WorldWideScience

Sample records for qcd phase boundary

  1. Phases of Holographic QCD

    International Nuclear Information System (INIS)

    Lippert, Matthew

    2009-01-01

    We investigated the Sakai-Sugimoto model of large N QCD at nonzero temperature and baryon chemical potential and in the presence of background electric and magnetic fields. We studied the holographic representation of baryons and the deconfinement, chiral-symmetry breaking, and nuclear matter phase transitions. In a background electric field, chiral-symmetry breaking corresponds to an insulator-conductor transition. A magnetic field both catalyzes chiral-symmetry breaking and generates, in the confined phase, a pseudo-scalar gradient or, in the deconfined phase, an axial current. The resulting phase diagram is in qualitative agreement with studies of hot, dense QCD.

  2. Phases of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Roessner, Simon

    2009-04-09

    Quantum Chromodynamics (QCD) is the theory of the strong interaction within the Standard Model of elementary particles. Today's research in this area dedicates substantial resources to numeric solutions of the QCD field equations and experimental programs exploring the phases of QCD. This thesis proceeds along a complementary line - that of modelling QCD, with the aim of identifying its dominant degrees of freedom. This is possible by minimally coupling effective potentials for the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields to model chiral symmetry breaking respecting colour confinement. The fermion sign problem resulting from the minimal coupling is addressed in this work establishing a novel, systematically ordered approach. The modifications to the approximative order parameter of colour confinement, the Polyakov loop, are in direct connection with the fermion sign problem. Furthermore an effective coupling of quark densities of different flavours is induced. This mechanism, most likely also present in QCD, produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities are amongst the most promising physical quantities for the experimental exploration of the phase transition at high temperatures and densities. (orig.)

  3. Phases of QCD

    International Nuclear Information System (INIS)

    Roessner, Simon

    2009-01-01

    Quantum Chromodynamics (QCD) is the theory of the strong interaction within the Standard Model of elementary particles. Today's research in this area dedicates substantial resources to numeric solutions of the QCD field equations and experimental programs exploring the phases of QCD. This thesis proceeds along a complementary line - that of modelling QCD, with the aim of identifying its dominant degrees of freedom. This is possible by minimally coupling effective potentials for the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields to model chiral symmetry breaking respecting colour confinement. The fermion sign problem resulting from the minimal coupling is addressed in this work establishing a novel, systematically ordered approach. The modifications to the approximative order parameter of colour confinement, the Polyakov loop, are in direct connection with the fermion sign problem. Furthermore an effective coupling of quark densities of different flavours is induced. This mechanism, most likely also present in QCD, produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities are amongst the most promising physical quantities for the experimental exploration of the phase transition at high temperatures and densities. (orig.)

  4. Towards the QCD phase diagram

    CERN Document Server

    De Forcrand, Philippe; Forcrand, Philippe de; Philipsen, Owe

    2006-01-01

    We summarize our recent results on the phase diagram of QCD with N_f=2+1 quark flavors, as a function of temperature T and quark chemical potential \\mu. Using staggered fermions, lattices with temporal extent N_t=4, and the exact RHMC algorithm, we first determine the critical line in the quark mass plane (m_{u,d},m_s) where the finite temperature transition at \\mu=0 is second order. We confirm that the physical point lies on the crossover side of this line. Our data are consistent with a tricritical point at (m_{u,d},m_s) = (0,\\sim 500) MeV. Then, using an imaginary chemical potential, we determine in which direction this second-order line moves as the chemical potential is turned on. Contrary to standard expectations, we find that the region of first-order transitions shrinks in the presence of a chemical potential, which is inconsistent with the presence of a QCD critical point at small chemical potential. The emphasis is put on clarifying the translation of our results from lattice to physical units, and ...

  5. Lattice and Phase Diagram in QCD

    International Nuclear Information System (INIS)

    Lombardo, Maria Paola

    2008-01-01

    Model calculations have produced a number of very interesting expectations for the QCD Phase Diagram, and the task of a lattice calculations is to put these studies on a quantitative grounds. I will give an overview of the current status of the lattice analysis of the QCD phase diagram, from the quantitative results of mature calculations at zero and small baryochemical potential, to the exploratory studies of the colder, denser phase.

  6. Sound speed during the QCD phase transition

    International Nuclear Information System (INIS)

    Nagasawa, Michiyasu; Yokoyama, Jun'ichi

    1998-01-01

    The Jeans scale is estimated during the coexistence epoch of quark-gluon and hadron phases in the first-order QCD phase transition. It is shown that, contrary to previous claims, reduction of the sound speed is so little that the phase transition does not affect evolution of cosmological density fluctuations appreciably. (author)

  7. Phase transitions: the lattice QCD approach

    International Nuclear Information System (INIS)

    Gavai, R.V.

    1986-01-01

    Recent results in the field of finite temperature lattice quantum chromodynamics (QCD) are presented with special emphasis on comparison of the different methods used to incorporate the dynamical fermions. Attempts to obtain a nonperturbative estimate of the velocity of sound in both the hadronic and quark-gluon phase are summarized along with the results. 15 refs., 7 figs

  8. Simulations of QCD and QED with C* boundary conditions

    Science.gov (United States)

    Hansen, Martin; Lucini, Biagio; Patella, Agostino; Tantalo, Nazario

    2018-03-01

    We present exploratory results from dynamical simulations of QCD in isolation, as well as QCD coupled to QED, with C* boundary conditions. In finite volume, the use of C* boundary conditions allows for a gauge invariant and local formulation of QED without zero modes. In particular we show that the simulations reproduce known results and that masses of charged mesons can be extracted in a completely gauge invariant way. For the simulations we use a modified version of the HiRep code. The primary features of the simulation code are presented and we discuss some details regarding the implementation of C* boundary conditions and the simulated lattice action. Preprint: CP3-Origins-2017-046 DNRF90, CERN-TH-2017-214

  9. Renormalization group approach to QCD phase transitions

    International Nuclear Information System (INIS)

    Midorikawa, S.; Yoshimoto, S.; So, H.

    1987-01-01

    Effective scalar theories for QCD are proposed to investigate the deconfining and chiral phase transitions. The orders of the phase transitions are determined by infrared stabilities of the fixed points. It is found that the transitions in SU(3) gauge theories are of 1st order for any number of massless flavors. The cases of SU(2) and SU(4) gauge theories are also discussed. (orig.)

  10. Lattice investigations of the QCD phase diagram

    International Nuclear Information System (INIS)

    Guenther, Jana

    2016-01-01

    To understand the physics in the early universe as well as in heavy ion collisions a throughout understanding of the theory of strong interaction, quantum chromodynamics (QCD), is important. Lattice QCD provides a tool to study it from first principles. However due to the sign problem direct simulations with physical conditions are at the moment limited to zero chemical potential. In this thesis I present a circumvention of this problem. We can gain information on the QCD phase diagram and the equation of state from analytical continuation of results extracted from simulations at imaginary chemical potential. The topological susceptibility is very expensive to compute in Lattice QCD. However it provides an important ingredient for the estimation of the axion mass. The axion is a possible candidate for a dark matter, which plays in important role in the understanding of our universe. In this thesis I discuss two techniques that make it possible to determine the topological susceptibility and allow for an estimation of the axion mass. I then use this mass restrain to analyze the idea of an experiment to detect axions with a dielectric mirror.

  11. Lattice investigations of the QCD phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Jana

    2016-12-15

    To understand the physics in the early universe as well as in heavy ion collisions a throughout understanding of the theory of strong interaction, quantum chromodynamics (QCD), is important. Lattice QCD provides a tool to study it from first principles. However due to the sign problem direct simulations with physical conditions are at the moment limited to zero chemical potential. In this thesis I present a circumvention of this problem. We can gain information on the QCD phase diagram and the equation of state from analytical continuation of results extracted from simulations at imaginary chemical potential. The topological susceptibility is very expensive to compute in Lattice QCD. However it provides an important ingredient for the estimation of the axion mass. The axion is a possible candidate for a dark matter, which plays in important role in the understanding of our universe. In this thesis I discuss two techniques that make it possible to determine the topological susceptibility and allow for an estimation of the axion mass. I then use this mass restrain to analyze the idea of an experiment to detect axions with a dielectric mirror.

  12. Dual QCD and phase transition in early universe

    International Nuclear Information System (INIS)

    Ranjan, Akhilesh; Raina, P.K.; Nandan, Hemwati

    2009-01-01

    The quantum chromodynamics (QCD) vacuum with condensed monopoles/ dyons (i.e., a dual Ginzburg- Landau (DGL) type model of QCD or dual QCD) has been quite successful to describe the large-distance behavior of QCD vacuum. Further, such DGL theory of QCD at finite temperature is also found to be useful in studying the phase transition process as believed to occur in early universe. In the present article, we have used the DGL theory of QCD with dyons to study the hadronisation in early universe. The effective potential at finite temperature is calculated. The notions of the phase transition in the background of the dyonically condensed QCD vacuum has been investigated by calculating the critical temperature in view of the temperature dependent couplings

  13. Exploring the QCD phase diagram through relativistic heavy ion collisions

    Directory of Open Access Journals (Sweden)

    Mohanty Bedangadas

    2014-03-01

    Full Text Available We present a review of the studies related to establishing the QCD phase diagram through high energy nucleus-nucleus collisions. We particularly focus on the experimental results related to the formation of a quark-gluon phase, crossover transition and search for a critical point in the QCD phase diagram.

  14. The QCD phase diagram from analytic continuation

    Directory of Open Access Journals (Sweden)

    R. Bellwied

    2015-12-01

    Full Text Available We present the crossover line between the quark gluon plasma and the hadron gas phases for small real chemical potentials. First we determine the effect of imaginary values of the chemical potential on the transition temperature using lattice QCD simulations. Then we use various formulas to perform an analytic continuation to real values of the baryo-chemical potential. Our data set maintains strangeness neutrality to match the conditions of heavy ion physics. The systematic errors are under control up to μB≈300 MeV. For the curvature of the transition line we find that there is an approximate agreement between values from three different observables: the chiral susceptibility, chiral condensate and strange quark susceptibility. The continuum extrapolation is based on Nt=10, 12 and 16 lattices. By combining the analysis for these three observables we find, for the curvature, the value κ=0.0149±0.0021.

  15. Gravitational waves generated from the cosmological QCD phase transition within AdS/QCD

    Directory of Open Access Journals (Sweden)

    M. Ahmadvand

    2017-09-01

    Full Text Available We study the gravitational waves produced by the collision of the bubbles as a probe for the cosmological first order QCD phase transition, considering heavy static quarks. Using AdS/QCD and the correspondence between a first order Hawking–Page phase transition and confinement–deconfinement phase transition, we find the spectrum and the strain amplitude of the gravitational wave within the hard and soft wall models. We postulate the duration of the phase transition corresponds to the evaporation time of the black hole in the five dimensional dual gravity space, and thereby obtain a bound on the string length in the space and correspondingly on the duration of the QCD phase transition. We also show that IPTA and SKA detectors will be able to detect these gravitational waves, which can be an evidence for the first order deconfinement transition.

  16. Deconfinement phase transition in QCD with heavy quarks

    International Nuclear Information System (INIS)

    Attig, N.; Petersson, B.; Wolff, M.; Gavai, R.V.

    1988-01-01

    Using the pseudo-fermion method to simulate QCD with dynamical quarks we investigate the effects of heavy dynamical quarks of 2 flavours on the deconfinement phase transition in the quenched QCD. As the mass of the quark is decreased the phase transition weakens as expected. Compared to the earlier results with leading order hopping parameter expansion, however, the weakening is less rapid. Our estimated upper bound on the critical mass where the transition becomes continuous is 1.5-2 times lower than earlier results. (orig.)

  17. Quest for the QCD phase diagram in extreme environments

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Kenji, E-mail: fuku@rk.phys.keio.ac.jp [Keio University, Department of Physics (Japan)

    2013-03-15

    We review the state-of-the-art status of the research on the phase diagram of QCD matter out of quarks and gluons. Our discussions particularly include the extreme environments such as the high temperature, the high baryon density, and the strong magnetic field.

  18. Investigating the QCD phase diagram with hadron multiplicities at NICA

    Energy Technology Data Exchange (ETDEWEB)

    Becattini, F. [Universita di Firenze (Italy); INFN, Firenze (Italy); Stock, R. [Goethe University, Frankfurt am Main (Germany)

    2016-08-15

    We discuss the potential of the experimental programme at NICA to investigate the QCD phase diagram and particularly the position of the critical line at large baryon-chemical potential with accurate measurements of particle multiplicities. We briefly review the present status and we outline the tasks to be accomplished both theoretically and the experimentally to make hadronic abundances a sensitive probe. (orig.)

  19. QCD Green's Functions and Phases of Strongly-Interacting Matter

    Directory of Open Access Journals (Sweden)

    Schaefer B.J.

    2011-04-01

    Full Text Available After presenting a brief summary of functional approaches to QCD at vanishing temperatures and densities the application of QCD Green's functions at non-vanishing temperature and vanishing density is discussed. It is pointed out in which way the infrared behavior of the gluon propagator reflects the (de-confinement transition. Numerical results for the quark propagator are given thereby verifying the relation between (de--confinement and dynamical chiral symmetry breaking (restoration. Last but not least some results of Dyson-Schwinger equations for the color-superconducting phase at large densities are shown.

  20. Confinement in Polyakov gauge and the QCD phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Marhauser, Marc Florian

    2009-10-14

    We investigate Quantum Chromodynamics (QCD) in the framework of the functional renormalisation group (fRG). Thereby describing the phase transition from the phase with confined quarks into the quark-gluon-plasma phase. We focus on a physical gauge in which the mechanism driving the phase transition is discernible. We find results compatible with lattice QCD data, as well as with functional methods applied in different gauges. The phase transition is of the expected order and we computed critical exponents. Extensions of the model are discussed. When investigating the QCD phase diagram, we compute the effects of dynamical quarks at finite density on the running of the gauge coupling. Additionally, we calculate how these affect the deconfinement phase transition, also, dynamical quarks allow for the inclusion of a finite chemical potential. Concluding the investigation of the phase diagram, we establish a relation between confinement and chiral symmetry breaking, which is tied to the dynamical generation of hadron masses. In the investigations, we often encounter scale dependent fields. We investigate a footing on which these can be dealt with in a uniform way. (orig.)

  1. QCD

    CERN Document Server

    Catani, S; Soper, Davison Eugene; Stirling, William James; Tapprogge, Stefan; Alekhin, S I; Aurenche, Patrick; Balázs, C; Ball, R D; Battistoni, G; Berger, E L; Binoth, T; Brock, R L; Casey, D; Corcella, Gennaro; Del Duca, V; Fabbro, A D; de Roeck, A; Ewerz, C; de Florian, D; Fontannaz, M; Frixione, Stefano; Giele, W T; Grazzini, Massimiliano; Guillet, J P; Marlen-Heinrich, G; Huston, J; Kalk, J; Kataev, A L; Kato, K; Keller, S; Klasen, M; Kosower, D A; Kulesza, A; Kunszt, Zoltán; Kupco, A; Ilyin, V A; Magnea, L; Mangano, Michelangelo L; Martin, A D; Mazumdar, K; Miné, P; Moretti, M; van Neerven, W L; Parente, G; Perret-Gallix, D; Pilon, E; Pukhov, A E; Puljak, I; Pumplin, Jon; Richter-Was, Elzbieta; Roberts, R G; Salam, Gavin P; Seymour, Michael H; Skachkov, N B; Sidorov, A V; Stenzel, H; Stump, D R; Thorne, R S; Treleani, D; Tung, W K; Vogt, A; Webber, Bryan R; Werlen, M; Zmouchko, S; Mine, Ph.

    2000-01-01

    We discuss issues of QCD at the LHC including parton distributions, Monte Carlo event generators, the available next-to-leading order calculations, resummation, photon production, small x physics, double parton scattering, and backgrounds to Higgs production.

  2. QCD phase transition at real chemical potential with canonical approach

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Atsushi [RCNP, Osaka University,Osaka, 567-0047 (Japan); Nishina Center, RIKEN,Wako, Saitama 351-0198 (Japan); School of Biomedicine, Far Eastern Federal University,Vladivostok, 690950 (Russian Federation); Oka, Shotaro [Institute of Theoretical Physics, Department of Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Taniguchi, Yusuke [Graduate School of Pure and Applied Sciences, University of Tsukuba,Tsukuba, Ibaraki 305-8571 (Japan)

    2016-02-08

    We study the finite density phase transition in the lattice QCD at real chemical potential. We adopt a canonical approach and the canonical partition function is constructed for N{sub f}=2 QCD. After derivation of the canonical partition function we calculate observables like the pressure, the quark number density, its second cumulant and the chiral condensate as a function of the real chemical potential. We covered a wide range of temperature region starting from the confining low to the deconfining high temperature; 0.65T{sub c}≤T≤3.62T{sub c}. We observe a possible signal of the deconfinement and the chiral restoration phase transition at real chemical potential below T{sub c} starting from the confining phase. We give also the convergence range of the fugacity expansion.

  3. Studies on the QCD Phase Diagram at SPS and FAIR

    International Nuclear Information System (INIS)

    Blume, Christoph

    2013-01-01

    A review of results of the energy scan program at the CERN-SPS by the NA49 experiment is given. Presented are observables related to the search for a critical point in the QCD phase diagram and for the onset of deconfinement. Furthermore, the ongoing experimental program of NA61 at the CRRN-SPS and the plans of the CBM experiment at FAIR are discussed.

  4. QCD

    CERN Multimedia

    1999-01-01

    Basic Properties of QCD: the Lagrangian, the running coupling, asymptotic freedom and colour confinement. Examples of perturbative calculations in electron- positron physics (total cross sections and event) Parton branching approach will be used to derive the evolution equations for hadron structure functions Comarison with data on deep inelastic scattering and jet production will be for hadron structure functions and jet fragmentation functions

  5. Compact Stars with Sequential QCD Phase Transitions

    Science.gov (United States)

    Alford, Mark; Sedrakian, Armen

    2017-10-01

    Compact stars may contain quark matter in their interiors at densities exceeding several times the nuclear saturation density. We explore models of such compact stars where there are two first-order phase transitions: the first from nuclear matter to a quark-matter phase, followed at a higher density by another first-order transition to a different quark-matter phase [e.g., from the two-flavor color-superconducting (2SC) to the color-flavor-locked (CFL) phase]. We show that this can give rise to two separate branches of hybrid stars, separated from each other and from the nuclear branch by instability regions, and, therefore, to a new family of compact stars, denser than the ordinary hybrid stars. In a range of parameters, one may obtain twin hybrid stars (hybrid stars with the same masses but different radii) and even triplets where three stars, with inner cores of nuclear matter, 2SC matter, and CFL matter, respectively, all have the same mass but different radii.

  6. Constraining the QCD phase diagram by tricritical lines at imaginary chemical potential

    CERN Document Server

    de Forcrand, Philippe

    2010-01-01

    We present unambiguous evidence from lattice simulations of QCD with three degenerate quark species for two tricritical points in the (T,m) phase diagram at fixed imaginary \\mu/T=i\\pi/3 mod 2\\pi/3, one in the light and one in the heavy mass regime. These represent the boundaries of the chiral and deconfinement critical lines continued to imaginary chemical potential, respectively. It is demonstrated that the shape of the deconfinement critical line for real chemical potentials is dictated by tricritical scaling and implies the weakening of the deconfinement transition with real chemical potential. The generalization to non-degenerate and light quark masses is discussed.

  7. The effective QCD phase diagram and the critical end point

    Directory of Open Access Journals (Sweden)

    Alejandro Ayala

    2015-08-01

    Full Text Available We study the QCD phase diagram on the temperature T and quark chemical potential μ plane, modeling the strong interactions with the linear sigma model coupled to quarks. The phase transition line is found from the effective potential at finite T and μ taking into account the plasma screening effects. We find the location of the critical end point (CEP to be (μCEP/Tc,TCEP/Tc∼(1.2,0.8, where Tc is the (pseudocritical temperature for the crossover phase transition at vanishing μ. This location lies within the region found by lattice inspired calculations. The results show that in the linear sigma model, the CEP's location in the phase diagram is expectedly determined solely through chiral symmetry breaking. The same is likely to be true for all other models which do not exhibit confinement, provided the proper treatment of the plasma infrared properties for the description of chiral symmetry restoration is implemented. Similarly, we also expect these corrections to be substantially relevant in the QCD phase diagram.

  8. Lifetime of electric flux tubes near the QCD phase transition

    International Nuclear Information System (INIS)

    Faroughy, Cyrus; Shuryak, Edward

    2010-01-01

    Electric flux tubes are a well-known attribute of the quantum chromodynamic (QCD) vacuum in which they manifest confinement of electric color charges. Recently, experimental results appeared which suggest that not only do those objects persist at temperatures T≅T c near the QCD phase transitions, but their decay is suppressed and the resulting clusters in Au-Au collisions are larger than in pp collisions (i.e., in vacuum). This correlates well with recent theoretical scenarios that view the QCD matter in the T≅T c region as a dual-magnetic plasma dominated by color-magnetic monopoles. In this view, the flux tubes are stabilized by dual-magnetic currents and are described by dual magnetohydrodynamics (DMHD). In this article, we calculate classically the dissipative effects in the flux tube. Such effects are associated with rescattering and finite conductivity of the matter. We derive the DMHD solution in the presence of dissipation and then estimate the lifetime of the electric flux tubes. The conclusion of this study is that a classical treatment leads to too short of a lifetime for the flux tubes.

  9. The QCD phase transition. From the microscopic mechanism to signals

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1997-01-01

    This talk consists of two very different parts: the first one deals with non-perturbative QCD and physics of the chiral restoration, the second with rather low-key (and still unfinished) work aiming at obtaining EOS and other properties of hot/dense hadronic matter from data on heavy ion collisions. The microscopic mechanism for chiral restoration phase transition is a transition from randomly placed tunneling events (instantons) at low T to a set of strongly correlated tunneling-anti-tunneling events (known as instanton-anti-instanton molecules) at high T. Many features of the transition can be explained in this simple picture, especially the critical line and its dependence on quark masses. This scenario predicts qualitative change of the basic quark-quark interactions around the phase transition line, with some states (such as pion-sigma ones) probably surviving event at T > T c . In the second half of the talk experimental data on collective flow in heavy ion collision are discussed its hydro-based description and relation to equation of state (EOS). A distinct feature of the QCD phase transition region is high degree of 'softness', (small ratio pressure/energy density). (author)

  10. QCD phase transition with chiral quarks and physical quark masses.

    Science.gov (United States)

    Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-08-22

    We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.

  11. Phase structure of lattice QCD for general number of flavors

    International Nuclear Information System (INIS)

    Iwasaki, Y.; Kanaya, K.; Yoshie, T.; Kaya, S.; Sakai, S.

    2004-01-01

    We investigate the phase structure of lattice QCD for the general number of flavors in the parameter space of gauge coupling constant and quark mass, employing the one-plaquette gauge action and the standard Wilson quark action. Performing a series of simulations for the number of flavors N F =6-360 with degenerate-mass quarks, we find that when N F ≥7 there is a line of a bulk first order phase transition between the confined phase and a deconfined phase at a finite current quark mass in the strong coupling region and the intermediate coupling region. The massless quark line exists only in the deconfined phase. Based on these numerical results in the strong coupling limit and in the intermediate coupling region, we propose the following phase structure, depending on the number of flavors whose masses are less than Λ d which is the physical scale characterizing the phase transition in the weak coupling region: When N F ≥17, there is only a trivial IR fixed point and therefore the theory in the continuum limit is free. On the other hand, when 16≥N F ≥7, there is a nontrivial IR fixed point and therefore the theory is nontrivial with anomalous dimensions, however, without quark confinement. Theories which satisfy both quark confinement and spontaneous chiral symmetry breaking in the continuum limit exist only for N F ≤6

  12. Cooling compact stars and phase transitions in dense QCD

    Energy Technology Data Exchange (ETDEWEB)

    Sedrakian, Armen [J.W. Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany)

    2016-03-15

    We report new simulations of cooling of compact stars containing quark cores and updated fits to the Cas A fast cooling data. Our model is built on the assumption that the transient behaviour of the star in Cas A is due to a phase transition within the dense QCD matter in the core of the star. Specifically, the fast cooling is attributed to an enhancement in the neutrino emission triggered by a transition from a fully gapped, two-flavor, red-green color-superconducting quark condensate to a superconducting crystalline or an alternative gapless, color-superconducting phase. The blue-colored condensate is modeled as a Bardeen-Cooper-Schrieffer (BCS)-type color superconductor with spin-one pairing order parameter. We study the sensitivity of the fits to the phase transition temperature, the pairing gap of blue quarks and the timescale characterizing the phase transition (the latter modelled in terms of a width parameter). Relative variations in these parameter around their best-fit values larger than 10{sup -3} spoil the fit to the data. We confirm the previous finding that the cooling curves show significant variations as a function of compact star mass, which allows one to account for dispersion in the data on the surface temperatures of thermally emitting neutron stars. (orig.)

  13. The chiral phase transition for two-flavour QCD at imaginary and zero chemical potential

    CERN Document Server

    Bonati, Claudio; de Forcrand, Philippe; Philipsen, Owe; Sanfillippo, Francesco

    2013-01-01

    The chiral symmetry of QCD with two massless quark flavours gets restored in a non-analytic chiral phase transition at finite temperature and zero density. Whether this is a first-order or a second-order transition has not yet been determined unambiguously, due to the difficulties of simulating light quarks. We investigate the nature of the chiral transition as a function of quark mass and imaginary chemical potential, using staggered fermions on N_t=4 lattices. At sufficiently large imaginary chemical potential, a clear signal for a first-order transition is obtained for small masses, which weakens with decreasing imaginary chemical potential. The second-order critical line m_c(mu_i), which marks the boundary between first-order and crossover behaviour, extrapolates to a finite m_c(mu_i=0) with known critical exponents. This implies a definitely first-order transition in the chiral limit on relatively coarse, N_t=4 lattices.

  14. The QCD Phase Diagram: Large Nc, Quarkyonic Matter and the Triple Point

    International Nuclear Information System (INIS)

    McLerran, L.

    2010-01-01

    I discuss the phase diagram of QCD in the large N c limit. Qarkyonic Matter is described. The properties of QCD matter as measured in the abundance of produced particles are shown to be consistent with this phase diagram. A possible triple point of Hadronic Matter, Deconfined Matter and Quarkyonic Matter is shown to explain various behaviors of ratios of particle abundances seen in CERN fixed target experiments. (author)

  15. Phase structure of thermal lattice QCD with N{sub f} = 2 twisted mass Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Ilgenfritz, E.M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Lombardo, M. P. [INFN, Laboratori Nazionali di Frascati (Italy); Mueller-Preussker, M.; Petschlies, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Philipsen, O.; Zeidlewicz, L. [Inst. fuer Theoretische Physik, Wilhelms-Univ. Muenster (Germany)

    2009-09-15

    We present numerical results for the phase diagram of lattice QCD at finite temperature in the formulation with twisted mass Wilson fermions and a tree-level Symanzik-improved gauge action. Our simulations are performed on lattices with temporal extent N{sub {tau}}=8, and lattice coupling {beta} ranging from strong coupling to the scaling domain. Covering a wide range in the space spanned by the lattice coupling {beta} and the hopping and twisted mass parameters {kappa} and {mu}, respectively, we obtain a comprehensive picture of the rich phase structure of the lattice theory. In particular, we verify the existence of an Aoki phase in the strong coupling region and the realisation of the Sharpe-Singleton scenario at intermediate couplings. In the weak coupling region we identify the phase boundary for the physical finite temperature phase transition/crossover. Its shape in the three-dimensional parameter space is consistent with Creutz's conjecture of a cone-shaped thermal transition surface. (orig.)

