    Kubo, Jisuke; Lim, Kher Sham; Lindner, Manfred

    2014-08-29

    We propose a new mechanism to generate the electroweak scale within the framework of QCD, which is extended to include conformally invariant scalar degrees of freedom belonging to a larger irreducible representation of SU(3)c. The electroweak symmetry breaking is triggered dynamically via the Higgs portal by the condensation of the colored scalar field around 1 TeV. The mass of the colored boson is restricted to be 350  GeV≲mS≲3  TeV, with the upper bound obtained from perturbative renormalization group evolution. This implies that the colored boson can be produced at the LHC. If the colored boson is electrically charged, the branching fraction of the Higgs boson decaying into two photons can slightly increase, and moreover, it can be produced at future linear colliders. Our idea of nonperturbative electroweak scale generation can serve as a new starting point for more realistic model building in solving the hierarchy problem.

  17. Landau Levels in Lattice QCD

    CERN Document Server

    Bruckmann, Falk; Giordano, Matteo; Katz, Sandor D; Kovacs, Tamas G; Pittler, Ferenc; Wellnhofer, Jacob

    2016-01-01

    The spectrum of the two-dimensional continuum Dirac operator in the presence of a uniform background magnetic field consists of Landau levels, which are degenerate and separated by gaps. On the lattice the Landau levels are spread out by discretization artefacts, but a remnant of their structure is clearly visible (Hofstadter butterfly). If one switches on a non-Abelian interaction, the butterfly structure will be smeared out, but the lowest Landau level (LLL) will still be separated by a gap from the rest of the spectrum. In this talk we discuss how one can define the LLL in QCD and check how well certain physical quantities are approximated by taking into account only the LLL.

  18. QCD in heavy ion collisions

    CERN Document Server

    Iancu, Edmond

    2014-01-01

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry.

  19. Shear Viscosity from Lattice QCD

    CERN Document Server

    Mages, Simon W; Fodor, Zoltán; Schäfer, Andreas; Szabó, Kálmán

    2015-01-01

    Understanding of the transport properties of the the quark-gluon plasma is becoming increasingly important to describe current measurements at heavy ion collisions. This work reports on recent efforts to determine the shear viscosity h in the deconfined phase from lattice QCD. The main focus is on the integration of the Wilson flow in the analysis to get a better handle on the infrared behaviour of the spectral function which is relevant for transport. It is carried out at finite Wilson flow time, which eliminates the dependence on the lattice spacing. Eventually, a new continuum limit has to be carried out which sends the new regulator introduced by finite flow time to zero. Also the non-perturbative renormalization strategy applied for the energy momentum tensor is discussed. At the end some quenched results for temperatures up to 4 : 5 T c are presented

  20. Soft Pomeron in Holographic QCD

    CERN Document Server

    Ballon-Bayona, Alfonso; Costa, Miguel S; Djurić, Marko

    2016-01-01

    We study the graviton Regge trajectory in Holographic QCD as a model for high energy scattering processes dominated by soft pomeron exchange. This is done by considering spin J fields from the closed string sector that are dual to glueball states of even spin and parity. In particular, we construct a model that governs the analytic continuation of the spin J field equation to the region of real J < 2, which includes the scattering domain of negative Maldelstam variable t. The model leads to approximately linear Regge trajectories and is compatible with the measured values of 1.08 for the intercept and 0.25 GeV$^{-2}$ for the slope of the soft pomeron. The intercept of the secondary pomeron trajectory is in the same region of the subleading trajectories, made of mesons, proposed by Donnachie and Landshoff, and should therefore be taken into account.

  1. Kaon fluctuations from lattice QCD

    CERN Document Server

    Noronha-Hostler, Jacquelyn; Gunther, Jana; Parotto, Paolo; Pasztor, Attila; Vazquez, Israel Portillo; Ratti, Claudia

    2016-01-01

    We show that it is possible to isolate a set of kaon fluctuations in lattice QCD. By means of the Hadron Resonance Gas (HRG) model, we calculate the actual kaon second-to-first fluctuation ratio, which receives contribution from primordial kaons and resonance decays, and show that it is very close to the one obtained for primordial kaons in the Boltzmann approximation. The latter only involves the strangeness and electric charge chemical potentials, which are functions of $T$ and $\\mu_B$ due to the experimental constraint on strangeness and electric charge, and can therefore be calculated on the lattice. This provides an unambiguous method to extract the kaon freeze-out temperature, by comparing the lattice results to the experimental values for the corresponding fluctuations.

  2. Gluonic Transversity from Lattice QCD

    CERN Document Server

    Detmold, W

    2016-01-01

    We present an exploratory study of the gluonic structure of the $\\phi$ meson using lattice QCD (LQCD). This includes the first investigation of gluonic transversity via the leading moment of the twist-two double-helicity-flip gluonic structure function $\\Delta(x,Q^2)$. This structure function only exists for targets of spin $J\\ge1$ and does not mix with quark distributions at leading twist, thereby providing a particularly clean probe of gluonic degrees of freedom. We also explore the gluonic analogue of the Soffer bound which relates the helicity flip and non-flip gluonic distributions, finding it to be saturated at the level of 80%. This work sets the stage for more complex LQCD studies of gluonic structure in the nucleon and in light nuclei where $\\Delta(x,Q^2)$ is an 'exotic glue' observable probing gluons in a nucleus not associated with individual nucleons.

  3. Two flavor QCD and Confinement

    CERN Document Server

    D'Elia, M; Pica, C

    2005-01-01

    We argue that the order of the chiral transition for N_f=2 is a sensitive probe of the QCD vacuum, in particular of the mechanism of color confinement. A strategy is developed to investigate the order of the transition by use of finite size scaling analysis. An in-depth numerical investigation is performed with staggered fermions on lattices with N_t=4 and N_s=12,16,20,24,32 and quark masses am_q ranging from 0.01335 to 0.307036. The specific heat and a number of susceptibilities are measured and compared with the expectations of an O(4) second order and of a first order phase transition. A second order transition in the O(4) and O(2) universality classes are excluded. Substantial evidence emerges for a first order transition. A detailed comparison with previous works is performed.

  4. Flavor Physics and Lattice QCD

    CERN Document Server

    Bouchard, C M

    2013-01-01

    Our ability to resolve new physics effects is, largely, limited by the precision with which we calculate. The calculation of observables in the Standard (or a new physics) Model requires knowledge of associated hadronic contributions. The precision of such calculations, and therefore our ability to leverage experiment, is typically limited by hadronic uncertainties. The only first-principles method for calculating the nonperturbative, hadronic contributions is lattice QCD. Modern lattice calculations have controlled errors, are systematically improvable, and in some cases, are pushing the sub-percent level of precision. I outline the role played by, highlight state of the art efforts in, and discuss possible future directions of lattice calculations in flavor physics.

  5. Pion structure from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Javadi Motaghi, Narjes

    2015-05-12

    In this thesis we use lattice QCD to compute the second Mellin moments of pion generalized parton distributions and pion electromagnetic form factors. For our calculations we are able to analyze a large set of gauge configurations with 2 dynamical flavours using non-perturbatively the improved Wilson-Sheikholeslami-Wohlert fermionic action pion masses ranging down to 151 MeV. By employing improved smearing we were able to suppress excited state contamination. However, our data in the physical quark mass limit show that some excited state contamination remains. We show the non-zero sink momentum is optimal for the computation of the electromagnetic form factors and generalized form factors at finite momenta.

  6. From QCD to Physical Resonances

    CERN Document Server

    Bolton, Daniel R; Wilson, David J

    2016-01-01

    In this talk, we present the first chiral extrapolation of a resonant scattering amplitude obtained from lattice QCD. Finite-volume spectra, determined by the Hadron Spectrum Collaboration at $m_\\pi = 236$ MeV, for the isotriplet $\\pi\\pi$ channel are analyzed using the L\\"uscher method to determine the infinite-volume scattering amplitude. Unitarized Chiral Perturbation Theory is then used to extrapolate the scattering amplitude to the physical light quark masses. The viability of this procedure is demonstrated by its agreement with the experimentally determined scattering phase shift up to center-of-mass energies of 1.2 GeV. Finally, we analytically continue the amplitude to the complex plane to obtain the $\\rho$-pole at $\\left[755(2)(1)\\left({}^{20}_{02}\\right) - \\frac{i}{2} 129(3)(1)\\left({}^7_1\\right)\\right]$ MeV.

  7. Lattice QCD for nuclear physics

    CERN Document Server

    Meyer, Harvey

    2015-01-01

    With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun, and many new observables will be calculated at the new computational facilities.  The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems, and in particular to nuclear physics.  A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spect...

  8. Picturing perturbative parton cascades in QCD matter

    Directory of Open Access Journals (Sweden)

    Aleksi Kurkela

    2015-01-01

    Full Text Available Based on parametric reasoning, we provide a simple dynamical picture of how a perturbative parton cascade, in interaction with a QCD medium, fills phase space as a function of time.

  9. Nucleon and Delta structure in continuum QCD

    Science.gov (United States)

    Cloet, Ian

    2014-03-01

    Quantum Chromodynamics (QCD) is the only known example in nature of a fundamental quantum field theory that is innately non-perturbative. Solving QCD will have profound implications for our understanding of the natural world, for example, it will explain how light quarks and massless gluons bind together to form the observed mesons and baryons; hence explaining the origin of more than 98% of the mass in the visible universe. Given the challenges posed by QCD, it is insufficient to study hadron ground-states alone if one seeks a solution; in this regard the delta plays a special role as the lightest baryon resonance. I will discuss recent progress using continuum QCD approaches to the study of nucleon and delta properties, with a focus on insights gained by the calculation (and measurement) of their electromagnetic form factors.

  10. LatticeQCD using OpenCL

    CERN Document Server

    Bach, Matthias; Pinke, Christopher; Schäfer, Christian; Zeidlewicz, Lars

    2011-01-01

    We report on our implementation of LatticeQCD applications using OpenCL. We focus on the general concept and on distributing different parts on hybrid systems, consisting of both CPUs (Central Processing Units) and GPUs (Graphic Processing Units).

  11. QCD and asymptotic freedom perspectives and prospects

    CERN Document Server

    Wilczek, Frank

    1993-01-01

    QCD is now a mature theory, and it is possible to begin to view its place in the conceptual universe of physics with appropriate perspective. There is a certain irony in the achievements of QCD. For the problems which initially drove its development only limited insight has been achieved. However I shall argue that QCD is actually {\\it more\\/} special and important a theory than one had any right to anticipate. After elaborating these quasi-philosophical remarks, I discuss two current frontiers of physics that illustrate the continuing vitality of the ideas. The recent wealth of beautiful precision experiments measuring the parameters of the standard model has made it possible to consider the unification of couplings in unprecedented quantitative detail. One central result emerging from these developments is a tantalizing hint of virtual supersymmetry. The possibility of phase transitions in matter at temperatures of order $\\sim 10^2 Mev$, governed by QCD dynamics, is of interest from several points of view. ...

  12. Review of Baryon Spectroscopy in Lattice QCD

    CERN Document Server

    Lin, Huey-Wen

    2011-01-01

    The complex patterns of the hadronic spectrum have puzzled physicists since the early discovery of the "particle zoo" in the 1960s. Today, the properties of these myriad particles are understood to be the result of quantum chromodynamics (QCD) with some modification by the electroweak interactions. Despite the discovery of this fundamental theory, the description of the hadronic spectrum has long been dominated by phenomenological models, due to the difficulties of addressing QCD in the strong-coupling regime, where nonperturbative effects are essential. By making numerical calculations in discretized spacetime, lattice gauge theory enables the ab initio study of many low-energy properties of QCD. Significant efforts are underway internationally to use lattice QCD to directly compute properties of ground and excited-state baryons. Detailed knowledge of the hadronic spectrum will provide insight into the character of these states beyond what can be extracted from models. In this review, I will focus on the lat...

  13. Opportunities, Challenges, and Fantasies in Lattice QCD

    CERN Document Server

    Wilczek, Frank

    2002-01-01

    Some important problems in quantitative QCD will certainly yield to hard work and adequate investment of resources, others appear difficult but may be accessible, and still others will require essentially new ideas. Here I identify several examples in each class.

  14. A G2-QCD neutron star

    CERN Document Server

    Hajizadeh, Ouraman

    2016-01-01

    The determination of the properties of neutron stars from the underlying theory, QCD, is still an unsolved problem. This is mainly due to the difficulty to obtain reliable results for the equation of state for cold, dense QCD. As an alternative route to obtain qualitative insights, we determine the structure of a neutron star for a modified version of QCD: By replacing the gauge group SU(3) with the exceptional Lie group G2, it is possible to perform lattice simulations at finite density, while still retaining neutrons. Here, results of these lattice simulations are used to determine the mass-radius relation of a neutron star for this theory. The results show that phase changes express themselves in this relation. Also, the radius of the most massive neutron stars is found to vary very little, which would make radius determinations much simpler if this would also be true in QCD.

  15. "Good-Walker" + QCD dipoles = Hard Diffraction

    CERN Document Server

    Peschanski, R

    1998-01-01

    The Good-Walker mechanism for diffraction is shown to provide a link between total and diffractive structure functions and to be relevant for QCD calculations at small x_{Bj}. For Deep-Inelastic scattering on a small-size target (cf. an onium) the r\\^ ole of Good-Walker ``diffractive eigenstates'' is played by the QCD dipoles appearing in the $1/N_C$ limit of QCD. Hard diffraction is thus related to the QCD tripe-dipole vertex which has been recently identified (and calculated) as being a conformal invariant correlator and/or a closed-string amplitude. An extension to hard diffraction at HERA via $k_T-$factorisation of the proton vertices leads to interesting phenomenology.

  16. Exploring Hyperons and Hypernuclei with Lattice QCD

    CERN Document Server

    Beane, S R; Parreño, A; Savage, M J

    2003-01-01

    In this work we outline a program for lattice QCD that would provide a first step toward understanding the strong and weak interactions of strange baryons. The study of hypernuclear physics has provided a significant amount of information regarding the structure and weak decays of light nuclei containing one or two Lambda's, and Sigma's. From a theoretical standpoint, little is known about the hyperon-nucleon interaction, which is required input for systematic calculations of hypernuclear structure. Furthermore, the long-standing discrepancies in the P-wave amplitudes for nonleptonic hyperon decays remain to be understood, and their resolution is central to a better understanding of the weak decays of hypernuclei. We present a framework that utilizes Luscher's finite-volume techniques in lattice QCD to extract the scattering length and effective range for Lambda-N scattering in both QCD and partially-quenched QCD. The effective theory describing the nonleptonic decays of hyperons using isospin symmetry alone,...

  17. Heavy Quarks, QCD, and Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Mehen

    2012-10-09

    The research supported by this OJI award is in the area of heavy quark and quarkonium production, especially the application Soft-Collinear E ective Theory (SCET) to the hadronic production of quarkonia. SCET is an e ffective theory which allows one to derive factorization theorems and perform all order resummations for QCD processes. Factorization theorems allow one to separate the various scales entering a QCD process, and in particular, separate perturbative scales from nonperturbative scales. The perturbative physics can then be calculated using QCD perturbation theory. Universal functions with precise fi eld theoretic de nitions describe the nonperturbative physics. In addition, higher order perturbative QCD corrections that are enhanced by large logarithms can be resummed using the renormalization group equations of SCET. The applies SCET to the physics of heavy quarks, heavy quarkonium, and similar particles.

  18. Simplifying Multi-Jet QCD Computation

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Michael E.; /SLAC

    2011-11-04

    These lectures give a pedagogical discussion of the computation of QCD tree amplitudes for collider physics. The tools reviewed are spinor products, color ordering, MHV amplitudes, and the Britto-Cachazo-Feng-Witten recursion formula.

  19. A QCD analogy for quantum gravity

    CERN Document Server

    Holdom, Bob

    2015-01-01

    Quadratic gravity presents us with a renormalizable, asymptotically free theory of quantum gravity. When its couplings grow strong at some scale, as in QCD, then this strong scale sets the Planck mass. QCD has a gluon that does not appear in the physical spectrum. Quadratic gravity has a spin-2 ghost that we conjecture does not appear in the physical spectrum. We discuss how the QCD analogy leads to this conjecture and to the emergence of general relativity. Certain aspects of the QCD path integral and its measure could also be similar for quadratic gravity. With the addition of the Einstein-Hilbert term, quadratic gravity has a dimensionful parameter that seems to control a quantum phase transition and the size of a mass gap in the strong phase.

  20. Chiral perturbation theory for lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Oliver

    2010-07-21

    The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)

  1. New Noise Subtraction Methods in Lattice QCD

    CERN Document Server

    Baral, Suman; Morgan, Ronald B

    2016-01-01

    Noise subtraction techniques can help reduce the statistical uncertainty in the extraction of hard to detect signals. We describe new noise subtraction methods in Lattice QCD which apply to disconnected diagram evaluations. Some of the noise suppression techniques include polynomial quark matrix methods, eigenspectrum deflation methods, and combination methods. Our most promising technique combines polynomial and Hermitian deflation subtraction methods. The overall goal is to improve the efficiency of Lattice QCD noise method algorithms.

  2. Zero Color Magnetization in QCD Matter

    CERN Document Server

    Zahed, I; Zahed, Ismail; Zwanziger, Daniel

    2000-01-01

    We show that all spatial gluon connected correlation functions in SU(N) or SO(N) QCD vanish at finite temperature and zero momentum in lattice Landau or Coulomb gauges, due to the proximity of the Gribov horizon. These observations also apply to QCD with two colors and an even number of flavors at large chemical potential. These nonperturbative results may have consequences on the nature of the thermal magnetic mass and the character of the magnetic color superconductivity.

  3. Phases of planar QCD on the torus

    CERN Document Server

    Narayanan, R; Narayanan, Rajamani; Neuberger, Herbert

    2005-01-01

    At infinite N, continuum Euclidean SU(N) gauge theory defined on a symmetrical four torus has a rich phase structure with phases where the finite volume system behaves as if it had infinite extent in some or all of the directions. In addition, fermions are automatically quenched, so planar QCD should be cheaper to solve numerically that full QCD. Large N is a relatively unexplored and worthwhile direction of research in lattice field theory.

  4. Recent QCD Studies at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Group, Robert Craig

    2008-04-01

    Since the beginning of Run II at the Fermilab Tevatron the QCD physics groups of the CDF and D0 experiments have worked to reach unprecedented levels of precision for many QCD observables. Thanks to the large dataset--over 3 fb{sup -1} of integrated luminosity recorded by each experiment--important new measurements have recently been made public and will be summarized in this paper.

  5. Understanding Theoretical Uncertainties in Perturbative QCD Computations

    DEFF Research Database (Denmark)

    Jenniches, Laura Katharina

    effective field theories and perturbative QCD to predict the effect of New Physics on measurements at the LHC and at other future colliders. We use heavy-quark, heavy-scalar and soft-collinear effective theory to calculate a three-body cascade decay at NLO QCD in the expansion-by-regions formalism...... discuss an extension of the Cacciari-Houdeau approach to observables with hadrons in the initial state....

  6. QCD resummation in the framework of supersymmetry

    CERN Document Server

    Fuks, Benjamin; Lamprea, David R; Rothering, Marcel

    2013-01-01

    Motivated by current searches for electroweak superpartners at the Large Hadron Collider, we present precision predictions for pair production of such particles in the framework of the Minimal Supersymmetric Standard Model. We make use of various QCD resummation formalisms and match the results to pure perturbative QCD computations. We study the impact of scale variations and compare our results to predictions obtained by means of traditionally used Monte Carlo event generators.

  7. Heavy Baryons and QCD Sum Rules

    CERN Document Server

    Yakovlev, O I

    1996-01-01

    We discuss an application of QCD sum rules to the heavy baryons $\\Lambda_Q$ and $\\Sigma_Q$. The predictions for the masses of heavy baryons, residues and Isgur-Wise function are presented. The new results on two loop anomalous dimensions of baryonic currents and QCD radiative corrections (two- and three- loop contributions) to the first two Wilson coefficients in OPE are explicitly presented.

  8. Lattice QCD and the Jefferson Laboratory Program

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek, Robert Edwards, David Richards, Konstantinos Orginos

    2011-06-01

    Lattice gauge theory provides our only means of performing \\textit{ab initio} calculations in the non-perturbative regime. It has thus become an increasing important component of the Jefferson Laboratory physics program. In this paper, we describe the contributions of lattice QCD to our understanding of hadronic and nuclear physics, focusing on the structure of hadrons, the calculation of the spectrum and properties of resonances, and finally on deriving an understanding of the QCD origin of nuclear forces.

  9. Thermodynamics of QCD at vanishing density

    CERN Document Server

    Herbst, Tina Katharina; Pawlowski, Jan M; Schaefer, Bernd-Jochen; Stiele, Rainer

    2014-01-01

    We study the phase structure of QCD at finite temperature within a Polyakov-loop enhanced quark-meson model. Such a model describes the chiral as well as the confinement-deconfinement dynamics. In the present investigation, based on the approach and results put forward in [1-4], both, matter as well as glue fluctuations are included. We present results for the order parameters as well as some thermodynamic observables and find very good agreement with recent results from lattice QCD.

  10. Some new/old approaches to QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gross, D.J.

    1992-11-01

    In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD.

  11. QCD physics with ATLAS and CMS

    CERN Document Server

    Kodolova, Olga

    2015-01-01

    The soft and hard QCD processes are analyzed by the ATLAS and CMS experiments using samples of proton-proton collisions collected by the LHC at sqrt{s}=7 and 8 TeV. Measurements of jet production rates, jet properties, particle multiplicity and particle momentum spectra are presented. The results are compared to predictions of theoretical models at leading- and next-to-leading orders of QCD. The data are used to measure the strong coupling constant and for PDF constraints.

  12. Recent progress in backreacted bottom-up holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Järvinen, Matti [Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05 (France)

    2016-01-22

    Recent progress in constructing holographic models for QCD is discussed, concentrating on the bottom-up models which implement holographically the renormalization group flow of QCD. The dynamics of gluons can be modeled by using a string-inspired model termed improved holographic QCD, and flavor can be added by introducing space filling branes in this model. The flavor fully backreacts to the glue in the Veneziano limit, giving rise to a class of models which are called V-QCD. The phase diagrams and spectra of V-QCD are in good agreement with results for QCD obtained by other methods.

  13. Nuclear reactions from lattice QCD

    Science.gov (United States)

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-02-01

    One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, quantum chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three-nucleon (and higher) interactions in a consistent manner. Currently, lattice quantum chromodynamics (LQCD) provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between LQCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from LQCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.

  14. Lattice QCD on fine lattices

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing

    2016-11-01

    These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.

  15. QCD@LHC International Conference

    CERN Document Server

    2016-01-01

    The particle physics groups of UZH and ETH will host the QCD@LHC2016 conference (22.8.-26.8., UZH downtown campus), which is part of an annual conference series bringing together theorists and experimentalists working on hard scattering processes at the CERN LHC, ranging from precision studies of Standard Model processes to searches for new particles and phenomena. The format of the conference is a combination of plenary review talks and parallel sessions, with the latter providing a particularly good opportunity for junior researchers to present their results. The conference will take place shortly after the release of the new data taken by the LHC in sping 2016 at a collision energy of 13TeV, expected to more than double the currently available data set. It will be one of the first opportunities to discuss these data in a broader context, and we expect the conference to become a very lively forum at the interface of phenomenology and experiment.

  16. Jet quenching from QCD evolution

    Science.gov (United States)

    Chien, Yang-Ting; Emerman, Alexander; Kang, Zhong-Bo; Ovanesyan, Grigory; Vitev, Ivan

    2016-04-01

    Recent advances in soft-collinear effective theory with Glauber gluons have led to the development of a new method that gives a unified description of inclusive hadron production in reactions with nucleons and heavy nuclei. We show how this approach, based on the generalization of the DGLAP evolution equations to include final-state medium-induced parton shower corrections for large Q2 processes, can be combined with initial-state effects for applications to jet quenching phenomenology. We demonstrate that the traditional parton energy loss calculations can be regarded as a special soft-gluon emission limit of the general QCD evolution framework. We present phenomenological comparison of the SCETG -based results on the suppression of inclusive charged hadron and neutral pion production in √{sNN }=2.76 TeV lead-lead collisions at the Large Hadron Collider to experimental data. We also show theoretical predictions for the upcoming √{sNN }≃5.1 TeV Pb +Pb run at the LHC.

  17. Monopole Condensation and Confinement in SU(2) QCD (2)

    CERN Document Server

    Shiba, H; Shiba, Hiroshi; Suzuki, Tsuneo

    1993-01-01

    Monopole and photon contributions to Wilson loops are calculated using Monte-Carlo simulations of SU(2) QCD in the maximally abelian gauge. The string tensions of SU(2) QCD are well reproduced by extended monopole contributions alone.

  18. Non-forward double Pomeron exchange in QCD

    CERN Document Server

    Navelet, H

    1998-01-01

    We derive the analytic expression of the two one-loop dipole contributions to the elastic 4-gluon amplitude in QCD for arbitrary transverse momentum. The first one corresponds to the double QCD pomeron exchange, the other to an order

  19. Color confinement and dual superconductivity in unquenched QCD

    CERN Document Server

    Carmona, J M; Del Debbio, L; Di Giacomo, Adriano; Lucini, B; Paffuti, G; Pica, C

    2003-01-01

    We report on evidence from lattice simulations that confinement is produced by dual superconductivity of the vacuum in full QCD as in quenched QCD. Preliminary information is obtained on the order of the deconfining phase transition.

  20. Holographic QCD for H-dibaryon (uuddss)

    CERN Document Server

    Suganuma, Hideo

    2016-01-01

    The H-dibaryon (uuddss) is studied in holographic QCD for the first time. In holographic QCD, four-dimensional QCD, i.e., SU($N_c$) gauge theory with chiral quarks, can be formulated with $S^1$-compactified D4/D8/$\\overline{\\rm D8}$-brane system. In holographic QCD with large $N_c$, all the baryons appear as topological chiral solitons of Nambu-Goldstone bosons and (axial) vector mesons, and the H-dibaryon can be described as an SO(3)-type topological soliton with $B=2$. We derive the low-energy effective theory to describe the H-dibaryon in holographic QCD. The H-dibaryon mass is found to be twice of the $B=1$ hedgehog-baryon mass, $M_{\\rm H} \\simeq 2.00 M_{B=1}^{\\rm HH}$, and is estimated about 1.7GeV, which is smaller than mass of two nucleons (flavor-octet baryons), in the chiral limit.

  1. Bottom-up holographic approach to QCD

    Science.gov (United States)

    Afonin, S. S.

    2016-01-01

    One of the most known result of the string theory consists in the idea that some strongly coupled gauge theories may have a dual description in terms of a higher dimensional weakly coupled gravitational theory — the so-called AdS/CFT correspondence or gauge/gravity correspondence. The attempts to apply this idea to the real QCD are often referred to as "holographic QCD" or "AdS/QCD approach". One of directions in this field is to start from the real QCD and guess a tentative dual higher dimensional weakly coupled field model following the principles of gauge/gravity correspondence. The ensuing phenomenology can be then developed and compared with experimental data and with various theoretical results. Such a bottom-up holographic approach turned out to be unexpectedly successful in many cases. In the given short review, the technical aspects of the bottom-up holographic approach to QCD are explained placing the main emphasis on the soft wall model.

  2. QCD at nonzero chemical potential: recent progress on the lattice

    CERN Document Server

    Aarts, Gert; Jäger, Benjamin; Seiler, Erhard; Sexty, Denes; Stamatescu, Ion-Olimpiu

    2014-01-01

    We summarise recent progress in simulating QCD at nonzero baryon density using complex Langevin dynamics. After a brief outline of the main idea, we discuss gauge cooling as a means to control the evolution. Subsequently we present a status report for heavy dense QCD and its phase structure, full QCD with staggered quarks, and full QCD with Wilson quarks, both directly and using the hopping parameter expansion to all orders.

  3. QCD at nonzero chemical potential: Recent progress on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Aarts, Gert; Jäger, Benjamin [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Attanasio, Felipe [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); CAPES Foundation, Ministry of Education of Brazil, Brasília - DF 70040-020 (Brazil); Seiler, Erhard [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), 80805 München (Germany); Sexty, Dénes [Department of Physics, University of Wuppertal, 42119 Wuppertal (Germany); Stamatescu, Ion-Olimpiu [Institut für Theoretische Physik, Universität Heidelberg, 69120 Heidelberg (Germany)

    2016-01-22

    We summarise recent progress in simulating QCD at nonzero baryon density using complex Langevin dynamics. After a brief outline of the main idea, we discuss gauge cooling as a means to control the evolution. Subsequently we present a status report for heavy dense QCD and its phase structure, full QCD with staggered quarks, and full QCD with Wilson quarks, both directly and using the hopping parameter expansion to all orders.

  4. Light four-quark states and QCD sum rule

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ai-Lin

    2009-01-01

    The relations among four-quark states, diquarks and QCD sum rules are discussed. The situation of the existing, but incomplete studies of four-quark states with QCD sum rules is analyzed. Masses of some diquark clusters were attempted to be determined by QCD sum rules, and masses of some light tetraquark states were obtained in terms of the diquarks.

  5. Studies of Soft QCD at LHCb

    CERN Document Server

    Meissner, Marco

    2013-01-01

    The LHCb detector at the LHC has a unique peudorapidity coverage (2 < $\\eta$ < 5) which allows to perform soft QCD measurements in the kinematic forward region where QCD models have large uncertainties. Selected analyses on soft QCD measurements in $pp$ collisions are summarised in these proceedings. The energy flow has been measured separately for different event classes allowing to probe multi-parton interactions at large $\\eta$. The measured prompt hadron ratios are important for hadronisation models, while the $\\bar{p}/p$ is a good observable to test models of baryon number transport. Charm production has been studied to determine cross-sections and production ratios. All measurements are compared to Monte Carlo simulation or theory predictions.

  6. Finite Temperature QCD Sum Rules: A Review

    Directory of Open Access Journals (Sweden)

    Alejandro Ayala

    2017-01-01

    Full Text Available The method of QCD sum rules at finite temperature is reviewed, with emphasis on recent results. These include predictions for the survival of charmonium and bottonium states, at and beyond the critical temperature for deconfinement, as later confirmed by lattice QCD simulations. Also included are determinations in the light-quark vector and axial-vector channels, allowing analysing the Weinberg sum rules and predicting the dimuon spectrum in heavy-ion collisions in the region of the rho-meson. Also, in this sector, the determination of the temperature behaviour of the up-down quark mass, together with the pion decay constant, will be described. Finally, an extension of the QCD sum rule method to incorporate finite baryon chemical potential is reviewed.

  7. QCD monopole and sigma meson coupling

    CERN Document Server

    Iwazaki, Aiichi

    2016-01-01

    Under the assumption of the Abelian dominance in QCD, we show that chiral condensate is locally present around a QCD monopole. The appearance of the chiral condensate around a GUT monopole was shown in the previous analysis of the Rubakov effect. We apply a similar analysis to the QCD monopole. It follows that the condensation of the monopole carrying the chiral condensate leads to the chiral symmetry breaking as well as quark confinement. To realize the result explicitly, we present a phenomenological linear sigma model coupled with the monopoles, in which the monopole condensation causes the chiral symmetry breaking as well as confinement. The monopoles are assumed to be described by a model of dual superconductor. We identify the monopoles with scalar isoscalar $f_0$ mesons with masses $1400\\sim 1700$ MeV as well as dual gauge fields with $h_1$ vector mesons with masses $\\sim 1500$MeV.

  8. Exploring hyperons and hypernuclei with lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Beane, S.R.; Bedaque, P.F.; Parreno, A.; Savage, M.J.

    2003-01-01

    In this work we outline a program for lattice QCD that wouldprovide a first step toward understanding the strong and weakinteractions of strange baryons. The study of hypernuclear physics hasprovided a significant amount of information regarding the structure andweak decays of light nuclei containing one or two Lambda's, and Sigma's.From a theoretical standpoint, little is known about the hyperon-nucleoninteraction, which is required input for systematic calculations ofhypernuclear structure. Furthermore, the long-standing discrepancies inthe P-wave amplitudes for nonleptonic hyperon decays remain to beunderstood, and their resolution is central to a better understanding ofthe weak decays of hypernuclei. We present a framework that utilizesLuscher's finite-volume techniques in lattice QCD to extract thescattering length and effective range for Lambda-N scattering in both QCDand partially-quenched QCD. The effective theory describing thenonleptonic decays of hyperons using isospin symmetry alone, appropriatefor lattice calculations, is constructed.

  9. Equation of State from Lattice QCD Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Rajan [Los Alamos National Laboratory

    2011-01-01

    We provide a status report on the calculation of the Equation of State (EoS) of QCD at finite temperature using lattice QCD. Most of the discussion will focus on comparison of recent results obtained by the HotQCD and Wuppertal-Budapest collaborations. We will show that very significant progress has been made towards obtaining high precision results over the temperature range of T = 150-700 MeV. The various sources of systematic uncertainties will be discussed and the differences between the two calculations highlighted. Our final conclusion is that these lattice results of EoS are precise enough to be used in the phenomenological analysis of heavy ion experiments at RHIC and LHC.

  10. Kaluza-Klein Approach to QCD

    CERN Document Server

    Alfaro, J; Labraña, P; Alfaro, Jorge; Andrianov, Alexander; Labraña, Pedro

    2003-01-01

    In this paper we study a reduced QCD model in $(1+1)$ dimensions obtained from QCD in 4D by compactifying two spatial dimensions. We work out this model in the large $N_c$ limit and using light cone gauge. This system is found to induce a dynamical mass for transverse gluons -- adjoint scalars in $QCD_2$, and to undergo a spontaneous chiral symmetry breaking with the full quark propagators yielding non-tachyonic, dynamical quark masses, even in the chiral limit. We study quark-antiquark bound states which can be classified in this model by their properties under Lorentz transformations in 4D. The scalar and pseudoscalar sectors of the theory are examined revealing a massless ground state for pseudoscalars, different from the so called 't Hooft pion solution, and a massive spectrum for scalars.

  11. QCD Studies with Resurrected Jade Data

    CERN Document Server

    Kluth, S

    2003-01-01

    We report on recent studies of QCD performed using reanalysed e+e- annihilation data recorded at centre of mass energies 14QCD predictions. Fits of O(alpha_S^2)+NLLA (resummed) QCD predictions combined with power corrections to event shape data including for the first time the sqrt(s)=14 and 22 GeV data samples are discussed.

  12. Strangeness at finite temperature from Lattice QCD

    CERN Document Server

    Noronha-Hostler, Jacquelyn; Gunther, Jana; Parotto, Paolo; Pasztor, Attila; Vazquez, Israel Portillo; Ratti, Claudia

    2016-01-01

    The precision reached by recent lattice QCD results allows for the first time to investigate whether the measured hadronic spectrum is missing some additional strange states, which are predicted by the Quark Model but have not yet been detected. This can be done by comparing some sensitive thermodynamic observables from lattice QCD to the predictions of the Hadron Resonance Gas model (with the inclusion of decays [3]). We propose a set of specific observables, defined as linear combinations of conserved charge fluctuations, which allow to investigate this issue for baryons containing one or more strange quarks separately. Applications of these observables to isolate the multiplicity fluctuations of kaons from lattice QCD, and their comparison with the experimental results, are also discussed.

  13. Kaon-Nucleon potential from lattice QCD

    Directory of Open Access Journals (Sweden)

    Nemura H.

    2010-04-01

    Full Text Available We study the K N interactions in the I(Jπ = 0(1/2− and 1(1/2− channels and associated exotic state Θ+ from 2+1 flavor full lattice QCD simulation for relatively heavy quark mass corresponding to mπ = 871 MeV. The s-wave K N potentials are obtained from the Bethe-Salpeter wave function by using the method recently developed by HAL QCD (Hadrons to Atomic nuclei from Lattice QCD Collaboration. Potentials in both channels reveal short range repulsions: Strength of the repulsion is stronger in the I = 1 potential, which is consistent with the prediction of the Tomozawa-Weinberg term. The I = 0 potential is found to have attractive well at mid range. From these potentials, the K N scattering phase shifts are calculated and compared with the experimental data.

  14. Compact Variables and Singular Fields in QCD

    CERN Document Server

    Lenz, F; Lenz, Frieder; Woerlen, Stefan

    2000-01-01

    Subject of our investigations is QCD formulated in terms of physical degrees of freedom. Starting from the Faddeev-Popov procedure, the canonical formulation of QCD is derived for static gauges. Particular emphasis is put on obstructions occurring when implementing gauge conditions and on the concomitant emergence of compact variables and singular fields. A detailed analysis of non-perturbative dynamics associated with such exceptional field configurations within Coulomb- and axial gauge is described. We present evidence that compact variables generate confinement-like phenomena in both gauges and point out the deficiencies in achieving a satisfactory non-perturbative treatment concerning all variables. Gauge fixed formulations are shown to constitute also a useful framework for phenomenological studies. Phenomenological insights into the dynamics of Polyakov loops and monopoles in confined and deconfined phases are presented within axial gauge QCD

  15. New Methods in Non-Perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Unsal, Mithat [North Carolina State Univ., Raleigh, NC (United States)

    2017-01-31

    In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), and there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.

  16. QCD and Light-Front Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.

    2011-01-10

    AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  17. Explaining jet quenching with perturbative QCD alone

    CERN Document Server

    Zapp, Korinna C; Wiedemann, Urs A

    2011-01-01

    We present a new formulation of jet quenching in perturbative QCD beyond the eikonal approximation. Multiple scattering in the medium is modelled through infra-red-continued (2 -> 2) scattering matrix elements in QCD and the parton shower describing further emissions. The interplay between these processes is arranged in terms of a formation time constraint such that coherent emissions can be treated consistently. Emerging partons are hadronised by the Lund string model, tuned to describe LEP data in conjunction with the parton shower. Based on this picture we obtain a good description of the nuclear modification factor R_AA at RHIC and LHC.

  18. Recent QCD Results from the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Vellidis, Costas [Fermilab

    2015-10-10

    Four years after the shutdown of the Tevatron proton-antiproton collider, the two Tevatron experiments, CDF and DZero, continue producing important results that test the theory of the strong interaction, Quantum Chromodynamics (QCD). The experiments exploit the advantages of the data sample acquired during the Tevatron Run II, stemming from the unique pp initial state, the clean environment at the relatively low Tevatron instantaneous luminosities, and the good understanding of the data sample after many years of calibrations and optimizations. A summary of results using the full integrated luminosity is presented, focusing on measurements of prompt photon production, weak boson production associated with jets, and non-perturbative QCD processes.

  19. QCD and numerical analysis III. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Borici, A.; Joo, B.; Kennedy, A.; Pendleton, B. (eds.) [Edinburgh Univ. (United Kingdom). School of Physics; Frommer, A. [Bergische Univ. Wuppertal (Germany). Fachbereich C - Mathematik und Naturwissenschaften

    2005-07-01

    This book reports on progress in numerical methods for Lattice QCD with chiral fermions. It contains a set of pedagogical introductory articles written by experts from both the Applied Mathematics and Lattice Field Theory communities, together with detailed accounts of leading-edge algorithms for the simulation of overlap chiral fermions. Topics covered include: QCD simulations in the chiral regime; Evaluation and approximation of matrix functions; Krylov subspace methods for the iterative solution of linear systems; Eigenvalue solvers. These are complemented by a set of articles on closely related numerical and technical problems in Lattice field Theory. (orig.)

  20. Hadron scattering and resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Jozef J. [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study pi pi elastic scattering, including the rho resonance, as well as coupled-channel pi K, eta K scattering. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.

  1. String Breaking in Four Dimensional Lattice QCD

    CERN Document Server

    Duncan, A; Thacker, H

    2001-01-01

    Virtual quark pair screening leads to breaking of the string between fundamental representation quarks in QCD. For unquenched four dimensional lattice QCD, this (so far elusive) phenomenon is studied using the recently developed truncated determinant algorithm (TDA). The dynamical configurations were generated on an Athlon 650 MHz PC. Quark eigenmodes up to 420 MeV are included exactly in these TDA studies performed at low quark mass on large coarse (but O($a^2$) improved) lattices. A study of Wilson line correlators in Coulomb gauge extracted from an ensemble of 1000 two-flavor dynamical configurations reveals evidence for flattening of the string tension at distances R $\\geq$ approximately 1 fm.

  2. Anomalous mass dimension in multiflavor QCD

    Science.gov (United States)

    Doff, A.; Natale, A. A.

    2016-10-01

    Models of strongly interacting theories with a large mass anomalous dimension (γm) provide an interesting possibility for the dynamical origin of the electroweak symmetry breaking. A laboratory for these models is QCD with many flavors, which may present a nontrivial fixed point associated to a conformal region. Studies based on conformal field theories and on Schwinger-Dyson equations have suggested the existence of bounds on the mass anomalous dimension at the fixed points of these models. In this note we discuss γm values of multiflavor QCD exhibiting a nontrivial fixed point and affected by relevant four-fermion interactions.

  3. Non-perturbative QCD and hadron physics

    Science.gov (United States)

    Cobos-Martínez, J. J.

    2016-10-01

    A brief exposition of contemporary non-perturbative methods based on the Schwinger-Dyson (SDE) and Bethe-Salpeter equations (BSE) of Quantum Chromodynamics (QCD) and their application to hadron physics is given. These equations provide a non-perturbative continuum formulation of QCD and are a powerful and promising tool for the study of hadron physics. Results on some properties of hadrons based on this approach, with particular attention to the pion distribution amplitude, elastic, and transition electromagnetic form factors, and their comparison to experimental data are presented.

  4. Renormalized Effective QCD Hamiltonian Gluonic Sector

    CERN Document Server

    Robertson, D G; Szczepaniak, A P; Ji, C R; Cotanch, S R

    1999-01-01

    Extending previous QCD Hamiltonian studies, we present a new renormalization procedure which generates an effective Hamiltonian for the gluon sector. The formulation is in the Coulomb gauge where the QCD Hamiltonian is renormalizable and the Gribov problem can be resolved. We utilize elements of the Glazek and Wilson regularization method but now introduce a continuous cut-off procedure which eliminates non-local counterterms. The effective Hamiltonian is then derived to second order in the strong coupling constant. The resulting renormalized Hamiltonian provides a realistic starting point for approximate many-body calculations of hadronic properties for systems with explicit gluon degrees of freedom.

  5. Playing with QCD I: effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica

    2009-07-01

    The building blocks of hadrons are quarks and gluons, although color is confined into singlet states. QCD is believed to be the fundamental theory of strong interactions. Its asymptotically free nature puts the vacuum out of reach for perturbation theory. The Lagrangian of QCD and the Feynman rules associated were built by using the Gauge Principle, starting from the quark matter fields and obtaining gluons as connections. A simpler, and sometimes necessary or complementary, approach is provided by effective field theories or effective models, especially when one has to deal with the nonperturbative sector of the theory. (author)

  6. Geometric approach to condensates in holographic QCD

    CERN Document Server

    Hirn, J; Sanz, V; Hirn, Johannes; Rius, Nuria; Sanz, Veronica

    2006-01-01

    An SU(Nf)xSU(Nf) Yang-Mills theory on an extra-dimensional interval is considered, with appropriate symmetry-breaking boundary conditions on the IR brane. UV-brane to UV-brane correlators at high energies are compared with the OPE of two-point functions of QCD quark currents. Condensates correspond to departure from AdS of the (different) metrics felt by vector and axial combinations, away from the UV brane. Their effect on hadronic observables is studied: the extracted condensates agree with the signs and orders of magnitude expected from QCD.

  7. QCD unitarity constraints on Reggeon Field Theory

    CERN Document Server

    Kovner, Alex; Lublinsky, Michael

    2016-01-01

    We point out that the unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun's Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a "black disk limit" as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature

  8. Conformal blocks in the QCD Pomeron formalism

    CERN Document Server

    Navelet, H

    1996-01-01

    The conformal invariance properties of the QCD Pomeron in the transverse plane allow us to give an explicit analytical expression for the conformal eigenvectors in the mixed representation in terms of two conformal blocks, each block being the product of an holomorphic times an antiholomorphic function. This property is used to give an exact expression for various functions of interest, the Pomeron amplitude in both momentum and impact-parameter variables, the QCD dipole multiplicities and dipole-dipole cross-sections in the whole parameter space, and we recover the expression of the four-point gluon Green function given recently by Lipatov

  9. Heavy quark colorimetry of QCD matter

    CERN Document Server

    Dokshitzer, Yu L; Dokshitzer, Yu.L.

    2001-01-01

    We consider propagation of heavy quarks in QCD matter. Because of large quark mass, the radiative quark energy loss appears to be qualitatively different from that of light quarks at all energies of practical importance. Finite quark mass effects lead to an in-medium enhancement of the heavy-to-light D/\\pi ratio at moderately large (5--10 GeV) transverse momenta. For hot QCD matter a large enhancement is expected, whose magnitude and shape are exponentially sensitive to the density of colour charges in the medium.

  10. Chiral symmetry breaking in continuum QCD

    Science.gov (United States)

    Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils

    2015-03-01

    We present a quantitative analysis of chiral symmetry breaking in two-flavor continuum QCD in the quenched limit. The theory is set up at perturbative momenta, where asymptotic freedom leads to precise results. The evolution of QCD towards the hadronic phase is achieved by means of dynamical hadronization in the nonperturbative functional renormalization group approach. We use a vertex expansion scheme based on gauge-invariant operators and discuss its convergence properties and the remaining systematic errors. In particular, we present results for the quark propagator, the full tensor structure and momentum dependence of the quark-gluon vertex, and the four-Fermi scatterings.

  11. Report of the QCD Tools Working Group

    CERN Document Server

    Ellis, Richard Keith; Mrenna, S; Snow, G A; Balázs, C; Boos, E; Campbell, J; Demina, R; Huston, J; Ngan, C Y P; Petrelli, A; Puljak, I; Sjöstrand, Torbjörn; Smith, J; Stuart, D; Sumorok, K

    2000-01-01

    We report on the activities of the ``QCD Tools for heavy flavors and new physics searches'' working group of the Run II Workshop on QCD and Weak Bosons. The contributions cover the topics of improved parton showering and comparisons of Monte Carlo programs and resummation calculations, recent developments in Pythia, the methodology of measuring backgrounds to new physics searches, variable flavor number schemes for heavy quark electro-production, the underlying event in hard scattering processes, and the Monte Carlo MCFM for NLO processes.

  12. Perturbative QCD at finite temperature and density

    CERN Document Server

    Niégawa, A

    1997-01-01

    This is a comprehensive review on the perturbative hot QCD including the recent developments. The main body of the review is concentrated upon dealing with physical quantities like reaction rates. Contents: \\S1. Introduction, \\S2. Perturbative thermal field theory: Feynman rules, \\S3. Reaction-rate formula, \\S4. Hard-thermal-loop resummation scheme in hot QCD, \\S5. Effective action, \\S6. Hard modes with $|P^2| \\leq O (g^2 T^2)$, hard-thermal-loop resummation scheme, \\S9. Conclusions.

  13. QCD unitarity constraints on Reggeon Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Kovner, Alex [Physics Department, University of Connecticut,2152 Hillside Road, Storrs, CT 06269 (United States); Levin, Eugene [Departemento de Física, Universidad Técnica Federico Santa María,and Centro Científico-Tecnológico de Valparaíso,Avda. Espana 1680, Casilla 110-V, Valparaíso (Chile); Department of Particle Physics, Tel Aviv University,Tel Aviv 69978 (Israel); Lublinsky, Michael [Physics Department, Ben-Gurion University of the Negev,Beer Sheva 84105 (Israel); Physics Department, University of Connecticut,2152 Hillside Road, Storrs, CT 06269 (United States)

    2016-08-04

    We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun’s Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a “black disk limit' as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.

  14. The eta' meson from lattice QCD

    CERN Document Server

    Jansen, K; Dollan, Ralph

    2008-01-01

    We study the flavour singlet pseudoscalar mesons from first principles using lattice QCD. With N_f=2 flavours of light quark, this is the so-called eta_2 meson and we discuss the phenomenological status of this. Using maximally twisted-mass lattice QCD, we extract the mass of the eta_2 meson at two values of the lattice spacing for lighter quarks than previously discussed in the literature. We are able to estimate the mass value in the limit of light quarks with their physical masses.

  15. Deconfining transition in two-flavor QCD

    CERN Document Server

    Carmona, J M; Del Debbio, L; Di Giacomo, Adriano; Lucini, B; Paffuti, G; Pica, C

    2003-01-01

    The order and the nature of the finite-temperature phase transition of QCD with two flavors of dynamical quarks is investigated. An analysis of the critical exponent of the specific heat is performed through finite-size and finite-mass scaling of various susceptibilities. Dual superconductivity of QCD vacuum is investigated using a disorder parameter, namely the v.e.v. of a monopole creation operator. Hybrid R simulations were run at lattice spatial sizes of $12^3$, $16^3$, $20^3$ and $32^3$ and temporal size $N_t=4$, with quark masses in the range $am_q = 0.3 - 0.01$.

  16. A Study of the H-dibaryon in Holographic QCD

    CERN Document Server

    Matsumoto, Kohei; Suganuma, Hideo

    2016-01-01

    We study the H-dibaryon (uuddss) in holographic QCD for the first time. Holographic QCD is derived from a QCD-equivalent D-brane system in the superstring theory via the gauge/gravity correspondence. In holographic QCD, all baryons appear as topological chiral solitons of Nambu-Goldstone bosons and (axial) vector mesons. In this framework, the H-dibaryon can be described as an SO(3)-type hedgehog state. In this paper, we present the formalism of the H-dibaryon in holographic QCD, and perform the calculation to investigate its properties in the chiral limit.

  17. A Non-Perturbative Gauge-Invariant QCD: Ideal vs. Realistic QCD

    CERN Document Server

    Fried, H M; Sheu, Y -M

    2011-01-01

    A basic distinction, long overlooked, between the conventional, "idealistic" formulation of QCD, and a more "realistic" formulation is brought into focus by a rigorous, non-perturbative, gauge-invariant evaluation of the Schwinger solution for the QCD generating functional in terms of exact Fradkin representations for the Green's functional $\\mathbf{G}_{c}(x,y|A)$ and the vacuum functional $\\mathbf{L}[A]$. The quanta of all (Abelian) quantized fields may be expected to obey standard quantum-mechanical measurement properties, perfect position dependence at the cost of unknown momenta, and vice-versa, but this is impossible for quarks since they always appear asymptotically in bound states, and their transverse position or momenta can never, in principle, be exactly measured. Violation of this principle produces an absurdity in the exact evaluation of each and every QCD amplitude. We here suggest a phenomenological change in the basic QCD Lagrangian, such that a limitation of transverse precision is automatical...

  18. The Top Quark, QCD, And New Physics.

    Science.gov (United States)

    Dawson, S.

    2002-06-01

    The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup+}e{sup -}+ t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup+}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.

  19. Visualization Tools for Lattice QCD - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Massimo Di Pierro

    2012-03-15

    Our research project is about the development of visualization tools for Lattice QCD. We developed various tools by extending existing libraries, adding new algorithms, exposing new APIs, and creating web interfaces (including the new NERSC gauge connection web site). Our tools cover the full stack of operations from automating download of data, to generating VTK files (topological charge, plaquette, Polyakov lines, quark and meson propagators, currents), to turning the VTK files into images, movies, and web pages. Some of the tools have their own web interfaces. Some Lattice QCD visualization have been created in the past but, to our knowledge, our tools are the only ones of their kind since they are general purpose, customizable, and relatively easy to use. We believe they will be valuable to physicists working in the field. They can be used to better teach Lattice QCD concepts to new graduate students; they can be used to observe the changes in topological charge density and detect possible sources of bias in computations; they can be used to observe the convergence of the algorithms at a local level and determine possible problems; they can be used to probe heavy-light mesons with currents and determine their spatial distribution; they can be used to detect corrupted gauge configurations. There are some indirect results of this grant that will benefit a broader audience than Lattice QCD physicists.

  20. Quenched QCD near the chiral limit

    CERN Document Server

    Göckeler, M; Petters, D; Pleiter, D; Rakow, P E L; Schierholz, G

    2000-01-01

    A numerical study of quenched QCD for light quarks is presented using O(a)improved fermions. Particular attention is paid to the possible existence anddetermination of quenched chiral logarithms. A `safe' region to use for chiralextrapolations appears to be at and above the strange quark mass.

  1. Composite operators in lattice QCD nonperturbative renormalization

    CERN Document Server

    Göckeler, M; Oelrich, H; Perlt, H; Petters, D; Rakow, P; Schäfer, A; Schierholz, G; Schiller, A

    1999-01-01

    We investigate the nonperturbative renormalization of composite operators in lattice QCD restricting ourselves to operators that are bilinear in the quark fields. These include operators which are relevant to the calculation of moments of hadronic structure functions. The computations are based on Monte Carlo simulations using quenched Wilson fermions.

  2. QCD in hadron-hadron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, M.

    1997-03-01

    Quantum Chromodynamics provides a good description of many aspects of high energy hadron-hadron collisions, and this will be described, along with some aspects that are not yet understood in QCD. Topics include high E{sub T} jet production, direct photon, W, Z and heavy flavor production, rapidity gaps and hard diffraction.

  3. Lattice QCD with overlap fermions on GPUs

    Science.gov (United States)

    Walk, B.; Wittig, H.; Schömer, E.

    2012-08-01

    Lattice QCD is widely considered the correct theory of the strong force and is able to make quantitative statements in the low energy regime where perturbation theory is not applicable. The partition function of lattice QCD can be mapped onto a statistical mechanics system which then allows for the use of calculational methods such as Monte Carlo simulations. In recent years, the enormous success of GPU programming has also arrived at the lattice community. In this article, we give a short overview of Lattice QCD and motivate this need for large computing power. In our simulations we concentrate on a specific fermionic discretization, so-called Neuberger-Dirac fermions, which respect an exact chiral symmetry. We will discuss the algorithms we use in our GPU implementation which turns out to be an order of magnitude faster then the conventional CPU-equivalent. As an application we present results on the eigenvalue spectra in QCD and compare them to analytical calculations from Random Matrix Theory.

  4. Comparing Clusters and Supercomputers for Lattice QCD

    CERN Document Server

    Gottlieb, S

    2001-01-01

    Since the development of the Beowulf project to build a parallel computer from commodity PC components, there have been many such clusters built. The MILC QCD code has been run on a variety of clusters and supercomputers. Key design features are identified, and the cost effectiveness of clusters and supercomputers are compared.

  5. Lattice QCD on a Beowulf Cluster

    CERN Document Server

    Kim, S

    2000-01-01

    Using commodity component personal computers based on Alpha processor and commodity network devices and a switch, we built an 8-node parallel computer. GNU/Linux is chosen as an operating system and message passing libraries such as PVM, LAM, and MPICH have been tested as a parallel programming environment. We discuss our lattice QCD project for a heavy quark system on this computer.

  6. Lattice QCD and the Balkan physicists contribution

    CERN Document Server

    Borici, Artan

    2015-01-01

    This is a paper based on the invited talk the author gave at the 9th Balkan Physical Union conference. It contains some of the main achievements of lattice QCD simulations followed by a list of Balkan physicists who have contributed to the project.

  7. Nonperturbative QCD corrections to electroweak observables

    Energy Technology Data Exchange (ETDEWEB)

    Dru B Renner, Xu Feng, Karl Jansen, Marcus Petschlies

    2011-12-01

    Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we will examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We will then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we will mention applications to the Adler function, the determination of the strong coupling constant and QCD corrections to muonic-hydrogen.

  8. Exploring Hyperons and Hypernuclei with Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    S.R. Beane; P.F. Bedaque; A. Parreno; M.J. Savage

    2005-01-01

    In this work we outline a program for lattice QCD that would provide a first step toward understanding the strong and weak interactions of strange baryons. The study of hypernuclear physics has provided a significant amount of information regarding the structure and weak decays of light nuclei containing one or two Lambda's, and Sigma's. From a theoretical standpoint, little is known about the hyperon-nucleon interaction, which is required input for systematic calculations of hypernuclear structure. Furthermore, the long-standing discrepancies in the P-wave amplitudes for nonleptonic hyperon decays remain to be understood, and their resolution is central to a better understanding of the weak decays of hypernuclei. We present a framework that utilizes Luscher's finite-volume techniques in lattice QCD to extract the scattering length and effective range for Lambda-N scattering in both QCD and partially-quenched QCD. The effective theory describing the nonleptonic decays of hyperons using isospin symmetry alone, appropriate for lattice calculations, is constructed.

  9. Feynman integrals in QCD made simple

    CERN Document Server

    CERN. Geneva

    2015-01-01

    A key insight is that important properties of these functions can be predicted by inspecting the singularity structure of the Feynman integrand. Combined with the differential equations technique, this gives a powerful method for computing the necessary Feynman integrals. I will review these ideas, based on Phys.Rev.Lett. 110 (2013) 25, and present recent new results relevant for QCD scattering amplitudes.

  10. Parametric form of QCD travelling waves

    OpenAIRE

    Peschanski, R.

    2005-01-01

    We derive parametric travelling-wave solutions of non-linear QCD equations. They describe the evolution towards saturation in the geometric scaling region. The method, based on an expansion in the inverse of the wave velocity, leads to a solvable hierarchy of differential equations. A universal parametric form of travelling waves emerges from the first two orders of the expansion.

  11. From continuum QCD to hadron observables

    Directory of Open Access Journals (Sweden)

    Binosi Daniele

    2016-01-01

    Full Text Available We show that the form of the renormalization group invariant quark-gluon interaction predicted by a refined nonperturbative analysis of the QCD gauge sector is in quantitative agreement with the one required for describing a wide range of hadron observables using sophisticated truncation schemes of the Schwinger-Dyson equations relevant in the matter sector.

  12. The Feynman-Schwinger representation in QCD /

    NARCIS (Netherlands)

    Simonov, Yu A.; Tjon, J. A.

    2002-01-01

    Published in: Ann. Phys. 300 (2002) 54-87 citations recorded in [Science Citation Index] Abstract: The proper time path integral representation is derived explicitly for Green's functions in QCD. After an introductory analysis of perturbative properties, the total gluonic field is separated in a rig

  13. A QCD analysis of ZEUS diffractive data

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2009-11-15

    ZEUS inclusive diffractive cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density. Predictions based on the extracted parton densities are compared to diffractive charm and dijet photoproduction data. (orig.)

  14. Finite Density QCD in the Chiral Limit

    CERN Document Server

    Aloisio, R; Di Carlo, G; Galante, A; Grillo, A F

    1998-01-01

    We present the first results of an exact simulation of full QCD at finite density in the chiral limit. We have used a MFA (Microcanonical Fermionic Average) inspired approach for the reconstruction of the Grand Canonical Partition Function of the theory; using the fugacity expansion of the fermionic determinant we are able to move continuously in the ($\\beta -\\mu$) plane with $m=0$.

  15. Status Report of NNLO QCD Calculations

    CERN Document Server

    Klasen, M

    2005-01-01

    We review recent progress in next-to-next-to-leading order (NNLO) perturbative QCD calculations with special emphasis on results ready for phenomenological applications. Important examples are new results on structure functions and jet or Higgs boson production. In addition, we describe new calculational techniques based on twistors and their potential for efficient calculations of multiparticle amplitudes.

  16. Lattice QCD simulation of the Berry curvature

    CERN Document Server

    Yamamoto, Arata

    2016-01-01

    The Berry curvature is a fundamental concept describing topological order of quantum systems. While it can be analytically tractable in non-interacting systems, numerical simulations are necessary in interacting systems. We present a formulation to calculate the Berry curvature in lattice QCD.

  17. Hard And Soft QCD Physics In ATLAS

    Directory of Open Access Journals (Sweden)

    Adomeit Stefanie

    2014-04-01

    Full Text Available Hard and soft QCD results using proton-proton collisions recorded with the ATLAS detector at the LHC are reported. Charged-particle distributions and forward-backward correlations have been studied in low-luminosity minimum bias data taken at centre-of-mass energies of √s = 0.9, 2.36 and 7 TeV. Recent measurements on underlying event characteristics using charged-particle jets are also presented. The results are tested against various phenomenological soft QCD models implemented in Monte-Carlo generators. A summary of hard QCD measurements involving high transverse momentum jets is also given. Inclusive jet and dijet cross-sections have been measured at a centre-of-mass energy of 7 TeV and are compared to expectations based on NLO pQCD calculations corrected for non-perturbative effects as well as to NLO Monte Carlo predictions. Recent studies exploiting jet substructure techniques to identify hadronic decays of boosted massive particles are reported.

  18. Size of colour singlets in QCD jets

    Science.gov (United States)

    Bertolini, S.; Marchesini, G.

    1982-11-01

    By using the jet calculus technique, the size of the colour singlet clusters of emitted partons of mass Q0 is estimated. For α(Q20)/πapplications of preconfinement in pertubbative QCD. This result is very sensitive to the correct treatment of infrared singularities. Permanent address: Istituto di Fisica, Università di Parma, Parma, Italy.