  16. Phenomena at the QCD phase transition in nonequilibrium chiral fluid dynamics (NχFD)

    Energy Technology Data Exchange (ETDEWEB)

    Nahrgang, Marlene [Duke University, Department of Physics, Durham, NC (United States); Herold, Christoph [Suranaree University of Technology, School of Physics, Nakhon Ratchasima (Thailand)

    2016-08-15

    Heavy-ion collisions performed in the beam energy range accessible by the NICA collider facility are expected to produce systems of extreme net-baryon densities and can thus reach yet unexplored regions of the QCD phase diagram. Here, one expects the phase transition between the plasma of deconfined quarks and gluons and the hadronic matter to be of first order. A discovery of the first-order phase transition would as well prove the existence of the QCD critical point, a landmark in the phase diagram. In order to understand possible signals of the first-order phase transition in heavy-ion collision experiments it is very important to develop dynamical models of the phase transition. Here, we discuss the opportunities of studying dynamical effects at the QCD first-order phase transition within our model of nonequilibrium chiral fluid dynamics. (orig.)

  17. Charged hadrons in local finite-volume QED+QCD with C* boundary conditions

    CERN Document Server

    Lucini, Biagio; Ramos, Alberto; Tantalo, Nazario

    2016-01-01

    In order to calculate QED corrections to hadronic physical quantities by means of lattice simulations, a coherent description of electrically-charged states in finite volume is needed. In the usual periodic setup, Gauss's law and large gauge transformations forbid the propagation of electrically-charged states. A possible solution to this problem, which does not violate the axioms of local quantum field theory, has been proposed by Wiese and Polley, and is based on the use of C* boundary conditions. We present a thorough analysis of the properties and symmetries of QED in isolation and QED coupled to QCD, with C* boundary conditions. In particular we learn that a certain class of electrically-charged states can be constructed in this setup in a fully consistent fashion, without relying on gauge fixing. We argue that this class of states covers most of the interesting phenomenological applications in the framework of numerical simulations. We also calculate finite-volume corrections to the mass of stable charg...

  18. Identifying Phase Space Boundaries with Voronoi Tessellations

    CERN Document Server

    Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2016-11-24

    Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis.

  19. Heavy-light flavor correlations and the QCD phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Chihiro [Institute of Theoretical Physics, University of Wroclaw, PL-50204 Wroclaw (Poland); Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main (Germany); Redlich, Krzysztof [Institute of Theoretical Physics, University of Wroclaw, PL-50204 Wroclaw (Poland)

    2016-12-15

    We discuss correlations between the light and heavy-light flavored mesons at finite temperature within a chiral effective theory implementing heavy quark symmetry. We show that the thermodynamics of the charmed mesons is strongly dragged by the chiral crossover dominated by the non-strange flavors. Consequently, the fluctuations carried by the states with strangeness can be used to characterize the onset of the chiral symmetry restoration.

  20. Extracting scattering phase shifts in higher partial waves from lattice QCD calculations

    Energy Technology Data Exchange (ETDEWEB)

    Luu, Thomas; Savage, Martin J.

    2011-06-01

    Lüscher’s method is routinely used to determine meson-meson, meson-baryon, and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from lattice QCD calculations—presently at unphysical light-quark masses. In this work we review the formalism and develop the requisite expressions to extract phase shifts describing meson-meson scattering in partial waves with angular momentum l≤6 and l=9. The implications of the underlying cubic symmetry, and strategies for extracting the phase shifts from lattice QCD calculations, are presented, along with a discussion of the signal-to-noise problem that afflicts the higher partial waves.

  1. Quark–hadron phase structure, thermodynamics, and magnetization of QCD matter

    Science.gov (United States)

    Nasser Tawfik, Abdel; Magied Diab, Abdel; Hussein, M. T.

    2018-05-01

    The SU(3) Polyakov linear-sigma model (PLSM) is systematically implemented to characterize the quark-hadron phase structure and to determine various thermodynamic quantities and the magnetization of quantum chromodynamic (QCD) matter. Using mean-field approximation, the dependence of the chiral order parameter on a finite magnetic field is also calculated. Under a wide range of temperatures and magnetic field strengths, various thermodynamic quantities including trace anomaly, speed of sound squared, entropy density, and specific heat are presented, and some magnetic properties are described as well. Where available these results are compared to recent lattice QCD calculations. The temperature dependence of these quantities confirms our previous finding that the transition temperature is reduced with the increase in the magnetic field strength, i.e. QCD matter is characterized by an inverse magnetic catalysis. Furthermore, the temperature dependence of the magnetization showing that QCD matter has paramagnetic properties slightly below and far above the pseudo-critical temperature is confirmed as well. The excellent agreement with recent lattice calculations proves that our QCD-like approach (PLSM) seems to possess the correct degrees of freedom in both the hadronic and partonic phases and describes well the dynamics deriving confined hadrons to deconfined quark-gluon plasma.

  2. Kaon-nucleon S-wave phase shifts in a QCD-motivated quark model

    International Nuclear Information System (INIS)

    Bender, I.; Dosch, H.G.

    1982-01-01

    We calculate kaon-nucleon central potentials and S-wave phase shifts for I = 0 and I = 1 in an QCD-motivated quark model. In our model the K-N interaction is derived from short-range perturbative quark-quark interactions. (orig.)

  3. Testing the QCD string at large Nc from the thermodynamics of the hadronic phase

    Science.gov (United States)

    Cohen, Thomas D.

    2007-02-01

    It is generally believed that in the limit of a large number of colors (Nc) the description of confinement via flux tubes becomes valid and QCD can be modeled accurately via a hadronic string theory—at least for highly excited states. QCD at large Nc also has a well-defined deconfinement transition at a temperature Tc. In this talk it is shown how the thermodyanmics of the metastable hadronic phase of QCD (above Tc) at large NC can be related directly to properties of the effective QCD string. The key points in the derivation is the weakly interacting nature of hadrons at large Nc and the existence of a Hagedorn temperature TH for the effective string theory. From this it can be seen at large Nc and near TH, the energy density and pressure of the hadronic phase scale as E ˜ (TH - T)-(D⊥-6)/2 (for D⊥ TH - T)-(D⊥-4)/2 (for D⊥ TH > Tc this behavior is of relevance only to the metastable phase. The prospect of using this result to extract D⊥ via lattice simulations of the metastable hadronic phase at moderately large Nc is discussed.

  4. QCD phase diagram under an external magnetic field

    Science.gov (United States)

    Ferreira, Marcio Rafael Baptista

    Neste trabalho e investigado o impacto de um campo magnetico externo na estrutura do diagrama de fases da Cromodinâmica Quântica (QCD). O estudo e realizado utilizando o modelo efetivo de Nambu-Jona-Lasinio para tres sabores acoplado ao loop de Polyakov (modelo de PNJL). A interacao de entanglement (modelo de EPNJL) na presenca de um campo magnetico e tambem estudada. Ambas as transicoes quiral e de desconfinamento na presenca de um campo magnetico externo podem ser analisadas usando os modelos de PNJL e EPNJL. Para o modelo de EPNJL e verificado que a coincidencia das temperaturas pseudocriticas de ambas as transicoes quiral e de deconfinamento dependem da parametrizacao da interacao de entanglement. E realizado um estudo sistematico do efeito de um campo magnetico externo nas transicoes quiral e de desconfinamento a potencial quimico barionico nulo, e.g., calculando a dependencia das temperaturas pesudocriticas com a intensidade do campo magnetico. O impacto de um campo magnetico externo no comportamento do quark estranho e analizado detalhadamente. E mostrado que a temperatura pseudocritica associada a transicao quiral do quark estranho e pouco sensivel a presenca de um campo magnetico externo. Alem disso, a sua grande massa corrente torna o quark estranho pouco sensivel ao termo de 't Hooft, contrariamente a forte influencia que tem nos quarks leves. Ambos os modelos de PNJL e EPNJL preveem o efeito de Catalise Magnetica a qualquer temperatura, mas nao reproduzem o efeito de Catalise Magnetica Inversa (CMI) em redor da temperatura pseudocritica de transicao, obtido em resultados recentes da LQCD. Mostramos que e possivel reproduzir a CMI se a intensidade da interacao entre quarks diminuir com o campo magnetico. Propomos dois mecanismos que reproduzem o efeito de CMI, que assumem o enfraquecimento da constante de acoplamento da interacao escalar com o aumento da intensidade do campo magnetico. O diagrama de fases e calculado para varios cenarios de isospin e

  5. Exploring the QCD Phase Structure with Beam Energy Scan in Heavy-ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaofeng, E-mail: xfluo@mail.ccnu.edu.cn

    2016-12-15

    Beam energy scan programs in heavy-ion collisions aim to explore the QCD phase structure at high baryon density. Sensitive observables are applied to probe the signatures of the QCD phase transition and critical point in heavy-ion collisions at RHIC and SPS. Intriguing structures, such as dip, peak and oscillation, have been observed in the energy dependence of various observables. In this paper, an overview is given and corresponding physics implications will be discussed for the experimental highlights from the beam energy scan programs at the STAR, PHENIX and NA61/SHINE experiments. Furthermore, the beam energy scan phase II at RHIC (2019–2020) and other future experimental facilities for studying the physics at low energies will be also discussed.

  6. On the existence of a phase transition for QCD with three light quarks

    International Nuclear Information System (INIS)

    Brown, F.R.; Butler, F.P.; Chen, H.; Christ, N.H.; Dong, Z.; Schaffer, W.; Unger, L.I.; Vaccarino, A.

    1990-01-01

    We report full QCD simulations on a 16 3 x4 lattice. For two degenerate flavors no finite-temperature phase transition is found for quark masses of ma=0.01 and 0.025, where a is the lattice spacing, while for three degenerate flavors a first-order transition is easily seen for ma=0.025. Nature, with nearly massless up and down quarks and one heavier strange quark, lies between these two cases. For m u ,dda=0.025 and m s a=0.1 we find that m K /m ρ =0.46(1) and that no transition occurs, calling into question the existence of a QCD phase transition

  7. On the thermal phase structure of QCD at vanishing chemical potentials

    CERN Document Server

    Kabana, S

    2011-01-01

    The hypothesis is investigated, that the thermal structure of QCD phases at and near zero chemical potentials is determined by long range coherence, inducing the gauge boson pair condensate. The latter reflects the dynamical nature of gauge boson Bogoliubov transformations at the origin of localization of all color fields inside hadrons at low temperature in contrast to loss of such localization above a unique critical temperature.

  8. Towards a new strategy of searching for QCD phase transition in heavy ion collisions

    International Nuclear Information System (INIS)

    Ploszajczak, M.; Shanenko, A.A.; Toneev, V.D.; Joint Inst. for Nuclear Research, Dubna

    1995-01-01

    The Hung and Shuryak arguments are reconsidered in favour of searching for the deconfinement phase transition in heavy ion collisions downward from the nominal SPS energy, at E lab ∼ 30 GeV/A where the fireball lifetime is the longest one. Using the recent lattice QCD data and the mixed phase model, it is shown that the deconfinement transition might occur at the bombarding energies as low as E lab = 3-5 GeV/A. Attention is drawn to the study of the mixed phase of nuclear matter in the collision energy range E lab = 2-10 GeV/A. (author)

  9. Confinement-deconfinement phase transition in hot and dense QCD at large N

    International Nuclear Information System (INIS)

    Zhitnitsky, Ariel R.

    2008-01-01

    We conjecture that the confinement-deconfinement phase transition in QCD at large number of colors N and N f c where θ dependence experiences a sudden change in behavior [A. Parnachev, A. Zhitnitsky, (arXiv: 0806.1736 [hep-ph])]. The conjecture is also supported by quantum field theory arguments when the instanton calculations (which trigger the θ dependence) are under complete theoretical control for T>T c , suddenly break down immediately below T c with sharp changes in the θ dependence. Finally, the conjecture is supported by a number of numerical lattice results. We employ this conjecture to study confinement-deconfinement phase transition of dense QCD at large μ in large N limit by analyzing the θ dependence. We find that the confinement-deconfinement phase transition at N f c ∼√(N)Λ QCD . This result agrees with recent findings by McLerran and Pisarski [L. McLerran, R.D. Pisarski, Nucl. Phys. A 796 (2007) 83]. We also speculate on case when N f ∼N

  10. Topology in the SU(Nf) chiral symmetry restored phase of unquenched QCD and axion cosmology

    Science.gov (United States)

    Azcoiti, Vicente

    2018-03-01

    The axion is one of the more interesting candidates to make the dark matter of the universe, and the axion potential plays a fundamental role in the determination of the dynamics of the axion field. Moreover, the way in which the U(1)A anomaly manifests itself in the chiral symmetry restored phase of QCD at high temperature could be tested when probing the QCD phase transition in relativistic heavy ion collisions. With these motivations, we investigate the physical consequences of the survival of the effects of the U(1)A anomaly in the chiral symmetric phase of QCD, and show that the free energy density is a singular function of the quark mass m, in the chiral limit, and that the σ and π susceptibilities diverge in this limit at any T ≥ Tc. We also show that the difference between the π and t;δ susceptibilities diverges in the chiral limit at any T ≥ Tc, a result that can be contrasted with the existing lattice calculations; and discuss on the generalization of these results to the Nf ≥ 3 model.

  11. The QCD phase transitions: From mechanism to observables

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, E.V.

    1997-09-22

    This paper contains viewgraphs on quantum chromodynamic phase transformations during heavy ion collisions. Some topics briefly described are: finite T transitions of I molecule pairs; finite density transitions of diquarks polymers; and the softtest point of the equation of state as a source of discontinuous behavior as a function of collision energy or centrality.

  12. Critical point in the QCD phase diagram for extremely strong background magnetic fields

    International Nuclear Information System (INIS)

    Endrödi, Gergely

    2015-01-01

    Lattice simulations have demonstrated that a background (electro)magnetic field reduces the chiral/deconfinement transition temperature of quantum chromodynamics for eB<1 GeV 2 . On the level of observables, this reduction manifests itself in an enhancement of the Polyakov loop and in a suppression of the light quark condensates (inverse magnetic catalysis) in the transition region. In this paper, we report on lattice simulations of 1+1+1-flavor QCD at an unprecedentedly high value of the magnetic field eB=3.25 GeV 2 . Based on the behavior of various observables, it is shown that even at this extremely strong field, inverse magnetic catalysis prevails and the transition, albeit becoming sharper, remains an analytic crossover. In addition, we develop an algorithm to directly simulate the asymptotically strong magnetic field limit of QCD. We find strong evidence for a first-order deconfinement phase transition in this limiting theory, implying the presence of a critical point in the QCD phase diagram. Based on the available lattice data, we estimate the location of the critical point.

  13. Chiral phase transition of QCD with N{sub f}=2+1 flavors from holography

    Energy Technology Data Exchange (ETDEWEB)

    Li, Danning [Department of Physics, Jinan University,Guangzhou 510632 (China); Huang, Mei [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); University of Chinese Academy of Sciences,Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,Beijing 100049 (China)

    2017-02-08

    Chiral phase transition for three-flavor N{sub f}=2+1 QCD with m{sub u}=m{sub d}≠m{sub s} is investigated in a modified soft-wall holographic QCD model. Solving temperature dependent chiral condensates from equations of motion of the modified soft-wall model, we extract the quark mass dependence of the order of chiral phase transition in the case of N{sub f}=2+1, and the result is in agreement with the “Columbia Plot”, which is summarized from lattice simulations and other non-perturbative methods. First order phase transition is observed around the three flavor chiral limit m{sub u/d}=0,m{sub s}=0, while at sufficient large quark masses it turns to be a crossover phase transition. The first order and crossover regions are separated by a second order phase transition line. The second order line is divided into two parts by the m{sub u/d}=m{sub s} line, and the m{sub s} dependence of the transition temperature in these two parts are totally contrast, which might indicate that the two parts are governed by different universality classes.

  14. Phase structure of hot and/or dense QCD with the Schwinger-Dyson equation

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Satoshi [Nagoya Univ., Nagoya, Aichi (Japan)

    2002-09-01

    We investigate the phase structure of the hot and/or dense QCD using the Schwinger-Dyson equation (SDE) with the improved ladder approximation in the Landau gauge. We solve the coupled SDE for the Majorana masses of the quark and antiquark (separately from the SDE for the Dirac mass) in the finite temperature and/or chemical potential region. The resultant phase structure is rather different from those by other analyses. In addition to this analysis we investigate the phase structure with the different two types of the SDE, in one of which the Majorana mass gap of the antiquark is neglected, while in the other of which the Majorana mass gap of the quark and that of the antiquark are set to be equal. The effect of the Debye mass of the gluon on the phase structure is also investigated. (author)

  15. Masses of the Goldstone modes in the CFL phase of QCD at finite density

    CERN Document Server

    Manuel, C; Manuel, Cristina; Tytgat, Michel H. G.

    2000-01-01

    We construct the U_L(3) x U_R(3) effective lagrangian which encodes the dynamics of the low energy pseudoscalar excitations in the Color-Flavor-Locking superconducting phase of QCD at finite quark density. We include the effects of instanton-induced interactions and study the mass pattern of the pseudoscalar mesons. A tentative comparison with the analytical estimate for the gap suggests that some of these low energy momentum modes are not stable for moderate values of the quark chemical potential.

  16. Sum Rules in the CFL Phase of QCD at finite density

    CERN Document Server

    Manuel, C; Manuel, Cristina; Tytgat, Michel H.G.

    2001-01-01

    We study the asymmetry between the vector current and axial-vector current correlators in the colour-flavour locking (CFL) phase of QCD at finite density. Using Weinberg's sum rules, we compute the decay constant $f_\\pi$ of the Goldstone modes and find agreement with previous derivations. Using Das's sum rule, we also estimate the contribution of electromagnetic interactions to the mass of the charged modes. Finally, we comment on low temperature corrections to the effective field theory describing the Goldstone bosons.

  17. Aspects of the Color Flavor Locking phase of QCD in the Nambu-Jona Lasinio approximation

    CERN Document Server

    Casalbuoni, Roberto; Nardulli, Giuseppe; Ruggieri, Marco

    2003-01-01

    We study two aspects of the CFL phase of QCD in the NJL approximation. The first one is the issue of the dependence on \\mu of the ultraviolet cutoff in the gap equation, which is solved allowing a running coupling constant. The second one is the dependence of the gap on the strange quark mass; using the high density effective theory we perform an expansion in the parameter (m_s/\\mu)^2 after checking that its numerical validity is very good already at first order.

  18. The pion quasiparticle in the low-temperature phase of QCD

    Directory of Open Access Journals (Sweden)

    Brandt Bastian B.

    2018-01-01

    Full Text Available We extend our previous studies [PhysRevD.90.054509, PhysRevD.92.094510] of the pion quasiparticle in the low-temperature phase of two-flavor QCD with support from chiral effective theory. This includes the analysis performed on a finite temperature ensemble of size 20 × 643 at T ≈ 151MeV and a lighter zero-temperature pion mass mπ ≈ 185 MeV. Furthermore, we investigate the Gell-Mann–Oakes-Renner relation at finite temperature and the Dey-Eletsky-Ioffe mixing theorem at finite quark mass.

  19. The phase diagram of high temperature QCD with three flavors of improved staggered quarks

    International Nuclear Information System (INIS)

    Bernard, C.; Burch, T.; DeTar, C.E.; Gottlieb, Steven; Gregory, E.B.; Heller, U.M.; Hetrick, J.E.; Sugar, R.L.; Toussaint, D.

    2004-01-01

    We report on progress in our study of high temperature QCD with three flavors of improved staggered quarks. Simulations are being carried out with three degenerate quarks with masses less than or equal to the strange quark mass, m s , and with degenerate up and down quarks with masses in the range 0.1 m s ≤ m u,d ≤ 0.6 m s , and the strange quark mass fixed near its physical value. For the quark masses studied to date we find rapid crossovers, which sharpen as the quark mass is reduced, rather than bona fide phase transitions

  20. Towards laboratory detection of topological vortices in superfluid phases of QCD

    Science.gov (United States)

    Das, Arpan; Dave, Shreyansh S.; de, Somnath; Srivastava, Ajit M.

    2017-10-01

    Topological defects arise in a variety of systems, e.g. vortices in superfluid helium to cosmic strings in the early universe. There is an indirect evidence of neutron superfluid vortices from the glitches in pulsars. One also expects that the topological defects may arise in various high baryon density phases of quantum chromodynamics (QCD), e.g. superfluid topological vortices in the color flavor locked (CFL) phase. Though vastly different in energy/length scales, there are universal features in the formation of all these defects. Utilizing this universality, we investigate the possibility of detecting these topological superfluid vortices in laboratory experiments, namely heavy-ion collisions (HICs). Using hydrodynamic simulations, we show that vortices can qualitatively affect the power spectrum of flow fluctuations. This can give an unambiguous signal for superfluid transition resulting in vortices, allowing for the check of defect formation theories in a relativistic quantum field theory system, and the detection of superfluid phases of QCD. Detection of nucleonic superfluid vortices in low energy HICs will give opportunity for laboratory controlled study of their properties, providing crucial inputs for the physics of pulsars.

  1. Chiral phase transition and Anderson localization in the instanton liquid model for QCD

    International Nuclear Information System (INIS)

    Garcia-Garcia, Antonio M.; Osborn, James C.

    2006-01-01

    We study the spectrum and eigenmodes of the QCD Dirac operator in a gauge background given by an instanton liquid model (ILM) at temperatures around the chiral phase transition. Generically we find the Dirac eigenvectors become more localized as the temperature is increased. At the chiral phase transition, both the low lying eigenmodes and the spectrum of the QCD Dirac operator undergo a transition to localization similar to the one observed in a disordered conductor. This suggests that Anderson localization is the fundamental mechanism driving the chiral phase transition. We also find an additional temperature dependent mobility edge (separating delocalized from localized eigenstates) in the bulk of the spectrum which moves toward lower eigenvalues as the temperature is increased. In both regions, the origin and the bulk, the transition to localization exhibits features of a 3D Anderson transition including multifractal eigenstates and spectral properties that are well described by critical statistics. Similar results are obtained in both the quenched and the unquenched case though the critical temperature in the unquenched case is lower. Finally we argue that our findings are not in principle restricted to the ILM approximation and may also be found in lattice simulations

  2. Quantum chaos and chiral symmetry at the QCD and QED phase transition

    International Nuclear Information System (INIS)

    Bittner, Elmar; Markum, Harald; Pullirsch, Rainer

    2001-01-01

    We investigate the eigenvalue spectrum of the staggered Dirac matrix in SU(3) gauge theory and in full QCD as well as in quenched U(1) theory. As a measure of the fluctuation properties of the eigenvalues, we consider the nearest-neighbor spacing distribution. We find that in all regions of their phase diagrams, compact lattice gauge theories have bulk spectral correlations given by random matrix theory, which is an indication for quantum chaos. In the confinement phase, the low-lying Dirac spectrum of these quantum field theories is well described by random matrix theory, exhibiting universal behavior. Related results for gauge theories with minimal coupling are now discussed also in the chirally symmetric phase

  3. Towards a new strategy of searching for QCD phase transition in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ploszajczak, M. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Shanenko, A.A. [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Lab. of Theoretical Physics; Toneev, V.D. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)]|[Joint Inst. for Nuclear Research, Dubna (Russian Federation). Lab. of Theoretical Physics

    1995-12-31

    The Hung and Shuryak arguments are reconsidered in favour of searching for the deconfinement phase transition in heavy ion collisions downward from the nominal SPS energy, at E{sub lab} {approx} 30 GeV/A where the fireball lifetime is the longest one. Using the recent lattice QCD data and the mixed phase model, it is shown that the deconfinement transition might occur at the bombarding energies as low as E{sub lab} = 3-5 GeV/A. Attention is drawn to the study of the mixed phase of nuclear matter in the collision energy range E{sub lab} = 2-10 GeV/A. (author). 18 refs.

  4. The cosmic QCD phase transition with dense matter and its gravitational waves from holography

    Science.gov (United States)

    Ahmadvand, M.; Bitaghsir Fadafan, K.

    2018-04-01

    Consistent with cosmological constraints, there are scenarios with the large lepton asymmetry which can lead to the finite baryochemical potential at the cosmic QCD phase transition scale. In this paper, we investigate this possibility in the holographic models. Using the holographic renormalization method, we find the first order Hawking-Page phase transition, between the Reissner-Nordström AdS black hole and thermal charged AdS space, corresponding to the de/confinement phase transition. We obtain the gravitational wave spectra generated during the evolution of bubbles for a range of the bubble wall velocity and examine the reliability of the scenarios and consequent calculations by gravitational wave experiments.

  5. The coherent state variational algorithm and the QCD deconfinement phase transition

    International Nuclear Information System (INIS)

    Somsky, W.R.

    1989-01-01

    This thesis describes the coherent state variational algorithm, its implementation in a recently completed set of computer programs, and its application to the study of the QCD deconfinement phase transition. The coherent state variational algorithm is a computational method for studying the large-N limit of non-abelian gauge theories by direct exploitation of the classical nature of this limit. Unlike Monte Carlo methods, this technique is applicable to both euclidean and hamiltonian formulations of lattice gauge theories and is deterministic, rather than statistical, in nature. The first part of this thesis presents the theoretical basis of the coherent state algorithm and describes the application of the algorithm, to non-abelian lattice gauge theories. The second part describes the symbolic methods involved in the computer implementation of the coherent state algorithm and gives an overview of the programs which form the full coherent state implementation. The final part of this thesis discusses the application of the coherent state algorithm to the study of the QCD deconfinement phase transition at large N. The results obtained are indicative of a second-order transition for lattices of temporal extent N ν = 1 and N τ = 2 in both three and four space-time dimensions

  6. Chiral phase transition of three flavor QCD with nonzero magnetic field using standard staggered fermions

    Science.gov (United States)

    Tomiya, Akio; Ding, Heng-Tong; Mukherjee, Swagato; Schmidt, Christian; Wang, Xiao-Dan

    2018-03-01

    Lattice simulations for (2+1)-flavor QCD with external magnetic field demon-strated that the quark mass is one of the important parameters responsible for the (inverse) magnetic catalysis. We discuss the dependences of chiral condensates and susceptibilities, the Polyakov loop on the magnetic field and quark mass in three degenerate flavor QCD. The lattice simulations are performed using standard staggered fermions and the plaquette action with spatial sizes Nσ = 16 and 24 and a fixed temporal size Nτ = 4. The value of the quark masses are chosen such that the system undergoes a first order chiral phase transition and crossover with zero magnetic field. We find that in light mass regime, the quark chiral condensate undergoes magnetic catalysis in the whole temperature region and the phase transition tend to become stronger as the magnetic field increases. In crossover regime, deconfinement transition temperature is shifted by the magnetic field when quark mass ma is less than 0:4. The lattice cutoff effects are also discussed.

  7. Micellar phase boundaries under the influence of ethyl alcohol

    International Nuclear Information System (INIS)

    Bergeron, Denis E.