  19. Lattice QCD on a Beowulf Cluster

    OpenAIRE

    Kim, Seyong

    1999-01-01

    Using commodity component personal computers based on Alpha processor and commodity network devices and a switch, we built an 8-node parallel computer. GNU/Linux is chosen as an operating system and message passing libraries such as PVM, LAM, and MPICH have been tested as a parallel programming environment. We discuss our lattice QCD project for a heavy quark system on this computer.

  20. The Abelianization of QCD Plasma Instabilities

    CERN Document Server

    Arnold, P; Arnold, Peter; Lenaghan, Jonathan

    2004-01-01

    QCD plasma instabilities appear to play an important role in the equilibration of quark-gluon plasmas in heavy-ion collisions in the theoretical limit of weak coupling (i.e. asymptotically high energy). It is important to understand what non-linear physics eventually stops the exponential growth of unstable modes. It is already known that the initial growth of plasma instabilities in QCD closely parallels that in QED. However, once the unstable modes of the gauge-fields grow large enough for non-Abelian interactions between them to become important, one might guess that the dynamics of QCD plasma instabilities and QED plasma instabilities become very different. In this paper, we give suggestive arguments that non-Abelian self-interactions between the unstable modes are ineffective at stopping instability growth, and that the growing non-Abelian gauge fields become approximately Abelian after a certain stage in their growth. This in turn suggests that understanding the development of QCD plasma instabilities i...

  1. Infrared Scales and Factorization in QCD

    CERN Document Server

    Manohar, A V

    2006-01-01

    Effective field theory methods are used to study factorization of the deep inelastic scattering cross-section. The cross-section is shown to factor in QCD, even though it does not factor in perturbation theory for some choices of the infrared regulator. Messenger modes are not required in soft-collinear effective theory for deep inelastic scattering as x -> 1.

  2. Lattice QCD on a beowulf cluster

    Energy Technology Data Exchange (ETDEWEB)

    Kima, Seyong

    2000-03-01

    Using commodity component personal computers based on Alpha processor and commodity network devices and a switch, we built an 8-node parallel computer. GNU/Linux is chosen as an operating system and message passing libraries such as PVM, LAM, and MPICH have been tested as a parallel programming environment. We discuss our lattice QCD project for a heavy quark system on this computer.

  3. OPE in planar QCD from integrability

    CERN Document Server

    Ahn, Changrim; Nepomechie, Rafael I

    2012-01-01

    We consider the operator product expansion of local single-trace operators composed of the self-dual components of the field strength tensor in planar QCD. Using the integrability of the one-loop matrix of anomalous dimensions of such operators, we obtain a determinant expression for certain tree-level structure constants in the OPE.

  4. Parametric form of QCD travelling waves

    OpenAIRE

    Peschanski, R.

    2005-01-01

    We derive parametric travelling-wave solutions of non-linear QCD equations. They describe the evolution towards saturation in the geometric scaling region. The method, based on an expansion in the inverse of the wave velocity, leads to a solvable hierarchy of differential equations. A universal parametric form of travelling waves emerges from the first two orders of the expansion.

  5. Two flavor QCD and confinement - II

    CERN Document Server

    Cossu, G; Di Giacomo, A; Pica, C

    2007-01-01

    This paper is part of a program of investigation of the chiral transition in Nf=2 QCD, started in Phys.Rev.D72:114510,2005. Progress is reported on the understanding of some possible systematic errors. A direct test of first order scaling is presented.

  6. Resummation of Cactus Diagrams in Lattice QCD

    CERN Document Server

    Panagopoulos, H

    1998-01-01

    We show how to perform a resummation, to all orders in perturbation theory, of a certain class of gauge invariant diagrams in Lattice QCD. These diagrams are often largely responsible for lattice artifacts. Our resummation leads to an improved perturbative expansion. Applied to a number of cases of interest, this expansion yields results remarkably close to corresponding nonperturbative estimates.

  7. Marking up lattice QCD configurations and ensembles

    CERN Document Server

    Coddington, P; Maynard, C M; Pleiter, D; Yoshié, T

    2007-01-01

    QCDml is an XML-based markup language designed for sharing QCD configurations and ensembles world-wide via the International Lattice Data Grid (ILDG). Based on the latest release, we present key ingredients of the QCDml in order to provide some starting points for colleagues in this community to markup valuable configurations and submit them to the ILDG.

  8. QCD subgroup on diffractive and forward physics

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, M.G.; Baker, W.; Bhatti, A. [and others

    1996-10-01

    The goal is to understand the pomeron, and hence the behavior of total cross sections, elastic scattering and diffractive excitation, in terms of the underlying theory, QCD. A description of the basic ideas and phenomenology is followed by a discussion of hadron-hadron and electron-proton experiments. An appendix lists recommended diffractive-physics terms and definitions. 44 refs., 6 figs.

  9. Signatures of confinement in Landau gauge QCD

    CERN Document Server

    Pawlowski, J M; Nedelko, S; Von Schmekal, L

    2005-01-01

    We summarise an analysis of the infrared regime of Landau gauge QCD by means of a flow equation approach. The infrared behaviour of gluon and ghost propagators is evaluated. The results provide further evidence for the Kugo-Ojima confinement scenario. We also discuss their relation to results obtained with other functional methods as well as the lattice.

  10. Bottom-up holographic approach to QCD

    Energy Technology Data Exchange (ETDEWEB)

    Afonin, S. S. [V. A. Fock Department of Theoretical Physics, Saint Petersburg State University, 1 ul. Ulyanovskaya, 198504 (Russian Federation)

    2016-01-22

    One of the most known result of the string theory consists in the idea that some strongly coupled gauge theories may have a dual description in terms of a higher dimensional weakly coupled gravitational theory — the so-called AdS/CFT correspondence or gauge/gravity correspondence. The attempts to apply this idea to the real QCD are often referred to as “holographic QCD” or “AdS/QCD approach”. One of directions in this field is to start from the real QCD and guess a tentative dual higher dimensional weakly coupled field model following the principles of gauge/gravity correspondence. The ensuing phenomenology can be then developed and compared with experimental data and with various theoretical results. Such a bottom-up holographic approach turned out to be unexpectedly successful in many cases. In the given short review, the technical aspects of the bottom-up holographic approach to QCD are explained placing the main emphasis on the soft wall model.

  11. Dual of QCD with One Adjoint Fermion

    DEFF Research Database (Denmark)

    Mojaza, Matin; Nardecchia, Marco; Pica, Claudio;

    2011-01-01

    We construct the magnetic dual of QCD with one adjoint Weyl fermion. The dual is a consistent solution of the 't Hooft anomaly matching conditions, allows for flavor decoupling and remarkably constitutes the first nonsupersymmetric dual valid for any number of colors. The dual allows to bound the...

  12. Two flavor QCD and confinement - II

    DEFF Research Database (Denmark)

    Cossu, G.; D'Elia, M.; Di Giacomo, A.;

    2007-01-01

    This paper is part of a program of investigation of the chiral transition in Nf=2 QCD, started in Phys.Rev.D72:114510,2005. Progress is reported on theunderstanding of some possible systematic errors. A direct test of first orderscaling is presented....

  13. Nonperturbative QCD corrections to electroweak observables

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Dru B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus)

    2012-06-15

    Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements, effective field theory techniques and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we mention applications to the Adler function, which can be used to determine the strong coupling constant, and QCD corrections to muonic-hydrogen.

  14. The Operator Product Expansion Beyond Perturbation Theory in QCD

    CERN Document Server

    Dominguez, C A

    2010-01-01

    The Operator Product Expansion (OPE) of current correlators at short distances beyond perturbation theory in QCD, together with Cauchy's theorem in the complex energy plane, are the pillars of the method of QCD sum rules. This technique provides an analytic tool to relate QCD with hadronic physics at low and intermediate energies. It has been in use for over thirty years to determine hadronic parameters, form factors, and QCD parameters such as the quark masses, and the running strong coupling at the scale of the $\\tau$-lepton. QCD sum rules provide a powerful complement to numerical simulations of QCD on the lattice. In this talk a short review of the method is presented for non experts, followed by three examples of recent applications.

  15. Applications Of Chiral Perturbation Theory To Lattice Qcd

    CERN Document Server

    Van de Water, R S

    2005-01-01

    Quantum chromodynamics (QCD) is the fundamental theory that describes the interaction of quarks and gluons. Thus, in principle, one should be able to calculate all properties of hadrons from the QCD Lagrangian. It turns out, however, that such calculations can only be performed numerically on a computer using the nonperturbative method of lattice QCD, in which QCD is simulated on a discrete spacetime grid. Because lattice simulations use unphysically heavy quark masses (for computational reasons), lattice results must be connected to the real world using expressions calculated in chiral perturbation theory (χPT), the low-energy effective theory of QCD. Moreover, because real spacetime is continuous, they must be extrapolated to the continuum using an extension of χPT that includes lattice discretization effects, such as staggered χPT. This thesis is organized as follows. We motivate the need for lattice QCD and present the basic methodology in Chapter 1. We describe a common approximat...

  16. Euler-Heisenberg-Weiss action for QCD+QED

    CERN Document Server

    Ozaki, Sho; Hattori, Koichi; Itakura, Kazunori

    2015-01-01

    We derive an analytic expression for one-loop effective action of QCD+QED at zero and finite temperatures by using the Schwinger's proper time method. The result is a nonlinear effective action not only for electromagnetic and chromo-electromagnetic fields but also the Polyakov loop, and thus reproduces the Euler-Heisenberg action in QED, QCD, and QED+QCD, and also the Weiss potential for the Polyakov loop at finite temperature. As applications of this "Euler-Heisenberg-Weiss" action in QCD+QED, we investigate quark pair productions induced by QCD+QED fields at zero temperature and the Polyakov loop in the presence of strong electromagnetic fields. Quark one-loop contribution to the effective potential of the Polyakov loop explicitly breaks the center symmetry, and is found to be enhanced by the magnetic field, which is consistent with the inverse magnetic catalysis observed in lattice QCD simulation.

  17. Lattice QCD spectroscopy for hadronic CP violation

    Directory of Open Access Journals (Sweden)

    Jordy de Vries

    2017-03-01

    In this work we propose a strategy to calculate these couplings by using spectroscopic lattice QCD techniques. Instead of directly calculating the pion–nucleon coupling constants, a challenging task, we use chiral symmetry relations that link the pion–nucleon couplings to nucleon sigma terms and mass splittings that are significantly easier to calculate. In this work, we show that these relations are reliable up to next-to-next-to-leading order in the chiral expansion in both SU(2 and SU(3 chiral perturbation theory. We conclude with a brief discussion about practical details regarding the required lattice QCD calculations and the phenomenological impact of an improved understanding of CP-violating matrix elements.

  18. Lattice QCD on Non-Orientable Manifolds

    CERN Document Server

    Mages, Simon; Borsanyi, Szabolcs; Fodor, Zoltan; Katz, Sandor; Szabo, Kalman K

    2015-01-01

    A common problem in lattice QCD simulations on the torus is the extremely long autocorrelation time of the topological charge, when one approaches the continuum limit. The reason is the suppressed tunneling between topological sectors. The problem can be circumvented by replacing the torus with a different manifold, so that the field configuration space becomes connected. This can be achieved by using open boundary conditions on the fields, as proposed earlier. It has the side effect of breaking translational invariance completely. Here we propose to use a non-orientable manifold, and show how to define and simulate lattice QCD on it. We demonstrate in quenched simulations that this leads to a drastic reduction of the autocorrelation time. A feature of the new proposal is, that translational invariance is preserved up to exponentially small corrections. A Dirac-fermion on a non-orientable manifold poses a challenge to numerical simulations: the fermion determinant becomes complex. We propose two approaches to...

  19. Heavy Dynamical Fermions in Lattice QCD

    CERN Document Server

    Hasenfratz, Anna; Hasenfratz, Anna; Grand, Thomas A. De

    1994-01-01

    It is expected that the only effect of heavy dynamical fermions in QCD is to renormalize the gauge coupling. We derive a simple expression for the shift in the gauge coupling induced by $N_f$ flavors of heavy fermions. We compare this formula to the shift in the gauge coupling at which the confinement-deconfinement phase transition occurs (at fixed lattice size) from numerical simulations as a function of quark mass and $N_f$. We find remarkable agreement with our expression down to a fairly light quark mass. However, simulations with eight heavy flavors and two light flavors show that the eight flavors do more than just shift the gauge coupling. We observe confinement-deconfinement transitions at $\\beta=0$ induced by a large number of heavy quarks. We comment on the relevance of our results to contemporary simulations of QCD which include dynamical fermions.

  20. Nucleon Parton Structure from Continuum QCD

    Science.gov (United States)

    Bednar, Kyle; Cloet, Ian; Tandy, Peter

    2017-01-01

    The parton structure of the nucleon is investigated using QCD's Dyson-Schwinger equations (DSEs). This formalism builds in numerous essential features of QCD, for example, the dressing of parton propagators and dynamical formation of non-pointlike di-quark correlations. All needed elements of the approach, including the nucleon wave function solution from a Poincaré covariant Faddeev equation, are encoded in spectral-type representations in the Nakanishi style. This facilitates calculations and the necessary connections between Euclidean and Minkowski metrics. As a first step results for the nucleon quark distribution functions will be presented. The extension to the transverse momentum-dependent parton distributions (TMDs) also be discussed. Supported by NSF Grant No. PHY-1516138.

  1. Combinatorics of Lattice QCD at Strong Coupling

    CERN Document Server

    Unger, Wolfgang

    2014-01-01

    Thermodynamics in the strong coupling limit of lattice QCD has features which may be similar to those of continuum QCD, such as a chiral critical end point and a nuclear liquid gas transition. Here I compare the combinatorics of staggered and Wilson fermions in the strong coupling limit for arbitrary number of colors and flavors. The partition functions can be considered as an expansions in hadronic spatial hoppings from the static limit, where both discretizations can be expressed via formulae with coefficients of distinct combinatorial interpretation. The corresponding multiplicites of hadronic states are evaluated using generalizations of Catalan numbers and Lucas polynomials. I outline how quantum Monte Carlo simulations can be carried out in general, and summarize recent results on the gauge corrections to the strong coupling limit.

  2. Towards finite density QCD with Taylor expansions

    CERN Document Server

    Karsch, Frithjof; Wagner, Mathias; Wambach, Jochen

    2010-01-01

    Convergence properties of Taylor expansions of observables, which are also used in lattice QCD calculations at non-zero chemical potential, are analyzed in an effective N_f = 2+1 flavor Polyakov-quark-meson model. A recently developed algorithmic technique allows the calculation of higher-order Taylor expansion coefficients in functional approaches. This novel technique is for the first time applied to an effective N_f = 2+1 flavor Polyakov-quark-meson model and the findings are compared with the full model solution at finite densities. The results are used to discuss prospects for locating the QCD phase boundary and a possible critical endpoint in the phase diagram.

  3. Lattice QCD Thermodynamics with Physical Quark Masses

    CERN Document Server

    Soltz, R A; Karsch, F; Mukherjee, Swagato; Vranas, P

    2015-01-01

    Over the past few years new physics methods and algorithms as well as the latest supercomputers have enabled the study of the QCD thermodynamic phase transition using lattice gauge theory numerical simulations with unprecedented control over systematic errors. This is largely a consequence of the ability to perform continuum extrapolations with physical quark masses. Here we review recent progress in lattice QCD thermodynamics, focussing mainly on results that benefit from the use of physical quark masses: the crossover temperature, the equation of state, and fluctuations of the quark number susceptibilities. In addition, we place a special emphasis on calculations that are directly relevant to the study of relativistic heavy ion collisions at RHIC and the LHC.

  4. Exploring Proton Structure Using Lattice Qcd

    CERN Document Server

    Renner, D B

    2004-01-01

    We calculate moments of the generalized parton distributions of the nucleon using lattice QCD. The generalized parton distributions determine the angular momentum decomposition of the nucleon and the transverse distributions of partons within the nucleon. Additionally, the generalized parton distributions reduce to the elastic form factors and ordinary parton distributions in particular kinematic limits. Thus by calculating moments of the generalized parton distributions in lattice QCD we can explore many facets of the structure of the nucleon. In this effort, we have developed the building block method to determine all the lattice correlation functions which contribute to the off forward matrix elements of the twist two operators. These matrix elements determine the generalized form factors of the nucleon which in turn give the moments of the generalized parton distributions. Thus we use our building block method to calculate all the matrix elements of the lowest twist two operators. Furthermore, we use our ...

  5. QCD at the Tevatron: Jets and fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    V. Daniel Elvira

    2001-09-27

    At the Fermilab Tevatron energies, ({radical} s=1800 GeV and {radical} s = 630 GeV), jet production is the dominant process. During the period 1992-1996, the D0 and CDF experiments accumulated almost 100 pb{sup -1} of data and performed the most accurate jet production measurements up to this date. These measurements and the NLO-QCD theoretical predictions calculated during the last decade, have improved our understanding of QCD, our knowledge of the proton structure, and pushed the limit to the scale associated with quark compositeness to 2.4-2.7 TeV. In this paper, we present the most recent published and preliminary measurements on jet production and fragmentation by the D0 and CDF collaborations.

  6. Transport at ''NLO'' in hot QCD

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The study of QCD kinetics is driven by a vast array of the experimental measurements of transport at the LHC, ranging from heavy quark energy loss, jet suppression, and hydrodynamics. I first review the fundamental elements of QCD kinetic theory, i.e. plasma screening, 2to2 scattering, and medium modified collinear bremsstrahlung. Then I will summarize recent progress in calculating these elements and their interplay at "NLO" -- "NLO" refers to an order $\\sqrt{\\alpha_s}$ correction to the plasma processes arising from the statistical fluctuations of soft gluons. These "NLO" calculations suggest a computational strategy where the influence of the Debye sector on the real time dynamics of the hard lightlike modes can be incorporated into a few medium coefficients (such as the drag coefficient and $\\hat{q}$), which can be simulated with a Euclidean 3D dimensionally reduced theory.

  7. Report of the QCD Working Group

    CERN Document Server

    Ballestrero, A; Bravo, S; Cacciari, M; Costa, M; de Boer, Wim; Dissertori, G; Flagmeyer, U; Fuster, J A; Hamacher, K; Krauss, F; Kühn, R; Lönnblad, L; Martí, S; Rehn, J; Rodrigo, Germán; Seymour, Michael H; Sjöstrand, Torbjörn; Trócsányi, Z L; Webber, Bryan R

    2000-01-01

    The activities of the QCD working group concentrated on improving the understanding and Monte Carlo simulation of multi-jet final states due to hard QCD processes at LEP, i.e. quark-antiquark plus multi-gluon and/or secondary quark production, with particular emphasis on four-jet final states and b-quark mass effects. Specific topics covered are: relevant developments in the main event generators PYTHIA, HERWIG and ARIADNE; the new multi-jet generator APACIC++; description and tuning of inclusive (all-flavour) jet rates; quark mass effects in the three- and four-jet rates; mass, higher-order and hadronization effects in four-jet angular and shape distributions; b-quark fragmentation and gluon splitting into b-quarks.

  8. QCD evolution equations from conformal symmetry

    CERN Document Server

    Braun, V M

    2014-01-01

    QCD evolution equations in $\\text{MS}$-like schemes can be recovered from the same equations in a modified theory, QCD in non-integer $d=4-2\\epsilon$ dimensions, which enjoys exact scale and conformal invariance at the critical point. Restrictions imposed by the conformal symmetry of the modified theory allow one to obtain complete evolution kernels in integer (physical) dimensions at the given order of perturbation theory from the spectrum of anomalous dimensions added by the calculation of the special conformal anomaly at one order less. We use this technique to derive two-loop evolution equations for flavor-nonsinglet quark-antiquark light-ray operators that encode the scale dependence of generalized hadron parton distributions.

  9. Matching Hagedorn mass spectrum with Lattice QCD

    CERN Document Server

    Lo, Pok Man; Redlich, Krzysztof; Sasaki, Chihiro

    2015-01-01

    Based on recent Lattice QCD (LQCD) results obtained at finite temperature, we discuss modeling of the hadronic phase of QCD in the framework of Hadron Resonance Gas (HRG) with discrete and continuous mass spectra. We focus on fluctuations of conserved charges, and show how a common limiting temperature can be used to constrain the Hagedorn exponential mass spectrum in different sectors of quantum number, through a matching of HRG and LQCD. For strange baryons, the extracted spectra are found to be consistent with all known and expected states listed by the Particle Data Group (PDG). The strange-mesonic sector, however, requires additional states in the intermediate mass range beyond that embodied in the database.

  10. Neutrinoless double beta decay from lattice QCD

    CERN Document Server

    Nicholson, Amy; Chang, Chia Cheng; Clark, M A; Joo, Balint; Kurth, Thorsten; Rinaldi, Enrico; Tiburzi, Brian; Vranas, Pavlos; Walker-Loud, Andre

    2016-01-01

    While the discovery of non-zero neutrino masses is one of the most important accomplishments by physicists in the past century, it is still unknown how and in what form these masses arise. Lepton number-violating neutrinoless double beta decay is a natural consequence of Majorana neutrinos and many BSM theories, and many experimental efforts are involved in the search for these processes. Understanding how neutrinoless double beta decay would manifest in nuclear environments is key for understanding any observed signals. In these proceedings we present an overview of a set of one- and two-body matrix elements relevant for experimental searches for neutrinoless double beta decay, describe the role of lattice QCD calculations, and present preliminary lattice QCD results.

  11. Mass and chemical asymmetry in QCD matter

    CERN Document Server

    Palhares, L F; Villavicencio, C

    2008-01-01

    We consider two-flavor asymmetric QCD combined with a low-energy effective model inspired by chiral perturbation theory and lattice data to investigate the effects of masses, isospin and baryon number on the pressure and the deconfinement phase transition. Remarkable agreement with lattice results is found for the critical temperature behavior. Further analyses of the cold, dense case and the influence of quark mass asymmetry are also presented.

  12. Probing the QCD equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, R.A.; Renk, T.; Thaler, M.; Polleri, A.; Weise, W

    2003-06-30

    We propose a novel quasiparticle interpretation of the equation of state of deconfined QCD at finite temperature. Using appropriate thermal masses, we introduce a phenomenological parametrisation of the onset of confinement in the vicinity of the phase transition. Lattice results of bulk thermodynamic quantities are well reproduced, the extension to small quark chemical potential is also successful. We then apply the model to dilepton production and charm suppression in ultrarelativistic heavy-ion collisions.

  13. Lattice QCD with commodity hardware and software

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, D.J. [and others

    2000-01-25

    Large scale QCD Monte Carlo calculations have typically been performed on either commercial supercomputers or specially built massively parallel computers such as Fermilab's ACPMAPS. Commodity computer systems offer impressive floating point performance-to-cost ratios which exceed those of commercial supercomputers. As high performance networking components approach commodity pricing, it becomes reasonable to assemble a massively parallel supercomputer from commodity parts. The authors describe the work and progress to date of a collaboration working on this problem.

  14. Eigenspectrum Noise Subtraction Methods in Lattice QCD

    CERN Document Server

    Guerrero, Victor; Wilcox, Walter

    2010-01-01

    We propose a new noise subtraction method, which we call "eigenspectrum subtraction", which uses low eigenmode information to suppress statistical noise at low quark mass. This is useful for lattice calculations involving disconnected loops or all-to-all propagators. It has significant advantages over perturbative subtraction methods. We compare unsubtracted, eigenspectrum and perturbative error bar results for the scalar operator on a small Wilson QCD matrix.

  15. Soft QCD at ATLAS and CMS

    CERN Document Server

    Yacoob, Sahal; The ATLAS collaboration

    2016-01-01

    The talk will summarise measurements of the total inelastic proton-proton cross-section and charged particle distributions by ATLAS and CMS at 13 TeV. These measurements provide necessary inputs to non-perturbative models of soft QCD, and the transition region between non-perturbative and perturbative calculations. The results are compared to popular Monte-Carlo generators in collider, and cosmic shower physics.

  16. New QCD results from string theory

    CERN Document Server

    Bern, Z; Kosower, D A

    1993-01-01

    We discuss new results in QCD obtained with string-based methods. These methods were originally derived from superstring theory and are significantly more efficient than conventional Feynman rules. This technology was a key ingredient in the first calculation of the one-loop five-gluon amplitude. We also present a conjecture for a particular one-loop helicity amplitude with an arbitrary number of external gluons.

  17. O(a) improved lattice QCD

    OpenAIRE

    Sommer, Rainer

    1997-01-01

    We review the O(a) improvement of lattice QCD with special emphasis on the motivation for performing the improvement programme non-perturbatively and the general concepts of on-shell improvement. The present status of the calculations of various improvement coefficients (perturbative and non-perturbative) is reviewed, as well as the computation of the isospin current normalization constants $Z_A$ and $Z_V$. We comment on recent results for hadronic observables obtained in the improved theory.

  18. String breaking in two-dimensional QCD

    CERN Document Server

    Hornbostel, K J

    1999-01-01

    I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.

  19. Heavy flavor, QCD and soft physics

    CERN Document Server

    Viegas Guerreiro Leonardo, Nuno Teotonio

    2016-01-01

    Recent measurements in QCD, soft physics, and heavy flavor made with the CMS detector at the LHC are presented. A selection of first results at the new frontier collision energy of 13 TeV at LHC Run2 is shown. The collision environment is characterized by studying charged particle distributions and correlations. Inclusive jet, exclusive dimuon and b-hadron production cross-section measurements are reported.

  20. Advances in QCD sum rule calculations

    CERN Document Server

    Melikhov, Dmitri

    2016-01-01

    We review the recent progress in the applications of QCD sum rules to hadron properties with the emphasis on the following selected problems: (i) development of new algorithms for the extraction of ground-state parameters from two-point correlators; (ii) form factors at large momentum transfers from three-point vacuum correlation functions; (iii) properties of exotic tetraquark hadrons from correlation functions of four-quark currents.

  1. Advances in QCD sum-rule calculations

    Energy Technology Data Exchange (ETDEWEB)

    Melikhov, Dmitri [Institute for High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, A-1050 Vienna, Austria D. V. Skobeltsyn Institute of Nuclear Physics, M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2016-01-22

    We review the recent progress in the applications of QCD sum rules to hadron properties with the emphasis on the following selected problems: (i) development of new algorithms for the extraction of ground-state parameters from two-point correlators; (ii) form factors at large momentum transfers from three-point vacuum correlation functions: (iii) properties of exotic tetraquark hadrons from correlation functions of four-quark currents.

  2. Phenomenology on the QCD dipole picture revisited

    CERN Document Server

    Lengyel, A I

    2003-01-01

    We perform an adjust to the most recent structure function data, considering the QCD dipole picture applied to ep scattering. The structure function F2 at small x and intermediate Q2 can be described by the model containing an economical number of free-parameters, which encodes the hard Pomeron physics. The longitudinal structure function and the gluon distribution are predicted without further adjustments. The data description is effective, whereas a resummed next-to-leading level analysis is deserved.

  3. The role of the Roper in QCD

    Energy Technology Data Exchange (ETDEWEB)

    S.R. Beane; U. van Kolck

    2005-06-01

    We show that existing data suggest a simple scenario in which the nucleon and the Delta and Roper resonances act as chiral partners in a reducible representation of the full QCD chiral symmetry group. We discuss the peculiar interpretation of this scenario using spin-flavour symmetries of the naive constituent quark model, as well as the consistency of the scenario with large-Nc expectations.

  4. Diffractive Leptoproduction of Vector Mesons in QCD

    OpenAIRE

    Brodsky, Stanley J.; Frankfurt, L.; Gunion, J. F.; Mueller, A.H.; Strikman, M.

    1994-01-01

    We demonstrate that the distinctive features of the forward differential cross section of diffractive leptoproduction of a vector meson can be legitimately calculated in perturbative QCD in terms of the light-cone $q \\bar q$ wave function of the vector meson and the gluon distribution of the target. In particular, we calculate the $Q^2$ and nuclear dependence of the diffractive leptoproduction of vector mesons and estimate the cross section. The production of longitudinally polarized vector m...

  5. Studies of Soft QCD at LHCb

    Directory of Open Access Journals (Sweden)

    Grecu Alexandru T.

    2013-11-01

    Full Text Available Due to its unique pseudorapidity coverage and the possibility of extending measurements to low transverse momenta, LHCb provides important input to the understanding of particle production in a kinematic range where QCD models have large uncertainties. Measurements of charged, strange and charmed particle production and energy flow are performed in the approximate pseudorapidity range 2 < η < 5, which corresponds to the acceptance of the LHCb spectrometer. The results are compared to predictions given by several Monte Carlo event generators.

  6. Top-quark production and QCD

    CERN Document Server

    Kidonakis, Nikolaos

    2012-01-01

    We review theoretical calculations for top-quark production that include complete next-to-leading-order QCD corrections as well as higher-order soft-gluon corrections from threshold resummation. We discuss in detail the differences between various approaches that have appeared in the literature and review results for top-quark total cross sections and differential distributions at the Tevatron and the LHC.

  7. The role of the Roper in QCD

    Energy Technology Data Exchange (ETDEWEB)

    S.R. Beane; U. van Kolck

    2005-06-01

    We show that existing data suggest a simple scenario in which the nucleon and the Delta and Roper resonances act as chiral partners in a reducible representation of the full QCD chiral symmetry group. We discuss the peculiar interpretation of this scenario using spin-flavour symmetries of the naive constituent quark model, as well as the consistency of the scenario with large-Nc expectations.

  8. Effective models for interacting quarks from QCD

    Energy Technology Data Exchange (ETDEWEB)

    Braghin, Fabio L. [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Inst. de Fisica

    2012-07-01

    Full text: In this work the Quantum Chromodynamics ( QCD ) path integral is considered with the introduction of auxiliary variables for composite gluon fields. One of these variables eventually leads to the gluon condensates of order 2 and another one corresponds to an anti - symmetric composite gluon configuration. Gluon degrees of freedom, and part of the quark degrees of freedom, are integrated out and two different limits of the resulting effective quark interactions are analysed. (author)

  9. Landau gauge gluon vertices from Lattice QCD

    CERN Document Server

    Duarte, Anthony G; Silva, Paulo J

    2016-01-01

    In lattice QCD the computation of one-particle irreducible (1PI) Green's functions with a large number (> 2) of legs is a challenging task. Besides tuning the lattice spacing and volume to reduce finite size effects, the problems associated with the estimation of higher order moments via Monte Carlo methods and the extraction of 1PI from complete Green's functions are limitations of the method. Herein, we address these problems revisiting the calculation of the three gluon 1PI Green's function.

  10. Dual of QCD with One Adjoint Fermion

    CERN Document Server

    Mojaza, Matin; Pica, Claudio; Sannino, Francesco

    2011-01-01

    We construct the magnetic dual of QCD with one adjoint Weyl fermion. The dual is a consistent solution of the 't Hooft anomaly matching conditions, allows for flavor decoupling and remarkably constitutes the first nonsupersymmetric dual valid for any number of colors. The dual allows to bound the anomalous dimension of the Dirac fermion mass operator to be less than one in the conformal window.

  11. QCD on the iPSC/860

    Science.gov (United States)

    Bernard, Claude; Degrand, Thomas A.; Detar, Carleton; Gottlieb, Steven; Krasnitz, A.; Ogilvie, Michael C.; Sugar, R. L.; Toussaint, D.

    Performance of the Intel iPSC/860 parallel processor for Quantum Chromodynamics codes with dynamical fermions is described. After reviewing the hardware and software environments provided by the manufacturer, the data structures appropriate for the QCD code are described. Techniques for maximum performance are briefly discussed. We achieve a speed of 10-15 Mŕlops per node depending upon how many lattice sites are located on each node.

  12. On scale dependence of QCD string operators

    CERN Document Server

    Kivel, N A

    1999-01-01

    We have obtained a general solution of evolution equations for QCD twist-2 string operators in form of expansion over complete set of orthogonal eigenfunctions of evolution kernels in coordinate-space representation. In the leading logarithmic approximation the eigenfunctions can be determined using constraints imposed by conformal symmetry. Explicit formulae for the LO scale-dependence of quark and gluon twist-2 string operators are given.

  13. Probing Wilson Loops in the QCD Instanton Vacuum

    CERN Document Server

    Liu, Yizhuang

    2014-01-01

    We discuss the quark and gluon condensates in the presence of a rectangular Wilson loop using the QCD instanton vacuum with three light dynamical quarks. The scalar quark condensate is found to decrease while the gluon condensate to increase. We also derive the static potential between two QCD dipoles and show that it is attractive but short ranged at large distances. Its relevance to static QCD string interactions is discussed.

  14. The elastic QCD dipole amplitude at one-loop

    CERN Document Server

    Navelet, H

    1999-01-01

    We derive the analytic expression of the two one-loop dipole contributions to the elastic 4-gluon amplitude in QCD. The first one corresponds to the double QCD pomeron exchange, the other to an order alpha^2 correction to one-pomeron exchange. Both are expressed in terms of the square of the recently derived triple QCD pomeron vertex and involve a summation over all conformal Eigenvectors of the BFKL kernel.

  15. Computation of Heavy Quarkonium Spectrum in Perturbative QCD

    CERN Document Server

    Sumino, Yukinari

    2016-01-01

    Non-relativistic bound state theories for QED and QCD have become fairly mature and amenable to a textbook-level understanding and computation. In this talk we give an introductory review of the following subjects related to the recent computation of the heavy quarkonium spectrum using perturbative QCD: (1) Technological developments in higher-order computation, (2) Physics predictions, (3) Challenge towards analytic evaluation of the 3-loop static QCD potential.

  16. QCD Critical Point and Complex Chemical Potential Singularities

    CERN Document Server

    Stephanov, M A

    2006-01-01

    The thermodynamic singularities of QCD in the plane of complex baryo-chemical potential mu are studied. Predictions are made using scaling and universality arguments in the vicinity of the massless quark limit. The results are illustrated by a calculation of complex mu singularities in a random matrix model at finite temperature. Implications for lattice QCD simulations aimed at locating the QCD critical point are discussed.

  17. Generalized Weinberg Sum Rules in Deconstructed QCD

    CERN Document Server

    Sekhar-Chivukula, R; Tanabashi, Masaharu; Kurachi, Masafumi; Tanabashi, Masaharu

    2004-01-01

    Recently, Son and Stephanov have considered an "open moose" as a possible dual model of a QCD-like theory of chiral symmetry breaking. In this note we demonstrate that although the Weinberg sum rules are satisfied in any such model, the relevant sums converge very slowly and in a manner unlike QCD. Further, we show that such a model satisfies a set of generalized sum rules. These sum rules can be understood by looking at the operator product expansion for the correlation function of chiral currents, and correspond to the absence of low-dimension gauge-invariant chiral symmetry breaking condensates. These results imply that, regardless of the couplings and F-constants chosen, the open moose is not the dual of any QCD-like theory of chiral symmetry breaking. We also show that the generalized sum rules lead to a compact expression for the difference of vector- and axial-current correlation functions. This expression allows for a simple formula for the S parameter (L_10), which implies that S is always positive a...

  18. QCD ghost f(T)-gravity model

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K.; Abdolmaleki, A.; Asadzadeh, S. [University of Kurdistan, Department of Physics, Sanandaj (Iran, Islamic Republic of); Safari, Z. [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)

    2013-09-15

    Within the framework of modified teleparallel gravity, we reconstruct a f(T) model corresponding to the QCD ghost dark energy scenario. For a spatially flat FRW universe containing only the pressureless matter, we obtain the time evolution of the torsion scalar T (or the Hubble parameter). Then, we calculate the effective torsion equation of state parameter of the QCD ghost f(T)-gravity model as well as the deceleration parameter of the universe. Furthermore, we fit the model parameters by using the latest observational data including SNeIa, CMB and BAO data. We also check the viability of our model using a cosmographic analysis approach. Moreover, we investigate the validity of the generalized second law (GSL) of gravitational thermodynamics for our model. Finally, we point out the growth rate of matter density perturbation. We conclude that in QCD ghost f(T)-gravity model, the universe begins a matter dominated phase and approaches a de Sitter regime at late times, as expected. Also this model is consistent with current data, passes the cosmographic test, satisfies the GSL and fits the data of the growth factor well as the {Lambda}CDM model. (orig.)

  19. Hybrid model for QCD deconfining phase boundary

    Science.gov (United States)

    Srivastava, P. K.; Singh, C. P.

    2012-06-01

    Intensive search for a proper and realistic equations of state (EOS) is still continued for studying the phase diagram existing between quark gluon plasma (QGP) and hadron gas (HG) phases. Lattice calculations provide such EOS for the strongly interacting matter at finite temperature (T) and vanishing baryon chemical potential (μB). These calculations are of limited use at finite μB due to the appearance of notorious sign problem. In the recent past, we had constructed a hybrid model description for the QGP as well as HG phases where we make use of a new excluded-volume model for HG and a thermodynamically-consistent quasiparticle model for the QGP phase and used them further to get QCD phase boundary and a critical point. Since then many lattice calculations have appeared showing various thermal and transport properties of QCD matter at finite T and μB=0. We test our hybrid model by reproducing the entire data for strongly interacting matter and predict our results at finite μB so that they can be tested in future. Finally we demonstrate the utility of the model in fixing the precise location, the order of the phase transition and the nature of CP existing on the QCD phase diagram. We thus emphasize the suitability of the hybrid model as formulated here in providing a realistic EOS for the strongly interacting matter.

  20. ALEPH Tau Spectral Functions and QCD

    CERN Document Server

    Davier, M; Zhang, Z; Davier, Michel; Hoecker, Andreas; Zhang, Zhiqing

    2007-01-01

    Hadronic $\\tau$ decays provide a clean laboratory for the precise study of quantum chromodynamics (QCD). Observables based on the spectral functions of hadronic $\\tau$ decays can be related to QCD quark-level calculations to determine fundamental quantities like the strong coupling constant, quark and gluon condensates. Using the ALEPH spectral functions and branching ratios, complemented by some other available measurements, and a revisited analysis of the theoretical framework, the value $\\asm = 0.345 \\pm 0.004_{\\rm exp} \\pm 0.009_{\\rm th}$ is obtained. Taken together with the determination of \\asZ from the global electroweak fit, this result leads to the most accurate test of asymptotic freedom: the value of the logarithmic slope of $\\alpha_s^{-1}(s)$ is found to agree with QCD at a precision of 4%. The value of \\asZ obtained from $\\tau$ decays is $\\asZ = 0.1215 \\pm 0.0004_{\\rm exp} \\pm 0.0010_{\\rm th} \\pm 0.0005_{\\rm evol} = 0.1215 \\pm 0.0012$.

  1. Quenching parameter in a holographic thermal QCD

    CERN Document Server

    Patra, Binoy Krishna

    2016-01-01

    We have calculated the quenching parameter, $\\hat{q}$ in a model-independent way using the gauge-gravity duality. In earlier calculations, the geometry in the gravity side at finite temperature was usually taken as the pure AdS blackhole metric for which the dual gauge theory becomes conformally invariant unlike QCD. Therefore we use a metric which incorporates the fundamental quarks by embedding the coincident D7 branes in the Klebanov-Tseytlin background and a finite temperature is switched on by inserting a black hole into the background, known as OKS-BH metric. Further inclusion of an additional UV cap to the metric prepares the dual gauge theory to run similar to thermal QCD. Moreover $\\hat{q}$ is usually defined in the literature from the Glauber-model perturbative QCD evaluation of the Wilson loop, which has no reasons to hold if the coupling is large and is thus against the main idea of gauge-gravity duality. Thus we use an appropriate definition of $\\hat{q}$: $\\hat{q} L^- = 1/L^2$, where $L$ is the s...

  2. QCD, Tevatron results and LHC prospects

    Energy Technology Data Exchange (ETDEWEB)

    Elvira, V.Daniel; /Fermilab

    2008-08-01

    We present a summary of the most recent measurements relevant to Quantum Chromodynamics (QCD) delivered by the D0 and CDF Tevatron experiments by May 2008. CDF and D0 are moving toward precision measurements of QCD based on data samples in excess of 1 fb-1. The inclusive jet cross sections have been extended to forward rapidity regions and measured with unprecedented precision following improvements in the jet energy calibration. Results on dijet mass distributions, bbbar dijet production using tracker based triggers, underlying event in dijet and Drell-Yan samples, inclusive photon and diphoton cross sections complete the list of measurements included in this paper. Good agreement with pQCD within errors is observed for jet production measurements. An improved and consistent theoretical description is needed for photon+jets processes. Collisions at the LHC are scheduled for early fall 2008, opening an era of discoveries at the new energy frontier, 5-7 times higher than that of the Tevatron.

  3. QCD in heavy quark production and decay

    Energy Technology Data Exchange (ETDEWEB)

    Wiss, J. [Univ. of Illinois, Urbana, IL (United States)

    1997-06-01

    The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effective Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs.

  4. Full CKM matrix with lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Masataka; /Fermilab

    2004-12-01

    The authors show that it is now possible to fully determine the CKM matrix, for the first time, using lattice QCD. |V{sub cd}|, |V{sub cs}|, |V{sub ub}|, |V{sub cb}| and |V{sub us}| are, respectively, directly determined with the lattice results for form factors of semileptonic D {yields} {pi}lv, D {yields} Klv, B {yields} {pi}lv, B {yields} Dlv and K {yields} {pi}lv decays. The error from the quenched approximation is removed by using the MILC unquenced lattice gauge configurations, where the effect of u, d and s quarks is included. The error from the ''chiral'' extrapolation (m{sub l} {yields} m{sub ud}) is greatly reduced by using improved staggered quarks. The accuracy is comparable to that of the Particle Data Group averages. In addition, |V{sub ud}|, |V{sub ts}|, |V{sub ts}| and |V{sub td}| are determined by using unitarity of the CKM matrix and the experimental result for sin (2{beta}). In this way, they obtain all 9 CKM matrix elements, where the only theoretical input is lattice QCD. They also obtain all the Wolfenstein parameters, for the first time, using lattice QCD.

  5. The QCD improved electroweak parameter $\\rho$

    CERN Document Server

    Wang, Sheng-Quan; Shen, Jian-Ming; Han, Hua-Yong; Ma, Yang

    2014-01-01

    In the present paper, we make a detailed analysis for the QCD corrections to the electroweak $\\rho$ parameter by applying the principle of maximum conformality (PMC). Up to four-loop level, we obtain $\\Delta\\rho|_{\\rm N^3LO} = \\left(8.256^{+0.045}_{-0.012}\\right) \\times10^{-3}$ for $\\mu_{r}\\in[M_{t}/2$, $2M_{t}]$ under the conventional scale setting. More over, by defining a ratio, $\\Delta R=\\Delta\\rho/3X_t-1$, it is found that its conventional scale error is $\\sim \\pm9 \\%$ at the two-loop level, which changes to $\\sim\\pm4\\%$ at the three-loop level and $\\sim \\pm 2.5\\%$ at the four-loop level, respectively. This shows that the scale uncertainty constitutes an important error for estimating the $\\rho$ parameter. On the other hand, by applying the PMC scale setting, $\\Delta\\rho|_{\\rm N^3LO}$ is almost fixed to be $8.228\\times10^{-3}$, and the conventional scale uncertainty can be eliminated and the pQCD convergence can also be greatly improved. Finally, as applications of the QCD improved $\\rho$ parameter, we o...

  6. Gravitational waves generated from the cosmological QCD phase transition within AdS/QCD

    Directory of Open Access Journals (Sweden)

    M. Ahmadvand

    2017-09-01

    Full Text Available We study the gravitational waves produced by the collision of the bubbles as a probe for the cosmological first order QCD phase transition, considering heavy static quarks. Using AdS/QCD and the correspondence between a first order Hawking–Page phase transition and confinement–deconfinement phase transition, we find the spectrum and the strain amplitude of the gravitational wave within the hard and soft wall models. We postulate the duration of the phase transition corresponds to the evaporation time of the black hole in the five dimensional dual gravity space, and thereby obtain a bound on the string length in the space and correspondingly on the duration of the QCD phase transition. We also show that IPTA and SKA detectors will be able to detect these gravitational waves, which can be an evidence for the first order deconfinement transition.

  7. A statistical approach to the QCD phase transition --A mystery in the critical temperature

    OpenAIRE

    Ishii, Noriyoshi; Suganuma, Hideo

    2002-01-01

    We study the QCD phase transition based on the statistical treatment with the bag-model picture of hadrons, and derive a phenomenological relation among the low-lying hadron masses, the hadron sizes and the critical temperature of the QCD phase transition. We apply this phenomenological relation to both full QCD and quenched QCD, and compare these results with the corresponding lattice QCD results. Whereas such a statistical approach works well in full QCD, it results in an extremely large es...

  8. Exact symmetry of large $N_{c}$ QCD

    CERN Document Server

    Page, P R

    1999-01-01

    QCD and QED exhibit an infinite set of three-point Green's functions that contain only OZI rule violating contributions, and (for QCD) vanish exactly in the large N_c limit. This is due to symmetrization, do not follow from any Lagrangian symmetry, and constitutes the discovery of a new symmetry principle in QCD and QED. We prove that the amplitude for a neutral hybrid {1,3,5...}^{-+} exotic current to create eta pi0 vanishes exactly for QCD in the large N_c limit. Crystal Barrel's experimental claim of a resonant 1^{-+} decaying to eta pi0 suggests that the 1^{-+} is not a hybrid meson.

  9. Thermodynamics of strong-interaction matter from Lattice QCD

    CERN Document Server

    Ding, Heng-Tong; Mukherjee, Swagato

    2015-01-01

    We review results from lattice QCD calculations on the thermodynamics of strong-interaction matter with emphasis on input these calculations can provide to the exploration of the phase diagram and properties of hot and dense matter created in heavy ion experiments. This review is organized as follows: 1) Introduction, 2) QCD thermodynamics on the lattice, 3) QCD phase diagram at high temperature, 4) Bulk thermodynamics, 5) Fluctuations of conserved charges, 6) Transport properties, 7) Open heavy flavors and heavy quarkonia, 8) QCD in external magnetic fields, 9) Summary.

  10. Experimental aspects of QCD studies at the LHC

    CERN Document Server

    Tapprogge, Stefan

    2000-01-01

    The LHC will allow precision tests and measurements of QCD in as yet unexplored kinematic regions. The detailed understanding of QCD is important for almost all physics processes to be studied at LHC, as the production mechanisms are mostly controlled by QCD. The multi-purpose detectors (ATLAS and CMS) have been optimized for precision measurements within pseudorapidities of $|\\eta|<2.5$ and have calorimetric coverage up to $|\\eta|=5$. The expected performance will allow precise studies of final states containing electrons, photons, tau's (single hadrons), muons and jets. This contribution discusses various measurements of QCD processes at LHC, the kinematical reach and the expected statistical uncertainties for selected examples.

  11. QCD and Light-Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.

    2010-10-27

    The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number N. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable z of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is to a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors. The theory implements chiral symmetry in a novel way: the effects of chiral symmetry breaking increase as one goes toward large interquark separation, consistent with spectroscopic data, and the the hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. The soft-wall model also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function which agrees with the effective coupling {alpha}{sub g1} extracted from the Bjorken sum rule. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also reviewed.

  12. Running mass of the b-quark in QCD and SUSY QCD

    CERN Document Server

    Bednyakov, A V

    2007-01-01

    The running mass of the b-quark defined in DRbar-scheme is one of the important parameters of SUSY QCD. To find its value it should be related to some known experimental input. In this paper the b-quark running mass defined in nonsupersymmetric QCD is chosen for determination of corresponding parameter in SUSY QCD. The relation between these two quantities is found by considering five-flavor QCD as an effective theory obtained from its supersymmetric extension. A numerical analysis of the calculated two-loop relation and its impact on the MSSM spectrum is discussed. Since for nonsupersymmetric models MSbar-scheme is more natural than DRbar, we also propose a new procedure that allows one to calculate relations between MSbar- and DRbar-parameters. Unphysical epsilon-scalars that give rise to the difference between mentioned schemes are assumed to be heavy and decoupled in the same way as physical degrees of freedom. By means of this method it is possible to ``catch two rabbits'', i.e., decouple heavy particles...

  13. Baryon interactions in lattice QCD: the direct method vs. the HAL QCD potential method

    CERN Document Server

    Iritani, Takumi

    2016-01-01

    We make a detailed comparison between the direct method and the HAL QCD potential method for the baryon-baryon interactions, taking the $\\Xi\\Xi$ system at $m_\\pi= 0.51$ GeV in 2+1 flavor QCD and using both smeared and wall quark sources. The energy shift $\\Delta E_\\mathrm{eff}(t)$ in the direct method shows the strong dependence on the choice of quark source operators, which means that the results with either (or both) source are false. The time-dependent HAL QCD method, on the other hand, gives the quark source independent $\\Xi\\Xi$ potential, thanks to the derivative expansion of the potential, which absorbs the source dependence to the next leading order correction. The HAL QCD potential predicts the absence of the bound state in the $\\Xi\\Xi$($^1$S$_0$) channel at $m_\\pi= 0.51$ GeV, which is also confirmed by the volume dependence of finite volume energy from the potential. We also demonstrate that the origin of the fake plateau in the effective energy shift $\\Delta E_\\mathrm{eff}(t)$ at $t \\sim 1$ fm can b...

  14. Exploring the QCD phase diagram through relativistic heavy ion collisions

    CERN Document Server

    Mohanty, Bedangadas

    2013-01-01

    We present a review of the studies related to establishing the QCD phase diagram through high energy nucleus-nucleus collisions. We particularly focus on the experimental results related to the formation of a quark-gluon phase, crossover transition and search for a critical point in the QCD phase diagram.

  15. QCD with jets and photons at ATLAS and CMS

    CERN Document Server

    Barnovska-Blenessy, Zuzana; The ATLAS collaboration

    2017-01-01

    A selection of recent QCD measurements by the ATLAS and CMS collaborations in final states with photons and jets is presented. New results with improved precision provide a probe of perturbative QCD, allowing to perform PDF fits and extracting the strong coupling constant $\\alpha_{S}$.

  16. B -> phi K decays in perturbative QCD approach

    CERN Document Server

    Mishima, S

    2001-01-01

    We calculate the branching ratios and CP asymmetries of the $B\\to \\phi K$ decays using perturbative QCD approach, which includes $k_T$ and threshold resummations. Our results of branching ratios are consistent with the experimental data and larger than those obtained from the naive factorization assumption and QCD-improved factorization approach.

  17. Unusual identities for QCD at tree-level

    CERN Document Server

    Bjerrum-Bohr, N E J; Feng, Bo; Sondergaard, Thomas

    2011-01-01

    We discuss a set of recently discovered quadratic relations between gauge theory amplitudes. Such relations give additional structural simplifications for amplitudes in QCD. Remarkably, their origin lie in an analogous set of relations that involve also gravitons. When certain gluon helicities are flipped we obtain relations that do not involve gravitons, but which refer only to QCD.

  18. Nonperturbative determination of the QCD potential at O(1/m)

    Energy Technology Data Exchange (ETDEWEB)

    Koma, Y. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Koma, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Osaka Univ. (JP). Research Center for Nuclear Physics (RCNP); Wittig, H. [Mainz Univ. (Germany). Inst. fuer Physik

    2006-07-15

    The relativistic correction to the QCD static inter-quark potential at O(1/m) is investigated nonperturbatively for the first time by using lattice Monte Carlo QCD simulations. The correction is found to be comparable with the Coulombic term of the static potential when applied to charmonium, and amounts to 26% of the Coulombic term for bottomonium. (Orig.)

  19. Confinining properties of QCD in strong magnetic backgrounds

    Directory of Open Access Journals (Sweden)

    Bonati Claudio

    2017-01-01

    Full Text Available Strong magnetic backgrounds are known to modify QCD properties at a nonperturbative level. We discuss recent lattice results, obtained for Nf = 2 + 1 QCD with physical quark masses, concerning in particular the modifications and the anisotropies induced at the level of the static quark-antiquark potential, both at zero and finite temperature.

  20. A New Effect in the QCD Fusion of Nuclear Partons

    Institute of Scientific and Technical Information of China (English)

    RUAN Jian-Hong; ZHU Wei; LI Guang-Lie

    2001-01-01

    The parton fusion in nucleus at the leading order of recombination is investigated based on perturbative QCD. We compute various cut diagrams including the nuclear parton fusion, and find that the parton-fusion effects depend on the nuclear QCD structure.``

  1. Transversity from First Principles in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins

    2012-02-16

    Transversity observables, such as the T-odd Sivers single-spin asymmetry measured in deep inelastic lepton scattering on polarized protons and the distributions which are measured in deeply virtual Compton scattering, provide important constraints on the fundamental quark and gluon structure of the proton. In this talk I discuss the challenge of computing these observables from first principles; i.e.; quantum chromodynamics, itself. A key step is the determination of the frame-independent light-front wavefunctions (LFWFs) of hadrons - the QCD eigensolutions which are analogs of the Schroedinger wavefunctions of atomic physics. The lensing effects of initial-state and final-state interactions, acting on LFWFs with different orbital angular momentum, lead to T-odd transversity observables such as the Sivers, Collins, and Boer-Mulders distributions. The lensing effect also leads to leading-twist phenomena which break leading-twist factorization such as the breakdown of the Lam-Tung relation in Drell-Yan reactions. A similar rescattering mechanism also leads to diffractive deep inelastic scattering, as well as nuclear shadowing and non-universal antishadowing. It is thus important to distinguish 'static' structure functions, the probability distributions computed the target hadron's light-front wavefunctions, versus 'dynamical' structure functions which include the effects of initial- and final-state rescattering. I also discuss related effects such as the J = 0 fixed pole contribution which appears in the real part of the virtual Compton amplitude. AdS/QCD, together with 'Light-Front Holography', provides a simple Lorentz-invariant color-confining approximation to QCD which is successful in accounting for light-quark meson and baryon spectroscopy as well as hadronic LFWFs.

  2. Quenching parameter in a holographic thermal QCD

    Science.gov (United States)

    Patra, Binoy Krishna; Arya, Bhaskar

    2017-01-01

    We have calculated the quenching parameter, q ˆ in a model-independent way using the gauge-gravity duality. In earlier calculations, the geometry in the gravity side at finite temperature was usually taken as the pure AdS black hole metric for which the dual gauge theory becomes conformally invariant unlike QCD. Therefore we use a metric which incorporates the fundamental quarks by embedding the coincident D7 branes in the Klebanov-Tseytlin background and a finite temperature is switched on by inserting a black hole into the background, known as OKS-BH metric. Further inclusion of an additional UV cap to the metric prepares the dual gauge theory to run similar to thermal QCD. Moreover q ˆ is usually defined in the literature from the Glauber model perturbative QCD evaluation of the Wilson loop, which has no reasons to hold if the coupling is large and is thus against the main idea of gauge-gravity duality. Thus we use an appropriate definition of q ˆ : q ˆ L- = 1 /L2, where L is the separation for which the Wilson loop is equal to some specific value. The above two refinements cause q ˆ to vary with the temperature as T4 always and to depend linearly on the light-cone time L- with an additional (1 /L-) correction term in the short-distance limit whereas in the long-distance limit, q ˆ depends only linearly on L- with no correction term. These observations agree with other holographic calculations directly or indirectly.

  3. The CKM matrix and flavor physics from lattice QCD

    CERN Document Server

    Van de Water, Ruth S

    2009-01-01

    I discuss the role of lattice QCD in testing the Standard Model and searching for physics beyond the Standard Model in the quark flavor sector. I first review the Standard Model CKM framework. I then present the current status of the CKM matrix, focusing on determinations of CKM matrix elements and constraints on the CKM unitarity triangle that rely on lattice QCD calculations of weak matrix elements. I also show the potential impact of improved lattice QCD calculations on the global CKM unitarity triangle fit. I then describe several hints of new physics in the quark flavor sector that rely on lattice QCD calculations of weak matrix elements, such as evidence of a ~2-3 sigma tension in the CKM unitarity triangle and the "f_{D_s} puzzle". I finish with a discussion of lattice QCD calculations of rare B- and K-decays needed to probe physics beyond the Standard Model at future experiments.

  4. Doubly heavy baryon spectra guided by lattice QCD

    CERN Document Server

    Garcilazo, H; Vijande, J

    2016-01-01

    This paper provides results for the ground state and excited spectra of three-flavored doubly heavy baryons, $bcn$ and $bcs$. We take advantage of the spin-independent interaction recently obtained to reconcile the lattice SU(3) QCD static potential and the results of nonperturbative lattice QCD for the triply heavy baryon spectra. We show that the spin-dependent potential might be constrained on the basis of nonperturbative lattice QCD results for the spin splittings of three-flavored doubly heavy baryons. Our results may also represent a challenge for future lattice QCD work, because a smaller lattice error could help in distinguishing between different prescriptions for the spin-dependent part of the interaction. Thus, by comparing with the reported baryon spectra obtained with parameters estimated from lattice QCD, one can challenge the precision of lattice calculations. The present work supports a coherent description of singly, doubly and triply heavy baryons with the same Cornell-like interacting poten...

  5. Exploring Dense and Cold QCD in Magnetic Fields

    CERN Document Server

    Ferrer, E J

    2016-01-01

    Strong magnetic fields are commonly generated in off-central relativistic heavy-ion collisions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab and in the Large Hadron Collider at CERN and have been used to probe the topological configurations of the QCD vacua. A strong magnetic field can affect the character and location of the QCD critical point, influence the QCD phases, and lead to anomalous transport of charge. To take advantage of the magnetic field as a probe of QCD at higher baryon densities, we are going to need experiments capable to scan the lower energy region. In this context, the nuclotron-based ion collider facility (NICA) at JINR offers a unique opportunity to explore such a region and complement alternative programs at RHIC and other facilities. In this paper we discuss some relevant problems of the interplay between QCD and magnetic fields and the important role the experiments at NICA can play in tackling them.

  6. Exploring dense and cold QCD in magnetic fields

    Science.gov (United States)

    Ferrer, E. J.; de la Incera, V.

    2016-08-01

    Strong magnetic fields are commonly generated in off-central relativistic heavy-ion collisions in the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Lab and in the Large Hadron Collider at CERN and have been used to probe the topological configurations of the QCD vacua. A strong magnetic field can affect the character and location of the QCD critical point, influence the QCD phases, and lead to anomalous transport of charge. To take advantage of the magnetic field as a probe of QCD at higher baryon densities, we are going to need experiments capable to scan the lower energy region. In this context, the nuclotron-based ion collider facility (NICA) at JINR offers a unique opportunity to explore such a region and complement alternative programs at RHIC and other facilities. In this paper we discuss some relevant problems of the interplay between QCD and magnetic fields and the important role the experiments at NICA can play in tackling them.

  7. Algorithms for Disconnected Diagrams in Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gambhir, Arjun Singh [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Stathopoulos, Andreas [College of William and Mary, Williamsburg, VA (United States); Orginos, Konstantinos [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Yoon, Boram [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gupta, Rajan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Syritsyn, Sergey [Stony Brook Univ., NY (United States)

    2016-11-01

    Computing disconnected diagrams in Lattice QCD (operator insertion in a quark loop) entails the computationally demanding problem of taking the trace of the all to all quark propagator. We first outline the basic algorithm used to compute a quark loop as well as improvements to this method. Then, we motivate and introduce an algorithm based on the synergy between hierarchical probing and singular value deflation. We present results for the chiral condensate using a 2+1-flavor clover ensemble and compare estimates of the nucleon charges with the basic algorithm.

  8. Charmed Meson Scattering from Lattice QCD

    CERN Document Server

    Moir, Graham

    2016-01-01

    State-of-the-art lattice QCD calculations of scattering amplitudes in coupled-channel $D\\pi$, $D\\eta$ and $D_{s}\\bar{K}$ scattering, as well elastic $DK$ scattering are discussed. The methodology employed allows a determination of the relevant poles in the scattering matrix, while also providing a measure of the coupling of each channel to a given pole. By investigating $S$, $P$ and $D$ wave interactions, the nature of states with $J^{P} = 0^{+}$, relevant for the $D^{*}_{0}(2400)$ and $D^{*}_{s0}(2317)$, as well as states with $J^{P} = 1^{-}, 2^{+}$ are discussed.

  9. Comments on the Vacuum Orientations in QCD

    CERN Document Server

    Huang, Z; Wu, D D; Huang, Zheng

    1992-01-01

    We study the QCD vacuum orientation angles in correlation with the strong CP phases. A vacuum alignment equation of the dynamical chiral symmetry breaking is derived based on the anomalous Ward identity. It is emphasized that a chiral rotation of the quark field causes a change of the vacuum orientation and a change in the definition of the light pseudoscalar generators. As an illustration of the idea, $\\h\\rightarrow 2\\p$ decays are carefully studied in different chiral frames. Contrary to the claim in Ref.[7], the $\\theta$-term does not directly contribute to the CP-violating processes.

  10. Lattice QCD based on OpenCL

    CERN Document Server

    Bach, Matthias; Philipsen, Owe; Pinke, Christopher

    2012-01-01

    We present an OpenCL-based Lattice QCD application using a heatbath algorithm for the pure gauge case and Wilson fermions in the twisted mass formulation. The implementation is platform independent and can be used on AMD or NVIDIA GPUs, as well as on classical CPUs. On the AMD Radeon HD 5870 our double precision dslash implementation performs at 60 GFLOPS over a wide range of lattice sizes. The hybrid Monte-Carlo presented reaches a speedup of four over the reference code running on a server CPU.