    2016-01-01

    The Compton spectrum quenching technique is used to monitor the effect of ethyl alcohol (EtOH) additions on phase boundaries in two systems. In toluenic solutions of the nonionic surfactant, Triton X-100, EtOH shifts the boundary separating the first clear phase from the first turbid phase to higher water:surfactant ratios. In a commonly used scintillant, Ultima Gold AB, the critical micelle concentration is not shifted. The molecular interactions behind the observations and implications for liquid scintillation counting are discussed. - Highlights: • Compton spectrum quenching technique applied to find micellar phase boundaries. • Toluenic Triton X-100 and Ultima Gold AB investigated. • Ethyl alcohol affects phase boundaries in Triton X-100, not in Ultima Gold AB. • Phase boundary observations discussed in terms of relevant molecular interactions.

  8. Scattering phase shift for elastic two pion scattering and the rho resonance in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gutzwiller, Simone

    2012-10-08

    In this thesis we use lattice QCD to compute scattering phase shifts for elastic two-pion scattering in the isospin I=1 channel. Using Luescher's formalism, we derive the scattering phase shifts for different total momenta of the two-pion system in a non-rest frame. Furthermore we analyse the symmetries of the non-rest frame lattices and construct 2-pion and rho operators transforming in accordance with these symmetries. The data was collected for a 32{sup 3} x 64 and a 40{sup 3} x 64 lattice with N{sub f}=2 clover improved Wilson fermions at a pion mass around 290 MeV and a lattice spacing of about 0.072 fm.

  9. Scattering phase shift for elastic two pion scattering and the rho resonance in lattice QCD

    International Nuclear Information System (INIS)

    Gutzwiller, Simone

    2012-01-01

    In this thesis we use lattice QCD to compute scattering phase shifts for elastic two-pion scattering in the isospin I=1 channel. Using Luescher's formalism, we derive the scattering phase shifts for different total momenta of the two-pion system in a non-rest frame. Furthermore we analyse the symmetries of the non-rest frame lattices and construct 2-pion and rho operators transforming in accordance with these symmetries. The data was collected for a 32 3 x 64 and a 40 3 x 64 lattice with N f =2 clover improved Wilson fermions at a pion mass around 290 MeV and a lattice spacing of about 0.072 fm.

  10. QCD-Electroweak First-Order Phase Transition in a Supercooled Universe

    Science.gov (United States)

    Iso, Satoshi; Serpico, Pasquale D.; Shimada, Kengo

    2017-10-01

    If the electroweak sector of the standard model is described by classically conformal dynamics, the early Universe evolution can be substantially altered. It is already known that—contrarily to the standard model case—a first-order electroweak phase transition may occur. Here we show that, depending on the model parameters, a dramatically different scenario may happen: A first-order, six massless quark QCD phase transition occurs first, which then triggers the electroweak symmetry breaking. We derive the necessary conditions for this dynamics to occur, using the specific example of the classically conformal B -L model. In particular, relatively light weakly coupled particles are predicted, with implications for collider searches. This scenario is also potentially rich in cosmological consequences, such as renewed possibilities for electroweak baryogenesis, altered dark matter production, and gravitational wave production, as we briefly comment upon.

  11. QCD-Electroweak First-Order Phase Transition in a Supercooled Universe.

    Science.gov (United States)

    Iso, Satoshi; Serpico, Pasquale D; Shimada, Kengo

    2017-10-06

    If the electroweak sector of the standard model is described by classically conformal dynamics, the early Universe evolution can be substantially altered. It is already known that-contrarily to the standard model case-a first-order electroweak phase transition may occur. Here we show that, depending on the model parameters, a dramatically different scenario may happen: A first-order, six massless quark QCD phase transition occurs first, which then triggers the electroweak symmetry breaking. We derive the necessary conditions for this dynamics to occur, using the specific example of the classically conformal B-L model. In particular, relatively light weakly coupled particles are predicted, with implications for collider searches. This scenario is also potentially rich in cosmological consequences, such as renewed possibilities for electroweak baryogenesis, altered dark matter production, and gravitational wave production, as we briefly comment upon.

  12. Chiral phase transition in the soft-wall model of AdS/QCD

    International Nuclear Information System (INIS)

    Chelabi, Kaddour; Fang, Zhen; Huang, Mei; Li, Danning; Wu, Yue-Liang

    2016-01-01

    We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t’Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realized perfectly. In the two-flavor case, it gives a second order chiral phase transition in the chiral limit, while the transition turns to be a crossover for any finite quark mass. In the case of three-flavor, the phase transition becomes a first order one in the chiral limit, while above sufficient large quark mass it turns to be a crossover again. This scenario agrees exactly with the current understanding on chiral phase transition from lattice QCD and other effective model studies.

  13. Phase diagram of dense two-color QCD within lattice simulations

    Directory of Open Access Journals (Sweden)

    Braguta V.V.

    2017-01-01

    Full Text Available We present the results of a low-temperature scan of the phase diagram of dense two-color QCD with Nf = 2 quarks. The study is conducted using lattice simulation with rooted staggered quarks. At small chemical potential we observe the hadronic phase, where the theory is in a confining state, chiral symmetry is broken, the baryon density is zero and there is no diquark condensate. At the critical point μ = mπ/2 we observe the expected second order transition to Bose-Einstein condensation of scalar diquarks. In this phase the system is still in confinement in conjunction with nonzero baryon density, but the chiral symmetry is restored in the chiral limit. We have also found that in the first two phases the system is well described by chiral perturbation theory. For larger values of the chemical potential the system turns into another phase, where the relevant degrees of freedom are fermions residing inside the Fermi sphere, and the diquark condensation takes place on the Fermi surface. In this phase the system is still in confinement, chiral symmetry is restored and the system is very similar to the quarkyonic state predicted by SU(Nc theory at large Nc.

  14. A grain boundary phase transition in Si–Au

    International Nuclear Information System (INIS)

    Ma, Shuailei; Meshinchi Asl, Kaveh; Tansarawiput, Chookiat; Cantwell, Patrick R.; Qi, Minghao; Harmer, Martin P.; Luo, Jian

    2012-01-01

    A grain boundary transition from a bilayer to an intrinsic (nominally clean) boundary is observed in Si–Au. An atomically abrupt transition between the two complexions (grain boundary stabilized phases) implies the occurrence of a first-order interfacial phase transition associated with a discontinuity in the interfacial excess. This observation supports a grain-boundary complexion theory with broad applications. This transition is atypical in that the monolayer complexion is absent. A model is proposed to explain the bilayer stabilization and the origin of this complexion transition.

  15. Phases of QCD, thermal quasiparticles, and dilepton radiation from a fireball

    International Nuclear Information System (INIS)

    Renk, Thorsten; Schneider, Roland; Weise, Wolfram

    2002-01-01

    We calculate dilepton production rates from a fireball adapted to the kinematical conditions realized in ultrarelativistic heavy-ion collisions over a broad range of beam energies. The freeze-out state of the fireball is fixed by hadronic observables. We use this information combined with the initial geometry of the collision region to follow the space-time evolution of the fireball. Assuming entropy conservation, its bulk thermodynamic properties can then be uniquely obtained once the equation of state (EOS) is specified. The high-temperature quark-gluon plasma (QGP) phase is modeled by a nonperturbative quasiparticle model that incorporates a phenomenological confinement description, adapted to lattice QCD results. For the hadronic phase, we interpolate the EOS into the region where a resonance gas approach seems applicable, keeping track of a possible overpopulation of the pion phase space. In this way, the fireball evolution is specified without reference to dilepton data, thus eliminating it as an adjustable parameter in the rate calculations. Dilepton emission in the QGP phase is then calculated within the quasiparticle model. In the hadronic phase, both temperature and finite baryon density effects on the photon spectral function are incorporated. Existing dilepton data from CERES at 158 and 40 A GeV Pb-Au collisions are well described, and a prediction for the PHENIX setup at RHIC for √(s)=200A GeV is given

  16. The QCD Phase Diagram for Three Degenerate Flavors and Small Baryon Density

    CERN Document Server

    De Forcrand, Philippe; Forcrand, Ph. de

    2003-01-01

    We present results for the phase diagram of three flavor QCD for \\mu_B ~ 500 MeV. Our simulations are performed with imaginary chemical potential \\mu_I for which the fermion determinant is positive. Physical observables are then fitted by truncated Taylor series and continued to real chemical potential. We map out the location of the critical line T_c(\\mu_B) with an accuracy up to terms of order (\\mu_B/T)^6. We also give first results on a determination of the critical endpoint of the transition and its quark mass dependence. Our results for the endpoint differ significantly from those obtained by other methods, and we discuss possible reasons for this.

  17. Towards finite density QCD with Taylor expansions

    International Nuclear Information System (INIS)

    Karsch, F.; Schaefer, B.-J.; Wagner, M.; Wambach, J.

    2011-01-01

    Convergence properties of Taylor expansions of observables, which are also used in lattice QCD calculations at non-zero chemical potential, are analyzed in an effective N f =2+1 flavor Polyakov quark-meson model. A recently developed algorithmic technique allows the calculation of higher-order Taylor expansion coefficients in functional approaches. This novel technique is for the first time applied to an effective N f =2+1 flavor Polyakov quark-meson model and the findings are compared with the full model solution at finite densities. The results are used to discuss prospects for locating the QCD phase boundary and a possible critical endpoint in the phase diagram.

  18. Boundary condition histograms for modulated phases

    International Nuclear Information System (INIS)

    Benakli, M.; Gabay, M.; Saslow, W.M.

    1997-11-01

    Boundary conditions strongly affect the results of numerical computations for finite size inhomogeneous or incommensurate structures. We present a method which allows to deal with this problem, both for ground state and for critical properties: it combines fluctuating boundary conditions and specific histogram techniques. Our approach concerns classical as well as quantum systems. In particular, current-current correlation functions, which probe large scale coherence of the states, can be accurately evaluated. We illustrate our method on a frustrated two dimensional XY model. (author)

  19. I = 2 ππ scattering phase shift from the HAL QCD method with the LapH smearing

    Science.gov (United States)

    Kawai, Daisuke; Aoki, Sinya; Doi, Takumi; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Nemura, Hidekatsu; Sasaki, Kenji

    2018-04-01

    Physical observables, such as the scattering phase shifts and binding energy, calculated from the non-local HAL QCD potential do not depend on the sink operators used to define the potential. In practical applications, the derivative expansion of the non-local potential is employed, so that physical observables may receive some scheme dependence at a given order of the expansion. In this paper, we compare the I=2ππ scattering phase shifts obtained in the point-sink scheme (the standard scheme in the HAL QCD method) and the smeared-sink scheme (the LapH smearing newly introduced in the HAL QCD method). Although potentials in different schemes have different forms as expected, we find that, for reasonably small smearing size, the resultant scattering phase shifts agree with each other if the next-to-leading-order (NLO) term is taken into account. We also find that the HAL QCD potential in the point-sink scheme has a negligible NLO term for a wide range of energies, which implies good convergence of the derivative expansion, while the potential in the smeared-sink scheme has a non-negligible NLO contribution. The implications of this observation for future studies of resonance channels (such as the I=0 and 1ππ scatterings) with smeared all-to-all propagators are briefly discussed.

  20. Light nuclei production as a probe of the QCD phase diagram

    Science.gov (United States)

    Sun, Kai-Jia; Chen, Lie-Wen; Ko, Che Ming; Pu, Jie; Xu, Zhangbu

    2018-06-01

    It is generally believed that the quark-hadron transition at small values of baryon chemical potentials μB is a crossover but changes to a first-order phase transition with an associated critical endpoint (CEP) as μB increases. Such a μB-dependent quark-hadron transition is expected to result in a double-peak structure in the collision energy dependence of the baryon density fluctuation in heavy-ion collisions with one at lower energy due to the spinodal instability during the first-order phase transition and another at higher energy due to the critical fluctuations in the vicinity of the CEP. By analyzing the data on the p, d and 3H yields in central heavy-ion collisions within the coalescence model for light nuclei production, we find that the relative neutron density fluctuation Δρn = 〈(δρn) 2 〉 /〈ρn 〉 2 at kinetic freeze-out indeed displays a clear peak at √{sNN } = 8.8GeV and a possible strong re-enhancement at √{sNN } = 4.86GeV. Our findings thus provide a strong support for the existence of a first-order phase transition at large μB and its critical endpoint at a smaller μB in the temperature versus baryon chemical potential plane of the QCD phase diagram.

  1. Phase boundary effects in metal matrix embedded glasses

    International Nuclear Information System (INIS)

    Schiewer, E.

    1979-01-01

    An investigation was performed to study reactions at the phase boundaries of glass-lead composites at temperatures up to the softening point of the glass. Some metal was oxidized at the boundary and penetrated into the glass. Solid-state diffusion was rate controlling. In the case of a phosphate glass, fission products were depleted in the boundary area. Molybdenum migrated into the lead, and cesium migrated into the glass core. 2 figures, 3 tables

  2. Phase diagram of two-color QCD in a Dyson-Schwinger approach

    Energy Technology Data Exchange (ETDEWEB)

    Buescher, Pascal Joachim

    2014-04-28

    We investigate two-color QCD with N{sub f}=2 at finite temperatures and chemical potentials using a Dyson-Schwinger approach. We employ two different truncations for the quark loop in the gluon DSE: one based on the Hard-Dense/Hard-Thermal Loop (HDTL) approximation of the quark loop and one based on the back-coupling of the full, self-consistent quark propagator (SCQL). We compare results for the different truncations with each other as well as with other approaches. As expected, we find a phase dominated by the condensation of quark-quark pairs. This diquark condensation phase overshadows the critical end point and first-order phase transition which one finds if diquark condensation is neglected. The phase transition from the phase without diquark condensation to the diquark-condensation phase is of second order. We observe that the dressing with massless quarks in the HDTL approximation leads to a significant violation of the Silver Blaze property and to a too small diquark condensate. The SCQL truncation, on the other hand, is found to reproduce all expected features of the μ-dependent quark condensates. Moreover, with parameters adapted to the situation in other approaches, we also find good to very good agreement with model and lattice calculations in all quark quantities. We find indictions that the physics in recent lattice calculations is likely to be driven solely by the explicit chiral symmetry breaking. Discrepancies w.r.t. the lattice are, however, observed in two quantities that are very sensitive to the screening of the gluon propagator, the dressed gluon propagator itself and the phase-transition line at high temperatures.

  3. Grain-boundary, glassy-phase identification and possible artifacts

    International Nuclear Information System (INIS)

    Simpson, Y.K.; Carter, C.B.; Sklad, P.; Bentley, J.

    1985-01-01

    Specimen artifacts such as grain boundary grooving, surface damage of the specimen, and Si contamination are shown experimentally to arise from the ion milling used in the preparation of transmission electron microscopy specimens. These artifacts in polycrystalline, ceramic specimens can cause clean grain boundaries to appear to contain a glassy phase when the dark-field diffuse scattering technique, the Fresnel fringe technique, and analytical electron microscopy (energy dispersive spectroscopy) are used to identify glassy phases at a grain boundary. The ambiguity in interpreting each of these techniques due to the ion milling artifacts will be discussed from a theoretical view point and compared to experimental results obtained for alumina

  4. Internal loading of an inhomogeneous compressible Earth with phase boundaries

    Science.gov (United States)

    Defraigne, P.; Dehant, V.; Wahr, J. M.

    1996-01-01

    The geoid and the boundary topography caused by mass loads inside the earth were estimated. It is shown that the estimates are affected by compressibility, by a radially varying density distribution, and by the presence of phase boundaries with density discontinuities. The geoid predicted in the chemical boundary case is 30 to 40 percent smaller than that predicted in the phase case. The effects of compressibility and radially varying density are likely to be small. The inner core-outer core topography for loading inside the mantle and for loading inside the inner core were computed.

  5. Entrophy producing processes at phase boundaries

    International Nuclear Information System (INIS)

    Hampe, M.J.

    1981-01-01

    A thermodynamic theory for the treatment of transport phenomena in multiphase and multicomponent systems is presented. Starting point is a field theoretical description of interfacial systems. The interface in its three dimensional structure is described by new thermodynamic variables, namely the structure vectors a k of the components k. This offers the possibility to analyse processes related with a change of the three dimensional structure by means of the methods of irreversible thermodynamics. Compared to the well known theory of irreversible processes in single phase and membrane systems there are differences regarding the balance equations for component masses and momentum; additionally a balance equation for the structure vector has to be introduced to treat changes of the interfacial structure. The linear constitutive equations obtained from the production term of the entropy balance equation describe transport processes at every point of a multiphase system. - It is shown that in the interfacial region of multiphase systems there are other processes producing entropy than in the bulk of a single phase system. E.g. in the region of an interface Fickian diffusion is not allowed to occur due to a stability criterion. Instead of this a tensorial transport phenomenon due to the structural change of the interface sets in which is possible only at interfaces. By means of a thermodynamic coupling of this tensorial process with the tensorial momentum transport a thermodynamic explanation and description of the Marangoni-effect is obtained. - New expressions for entropy producing processes are also derived for generalized chemical reactions and transport of momentum. A discussion of potential ineractions between fluxes shows that the same cross-effects occurring in single phase systems cannot be supposed to occur in an interfacial region too. This results in new aspects for the thermodynamic explanation of active transport. (orig.)

  6. Chiral phase transition at finite chemical potential in 2 +1 -flavor soft-wall anti-de Sitter space QCD

    Science.gov (United States)

    Bartz, Sean P.; Jacobson, Theodore

    2018-04-01

    The phase transition from hadronic matter to chirally symmetric quark-gluon plasma is expected to be a rapid crossover at zero quark chemical potential (μ ), becoming first order at some finite value of μ , indicating the presence of a critical point. Using a three-flavor soft-wall model of anti-de Sitter/QCD, we investigate the effect of varying the light and strange quark masses on the order of the chiral phase transition. At zero quark chemical potential, we reproduce the Columbia Plot, which summarizes the results of lattice QCD and other holographic models. We then extend this holographic model to examine the effects of finite quark chemical potential. We find that the the chemical potential does not affect the critical line that separates first-order from rapid crossover transitions. This excludes the possibility of a critical point in this model, suggesting that a different setup is necessary to reproduce all the features of the QCD phase diagram.

  7. The chiral phase transition in two-flavor QCD from imaginary chemical potential

    CERN Document Server

    Bonati, Claudio; D'Elia, Massimo; Philipsen, Owe; Sanfilippo, Francesco

    2014-01-01

    We investigate the order of the finite temperature chiral symmetry restoration transition for QCD with two massless fermions, by using a novel method, based on simulating imaginary values of the quark chemical potential $\\mu=i\\mu_i,\\mu_i\\in\\mathbb{R}$. Our method exploits the fact that, for low enough quark mass $m$ and large enough chemical potential $\\mu_i$, the chiral transition is decidedly first order, then turning into crossover at a critical mass $m_c(\\mu)$. It is thus possible to determine the critical line in the $m - \\mu^2$ plane, which can be safely extrapolated to the chiral limit by taking advantage of the known tricritical indices governing its shape. We test this method with standard staggered fermions and the result of our simulations is that $m_c(\\mu=0)$ is positive, so that the phase transition at zero density is definitely first order in the chiral limit, on our coarse $N_t=4$ lattices with $a\\simeq 0.3\\,\\mathrm{fm}$.

  8. Intergranular and inter-phased boundaries in the materials

    International Nuclear Information System (INIS)

    Aslanides, A.; Backhaus-Ricoult, M.; Bayle-Guillemaud, P.

    2000-01-01

    This document collects the abstracts of the talks presented during the colloquium J2IM on the intergranular and inter-phased boundaries in the materials. Around the themes of the interfaces behaviour and grain boundaries defects in materials, these days dealt with the microstructure behaviour in many domains such as the interfaces in batteries, the irradiation damages and the special case of the fuel-cladding interactions, the stressed interfaces, the alumina or silicon carbides substrates. (A.L.B.)

  9. Studies of the QCD Phase Diagram with Heavy-Ion Collisions at J-PARC

    Science.gov (United States)

    Sako, Hiroyuki

    To clarify phase structures in the QCD phase diagram is an ultimate goal of heavy-ion collision experiments. Studies of internal structures of neutron stars are also one of the most important topics of nuclear physics since the discovery of neutron stars with two-solar mass. For these physics goals, J-PARC heavy-ion project (J-PARC-HI) has been proposed, where extremely dense matter with 5-10 times the normal nuclear density will be created. Heavy-ion beams up to Uranium will be accelerated to 1-19 AGeV/c, with the designed world's highest beam rate of 1011 Hz. The acceleration of such high-rate beams can be realized by a new heavy-ion linac and a new booster ring, in addition to the existing 3-GeV and 50-GeV proton synchrotrons. To study the above physics goals, following physics observables will be measured in extremely high statistics expected in J-PARC-HI. To search for the critical point, high-order event-by-event fluctuations of conserved charges such as a net-baryon number, an electric charge number, and a strangeness number will be measured. To study the chiral symmetry restoration, dilepton spectra from light vector meson decays will be measured. Also, collective flows, particle correlations will be measured to study the equation of state and hyperon-hyperon and hyperon-nucleon interactions related to neutron stars. Strange quark matter (strangelet) and multi-strangeness hypernuclei will be searched for which may be related directly to the matter constituting the neutron star core. In this work, the physics goals, the experimental design, and expected physics results of J-PARC-HI will be discussed.

  10. Volume independence in large Nc QCD-like gauge theories

    International Nuclear Information System (INIS)

    Kovtun, Pavel; Uensal, Mithat; Yaffe, Laurence G.

    2007-01-01

    Volume independence in large N c gauge theories may be viewed as a generalized orbifold equivalence. The reduction to zero volume (or Eguchi-Kawai reduction) is a special case of this equivalence. So is temperature independence in confining phases. A natural generalization concerns volume independence in 'theory space' of quiver gauge theories. In pure Yang-Mills theory, the failure of volume independence for sufficiently small volumes (at weak coupling) due to spontaneous breaking of center symmetry, together with its validity above a critical size, nicely illustrate the symmetry realization conditions which are both necessary and sufficient for large N c orbifold equivalence. The existence of a minimal size below which volume independence fails also applies to Yang-Mills theory with antisymmetric representation fermions [QCD(AS)]. However, in Yang-Mills theory with adjoint representation fermions [QCD(Adj)], endowed with periodic boundary conditions, volume independence remains valid down to arbitrarily small size. In sufficiently large volumes, QCD(Adj) and QCD(AS) have a large N c ''orientifold'' equivalence, provided charge conjugation symmetry is unbroken in the latter theory. Therefore, via a combined orbifold-orientifold mapping, a well-defined large N c equivalence exists between QCD(AS) in large, or infinite, volume and QCD(Adj) in arbitrarily small volume. Since asymptotically free gauge theories, such as QCD(Adj), are much easier to study (analytically or numerically) in small volume, this equivalence should allow greater understanding of large N c QCD in infinite volume

  11. On the search for experimentally observed grain boundary phase transitions

    International Nuclear Information System (INIS)

    Balluffi, R.W.; Hsieh, T.E.

    1987-07-01

    The phase space for a heterogeneous system containing a grain boundary involves a relatively large number of variables (i.e., at least six plus the number of components), and it is therefore conceptually possible to induce a large variety of grain boundary phase transitions by selectively varying these parameters. Despite this, a review of the literature reveals that there have been virtually no clear-cut experimental observations of transitions reported in which the boundary structure has been observed as a function of time under well defined conditions. In current work, we are searching for roughening/faceting transitions and melting transitions for boundaries in Al by hot stage transmission electron microscopy. A clear example of a reversible roughening/faceting transition has been found. No evidence for melting has been found for temperatures as high as 0.96 T/sub m/ (by monitoring GBD core delocalization in several special boundaries with Σ ≤ 13) or 0.999 T/sub m/ (by observing the local diffraction contrast at general boundaries in polycrystalline specimens)

  12. The hadron production in π−-C interaction at 40 GeV/c and QCD phase transition

    Directory of Open Access Journals (Sweden)

    Otgongerel B.

    2017-01-01

    Full Text Available In this paper, we proposed to study the phase transition process to use the new pair of variables, the temperature T and the cumulative number nc (T,nc. We considered the transverse energy spectra of protons and π−-mesons produced in π−-C interactions at 40 GeV/c as a function of cumulative number nc (or four-dimensional momentum transfer t and the baryonic chemical potential μb(√t. Obtained results indicate the possible appearance of QCD phase transition of nuclear matter.

  13. Identifying phase-space boundaries with Voronoi tessellations

    International Nuclear Information System (INIS)

    Debnath, Dipsikha; Matchev, Konstantin T.; Gainer, James S.; Kilic, Can; Yang, Yuan-Pao; Kim, Doojin

    2016-01-01

    Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis. (orig.)

  14. Identifying phase-space boundaries with Voronoi tessellations

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, Dipsikha; Matchev, Konstantin T. [University of Florida, Physics Department, Gainesville, FL (United States); Gainer, James S. [University of Hawaii, Department of Physics and Astronomy, Honolulu, HI (United States); Kilic, Can; Yang, Yuan-Pao [The University of Texas at Austin, Theory Group, Department of Physics and Texas Cosmology Center, Austin, TX (United States); Kim, Doojin [University of Florida, Physics Department, Gainesville, FL (United States); CERN, Theory Division, Geneva 23 (Switzerland)

    2016-11-15

    Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis. (orig.)

  15. Lattice-QCD based Schwinger-Dyson approach for Chiral phase transition

    International Nuclear Information System (INIS)

    Iida, Hideaki; Oka, Makoto; Suganuma, Hideo

    2005-01-01

    Dynamical chiral-symmetry breaking in QCD is studied with the Schwinger-Dyson (SD) formalism based on lattice QCD data, i.e., LQCD-based SD formalism. We extract the SD kernel function K(p 2 ) in an Ansatzindependent manner from the lattice data of the quark propagator in the Landau gauge. As remarkable features, we find infrared vanishing and intermediate enhancement of the SD kernel function K(p 2 ). We apply the LQCD-based SD equation to thermal QCD with the quark chemical potential μ q . We find chiral symmetry restoration at T c ∼100MeV for μ q =0. The real part of the quark mass function decreases as T and μ q . At finite density, there appears the imaginary part of the quark mass function, which would lead to the width broadening of hadrons

  16. Phases of QCD: Summary of the Rutgers Long Range Plan Town Meeting, January 12-14, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Peter; Kharzeev, Dmitri; Muller, Berndt; Nagle, Jamie; Rajagopal, Krishna; Vigdor, Steve

    2007-05-14

    This White Paper summarizes the outcome of the Town Meeting on Phases of QCD that took place January 12-14, 2007 at Rutgers University, as part of the NSAC 2007 Long Range Planning process. The meeting was held in conjunction with the Town Meeting on Hadron Structure, including a full day of joint plenary sessions of the two meetings. Appendix A.1 contains the meeting agenda. This Executive Summary presents the prioritized recommendations that were determined at the meeting. Subsequent chapters present the essential background to the recommendations. While this White Paper is not a scholarly article and contains few references, it is intended to provide the non-expert reader

  17. Phases of QCD: Summary of the Rutgers Long Range Plan Town Meeting, January 12-14, 2007

    International Nuclear Information System (INIS)

    Jacobs, Peter; Kharzeev, Dmitri; Muller, Berndt; Nagle, Jamie; Rajagopal, Krishna; Vigdor, Steve

    2007-01-01

    This White Paper summarizes the outcome of the Town Meeting on Phases of QCD that took place January 12-14, 2007 at Rutgers University, as part of the NSAC 2007 Long Range Planning process. The meeting was held in conjunction with the Town Meeting on Hadron Structure, including a full day of joint plenary sessions of the two meetings. Appendix A.1 contains the meeting agenda. This Executive Summary presents the prioritized recommendations that were determined at the meeting. Subsequent chapters present the essential background to the recommendations. While this White Paper is not a scholarly article and contains few references, it is intended to provide the non-expert reader

  18. Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries

    Directory of Open Access Journals (Sweden)

    Francesco Cordero

    2015-12-01

    Full Text Available The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x − T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPB(x boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems.

  19. Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries

    Science.gov (United States)

    Cordero, Francesco

    2015-01-01

    The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB) between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x−T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPBx boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems. PMID:28793707

  20. QCD Dual

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2009-01-01

    We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...

  1. Size effect for phase stability on Au–Cd–Ag of phase boundary composition

    International Nuclear Information System (INIS)

    Matsuoka, Yuki; Suzuki, Keiko; Kudo, Natsuko

    2013-01-01

    Highlights: ► Size and heat treatment effects of phase boundary composition Au 52.5−x Cd 47.5 Ag x were studied. ► The transformation temperature T 0 increases by quench. It is investigated that disordering of atoms and lattice defects make β-phase unstable. ► Downsizing sample decreased T 0 in β-phase, showed a tendency of increase in coexistent phase. ► Downsizing is supposed to make difficult nucleation for martensitic transformation. ► Increasing of surface ratio by downsizing of powder sample is estimated to make easy to transform from unstable β-phase to martensite phase. -- Abstract: Size and heat treatment effects on martensitic transformation of phase boundary composition Au 52.5−x Cd 47.5 Ag x were studied. Au 52.5−x Cd 47.5 Ag x has coexistent phase of β-phase and α-phase of fcc structure at x > 42 at.%. The transformation temperature T 0 decreases as Au is substituted on Ag over phase boundary. T 0 increases by quench in both case of bulk and powder. This behavior is investigated that disordering of atoms and lattice defects make β-phase (L2 1 , B2 or bcc) unstable. Size effect was also inspected. Downsizing sample decreased the transformation temperature in β-phase. On the contrary, the transformation temperature of the coexistent phase showed a tendency of increase. Downsizing is supposed to make difficult nucleation for martensitic transformation because of reduction of β-phase ordered volume. Increasing of surface (disorder structure) ratio by downsizing of powder sample is estimated to make easy to transform from unstable β-phase to martensite phase

  2. Boundary induced phase transition with stochastic entrance and exit

    International Nuclear Information System (INIS)

    Mitra, Mithun Kumar; Chatterjee, Sakuntala

    2014-01-01

    We study an open-chain totally asymmetric exclusion process (TASEP) with stochastic gates present at the two boundaries. The gating dynamics has been modeled with the physical system of ion-channel gating in mind. These gates can randomly switch between an open state and a closed state. In the open state, the gates are highly permeable such that any particle arriving at the gate immediately passes through. In the closed state, a particle becomes trapped at the gate and cannot pass through until the gate switches open again. We calculate the phase-diagram of the system and find important and non-trivial differences with the phase-diagram of a regular open-chain TASEP. In particular, depending on the switching rates of the two gates, the system may or may not admit a maximal current phase. Our analytic calculations within mean-field theory capture the main qualitative features of our Monte Carlo simulation results. We also perform a refined mean-field calculation where the correlations at the boundaries are taken into account. This theory shows significantly better quantitative agreement with our simulation results. (paper)

  3. Ferroelectric properties of tungsten bronze morphotropic phase boundary systems

    International Nuclear Information System (INIS)

    Oliver, J.R.; Neurgaonkar, R.R.; Cross, L.E.; Pennsylvania State Univ., University Park, PA

    1989-01-01

    Tungsten bronze ferroelectrics which have a morphotropic phase boundary (MPB) can have a number or enhanced dielectric, piezoelectric, and electrooptic properties compared to more conventional ferroelectric materials. The structural and ferroelectric properties of several MPB bronze systems are presented, including data from sintered and hot-pressed ceramics, epitaxial thin films, and bulk single crystals. Included among these are three systems which had not been previously identified as morphotropic. The potential advantages and limitations of these MPB systems are discussed, along with considerations of the appropriate growth methods for their possible utilization in optical, piezoelectric, or pyroelectric device applications

  4. Finite-temperature phase structure of lattice QCD with Wilson quark action

    International Nuclear Information System (INIS)

    Aoki, S.; Ukawa, A.; Umemura, T.

    1996-01-01

    The long-standing issue of the nature of the critical line of lattice QCD with the Wilson quark action at finite temperatures, defined to be the line of vanishing pion screening mass, and its relation to the line of finite-temperature chiral transition is examined. Presented are both analytical and numerical evidence that the critical line forms a cusp at a finite gauge coupling, and that the line of chiral transition runs past the tip of the cusp without touching the critical line. Implications on the continuum limit and the flavor dependence of chiral transition are discussed. copyright 1996 The American Physical Society

  5. New aspects of the QCD phase transition in proto-neutron stars and core-collapse supernovae

    International Nuclear Information System (INIS)

    Hempel, Matthias; Heinimann, Oliver; Liebendörfer, Matthias; Friedrich-Karl, Thielemann; Yudin, Andrey; Iosilevskiy, Igor

    2017-01-01

    The QCD phase transition from hadronic to deconfined quark matter is found to be a so-called “entropic” phase transition, characterized, e.g., by a negative slope of the phase transition line in the pressure-temperature phase diagram. In a first part of the present proceedings it is discussed that entropic phase transitions lead to unusual thermal properties of the equation of state (EoS). For example one finds a loss of pressure (a “softening”) of the proto-neutron star EoS with increasing entropy. This can lead to a novel, hot third family of compact stars, which exists only in the early proto-neutron star phase. Such a hot third family can trigger explosions of core-collapse supernovae. However, so far this special explosion mechanism was found to be working only for EoSs which are not compatible with the 2 M ⊙ constraint for the neutron star maximum mass. In a second part of the proceeding it is discussed which quark matter parameters could be favorable for this explosion mechanism, and have sufficiently high maximum masses at the same time. (paper)

  6. Dynamic Phase Boundary Estimation in Two-phase Flows Based on Electrical Impedance Tomography

    International Nuclear Information System (INIS)

    Lee, Jeong Seong; Muhammada, Nauman Malik; Kim, Kyung Youn; Kim, Sin

    2008-01-01

    For the dynamic visualization of the phase boundary in two-phase flows, the electrical impedance tomography (EIT) technique is introduced. In EIT, a set of predetermined electrical currents is injected through the electrodes placed on the boundary of the flow passage and the induced electrical potentials are measured on the electrodes. With the relationship between the injected currents and the induced voltages, the electrical conductivity distribution across the flow domain is estimated through the image reconstruction algorithm where the conductivity distribution corresponds to the phase distribution. In the application of EIT to two-phase flows where there are only two conductivity values, the conductivity distribution estimation problem can be transformed into the boundary estimation problem. This paper considers phase boundary estimation with EIT in annular two-phase flows. As the image reconstruction algorithm, the unscented Kalman filter (UKF) is adopted since from the control theory it is reported that the UKF shows better performance than the extended Kalman filter (EKF) that has been commonly used. For the present problem, the formulation of UKF algorithm involved its incorporation in the adopted image reconstruction algorithm. Also, phantom experiments have been conducted to evaluate the improvement reported by UKF

  7. Kaon interferometry as signal for the QCD phase transition at RHIC

    International Nuclear Information System (INIS)

    Bernard, S.; Maruhn, J.A.; Greiner, W.; Rischke, D.H.

    1997-01-01

    Pion and kaon correlations in relativistic nuclear collisions are studied in the framework of boost-invariant, cylindrically symmetric hydrodynamics. It is investigated how the inverse widths, R out , R side , of the two-particle correlation functions in out- and side-direction depend on the average transverse momentum K perpendicular to of the particle pair, the initial energy density ε 0 , and the equation of state of the system. The QCD transition leads to a time delay in the expansion of the system and consequently to an enhancement of the ratio R out /R side . This time-delay signal is found to be particularly strong for large average transverse momenta K perpendicular to ∝1 GeV and initial energy densities accessible at RHIC, ε 0 ∝10-20 GeV fm -3 . Neutral kaon pair correlation functions, which are not influenced by final state Coulomb effects and less contaminated by resonance decays than pion correlation functions, seem to be the ideal tool to detect this collective time-delay signature of the QCD transition. (orig.)

  8. Anomalous dimension, chiral phase transition and inverse magnetic catalysis in soft-wall AdS/QCD

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhen, E-mail: fangzhen@itp.ac.cn [Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing (China)

    2016-07-10

    A modified soft-wall AdS/QCD model with a z-dependent bulk scalar mass is proposed. We argue for the necessity of a modified bulk scalar mass from the quark mass anomalous dimension and carefully constrain the form of bulk mass by the corresponding UV and IR asymptotics. After fixing the form of bulk scalar mass, we calculate the mass spectra of (axial-)vector and pseudoscalar mesons, which have a good agreement with the experimental data. The behavior of chiral phase transition is also investigated, and the results are consistent with the standard scenario and lattice simulations. Finally, the issue of chiral magnetic effects is addressed. We find that the inverse magnetic catalysis emerges naturally from the modified soft-wall model, which is consistent with the recent lattice simulations.

  9. Transition temperature to the superconducting phase of QCD at high baryon density

    International Nuclear Information System (INIS)

    Brown, William E.; Liu, James T.; Ren, Hai-cang

    2000-01-01

    Recent interest in the study of color superconductivity has focused on the regime of high baryon density where perturbative QCD may be employed. Based on the dominant one-gluon-exchange interaction, both the transition temperature and zero temperature gap have been determined to leading order in the coupling g. While the leading non-BCS behavior T C ∼μg -5 e -κ/g is easily obtained, the pre-exponential factor has proved more difficult to evaluate. Focusing on the transition temperature, we present a perturbative derivation of this factor, exact to leading order in g. This approach is first motivated by the study of a toy model and involves working to second order in the perturbative expansion. We compare this result to the zero temperature gap. Additionally, we extend the analysis to the case of higher angular momentum for longitudinal and transverse quark pairing. (c) 2000 The American Physical Society

  10. The Monoclinic Phase in PZT : New Light on Morphotropic Phase Boundaries

    NARCIS (Netherlands)

    Noheda, B.; Gonzalo, J.A.; Guo, R.; Park, S.-E.; Cross, L.E.; Cox, D.E.; Shirane, G.

    2000-01-01

    A summary of the work recently carried out on the morphotropic phase boundary (MPB) of PZT is presented. By means of x-ray powder diffraction on ceramic samples of excellent quality, the MPB has been successfully characterized by changing temperature in a series of closely spaced compositions. As a

  11. Impact of Compound Hydrate Dynamics on Phase Boundary Changes

    Science.gov (United States)

    Osegovic, J. P.; Max, M. D.

    2006-12-01

    Compound hydrate reactions are affected by the local concentration of hydrate forming materials (HFM). The relationship between HFM composition and the phase boundary is as significant as temperature and pressure. Selective uptake and sequestration of preferred hydrate formers (PF) has wide ranging implications for the state and potential use of natural hydrate formation, including impact on climate. Rising mineralizing fluids of hydrate formers (such as those that occur on Earth and are postulated to exist elsewhere in the solar system) will sequester PF before methane, resulting in a positive relationship between depth and BTU content as ethane and propane are removed before methane. In industrial settings the role of preferred formers can separate gases. When depressurizing gas hydrate to release the stored gas, the hydrate initial composition will set the decomposition phase boundary because the supporting solution takes on the composition of the hydrate phase. In other settings where hydrate is formed, transported, and then dissociated, similar effects can control the process. The behavior of compound hydrate systems can primarily fit into three categories: 1) In classically closed systems, all the material that can form hydrate is isolated, such as in a sealed laboratory vessel. In such systems, formation and decomposition are reversible processes with observed hysteresis related to mass or heat transfer limitations, or the order and magnitude in which individual hydrate forming gases are taken up from the mixture and subsequently released. 2) Kinetically closed systems are exposed to a solution mass flow across a hydrate mass. These systems can have multiple P-T phase boundaries based on the local conditions at each face of the hydrate mass. A portion of hydrate that is exposed to fresh mineralizing solution will contain more preferred hydrate formers than another portion that is exposed to a partially depleted solution. Examples of kinetically closed

  12. Influence of heavy hadronic states on the QCD phase diagram and on the freeze-out within a hadronic chiral model; Einfluss schwerer hadronischer Zustaende auf das QCD-Phasendiagramm und die Ausfrierbedingungen in einem hadronischen chiralen Modell

    Energy Technology Data Exchange (ETDEWEB)

    Zeeb, G.

    2006-07-01

    In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized {sigma}-{omega} model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom. A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the

  13. Exact phase boundaries and topological phase transitions of the X Y Z spin chain

    Science.gov (United States)

    Jafari, S. A.

    2017-07-01

    Within the block spin renormalization group, we give a very simple derivation of the exact phase boundaries of the X Y Z spin chain. First, we identify the Ising order along x ̂ or y ̂ as attractive renormalization group fixed points of the Kitaev chain. Then, in a global phase space composed of the anisotropy λ of the X Y interaction and the coupling Δ of the Δ σzσz interaction, we find that the above fixed points remain attractive in the two-dimesional parameter space. We therefore classify the gapped phases of the X Y Z spin chain as: (1) either attracted to the Ising limit of the Kitaev-chain, which in turn is characterized by winding number ±1 , depending on whether the Ising order parameter is along x ̂ or y ̂ directions; or (2) attracted to the charge density wave (CDW) phases of the underlying Jordan-Wigner fermions, which is characterized by zero winding number. We therefore establish that the exact phase boundaries of the X Y Z model in Baxter's solution indeed correspond to topological phase transitions. The topological nature of the phase transitions of the X Y Z model justifies why our analytical solution of the three-site problem that is at the core of the present renormalization group treatment is able to produce the exact phase boundaries of Baxter's solution. We argue that the distribution of the winding numbers between the three Ising phases is a matter of choice of the coordinate system, and therefore the CDW-Ising phase is entitled to host appropriate form of zero modes. We further observe that in the Kitaev-chain the renormalization group flow can be cast into a geometric progression of a properly identified parameter. We show that this new parameter is actually the size of the (Majorana) zero modes.

  14. Phase transition over gauge group center and quark confinement in QCD

    International Nuclear Information System (INIS)

    Khokhlachev, S.B.; Makeenko, Yu.N.

    1979-01-01

    A lattice gauge model with the phase transition corresponding to spontaneous breakdown of the group center symmetry is considered. It is shown that the phase diagram, obtained in multicolor case, separates the high and low-temperature phases with confined and nonconfined quarks. The possibility of the Lorentz-invariant continuum limit in the phase with permanently confined quarks is confirmed

  15. Semihard QCD

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1989-01-01

    Recent results concerning the small x limit of parton distributions in perturbative QCD are reviewed. This includes in particular discussion of the bare Pomeron in perturbative QCD and of shadowing corrections. The minijet production processes and possible manifestation of semihard interactions in high energy pp-bar elastic scattering are also discussed. 46 refs., 8 figs. (author)

  16. QCD phenomenology

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1979-01-01

    Selected topics in QCD phenomenology are reviewed: the development of an effective jet perturbation series with applications to factorization, energy flow analysis and photon physics; implications of non-perturbative phenomena for hard scattering processes and the pseudoscalar mass spectrum; resonance properties as extracted from the combined technologies of perturbative and non-perturbative QCD. (orig.)

  17. Role of Reversible Phase Transformation for Strong Piezoelectric Performance at the Morphotropic Phase Boundary

    Science.gov (United States)

    Liu, Hui; Chen, Jun; Huang, Houbing; Fan, Longlong; Ren, Yang; Pan, Zhao; Deng, Jinxia; Chen, Long-Qing; Xing, Xianran

    2018-01-01

    A functional material with coexisting energetically equivalent phases often exhibits extraordinary properties such as piezoelectricity, ferromagnetism, and ferroelasticity, which is simultaneously accompanied by field-driven reversible phase transformation. The study on the interplay between such phase transformation and the performance is of great importance. Here, we have experimentally revealed the important role of field-driven reversible phase transformation in achieving enhanced electromechanical properties using in situ high-energy synchrotron x-ray diffraction combined with 2D geometry scattering technology, which can establish a comprehensive picture of piezoelectric-related microstructural evolution. High-throughput experiments on various Pb /Bi -based perovskite piezoelectric systems suggest that reversible phase transformation can be triggered by an electric field at the morphotropic phase boundary and the piezoelectric performance is highly related to the tendency of electric-field-driven phase transformation. A strong tendency of phase transformation driven by an electric field generates peak piezoelectric response. Further, phase-field modeling reveals that the polarization alignment and the piezoelectric response can be much enhanced by the electric-field-driven phase transformation. The proposed mechanism will be helpful to design and optimize the new piezoelectrics, ferromagnetics, or other related functional materials.

  18. Perturbative study of the QCD phase diagram for heavy quarks at nonzero chemical potential: Two-loop corrections

    Science.gov (United States)

    Maelger, J.; Reinosa, U.; Serreau, J.

    2018-04-01

    We extend a previous investigation [U. Reinosa et al., Phys. Rev. D 92, 025021 (2015), 10.1103/PhysRevD.92.025021] of the QCD phase diagram with heavy quarks in the context of background field methods by including the two-loop corrections to the background field effective potential. The nonperturbative dynamics in the pure-gauge sector is modeled by a phenomenological gluon mass term in the Landau-DeWitt gauge-fixed action, which results in an improved perturbative expansion. We investigate the phase diagram at nonzero temperature and (real or imaginary) chemical potential. Two-loop corrections yield an improved agreement with lattice data as compared to the leading-order results. We also compare with the results of nonperturbative continuum approaches. We further study the equation of state as well as the thermodynamic stability of the system at two-loop order. Finally, using simple thermodynamic arguments, we show that the behavior of the Polyakov loops as functions of the chemical potential complies with their interpretation in terms of quark and antiquark free energies.

  19. Grain Boundary Engineering for Assessing Durability and Aging Issues with Nickel-Based Superalloys, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Grain Boundary Engineering (GBE) approach, successfully demonstrated in Phase I, that microstructural optimization provides a very significant improvement in...

  20. Cosmological QCD phase transition in steady non-equilibrium dissipative Hořava–Lifshitz early universe

    International Nuclear Information System (INIS)

    Khodadi, M.; Sepangi, H.R.

    2014-01-01

    We study the phase transition from quark–gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 1–10 μs old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Hořava–Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann–Robertson–Walker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigate the effects of the running coupling constants of Hořava–Lifshitz gravity, λ, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density (ξ)/s . We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively. -- Highlights: •In this paper we have studied quark–hadron phase transition in the early universe in the context of the Hořava–Lifshitz model. •We use a flat FRW universe with the bulk viscosity cosmological background fluid obeying the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively

  1. Lattice QCD

    International Nuclear Information System (INIS)

    Hasenfratz, P.

    1983-01-01

    The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)

  2. Signals for the QCD phase transition and critical point in a Langevin dynamical model

    International Nuclear Information System (INIS)

    Herold, Christoph; Bleicher, Marcus; Yan, Yu-Peng

    2013-01-01

    The search for the critical point is one of the central issues that will be investigated in the upcoming FAIR project. For a profound theoretical understanding of the expected signals we go beyond thermodynamic studies and present a fully dynamical model for the chiral and deconfinement phase transition in heavy ion collisions. The corresponding order parameters are propagated by Langevin equations of motions on a thermal background provided by a fluid dynamically expanding plasma of quarks. By that we are able to describe nonequilibrium effects occurring during the rapid expansion of a hot fireball. For an evolution through the phase transition the formation of a supercooled phase and its subsequent decay crucially influence the trajectories in the phase diagram and lead to a significant reheating of the quark medium at highest baryon densities. Furthermore, we find inhomogeneous structures with high density domains along the first order transition line within single events.

  3. Twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Shindler, A.

    2007-07-01

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  4. Twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2007-07-15

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  5. A new moving frame to extract scattering phases in lattice QCD

    International Nuclear Information System (INIS)

    Feng, Xu; Muenster Univ.; Jansen, Karl; Renner, Dru B.

    2011-04-01

    We present a derivation of the finite-size formulae in a moving frame with total momentum P=(2π/L)(e 1 +e 2 ). These formulae allow us to calculate the S-wave and P-wave scattering phases at more energies with a fixed lattice size and thus help us to determine the resonance parameters precisely. (orig.)

  6. A new moving frame to extract scattering phases in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xu [DESY, Zeuthen (Germany). NIC; Muenster Univ. (Germany). Inst. fuer Theoretische Physik; Jansen, Karl; Renner, Dru B. [DESY, Zeuthen (Germany). NIC

    2011-04-15

    We present a derivation of the finite-size formulae in a moving frame with total momentum P=(2{pi}/L)(e{sub 1}+e{sub 2}). These formulae allow us to calculate the S-wave and P-wave scattering phases at more energies with a fixed lattice size and thus help us to determine the resonance parameters precisely. (orig.)

  7. QCD phase transition in the laboratory and in the early universe

    International Nuclear Information System (INIS)

    Sinha, Bikash

    1998-01-01

    It is expected that two nuclei colliding at ultra-relativistic energies (∼ 200 GeV/nucleon or more) may lead to hadronic matter go through a phase transition to its fundamental constituents, quarks and gluons, usually referred to as quark gluon plasma (QGP). Somewhat analogously, the universe, as per conventional wisdom should have consisted of quarks, gluons, leptons and photons, a microsecond after the Big Bang. The experience and wisdom, expected from nucleus-nucleus collisions in the laboratory and anticipated to facilitate our understanding of the quark-hadron phase transition. Indeed what possible footprints of that primordial epoch can be traced in today's cosmos is one of the interesting and intriguing questions. In this paper, the following areas will be focused: the issue of successive thermal and chemical equilibrium scenarios; a detailed study of hot hadronic matter and its implication on the thermal model; and finally, the surviving quark nuggets beyond a critical baryon content, and, nuggets being possible candidates for baryonic dark matter in the universe, a much more straightforward candidate than illusive actions or SUSY particles. It is our considered view that quark hadron phase transition in the microsecond universe is a thriving area of research and lot more can be understood and known from this primordial event. (author)

  8. Two-phase semilinear free boundary problem with a degenerate phase

    KAUST Repository

    Matevosyan, Norayr

    2010-10-16

    We study minimizers of the energy functional ∫D[{pipe}∇u{pipe}2 + λ(u+)p]dx for p ∈ (0, 1) without any sign restriction on the function u. The distinguished feature of the problem is the lack of nondegeneracy in the negative phase. The main result states that in dimension two the free boundaries Γ+ = ∂{u > 0} ∩ D andΓ- = ∂{u < 0} ∩ D are C1,α-regular, provided 1 - ∈0 < p < 1. The proof is obtained by a careful iteration of the Harnack inequality to obtain a nontrivial growth estimate in the negative phase, compensating for the apriori unknown nondegeneracy. © 2010 Springer-Verlag.

  9. Influence of heavy hadronic states on the QCD phase diagram and on the freeze-out within a hadronic chiral model

    International Nuclear Information System (INIS)

    Zeeb, G.

    2006-01-01

    In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized σ-ω model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom. A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the resulting freeze

  10. A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries

    Science.gov (United States)

    Dong, S.; Wang, X.

    2016-01-01

    Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909

  11. Composition-Driven Phase Boundary and Piezoelectricity in Potassium-Sodium Niobate-Based Ceramics.

    Science.gov (United States)

    Zheng, Ting; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Wang, Xiangjian; Lou, Xiaojie

    2015-09-16

    The piezoelectricity of (K,Na)NbO3 ceramics strongly depends on the phase boundary types as well as the doped compositions. Here, we systematically studied the relationships between the compositions and phase boundary types in (K,Na) (Nb,Sb)O3-Bi0.5Na0.5AO3 (KNNS-BNA, A=Hf, Zr, Ti, Sn) ceramics; then their piezoelectricity can be readily modified. Their phase boundary types are determined by the doped elements. A rhombohedral-tetragonal (R-T) phase boundary can be driven in the compositions range of 0.035≤BNH≤0.040 and 0.035≤BNZ≤0.045; an orthorhombic-tetragonal (O-T) phase boundary is formed in the composition range of 0.005≤BNT≤0.02; and a pure O phase can be only observed regardless of BNS content (≤0.01). In addition, the phase boundary types strongly affect their corresponding piezoelectricities. A larger d33 (∼440-450 pC/N) and a higher d33* (∼742-834 pm/V) can be attained in KNNS-BNA (A=Zr and Hf) ceramics due to the involvement of R-T phase boundary, and unfortunately KNNS-BNA (A=Sn and Ti) ceramics possess a relatively poor piezoelectricity (d33≤200 and d33*piezoelectricity and phase boundary types were also discussed. We believe that comprehensive research can design more excellent ceramic systems concerning potassium-sodium niobate.

  12. QCD and Hadron Physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.

    2015-02-26

    This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.

  13. Multiplicity distributions in QCD cascades

    International Nuclear Information System (INIS)

    Gustafson, G.

    1992-03-01

    Multiplicity distributions for hadrons and for jets are studied in QCD parton cascades. The colour dipole formalism is used and earlier results in the double log approximation are generalized to include terms which are suppressed by colour factors or factors of ln s. The result is a set of coupled differential equations, together with appropriate boundary conditions

  14. Movement of the boundary between the A and B helium-3 phases in superfluid

    International Nuclear Information System (INIS)

    Kopnin, N.B.

    1987-01-01

    The friction force arising on motion of the boundary between the A and B phases in superfluid helium-3 is calculated on the basis of the microscopic theory in a linear approximation with respect to the velocity

  15. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    International Nuclear Information System (INIS)

    Cheung, F.B.; Epstein, M.

    1985-01-01

    The behavior of a two-phase gas bubble-liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined. The predicted boundary layer thickness is found to be in good agreement with the experimental results. The calculated axial liquid velocity and the void fraction in the two-phase region are also presented along with the observed flow behavior

  16. Adaptive ferroelectric state at morphotropic phase boundary: Coexisting tetragonal and rhombohedral phases

    International Nuclear Information System (INIS)

    Zhang, Yang; Xue, Dezhen; Wu, Haijun; Ding, Xiangdong; Lookman, Turab; Ren, Xiaobing

    2014-01-01

    With a focus on local symmetry, the microstructural basis for high piezoelectric performance in PbMg 1/3 Nb 2/3 O 3 –xPbTiO 3 (PMN–PT) ceramics at the morphotropic phase boundary (MPB) composition was investigated by means of convergent-beam electron diffraction analysis and twin diffraction pattern analysis. The local structure was found to consist of coexisting (1 0 1)-type tetragonal nanotwins and (0 0 1)-type rhombohedral nanotwins. A phenomenological theory based on crystallography is proposed to show that such nanoscale coexistence can give rise to an average monoclinic structure through strain accommodation. The average monoclinic structures (Ma and Mc) vary with temperature and composition due to the dependence on temperature and composition of the lattice parameters. Based on in situ X-ray diffraction data, we demonstrate how the polarization rotates across the MPB region in PMN–PT ceramics with varying temperatures and compositions

  17. High-yield acetonitrile | water triple phase boundary electrolysis at platinised Teflon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, John D.; MacDonald, Stuart M.; Fordred, Paul S.; Bull, Steven D. [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Gu, Yunfeng; Yunus, Kamran; Fisher, Adrian C. [Department of Chemical Engineering, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Bulman-Page, Philip C. [School of Chemistry, University of East Anglia, Norwich, Norfolk NR4 7TJ (United Kingdom); Marken, Frank [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)], E-mail: f.marken@bath.ac.uk

    2009-11-30

    A dynamic acetonitrile | aqueous electrolyte phase boundary in contact with platinised Teflon working electrodes is investigated. High concentrations of salt in the aqueous phase (2 M NaCl and 0.1 M NaClO{sub 4}) ensure immiscibility and the polar nature of acetonitrile aids the formation of a well-behaved triple phase boundary reaction zone. The one-electron oxidation of tert-butylferrocene in the organic phase without intentionally added electrolyte is studied. The limiting current for the flowing triple phase boundary process is shown to be essentially volume flow rate independent. The process is accompanied by the transfer of perchlorate from the aqueous into the organic phase and the flux of anions is shown to be approximately constant along the dynamic acetonitrile | aqueous electrolyte | platinum line interface. A high rate of conversion (close to 100%) is achieved at slow volume flow rates and at longer platinum electrodes.