  11. QCD simulations with staggered fermions on GPUs

    CERN Document Server

    Bonati, C; D'Elia, M; Incardona, P

    2011-01-01

    We report on our implementation of the RHMC algorithm for the simulation of lattice QCD with two staggered flavors on Graphics Processing Units, using the NVIDIA CUDA programming language. The main feature of our code is that the GPU is not used just as an accelerator, but instead the whole Molecular Dynamics trajectory is performed on it. After pointing out the main bottlenecks and how to circumvent them, we discuss the obtained performances. We present some preliminary results regarding OpenCL and multiGPU extensions of our code and discuss future perspectives.

  12. Pion electric polarizability from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Alexandru, Andrei; Lujan, Michael; Freeman, Walter; Lee, Frank [The George Washington University, 725 21st St. NW, Washington DC, 20052 (United States)

    2016-01-22

    Electromagnetic polarizabilities are important parameters for understanding the interaction between photons and hadrons. For pions these quantities are poorly constrained experimentally since they can only be measured indirectly. New experiments at CERN and Jefferson Lab are planned that will measure the polarizabilities more precisely. Lattice QCD can be used to compute these quantities directly in terms of quark and gluons degrees of freedom, using the background field method. We present results for the electric polarizability for two different quark masses, light enough to connect to chiral perturbation theory. These are currently the lightest quark masses used in polarizability studies.

  13. Multiquark hadrons. A new facet of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed

    2016-05-15

    I review some selected aspects of the phenomenology of multiquark states discovered in high energy experiments. They have four valence quarks (called tetraquarks) and two of them are found to have five valence quarks (called pentaquarks), extending the conventional hadron spectrum which consists of quark-antiquark (q anti q) mesons and qqq baryons. Multiquark states represent a new facet of QCD and their dynamics is both challenging and currently poorly understood. I discuss various approaches put forward to accommodate them, with emphasis on the diquark model.

  14. The QCD vacuum probed by overlap fermions

    CERN Document Server

    Weinberg, V; Koller, K; Koma, Y; Schierholz, G; Streuer, T

    2006-01-01

    We summarize different uses of the eigenmodes of the Neuberger overlap operator for the analysis of the QCD vacuum, here applied to quenched configurations simulated by means of the Luescher-Weisz action. We describe the localization and chiral properties of the lowest modes. The overlap-based topological charge density (with and without UV-filtering) is compared with the results of UV-filtering for the field strength tensor. The latter allows to identify domains of good (anti-)selfduality. All these techniques together lead to a dual picture of the vacuum, unifying the infrared instanton picture with the presence of singular defects co-existent at different scales.

  15. Quark masses in two-flavor QCD

    CERN Document Server

    Creutz, Michael

    2011-01-01

    Considered as a function of the quark mases, two-flavor QCD depends on three parameters, including one that is CP violating. As the masses vary to unphysical values, regions of both first- and second-order phase transitions are expected. For non-degenerate quarks, non-perturbative effects leave individual quark mass ratios with a renormalization scheme dependence. This complicates matching lattice results with perturbative schemes and clarifies the tautology with attacking the strong CP problem via a vanishing up quark mass.

  16. QCD soft gluon exponentiation YFS MC Approach

    CERN Document Server

    Ward, B F L

    2002-01-01

    We develop and prove the theory of the QCD extension of the YFS Monte Carlo approach to higher order QED radiative corrections. As a corollary, a new approach to quantum gravity by one of us (B.F.L.W.) is illustrated. Semi-analytical results and preliminary explicit Monte Carlo data are presented for the processes p-bar p -> t-bar t + X at FNAL energies. We comment briefly on the implications of our results on the CDF/D0 observations and on RHIC/LHC physics.

  17. Dyson--Schwinger Approach to Hamiltonian QCD

    CERN Document Server

    Campagnari, Davide R; Huber, Markus Q; Vastag, Peter; Ebadati, Ehsan

    2016-01-01

    Dyson--Schwinger equations are an established, powerful non-perturbative tool for QCD. In the Hamiltonian formulation of a quantum field theory they can be used to perform variational calculations with non-Gaussian wave functionals. By means of the DSEs the various $n$-point functions, needed in expectation values of observables like the Hamilton operator, can be thus expressed in terms of the variational kernels of our trial ansatz. Equations of motion for these variational kernels are derived by minimizing the energy density and solved numerically.

  18. QCD Thermodynamics with an Improved Lattice Action

    CERN Document Server

    Bernard, C W; DeGrand, T A; Wingate, M; DeTar, C E; Gottlieb, S; Heller, U M; Rummukainen, K; Toussaint, D; Sugar, R L; Bernard, Claude; Hetrick, James E.; Grand, Thomas De; Wingate, Matthew; Tar, Carleton De; Gottlieb, Steven; Heller, Urs M.; Rummukainen, Kari; Toussaint, Doug; Sugar, Robert L.

    1997-01-01

    We have investigated QCD with two flavors of degenerate fermions using a Symanzik-improved lattice action for both the gauge and fermion actions. Our study focuses on the deconfinement transition on an $N_t=4$ lattice. Having located the thermal transition, we performed zero temperature simulations nearby in order to compute hadronic masses and the static quark potential. We find that the present action reduces lattice artifacts present in thermodynamics with the standard Wilson (gauge and fermion) actions. However, it does not bring studies with Wilson-type quarks to the same level as those using the Kogut--Susskind formulation.

  19. Multiquark Hadrons - A New Facet of QCD

    CERN Document Server

    Ali, Ahmed

    2016-01-01

    I review some selected aspects of the phenomenology of multiquark states discovered in high energy experiments. They have four valence quarks (called tetraquarks) and two of them are found to have five valence quarks (called pentaquarks), extending the conventional hadron spectrum which consists of quark-antiquark $(q\\bar{q})$ mesons and $qqq$ baryons. Multiquark states represent a new facet of QCD and their dynamics is both challenging and currently poorly understood. I discuss various approaches put forward to accommodate them, with emphasis on the diquark model.

  20. Fluctuations and correlations in high temperature QCD

    CERN Document Server

    Bellwied, R; Fodor, Z; Katz, S D; Pasztor, A; Ratti, C; Szabo, K K

    2015-01-01

    We calculate second- and fourth-order cumulants of conserved charges in a temperature range stretching from the QCD transition region towards the realm of (resummed) perturbation theory. We perform lattice simulations with staggered quarks; the continuum extrapolation is based on $N_t=10\\dots24$ in the crossover-region and $N_t=8\\dots16$ at higher temperatures. We find that the Hadron Resonance Gas model predictions describe the lattice data rather well in the confined phase. At high temperatures (above $\\sim$250 MeV) we find agreement with the three-loop Hard Thermal Loop results.

  1. The photo-philic QCD axion

    CERN Document Server

    Farina, Marco; Rompineve, Fabrizio; Tesi, Andrea

    2016-01-01

    We propose a framework in which the QCD axion has an exponentially large coupling to photons, relying on the "clockwork" mechanism. We discuss the impact of present and future axion experiments on the parameter space of the model. In addition to the axion, the model predicts a large number of pseudo-scalars which can be light and observable at the LHC. In the most favorable scenario, axion Dark Matter will give a signal in multiple axion detection experiments and the pseudo-scalars will be discovered at the LHC, allowing to determine most of the parameters of the model.

  2. Oscillating propagators in heavy-dense QCD

    CERN Document Server

    Akerlund, Oscar; Rindlisbacher, Tobias

    2016-10-11

    Using Monte Carlo simulations and extended mean field theory calculations we show that the $3$-dimensional $\\mathbb{Z}_3$ spin model with complex external fields has non-monotonic correlators in some regions of its parameter space. This model serves as a proxy for heavy-dense QCD in $(3+1)$ dimensions. Non-monotonic correlators are intrinsically related to a complex mass spectrum and a liquid-like (or crystalline) behavior. A liquid phase could have implications for heavy-ion experiments, where it could leave detectable signals in the spatial correlations of baryons.

  3. Dirac eigenmodes at the QCD Anderson transition

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc; Ujfalusi, Laszlo; Varga, Imre

    2014-01-01

    Recently we found an Anderson-type localization-delocalization transition in the QCD Dirac spectrum at high temperature. Using spectral statistics we obtained a critical exponent compatible with that of the corresponding Anderson model. Here we study the spatial structure of the eigenmodes both in the localized and the transition region. Based on previous studies in the Anderson model, at the critical point, the eigenmodes are expected to have a scale invariant multifractal structure. We verify the scale invariance of Dirac eigenmodes at the critical point.

  4. Effective degrees of freedom in QCD thermodynamics

    Directory of Open Access Journals (Sweden)

    Turko L.

    2014-04-01

    Full Text Available An effective model reproducing the equation of state of hadronic matter as obtained in recent lattice QCD simulations and from hadron resonance gas data is presented. The hadronic phase is described by means of an extended Mott-Hagedorn resonance gas while the QGP phase is described by the extended PNJL model. The dissociation of hadrons is obtained by including the state dependent hadron resonance width. The model gives a quantitative estimate for partial fractions of hadronic and partonic degrees of freedom above Tc.

  5. New QCD Sum Rule for $D(0^+)$

    CERN Document Server

    Dai, Y B; Dai, Yuan-Ben; Zhu, Shi-Lin

    2006-01-01

    We derive a new QCD sum rule for $D(0^+)$ which has only the $D\\pi$ continuum with a resonance in the hadron side, using the assumption similar to that has been successfully used in our previous work to the mass of $D_s(0^+)(2317)$. For the value of the pole mass $M_c=1.38 $ GeV as used in the $D_s(0^+)$ case we find that the mass of $D(0^+)$ derived from this sum rule is significantly lower than that derived from the sum rule with the pole approximation. Our result is in agreement with the experimental dada from Belle.

  6. Leading order QCD in Coulomb gauge

    CERN Document Server

    Watson, Peter

    2011-01-01

    Coulomb gauge QCD in the first order formalism can be written in terms of a ghost-free, nonlocal action that ensures total color charge conservation via Gauss' law. Making an Ansatz whereby the nonlocal term (the Coulomb kernel) is replaced by its expectation value, the resulting Dyson-Schwinger equations can be derived. With a leading order truncation, these equations reduce to the gap equations for the static gluon and quark propagators obtained from a quasi-particle approximation to the canonical Hamiltonian approach. Moreover a connection to the heavy quark limit can be established, allowing an intuitive explanation for the charge constraint and infrared divergences.

  7. Dynamical gluon mass in QCD processes

    Energy Technology Data Exchange (ETDEWEB)

    Ducati, M.B. Gay; Sauter, W. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Fisica. Grupo de Fenomenologia de Particulas de Altas Energias (GFPAE)

    2007-06-15

    We perform phenomenological applications of modified gluon propagators and running coupling constants in scattering processes in Quantum Chromodynamics (QCD). The modified forms of propagators and running coupling constant are obtained by non-perturbative methods. The processes investigated includes the diffractive ones - proton-proton elastic scattering, light vector meson photo-production and double vector meson production in gamma-gamma scattering - as well as the pion and kaon meson form factors. The results are compared with experimental data (if available), showing a good agreement with a gluon with dynamical mass but do not indicate the correct gluon propagator functional form. (author)

  8. Missing strange resonances in Lattice QCD

    CERN Document Server

    Marczenko, Michał

    2016-01-01

    Recent Lattice QCD (LQCD) studies suggest that there are missing resonances in the strange sector of the Hadron Resonance Gas (HRG) model. By adopting the continuous Hagedorn mass spectrum, we present how different medium compositions influence the HRG predictions of conserved charge fluctuations. It is shown that missing strange resonances may be partially accounted for by applying the Hagedorn mass spectrum extracted from experimentally established hadrons. On the other hand, the strange-baryonic spectra, extracted from LQCD results for fluctuations, are found to be consistent with the unconfirmed states in the Particle Data Group (PDG) database, whilst the strange-mesonic spectrum points towards yet undiscovered states in the intermediate mass region.

  9. Algorithms for Disconnected Diagrams in Lattice QCD

    CERN Document Server

    Gambhir, Arjun Singh; Orginos, Kostas; Yoon, Boram; Gupta, Rajan; Syritsyn, Sergey

    2016-01-01

    Computing disconnected diagrams in Lattice QCD (operator insertion in a quark loop) entails the computationally demanding problem of taking the trace of the all to all quark propagator. We first outline the basic algorithm used to compute a quark loop as well as improvements to this method. Then, we motivate and introduce an algorithm based on the synergy between hierarchical probing and singular value deflation. We present results for the chiral condensate using a 2+1-flavor clover ensemble and compare estimates of the nucleon charges with the basic algorithm.

  10. Solving QCD via multi-Regge theory.

    Energy Technology Data Exchange (ETDEWEB)

    White, A. R.

    1998-11-04

    To solve QCD at high-energy the authors must simultaneously find the hadronic states and the exchanged pomeron (IP) giving UNITARY scattering amplitudes. Experimentally, the IP {approximately} a Regge pole at small Q{sup 2} and a single gluon at larger Q{sup 2}. (F{sub 2}{sup D}-H1, dijets-ZEUS). In the solution which the author describes, these non-perturbative properties of the IP are directly related to the non-perturbative confinement and chiral symmetry breaking properties of hadrons.

  11. Phase transitions in dense 2-colour QCD

    CERN Document Server

    Boz, Tamer; Fister, Leonard; Skullerud, Jon-Ivar

    2013-01-01

    We investigate 2-colour QCD with 2 flavours of Wilson fermion at nonzero temperature T and quark chemical potential mu, with a pion mass of 700 MeV (m_pi/m_rho=0.8). From temperature scans at fixed mu we find that the critical temperature for the superfluid to normal transition depends only very weakly on mu above the onset chemical potential, while the deconfinement crossover temperature is clearly decreasing with mu. We also present results for the Landau-gauge gluon propagator in the hot and dense medium.

  12. QCD, conformal invariance and the two Pomerons

    CERN Document Server

    Munier, S

    1998-01-01

    Using the solution of the BFKL equation including the leading and subleading conformal spin components, we show how the conformal invariance underlying the leading log (1/x) expansion of perturbative QCD leads to elastic amplitudes described by two effective Pomeron singularities. One Pomeron is the well-known "hard" BFKL leading singularity while the new one appears from a shift of the higher conformal spin BFKL singularities from subleading to leading position. This new effective singularity is compatible with the "soft" Pomeron and thus, together with the "hard" Pomeron, meets at large $Q^{2}$ the "double Pomeron" solution which has been recently conjectured by Donnachie and Landshoff.

  13. Nuclear correlation functions in lattice QCD

    CERN Document Server

    Detmold, William

    2012-01-01

    We consider the problem of calculating the large number of Wick contractions necessary to compute states with the quantum numbers of many baryons in lattice QCD. We consider a constructive approach and a determinant-based approach and show that these methods allow the required contractions to be performed in computationally manageable amount of time for certain choices of interpolating operators. Examples of correlation functions computed using these techniques are shown for the quantum numbers of the light nuclei, He, Be, C, O and Si.

  14. QCD critical point: The race is on

    Indian Academy of Sciences (India)

    Rajiv V Gavai

    2015-05-01

    A critical point in the phase diagram of quantum chromodynamics (QCD), if established either theoretically or experimentally, would be as profound a discovery as the good-old gas–liquid critical point. Unlike the latter, however, first-principles-based approaches are being employed to locate it theoretically. Due to the short-lived nature of the concerned phases, novel experimental techniques are needed to search for it. The Relativistic Heavy Ion Collider (RHIC) in USA has an experimental programme to do so. This short review is an attempt to provide a glimpse of the race between the theorists and the experimentalists as well as the synergy between them.

  15. Some Developments in Gribov's Approach to QCD

    CERN Document Server

    Cooper, Patrick

    2016-01-01

    We review several developments in the formulation of QCD provided by the GZ action. These include the GZ-action at finite temperature, the relation of the horizon condition and the Kugo-Ojima confinement criterion, the relation of the horizon condition and the dual-Meisssner effect, the alternative derivation of the GZ action provided by the Maggiore-Schaden shift, and the spontaneous breaking of BRST symmetry. We conclude with a proposal for the definition of physical states in the presence of BRST breaking.

  16. QCD-inspired spectra from Blue's functions

    CERN Document Server

    Nowak, M A; Zahed, I; Nowak, Maciej A; Papp, Gabor; Zahed, Ismail

    1996-01-01

    We use the law of addition in random matrix theory to analyze the spectral distributions of a variety of chiral random matrix models as inspired from QCD whether through symmetries or models. In terms of the Blue's functions recently discussed by Zee, we show that most of the spectral distributions in the macroscopic limit and the quenched approximation, follow algebraically from the discontinuity of a pertinent solution to a cubic (Cardano) or a quartic (Ferrari) equation. We use the end-point equation of the energy spectra in chiral random matrix models to argue for novel phase structures, in which the Dirac density of states plays the role of an order parameter.

  17. QCD-inspired spectra from Blue's functions

    Science.gov (United States)

    Nowak, Maciej A.; Papp, Gábor; Zahed, Ismail

    1996-02-01

    We use the law of addition in random matrix theory to analyze the spectral distributions of a variety of chiral random matrix models as inspired from QCD whether through symmetries or models. In terms of the Blue's functions recently discussed by Zee, we show that most of the spectral distributions in the macroscopic limit and the quenched approximation, follow algebraically from the discontinuity of a pertinent solution to a cubic (Cardano) or a quartic (Ferrari) equation. We use the end-point equation of the energy spectra in chiral random matrix models to argue for novel phase structures, in which the Dirac density of states plays the role of an order parameter.

  18. Axial Nucleon form factors from lattice QCD

    CERN Document Server

    Alexandrou, C; Carbonell, J; Constantinou, M; Harraud, P A; Guichon, P; Jansen, K; Korzec, T; Papinutto, M

    2010-01-01

    We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects are investigated using three different values of the lattice spacings, namely $a=0.089$ fm, $a=0.070$ fm and $a=0.056$ fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.

  19. The lowest Landau level in QCD

    Science.gov (United States)

    Bruckmann, Falk; Endrőodi, Gergely; Giordano, Matteo; Katz, Sándor D.; Kovács, Tamás G.; Pittler, Ferenc; Wellnhofer, Jacob

    2017-03-01

    The thermodynamics of Quantum Chromodynamics (QCD) in external (electro-)magnetic fields shows some unexpected features like inverse magnetic catalysis, which have been revealed mainly through lattice studies. Many effective descriptions, on the other hand, use Landau levels or approximate the system by just the lowest Landau level (LLL). Analyzing lattice configurations we ask whether such a picture is justified. We find the LLL to be separated from the rest by a spectral gap in the two-dimensional Dirac operator and analyze the corresponding LLL signature in four dimensions. We determine to what extent the quark condensate is LLL dominated at strong magnetic fields.

  20. Extracting Electric Polarizabilities from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Will Detmold, William Detmold, Brian Tiburzi, Andre Walker-Loud

    2009-05-01

    Charged and neutral, pion and kaon electric polarizabilities are extracted from lattice QCD using an ensemble of anisotropic gauge configurations with dynamical clover fermions. We utilize classical background fields to access the polarizabilities from two-point correlation functions. Uniform background fields are achieved by quantizing the electric field strength with the proper treatment of boundary flux. These external fields, however, are implemented only in the valence quark sector. A novel method to extract charge particle polarizabilities is successfully demonstrated for the first time.

  1. Isoscalar meson spectroscopy from lattice QCD

    CERN Document Server

    Dudek, Jozef J; Joo, Balint; Peardon, Michael J; Richards, David G; Thomas, Christopher E

    2011-01-01

    We extract to high statistical precision an excited spectrum of single-particle isoscalar mesons using lattice QCD, including states of high spin and, for the first time, light exotic JPC isoscalars. The use of a novel quark field construction has enabled us to overcome the long-standing challenge of efficiently including quark-annihilation contributions. Hidden-flavor mixing angles are extracted and while most states are found to be close to ideally flavor mixed, there are examples of large mixing in the pseudoscalar and axial sectors in line with experiment. The exotic JPC isoscalar states appear at a mass scale comparable to the exotic isovector states.

  2. Nucleon wave function from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Warkentin, Nikolaus

    2008-04-15

    In this work we develop a systematic approach to calculate moments of leading-twist and next-to-leading twist baryon distribution amplitudes within lattice QCD. Using two flavours of dynamical clover fermions we determine low moments of nucleon distribution amplitudes as well as constants relevant for proton decay calculations in grand unified theories. The deviations of the leading-twist nucleon distribution amplitude from its asymptotic form, which we obtain, are less pronounced than sometimes claimed in the literature. The results are applied within the light cone sum rule approach to calculate nucleon form factors that are compared with recent experimental data. (orig.)

  3. QCD on the connection machine: beyond LISP

    Science.gov (United States)

    Brickner, Ralph G.; Baillie, Clive F.; Johnsson, S. Lennart

    1991-04-01

    We report on the status of code development for a simulation of quantum chromodynamics (QCD) with dynamical Wilson fermions on the Connection Machine model CM-2. Our original code, written in Lisp, gave performance in the near-GFLOPS range. We have rewritten the most time-consuming parts of the code in the low-level programming systems CMIS, including the matrix multiply and the communication. Current versions of the code run at approximately 3.6 GFLOPS for the fermion matrix inversion, and we expect the next version to reach or exceed 5 GFLOPS.

  4. Perturbative and nonperturbative renormalization in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Horsley, R. [University of Edinburgh (United Kingdom). School of Physics and Astronomy; Perlt, H. [Leipzig Univ. (DE). Institut fuer Theoretische Physik] (and others)

    2010-03-15

    We investigate the perturbative and nonperturbative renormalization of composite operators in lattice QCD restricting ourselves to operators that are bilinear in the quark fields (quark-antiquark operators). These include operators which are relevant to the calculation of moments of hadronic structure functions. The nonperturbative computations are based on Monte Carlo simulations with two flavors of clover fermions and utilize the Rome-Southampton method also known as the RI-MOM scheme. We compare the results of this approach with various estimates from lattice perturbation theory, in particular with recent two-loop calculations. (orig.)

  5. Quarkonia at $T>0$ and lattice QCD

    CERN Document Server

    Rothkopf, Alexander

    2016-01-01

    We report here on recent progress in the determination of S-wave and P-wave heavy-quarkonium states at finite temperature. Our results are based on the combination of effective field theories with numerical lattice QCD simulations. These non-perturbative tools allow us to compute the heavy-quarkonium in-medium spectral functions, from which we in turn determine the melting temperatures of individual states and estimate phenomenologically relevant observables, such as the $\\psi^\\prime$ to J/$\\psi$ ratio in heavy-ion collisions.

  6. Aspects of baryon structure in lattice QCD

    Science.gov (United States)

    Babich, Ronald

    Despite the long success of Quantum Chromodynamics (QCD) as the theory of the strong interactions, there remains much to be understood about the structure of hadrons and the consequences of QCD in the nonperturbative regime. Lattice gauge theory, a framework nearly as old as QCD itself, makes calculations in this regime possible, starting from first principles. With advances in theoretical understanding, methods, and computer technology, the lattice has found application to an ever-widening range of problems. In this dissertation, I consider two such problems having to do with the structure of baryons. The first concerns the contribution of sea quarks, and the strange quark in particular, to form factors of the nucleon. This has been a long-standing challenge for the lattice, because such contributions involve the insertion of a current on a quark loop, demanding the full inversion of the discretized Dirac operator, conceptually a large sparse matrix. I discuss methods for addressing this challenge and present a calculation of the strange scalar form factor and the related parameter fTs. The latter is of great theoretical interest, since it enters into the cross section for the scattering of dark matter off nuclei in supersymmetric extensions of the standard model. As such, it represents a major uncertainty in the interpretation of direct detection experiments. I also present results for the strange quark contribution to the nucleon's axial and electromagnetic form factors, which are themselves the subject of active experimental programs. These calculations were performed using the Wilson fermion formulation on a 243 x 64 anisotropic lattice. In the second part of the dissertation, I turn to the valence sector and address the role of diquark correlations in the observed spectrum of hadrons and their properties. A diquark is a correlated pair of quarks, thought to play an important role in certain phenomenological models of hadrons. I present results for baryon wave

  7. Tetraquarks in AdS/QCD

    CERN Document Server

    Forkel, Hilmar

    2012-01-01

    Multiquark correlations inside hadrons can have a significant and in some cases even striking impact on the hadron spectrum. We show how such correlations in general, and mesons with a dominant tetraquark content in particular, emerge holographically in the AdS/QCD framework. On this basis, we arrive at a holographic realization of an exceptionally strong four-quark binding and a correspondingly large tetraquark component in the lightest scalar mesons. Higher-lying tetraquark excitations, on the other hand, become too broad to form supernumeral scalar states.

  8. The Emergence of Hadrons from QCD Color

    Science.gov (United States)

    Brooks, William; Color Dynamics in Cold Matter (CDCM) Collaboration

    2015-10-01

    The formation of hadrons from energetic quarks, the dynamical enforcement of QCD confinement, is not well understood at a fundamental level. In Deep Inelastic Scattering, modifications of the distributions of identified hadrons emerging from nuclei of different sizes reveal a rich variety of spatial and temporal characteristics of the hadronization process, including its dependence on spin, flavor, energy, and hadron mass and structure. The EIC will feature a wide range of kinematics, allowing a complete investigation of medium-induced gluon bremsstrahlung by the propagating quarks, leading to partonic energy loss. This fundamental process, which is also at the heart of jet quenching in heavy ion collisions, can be studied for light and heavy quarks at the EIC through observables quantifying hadron ``attenuation'' for a variety of hadron species. Transverse momentum broadening of hadrons, which is sensitive to the nuclear gluonic field, will also be accessible, and can be used to test our understanding from pQCD of how this quantity evolves with pathlength, as well as its connection to partonic energy loss. The evolution of the forming hadrons in the medium will shed new light on the dynamical origins of the forces between hadrons, and thus ultimately on the nuclear force. Supported by the Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) of Chile.

  9. Radiative Transitions in Charmonium from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek; Robert Edwards; David Richards

    2006-01-17

    Radiative transitions between charmonium states offer an insight into the internal structure of heavy-quark bound states within QCD. We compute, for the first time within lattice QCD, the transition form-factors of various multipolarities between the lightest few charmonium states. In addition, we compute the experimentally unobservable, but physically interesting vector form-factors of the {eta}{sub c}, J/{psi} and {chi}{sub c0}. To this end we apply an ambitious combination of lattice techniques, computing three-point functions with heavy domain wall fermions on an anisotropic lattice within the quenched approximation. With an anisotropy {xi} = 3 at a{sub s} {approx} 0.1 fm we find a reasonable gross spectrum and a hyperfine splitting {approx}90 MeV, which compares favorably with other improved actions. In general, after extrapolation of lattice data at non-zero Q{sup 2} to the photopoint, our results agree within errors with all well measured experimental values. Furthermore, results are compared with the expectations of simple quark models where we find that many features are in agreement; beyond this we propose the possibility of constraining such models using our extracted values of physically unobservable quantities such as the J/{psi} quadrupole moment. We conclude that our methods are successful and propose to apply them to the problem of radiative transitions involving hybrid mesons, with the eventual goal of predicting hybrid meson photoproduction rates at the GlueX experiment.

  10. Constituent quark masses from modified perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Cabo Montes de Oca, A. [Instituto de Cibernetica, Matematica y Fisica, La Habana (Cuba); International Institute for Theoretical and Applied Physics (IITAP), UNESCO and Iowa State University, Ames, IA (United States); Rigol Madrazo, M. [Centro de Estudios Aplicados al Desarrollo Nuclear, La Habana (Cuba)

    2002-03-01

    A recently proposed modified perturbative expansion for QCD incorporating gluon condensation is employed to evaluate the quark and gluon self-energy corrections in first approximation. The results predict mass values of 1/3 of the nucleon mass for the light quarks u, d, and s and a monotonously growing variation with the current mass. The only phenomenological input is that left angle G{sup 2} right angle is evaluated up to order g{sup 2} as a function of the unique parameter C defining the modified propagator, and then C is fixed to give a current estimate of left angle g{sup 2}G{sup 2} right angle. The light quarks u and d as a result are found to be confined and the s, c, b and t ones show damped propagation modes, suggesting a model for the large differences in stability between the nucleons and the higher resonances. The above properties of quark modes diverge from the fully confinement result following from the similar gluon propagator previously considered by Munczek and Nemirovski. On the other hand, the condensate effects on the gluon self-energy furnish a tachyonic mass shell as predicted by the Fukuda analysis of gluon condensation in QCD. (orig.)

  11. A proposal of a local modified QCD

    CERN Document Server

    de Oca, Alejandro Cabo Montes

    2012-01-01

    A local and renormalizable version of a modified PQCD introduced in previous works is presented. The construction indicates that it could be equivalent to massless QCD. The case in which only quark condensate effects are retained is discussed in more detail. Then, the appearing auxiliary fermion fields can be integrated leading to a theory with the action of massless QCD, to which one local and gauge invariant Lagrangian term for each quark flavour is added. These terms are defined by two gluon and two quark fields, in a form curiously not harming power counting renormalizability. The gluon self-energy is evaluated in second order in the gauge coupling and all orders in the new quark couplings, and the result became transversal as required by the gauge invariance. The vacuum energy was calculated in the two loop approximation and also became gauge parameter independent. The possibilities that higher loop contributions to the vacuum energy allow the generation of a quark mass hierarchy as a flavour symmetry br...

  12. Spin-2 NΩ dibaryon from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Etminan, Faisal [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Department of Physics, Faculty of Sciences, University of Birjand, Birjand 97175-615 (Iran, Islamic Republic of); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Nemura, Hidekatsu [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Aoki, Sinya [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Doi, Takumi [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Hatsuda, Tetsuo [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Kavli IPMU (WPI), The University of Tokyo, Chiba 277-8583 (Japan); Ikeda, Yoichi [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Inoue, Takashi [Nihon University, College of Bioresource Sciences, Kanagawa 252-0880 (Japan); Ishii, Noriyoshi [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Murano, Keiko [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Sasaki, Kenji [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan)

    2014-08-15

    We investigate properties of the N(nucleon)–Ω(Omega) interaction in lattice QCD to seek for possible dibaryon states in the strangeness −3 channel. We calculate the NΩ potential through the equal-time Nambu–Bethe–Salpeter wave function in 2+1 flavor lattice QCD with the renormalization group improved Iwasaki gauge action and the nonperturbatively O(a) improved Wilson quark action at the lattice spacing a≃0.12 fm on a (1.9 fm){sup 3}× 3.8 fm lattice. The ud and s quark masses in our study correspond to m{sub π}=875(1) MeV and m{sub K}=916(1) MeV. At these parameter values, the central potential in the S-wave with the spin 2 shows attractions at all distances. By solving the Schrödinger equation with this potential, we find one bound state whose binding energy is 18.9(5.0)({sup +12.1}{sub −1.8}) MeV, where the first error is the statistical one, while the second represents the systematic error.