  18. Nonperturbation aspects of QCD. Monte Carlo and optimization

    International Nuclear Information System (INIS)

    Brezin, E.; Morel, A.; Marinari, E.; Couchot, F.; Narison, S.; Richard, J.M.; Blaizot, J.P.; Souillard, B.

    1986-01-01

    Phase transitions; lattice QCD; numerical simulation of lattice gauge theories; experimental research on gluonic mesons; QCD-duality sum rules; the bag model, potentials, and hadron spectra; and efficient Lagrangian functions and the Skyrme model are introduced [fr

  19. Determination of weak phases $\\phi_2$ and $\\phi_3$ from $B \\to \\pi\\pi,K\\pi$ in the pQCD method future directions

    CERN Document Server

    Keum, Yu Y

    2003-01-01

    We look at methods to determine the weak phases $\\phi_2$ and $\\phi_3$ from $B \\to \\pi\\pi$ and $K\\pi$ decays within the perturbative QCD approach. We obtain quite interesting bounds on $\\phi_2$ and $\\phi_3$ from experimental measurement in B-factory: $55^o \\leq \\phi_2 \\leq 100^o$ and $51^o \\leq \\phi_3 \\leq 129^o$. Specially we predict the possibility of large direct CP violation effect in $B^0 \\to \\pi^{+}\\pi^{-} (23\\pm7 %)$ decay.

  20. Critical endline of the finite temperature phase transition for 2+1 flavor QCD away from the SU(3-flavor symmetric point

    Directory of Open Access Journals (Sweden)

    Nakamura Yoshifumi

    2018-01-01

    Full Text Available We investigate the critical end line of the finite temperature phase transition of QCD away from the SU(3-flavor symmetric point at zero chemical potential. We employ the renormalization-group improved Iwasaki gauge action and non-perturbatively O(a- improved Wilson-clover fermion action. The critical end line is determined by using the intersection point of kurtosis, employing the multi-parameter, multi-ensemble reweighting method at the temporal size NT = 6 and lattice spacing as low as a ≈0.19 fm.

  1. The finite temperature QCD phase transition and the thermodynamic equation of state. An investigation employing lattice QCD with Nf=2 twisted mass quarks

    International Nuclear Information System (INIS)

    Burger, Florian

    2012-01-01

    In this thesis we report about an investigation of the finite temperature crossover/phase transition of quantum chromodynamics and the evaluation of the thermodynamic equation of state. To this end the lattice method and the Wilson twisted mass discretisation of the quark action are used. This formulation is known to have an automatic improvement of lattice artifacts and thus an improved continuum limit behaviour. This work presents first robust results using this action for the non-vanishing temperature case. We investigate the chiral limit of the two flavour phase transition with several small values of the pion mass in order to address the open question of the order of the transition in the limit of vanishing quark mass. For the currently simulated pion masses in the range of 300 to 700 MeV we present evidence that the finite temperature transition is a crossover transition rather than a genuine phase transition. The chiral limit is investigated by comparing the scaling of the observed crossover temperature with the mass including several possible scenarios. Complementary to this approach the chiral condensate as the order parameter for the spontaneous breaking of chiral symmetry is analysed in comparison with the O(4) universal scaling function which characterises a second order transition. With respect to thermodynamics the equation of state is obtained from the trace anomaly employing the temperature integral method which provides the pressure and energy density in the crossover region. The continuum limit of the trace anomaly is studied by considering several values of N τ and the tree-level correction technique.

  2. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    Science.gov (United States)

    Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.

  3. EXTRACTION CHARACTERISTICS OF THE CATION OF ALKYLDIMETHYLBENZYLAMMONIUM CHLORIDE AT THE PHASE BOUNDARY WATER-MEMBRANE SOLVENT

    Directory of Open Access Journals (Sweden)

    O. V. Luganska

    2015-06-01

    Full Text Available The extraction coefficients of the cation of alkyldimethylbenzylammonium chloride at the phase boundary water-tricresylphosphate, water-dioctylphthalate, water-dibutylphtalate have been determined by the potentiometric titration of the aqueous phase with a silver electrode. The correctness of the obtained results has been proved by the titrimetric method with visual fixation of the equivalence point using methylene blue indicator.

  4. Grain boundary corrosion and alteration phase formation during the oxidative dissolution of UO2 pellets

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.; Buck, E.C.; Bates, J.K.

    1996-01-01

    Alteration behavior of UO 2 pellets following reaction under unsaturated drip-test conditions at 90 C for up to 10 years was examined by solid phase and leachate analyses. Sample reactions were characterized by preferential dissolution of grain boundaries between the original press-sintered UO 2 granules comprising the samples, development of a polygonal network of open channels along the intergrain boundaries, and spallation of surface granules that had undergone severe grain boundary corrosion. The development of a dense mat of alteration phases after 2 years of reaction trapped loose granules, resulting in reduced rates of particulate U release. The paragenetic sequence of alteration phases that formed on the present samples was similar to that observed in surficial weathering zones of natural uraninite (UO 2 ) deposits, with alkali and alkaline earth uranyl silicates representing the long-term solubility-limiting phases for U in both systems

  5. Two-phase wall function for modeling of turbulent boundary layer in subcooled boiling flow

    International Nuclear Information System (INIS)

    Bostjan Koncar; Borut Mavko; Yassin A Hassan

    2005-01-01

    Full text of publication follows: The heat transfer and phase-change mechanisms in the subcooled flow boiling are governed mainly by local multidimensional mechanisms near the heated wall, where bubbles are generated. The structure of such 'wall boiling flow' is inherently non-homogeneous and is further influenced by the two-phase flow turbulence, phase-change effects in the bulk, interfacial forces and bubble interactions (collisions, coalescence, break-up). In this work the effect of two-phase flow turbulence on the development of subcooled boiling flow is considered. Recently, the modeling of two-phase flow turbulence has been extensively investigated. A notable progress has been made towards deriving reliable models for description of turbulent behaviour of continuous (liquid) and dispersed phase (bubbles) in the bulk flow. However, there is a lack of investigation considering the modeling of two-phase flow boundary layer. In most Eulerian two-fluid models standard single-phase wall functions are used for description of turbulent boundary layer of continuous phase. That might be a good approximation at adiabatic flows, but their use for boundary layers with high concentration of dispersed phase is questionable. In this work, the turbulent boundary layer near the heated wall will be modeled with the so-called 'two-phase' wall function, which is based on the assumption of additional turbulence due to bubble-induced stirring in the boundary layer. In the two-phase turbulent boundary layer the wall function coefficients strongly depend on the void fraction. Moreover, in the turbulent boundary layer with nucleating bubbles, the bubble size variation also has a significant impact on the liquid phase. As a basis, the wall function of Troshko and Hassan (2001), developed for adiabatic bubbly flows will be used. The simulations will be performed by a general-purpose CFD code CFX-4.4 using additional models provided by authors. The results will be compared to the boiling

  6. On the rutile alpha-PbO"2-type phase boundary of TiO"2

    DEFF Research Database (Denmark)

    Olsen, J.S.; Gerward, Leif; Jiang, Jianzhong

    1999-01-01

    The high-pressure, high-temperature phase quilibria of TiO"2 have been studied with special emphasis on the rutile and alpha-PbO"2-type phases. It is found that the phase boundary, when plotted in a pressure-temperature diagram, changes from having a negative to having a positive slope...... with increasing temperature at about 6GPa and 850^oC. For nanophase material, the phase boundary is shifted towards lower pressure. The room-temperature bulk moduli are 210(120)GPa, 258(8)GPa and 290(20)GPa for rutile, the alpha-PbO"2-type phase and the baddeleyite-type phase, respectively....

  7. Solving QCD via multi-Regge theory

    International Nuclear Information System (INIS)

    White, A. R.

    1998-01-01

    A high-energy, transverse momentum cut-off, solution of QCD is outlined. Regge pole and single gluon properties of the pomeron are directly related to the confinement and chiral symmetry breaking properties of the hadron spectrum. This solution, which corresponds to a supercritical phase of Reggeon Field Theory, may only be applicable to QCD with a very special quark content

  8. 13. international QCD conference (QCD 06)

    International Nuclear Information System (INIS)

    2006-01-01

    This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations

  9. 13. international QCD conference (QCD 06)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations.

  10. A phase-field simulation study of irregular grain boundary migration during recrystallization

    DEFF Research Database (Denmark)

    Moelans, N.; Zhang, Yubin; Godfrey, A.

    2015-01-01

    We present simulation results based on a phase-field model that describes the migration of recrystallization boundaries into spatially varying deformation energy fields. Energy fields with 2-dimensional variations representing 2 sets of dislocation boundaries lying at equal, but opposite, angles......, highly asymmetrical protrusions and retrusions can develop on the migrating recrystallization front resulting in a migration velocity considerably larger than that expected from standard recrystallization models. It is also seen that, when the wavelength of the variations in a deformation microstructure...

  11. Intergranular and inter-phased boundaries in the materials; Joints intergranulaires et interphases dans les materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Aslanides, A. [Electricite de France, Dept. CIMA, 77 - Moret sur Loing (France); Backhaus-Ricoult, M. [Centre d' Etudes de Chimie metallurgique, 94 - Vitry-sur-Seine (France); Bayle-Guillemaud, P. [CEA Grenoble, Dept. de Recherche Fondamentale sur la Matiere Condensee, 38 (France)] [and others

    2000-07-01

    This document collects the abstracts of the talks presented during the colloquium J2IM on the intergranular and inter-phased boundaries in the materials. Around the themes of the interfaces behaviour and grain boundaries defects in materials, these days dealt with the microstructure behaviour in many domains such as the interfaces in batteries, the irradiation damages and the special case of the fuel-cladding interactions, the stressed interfaces, the alumina or silicon carbides substrates. (A.L.B.)

  12. Thermally activated phase slippage in high-Tc grain-boundary Josephson junctions

    International Nuclear Information System (INIS)

    Gross, R.; Chaudhari, P.; Dimos, D.; Gupta, A.; Koren, G.

    1990-01-01

    The effect of thermally activated phase slippage (TAPS) in YBa 2 Cu 3 O 7 grain-boundary Josephson junctions has been studied. TAPS has been found to be responsible for the dc noise voltage superimposed on the dc Josephson current near the transition temperature. Because of the reduced Josephson coupling energy of the grain-boundary junctions, which is caused by a reduced superconducting order parameter at the grain-boundary interface, TAPS is present over a considerable temperature range. The implications of TAPS on the applicability of high-T c Josephson junctions are outlined

  13. Thermally activated phase slippage in high- T sub c grain-boundary Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Gross, R.; Chaudhari, P.; Dimos, D.; Gupta, A.; Koren, G. (IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (USA))

    1990-01-08

    The effect of thermally activated phase slippage (TAPS) in YBa{sub 2}Cu{sub 3}O{sub 7} grain-boundary Josephson junctions has been studied. TAPS has been found to be responsible for the dc noise voltage superimposed on the dc Josephson current near the transition temperature. Because of the reduced Josephson coupling energy of the grain-boundary junctions, which is caused by a reduced superconducting order parameter at the grain-boundary interface, TAPS is present over a considerable temperature range. The implications of TAPS on the applicability of high-{ital T}{sub {ital c}} Josephson junctions are outlined.

  14. Phase boundary in compatible and incompatible polymer blends studied by micro indentation test and microscopic observations

    International Nuclear Information System (INIS)

    Mina, M. F.; Akhtar, F.; Haque, M.E.

    2003-10-01

    The phase boundary of incompatible polymer blends such as poly (methyl methacrylate) (PMMA)/natural rubber (NR) and polyestyrene (PS)/NR as well as compatible blends such as PMMA/NR/epoxidizer NR (compatibilizer) and PS/NR/styrene-butadiene-styrene (SBS) block copolymer (compatibilizer) was studied by means of microhardness (H) technique and microscopy. Solution grown films of neat PMMA, PS and blended films of PMMA/NR, PS/NR, PMMA/NR/ENR and PS/NR/SBS were cast using a common solvent (toluene). While the neat PMMA and PS provide constant hardness values of 178 and 173 MPa, respectively, the binary (incompatible) and the ternary (compatible) blends show a conspicuous H-decrease (PMMA/NR=140 MPa, PS/NR=167 MPa, PMMA/NR/ENR=109 MPa and PS/NR/SBS=127 MPa). Scanning electron microscopy and optical microscopy reveal clear difference of the phase boundary of compatible (smooth boundary) and incompatible (sharp boundary) blends. Besides, the compatibilizer blends are characterised by the thinnest phase boundary (30 μm), which is found about 60 μm in the incompatible blends, showing a final hardness value that demonstrates the compatibilizer to be smoothly distributed in the interface between the two blend components. Results highlight that microindentation technique, in combination with microscopic observations, is a sensitive tool for studying the breadth and quality of the interphase boundary in non- or compatibilized polymer blends and other inhomogeneous materials. (author)

  15. The quantum-field renormalization group in the problem of a growing phase boundary

    International Nuclear Information System (INIS)

    Antonov, N.V.; Vasil'ev, A.N.

    1995-01-01

    Within the quantum-field renormalization-group approach we examine the stochastic equation discussed by S.I. Pavlik in describing a randomly growing phase boundary. We show that, in contrast to Pavlik's assertion, the model is not multiplicatively renormalizable and that its consistent renormalization-group analysis requires introducing an infinite number of counterterms and the respective coupling constants (open-quotes chargeclose quotes). An explicit calculation in the one-loop approximation shows that a two-dimensional surface of renormalization-group points exits in the infinite-dimensional charge space. If the surface contains an infrared stability region, the problem allows for scaling with the nonuniversal critical dimensionalities of the height of the phase boundary and time, δ h and δ t , which satisfy the exact relationship 2 δ h = δ t + d, where d is the dimensionality of the phase boundary. 23 refs., 1 tab

  16. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    International Nuclear Information System (INIS)

    Cheung, F.B.; Epstein, M.

    1985-01-01

    The behavior of a two-phase gas bubble liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined

  17. A phase change processor method for solving a one-dimensional phase change problem with convection boundary

    Energy Technology Data Exchange (ETDEWEB)

    Halawa, E.; Saman, W.; Bruno, F. [Institute for Sustainable Systems and Technologies, School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Mawson Lakes SA 5095 (Australia)

    2010-08-15

    A simple yet accurate iterative method for solving a one-dimensional phase change problem with convection boundary is described. The one-dimensional model takes into account the variation in the wall temperature along the direction of the flow as well as the sensible heat during preheating/pre-cooling of the phase change material (PCM). The mathematical derivation of convective boundary conditions has been integrated into a phase change processor (PCP) algorithm that solves the liquid fraction and temperature of the nodes. The algorithm is based on the heat balance at each node as it undergoes heating or cooling which inevitably involves phase change. The paper presents the model and its experimental validation. (author)

  18. A phase field study of strain energy effects on solute–grain boundary interactions

    International Nuclear Information System (INIS)

    Heo, Tae Wook; Bhattacharyya, Saswata; Chen Longqing

    2011-01-01

    We have studied strain-induced solute segregation at a grain boundary and the solute drag effect on boundary migration using a phase field model integrating grain boundary segregation and grain structure evolution. The elastic strain energy of a solid solution due to the atomic size mismatch and the coherency elastic strain energy caused by the inhomogeneity of the composition distribution are obtained using Khachaturyan’s microelasticity theory. Strain-induced grain boundary segregation at a static planar boundary is studied numerically and the equilibrium segregation composition profiles are validated using analytical solutions. We then systematically studied the effect of misfit strain on grain boundary migration with solute drag. Our theoretical analysis based on Cahn’s analytical theory shows that enhancement of the drag force with increasing atomic size mismatch stems from both an increase in grain boundary segregation due to the strain energy reduction and misfit strain relaxation near the grain boundary. The results were analyzed based on a theoretical analysis in terms of elastic and chemical drag forces. The optimum condition for solute diffusivity to maximize the drag force under a given driving force was identified.

  19. Experimental status QCD

    International Nuclear Information System (INIS)

    Radyushkin, A.V.; Slepchenko, L.A.

    1983-01-01

    Analysis of experimental status of quantum chromodynamics (QCD) has been carried out. A short introduction into QCD is given. QCD sum rules are considered. Jets in e + e - annihilation and inclusive processes of lepton-hadron and hadron-hadron scattering are considered. Effect of QCD corrections to perturbation theory on quark count is analyzed

  20. Superconducting-normal phase boundary of quasicrystalline arrays in a magnetic field

    International Nuclear Information System (INIS)

    Nori, F.; Niu, Q.; Fradkin, E.; Chang, S.

    1987-01-01

    We study the effect of frustration, induced by a mangnetic field, on the superconducting diamagnetic properties of two-dimensional quasicrystalline arrays. In particular, we calculate the superconducting-normal phase boundary, T/sub c/(H), for several geometries with quasicrystalline order. The agreement between our theoretically obtained phase boundaries and the experimentally obtained ones is very good. We also propose a new way of analytically analyzing the overall and the fine structure of T/sub c/(H) in terms of short- and long-range correlations among tiles

  1. Modeling the thermodynamics of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Hell, Thomas

    2010-07-26

    Strongly interacting (QCD) matter is expected to exhibit a multifaceted phase structure: a hadron gas at low temperatures, a quark-gluon plasma at very high temperatures, nuclear matter in the low-temperature and high-density region, color superconductors at asymptotically high densities. Most of the conjectured phases cannot yet be scrutinized by experiments. Much of the present picture - particularly concerning the intermediate temperature and density area of the phase diagram of QCD matter - is based on model calculations. Further insights come from Lattice-QCD computations. The present thesis elaborates a nonlocal covariant extension of the Nambu and Jona-Lasinio (NJL) model with built-in constraints from the running coupling of QCD at high-momentum and instanton physics at low-momentum scales. We present this model for two and three quark flavors (in the latter case paying particular attention to the axial anomaly). At finite temperatures and densities, gluon dynamics is incorporated through a gluonic background field, expressed in terms of the Polyakov loop (P). The thermodynamics of this nonlocal PNJL model accounts for both chiral and deconfinement transitions. We obtain results in mean-field approximation and beyond, including additional pionic and kaonic contributions to the chiral condensate, the pressure and other thermodynamic quantities. Finally, the nonlocal PNJL model is applied to the finite-density region of the QCD phase diagram; for three quark flavors we investigate, in particular, the dependence of the critical point appearing in the models on the axial anomaly. The thesis closes with a derivation of the nonlocal PNJL model from first principles of QCD. (orig.)

  2. Bubble boundary estimation in an annulus two-phase flow using electrical impedance tomography

    International Nuclear Information System (INIS)

    Lee, Jeong Seong

    2008-02-01

    For the visualization of the phase boundary in an annulus two-phase flows, the electrical impedance tomography (EIT) technique is introduced. In EIT, a set of predetermined electrical currents is injected trough the electrodes placed on the boundary of the flow passage and the induced electrical potentials are measured on the electrode. With the relationship between the injected currents and the induced voltages, the electrical conductivity distribution across the flow domain is estimated through the image reconstruction algorithm. In this, the conductivity distribution corresponds to the phase distribution. In the application of EIT to two-phase flows where there are only two conductivity values, the conductivity distribution estimation problem can be transformed into the boundary estimation problem. This paper considers a bubble boundary estimation with EIT in an annulus two-phase flows. And in many industrial cases there are a priori known internal structures inside the vessels which could be used as internal electrodes in tomographical imaging. In this paper internal electrodes were considered in electrical impedance tomography. As the image reconstruction algorithm, the unscented Kalman filter (UKF) is adopted since from the control theory it is reported that the UKF shows better performance than the extended Kalman filter (EKF) that has been commonly used. The UKF algorithm was formulated to be incorporate into the image reconstruction algorithm for the present problem. Also, phantom experiments have been conducted to evaluate the improvement by UKF

  3. Electrical Resistance Imaging of Bubble Boundary in Annular Two-Phase Flows Using Unscented Kalman Filter

    International Nuclear Information System (INIS)

    Lee, Jeong Seong; Chung, Soon Il; Ljaz, Umer Zeeshan; Khambampati, Anil Kumar; Kim, Kyung Youn; Kim, Sin Kim

    2007-01-01

    For the visualization of the phase boundary in annular two-phase flows, the electrical resistance tomography (ERT) technique is introduced. In ERT, a set of predetermined electrical currents is injected trough the electrodes placed on the boundary of the flow passage and the induced electrical potentials are measured on the electrode. With the relationship between the injected currents and the induced voltages, the electrical conductivity distribution across the flow domain is estimated through the image reconstruction algorithm. In this, the conductivity distribution corresponds to the phase distribution. In the application of ERT to two-phase flows where there are only two conductivity values, the conductivity distribution estimation problem can be transformed into the boundary estimation problem. This paper considers a bubble boundary estimation with ERT in annular two-phase flows. As the image reconstruction algorithm, the unscented Kalman filter (UKF) is adopted since from the control theory it is reported that the UKF shows better performance than the extended Kalman filter (EKF) that has been commonly used. We formulated the UKF algorithm to be incorporate into the image reconstruction algorithm for the present problem. Also, phantom experiments have been conducted to evaluate the improvement by UKF

  4. Evolution from successive phase transitions to "morphotropic phase boundary" in BaTiO3-based ferroelectrics

    Science.gov (United States)

    Zhou, Chao; Ke, Xiaoqin; Yao, Yonggang; Yang, Sen; Ji, Yuanchao; Liu, Wenfeng; Yang, Yaodong; Zhang, Lixue; Hao, Yanshuang; Ren, Shuai; Zhang, Le; Ren, Xiaobing

    2018-04-01

    Obtaining superior physical properties for ferroic materials by manipulating the phase transitions is a key concern in solid state physics. Here, we investigated the dielectric permittivity, piezoelectric coefficient d33, storage modulus, and crystal symmetry of (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba1-yCay)TiO3 (BZT-xBCyT) systems to demonstrate the gradual evolution process from successive phase transitions in BaTiO3 to the morphotropic phase boundary (MPB) regime in BZT-xBC0.3T. Furthermore, we analysed with a Landau-type theoretical model to show that the high field-sensitive response (dielectric permittivity) originates from a small polarization anisotropy and low energy barrier at the quadruple point. Together, the intermediate orthorhombic phase regime and the tetragonal-orthorhombic and orthorhombic-rhombohedral phase boundaries constitute the MPB. Our work not only reconciles the arguments regarding whether the structural state around the MPB corresponds to a single-phase regime or a multiple-phase-coexistence regime but also suggests an effective method to design high-performance functional ferroic materials by tailoring the successive phase transitions.

  5. Multidimensional phase change problems by the dual-reciprocity boundary-element method

    International Nuclear Information System (INIS)

    Jo, J.C.; Shin, W.K.; Choi, C.Y.

    1999-01-01

    Transient heat transfer problems with phase changes (Stefan problems) occur in many engineering situations, including potential core melting and solidification during pressurized-water-reactor severe accidents, ablation of thermal shields, melting and solidification of alloys, and many others. This article addresses the numerical analysis of nonlinear transient heat transfer with melting or solidification. An effective and simple procedure is presented for the simulation of the motion of the boundary and the transient temperature field during the phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual-reciprocity boundary-element method. The dual-reciprocity boundary-element approach provided in this article is much simpler than the usual boundary-element method in applying a reciprocity principle and an available technique for dealing with the domain integral of the boundary element formulation simultaneously. In this article, attention is focused on two-dimensional melting (ablation)/solidification problems for simplicity. The accuracy and effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of some examples of one-phase ablation/solidification problems with their known semianalytical or numerical solutions where available

  6. Quantification by aberration corrected (S)TEM of boundaries formed by symmetry breaking phase transformations

    Energy Technology Data Exchange (ETDEWEB)

    Schryvers, D., E-mail: nick.schryvers@uantwerpen.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Salje, E.K.H. [Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ (United Kingdom); Nishida, M. [Department of Engineering Sciences for Electronics and Materials, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); De Backer, A. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Idrissi, H. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Institute of Mechanics, Materials and Civil Engineering, Université Catholique de Louvain, Place Sainte Barbe, 2, B-1348, Louvain-la-Neuve (Belgium); Van Aert, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2017-05-15

    The present contribution gives a review of recent quantification work of atom displacements, atom site occupations and level of crystallinity in various systems and based on aberration corrected HR(S)TEM images. Depending on the case studied, picometer range precisions for individual distances can be obtained, boundary widths at the unit cell level determined or statistical evolutions of fractions of the ordered areas calculated. In all of these cases, these quantitative measures imply new routes for the applications of the respective materials. - Highlights: • Quantification of picometer displacements at ferroelastic twin boundary in CaTiO{sub 3.} • Quantification of kinks in meandering ferroelectric domain wall in LiNbO{sub 3}. • Quantification of column occupation in anti-phase boundary in Co-Pt. • Quantification of atom displacements at twin boundary in Ni-Ti B19′ martensite.

  7. Switching moving boundary models for two-phase flow evaporators and condensers

    Science.gov (United States)

    Bonilla, Javier; Dormido, Sebastián; Cellier, François E.

    2015-03-01

    The moving boundary method is an appealing approach for the design, testing and validation of advanced control schemes for evaporators and condensers. When it comes to advanced control strategies, not only accurate but fast dynamic models are required. Moving boundary models are fast low-order dynamic models, and they can describe the dynamic behavior with high accuracy. This paper presents a mathematical formulation based on physical principles for two-phase flow moving boundary evaporator and condenser models which support dynamic switching between all possible flow configurations. The models were implemented in a library using the equation-based object-oriented Modelica language. Several integrity tests in steady-state and transient predictions together with stability tests verified the models. Experimental data from a direct steam generation parabolic-trough solar thermal power plant is used to validate and compare the developed moving boundary models against finite volume models.

  8. Comparison of phase boundaries between kagomé and honeycomb superconducting wire networks

    Science.gov (United States)

    Xiao, Yi; Huse, David A.; Chaikin, Paul M.; Higgins, Mark J.; Bhattacharya, Shobo; Spencer, David

    2002-06-01

    We measure resistively the mean-field superconducting-normal phase boundaries of both kagomé and honeycomb wire networks immersed in a transverse magnetic field. In addition to their agreement with theory about the overall shapes of phase diagrams, they show striking one-to-one correspondence between the cusps in the honeycomb phase boundary and those in the kagomé curve. This correspondence is due to their geometric arrangements and agrees with Lin and Nori's recent calculation. We also find that for the frustrated honeycomb network at f=1/2, the current patterns in the superconducting phase differ between the low-temperature London regime and the higher-temperature Ginzburg-Landau regime near Tc.

  9. Stress engineering for the design of morphotropic phase boundary in piezoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Tomoya, E-mail: ohno@mail.kitami-it.ac.jp [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan); Yanagida, Hiroshi; Maekawa, Kentaroh [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan); Arai, Takashi; Sakamoto, Naonori; Wakiya, Naoki; Suzuki, Hisao [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561 (Japan); Satoh, Shigeo [Graduate School of Science and Engineering, Ibaragi University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaragi 316-0033 (Japan); Matsuda, Takeshi [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan)

    2015-06-30

    Alkoxide-derived lead zirconate titanate thin films having Zr/Ti = 50/50 to 60/40 compositions with different residual stress conditions were deposited on a Si wafer to clarify the effects of the residual stress on the morphotropic phase boundary shift. The residual stress condition was controlled to − 0.1 to − 0.9 GPa by the design of the buffer layer structure on the Si wafer. Results show that the maximum effective piezoelectric constant d{sub 33} was obtained at 58/42 composition under − 0.9 GPa compressive residual stress condition. Moreover, the MPB composition shifted linearly to Zr-rich phase with increasing compressive residual stress. - Highlights: • The residual stress in lead zirconate titanate film on silicon was controlled. • The maximum residual stress in lead zirconate titanate film was − 0.9 GPa. • The morphotropic phase boundary shifted to zirconium rich phase by the strain.

  10. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis.

    Science.gov (United States)

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  11. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, Vinod M. [Institutefor Chemical Technology and Polymer Chemistry, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe (Germany); Heuveline, Vincent; Deutschmann, Olaf [Institute for Applied and Numerical Mathematics, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe (Germany)

    2008-03-15

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution. (author)

  12. Primary collector wall local temperature fluctuations in the area of water-steam phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J.; Simo, T. [Energovyzkum Ltd., Brno (Switzerland)

    1995-12-31

    A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.

  13. Primary collector wall local temperature fluctuations in the area of water-steam phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O; Klinga, J; Simo, T [Energovyzkum Ltd., Brno (Switzerland)

    1996-12-31

    A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.

  14. Variable and space steps solution of a two phase moving boundary ...

    African Journals Online (AJOL)

    Equations of a two phase moving boundary problem in cylindrical coordinates are obtained from the formulation of a transient shrinking core model of whole tree combustion in a one dimensional steady state fixed-bed reactor. An hybrid Variable Grid Method is developed to solve the non linear equations and the results are ...

  15. Phase-Sensitive Coherence and the Classical-Quantum Boundary in Ghost Imaging

    Science.gov (United States)

    Erkmen, Baris I.; Hardy, Nicholas D.; Venkatraman, Dheera; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2011-01-01

    The theory of partial coherence has a long and storied history in classical statistical optics. the vast majority of this work addresses fields that are statistically stationary in time, hence their complex envelopes only have phase-insensitive correlations. The quantum optics of squeezed-state generation, however, depends on nonlinear interactions producing baseband field operators with phase-insensitive and phase-sensitive correlations. Utilizing quantum light to enhance imaging has been a topic of considerable current interest, much of it involving biphotons, i.e., streams of entangled-photon pairs. Biphotons have been employed for quantum versions of optical coherence tomography, ghost imaging, holography, and lithography. However, their seemingly quantum features have been mimicked with classical-sate light, questioning wherein lies the classical-quantum boundary. We have shown, for the case of Gaussian-state light, that this boundary is intimately connected to the theory of phase-sensitive partial coherence. Here we present that theory, contrasting it with the familiar case of phase-insensitive partial coherence, and use it to elucidate the classical-quantum boundary of ghost imaging. We show, both theoretically and experimentally, that classical phase-sensitive light produces ghost imaging most closely mimicking those obtained in biphotons, and we derived the spatial resolution, image contrast, and signal-to-noise ratio of a standoff-sensing ghost imager, taking into account target-induced speckle.

  16. The supercritical pomeron in QCD

    International Nuclear Information System (INIS)

    White, A. R.

    1998-01-01

    Deep-inelastic diffractive scaling violations have provided fundamental insight into the QCD pomeron, suggesting a single gluon inner structure rather than that of a perturbative two-gluon bound state. This talk outlines a derivation of a high-energy, transverse momentum cut-off, confining solution of QCD. The pomeron, in first approximation, is a single reggeized gluon plus a ''wee parton'' component that compensates for the color and particle properties of the gluon. This solution corresponds to a super-critical phase of Reggeon Field Theory

  17. Structural Evolution of the R-T Phase Boundary in KNN-Based Ceramics

    KAUST Repository

    Lv, Xiang

    2017-10-04

    Although a rhombohedral-tetragonal (R-T) phase boundary is known to substantially enhance the piezoelectric properties of potassium-sodium niobate ceramics, the structural evolution of the R-T phase boundary itself is still unclear. In this work, the structural evolution of R-T phase boundary from -150 °C to 200 °C is investigated in (0.99-x)K0.5Na0.5Nb1-ySbyO3-0.01CaSnO3-xBi0.5K0.5HfO3 (where x=0~0.05 with y=0.035, and y=0~0.07 with x=0.03) ceramics. Through temperature-dependent powder X-ray diffraction (XRD) patterns and Raman spectra, the structural evolution was determined to be Rhombohedral (R, <-125 °C) → Rhombohedral+Orthorhombic (R+O, -125 °C to 0 °C) → Rhombohedral+Tetragonal (R+T, 0 °C to 150 °C) → dominating Tetragonal (T, 200 °C to Curie temperature (TC)) → Cubic (C, >TC). In addition, the enhanced electrical properties (e.g., a direct piezoelectric coefficient (d33) of ~450±5 pC/N, a conversion piezoelectric coefficient (d33*) of ~580±5 pm/V, an electromechanical coupling factor (kp) of ~0.50±0.02, and TC~250 °C), fatigue-free behavior, and good thermal stability were exhibited by the ceramics possessing the R-T phase boundary. This work improves understanding of the physical mechanism behind the R-T phase boundary in KNN-based ceramics and is an important step towards their adoption in practical applications. This article is protected by copyright. All rights reserved.

  18. The QCD Critical Point and Related Observables

    Energy Technology Data Exchange (ETDEWEB)

    Nahrgang, Marlene

    2016-12-15

    The search for the critical point of QCD in heavy-ion collision experiments has sparked enormous interest with the completion of phase I of the RHIC beam energy scan. Here, I review the basics of the thermodynamics of the QCD phase transition and its implications for experimental multiplicity fluctuations in heavy-ion collisions. Several sources of noncritical fluctuations impact the observables and need to be understood in addition to the critical phenomena. Recent progress has been made in dynamical modeling of critical fluctuations, which ultimately is indispensable to understand potential signals of the QCD critical point in heavy-ion collision.

  19. Single particle nonlocality, geometric phases and time-dependent boundary conditions

    Science.gov (United States)

    Matzkin, A.

    2018-03-01

    We investigate the issue of single particle nonlocality in a quantum system subjected to time-dependent boundary conditions. We discuss earlier claims according to which the quantum state of a particle remaining localized at the center of an infinite well with moving walls would be specifically modified by the change in boundary conditions due to the wall’s motion. We first prove that the evolution of an initially localized Gaussian state is not affected nonlocally by a linearly moving wall: as long as the quantum state has negligible amplitude near the wall, the boundary motion has no effect. This result is further extended to related confined time-dependent oscillators in which the boundary’s motion is known to give rise to geometric phases: for a Gaussian state remaining localized far from the boundaries, the effect of the geometric phases is washed out and the particle dynamics shows no traces of a nonlocal influence that would be induced by the moving boundaries.

  20. Boundary fidelity and entanglement in the symmetry protected topological phase of the SSH model

    International Nuclear Information System (INIS)

    Sirker, J; Maiti, M; Konstantinidis, N P; Sedlmayr, N

    2014-01-01

    We present a detailed study of the fidelity, the entanglement entropy and the entanglement spectrum, for a dimerized chain of spinless fermions—a simplified Su–Schrieffer–Heeger (SSH) model—with open boundary conditions which is a well-known example for a model supporting a symmetry protected topological (SPT) phase. In the non-interacting case the Hamiltonian matrix is tridiagonal and the eigenvalues and vectors can be given explicitly as a function of a single parameter which is known analytically for odd chain lengths and can be determined numerically in the even length case. From a scaling analysis of these data for essentially semi-infinite chains we obtain the fidelity susceptibility and show that it contains a boundary contribution which is different in the topologically ordered than in the topologically trivial phase. For the entanglement spectrum and entropy we confirm predictions from massive field theory for a block in the middle of an infinite chain but also consider blocks containing the edge of the chain. For the latter case we show that in the SPT phase additional entanglement—as compared to the trivial phase—is present which is localized at the boundary. Finally, we extend our study to the dimerized chain with a nearest-neighbour interaction using exact diagonalization, Arnoldi and density-matrix renormalization group methods and show that a phase transition into a topologically trivial charge-density wave phase occurs. (paper)

  1. Meson Spectroscopy from QCD - Project Results

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Jozef [Old Dominion Univ., Norfolk, VA (United States)

    2017-04-17

    Highlights of the research include: the determination of the form of the lowest energy gluonic excitation within QCD and the spectrum of hybrid hadrons which follows; the first calculation of the spectrum of hybrid baryons within a first-principles approach to QCD; a detailed mapping out of the phase-shift of elastic ππ scattering featuring the ρ resonance at two values of the light quark mass within lattice QCD; the first (and to date, only) determinations of coupled-channel meson-meson scattering within first-principles QCD; the first (and to date, only) determinations of the radiative coupling of a resonant state, the ρ appearing in πγ→ππ; the first (and to date, only) determination of the properties of the broad σ resonance in elastic ππ scattering within QCD without unjustified approximations.

  2. Quantum metrology of phase for accelerated two-level atom coupled with electromagnetic field with and without boundary

    Science.gov (United States)

    Yang, Ying; Liu, Xiaobao; Wang, Jieci; Jing, Jiliang

    2018-03-01

    We study how to improve the precision of the quantum estimation of phase for an uniformly accelerated atom in fluctuating electromagnetic field by reflecting boundaries. We find that the precision decreases with increases of the acceleration without the boundary. With the presence of a reflecting boundary, the precision depends on the atomic polarization, position and acceleration, which can be effectively enhanced compared to the case without boundary if we choose the appropriate conditions. In particular, with the presence of two parallel reflecting boundaries, we obtain the optimal precision for atomic parallel polarization and the special distance between two boundaries, as if the atom were shielded from the fluctuation.

  3. QCD condensates in ADS/QCD

    DEFF Research Database (Denmark)

    Bechi, Jacopo

    2009-01-01

    This paper focuses on some issues about condensates and renormalization in AdS/QCD models. In particular we consider the consistency of the AdS/QCD approach for scale dependent quantities as the chiral condensate questioned in some recent papers and the 4D meaning of the 5D cosmological constant...... in a model in which the QCD is dual to a 5D gravity theory. We will be able to give some arguments that the cosmological constant is related to the QCD gluon condensate....

  4. Two-phase semilinear free boundary problem with a degenerate phase

    KAUST Repository

    Matevosyan, Norayr; Petrosyan, Arshak

    2010-01-01

    states that in dimension two the free boundaries Γ+ = ∂{u > 0} ∩ D andΓ- = ∂{u < 0} ∩ D are C1,α-regular, provided 1 - ∈0 < p < 1. The proof is obtained by a careful iteration of the Harnack inequality to obtain a nontrivial growth estimate

  5. Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading

    Science.gov (United States)

    Wang, Kun; Chen, Jun; Zhang, Xueyang; Zhu, Wenjun

    2017-09-01

    Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ɛ phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be ⟨"separators="|11 1 ¯ ⟩ B C C||⟨"separators="|1 ¯2 1 ¯ 0 ⟩ H C P and ⟨"separators="|1 1 ¯ 0 ⟩ B C C||⟨"separators="|0001 ⟩ H C P for both cases. The twin boundary corresponds to {"separators="|10 1 ¯ 0 } H C P after the phase transition. It is amazing that the reverse transition seems to be able to "memorize" and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.

  6. Role of Dynamic Nucleation at Moving Boundaries in Phase and Microstructure Selection

    Science.gov (United States)

    Karma, Alain; Trivedi, Rohit

    1999-01-01

    Solidification microstructures that form under steady-state growth conditions (cells, dendrites, regular eutectics, etc.) are reasonably well understood in comparison to other, more complex microstructures, which form under intrinsically non-steady-state growth conditions due to the competition between the nucleation and growth of several phases. Some important practical examples in this latter class include microstructures forming in peritectic systems in highly undercooled droplets, and in strip cast stainless steels. Prediction of phase and microstructure selection in these systems has been traditionally based on (1) heterogeneous nucleation on a static interface, and (2) comparing the relative growth rate of different phase/microstructures under steady-state growth conditions. The formation of new phases, however, occurs via nucleation on, or ahead of, a moving boundary. In addition, the actual selection process is controlled by a complex interaction between the nucleation process and the growth competition between the nuclei and the pre-existing phase under non-steady-state conditions. As a result, it is often difficult to predict which microstructure will form and which phases will be selected under prescribed processing conditions. This research addresses this critical role of nucleation at moving boundaries in the selection of phases and solidification microstructures through quantitative experiments and numerical modeling in peritectic systems. In order to create a well characterized system in which to study this problem, we focus on the directional solidification of hypo- and hyper-peritectic alloys in the two-phase region, imposing a large enough ratio of temperature gradient/growth rate (G/V(sub p)) to suppress the morphological instability of both the parent (alpha) and peritectic (Beta) phases, i.e. each phase alone would grow as a planar front. Our combined experimental and theoretical results show that, already in this simplified case, the growth

  7. Anti-phase boundaries and magnetic domain structures in Ni{sub 2}MnGa-type Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswaran, S.P. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Nuhfer, N.T. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); De Graef, M. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States)]. E-mail: degraef@cmu.edu

    2007-05-15

    The microstructure and magnetic domain structure of austenitic Heusler Ni{sub 2}MnGa are investigated as a function of heat treatment to study the interplay of anti-phase boundaries and magnetic domain walls. Conventional electron microscopy observations on arc-melted polycrystalline samples show that anti-phase boundaries in this system are invisible for standard two-beam imaging conditions, due to the large extinction distance of the Heusler superlattice reflections. Lorentz Fresnel and Foucault observations on quenched samples reveal a wavy magnetic domain morphology, reminiscent of curved anti-phase boundaries. A close inspection of the domain images indicates that the anti-phase boundaries have a magnetization state different from that of the matrix. Fresnel image simulations for a simple magnetization model are in good agreement with the observations. Magnetic coercivity measurements show a decrease in coercivity with annealing, which correlates with the microscopy observations of reduced anti-phase boundary density for annealed samples.

  8. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images.

    Directory of Open Access Journals (Sweden)

    Yuliang Wang

    Full Text Available Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.

  9. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images.

    Science.gov (United States)

    Wang, Yuliang; Zhang, Zaicheng; Wang, Huimin; Bi, Shusheng

    2015-01-01

    Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.

  10. A Cosserat crystal plasticity and phase field theory for grain boundary migration

    Science.gov (United States)

    Ask, Anna; Forest, Samuel; Appolaire, Benoit; Ammar, Kais; Salman, Oguz Umut

    2018-06-01

    The microstructure evolution due to thermomechanical treatment of metals can largely be described by viscoplastic deformation, nucleation and grain growth. These processes take place over different length and time scales which present significant challenges when formulating simulation models. In particular, no overall unified field framework exists to model concurrent viscoplastic deformation and recrystallization and grain growth in metal polycrystals. In this work a thermodynamically consistent diffuse interface framework incorporating crystal viscoplasticity and grain boundary migration is elaborated. The Kobayashi-Warren-Carter (KWC) phase field model is extended to incorporate the full mechanical coupling with material and lattice rotations and evolution of dislocation densities. The Cosserat crystal plasticity theory is shown to be the appropriate framework to formulate the coupling between phase field and mechanics with proper distinction between bulk and grain boundary behaviour.

  11. On the strength of the U{sub A}(1) anomaly at the chiral phase transition in N{sub f}=2 QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Bastian B. [Institut für Theoretische Physik, Goethe-Universität,D-60438 Frankfurt am Main (Germany); Institut für theoretische Physik, Universität Regensburg,D-93040 Regensburg (Germany); Francis, Anthony [Department of Physics & Astronomy, York University,4700 Keele St, Toronto, ON M3J 1P3 (Canada); Meyer, Harvey B. [PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institut Mainz,Johannes Gutenberg-Universität Mainz, D-55099 Mainz (Germany); Philipsen, Owe [Institut für Theoretische Physik, Goethe-Universität,D-60438 Frankfurt am Main (Germany); Robaina, Daniel; Wittig, Hartmut [PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institut Mainz,Johannes Gutenberg-Universität Mainz, D-55099 Mainz (Germany)

    2016-12-30

    We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using O(a)-improved Wilson quarks. Temperature scans are performed at a fixed value of N{sub t}=(aT){sup −1}=16, where a is the lattice spacing and T the temperature, at three fixed zero-temperature pion masses between 200 MeV and 540 MeV. In this range we find that the transition is consistent with a broad crossover. As a probe of the restoration of chiral symmetry, we study the static screening spectrum. We observe a degeneracy between the transverse isovector vector and axial-vector channels starting from the transition temperature. Particularly striking is the strong reduction of the splitting between isovector scalar and pseudoscalar screening masses around the chiral phase transition by at least a factor of three compared to its value at zero temperature. In fact, the splitting is consistent with zero within our uncertainties. This disfavours a chiral phase transition in the O(4) universality class.

  12. Aperiodic superconducting phase boundary of periodic micronetworks in a magnetic field

    International Nuclear Information System (INIS)

    Nori, F.; Niu, Q.

    1988-01-01

    We study flux quantization in periodic arrays with two elementary cells having an irrational ratio of areas. In particular, we calculate the superconducting-normal phase boundary T/sub c/(H) and we analyze the origin of its overall and fine structure as a function of the network size. We discuss our theoretical results, exploiting the electronic tight-binding analogy to the Ginzburg-Landau equations, and compare them with the experimental ones

  13. Study of two-phase boundary layer phenomena in boiling water by means of photographic techniques

    International Nuclear Information System (INIS)

    Molen, S.B. van der

    1976-01-01

    The behaviour of bubbles in the boundary layer of a two-phase flow is important for the heat exchange between the heat production unit and the cooling medium. Theoretical knowledge of the forces on a bubble and the interaction between molecules of different kind are essential for understanding the phenomena. The photographic techniques are needed for the investigation of the bubble pattern which exists where we find Departure from Nucleate Boiling. (orig.) [de

  14. Pressure tuning of the morphotropic phase boundary in piezoelectric lead zirconate titanate

    International Nuclear Information System (INIS)

    Rouquette, J.; Haines, J.; Bornand, V.; Pintard, M.; Papet, Ph.; Bousquet, C.; Konczewicz, L.; Gorelli, F. A.; Hull, S.

    2004-01-01

    Titanium-rich PZT solid solutions were studied under high pressure by neutron and x-ray diffraction, Raman spectroscopy and dielectric measurements. The results show that high pressure stabilizes the ferroelectric monoclinic phases, which are proposed to be responsible for the high piezoelectric properties characteristic of the morphotropic composition PbZr 0.52 Ti 0.48 O 3 . Pressure may thus be used to tune the morphotropic phase boundary in the composition-pressure plane to include a wide range of titanium-rich PZT compositions

  15. Effect of grain boundary phase on the magnetization reversal process of nanocrystalline magnet using large-scale micromagnetic simulation

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2018-05-01

    Full Text Available We investigated the effects of grain boundary phases on magnetization reversal in permanent magnets by performing large-scale micromagnetic simulations based on Landau–Lifshitz–Gilbert equation under a periodic boundary. We considered planar grain boundary phases parallel and perpendicular to an easy axis of the permanent magnet and assumed the saturation magnetization and exchange stiffness constant of the grain boundary phase to be 10% and 1%, respectively, for Nd2Fe14B grains. The grain boundary phase parallel to the easy axis effectively inhibits propagation of magnetization reversal. In contrast, the domain wall moves across the grain boundary perpendicular to the easy axis. These properties of the domain wall motion are explained by dipole interaction, which stabilizes the antiparallel magnetic configuration in the direction perpendicular to the magnetization orientation. On the other hand, the magnetization is aligned in the same direction by the dipole interaction parallel to the magnetization orientation. This anisotropy of the effect of the grain boundary phase shows that improvement of the grain boundary phase perpendicular to the easy axis effectively enhances the coercivity of permanent magnets.

  16. A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity

    Science.gov (United States)

    Fernández-Posada, Carmen M.; Castro, Alicia; Kiat, Jean-Michel; Porcher, Florence; Peña, Octavio; Algueró, Miguel; Amorín, Harvey

    2016-09-01

    There is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO3-BiCoO3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO3-BiMnO3-PbTiO3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses.

  17. Phase-relationships between scales in the perturbed turbulent boundary layer

    Science.gov (United States)

    Jacobi, I.; McKeon, B. J.

    2017-12-01

    The phase-relationship between large-scale motions and small-scale fluctuations in a non-equilibrium turbulent boundary layer was investigated. A zero-pressure-gradient flat plate turbulent boundary layer was perturbed by a short array of two-dimensional roughness elements, both statically, and under dynamic actuation. Within the compound, dynamic perturbation, the forcing generated a synthetic very-large-scale motion (VLSM) within the flow. The flow was decomposed by phase-locking the flow measurements to the roughness forcing, and the phase-relationship between the synthetic VLSM and remaining fluctuating scales was explored by correlation techniques. The general relationship between large- and small-scale motions in the perturbed flow, without phase-locking, was also examined. The synthetic large scale cohered with smaller scales in the flow via a phase-relationship that is similar to that of natural large scales in an unperturbed flow, but with a much stronger organizing effect. Cospectral techniques were employed to describe the physical implications of the perturbation on the relative orientation of large- and small-scale structures in the flow. The correlation and cospectral techniques provide tools for designing more efficient control strategies that can indirectly control small-scale motions via the large scales.

  18. Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric

    DEFF Research Database (Denmark)

    Walker, Julian; Simons, Hugh; Alikin, Denis O

    2016-01-01

    Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroe......Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb......)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its...... realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from 'dual' strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced...

  19. A theoretical model of grain boundary self-diffusion in metals with phase transitions (case study into titanium and zirconium)

    Science.gov (United States)

    Semenycheva, Alexandra V.; Chuvil'deev, Vladimir N.; Nokhrin, Aleksey V.

    2018-05-01

    The paper offers a model describing the process of grain boundary self-diffusion in metals with phase transitions in the solid state. The model is based on ideas and approaches found in the theory of non-equilibrium grain boundaries. The range of application of basic relations contained in this theory is shown to expand, as they can be used to calculate the parameters of grain boundary self-diffusion in high-temperature and low-temperature phases of metals with a phase transition. The model constructed is used to calculate grain boundary self-diffusion activation energy in titanium and zirconium and an explanation is provided as to their abnormally low values in the low-temperature phase. The values of grain boundary self-diffusion activation energy are in good agreement with the experiment.

  20. QCD and string theories

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1990-01-01

    This paper is devoted to a review of the connections between quantumchromodynamics (QCD) and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality

  1. QCD and hadronic strings

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1989-01-01

    This series of lectures is devoted to review ot he connections between QCD and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality.(author)

  2. The α-γ-ɛ triple point and phase boundaries of iron under shock compression

    Science.gov (United States)

    Li, Jun; Wu, Qiang; Xue, Tao; Geng, Huayun; Yu, Jidong; Jin, Ke; Li, Jiabo; Tan, Ye; Xi, Feng

    2017-07-01

    The phase transition of iron under shock compression has attracted much attention in recent decades because of its importance in fields such as condensed matter physics, geophysics, and metallurgy. At room temperature, the transition of iron from the α-phase (bcc) to the ɛ-phase (hpc) occurs at a stress of 13 GPa. At high temperature, a triple point followed by transformation to the γ-phase (fcc) is expected. However, the details of the high-temperature phase transitions of iron are still under debate. Here, we investigate the phase-transition behavior of polycrystalline iron under compression from room temperature to 820 K. The results show that the shock-induced phase transition is determined unequivocally from the measured three-wave-structure profiles, which clearly consist of an elastic wave, a plastic wave, and a phase-transition wave. The phase transition is temperature-dependent, with an average rate Δσtr/ΔT of -6.91 MPa/K below 700 K and -34.7 MPa/K at higher temperatures. The shock α-ɛ and α-γ phase boundaries intersect at 10.6 ± 0.53 GPa and 763 K, which agrees with the α-ɛ-γ triple point from early shock wave experiments and recent laser-heated diamond-anvil cell resistivity and in situ X-ray diffraction data but disagrees with the shock pressure-temperature phase diagram reported in 2009 by Zaretsky [J. Appl. Phys. 106, 023510 (2009)].

  3. Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events

    Science.gov (United States)

    Debnath, Dipsikha; Gainer, James S.; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2017-06-01

    We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain \\tilde{q}\\to {\\tilde{χ}}_2^0\\to \\tilde{ℓ}\\to {\\tilde{χ}}_1^0 , we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, \\overline{Σ} , which is the average RSD per unit area, calculated over the hypothesized boundary. We show that the location of the \\overline{Σ} maximum correlates very well with the true values of the new particle masses. Our approach represents the natural extension of the one-dimensional kinematic endpoint method to the relevant three dimensions of invariant mass phase space.

  4. Phase-field simulation study of the migration of recrystallization boundaries

    DEFF Research Database (Denmark)

    Moelans, Nele; Godfrey, Andy; Zhang, Yubin

    2013-01-01

    We present simulation results based on a phase-field model that describes the local migration of recrystallization boundaries into varying deformation energy fields. An important finding from the simulations is that the overall migration rate of the recrystallization front can be considerably...... amplitudes, however, the velocity scales with the maximum of the deformation energy density along the variation, resulting in a considerably larger velocity than that obtained from standard recrystallization models. The shape of the migrating grain boundary greatly depends on the local characteristics...... of the varying stored deformation energy field. For different deformation energy fields, the simulation results are in good qualitative agreement with experiments and add information which cannot be directly derived from experiments....

  5. Calorimetric Study of Phase Transitions Involving Twist-Grain-Boundary TGB{A} and TGB{C} Phases

    Science.gov (United States)

    Navailles, L.; Garland, C. W.; Nguyen, H. T.