  13. Diffractive leptoproduction of small masses in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gotsman, Errol; Maor, Uri [Tel Aviv Univ. (Israel). Raymond and Sackler Faculty of Exact Sciences. School of Physics and Astronomy; Levin, Eugene [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Petersburg Nuclear Physics Inst., St. Petersburg (Russian Federation). Theory Dept.

    1996-05-01

    In this paper we consider the process of diffraction dissociation in deeply inelastic scattering in the region of small produced mass, which we define as production of q-bar q-pair and q-bar q G system in the final state. We show that the small distance contributions (r perpendicular is proportional to 1/Q) to the longitudinal polarised virtual photon dominate. Formulae for the cross section using the gluon structure function are written within the framework of perturbative QCD. It is shown that the production of small masses by the transverse polarized photo is concentrated at moderate values of r perpendicular to {approx} 1 GeV{sup -1}, where the p QCD approach can be applied. This could be responsible for a considerable part of the diffractive production. It is shown that only q-bar q pair production contribute to the diffraction dissociation at {beta} > 0.4, the possibility to extract the value of the gluon structure function from the measurements in this kinematic region is discussed. The evolution of the DD structure function is studied, and a solution to the DD evolution equations is proposed. Shadowing corrections are discussed for both the transverse and longitudinal polarised photon, and estimates of the different damping factors are given. The relation between diffractive production and the corrections to F2, is alluded to. (author). 45 refs., 16 figs.

  14. A hidden classical symmetry of QCD

    CERN Document Server

    Glozman, L Ya

    2016-01-01

    The classical part of the QCD partition function (the integrand) has, ignoring irrelevant exact zero modes of the Dirac operator, a local SU(2N_F) \\supset SU(N_F)_L \\times SU(N_F)_R \\times U(1)_A symmetry which is absent at the Lagrangian level. This symmetry is broken anomalously and spontaneously. Effects of spontaneous breaking of chiral symmetry are contained in the near-zero modes of the Dirac operator. If physics of anomaly is also encoded in the same near-zero modes, then their truncation on the lattice should recover a hidden classical SU(2N_F) symmetry in correlators and spectra. This naturally explains observation on the lattice of a large degeneracy of hadrons, that is higher than the SU(N_F)_L \\times SU(N_F)_R \\times U(1)_A chiral symmetry, upon elimination by hands of the lowest-lying modes of the Dirac operator. We also discuss an implication of this symmetry for the high temperature QCD.

  15. Lattice-motivated holomorphic nearly perturbative QCD

    Science.gov (United States)

    Ayala, César; Cvetič, Gorazd; Kögerler, Reinhart

    2017-07-01

    Newer lattice results indicate that, in the Landau gauge at low spacelike momenta, the gluon propagator and the ghost dressing function are finite nonzero. This leads to a definition of the QCD running coupling, in a specific scheme, that goes to zero at low spacelike momenta. We construct a running coupling which fulfills these conditions, and at the same time reproduces to a high precision the perturbative behavior at high momenta. The coupling is constructed in such a way that it reflects qualitatively correctly the holomorphic (analytic) behavior of spacelike observables in the complex plane of the squared momenta, as dictated by the general principles of quantum field theories. Further, we require the coupling to reproduce correctly the nonstrange semihadronic decay rate of tau lepton which is the best measured low-momentum QCD observable with small higher-twist effects. Subsequent application of the Borel sum rules to the V + A spectral functions of tau lepton decays, as measured by OPAL Collaboration, determines the values of the gluon condensate and of the V + A six-dimensional condensate, and reproduces the data to a significantly higher precision than the usual \\overline{{MS}} running coupling.

  16. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  17. Charmed bottom baryon spectroscopy from lattice QCD

    CERN Document Server

    Brown, Zachary S; Meinel, Stefan; Orginos, Kostas

    2014-01-01

    We calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with $J^P = \\frac12^+$ and $J^P = \\frac32^+$. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physical pion mass using $SU(4|2)$ heavy-hadron chiral perturbation theory including $1/m_Q$ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.

  18. Lattice QCD spectroscopy for hadronic CP violation

    Science.gov (United States)

    de Vries, Jordy; Mereghetti, Emanuele; Seng, Chien-Yeah; Walker-Loud, André

    2017-03-01

    The interpretation of nuclear electric dipole moment (EDM) experiments is clouded by large theoretical uncertainties associated with nonperturbative matrix elements. In various beyond-the-Standard Model scenarios nuclear and diamagnetic atomic EDMs are expected to be dominated by CP-violating pion-nucleon interactions that arise from quark chromo-electric dipole moments. The corresponding CP-violating pion-nucleon coupling strengths are, however, poorly known. In this work we propose a strategy to calculate these couplings by using spectroscopic lattice QCD techniques. Instead of directly calculating the pion-nucleon coupling constants, a challenging task, we use chiral symmetry relations that link the pion-nucleon couplings to nucleon sigma terms and mass splittings that are significantly easier to calculate. In this work, we show that these relations are reliable up to next-to-next-to-leading order in the chiral expansion in both SU (2) and SU (3) chiral perturbation theory. We conclude with a brief discussion about practical details regarding the required lattice QCD calculations and the phenomenological impact of an improved understanding of CP-violating matrix elements.

  19. Novel Heavy Quark Phenomena in QCD

    CERN Document Server

    Brodsky, Stanley J

    2014-01-01

    Heavy quarks provide a new dimension to QCD, allowing tests of fundamental theory, the nature of color confinement, and the production of new exotic multiquark states. I also discuss novel explanations for several apparently anomalous experimental results, such as the large $t \\bar t$ forward-backward asymmetry observed in $p \\bar p$ colisions at the Tevatron, the large rates for $\\gamma$ or $Z$ plus high-$p_T$ charm jets observed at the Tevatron, the strong nuclear absorption of the $J/\\psi$ observed in $pA$ collisions at the LHC, as well as fixed target experiments at high $x_F$. Precision measurements of the heavy quark distribution in hadrons at high $x$ are needed since intrinsic heavy quarks can play an important role in high $x$ phenomenology as well as predicting a new mechanism for high-$x_F$ Higgs production. The role of multi-parton interactions, such as di-gluon initiated subprocesses for forward quarkonium hadroproduction, is discussed. I also briefly discuss a new approach to the QCD confinement...

  20. Introduction to QCD - a bound state perspective

    CERN Document Server

    Hoyer, Paul

    2011-01-01

    These lecture notes focus on the bound state sector of QCD. Motivated by data which suggests that the strong coupling \\alpha_s(Q) freezes at low Q, and by similarities between the spectra of hadrons and atoms, I discuss if and how QCD bound states may be treated perturbatively. I recall the basic principles of perturbative gauge theory bound states at lowest order in the \\hbar expansion. Born level amplitudes are insensitive to the i\\epsilon prescription of propagators, which allows to eliminate the Z-diagrams of relativistic, time-ordered Coulomb interactions. The Dirac wave function thus describes a single electron which propagates forward in time only, even though the bound state has any number of pair constituents when Feynman propagators are used. In the absence of an external potential, states that are bound by the Coulomb attraction of their constituents can be analogously described using only their valence degrees of freedom. The instantaneous A^0 field is determined by Gauss' law for each wave functi...

  1. Bound states -- from QED to QCD

    CERN Document Server

    Hoyer, Paul

    2014-01-01

    These lectures are divided into two parts. In Part 1 I discuss bound state topics at the level of a basic course in field theory: The derivation of the Schr\\"odinger and Dirac equations from the QED Lagrangian, by summing Feynman diagrams and in a Hamiltonian framework. Less well known topics include the equal-time wave function of Positronium in motion and the properties of the Dirac wave function for a linear potential. The presentation emphasizes physical aspects and provides the framework for Part 2, which discusses the derivation of relativistic bound states at Born level in QED and QCD. A central aspect is the maintenance of Poincar\\'e invariance. The transformation of the wave function under boosts is studied in detail in D=1+1 dimensions, and its generalization to D=3+1 is indicated. Solving Gauss' law for $A^0$ with a non-vanishing boundary condition leads to a linear potential for QCD mesons, and an analogous confining potential for baryons.

  2. Perturbative QCD contributions to inclusive processes

    Energy Technology Data Exchange (ETDEWEB)

    Ritbergen, T. van

    1996-09-24

    This thesis treats the calculation of quantum corrections to a number of high energy processes that are measured in current and future accelerator experiments. The main objective of these experiments is to accurately verify the generally accepted theory of electro-weak and strong interactions, known as the Standard model, and to look for possible deviations. Most of the processes that are treated in this thesis are of a type for which the final state of of a highly energetic scattering or decay process is measured inclusively. The higher order quantum corrections discussed in this thesis are due to strong interactions. To the inclusive decay rate of Z{sup 0} bosons into all possible final states consisting of hadrons third order QCD contributions have been obtained. Also in the third order QCD an expansion for the inclusive hadronic decay rate of a {tau}-lepton was obtained. Then the top-quark-mass effects on the decay channels of a Higgs boson: Higgs{yields}b-quarks and Higgs{yields}gluons, were investigated. Thereafter the calculation of 3-loop contributions to the deep-inelastic lepton-nucleon scattering process is discussed. Finally the 3-loop contributions to the q{sup 2}-dependence of the lower moments {integral}{sub 0}{sup 1}x{sup N-1}F(x,q{sup 2})dx, N=2,4,6,8 of the structure functions F{sub 2} and F{sub L} were obtained. (orig./HSI).

  3. A Semiclassical Derivation of the QCD Coupling

    Science.gov (United States)

    Batchelor, David

    2009-01-01

    The measured value of the QCD coupling alpha(sub s) at the energy M(sub Zo), the variation of alpha(sub s) as a function of energy in QCD, and classical relativistic dynamics are used to investigate virtual pairs of quarks and antiquarks in vacuum fluctuations. For virtual pairs of bottom quarks and antiquarks, the pair lifetime in the classical model agrees with the lifetime from quantum mechanics to good approximation, and the action integral in the classical model agrees as well with the action that follows from the Uncertainty Principle. This suggests that the particles might have small de Broglie wavelengths and behave with well-localized pointlike dynamics. It also permits alpha(sub s) at the mass energy twice the bottom quark mass to be expressed as a simple fraction: 3/16. This is accurate to approximately 10%. The model in this paper predicts the measured value of alpha(sub s)(M(sub Zo)) to be 0.121, which is in agreement with recent measurements within statistical uncertainties.

  4. Advances in hadronic structure from Lattice QCD

    Science.gov (United States)

    Constantinou, Martha

    2017-01-01

    Understanding nucleon structure is considered a milestone of hadronic physics and new facilities are planned devoted to its study. A future Electron-Ion-Collider proposed by the scientific community will greatly deepen our knowledge on the fundamental constituents of the visible world. To achieve this goal, a synergy between the experimental and theoretical sectors is imperative, and Lattice QCD is in a unique position to provide input from first principle calculations. In this talk we will discuss recent progress in nucleon structure from Lattice QCD, focusing on the evaluation of matrix elements using state-of-the-art simulations with pion masses at their physical value. The axial form factors, electromagnetic radii, the quark momentum fraction and the spin content of the nucleon will be discussed. We will also highlight quantities that may guide New Physics searches, such as the scalar and tensor charges. Finally, we will give updates on a new direct approach to compute quark parton distributions functions on the lattice.

  5. Phase diagram of twisted mass lattice QCD

    Science.gov (United States)

    Sharpe, Stephen R.; Wu, Jackson M.

    2004-11-01

    We use the effective chiral Lagrangian to analyze the phase diagram of two-flavor twisted mass lattice QCD as a function of the normal and twisted masses, generalizing previous work for the untwisted theory. We first determine the chiral Lagrangian including discretization effects up to next-to-leading order (NLO) in a combined expansion in which m2π/(4πfπ)2˜aΛ (a being the lattice spacing, and Λ=ΛQCD). We then focus on the region where m2π/(4πfπ)2˜(aΛ)2, in which case competition between leading and NLO terms can lead to phase transitions. As for untwisted Wilson fermions, we find two possible phase diagrams, depending on the sign of a coefficient in the chiral Lagrangian. For one sign, there is an Aoki phase for pure Wilson fermions, with flavor and parity broken, but this is washed out into a crossover if the twisted mass is nonvanishing. For the other sign, there is a first order transition for pure Wilson fermions, and we find that this transition extends into the twisted mass plane, ending with two symmetrical second order points at which the mass of the neutral pion vanishes. We provide graphs of the condensate and pion masses for both scenarios, and note a simple mathematical relation between them. These results may be of importance to numerical simulations.

  6. Thermodynamics of AdS/QCD

    CERN Document Server

    Kajantie, Keijo; Yee, J T; Yee, Jung-Tay

    2007-01-01

    We study finite temperature properties of four dimensional QCD-like gauge theories in the gauge theory/gravity duality picture. The gravity dual contains two deformed 5d AdS metrics, with and without a black hole, and a dilaton. We study the thermodynamics of the 4d boundary theory and constrain the two metrics so that they correspond to a high and a low temperature phase separated by a first order phase transition. The equation of state has the standard form for the pressure of a strongly coupled fluid modified by a vacuum energy, a bag constant. We determine the parameters of the deformation by using QCD results for $T_c$ and the hadron spectrum. With these parameters, we show that the phase transition in the 4d boundary theory and the 5d bulk Hawking-Page transition agree. We probe the dynamics of the two phases by computing the quark-antiquark free energy in them and confirm that the transition corresponds to confinement-deconfinement transition.

  7. Dynamics for QCD on an infinite lattice

    CERN Document Server

    Grundling, Hendrik

    2015-01-01

    We prove the existence of the dynamics automorphism group for Hamiltonian QCD on an infinite lattice in R^3, and this is done in a C*-algebraic context. The existence of ground states is also obtained. Starting with the finite lattice model for Hamiltonian QCD developed by Kijowski and Rudolph, we state its field algebra and a natural representation. We then generalize this representation to the infinite lattice, and construct a Hilbert space which has represented on it all the local algebras (i.e. algebras associated with finite connected sublattices) equipped with the correct graded commutation relations. On a suitably large C*-algebra acting on this Hilbert space, and containing all the local algebras, we prove that there is a one parameter automorphism group, which is the pointwise norm limit of the local time evolutions along a sequence of finite sublattices, increasing to the full lattice. This is our global time evolution. We then take as our field algebra the C*-algebra generated by all the orbits of ...

  8. QCD, OZI, and evidence for glueballs

    Energy Technology Data Exchange (ETDEWEB)

    Lindenbaum, S.J.

    1981-01-01

    The characteristics expected from low Q-QCD for the behavior of glueballs and the OZI rule is discussed. The reaction ..pi../sup -/p ..-->.. phi phi n represents on OZI forbidden (hairpin) diagram. It has been observed at the Brookhaven National Laboratory multiparticle spectrometer by the Brookhaven National Laboratory/City College of New York group. The author has shown that the expected OZI suppression is essentially entirely absent and in fact the Isobar Model which does not contain OZI suppression quantitatively explains the observed results. A general evaluation of the special characteristics of the data compared to other related reactions plus the foregoing facts leads the author to conclude that the intervention of glueball resonances is the likely explanation in the context of QCD. Other explanations are shown to be improbable. In particular the hypothesis that decay of a radial excitation of the eta' is responsible for lack of OZI suppression is ruled out. Planned experiments with the purpose of explicity discovering glueballs will be discussed. The OZI rule peculiarities such as violation of crossing symmetry and unitarity are attributed to color confinement.

  9. Lattice-motivated holomorphic nearly perturbative QCD

    CERN Document Server

    Ayala, Cesar; Kogerler, Reinhart

    2016-01-01

    Newer lattice results indicate that, in the Landau gauge at low spacelike momenta, the gluon propagator and the ghost dressing function are finite nonzero. This leads to a definition of the QCD running coupling, in a specific scheme, that goes to zero at low spacelike momenta. We construct a running coupling which fulfills these conditions, and at the same time reproduces to a high precision the perturbative behavior at high momenta. The coupling is constructed in such a way that it reflects qualitatively correctly the holomorphic (analytic) behavior of spacelike observables in the complex plane of the squared momenta, as dictated by the general principles of Quantum Field Theories. Further, we require the coupling to reproduce correctly the nonstrange semihadronic decay rate of tau lepton which is the best measured low-momentum QCD observable with negligible higher-twist effects. Subsequent application of the Borel sum rules to the V+A spectral functions of tau lepton decays, as measured by OPAL Collaboratio...

  10. The QCD nature of Dark Energy

    CERN Document Server

    Urban, Federico R

    2009-01-01

    The origin of the observed dark energy could be explained entirely within the standard model, with no new fields required. We show how the low-energy sector of the chiral QCD Lagrangian, once embedded in a nontrivial spacetime, gives rise to a cosmological vacuum energy density which can be can be presented entirely in terms of QCD parameters and the Hubble constant $H$ as $\\rho_\\Lambda \\simeq H \\cdot m_q\\la\\bar{q}q\\ra /m_{\\eta'} \\sim (4.3\\cdot 10^{-3} \\text{eV})^4$. In this work we focus on the dynamics of the ghost fields that are essential ingredients of the aforementioned Lagrangian. In particular, we argue that the Veneziano ghost, being unphysical in the usual Minkowski QFT, becomes a physical degree of freedom if the universe is expanding. As an immediate consequence, all relevant effects are naturally very small as they are proportional to the rate of expansion $H/ \\Lqcd \\sim 10^{-41}$. The co-existence of these two drastically different scales ($\\Lqcd \\sim 100 $ MeV and $H \\sim 10^{-33}$ eV) does not...

  11. The magnetized effective QCD phase diagram

    CERN Document Server

    Ayala, Alejandro; Hernandez, L A; Loewe, M; Zamora, R

    2015-01-01

    The QCD phase diagram in the temperature versus quark chemical potential plane is studied in the presence of a magnetic field, using the linear sigma model coupled to quarks. It is shown that the decrease of the couplings with increasing field strength obtained in this model leads to the critical temperature for the phase transition to decrease with increasing field intensity (inverse magnetic catalysis). This happens provided that plasma screening is properly accounted for. It is also found that with increasing field strength the location of the critical end point (CEP) in the phase diagram moves toward lower values of the critical quark chemical potential and larger values of the critical temperature. In addition, the CEP approaches the temperature axis for large values of the magnetic field. We argue that a similar behavior is to be expected in QCD, since the physical impact of the magnetic field, regardless of strength, is to produce a spatial dimension reduction, whereby virtual quark-antiquark pairs are...

  12. Connecting physical resonant amplitudes and lattice QCD

    CERN Document Server

    Bolton, Daniel R; Wilson, David J

    2015-01-01

    We present a determination of the isovector, $P$-wave $\\pi\\pi$ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using $m_\\pi =236$ MeV. The finite volume spectra are described using extensions of L\\"uscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at $m_\\pi= 140$ MeV. The scattering phase shift is found to be in good agreement with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a $\\rho$-resonance pole at $E_\\rho= \\left[755(2)(1)(^{20}_{02})-\\frac{i}{2}\\,129(3)(1)(^{7}_{1})\\right]~{\\rm MeV}$. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.

  13. Non-perturbative study of QCD correlators

    CERN Document Server

    Lokhov, A Y

    2006-01-01

    This PhD dissertation is devoted to a non-perturbative study of QCD correlators. The main tool that we use is lattice QCD. We concentrated our efforts on the study of the main correlators of the pure Yang - Mills theory in the Landau gauge, namely the ghost and the gluon propagators. We are particularly interested in determining the $\\Lqcd$ parameter. It is extracted by means of perturbative predictions available up to NNNLO. The related topic is the influence of non-perturbative effects that show up as appearance of power-corrections to the low-momentum behaviour of the Green functions. A new method of removing these power corrections allows a better estimate of $\\Lqcd$. Our result is $\\Lambda^{n_f=0}_{\\ms} = 269(5)^{+12}_{-9}$ MeV. Another question that we address is the infrared behaviour of Green functions, at momenta of order and below $\\Lqcd$. At low energy the momentum dependence of the propagators changes considerably, and this is probably related to confinement. The lattice approach allows to check t...

  14. Spin-Orbit Force from Lattice QCD

    CERN Document Server

    Murano, K; Aoki, S; Doi, T; Hatsuda, T; Ikeda, Y; Inoue, T; Nemura, H; Sasaki, K

    2013-01-01

    We present a first attempt to determine nucleon-nucleon potentials in the parity-odd sector, which appear in 1P1, 3P0, 3P1, 3P2-3F2 channels, in Nf=2 lattice QCD simulations. These potentials are constructed from the Nambu-Bethe-Salpeter wave functions for J^P=0^-, 1^- and 2^-, which correspond to A1^-, T1^- and T2^- + E^- representation of the cubic group, respectively. We have found a large and attractive spin-orbit potential VLS(r) in the isospin-triplet channel, which is qualitatively consistent with the phenomenological determination from the experimental scattering phase shifts. The potentials obtained from lattice QCD are used to calculate the scattering phase shifts in 1P1, 3P0, 3P1 and 3P2-3F2 channels. The strong attractive spin-orbit force and a weak repulsive central force in spin-triplet P-wave channels lead to an attraction in the 3P2 channel, which is related to the P-wave neutron paring in neutron stars.

  15. QCD in the {delta}-regime

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Ciencias Nucleares; Cundy, N. [Seoul National Univ. (Korea, Republic of). Lattice Gauge Theory Research Center; Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R.; Zanotti, J.M. [Edinburgh Univ. (United Kingdom). School of Physics; Nakamura, Y. [Tsukuba Univ., Ibaraki (Japan). Center for Computational Sciences; Pleiter, D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-03-15

    The {delta}-regime of QCD is characterised by light quarks in a small spatial box, but a large extent in (Euclidean) time. In this setting a specific variant of chiral perturbation theory - the {delta}-expansion - applies, based on a quantum mechanical treatment of the quasi onedimensional system. In particular, for vanishing quark masses one obtains a residual pion mass M{sup R}{sub {pi}}, which has been computed to the third order in the {delta}-expansion. A comparison with numerical measurements of this residual mass allows for a new determination of some Low Energy Constants, which appear in the chiral Lagrangian. We first review the attempts to simulate 2-flavour QCD directly in the {delta}-regime. This is very tedious, but results compatible with the predictions for M{sup R}{sub {pi}} have been obtained. Then we show that an extrapolation of pion masses measured in a larger volume towards the {delta}-regime leads to good agreement with the theoretical predictions. From those results, we also extract a value for the (controversial) sub-leading Low Energy Constant anti l{sub 3}. (orig.)

  16. Nonperturbative QCD and elastic processes at CEBAF energies

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, A.V. [Old Dominion Univ., Norfolk, VA (United States)]|[Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)

    1994-04-01

    The author outlines how one can approach nonperturbative aspects of the QCD dynamics studying elastic processes at energies accessible at upgraded CEBAF. The author`s point is that, in the absence of a complete theory of the nonperturbative effects, a possible way out is based on a systematic use of the QCD factorization procedure which separates theoretically understood ({open_quotes}known{close_quotes}) short-distance effects and nonperturbative ({open_quotes}unknown{close_quotes}) long-distance ones. The latter include hadronic distribution amplitudes, soft components of hadronic form factors etc. Incorporating the QCD sum rule version of the QCD factorization approach, one can relate these nonperturbative functions to more fundamental objects, vacuum condensates, which accumulate information about the nonperturbative structure of the QCD vacuum. The emerging QCD sum rule picture of hadronic form factors is characterized by a dominant role of essentially nonperturbative effects in the few GeV region, with perturbative mechanisms starting to show up for momentum transfers Q{sup 2} closer to 10 GeV{sup 2} and higher. Thus, increasing CEBAF energy provides a unique opportunity for a precision study of interplay between the perturbative and nonperturbative phenomena in the QCD description of elastic processes.

  17. Recent results on QCD thermodynamics: lattice QCD versus Hadron Resonance Gas model

    CERN Document Server

    Borsanyi, Szabolcs; Hoelbling, Christian; Katz, Sandor D; Krieg, Stefan; Ratti, Claudia; Szabo, Kalman K

    2010-01-01

    We present our most recent investigations on the QCD cross-over transition temperatures with 2+1 staggered flavours and one-link stout improvement [JHEP 1009:073, 2010]. We extend our previous two studies [Phys. Lett. B643 (2006) 46, JHEP 0906:088 (2009)] by choosing even finer lattices ($N_t$=16) and we work again with physical quark masses. All these results are confronted with the predictions of the Hadron Resonance Gas model and Chiral Perturbation Theory for temperatures below the transition region. Our results can be reproduced by using the physical spectrum in these analytic calculations. A comparison with the results of the hotQCD collaboration is also discussed.

  18. Study of QCD Coherence in Hadronic Z decays

    CERN Document Server

    Chmeissani, M

    1995-01-01

    We present studies of QCD Coherence phenomenom, well know as the Angluar Ordering (AO), which has been predicted by QCD theory. The analysis is based on the Particle-Particle-Correlation-Asymetery (PPCA) and on the Energy-Mutiplicity-Mutiplicity-Correlation (EMMC) functions, as observables sensitive to Angular Ordering. The Monte Carlo programs and a sample of 800000 hadronic events registered by ALEPH detector in 1992 and 1993 were used in this analysis. We find that the data favors Monte Carlo programs with AO, which supports the QCD prediction.

  19. Perturbative QCD analysis of $B \\to \\phi K^* $ decays

    CERN Document Server

    Chen Chuan Hung; Li, H; Chen, Chuan-Hung; Keum, Yong-Yeon; Li, Hsiang-nan

    2002-01-01

    We study the first observed charmless $B\\to VV$ modes, the $B\\to\\phi K^*$ decays, in perturbative QCD formalism. The obtained branching ratios $B(B\\to\\phi K^*)\\sim 15 \\times 10^{-6}$ are larger than $\\sim 9\\times 10^{-6}$ from QCD factorization. The comparison of the predicted magnitudes and phases of the different helicity amplitudes, and branching ratios with experimental data can test the power counting rules, the evaluation of annihilation contributions, and the mechanism of dynamical penguin enhancement in perturbative QCD, respectively.

  20. Lattice QCD for Baryon Rich Matter - Beyond Taylor Expansions

    Science.gov (United States)

    Bornyakov, V.; Boyda, D.; Goy, V.; Molochkov, A.; Nakamura, A.; Nikolaev, A.; Zakharov, V. I.

    2016-12-01

    We discuss our study for exploring the QCD phase diagram based on the lattice QCD. To go beyond the Taylor expansion and to reach higher density regions, we employ the canonical approach. In order to produce lattice data which meet experimental situation as much as possible, we propose a canonical approach with the charge and baryon number. We present our lattice QCD GPU code for this project which employs the clover improved Wilson fermions and Iwasaki gauge action to investigate pure imaginary chemical potential.

  1. Introductory lectures on lattice QCD at nonzero baryon number

    CERN Document Server

    Aarts, Gert

    2015-01-01

    These lecture notes contain an elementary introduction to lattice QCD at nonzero chemical potential. Topics discussed include chemical potential in the continuum and on the lattice; the sign, overlap and Silver Blaze problems; the phase boundary at small chemical potential; imaginary chemical potential; and complex Langevin dynamics. An incomplete overview of other approaches is presented as well. These lectures are meant for postgraduate students and postdocs with an interest in extreme QCD. A basic knowledge of lattice QCD is assumed but not essential. Some exercises are included at the end.

  2. Do lattice data constrain the vector interaction strength of QCD?

    Directory of Open Access Journals (Sweden)

    Jan Steinheimer

    2014-09-01

    Full Text Available We show how repulsive interactions of deconfined quarks as well as confined hadrons have an influence on the baryon number susceptibilities and the curvature of the chiral pseudo-critical line in effective models of QCD. We discuss implications and constraints for the vector interaction strength from comparisons to lattice QCD and comment on earlier constraints, extracted from the curvature of the transition line of QCD and compact star observables. Our results clearly point to a strong vector repulsion in the hadronic phase and near-zero repulsion in the deconfined phase.

  3. Lattice QCD for Baryon Rich Matter – Beyond Taylor Expansions

    Energy Technology Data Exchange (ETDEWEB)

    Bornyakov, V. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Boyda, D. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Goy, V. [School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Molochkov, A. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Nakamura, A. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka, 567-0047 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198 (Japan); Nikolaev, A. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Zakharov, V.I. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Moscow Inst Phys & Technol, Dolgoprudny, Moscow Region, 141700 (Russian Federation)

    2016-12-15

    We discuss our study for exploring the QCD phase diagram based on the lattice QCD. To go beyond the Taylor expansion and to reach higher density regions, we employ the canonical approach. In order to produce lattice data which meet experimental situation as much as possible, we propose a canonical approach with the charge and baryon number. We present our lattice QCD GPU code for this project which employs the clover improved Wilson fermions and Iwasaki gauge action to investigate pure imaginary chemical potential.

  4. Introductory lectures on lattice QCD at nonzero baryon number

    Science.gov (United States)

    Aarts, Gert

    2016-04-01

    These lecture notes contain an elementary introduction to lattice QCD at nonzero chemical potential. Topics discussed include chemical potential in the continuum and on the lattice; the sign, overlap and Silver Blaze problems; the phase boundary at small chemical potential; imaginary chemical potential; and complex Langevin dynamics. An incomplete overview of other approaches is presented as well. These lectures are meant for postgraduate students and postdocs with an interest in extreme QCD. A basic knowledge of lattice QCD is assumed but not essential. Some exercises are included at the end.

  5. QCD factorization for high $p_T$ heavy quarkonium production

    CERN Document Server

    Ma, Yan-Qing; Sterman, George; Zhang, Hong

    2015-01-01

    In this talk, we present the QCD factorization formula for heavy quarkonium production at large $p_T$ with factorized leading-power and next-to-leading power contributions in the $1/p_T$ expansion. We show that the leading order analytical calculations in this QCD factorization approach can reproduce effectively the full next-to-leading order numerical results derived using non-relativistic QCD (NRQCD) factorization formalism. We demonstrate that the next-to-leading power contributions are crucial to the description of the channels that are the most relevant for the rate as well as polarization of $J/\\psi$ production at current collider energies.

  6. Lattice QCD results at finite T and \\mu

    CERN Document Server

    Fodor, Z

    2002-01-01

    We propose a method to study lattice QCD at finite temperature (T) and chemical potential (\\mu). We test the method and compare it with the Glasgow method using n_f=4 staggered QCD with imaginary \\mu. The critical endpoint (E) of QCD on the Re(\\mu)-T plane is located. We use n_f=2+1 dynamical staggered quarks with semi-realistic masses on L_t=4 lattices. Our results are based on {\\cal{O}}(10^3-10^4) configurations.