    1996-09-01

    High-resolution calorimetry has been used to determine the heat capacity and latent heat associated with phase transitions in the homologous series of chiral liquid crystals nF_2BTFO_1M_7 [ 3-fluoro-4(1-methylheptyloxy)4'-(4''-alkoxy-2'', 3''-difluorobenzoyloxy)tolane] . These compounds exhibit smectic-C^* (SmC^*), twist-grain-boundary (TGBA for n=10, TGBC for n=11, 12) and cholesteric (N^*) phases. All the phase transitions are first order with small to moderate latent heats. There is a large rounded excess heat capacity peak in the N^* phase that is consistent with the predicted appearance of short-range TGB order (chiral line liquid character). This is analogous to the development of an Abrikosov flux vortex liquid in type-II superconductors. Both the n=11 and 12 homologs exhibit two closely spaced transitions in the region where a single TGBC - N^* transition was expected. This suggests the existence of two thermodynamically distinct TGBC phases. Des exprériences de calorimétrie haute résolution ont été réalisées pour déterminer les chaleurs spécifiques et les chaleurs latentes associées aux transitions de phase des homologues de la série crystal liquide nF_2BTFO_1M_7: 3-fluoro-4[1-methyl-heptyloxy]4'-(4''-alcoxy-2'', 3''-difluorobenzoyloxy)tolanes. Ces produits présentent la phase smectique C^* (SmC^*), les phases à torsion par joint de grain (TGBA pour n=10 et TGBC pour n=11, 12) et la phase cholestérique (N^*). Toutes les transitions de phase sont du premier ordre. La chaleur latente associée à ces transitions est faibles ou modérée. Nous observons, dans la phase N^*, un grand pic arrondi qui est en accord avec les prédictions de l'apparition d'un ordre TGB à courte distance (liquide de ligne de dislocation). Ce phénomène est l'analogue du liquide de vortex dans les supraconducteurs de type II. Les composés n=11 et 12 présentent, dans la région où nous attendions une transition TGBC - N^* unique, deux transitions sur un très faible

  6. Kinetic boundaries and phase transformations of ice i at high pressure

    Science.gov (United States)

    Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F.

    2018-01-01

    Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H2O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.

  7. Phase boundary estimation in electrical impedance tomography using the Hooke and Jeeves pattern search method

    International Nuclear Information System (INIS)

    Khambampati, Anil Kumar; Kim, Kyung Youn; Ijaz, Umer Zeeshan; Lee, Jeong Seong; Kim, Sin

    2010-01-01

    In industrial processes, monitoring of heterogeneous phases is crucial to the safety and operation of the engineering structures. Particularly, the visualization of voids and air bubbles is advantageous. As a result many studies have appeared in the literature that offer varying degrees of functionality. Electrical impedance tomography (EIT) has already been proved to be a hallmark for process monitoring and offers not only the visualization of the resistivity profile for a given flow mixture but is also used for detection of phase boundaries. Iterative image reconstruction algorithms, such as the modified Newton–Raphson (mNR) method, are commonly used as inverse solvers. However, their utility is problematic in a sense that they require the initial solution in close proximity of the ground truth. Furthermore, they also rely on the gradient information of the objective function to be minimized. Therefore, in this paper, we address all these issues by employing a direct search algorithm, namely the Hooke and Jeeves pattern search method, to estimate the phase boundaries that directly minimizes the cost function and does not require the gradient information. It is assumed that the resistivity profile is known a priori and therefore the unknown information will be the size and location of the object. The boundary coefficients are parameterized using truncated Fourier series and are estimated using the relationship between the measured voltages and injected currents. Through extensive simulation and experimental result and by comparison with mNR, we show that the Hooke and Jeeves pattern search method offers a promising prospect for process monitoring

  8. Structural Evolution of the R-T Phase Boundary in KNN-Based Ceramics

    KAUST Repository

    Lv, Xiang; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Zhang, Xixiang

    2017-01-01

    , the structural evolution of R-T phase boundary from -150 °C to 200 °C is investigated in (0.99-x)K0.5Na0.5Nb1-ySbyO3-0.01CaSnO3-xBi0.5K0.5HfO3 (where x=0~0.05 with y=0.035, and y=0~0.07 with x=0.03) ceramics. Through temperature-dependent powder X-ray diffraction

  9. An Evaluation of a Phase-Lag Boundary Condition for Francis Hydroturbine Simulations Using a Pressure-Based Solver

    Science.gov (United States)

    Wouden, Alex; Cimbala, John; Lewis, Bryan

    2014-11-01

    While the periodic boundary condition is useful for handling rotational symmetry in many axisymmetric geometries, its application fails for analysis of rotor-stator interaction (RSI) in multi-stage turbomachinery flow. The inadequacy arises from the underlying geometry where the blade counts per row differ, since the blade counts are crafted to deter the destructive harmonic forces of synchronous blade passing. Therefore, to achieve the computational advantage of modeling a single blade passage per row while preserving the integrity of the RSI, a phase-lag boundary condition is adapted to OpenFOAM® software's incompressible pressure-based solver. The phase-lag construct is accomplished through restating the implicit periodic boundary condition as a constant boundary condition that is updated at each time step with phase-shifted data from the coupled cells adjacent to the boundary. Its effectiveness is demonstrated using a typical Francis hydroturbine modeled as single- and double-passages with phase-lag boundary conditions. The evaluation of the phase-lag condition is based on the correspondence of the overall computational performance and the calculated flow parameters of the phase-lag simulations with those of a baseline full-wheel simulation. Funded in part by DOE Award Number: DE-EE0002667.

  10. Lead-free piezoelectric KNN-BZ-BNT films with a vertical morphotropic phase boundary

    Directory of Open Access Journals (Sweden)

    Wen Chen

    2015-07-01

    Full Text Available The lead-free piezoelectric 0.915K0.5Na0.5NbO3-0.075BaZrO3-0.01Bi0.5Na0.5TiO3 (0.915KNN-0.075BZ-0.01BNT films were prepared by a chemical solution deposition method. The films possess a pure rhomobohedral perovskite phase and a dense surface without crack. The temperature-dependent dielectric properties of the specimens manifest that only phase transition from ferroelectric to paraelectric phase occurred and the Curie temperature is 217 oC. The temperature stability of ferroelectric phase was also supported by the stable piezoelectric properties of the films. These results suggest that the slope of the morphotropic phase boundary (MPB for the solid solution formed with the KNN and BZ in the films should be vertical. The voltage-induced polarization switching, and a distinct piezo-response suggested that the 0.915 KNN-0.075BZ-0.01BNT films show good piezoelectric properties.

  11. Towards the chiral limit in QCD

    International Nuclear Information System (INIS)

    Shailesh Chandrasekharan

    2006-01-01

    to 6 publications, one in physical review letters, three in physical review as rapid communications and two conference proceedings. A long and detailed publication on the phase diagram of two-color QCD was just submitted to hep-lat archive. All the publications are listed in the sections titled Papers published or submitted and Published conference proceedings. Based on the projects completed, it is clear that the goal of the proposal was indeed partially realized

  12. Studies of the phase gradient at the boundary of the phase diffusion equation, motivated by peculiar wave patterns of rhythmic contraction in the amoeboid movement of Physarum polycephalum

    Science.gov (United States)

    Iima, Makoto; Kori, Hiroshi; Nakagaki, Toshiyuki

    2017-04-01

    The boundary of a cell is the interface with its surroundings and plays a key role in controlling the cell movement adaptations to different environments. We propose a study of the boundary effects on the patterns and waves of the rhythmic contractions in plasmodia of Physarum polycephalum, a tractable model organism of the amoeboid type. Boundary effects are defined as the effects of both the boundary conditions and the boundary shape. The rhythmicity of contraction can be modulated by local stimulation of temperature, light and chemicals, and by local deformation of cell shape via mechanosensitive ion channels as well. First, we examined the effects of boundary cell shapes in the case of a special shape resembling a tadpole, while requiring that the natural frequency in the proximity of the boundary is slightly higher and uniform. The simulation model reproduced the approximate propagated wave, from the tail to the head, while the inward waves were observed only near the periphery of the head section of the tadpole-shape. A key finding was that the frequency of the rhythmic contractions depended on the local shape of cell boundary. This implies that the boundary conditions of the phase were not always homogeneous. To understand the dependency, we reduced the two-dimensional model into a one-dimensional continuum model with Neumann boundary conditions. Here, the boundary conditions reflect the frequency distribution at the boundary. We described the analytic solutions and calculated the relationship between the boundary conditions and the wave propagation for a one-dimensional model of the continuous oscillatory field and a discrete coupled oscillator system. The results obtained may not be limited to cell movement of Physarum, but may be applicable to the other physical systems since the analysis used a generic phase diffusion equation.

  13. Studies of the phase gradient at the boundary of the phase diffusion equation, motivated by peculiar wave patterns of rhythmic contraction in the amoeboid movement of Physarum polycephalum

    International Nuclear Information System (INIS)

    Iima, Makoto; Kori, Hiroshi; Nakagaki, Toshiyuki

    2017-01-01

    The boundary of a cell is the interface with its surroundings and plays a key role in controlling the cell movement adaptations to different environments. We propose a study of the boundary effects on the patterns and waves of the rhythmic contractions in plasmodia of Physarum polycephalum , a tractable model organism of the amoeboid type. Boundary effects are defined as the effects of both the boundary conditions and the boundary shape. The rhythmicity of contraction can be modulated by local stimulation of temperature, light and chemicals, and by local deformation of cell shape via mechanosensitive ion channels as well. First, we examined the effects of boundary cell shapes in the case of a special shape resembling a tadpole, while requiring that the natural frequency in the proximity of the boundary is slightly higher and uniform. The simulation model reproduced the approximate propagated wave, from the tail to the head, while the inward waves were observed only near the periphery of the head section of the tadpole-shape. A key finding was that the frequency of the rhythmic contractions depended on the local shape of cell boundary. This implies that the boundary conditions of the phase were not always homogeneous. To understand the dependency, we reduced the two-dimensional model into a one-dimensional continuum model with Neumann boundary conditions. Here, the boundary conditions reflect the frequency distribution at the boundary. We described the analytic solutions and calculated the relationship between the boundary conditions and the wave propagation for a one-dimensional model of the continuous oscillatory field and a discrete coupled oscillator system. The results obtained may not be limited to cell movement of Physarum , but may be applicable to the other physical systems since the analysis used a generic phase diffusion equation. (paper)

  14. Selected challenges in low-energy QCD and hadron physics

    Energy Technology Data Exchange (ETDEWEB)

    Weise, Wolfram [Physik-Department, Technische Universitaet Muenchen, D-85747 Garching (Germany)

    2009-11-15

    This presentation briefly addresses three basic issues of low-energy QCD: first, whether the Nambu-Goldstone scenario of spontaneous chiral symmetry breaking is well established; secondly, whether there is a dynamical entanglement of the chiral and deconfinement crossover transitions in QCD; and thirdly, what is the status of knowledge about the phase diagram of QCD at low temperature and non-zero baryon density. These three topics were injected as key words into a panel discussion at the Schladming school on Challenges in QCD. The following exposition reflects the style and character of the discussions, with no claim of completeness.

  15. QCD roadshow rolls on

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1979-10-15

    Is quantum chromodynamics (QCD) the ultimate theory of hadronic phenomena? Or, put more sceptically, can one tell QCD from a hole in the ground? This is the title of a new theory roadshow, which after a successful premiere at CERN went on to attract a large audience at Erice, Sicily, during the recent international school of subnuclear physics.

  16. QCD and nuclei

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1989-01-01

    To apply QCD to nuclear physics one needs methods of long-distance QCD. A new method, method of Confining Background Fields, CBF, which incorporates confinement, is presented with applications to heavy and light quarks, both in mesons and baryons. Spin-dependent forces are calculated for light and heavy quarks. The quark potential model in some limiting case is derived. 25 refs

  17. QCD roadshow rolls on

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Is quantum chromodynamics (QCD) the ultimate theory of hadronic phenomena? Or, put more sceptically, can one tell QCD from a hole in the ground? This is the title of a new theory roadshow, which after a successful premiere at CERN went on to attract a large audience at Erice, Sicily, during the recent international school of subnuclear physics

  18. Grain boundary corrosion and alteration phase formation during the oxidative dissolution of UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wronkiewicz, D.J.; Buck, E.C.; Bates, J.K.

    1996-12-31

    Alteration behavior of UO{sub 2} pellets following reaction under unsaturated drip-test conditions at 90 C for up to 10 years was examined by solid phase and leachate analyses. Sample reactions were characterized by preferential dissolution of grain boundaries between the original press-sintered UO{sub 2} granules comprising the samples, development of a polygonal network of open channels along the intergrain boundaries, and spallation of surface granules that had undergone severe grain boundary corrosion. The development of a dense mat of alteration phases after 2 years of reaction trapped loose granules, resulting in reduced rates of particulate U release. The paragenetic sequence of alteration phases that formed on the present samples was similar to that observed in surficial weathering zones of natural uraninite (UO{sub 2}) deposits, with alkali and alkaline earth uranyl silicates representing the long-term solubility-limiting phases for U in both systems.

  19. Determination of γ′+γ / γ Phase Boundary in Ni-Al-Cr System Using DTA Thermal Analysis

    Directory of Open Access Journals (Sweden)

    Maciąg T.

    2016-03-01

    Full Text Available Mechanical properties at elevated temperature, in modern alloys based on intermetallic phase Ni3Al are connected with phase composition, especially with proportion of ordered phase γ′ (L12 and disordered phase γ (A1. In this paper, analysis of one key systems for mentioned alloys - Ni-Al-Cr, is presented. A series of alloys with chemical composition originated from Ni-rich part of Ni-Al-Cr system was prepared. DTA thermal analysis was performed on all samples. Based on shape of obtained curves, characteristic for continuous order-disorder transition, places of course of phase boundaries γ′+γ / γ were determined. Moreover, temperature of melting and freezing of alloys were obtained. Results of DTA analysis concerning phase boundary γ′+γ / γ indicated agreement with results obtained by authors using calorimetric solution method.

  20. On the polarization dynamics in the presence of flexoelectricity and morphotropic phase boundary in ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, S. A., E-mail: pikin@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    It is shown that anomalous piezoelectric properties of epitaxial nanostructures arise on the morphotropic phase boundary (MPB) due to the strong flexoelectric effect on dislocation walls. The MPB (typical of many materials) exhibits a coexistence of various phases and partition of these phases to minimum sizes. This minimum size l{sub c} (nanoscale) is found using the dislocation theory; it coincides with the distance between individual dislocations in dislocation walls, which is much larger than the Burgers vector b, regardless of the type of crystalline material. The flexoelectric coefficients f are estimated taking into account dimensional relations and experimental data on the rotations of ferroelectric nanodomains in multiferroics. These estimates coincide with classical values. The critical value l{sub c} ~ 10b specifies the measured dependence on the dielectric susceptibility χ{sub e}, f ~ χ{sub e}{sup 1/2}. The quantity χ{sub e} depends on the frequency of the ac electric field applied to a sample and on the dislocation density. The Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}/Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic composite shows typical frequency dispersion of χ{sub e} in a wide frequency range. The frequency dependence of flexoelecric coefficients is shown to reproduce the frequency dependence of permittivity at high frequencies.

  1. Hamiltonian and Algebraic Theories of Gapped Boundaries in Topological Phases of Matter

    Science.gov (United States)

    Cong, Iris; Cheng, Meng; Wang, Zhenghan

    2017-10-01

    We present an exactly solvable lattice Hamiltonian to realize gapped boundaries of Kitaev's quantum double models for Dijkgraaf-Witten theories. We classify the elementary excitations on the boundary, and systematically describe the bulk-to-boundary condensation procedure. We also present the parallel algebraic/categorical structure of gapped boundaries.

  2. Detecting kinematic boundary surfaces in phase space and particle mass measurements in SUSY-like events

    CERN Document Server

    Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2017-06-19

    We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain $\\tilde q\\to \\tilde\\chi^0_2\\to \\tilde \\ell \\to \\tilde \\chi^0_1$, we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, $\\bar\\Sigma$, which is ...

  3. Theory of superplastic flow in two-phase materials: roles of interphase-boundary dislocations, ledges, and diffusion

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1977-01-01

    A new theory is developed to explain superplastic flow in two-phase materials. It is postulated that boundary-dislocations, piled up in dislocation-Interphase-Boundaries (IPBs) climb away into disordered regions of the IPB. Sliding then occurs at an IPB as dislocations glide toward the head of the pile up to replace those which have climbed into disordered regions of the boundary. An energy barrier which would otherwise render sliding virtually impossible on dislocation-IPBs can, it is shown, be largely eliminated if the dislocations glide in pairs. The disorder (actually an antiphase domain boundary) which is created by the passage of the leading dislocation is then repaired by passage of its successor. The threshold stress for superplastic flow is provisionally identified with the stress which pins IPB dislocations to boundary ledges. The activation energy is theoretically that for IPB diffusion. Good agreement is obtained between the theoretical equation for superplastic flow and the results of published experiments

  4. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics

    Science.gov (United States)

    Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil Mcn.

    2016-06-01

    The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement.

  5. Triple phase boundary specific pathway analysis for quantitative characterization of solid oxide cell electrode microstructure

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Ebbehøj, Søren Lyng; Hauch, Anne

    2015-01-01

    of the pathways through which they can be reached. New methods for performing TPB specific pathway analysis on 3D image data are introduced, analyzing the pathway properties of each TPB site in the electrode structure. The methods seek to provide additional information beyond whether the TPB sites are percolating......The density and percolation of Triple phase boundary sites are important quantities in analyzing microstructures of solid oxide fuel cell electrodes from tomography data. However, these measures do not provide descriptions of the quality of the TPB sites in terms of the length and radius...... or not by also analyzing the pathway length to the TPB sites and the bottleneck radius of the pathway. We show how these methods can be utilized in quantifying and relating the TPB specific results to cell test data of an electrode reduction protocol study for Ni/Scandia-and-Yttria-doped-Zirconia (Ni...

  6. Effect of Bi doping on morphotropic phase boundary and dielectric properties of PZT

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Shraddha; Acharya, Smita, E-mail: saha275@yahoo.com [Advanced Materials Research Laboratory, Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur-440033, M.S. India (India)

    2016-05-23

    In our present attempt, Pb{sub (1-x)}Bi{sub x}Zr{sub 0.52}Ti{sub 0.48}O{sub 3} [PBZT] {where x = 0, 0.05, 0.1} is synthesized by sol-gel route. Effect of Bi addition on structure, sinterability and dielectric properties are observed. The presence of morphotropic phase boundary (coexistence of tetragonal and rhombohedral symmetry) is confirmed by X-ray diffraction. Enhancement of sinterability after Bi doping is observed through a systematic sintering program. Frequency and temperature dependent dielectric constant are studied. Bi doping in PZT is found to enhance room temperature dielectric constant. However, at high temperature the dielectric constant of pure PZT is more than that of doped PZT.

  7. Can Pearlite form Outside of the Hultgren Extrapolation of the Ae3 and Acm Phase Boundaries?

    Science.gov (United States)

    Aranda, M. M.; Rementeria, R.; Capdevila, C.; Hackenberg, R. E.

    2016-02-01

    It is usually assumed that ferrous pearlite can form only when the average austenite carbon concentration C 0 lies between the extrapolated Ae3 ( γ/ α) and Acm ( γ/ θ) phase boundaries (the "Hultgren extrapolation"). This "mutual supersaturation" criterion for cooperative lamellar nucleation and growth is critically examined from a historical perspective and in light of recent experiments on coarse-grained hypoeutectoid steels which show pearlite formation outside the Hultgren extrapolation. This criterion, at least as interpreted in terms of the average austenite composition, is shown to be unnecessarily restrictive. The carbon fluxes evaluated from Brandt's solution are sufficient to allow pearlite growth both inside and outside the Hultgren Extrapolation. As for the feasibility of the nucleation events leading to pearlite, the only criterion is that there are some local regions of austenite inside the Hultgren Extrapolation, even if the average austenite composition is outside.

  8. Superfluid kinetic equation approach to the dynamics of the 3He A-B phase boundary

    International Nuclear Information System (INIS)

    Palmeri, J.

    1990-01-01

    The dynamics of the A-B phase boundary is studied using a nonequilibrium theory inspired by the microscopic approach to flux flow in type-II superconductors, namely a generalized two-fluid model consisting of coupled dynamical equations for the superfluid order parameter and the quasiparticle fluid. The interface mobility is obtained to lowest order in the front velocity in three different dynamical regimes: the gapless, hydrodynamic, and ballistic. Experiments have so far only been performed in the ballistic regime, and in this regime we find that, if only Andreev scattering processes are accounted for in the interface mobility, then the theoretical predictions for the terminal velocity of the planar interface are too big by a factor ∼2. From this we conclude that there may be other important contributions to the interface mobility in the ballistic regime, and we discuss a few possibilities

  9. Nonlinear traveling waves in rotating Rayleigh-Bacute enard convection: Stability boundaries and phase diffusion

    International Nuclear Information System (INIS)

    Liu, Y.; Ecke, R.E.

    1999-01-01

    We present experimental measurements of a sidewall traveling wave in rotating Rayleigh-Bacute enard convection. The fluid, water with Prandtl number about 6.3, was confined in a 1-cm-high cylindrical cell with radius-to-height ratio Γ=5. We used simultaneous optical-shadowgraph, heat-transport, and local temperature measurements to determine the stability and characteristics of the traveling-wave state for dimensionless rotation rates 60<Ω<420. The state is well described by the one-dimensional complex Ginzburg-Landau (CGL) equation for which the linear and nonlinear coefficients were determined for Ω=274. The Eckhaus-Benjamin-Feir-stability boundary was established and the phase-diffusion coefficient and nonlinear group velocity were determined in the stable regime. Higher-order corrections to the CGL equation were also investigated. copyright 1999 The American Physical Society

  10. COMPUTER MODELING OF STRAINS ON PHASE BOUNDARIES IN DUCTILE CAST IRON AT HOT EXTRUSION

    Directory of Open Access Journals (Sweden)

    A. I. Pokrovsky

    2017-01-01

    Full Text Available The computer modeling of the strain distribution in the structure of ductile iron with ferrite-pearlite matrix and inclusions of spherical graphite dependence on increasing degree of deformation during direct hot extrusion was researched. Using a software system of finite-element analysis ANSYS the numerical values of the strains at the phase boundaries: ferrite-perlite, graphiteferrite and also inside the graphite inclusions were defined. The analysis of the strain distribution in the investigated structures was performed and local zones of increased strains were discovered. The results of modeling are compared with metallographic analysis and fracture patterns. The obtained results could be used in the prediction of fracture zones in the cast iron products. 

  11. QCD as a topologically ordered system

    International Nuclear Information System (INIS)

    Zhitnitsky, Ariel R.

    2013-01-01

    We argue that QCD belongs to a topologically ordered phase similar to many well-known condensed matter systems with a gap such as topological insulators or superconductors. Our arguments are based on an analysis of the so-called “deformed QCD” which is a weakly coupled gauge theory, but nevertheless preserves all the crucial elements of strongly interacting QCD, including confinement, nontrivial θ dependence, degeneracy of the topological sectors, etc. Specifically, we construct the so-called topological “BF” action which reproduces the well known infrared features of the theory such as non-dispersive contribution to the topological susceptibility which cannot be associated with any propagating degrees of freedom. Furthermore, we interpret the well known resolution of the celebrated U(1) A problem where the would be η ′ Goldstone boson generates its mass as a result of mixing of the Goldstone field with a topological auxiliary field characterizing the system. We then identify the non-propagating auxiliary topological field of the BF formulation in deformed QCD with the Veneziano ghost (which plays the crucial role in resolution of the U(1) A problem). Finally, we elaborate on relation between “string-net” condensation in topologically ordered condensed matter systems and long range coherent configurations, the “skeletons”, studied in QCD lattice simulations. -- Highlights: •QCD may belong to a topologically ordered phase similar to condensed matter (CM) systems. •We identify the non-propagating topological field in deformed QCD with the Veneziano ghost. •Relation between “string-net” condensates in CM systems and the “skeletons” in QCD lattice simulations is studied

  12. Molecular dynamics study of kinetic boundary condition at an interface between a polyatomic vapor and its condensed phase

    OpenAIRE

    Ishiyama, Tatsuya; Yano, Takeru; Fujikawa, Shigeo

    2004-01-01

    The kinetic boundary condition for the Boltzmann equation at an interface between a polyatomic vapor and its liquid phase is investigated by the numerical method of molecular dynamics, with particular emphasis on the functional form of the evaporation part of the boundary condition, including the evaporation coefficient. The present study is an extension of a previous one for argon [Ishiyama, Yano, and Fujikawa, Phys. Fluids 16, 2899 (2004)] to water and methanol, typical examples of polyatom...

  13. Holographic study of the QCD matter under external conditions

    Directory of Open Access Journals (Sweden)

    Katanaeva Alisa

    2017-01-01

    We use methods of the bottom-up AdS/QCD approach to bring out the phase structure of several holographic models in which transition to a deconfined phase is related to a (first order Hawking-Page phase transition. The impact of phenomenological model parameters on the critical temperature and chemical potential is studied in detail. Comparison of the model predictions with results of experimental investigations, lattice QCD simulations and other methods is also done.

  14. Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Hao-Ting Shen

    2016-06-01

    Full Text Available The grain boundaries of three Laves phase-related body-center-cubic (bcc solid-solution, metal hydride (MH alloys with different phase abundances were closely examined by scanning electron microscopy (SEM, transmission electron microscopy (TEM, and more importantly, electron backscatter diffraction (EBSD techniques. By using EBSD, we were able to identify the alignment of the crystallographic orientations of the three major phases in the alloys (C14, bcc, and B2 structures. This finding confirms the presence of crystallographically sharp interfaces between neighboring phases, which is a basic assumption for synergetic effects in a multi-phase MH system.

  15. OpenQ∗D simulation code for QCD+QED

    DEFF Research Database (Denmark)

    Campos, Isabel; Fritzsch, Patrick; Hansen, Martin

    2018-01-01

    The openQ∗D code for the simulation of QCD+QED with C∗ boundary conditions is presented. This code is based on openQCD-1.6, from which it inherits the core features that ensure its efficiency: the locally-deflated SAP-preconditioned GCR solver, the twisted-mass frequency splitting of the fermion....... An alpha version of this code is publicly available and can be downloaded from http://rcstar.web.cern.ch/....