  7. Phase structure of finite density QCD with a histogram method

    CERN Document Server

    Nakagawa, Yoshiyuki; Ejiri, Shinji; Hatsuda, Tetsuo; Kanaya, Kazuyuki; Ohno, Hiroshi; Saito, Hana; Umeda, Takashi

    2012-01-01

    We study the phase structure of QCD in the $T-\\mu$ plane using a histogram method and the reweighting technique by performing phase quenched simulations of two-flavor QCD with RG-improved gauge action and O($a$) improved Wilson quark action. Taking the effects of the complex phase of the quark determinant using the cumulant expansion method, we calculate the probability distribution function of plaquette and phase-quenched determinant as a function of $T$ and $\\mu$. We discuss the order of the QCD phase transition consulting the shape of the probability distribution function.

  8. AdS/QCD and Light Front Holography: A New Approximation to QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy

    2010-02-15

    The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n+L+S/2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.

  9. Perfect Actions and Operators for Lattice QCD

    Science.gov (United States)

    Wiese, Uwe-Jens

    1996-05-01

    Wilson's renormalization group implies that lattice actions located on a renormalized trajectory emanating from a fixed point represent perfect discretizations of continuum physics. With a perfect action the spectrum of a lattice theory is identical with the one of the continuum theory even at finite lattice spacing. Similarly, perfect operators yield cut-off independent matrix elements. Hence, continuum QCD can in principle be reconstructed from a lattice with finite spacing. In practice it is difficult to construct perfect actions and perfect operators explicitly. Here perturbation theory is used to derive perfect actions for quarks and gluons by performing a block renormalization group transformation directly from the continuum. The renormalized trajectory for free massive quarks is identified and a parameter in the renormalization group transformation is tuned such that for 1-d configurations the perfect action reduces to the nearest neighbor Wilson fermion action. Then the 4-d perfect action turns out to be extremely local as well, which is vital for numerical simulations. The fixed point action for free gluons is also obtained by blocking from the continuum. For 2-d configurations it reduces to the standard plaquette action, and for 4-d configurations it is still very local. With interactions between quarks and gluons switched on the perfect quark-gluon and 3-gluon vertex functions are computed analytically. In particular, a perfect clover term can be extracted from the quark-gluon vertex. The perturbatively perfect action is directly applicable to heavy quark physics. The construction of a perfect QCD action for light quarks should include nonperturbative effects, which is possible using numerical methods. Classically perfect quark and gluon fields are constructed as well. They allow to interpolate the continuum fields from the lattice data. In this way one can obtain information about space-time regions between lattice points. The classically perfect fields

  10. Lattice QCD Calculation of Nucleon Structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Keh-Fei [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy; Draper, Terrence [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy

    2016-08-30

    It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the Ds meson decay constant fDs, the strangeness and charmness, the meson mass

  11. Spectroscopy of charmed baryons from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Padmanath, M. [Univ. of Graz (Austria). Inst. of Physics; Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mathur, Nilmani [Tata Institute of Fundamental Research, Bombay (India); Peardon, Michael [Trinity College, Dublin (Ireland)

    2015-01-01

    We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) x O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.

  12. Spectral functions from anisotropic lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Aarts, G.; Allton, C. [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Amato, A. [Helsinki Institute of Physics and University of Helsinki, Helsinki (Finland); Evans, W. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics Universitat Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Giudice, P. [Institut für Theoretische Physik, Universität Münster, D–48149 Münster (Germany); Harris, T. [School of Mathematics, Trinity College, Dublin 2 (Ireland); Kelly, A. [Department of Mathematical Physics, Maynooth University, Maynooth, Co Kildare (Ireland); Kim, S.Y. [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of); Lombardo, M.P. [INFN–Laboratori Nazionali di Frascati, I–00044 Frascati (RM) (Italy); Praki, K. [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Ryan, S.M. [School of Mathematics, Trinity College, Dublin 2 (Ireland); Skullerud, J.-I. [Department of Mathematical Physics, Maynooth University, Maynooth, Co Kildare (Ireland)

    2016-12-15

    The FASTSUM collaboration has been carrying out lattice simulations of QCD for temperatures ranging from one third to twice the crossover temperature, investigating the transition region, as well as the properties of the Quark Gluon Plasma. In this contribution we concentrate on quarkonium correlators and spectral functions. We work in a fixed scale scheme and use anisotropic lattices which help achieving the desirable fine resolution in the temporal direction, thus facilitating the (ill posed) integral transform from imaginary time to frequency space. We contrast and compare results for the correlators obtained with different methods, and different temporal spacings. We observe robust features of the results, confirming the sequential dissociation scenario, but also quantitative differences indicating that the methods' systematic errors are not yet under full control. We briefly outline future steps towards accurate results for the spectral functions and their associated statistical and systematic errors.

  13. Wilson Dslash Kernel From Lattice QCD Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Balint [Jefferson Lab, Newport News, VA; Smelyanskiy, Mikhail [Parallel Computing Lab, Intel Corporation, California, USA; Kalamkar, Dhiraj D. [Parallel Computing Lab, Intel Corporation, India; Vaidyanathan, Karthikeyan [Parallel Computing Lab, Intel Corporation, India

    2015-07-01

    Lattice Quantum Chromodynamics (LQCD) is a numerical technique used for calculations in Theoretical Nuclear and High Energy Physics. LQCD is traditionally one of the first applications ported to many new high performance computing architectures and indeed LQCD practitioners have been known to design and build custom LQCD computers. Lattice QCD kernels are frequently used as benchmarks (e.g. 168.wupwise in the SPEC suite) and are generally well understood, and as such are ideal to illustrate several optimization techniques. In this chapter we will detail our work in optimizing the Wilson-Dslash kernels for Intel Xeon Phi, however, as we will show the technique gives excellent performance on regular Xeon Architecture as well.

  14. The QCD spectrum with three quark flavors

    CERN Document Server

    Bernard, C; DeGrand, T A; Datta, S; DeTar, C E; Gottlieb, S; Heller, U M; Orginos, K; Sugar, R; Toussaint, D; Bernard, Claude; Burch, Tom; Grand, Thomas A. De; Datta, Saumen; Tar, Carleton De; Gottlieb, Steven; Heller, Urs M.; Orginos, Kostas; Sugar, Robert; Toussaint, Doug

    2001-01-01

    We present results from a lattice hadron spectrum calculation using three flavors of dynamical quarks - two light and one strange, and quenched simulations for comparison. These simulations were done using a one-loop Symanzik improved gauge action and an improved Kogut-Susskind quark action. The lattice spacings, and hence also the physical volumes, were tuned to be the same in all the runs to better expose differences due to flavor number. Lattice spacings were tuned using the static quark potential, so as a byproduct we obtain updated results for the effect of sea quarks on the static quark potential. We find indications that the full QCD meson spectrum is in better agreement with experiment than the quenched spectrum. For the 0++ (a0) meson we see a coupling to two pseudoscalar mesons, or a meson decay on the lattice.

  15. Lattice QCD Calculation of Nucleon Structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Keh-Fei; Draper, Terrence

    2016-08-30

    It is emphasized in the 2015 NSAC Long Range Plan [1] that \\understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out rst-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large scale computer simulation. We started out by calculating the nucleon form factors { electromagnetic [2], axial-vector [3], NN [4], and scalar [5] form factors, the quark spin contribution [6] to the proton spin, the strangeness magnetic moment [7], the quark orbital angular momentum [8], the quark momentum fraction [9], and the quark and glue decomposition of the proton momentum and angular momentum [10]. These rst round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical e ects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge con gurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations [11, 12]. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at 300 MeV and obtained the strange form factors [13], charm and strange quark masses, the charmonium spectrum and the Ds meson decay constant fDs [14], the strangeness and charmness [15], the

  16. QCD resummations for boosted top production

    CERN Document Server

    Ferroglia, Andrea; Scott, Darren J; Yang, Li Lin

    2015-01-01

    We present new results for QCD corrections to the top-pair invariant mass and top-quark $p_T$ distributions in boosted top-quark pair production at hadron colliders. They are derived from a formalism which allows the joint resummation of soft and small-mass logarithms at NNLL$'$ order, thus taking into account all potentially large corrections in the boosted regime, where the partonic center-of-mass energy is parameterically much larger than the mass of the top quark. We match these results with those from standard soft-gluon resummation away from the small-mass limit to NNLL order and also with NLO fixed-order calculations, so that our results are valid in the maximum possible range of phase space. The resummation effects on the $p_T$ and top-pair invariant mass distributions are significant, bringing theory predictions into better agreement with experimental data compared to pure NLO calculations.

  17. The QCD phase diagram from analytic continuation

    Directory of Open Access Journals (Sweden)

    R. Bellwied

    2015-12-01

    Full Text Available We present the crossover line between the quark gluon plasma and the hadron gas phases for small real chemical potentials. First we determine the effect of imaginary values of the chemical potential on the transition temperature using lattice QCD simulations. Then we use various formulas to perform an analytic continuation to real values of the baryo-chemical potential. Our data set maintains strangeness neutrality to match the conditions of heavy ion physics. The systematic errors are under control up to μB≈300 MeV. For the curvature of the transition line we find that there is an approximate agreement between values from three different observables: the chiral susceptibility, chiral condensate and strange quark susceptibility. The continuum extrapolation is based on Nt=10, 12 and 16 lattices. By combining the analysis for these three observables we find, for the curvature, the value κ=0.0149±0.0021.

  18. HERAFitter, Open Source QCD Fit Project

    CERN Document Server

    Alekhin, S.; Belov, P.; Borroni, S.; Botje, M.; Britzger, D.; Camarda, S.; Cooper-Sarkar, A.M.; Daum, K.; Diaconu, C.; Feltesse, J.; Gizhko, A.; Glazov, A.; Guffanti, A.; Guzzi, M.; Hautmann, F.; Jung, A.; Jung, H.; Kolesnikov, V.; Kowalski, H.; Kuprash, O.; Kusina, A.; Levonian, S.; Lipka, K.; Lobodzinski, B.; Lohwasser, K.; Luszczak, A.; Malaescu, B.; McNulty, R.; Myronenko, V.; Naumann-Emme, S.; Nowak, K.; Olness, F.; Perez, E.; Pirumov, H.; Plačakytė, R.; Rabbertz, K.; Radescu, V.; Sadykov, R.; Salam, G.P.; Sapronov, A.; Schöning, A.; Schörner-Sadenius, T.; Shushkevich, S.; Slominski, W.; Spiesberger, H.; Starovoitov, P.; Sutton, M.; Tomaszewska, J.; Turkot, O.; Vargas, A.; Watt, G.; Wichmann, K.

    2015-07-02

    HERAFitter is an open-source package that provides a framework for the determination of the parton distribution functions (PDFs) of the proton and for many different kinds of analyses in Quantum Chromodynamics (QCD). It encodes results from a wide range of experimental measurements in lepton-proton deep inelastic scattering and proton-proton (proton-antiproton) collisions at hadron colliders. These are complemented with a variety of theoretical options for calculating PDF-dependent cross section predictions corresponding to the measurements. The framework covers a large number of the existing methods and schemes used for PDF determination. The data and theoretical predictions are brought together through numerous methodological options for carrying out PDF fits and plotting tools to help visualise the results. While primarily based on the approach of collinear factorisation, HERAFitter also provides facilities for fits of dipole models and transverse-momentum dependent PDFs. The package can be used to study t...

  19. Correlated fluctuations near the QCD critical point

    CERN Document Server

    Jiang, Lijia; Song, Huichao

    2015-01-01

    In this paper, we introduce a freeze-out scheme for the dynamical models near the QCD critical point through coupling the decoupled classical particles with the order parameter field. With a modified distribution function that satisfies specific static fluctuations, we calculate the correlated fluctuations of net protons on the hydrodynamic freeze-out surface. A comparison with recent STAR data shows that our model calculations could roughly reproduce energy dependent cumulant $C_4$ and $\\kappa \\sigma^2$ of net protons through tuning the related parameters. However, the calculated $C_2$ and $C_3$ with both Poisson and Binomial baselines are always above the experimental data due to the positive contributions from the static critical fluctuations. In order to qualitatively and quantitatively describe the experimental data, the dynamical critical fluctuations and more realistic non-critical fluctuation baselines should be investigated in the near future.

  20. Deconfinement in QCD with dynamical quarks

    CERN Document Server

    Borisenko, O A; Zinovjev, G M

    1996-01-01

    We study the phase structure of full QCD within the canonical ensemble with respect to triality in a lattice formulation. The procedure for the calculation of the effective potentials in this case is given. As an example we consider the three dimensional SU(2) gauge model at finite temperatures in the strong coupling region. The potential exhibits a deconfinement phase transition unlike the similar potential obtained in the grand canonical ensemble which demonstrates explicit Z(N) symmetry breaking at any temperature. Furthermore, we investigate the effective potential with the chiral condensate included. In contradiction to other authors, we find chiral symmetry restoration in all triality sectors. In the scheme with massless staggered fermions we observe chiral symmetry restoration accompanying a deconfinement phase transition of first order. Above the critical point, besides two Z(2) symmetric "deconfining" vacua there exists a metastable "confining" vacuum in a wide region of parameters. Such a picture co...

  1. Spectral functions from anisotropic lattice QCD

    Science.gov (United States)

    Aarts, G.; Allton, C.; Amato, A.; Evans, W.; Giudice, P.; Harris, T.; Kelly, A.; Kim, S. Y.; Lombardo, M. P.; Praki, K.; Ryan, S. M.; Skullerud, J.-I.

    2016-12-01

    The FASTSUM collaboration has been carrying out lattice simulations of QCD for temperatures ranging from one third to twice the crossover temperature, investigating the transition region, as well as the properties of the Quark Gluon Plasma. In this contribution we concentrate on quarkonium correlators and spectral functions. We work in a fixed scale scheme and use anisotropic lattices which help achieving the desirable fine resolution in the temporal direction, thus facilitating the (ill posed) integral transform from imaginary time to frequency space. We contrast and compare results for the correlators obtained with different methods, and different temporal spacings. We observe robust features of the results, confirming the sequential dissociation scenario, but also quantitative differences indicating that the methods' systematic errors are not yet under full control. We briefly outline future steps towards accurate results for the spectral functions and their associated statistical and systematic errors.

  2. Hadrons in AdS/QCD models

    CERN Document Server

    de Paula, W; 10.1007/s00601-011-0267-0

    2012-01-01

    We discuss applications of gauge/gravity duality to describe the spectrum of light hadrons. We compare two particular 5-dimensional approaches: a model with an infrared deformed Anti-de Sitter metric and another one based on a dynamical AdS/QCD framework with back-reacted geometry in a dilaton/gravity background. The models break softly the scale invariance in the infrared region and allow mass gap for the field excitations in the gravity description, while keeping the conformal property of the metric close to the four-dimensional boundary. The models provide linear Regge trajectories for light mesons, associated with specially designed infrared gravity properties. We also review the results for the decay widths of the f0's into two pions, as overlap integrals between mesonic string amplitudes, which are in qualitative agreement with data.

  3. The QCD phase diagram from analytic continuation

    CERN Document Server

    Bellwied, R; Fodor, Z; Günther, J; Katz, S D; Ratti, C; Szabo, K K

    2015-01-01

    We present the crossover line between the quark gluon plasma and the hadron gas phases for small real chemical potentials. First we determine the effect of imaginary values of the chemical potential on the transition temperature using lattice QCD simulations. Then we use various formulas to perform an analytic continuation to real values of the baryo-chemical potential. Our data set maintains strangeness neutrality to match the conditions of heavy ion physics. The systematic errors are under control up to $\\mu_B\\approx 300$ MeV. For the curvature of the transition line we find that there is an approximate agreement between values from three different observables: the chiral susceptibility, chiral condensate and strange quark susceptibility. The continuum extrapolation is based on $N_t=$ 10, 12 and 16 lattices. By combining the analysis for these three observables we find, for the curvature, the value $\\kappa = 0.0149 \\pm 0.0021$.

  4. Nonlocal Condensate Model for QCD Sum Rules

    CERN Document Server

    Hsieh, Ron-Chou

    2009-01-01

    We include effects of nonlocal quark condensates into QCD sum rules (QSR) via the K$\\ddot{\\mathrm{a}}$ll$\\acute{\\mathrm{e}}$n-Lehmann representation for a dressed fermion propagator, in which a negative spectral density function manifests their nonperturbative nature. Applying our formalism to the pion form factor as an example, QSR results are in good agreement with data for momentum transfer squared up to $Q^2 \\approx 10 $ GeV$^2$. It is observed that the nonlocal quark-condensate contribution descends like $1/Q^4$, different from the exponential decrease in $Q^2$ obtained in the literature, and contrary to the linear rise in the local-condensate approximation.

  5. QCD phase diagram with isospin chemical potential

    CERN Document Server

    Brandt, Bastian B

    2016-01-01

    In this contribution we investigate the phase diagram of QCD in the presence of an isospin chemical potential. To alleviate the infrared problems of the theory associated with pion condensation, we introduce the pionic source as an infrared regulator. We discuss various methods to extrapolate the results to vanishing pionic source, including a novel method based on the singular value spectrum of the massive Dirac operator, a leading-order reweighting and a spline Monte-Carlo fit. Our main results concern the phase transition boundary between the normal and the pion condensation phases and the chiral/deconfinement transition temperature as a function of the chemical potential. In addition, we perform a quantitative comparison between our direct results and a Taylor-expansion obtained at zero chemical potential to assess the applicability range of the latter.

  6. Electroproduction of tensor mesons in QCD

    CERN Document Server

    Braun, V M; Strohmaier, M; Vladimirov, A A

    2016-01-01

    Due to multiple possible polarizations hard exclusive production of tensor mesons by virtual photons or in heavy meson decays offers interesting possibilities to study the helicity structure of the underlying short-distance process. Motivated by the first measurement of the transition form factor $\\gamma^*\\gamma \\to f_2(1270)$ at large momentum transfers by the BELLE collaboration we present an improved QCD analysis of this reaction in the framework of collinear factorization including contributions of twist-three quark-antiquark-gluon operators and an estimate of soft end-point corrections using light-cone sum rules. The results appear to be in a very good agreement with the data, in particular the predicted scaling behavior is reproduced in all cases.

  7. QCD Critical Point in a Quasiparticle Model

    CERN Document Server

    Srivastava, P K; Singh, C P

    2010-01-01

    Recent theoretical investigations have unveiled a rich structure in the quantum chromodynamics (QCD) phase diagram which consists of quark gluon plasma (QGP) and the hadronic phases but also supports the existence of a cross-over transition ending at a critical end point (CEP). We find a too large variation in determination of the coordinates of the CEP in the temperature (T), baryon chemical potential ($\\mu_{B}$) plane and, therefore, its identification in the current heavy-ion experiments becomes debatable. Here we use an equation of state (EOS) for a deconfined QGP using a thermodynamically consistent quasiparticle model involving quarks and gluons having thermal masses. We further use a thermodynamically consistent excluded volume model for the hadron gas (HG) which was recently proposed by us. Using these equations of state, a first order deconfining phase transition is constructed using Gibbs' criteria. This leads to an interesting finding that the phase transition line ends at a critical point (CEP) be...

  8. Threefold Complementary Approach to Holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); de Teramond, Guy F. [Univ. of Costa Rica, San Jose (Costa Rica); Dosch, Hans Gunter [Inst. for Theoretical Physics, Heidelberg (Germany)

    2013-12-27

    A complementary approach, derived from (a) higher-dimensional anti-de Sitter (AdS) space, (b) light-front quantization and (c) the invariance properties of the full conformal group in one dimension leads to a nonperturbative relativistic light-front wave equation which incorporates essential spectroscopic and dynamical features of hadron physics. The fundamental conformal symmetry of the classical QCD Lagrangian in the limit of massless quarks is encoded in the resulting effective theory. The mass scale for confinement emerges from the isomorphism between the conformal group andSO(2,1). This scale appears in the light-front Hamiltonian by mapping to the evolution operator in the formalism of de Alfaro, Fubini and Furlan, which retains the conformal invariance of the action. Remarkably, the specific form of the confinement interaction and the corresponding modification of AdS space are uniquely determined in this procedure.

  9. QCD in the color-flow representation

    Energy Technology Data Exchange (ETDEWEB)

    Kilian, W. [Siegen Univ. (Germany). Fachbereich 7 - Physik; Ohl, T. [Wuerzburg Univ. (Germany). Inst. fuer Theoretische Physik und Astrophysik; Reuter, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Speckner, C. [Freiburg Univ. (Germany). Physikalisches Inst.

    2012-06-15

    For many practical purposes, it is convenient to formulate unbroken nonabelian gauge theories like QCD in a color-flow basis. We present a new derivation of SU(N) interactions in the color-flow basis by extending the gauge group to U(N) x U(1)' in such a way that the two U(1) factors cancel each other. We use the quantum action principles to show the equivalence to the usual basis to all orders in perturbation theory. We extend the known Feynman rules to exotic color representations (e.g. sextets) and interactions (e.g. {epsilon}{sub ijk}). We discuss practical applications as they occur in automatic computation programs.

  10. Novel Aspects of QCD in Leptoproduction

    CERN Document Server

    Brodsky, S J

    2004-01-01

    I review several topics in electroproduction which test fundamental aspects of QCD. These include the role of final-state interactions in producing diffractive leptoproduction processes, the shadowing of nuclear structure functions, and target-spin asymmetries. The antishadowing of nuclear structure functions is shown to be quark-flavor specific, suggesting that some part of the anomalous NuTeV result for $\\sin^2\\theta_W$ could be due to the non-universality of nuclear antishadowing for charged and neutral currents. I also discuss the physics of the heavy-quark sea, hidden color in nuclear wavefunctions, and evidence for color transparency for nuclear processes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes, as well as determining essential aspects of hadronic light-front wavefunctions.

  11. Random Matrices and Chiral Symmetry in QCD

    CERN Document Server

    Janik, R A; Papp, G; Zahed, I; Janik, Romuald A.; Nowak, Maciej A.; Papp, Gabor; Zahed, Ismail

    1998-01-01

    In this talk we review some recent results from random matrix models as applied to some non-perturbative issues in QCD. All of the issues we will discuss touched upon the important phenomenon related to the spontaneous breaking of chiral symmetry. The afore mentioned insights are: 1. Spontaneous breakdown of chiral symmetry and disorder. 2. Universal microscopic properties of the eigenvalues of the Dirac operator in the vacuum. 3. Universal microscopic properties of the eigenvalues of the Dirac operator in matter. 4. Structural changes of the Dirac spectrum - finite temperature. 5. Structural changes of the Dirac spectrum - finite baryonic density - ``phony vacua'' 6. Structural changes of the Dirac spectrum - finite baryonic density - ``true vacua'' . 7. Phase diagram. 8. Critical parameters. 9. Critical exponents. 10. $U(1)_A$ problem. 11. Screening of the pseudoscalar susceptibility. 12. Strong CP violation (finite $\\theta$).

  12. The problem of quantization of lightcone QCD

    CERN Document Server

    Popov, Alexey V

    2011-01-01

    There exists the problem to construct a quantum algebra of observables in lightcone QCD beyond the perturbative regime. It has recently established that the boundary gauge fields are crucial for a consistent construction of the classical dynamic system. If the gauge group is non-Abelian and there are four or more space-time dimensions then the procedure of symplectic reduction gives a classical dynamical system with very complicated Hamiltonian having infinite power over the coupling constant. Then, to quantize the theory one should to construct a Poisson algebra and to quantize it. Careful analysis shows that a Poisson formulation has a problem with: canonical commutation relations, spatial invariance, and the boundary degrees of freedom in the Hamiltonian.

  13. Charmonium properties in hot quenched lattice QCD

    CERN Document Server

    Ding, H -T; Kaczmarek, O; Karsch, F; Satz, H; Soeldner, W

    2012-01-01

    We study the properties of charmonium states at finite temperature in quenched QCD on large and fine isotropic lattices. We perform a detailed analysis of charmonium correlation and spectral functions both below and above $T_c$. Our analysis suggests that both S wave states ($J/\\psi$ and $\\eta_c$) and P wave states ($\\chi_{c0}$ and $\\chi_{c1}$) disappear already at about $1.5 T_c$. The charm diffusion coefficient is estimated through the Kubo formula and found to be compatible with zero below $T_c$ and approximately $1/\\pi T$ at $1.5 T_c\\lesssim T\\lesssim 3 T_c$.

  14. Charmonium properties in hot quenched lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ding, H. -T.; Francis, A.; Kaczmarek, O.; Karsch, F.; Satz, H.; Soeldner, W.

    2012-07-01

    We study the properties of charmonium states at finite temperature in quenched QCD on large and fine isotropic lattices. We perform a detailed analysis of charmonium correlation and spectral functions both below and above Tc. Our analysis suggests that both S wave states (J/ψ and ηc) and P wave states (χc0 and χc1) disappear already at about 1.5Tc. The charm diffusion coefficient is estimated through the Kubo formula and found to be compatible with zero below Tc and approximately 1/πT at 1.5Tc≲T≲3Tc.

  15. Towards finite density QCD with Taylor expansions

    CERN Document Server

    Karsch, Frithjof; Wagner, Mathias; Wambach, Jochen

    2011-01-01

    We analyze general convergence properties of the Taylor expansion of observables to finite chemical potential in the framework of an effective 2+1 flavor Polyakov-quark-meson model. To compute the required higher order coefficients a novel technique based on algorithmic differentiation has been developed. Results for thermodynamic observables as well as the phase structure obtained through the series expansion up to 24th order are compared to the full model solution at finite chemical potential. The available higher order coefficients also allow for resummations, e.g. Pade series, which improve the convergence behavior. In view of our results we discuss the prospects for locating the QCD phase boundary and a possible critical endpoint with the Taylor expansion method.

  16. Twisted mass QCD at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ilgenfritz, E.M.; Mueller-Preussker, M.; Petschlies, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Lombardo, M.P. [Istituto Nazionale di Fisica Nucleare, LNF, Frascati (Italy); Philipsen, O.; Zeidlewicz, L. [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Sternbeck, A. [Adelaide Univ. (Australia). CSSM School of Chemistry and Physics

    2007-10-15

    We discuss the use of Wilson fermions with twisted mass for simulations of QCD thermodynamics. As a prerequisite for a future analysis of the finite-temperature transition making use of automatic {partial_derivative} (a) improvement, we investigate the phase structure in the space spanned by the hopping parameter {kappa}, the coupling {beta}, and the twisted mass parameter {mu}. We present results for N{sub f}=2 degenerate quarks on a 16{sup 3} x 8 lattice, for which we investigate the possibility of an Aoki phase existing at strong coupling and vanishing {mu}, as well as of a thermal phase transition at moderate gauge couplings and non-vanishing {mu}. (orig.)

  17. The lightest hybrid meson supermultiplet in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Jozef J

    2011-10-01

    We interpret the spectrum of meson states recently obtained in non-perturbative lattice QCD calculations in terms of constituent quark-antiquark bound states and states, called 'hybrids', in which the q{bar q} pair is supplemented by an excitation of the gluonic field. We identify a lightest supermultiplet of hybrid mesons with J{sup PC} = (0,1,2){sup {-+}}, 1{sup -} built from a gluonic excitation of chromomagnetic character coupled to q{bar q} in an S-wave. The next lightest hybrids are suggested to be quark orbital excitations with the same gluonic excitation, while the next distinct gluonic excitation is significantly heavier. Existing models of gluonic excitations are compared to these findings and possible phenomenological consequences explored.

  18. Hard diffraction in the QCD dipole picture

    CERN Document Server

    Bialas, A

    1995-01-01

    Using the QCD dipole picture of the BFKL pomeron, the gluon contribution to the cross-section for single diffractive dissociation in deep-inelastic high-energy scattering is calculated. The resulting contribution to the proton diffractive structure function integrated over t is given in terms of relevant variables, x_{\\cal P}, Q^2, and \\beta = x_{Bj}/x_{\\cal P}. It factorizes into an explicit x_{\\cal P}-dependent Hard Pomeron flux factor and structure function. The flux factor is found to have substantial logarithmic corrections which may account for the recent measurements of the Pomeron intercept in this process. The triple Pomeron coupling is shown to be strongly enhanced by the resummation of leading logs. The obtained pattern of scaling violation at small \\beta is similar to that for F_2 at small x_{Bj}.

  19. Two Color QCD beyond the BEC regime

    CERN Document Server

    Hands, S; Skullerud, J I; Hands, Simon; Kim, Seyong; Skullerud, Jon-Ivar

    2005-01-01

    We present results of simulations of Two Color QCD using two flavors of Wilson quark in the fundamental representation, at non-zero quark chemical potential mu, on an 8^3x16 lattice. Results for the quark number density, quark and gluon energy densities, and superfluid condensate are qualitatively distinct from the behaviour expected on the assumption that the dominant degrees of freedom are tightly bound scalar diquarks which Bose condense; rather the scaling with mu is more suggestive of a Fermi surface disrupted by a Cooper pair condensate. We also present evidence both for screening of the static potential, and color deconfinement, arising solely as a result of a non-zero quark density.

  20. Dense QCD: a Holographic Dyonic Salt

    CERN Document Server

    Rho, Mannque; Zahed, Ismail

    2009-01-01

    Dense QCD at zero temperature with a large number of colors is a crystal. We show that in the holographic dual description, the crystal is made out of pairs of dyons with $e=g=\\pm 1$ charges in a salt-like arrangement. We argue that with increasing density the dyon masses and topological charges equalize, turning the salt-like configuration to a bcc of half-instantons. The latter is dual to a cubic crystal of half-skyrmions. We estimate the transition from an fcc crystal of instantons to a bcc crystal of dyons to about 3 times nuclear matter density with a dyon binding energy of about 180 MeV.

  1. Spin and Resonant States in QCD

    CERN Document Server

    Kirchbach, M

    2003-01-01

    I make the case that the nucleon excitations do not exist as isolated higher spin states but are fully absorbed by (K/2,K/2)x [(1/2,0)+(0,1/2)] multiplets taking their origin from the rotational and vibrational excitations of an underlying quark--diquark string. The Delta(1232) spectrum presents itself as the exact replica (up to Delta (1600)) of the nucleon spectrum with the K- clusters being shifted upward by about 200 MeV. QCD inspired arguments support legitimacy of the quark-diquark string. The above K multiplets can be mapped (up to form-factors) onto Lorentz group representation spaces of the type \\psi_{\\mu_1...\\mu_K}, thus guaranteeing covariant description of resonant states. The quantum \\psi_{\\mu_1...\\mu_K} states are of multiple spins at rest, and of undetermined spins elsewhere.

  2. Chiral transition and deconfinement in QCD

    CERN Document Server

    D'Elia, M; Pica, C

    2006-01-01

    The study of QCD with two light dynamical fermions is of fundamental importance to understand the mechanism of color confinement. We present results of a numerical investigation on the order of the chiral phase transition with $N_f = 2$ by use of a novel strategy in finite size scaling analysis. We compare the critical behaviour of the specific heat, of the chiral susceptibility and of the equation of state with the possible critical behaviours. A second order transition in the O(4) and O(2) universality classes are excluded by our data and substantial evidence emerges for a first order transition. Like in most of previous works we have used the standard staggered action with $L_t = 4$: possible scaling violations and the need for further studies are discussed.

  3. QCD Sum Rules Study of X(4350)

    Science.gov (United States)

    Mo, Zeng; Cui, Chun-Yu; Liu, Yong-Lu; Huang, Ming-Qiu

    2014-04-01

    The QCD sum rule approach is used to analyze the nature of the recently observed new resonance X(4350), which is assumed to be a diquark-antidiquark state [cs][bar cbar s] with JPC = 1-+. The interpolating current representing this state is proposed. In the calculation, contributions of operators up to dimension six are included in the operator product expansion (OPE), as well as terms which are linear in the strange quark mass ms. We find m1-+ = (4.82 ± 0.19) GeV, which is not compatible with the X(4350) structure as a 1-+ tetraquark state. Finally, we also discuss the difference of a four-quark state's mass whether the state's interpolating current has a definite charge conjugation.

  4. The lightest hybrid meson supermultiplet in QCD

    CERN Document Server

    Dudek, Jozef J

    2011-01-01

    We interpret the spectrum of meson states recently obtained in non-perturbative lattice QCD calculations in terms of constituent quark-antiquark bound states and states, called `hybrids', in which the qqbar pair is supplemented by an excitation of the gluonic field. We identify a lightest supermultiplet of hybrid mesons with JPC = (0,1,2)-+, 1-- built from a gluonic excitation of chromomagnetic character coupled to qqbar in an S-wave. The next lightest hybrids are suggested to be quark orbital excitations with the same gluonic excitation, while the next distinct gluonic excitation is significantly heavier. Existing models of gluonic excitations are compared to these findings and possible phenomenological consequences explored.

  5. Exotic Meson Decay Widths using Lattice QCD

    CERN Document Server

    Cook, M S

    2006-01-01

    A decay width calculation for a hybrid exotic meson h, with JPC=1-+, is presented for the channel h->pi+a1. This quenched lattice QCD simulation employs Luescher's finite box method. Operators coupling to the h and pi+a1 states are used at various levels of smearing and fuzzing, and at four quark masses. Eigenvalues of the corresponding correlation matrices yield energy spectra that determine scattering phase shifts for a discrete set of relative pi+a1 momenta. Although the phase shift data is sparse, fits to a Breit-Wigner model are attempted, resulting in a decay width of about 60 MeV when averaged over two lattice sizes.

  6. Correlation Probes of a QCD Critical Point

    CERN Document Server

    Csörgö, T

    2009-01-01

    Critical opalescence is a characteristic experimental signature of a second order phase transition in solid state physics. A new, experimentally accessible measure of opacity and of attenuation length in heavy ion reactions is suggested, as a combination of HBT radii and nuclear modification factors. This opacity is maximal when $\\sqrt{s_{NN}}$, the system size and centrality correspond to the critical point of QCD. To characterize the phase transition at this critical point, the critical exponent of the correlation function can be determined by measuring the L\\'evy index of stability of the Bose-Einstein or HBT correlations. The exponent of the correlation length can be determined from fits to the multiplicity distribution in various pseudorapidity intervals, also as a function of colliding energy, system size, centrality and (chemical) freeze-out temperature. These two critical exponents determine the remaining four critical exponents and the universality class of this second order phase transition. As a co...

  7. Correlated fluctuations near the QCD critical point

    Science.gov (United States)

    Jiang, Lijia; Li, Pengfei; Song, Huichao

    2016-08-01

    In this article, we introduce a freeze-out scheme for the dynamical models near the QCD critical point through coupling the decoupled classical particles with the order parameter field. With a modified distribution function that satisfies specific static fluctuations, we calculate the correlated fluctuations of net protons on the hydrodynamic freeze-out surface. A comparison with recent STAR data shows that our model calculations could roughly reproduce energy-dependent cumulant C4 and κ σ2 of net protons through tuning the related parameters. However, the calculated C2 and C3 with both Poisson and binomial baselines are always above the experimental data due to the positive contributions from the static critical fluctuations. To qualitatively and quantitatively describe all the related experimental data, the dynamical critical fluctuations and more realistic noncritical fluctuation baselines should be investigated in the near future.

  8. Critical structure of the QCD medium

    CERN Document Server

    Schaefer, Bernd-Jochen

    2007-01-01

    Fluctuations in the vicinity of a phase transition are important but neglected in mean-field theory. In order to assess the influence of such fluctuations on the critical endpoint and the size of the critical region in the QCD phase diagram, a mean-field calculation of a two-flavor quark-meson model is compared with a renormalization group approach. However, due to the lack of confinement in this effective model the equation of state near the chiral phase transition is still unrealistic. A first improvement of this model can be achieved by coupling quark degrees of freedom to the Polyakov loop, consequently incorporating certain aspects of confinement. The influence of these modifications on the resulting phase diagram is discussed.

  9. HERAFitter, Open Source QCD Fit Project

    CERN Document Server

    Alekhin, S; Belov, P; Borroni, S; Botje, M; Britzger, D; Camarda, S; Cooper-Sarkar, A M; Daum, K; Diaconu, C; Feltesse, J; Gizhko, A; Glazov, A; Guffanti, A; Guzzi, M; Hautmann, F; Jung, A; Jung, H; Kolesnikov, V; Kowalski, H; Kuprash, O; Kusina, A; Levonian, S; Lipka, K; Lobodzinski, B; Lohwasser, K; Luszczak, A; Malaescu, B; McNulty, R; Myronenko, V; Naumann-Emme, S; Nowak, K; Olness, F; Perez, E; Pirumov, H; Plačakytė, R; Rabbertz, K; Radescu, V; Sadykov, R; Salam, G P; Sapronov, A; Schöning, A; Schörner-Sadenius, T; Shushkevich, S; Slominski, W; Spiesberger, H; Starovoitov, P; Sutton, M; Tomaszewska, J; Turkot, O; Vargas, A; Watt, G; Wichmann, K

    2015-01-01

    HERAFitter is an open-source package that provides a framework for the determination of the parton distribution functions (PDFs) of the proton and for many different kinds of analyses in Quantum Chromodynamics (QCD). It encodes results from a wide range of experimental measurements in lepton-proton deep inelastic scattering and proton-proton (proton-antiproton) collisions at hadron colliders. These are complemented with a variety of theoretical options for calculating PDF-dependent cross section predictions corresponding to the measurements. The framework covers a large number of the existing methods and schemes used for PDF determination. The data and theoretical predictions are brought together through numerous methodological options for carrying out PDF fits and plotting tools to help visualise the results. While primarily based on the approach of collinear factorisation, HERAFitter also provides facilities for fits of dipole models and transverse-momentum dependent PDFs. The package can be used to study t...

  10. Nuclear Parity Violation from Lattice QCD

    CERN Document Server

    Kurth, Thorsten; Rinaldi, Enrico; Vranas, Pavlos; Nicholson, Amy; Strother, Mark; Walker-Loud, Andre

    2015-01-01

    The electroweak interaction at the level of quarks and gluons are well understood from precision measurements in high energy collider experiments. Relating these fundamental parameters to Hadronic Parity Violation in nuclei however remains an outstanding theoretical challenge. One of the most interesting observables in this respect is the parity violating hadronic neutral current: it is hard to measure in collider experiments and is thus the least constrained observable of the Standard Model. Precision measurements of parity violating transitions in nuclei can help to improve these constraints. In these systems however, the weak interaction is masked by effects of the seven orders of magnitude stronger non-perturbative strong interaction. Therefore, in order to relate experimental measurements of the parity violating pion-nucleon couplings to the fundamental Lagrangian of the SM, these non-perturbative effects have to be well understood. In this paper, we are going to present a Lattice QCD approach for comput...

  11. Dynamics for QCD on an Infinite Lattice

    Science.gov (United States)

    Grundling, Hendrik; Rudolph, Gerd

    2017-02-01

    We prove the existence of the dynamics automorphism group for Hamiltonian QCD on an infinite lattice in R^3, and this is done in a C*-algebraic context. The existence of ground states is also obtained. Starting with the finite lattice model for Hamiltonian QCD developed by Kijowski, Rudolph (cf. J Math Phys 43:1796-1808 [15], J Math Phys 46:032303 [16]), we state its field algebra and a natural representation. We then generalize this representation to the infinite lattice, and construct a Hilbert space which has represented on it all the local algebras (i.e., kinematics algebras associated with finite connected sublattices) equipped with the correct graded commutation relations. On a suitably large C*-algebra acting on this Hilbert space, and containing all the local algebras, we prove that there is a one parameter automorphism group, which is the pointwise norm limit of the local time evolutions along a sequence of finite sublattices, increasing to the full lattice. This is our global time evolution. We then take as our field algebra the C*-algebra generated by all the orbits of the local algebras w.r.t. the global time evolution. Thus the time evolution creates the field algebra. The time evolution is strongly continuous on this choice of field algebra, though not on the original larger C*-algebra. We define the gauge transformations, explain how to enforce the Gauss law constraint, show that the dynamics automorphism group descends to the algebra of physical observables and prove that gauge invariant ground states exist.

  12. Recent Tests of QCD at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Muller, David

    2001-11-15

    We present selected results on strong interaction physics from the SLD experiment at the SLAC Linear Collider. We report on several new studies of 3- and 4-jet hadronic Z{sup 0} decays, in which jets are identified as quark, antiquark or gluon. The gluon energy spectrum is measured over the full kinematic range, providing an improved test of QCD and limits on anomalous bbg and bbg couplings. The parity violation in Z{sup 0} {yields} b{bar b}g decays is consistent with electroweak theory plus QCD. New tests of T- and CP-conservation at the bbg vertex are performed. An improved measurement of the rate of gluon splitting into b{bar b} pairs yields g{sub b{bar b}} = 0.00244 {+-} 0.00059(stat.) {+-} 0.00034(syst.). We also present a number of new results on jet fragmentation into identified hadrons. The B hadron energy spectrum is measured over the full kinematic range using a new, inclusive technique, allowing stringent tests of predictions for its shape and a precise measurement of 0 corresponds to the quark direction provides additional new insights into fragmentation, including the first direct observation of baryon number ordering along the q{bar q} axis.

  13. Spin–orbit force from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Murano, K. [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Ishii, N. [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Aoki, S. [Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Doi, T. [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Hatsuda, T. [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Kavli IPMU, The University of Tokyo, Kashiwa 277-8583 (Japan); Ikeda, Y. [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Inoue, T. [Nihon University, College of Bioresource Sciences, Kanagawa 252-0880 (Japan); Nemura, H.; Sasaki, K. [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan)

    2014-07-30

    We present a first attempt to determine nucleon–nucleon potentials in the parity-odd sector, which appear in the {sup 1}P{sub 1}, {sup 3}P{sub 0}, {sup 3}P{sub 1}, {sup 3}P{sub 2}–{sup 3}F{sub 2} channels, in N{sub f}=2 lattice QCD simulations. These potentials are constructed from the Nambu–Bethe–Salpeter wave functions for J{sup P}=0{sup −},1{sup −} and 2{sup −}, which correspond to the A{sub 1}{sup −}, T{sub 1}{sup −} and T{sub 2}{sup −}⊕E{sup −} representation of the cubic group, respectively. We have found a large and attractive spin–orbit potential V{sub LS}(r) in the isospin-triplet channel, which is qualitatively consistent with the phenomenological determination from the experimental scattering phase shifts. The potentials obtained from lattice QCD are used to calculate the scattering phase shifts in the {sup 1}P{sub 1}, {sup 3}P{sub 0}, {sup 3}P{sub 1} and {sup 3}P{sub 2}–{sup 3}F{sub 2} channels. The strong attractive spin–orbit force and a weak repulsive central force in spin-triplet P-wave channels lead to an attraction in the {sup 3}P{sub 2} channel, which is related to the P-wave neutron paring in neutron stars.

  14. Equivalence of Matrix Models for Complex QCD Dirac Spectra

    CERN Document Server

    Akemann, G

    2003-01-01

    Two different matrix models for QCD with a non-vanishing quark chemical potential are shown to be equivalent by mapping the corresponding partition functions. The equivalence holds in the phase with broken chiral symmetry. It is exact in the limit of weak non-Hermiticity, where the chemical potential squared is rescaled with the volume. At strong non-Hermiticity it holds only for small chemical potential. The first model proposed by Stephanov is directly related to QCD and allows to analyze the QCD phase diagram. In the second model suggested by the author all microscopic spectral correlation functions of complex Dirac operators can be calculated in the broken phase. We briefly compare those predictions to complex Dirac eigenvalues from quenched QCD lattice simulations.

  15. Academic Training: QCD: are we ready for the LHC

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 4, 5, 6, 7 December, from 11:00 to 12:00 4, 5, 6 December - Main Auditorium, bldg. 500, 7 December - TH Auditorium, bldg. 4 - 3-006 QCD: are we ready for the LHC S. FRIXIONE / INFN, Genoa, Italy The LHC energy regime poses a serious challenge to our capability of predicting QCD reactions to the level of accuracy necessary for a successful programme of searches for physics beyond the Standard Model. In these lectures, I'll introduce basic concepts in QCD, and present techniques based on perturbation theory, such as fixed-order and resummed computations, and Monte Carlo simulations. I'll discuss applications of these techniques to hadron-hadron processes, concentrating on recent trends in perturbative QCD aimed at improving our understanding of LHC phenomenology.

  16. QCD Studies at the LHC with the ATLAS Detector

    CERN Document Server

    Eckweiler, S; The ATLAS collaboration

    2010-01-01

    This paper describes a selection of early QCD analyses, planned to be performed with the ATLAS experiment. Measurements of underlying event properties and minimum bias events in early data are discussed. Selected analyses including jets are presented.

  17. Hump-backed QCD plateau in hadron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Azimov, Ya.I.; Dokshitzer, Yu.L.; Khoze, V.A.; Troyan, S.I.

    1986-06-01

    New data on inclusive energy distribution of hadrons from quark jets in e/sup +/e/sup -/ annihilation are shown to agree with the quantitative predictions of perturbative QCD, supporting the hypothesis of local parton-hadron duality.

  18. QCD in One Dimension at Nonzero Chemical Potential

    CERN Document Server

    Ravagli, L

    2007-01-01

    Using an integration formula recently derived by Conrey, Farmer and Zirnbauer, we calculate the expectation value of the phase factor of the fermion determinant for the staggered lattice QCD action in one dimension. We show that the chemical potential can be absorbed into the quark masses; the theory is in the same chiral symmetry class as QCD in three dimensions at zero chemical potential. In the limit of a large number of colors and fixed number of lattice points, chiral symmetry is broken spontaneously, and our results are in agreement with expressions based on a chiral Lagrangian. In this limit, the eigenvalues of the Dirac operator are correlated according to random matrix theory for QCD in three dimensions. The discontinuity of the chiral condensate is due to an alternative to the Banks-Casher formula recently discovered for QCD in four dimensions at nonzero chemical potential. The effect of temperature on the average phase factor is discussed in a schematic random matrix model.

  19. Susceptibilities of QCD Vacuum from Renormalized Dyson-Schwinger Equations

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; QI Shi; SUN Wei-Min; ZONG Hong-Shi

    2004-01-01

    The pion and tensor vacuum susceptibilities are calculated in the framework of the renormalizable DysonSchwinger equations. A comparison with the results of other nonperturbative QCD approaches is given.

  20. Automating QCD amplitudes with on-shell methods

    CERN Document Server

    Badger, Simon

    2016-01-01

    We review some of the modern approaches to scattering amplitude computations in QCD and their application to precision LHC phenomenology. We emphasise the usefulness of momentum twistor variables in parameterising general amplitudes.

  1. Dyson-Schwinger Equation Density, Temperature and Continuum Strong QCD

    CERN Document Server

    Roberts, C D

    2000-01-01

    Continuum strong QCD is the application of models and continuum quantum field theory to the study of phenomena in hadronic physics, which includes; e.g., the spectrum of QCD bound states and their interactions; and the transition to, and properties of, a quark gluon plasma. We provide a contemporary perspective, couched primarily in terms of the Dyson-Schwinger equations but also making comparisons with other approaches and models. Our discourse provides a practitioners' guide to features of the Dyson-Schwinger equations [such as confinement and dynamical chiral symmetry breaking] and canvasses phenomenological applications to light meson and baryon properties in cold, sparse QCD. These provide the foundation for an extension to hot, dense QCD, which is probed via the introduction of the intensive thermodynamic variables: chemical potential and temperature. We describe order parameters whose evolution signals deconfinement and chiral symmetry restoration, and chronicle their use in demarcating the quark gluon...

  2. Quark Gluon Condensate,Virtuality and Susceptibility of QCD Vacuum

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Juan; WU Qing; MA Wei-Xing

    2008-01-01

    We study vacuum of QCD in this work.The structure of non-local quark vacuum condensate,values of various local quark and gluon vacuum condensates,quark-gluon mixed vacuum condensate,quark and gluon virtuality in QCD vacuum state,quark dynamical mass and susceptibility of QCD vacuum state to external field are predicted by use of the solutions of Dyson-Schwinger equations in "rainbow" approximation with a modeling gluon propagator and three different sets of quark-quark interaction parameters.Our theoretical predictions are in good agreement with the correspondent empirical values used widely in literature,and many other theoretical calculations.The quark propagator and self-energy functions are also obtained from the numerical solutions of Dyson-Schwinger equations.This work is centrally important for studying non-perturbative QCD,and has many important applications both in particle and nuclear physics.

  3. Virtualities of quark and gluon in QCD vacuum

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The non-local vacuum condensates of quantum chromodynamics (QCD) describe the distributions of quarks and gluons in the non-perturbative QCD vacuum state. Physically, this means that vacuum quarks and gluons have a nonzero mean-squared momentum in the vacuum, called virtuality. The quark virtuality is given by the ratio of the local quark-gluon mixed vacuum condensate to the quark local vacuum condensate. The gluon virtuality is expressed by gluon vacuum condensates and four-quark vacuum condensates. We study the two virtualities by solving Dyson-Schwinger Equations and calculating quark and gluon vacuum condensates. Our theoretical results for quark virtuality are in good agreement with many other theoretical model predictions such as QCD sum rules and lattice QCD calculations. Our calculation on gluon virtuality is initial and the results are quite interesting.

  4. Early Run 2 Hard QCD Results from the ATLAS Collaboration

    Directory of Open Access Journals (Sweden)

    Orlando Nicola

    2016-01-01

    Full Text Available We provide an overview of hard QCD results based on data collected with the ATLAS detector in proton-proton collision at √s = 13 TeV at the Large Hadron Collider. The production of high transverse momentum jets, photons and photon-pairs were studied; the inclusive jet cross section is found to agree well with the prediction of perturbative QCD calculations performed at next-to-leading accuracy. The production cross sections for W and Z bosons in their e and μ decays was measured; in general, agreement is found with the expectation of next-to-next-to leading order QCD calculations and interesting sensitivities to the proton structure functions are already observed. The top production cross sections were measured in different top decay channels and found to agree with the state of the art QCD predictions.

  5. The QCD triple Pomeron coupling from string amplitudes

    CERN Document Server

    Bialas, A; Peschanski, R

    1998-01-01

    Using the recent solution of the triple Pomeron coupling in the QCD dipole picture as a closed string amplitude with six legs, its analytical form in terms of hypergeometric functions and numerical value are derived.

  6. Scheme variations of the QCD coupling and hadronic $\\tau$ decays

    CERN Document Server

    Boito, Diogo; Miravitllas, Ramon

    2016-01-01

    The Quantum Chromodynamics (QCD) coupling, $\\alpha_s$, is not a physical observable of the theory since it depends on conventions related to the renormalization procedure. We introduce a definition of the QCD coupling, denoted by $\\widehat\\alpha_s$, whose running is explicitly renormalization scheme invariant. The scheme dependence of the new coupling $\\widehat\\alpha_s$ is parameterized by a single parameter $C$, related to transformations of the QCD scale $\\Lambda$. It is demonstrated that appropriate choices of $C$ can lead to substantial improvements in the perturbative prediction of physical observables. As phenomenological applications, we study $e^+e^-$ scattering and decays of the $\\tau$ lepton into hadrons, both being governed by the QCD Adler function.

  7. Hard QCD and hadronic final state at HERA

    Science.gov (United States)

    Valkárová, Alice

    2017-03-01

    The production of inclusive jets, dijets and trijets was investigated with the high statistics HERA II DIS data. The H1 experiment has determined the corresponding cross sections with improved experimental precision and sophisticated method of unfolding, compared to previous measurements. The results were compared with NLO QCD and NNLO QCD calculations for the first time. Signals of QCD instanton-induced processes were searched for in neutral current deep-inelastic scattering with high momentum transfer Q2 by H1 collaboration. Compared to earlier publications, the limits were improved by an order of magnitude. A search for a narrow baryonic state in the p KS0 and p ¯KS0 system has been performed with the ZEUS detector. Measurements with the ZEUS data in DIS of isolated photons were reported, including studies of kinematic variables sensitive to the event dynamics. The measurements were compared to MC models and to theoretical calculations based on kt factorisation QCD approach.

  8. Tevatron-for-LHC Report of the QCD Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, Michael G.; Begel, M.; Bourilkov, D.; Campanelli, M.; Chlebana, F.; De Roeck, A.; Dittmann, J.R.; Ellis, S.D.; Field, B.; Field, R.; Gallinaro, M.; /Fermilab

    2006-10-01

    The experiments at Run 2 of the Tevatron have each accumulated over 1 fb{sup -1} of high-transverse momentum data. Such a dataset allows for the first precision (i.e. comparisons between theory and experiment at the few percent level) tests of QCD at a hadron collider. While the Large Hadron Collider has been designed as a discovery machine, basic QCD analyses will still need to be performed to understand the working environment. The Tevatron-for-LHC workshop was conceived as a communication link to pass on the expertise of the Tevatron and to test new analysis ideas coming from the LHC community. The TeV4LHC QCD Working Group focused on important aspects of QCD at hadron colliders: jet definitions, extraction and use of Parton Distribution Functions, the underlying event, Monte Carlo tunes, and diffractive physics. This report summarizes some of the results achieved during this workshop.

  9. Formal Developments for Lattice QCD with Applications to Hadronic Systems

    CERN Document Server

    Davoudi, Zohreh

    2014-01-01

    Lattice quantum chromodynamics (QCD) will soon become the primary theoretical tool in rigorous studies of single- and multi-hadron sectors of QCD. It is truly ab initio meaning that its only parameters are those of standard model. The result of a lattice QCD calculation corresponds to that of nature only in the limit when the volume of spacetime is taken to infinity and the spacing between discretized points on the lattice is taken to zero. A better understanding of these discretization and volume effects not only provides the connection to the infinite-volume continuum observables, but also leads to optimized calculations that can be performed with available computational resources. This thesis includes various formal developments in this direction, along with proposals for improvements, to be applied to the upcoming lattice QCD studies of nuclear and hadronic systems. Among these developments are i) an analytical investigation of the recovery of rotational symmetry with the use of suitably-formed smeared op...

  10. Effective potential for Polyakov loops in lattice QCD

    Science.gov (United States)

    Nemoto, Y.; RBC Collaboration

    2003-05-01

    Toward the derivation of an effective theory for Polyakov loops in lattice QCD, we examine Polyakov loop correlation functions using the multi-level algorithm which was recently developed by Luscher and Weisz.

  11. Perturbative QCD tests from the LEP, HERA, and TEVATRON colliders

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlmann, S. [Argonne National Lab., IL (United States)

    1994-09-01

    A review of QCD tests from LEP, HERA and the TEVATRON colliders is presented. This includes jet production, quark/gluon jet separation, quark/gluon propagator spin, {alpha}{sub s} updates, photon production, and rapidity gap experiments.

  12. Non-perturbative QCD amplitudes in quenched and eikonal approximations

    Energy Technology Data Exchange (ETDEWEB)

    Fried, H.M. [Physics Department, Brown University, Providence, RI 02912 (United States); Grandou, T., E-mail: Thierry.Grandou@inln.cnrs.fr [Université de Nice-Sophia Antipolis, Institut Non Linéaire de Nice, UMR 6618 CNRS 7335, 1361 routes des Lucioles, 06560 Valbonne (France); Sheu, Y.-M., E-mail: ymsheu@alumni.brown.edu [Université de Nice-Sophia Antipolis, Institut Non Linéaire de Nice, UMR 6618 CNRS 7335, 1361 routes des Lucioles, 06560 Valbonne (France)

    2014-05-15

    Even though approximated, strong coupling non-perturbative QCD amplitudes remain very difficult to obtain. In this article, in eikonal and quenched approximations at least, physical insights are presented that rely on the newly-discovered property of effective locality. The present article also provides a more rigorous mathematical basis for the crude approximations used in the previous derivation of the binding potential of quarks and nucleons. Furthermore, the techniques of Random Matrix calculus along with Meijer G-functions are applied to analyze the generic structure of fermionic amplitudes in QCD. - Highlights: • We discuss the physical insight of effective locality to QCD fermionic amplitudes. • We show that an unavoidable delta function goes along with the effective locality property. • The generic structure of QCD fermion amplitudes is obtained through Random Matrix calculus.

  13. (2+1)-flavor QCD Thermodynamics from the Gradient Flow

    CERN Document Server

    Itou, Etsuko; Taniguchi, Yusuke; Umeda, Takashi

    2015-01-01

    Recently, we proposed a novel method to define and calculate the energy-momentum tensor (EMT) in lattice gauge theory on the basis of the Yang-Mills gradient flow [1]. In this proceedings, we summarize the basic idea and technical steps to obtain the bulk thermodynamic quantities in lattice gauge theory using this method for the quenched and $(2+1)$-flavor QCD. The revised results of integration measure (trace anomaly) and entropy density of the quenched QCD with corrected coefficients are shown. Furthermore, we also show the flow time dependence of the parts of EMT including the dynamical fermions. This work is based on a joint-collaboration between FlowQCD and WHOT QCD.

  14. Instanton dynamics in finite temperature QCD via holography

    Directory of Open Access Journals (Sweden)

    Masanori Hanada

    2015-10-01

    Full Text Available We investigate instantons in finite temperature QCD via Witten's holographic QCD. To study the deconfinement phase, we use the setup proposed in [1]. We find that the sizes of the instantons are stabilized at certain values both in the confinement and deconfinement phases. This agrees with the numerical result in the lattice gauge theory. Besides we find that the gravity duals of the large and small instantons in the deconfinement phase have different topologies. We also argue that the fluctuation of the topological charges is large in confinement phase while it is exponentially suppressed in deconfinement phase, and a continuous transition occurs at the Gross–Witten–Wadia (GWW point. It would be difficult to observe the counterpart of this transition in lattice QCD, since the GWW point in QCD may stay at an unstable branch.

  15. Exploring the Spectrum of QCD Using the Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Bulava, John; Dudek, Jozef; Edwards, Robert; Engelson, Eric; Foley, Justin; Joo, Balint; Juge, Jimmy; Lin, Huey-Wen; Mathur, Nilmani; Morningstar, Colin; Peardon, Mike; Richards, David; Ryan, Sinead; Thomas, Christopher; Thomas, Anthony

    2009-08-01

    The calculation of the spectrum of QCD is key to an understanding of the strong interactions, and vital if we are to capitalize on the experimental study of the spectrum. In this paper, we describe progress towards understanding the spectrum of resonances of both mesons and baryons from lattice QCD, focusing in particular on the resonances of the $I=1/2$ nucleon states, and of charmonium mesons composed of the heavy charmed quarks.

  16. Universal properties of Wilson loop operators in large N QCD

    CERN Document Server

    Narayanan, R

    2008-01-01

    Eigenvalues of a Wilson loop operator are gauge invariant and their distribution undergoes a transition at infinite N as the size of the loop is changed. We study this transition using the average characteristic polynomial associated with the Wilson loop operator. We derive the scaling function in a certain double scaling limit for two dimensional QCD and hypothesize that the transition in three and four dimensional QCD are in the same universality class. Numerical evidence for this hypothesisis provided in three dimensions

  17. Three-Prong Distribution of Massive Narrow QCD Jets

    CERN Document Server

    Field, Matan; Kosower, David A; Mannelli, Lorenzo; Perez, Gilad

    2013-01-01

    We study the planar-flow distributions of narrow, highly boosted, massive QCD jets. Using the factorization properties of QCD in the collinear limit, we compute the planar-flow jet function from the one-to-three splitting function at tree-level. We derive the leading-log behavior of the jet function analytically. We also compare our semi-analytic jet function with parton-shower predictions using various generators.

  18. Instantons and quark zero modes in AdS/QCD

    DEFF Research Database (Denmark)

    Bechi, Jacopo

    2009-01-01

    In this paper the quark zero modes creation effect is studied in the context of the AdS/QCD approach. This effect is generated, in presence of instantons, by a new that can be added in the bulk.......In this paper the quark zero modes creation effect is studied in the context of the AdS/QCD approach. This effect is generated, in presence of instantons, by a new that can be added in the bulk....

  19. Current status of $\\varepsilon_K$ in lattice QCD

    CERN Document Server

    Lee, Weonjong

    2016-01-01

    We present the current status of $\\varepsilon_K$ evaluated directly from the standard model using lattice QCD inputs. The lattice QCD inputs include $\\hat{B}_K$, $\\xi_0$, $\\xi_2$, $|V_{us}|$, $m_c(m_c)$, and $|V_{cb}|$. Recently, FLAG has updated $\\hat{B}_K$, exclusive $|V_{cb}|$ has been updated with new lattice data in the $\\bar{B}\\to D\\ell\\bar{\

  20. Magnetic fields in QCD vacuum: A lattice view

    Energy Technology Data Exchange (ETDEWEB)

    Buividovich, P.V. [Regensburg University, Institute for Theoretical Physics, Regensburg (Germany)

    2016-08-15

    We review the basic phenomena in QCD subject to strong magnetic fields which are accessible in experiment and can be also studied in lattice QCD simulations: enhanced fluctuations of electric current and electric dipole moment, the negative magnetoresistivity and the inverse magnetic catalysis. We comment on the possibility of experimental detection of negative magnetoresistivity by analysing the angular distributions of dilepton pairs in off-central heavy-ion collisions. (orig.)