  16. Effects of Iron and Aluminum on Phase Boundaries at 600-800 km Depths

    Science.gov (United States)

    Shim, Sang-Heon; Ye, Yu; Prakapenka, Vitali; Meng, Yue

    2014-05-01

    High-resolution seismic studies have reported complex discontinuity structures at 600-800 km depths. However, the origin of the structures have not been well understood. In order to understand compositional effects, we have measured the post-spinel, post-garnet, and post-ilmenite phase boundaries in MgO-Al2O3-SiO2 (iron free) and CaO-MgO-Al2O3-SiO2-FeO (iron bearing) systems with pyrolitic oxide ratios. In-situ X-ray diffraction measurements were performed at 20-30 GPa and 1500-2300 K in the laser-heated diamond-anvil cell at the GSECARS and HPCAT sectors of the Advanced Photon Source. We use the Pt and Au pressure scales for the iron-free and iron-bearing compositions, respectively. The Pt and Au scales were calibrated with respect to each other in separate experiments. In most experiments, Ar was cryogenically loaded in the sample chamber as a thermal insulation and pressure transmitting medium, except for a few experiments where a KCl medium was used. At temperatures above 1900 K, the post-garnet transition occurs at higher pressures than the post-spinel transition in both the iron-free and iron-bearing systems. At lower temperatures, while the post-ilmenite transition occurs at nearly same pressures as the post-spinel transition in the iron-bearing system, the post-ilmenite transition occurs at slightly higher pressure (1 GPa) than the post-spinel transitions in the iron-free system. In the iron-free system, akimotoite is stable to much higher temperature (2300 K) than previously thought. In the iron-bearing system, the stability of akimotoite is limited to 2050 K. Our data indicate that Al partitions more into akimotoite than garnet in the iron-free system, which is the opposite to what has been found in iron-bearing systems. The high Al content in akimotoite seems to be responsible for the high-temperature stability of akimotoite in the iron-free system. The Clapeyron slope of the post-garnet boundary is greater by a factor of 2.5 in the iron-bearing system

  17. Fierz-complete NJL model study. II. Toward the fixed-point and phase structure of hot and dense two-flavor QCD

    Science.gov (United States)

    Braun, Jens; Leonhardt, Marc; Pospiech, Martin

    2018-04-01

    Nambu-Jona-Lasinio-type models are often employed as low-energy models for the theory of the strong interaction to analyze its phase structure at finite temperature and quark chemical potential. In particular, at low temperature and large chemical potential, where the application of fully first-principles approaches is currently difficult at best, this class of models still plays a prominent role in guiding our understanding of the dynamics of dense strong-interaction matter. In this work, we consider a Fierz-complete version of the Nambu-Jona-Lasinio model with two massless quark flavors and study its renormalization group flow and fixed-point structure at leading order of the derivative expansion of the effective action. Sum rules for the various four-quark couplings then allow us to monitor the strength of the breaking of the axial UA(1 ) symmetry close to and above the phase boundary. We find that the dynamics in the ten-dimensional Fierz-complete space of four-quark couplings can only be reduced to a one-dimensional space associated with the scalar-pseudoscalar coupling in the strict large-Nc limit. Still, the interacting fixed point associated with this one-dimensional subspace appears to govern the dynamics at small quark chemical potential even beyond the large-Nc limit. At large chemical potential, corrections beyond the large-Nc limit become important, and the dynamics is dominated by diquarks, favoring the formation of a chirally symmetric diquark condensate. In this regime, our study suggests that the phase boundary is shifted to higher temperatures when a Fierz-complete set of four-quark interactions is considered.

  18. The current matrix elements from HAL QCD method

    Science.gov (United States)

    Watanabe, Kai; Ishii, Noriyoshi

    2018-03-01

    HAL QCD method is a method to construct a potential (HAL QCD potential) that reproduces the NN scattering phase shift faithful to the QCD. The HAL QCD potential is obtained from QCD by eliminating the degrees of freedom of quarks and gluons and leaving only two particular hadrons. Therefor, in the effective quantum mechanics of two nucleons defined by HAL QCD potential, the conserved current consists not only of the nucleon current but also an extra current originating from the potential (two-body current). Though the form of the two-body current is closely related to the potential, it is not straight forward to extract the former from the latter. In this work, we derive the the current matrix element formula in the quantum mechanics defined by the HAL QCD potential. As a first step, we focus on the non-relativistic case. To give an explicit example, we consider a second quantized non-relativistic two-channel coupling model which we refer to as the original model. From the original model, the HAL QCD potential for the open channel is constructed by eliminating the closed channel in the elastic two-particle scattering region. The current matrix element formula is derived by demanding the effective quantum mechanics defined by the HAL QCD potential to respond to the external field in the same way as the original two-channel coupling model.

  19. Excited QCD 2017

    CERN Document Server

    2017-01-01

    This edition is the ninth in a series of workshops that had been previously organised in Poland (2009), Slovakia (2010 and 2015), France (2011), Portugal (2012 and 2016) and Bosnia and Herzegovina (2013 and 2014). In the year 2017 the workshop goes to the beautiful Sintra near Lisbon, Portugal. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, new resonances, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-gluon plasma, holography, colour-glass condensate, compact stars, applications to astrophysics.

  20. Predictive Lattice QCD

    International Nuclear Information System (INIS)

    Kronfeld, Andreas

    2005-01-01

    Quantum chromodynamics (QCD) is the quantum field theory describing the strong interactions of quarks bound inside hadrons. It is marvelous theory, which works (mathematically) at all distance scales. Indeed, for thirty years, theorists have known how to calculate short-distance properties of QCD, thanks to the (Nobel-worthy) idea of asymptotic freedom. More recently, numerical techniques applied to the strong-coupling regime of QCD have enabled us to compute long-distance bound-state properties. In this colloquium, we review these achievements and show how the new-found methods of calculation will influence high-energy physics.

  1. DESY: QCD workshop

    International Nuclear Information System (INIS)

    Ingelman, Gunnar

    1994-01-01

    The traditional annual DESY Theory Workshop highlights a topical theory sector. The most recent was under the motto 'Quantum Chromo-Dynamics' - QCD, the field theory of quarks and gluons. The organizers had arranged a programme covering most aspects of current QCD research. This time the workshop was followed by a topical meeting on 'QCD at HERA' to look at the electron-proton scattering experiments now in operation at DESY's new HERA collider

  2. QED, QCD en pratique

    OpenAIRE

    Aurenche , P; Guillet , J.-Ph; Pilon , E

    2016-01-01

    3rd cycle; Ces notes sont une introduction à l'application de l'électrodynamique quantique (QED) et de la chromodynamiques quantique (QCD) aux réactions de diffusion à hautes énergies. Le premier thème abordé est celui des divergences ultraviolettes et de la renormalisation à une boucle, avec comme conséquence pour QCD la liberté asymptotique. Le deuxième thème est celui des divergences infrarouges et colinéaires qui dans QCD sont traitées dans le cadre du modèle des partons avec l'introducti...

  3. Simulation study on exchange interaction and unique magnetization near ferromagnetic morphotropic phase boundary.

    Science.gov (United States)

    Wei, Songrui; Liao, Xiaoqi; Gao, Yipeng; Yang, Sen; Wang, Dong; Song, Xiaoping

    2017-11-08

    Extensive efforts have been made in searching enhanced functionalities near the so-called morphotropic phase boundaries (MPBs) in both ferroelectric and ferromagnetic materials. Due to the exchange anti-symmetry of the wave function of fermions, it is widely recognized that the exchange interaction plays a critical role in ferromagnetism. As a quantum effect, the exchange interaction is magnitudes larger than electric interaction, leading to a fundamental difference between ferroelectricity and ferromagnetism. In this paper, we establish an energetic model capturing the interplay among the anisotropy energy, magnetostatic energy and the exchange energy to investigate systematically the effects of the exchange energy on the behavior of the ferromagnetic MPB. For the first time, it is found that the exchange energy can narrow the width of MPB region in the composition temperature phase diagram for ferromagnetic MPB systems. As temperature increases, MPB region becomes wider because of the weakening of the exchange interaction. Our simulation results suggest that the exchange energy play a critical role on the unique behavior of ferromagnetic MPB, which is in contrast different from that of ferroelectric MPB.

  4. Dynamics of nonlinear dielectric susceptibility of ferroelectrics near the morphotropic phase boundary

    International Nuclear Information System (INIS)

    Ibrahim, Abdel-Baset M A; Osman, Junaidah

    2013-01-01

    The dynamics of the nonlinear (NL) dielectric susceptibility of ferroelectrics (FE) near the morphotropic phase boundary (MPB) is theoretically investigated based on the Landau–Devonshire free energy approach and the concept of FE soft modes. To do so, the NL dielectric susceptibility elements of FE material in the tetragonal phase are expressed as functions of optical phonon modes. These are the E modes with normal characteristic frequency ω E 2 and the A modes with ω A 2 . On the one hand, the tetragonal E modes appear to exhibit a double soft-mode character, i.e. the mode softens either when the thermodynamic temperature T approaches the transition temperature T c or when the free energy parameter β 1 approaches β 2 . On the other hand, the A modes exhibit single soft-mode character when T approaches T c . Within this formulation, the dynamics of first-, second- and third-order NL susceptibility elements are investigated. The origin of the anomalous behavior of certain NL elements at the MPB appears to be a manifestation of FE mode-softening. This approach provides a simple yet powerful technique to understand the dynamics of the NL dielectric susceptibility elements of FE material near the MPB. (paper)

  5. Nanocompositional Electron Microscopic Analysis and Role of Grain Boundary Phase of Isotropically Oriented Nd-Fe-B Magnets

    Directory of Open Access Journals (Sweden)

    Gregor A. Zickler

    2017-01-01

    Full Text Available Nanoanalytical TEM characterization in combination with finite element micromagnetic modelling clarifies the impact of the grain misalignment and grain boundary nanocomposition on the coercive field and gives guidelines how to improve coercivity in Nd-Fe-B based magnets. The nanoprobe electron energy loss spectroscopy measurements obtained an asymmetric composition profile of the Fe-content across the grain boundary phase in isotropically oriented melt-spun magnets and showed an enrichment of iron up to 60 at% in the Nd-containing grain boundaries close to Nd2Fe14B grain surfaces parallel to the c-axis and a reduced iron content up to 35% close to grain surfaces perpendicular to the c-axis. The numerical micromagnetic simulations on isotropically oriented magnets using realistic model structures from the TEM results reveal a complex magnetization reversal starting at the grain boundary phase and show that the coercive field increases compared to directly coupled grains with no grain boundary phase independently of the grain boundary thickness. This behaviour is contrary to the one in aligned anisotropic magnets, where the coercive field decreases compared to directly coupled grains with an increasing grain boundary thickness, if Js value is > 0.2 T, and the magnetization reversal and expansion of reversed magnetic domains primarily start as Bloch domain wall at grain boundaries at the prismatic planes parallel to the c-axis and secondly as Néel domain wall at the basal planes perpendicular to the c-axis. In summary our study shows an increase of coercive field in isotropically oriented Nd-Fe-B magnets for GB layer thickness > 5 nm and an average Js value of the GB layer < 0.8 T compared to the magnet with perfectly aligned grains.

  6. Critical point of Nf=3 QCD from lattice simulations in the canonical ensemble

    International Nuclear Information System (INIS)

    Li Anyi; Alexandru, Andrei; Liu, Keh-Fei

    2011-01-01

    A canonical ensemble algorithm is employed to study the phase diagram of N f =3 QCD using lattice simulations. We lock in the desired quark number sector using an exact Fourier transform of the fermion determinant. We scan the phase space below T c and look for an S-shape structure in the chemical potential, which signals the coexistence phase of a first order phase transition in finite volume. Applying Maxwell construction, we determine the boundaries of the coexistence phase at three temperatures and extrapolate them to locate the critical point. Using an improved gauge action and improved Wilson fermions on lattices with a spatial extent of 1.8 fm and quark masses close to that of the strange, we find the critical point at T E =0.925(5)T c and baryon chemical potential μ B E =2.60(8)T c .

  7. QCD and hadron structure

    International Nuclear Information System (INIS)

    Kaplan, D.B.

    1995-01-01

    I give a brief and selective overview of QCD as it pertains to determining hadron structure, and the relevant directions in this field for nuclear theory. This document is intended to start discussion about priorities, not end it

  8. ATLAS soft QCD results

    CERN Document Server

    Sykora, Tomas; The ATLAS collaboration

    2018-01-01

    Recent results of soft QCD measurements performed by the ATLAS collaboration are reported. The measurements include total, elastic and inelastic cross sections, inclusive spectra, underlying event and particle correlations in p-p and p-Pb collisions.

  9. Gluonium spectrum in QCD

    International Nuclear Information System (INIS)

    Dominguez, C.A.

    1987-02-01

    The scalar (0 ++ ) and the tensor (2 ++ ) gluonium spectrum is analyzed in the framework of QCD sum rules. Stable eigenvalue solutions, consistent with duality and low energy theorems, are obtained for the mass and width of these glueballs. (orig.)

  10. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  11. Perturbative QCD and jets

    International Nuclear Information System (INIS)

    Mueller, A.H.

    1986-03-01

    A brief review of some of the recent progress in perturbative QCD is given (heavy quark production, small-x physics, minijets and related topics, classical simulations in high energy reactions, coherence and the string effect)

  12. Computers for Lattice QCD

    International Nuclear Information System (INIS)

    Christ, Norman H

    2000-01-01

    The architecture and capabilities of the computers currently in use for large-scale lattice QCD calculations are described and compared. Based on this present experience, possible future directions are discussed

  13. Effect of grain boundaries on shock-induced phase transformation in iron bicrystals

    Science.gov (United States)

    Zhang, Xueyang; Wang, Kun; Zhu, Wenjun; Chen, Jun; Cai, Mengqiu; Xiao, Shifang; Deng, Huiqiu; Hu, Wangyu

    2018-01-01

    Non-equilibrium molecular-dynamic simulations with a modified analytic embedded-atom model potential have been performed to investigate the effect of three kinds of grain boundaries (GBs) on the martensitic transformation in iron bicrystals with three different GBs under shock loadings. Our results show that the phase transition was influenced by the GBs. All three GBs provide a nucleation site for the α → ɛ transformation in samples shock-loaded with up = 0.5 km/s, and in particular, the elastic wave can induce the phase transformation at Σ3 ⟨110⟩ twist GB, which indicates that the phase transformation can occur at Σ3 ⟨110⟩ twist GB with a much lower pressure. The effect of GBs on the stress assisted transformation (SAT) mechanisms is discussed. All variants nucleating at the vicinity of these GBs meet the maximum strain work (MSW) criterion. Moreover, all of the variants with the MSW nucleate at Σ5 ⟨001⟩ twist GB and Σ3 ⟨110⟩ tilt GB, but only part of them nucleate at Σ3 ⟨110⟩ twist GB. This is because the coincident planes between both sides of the GB would affect the slip process, which is the second stage of the martensitic transformation and influences the selection of variant. We also find that the martensitic transformation at the front end of the bicrystals would give rise to stress attenuation in samples shock-loaded with up = 0.6 km/s, which makes the GBs seem to be unfavorable to the martensitic transformation. Our findings have the potential to affect the interface engineering and material design under high pressure conditions.

  14. QCD at finite temperature

    International Nuclear Information System (INIS)

    Kikkawa, Keiji

    1983-01-01

    The varidity of the perturbation method in the high temperature QCD is discussed. The skeleton expansion method takes account of plasmon effects and eliminates the electric infrared singularity but not the magnetic one. A possibility of eliminating the latter, which was recently proposed, is examined by a gauge invariant skeleton expansion. The magnetic singularity is unable to be eliminated by the perturbation method. This implies that some non-perturbative approaches must be incorporated in the high temperature QCD. (author)

  15. Aspects of QCD factorization

    International Nuclear Information System (INIS)

    Neubert, Matthias

    2001-01-01

    The QCD factorization approach provides the theoretical basis for a systematic analysis of nonleptonic decay amplitudes of B mesons in the heavy-quark limit. After recalling the basic ideas underlying this formalism, several tests of QCD factorization in the decays B→D (*) L, B→K * γ, and B→πK, ππ are discussed. It is then illustrated how factorization can be used to obtain new constraints on the parameters of the unitarity triangle

  16. Color ordering in QCD

    OpenAIRE

    Schuster, Theodor

    2013-01-01

    We derive color decompositions of arbitrary tree and one-loop QCD amplitudes into color ordered objects called primitive amplitudes. Furthermore, we derive general fermion flip and reversion identities spanning the null space among the primitive amplitudes and use them to prove that all color ordered tree amplitudes of massless QCD can be written as linear combinations of color ordered tree amplitudes of $\\mathcal{N}=4$ super Yang-Mills theory.

  17. Components of QCD

    International Nuclear Information System (INIS)

    Sivers, D.

    1979-10-01

    Some aspects of a simple strategy for testing the validity of QCD perturbation theory are examined. The importance of explicit evaluation of higher-order contributions is illustrated by considering Z 0 decays. The recent progress toward understanding exclusive processes in QCD is discussed and some simple examples are given of how to isolate and test the separate components of the perturbation expansion in a hypothetical series of jet experiments

  18. QCD for Collider Physics

    OpenAIRE

    Skands, Peter

    2011-01-01

    These lectures are directed at a level suitable for graduate students in experimental and theoretical High Energy Physics. They are intended to give an introduction to the theory and phenomenology of quantum chromodynamics (QCD) as it is used in collider physics applications. The aim is to bring the reader to a level where informed decisions can be made concerning different approaches and their uncertainties. The material is divided into four main areas: 1) fundamentals, 2) perturbative QCD, ...

  19. Atom Probe Tomography of Phase and Grain Boundaries in Experimentally-Deformed and Hot-Pressed Wehrlite

    Science.gov (United States)

    Cukjati, J.; Parman, S. W.; Cooper, R. F.; Zhao, N.

    2017-12-01

    Atom probe tomography (APT) was used to characterize the chemistry of three grain boundaries: an olivine-olivine (ol-ol) and olivine-clinopyroxene (ol-cpx) boundary in fine-grained experimentally-deformed wehrlite and an ol-cpx boundary in a fine-grained, hot-pressed wehrlite. Grain boundaries were extracted and formed into APT tips using a focused ion beam (FIB). The tips were analyzed in a reflectron-equipped LEAP4000HR (Harvard University) at 1% or 0.5% detection rate, 5pJ laser energy and 100kHz pulse rate. Total ion counts are between 40 and 100 million per tip. Examination of grain and phase boundaries in wehrlite are of interest since slow-diffusing and olivine-incompatible cations present in cpx (e.g. Ca and Al) may control diffusion-accommodated grain boundary sliding and affect mantle rheology (Sundberg & Cooper, 2008). At steady state, ol-cpx aggregates are weaker than either ol or cpx end member, the results of which are not currently well-explained. We investigate grain boundary widths to understand the transport of olivine-incompatible elements. Widths of grain/phase boundary chemical segregation are between 3nm and 6nm for deformed ol-ol and ol-cpx samples; minimally-deformed (hot-pressed) samples having slightly wider chemical segregation widths. Chemical segregation widths were determined from profiles of Na, Al, P, Cl, K, Ca, or Ni, although not all listed elements can be used for all samples (e.g. Na, K segregation profiles can only be observed for ol-ol sample). These estimates are consistent with prior estimates of grain boundary segregation by atom probe tomography on ol-ol and opx-opx samples (Bachhav et al., 2015) and are less than ol-ol interface widths analyzed by STEM/EDX (Hiraga, Anderson, & Kohlstedt, 2007). STEM/EDX will be performed on deformed wehrlite to investigate chemical profile as a function of applied stress orientation and at length scales between those observable by APT and EPMA. Determination of phase boundary chemistry and

  20. Critical opalescence in baryonic QCD matter.

    Science.gov (United States)

    Antoniou, N G; Diakonos, F K; Kapoyannis, A S; Kousouris, K S

    2006-07-21

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies.

  1. Factorial correlators: angular scaling within QCD jets

    International Nuclear Information System (INIS)

    Peschanski, R.

    2001-01-01

    Factorial correlators measure the amount of dynamical correlation in the multiplicity between two separated phase-space windows. We present the analytical derivation of factorial correlators for a QCD jet described at the double logarithmic (DL) accuracy. We obtain a new angular scaling property for properly normalized correlators between two solid-angle cells or two rings around the jet axis. Normalized QCD factorial correlators scale with the angular distance and are independent of the window size. Scaling violations are expected beyond the DL approximation, in particular from the subject structure. Experimental tests are feasible, and thus would be welcome. (orig.)

  2. Critical Opalescence in Baryonic QCD Matter

    Science.gov (United States)

    Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.; Kousouris, K. S.

    2006-07-01

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies.

  3. Critical Opalescence in Baryonic QCD Matter

    International Nuclear Information System (INIS)

    Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.; Kousouris, K. S.

    2006-01-01

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies

  4. Quasiparticles in QCD thermodynamics and applications

    International Nuclear Information System (INIS)

    Schneider, R.A.; Renk, T.

    2002-01-01

    We propose a novel quasiparticle interpretation of the equation of state of deconfined QCD at finite temperature. Using appropriate thermal masses, we introduce a phenomenological parametrization of the onset of confinement in the vicinity of the phase transition. Lattice results of the energy density, the pressure and the interaction measure of pure SU(3) gauge theory are well reproduced. A relation between the thermal energy density of the Yang-Mills vacuum and the chromomagnetic condensate left angle B 2 right angle T is found. We also present the two flavour QCD equation of state for realistic quark masses and apply the model to dilepton production in ultrarelativistic heavy-ion collisions. (orig.)

  5. Identifying QCD Transition Using Deep Learning

    Science.gov (United States)

    Zhou, Kai; Pang, Long-gang; Su, Nan; Petersen, Hannah; Stoecker, Horst; Wang, Xin-Nian

    2018-02-01

    In this proceeding we review our recent work using supervised learning with a deep convolutional neural network (CNN) to identify the QCD equation of state (EoS) employed in hydrodynamic modeling of heavy-ion collisions given only final-state particle spectra ρ(pT, V). We showed that there is a traceable encoder of the dynamical information from phase structure (EoS) that survives the evolution and exists in the final snapshot, which enables the trained CNN to act as an effective "EoS-meter" in detecting the nature of the QCD transition.

  6. UO2 Grain Growth: Developing Phase Field Models for Pore Dragging, Solute Dragging and Anisotropic Grain Boundary Energies

    International Nuclear Information System (INIS)

    Ahmed, K.; Tonks, M.; Zhang, Y.; Biner, B.

    2016-01-01

    A detailed phase field model for the effect of pore drag on grain growth kinetics was implemented in MARMOT. The model takes into consideration both the curvature-driven grain boundary motion and pore migration by surface diffusion. As such, the model accounts for the interaction between pore and grain boundary kinetics, which tends to retard the grain growth process. Our 2D and 3D simulations demonstrate that the model capture all possible pore-grain boundary interactions proposed in theoretical models. For high enough surface mobility, the pores move along with the migrating boundary as a quasi-rigid-body, albeit hindering its migration rate compared to the pore-free case. For less mobile pores, the migrating boundary can separate from the pores. For the pore-controlled grain growth kinetics, the model predicts a strong dependence of the growth rate on the number of pores, pore size, and surface diffusivity in agreement with theroretical models. An evolution equation for the grain size that includes these parameters was derived and showed to agree well with numerical solution. It shows a smooth transition from boundary-controlled kinetics to pore-controlled kinetics as the surface diffusivity decreases or the number of pores or their size increases. This equation can be utilized in BISON to give accurate estimate for the grain size evolution. This will be accomplished in the near future. The effect of solute drag and anisotropy of grain boundary on grain growth will be investigated in future studies.

  7. Boundary-artifact-free phase retrieval with the transport of intensity equation II: applications to microlens characterization.

    Science.gov (United States)

    Zuo, Chao; Chen, Qian; Li, Hongru; Qu, Weijuan; Asundi, Anand

    2014-07-28

    Boundary conditions play a crucial role in the solution of the transport of intensity equation (TIE). If not appropriately handled, they can create significant boundary artifacts across the reconstruction result. In a previous paper [Opt. Express 22, 9220 (2014)], we presented a new boundary-artifact-free TIE phase retrieval method with use of discrete cosine transform (DCT). Here we report its experimental investigations with applications to the micro-optics characterization. The experimental setup is based on a tunable lens based 4f system attached to a non-modified inverted bright-field microscope. We establish inhomogeneous Neumann boundary values by placing a rectangular aperture in the intermediate image plane of the microscope. Then the boundary values are applied to solve the TIE with our DCT-based TIE solver. Experimental results on microlenses highlight the importance of boundary conditions that often overlooked in simplified models, and confirm that our approach effectively avoid the boundary error even when objects are located at the image borders. It is further demonstrated that our technique is non-interferometric, accurate, fast, full-field, and flexible, rendering it a promising metrological tool for the micro-optics inspection.

  8. Exact Solution of the Six-Vertex Model with Domain Wall Boundary Conditions. Disordered Phase

    CERN Document Server

    Bleher, P M

    2005-01-01

    The six-vertex model, or the square ice model, with domain wall boundary conditions (DWBC) has been introduced and solved for finite $N$ by Korepin and Izergin. The solution is based on the Yang-Baxter equations and it represents the free energy in terms of an $N\\times N$ Hankel determinant. Paul Zinn-Justin observed that the Izergin-Korepin formula can be re-expressed in terms of the partition function of a random matrix model with a nonpolynomial interaction. We use this observation to obtain the large $N$ asymptotics of the six-vertex model with DWBC in the disordered phase. The solution is based on the Riemann-Hilbert approach and the Deift-Zhou nonlinear steepest descent method. As was noticed by Kuperberg, the problem of enumeration of alternating sign matrices (the ASM problem) is a special case of the the six-vertex model. We compare the obtained exact solution of the six-vertex model with known exact results for the 1, 2, and 3 enumerations of ASMs, and also with the exact solution on the so-called f...

  9. The interstellar boundary explorer (IBEX): Update at the end of phase B

    International Nuclear Information System (INIS)

    McComas, D. J.; Allegrini, F.; Pope, S.; Scherrer, J.; Bartolone, L.; Knappenberger, P.; Bochsler, P.; Wurz, P.; Bzowski, M.; Collier, M.; Moore, T.; Fahr, H.; Fichtner, H.; Frisch, P.; Funsten, H.; Fuselier, Steve; Gloeckler, G.; Gruntman, M.; Izmodenov, V.; Lee, M.

    2006-01-01

    The Interstellar Boundary Explorer (IBEX) mission will make the first global observations of the heliosphere's interaction with the interstellar medium. IBEX achieves these breakthrough observations by traveling outside of the Earth's magnetosphere in a highly elliptical orbit and taking global Energetic Neutral Atoms (ENA) images over energies from ∼10 eV to 6 keV. IBEX's high-apogee (∼50 RE) orbit enables heliospheric ENA measurements by providing viewing from far above the Earth's relatively bright magnetospheric ENA emissions. This high energy orbit is achieved from a Pegasus XL launch vehicle by adding the propulsion from an IBEX-supplied solid rocket motor and the spacecraft's hydrazine propulsion system. IBEX carries two very large-aperture, single-pixel ENA cameras that view perpendicular to the spacecraft's Sun-pointed spin axis. Each six months, the continuous spinning of the spacecraft and periodic re-pointing to maintain the sun-pointing spin axis naturally lead to global, all-sky images. Over the course of our NASA Phase B program, the IBEX team optimized the designs of all subsystems. In this paper we summarize several significant advances in both IBEX sensors, our expected signal to noise (and background), and our groundbreaking approach to achieve a very high-altitude orbit from a Pegasus launch vehicle for the first time. IBEX is in full scale development and on track for launch in June of 2008

  10. The interstellar boundary explorer (IBEX): Update at the end of phase B

    Science.gov (United States)

    McComas, D. J.; Allegrini, F.; Bartolone, L.; Bochsler, P.; Bzowski, M.; Collier, M.; Fahr, H.; Fichtner, H.; Frisch, P.; Funsten, H.; Fuselier, Steve; Gloeckler, G.; Gruntman, M.; Izmodenov, V.; Knappenberger, P.; Lee, M.; Livi, S.; Mitchell, D.; Möbius, E.; Moore, T.; Pope, S.; Reisenfeld, D.; Roelof, E.; Runge, H.; Scherrer, J.; Schwadron, N.; Tyler, R.; Wieser, M.; Witte, M.; Wurz, P.; Zank, G.

    2006-09-01

    The Interstellar Boundary Explorer (IBEX) mission will make the first global observations of the heliosphere's interaction with the interstellar medium. IBEX achieves these breakthrough observations by traveling outside of the Earth's magnetosphere in a highly elliptical orbit and taking global Energetic Neutral Atoms (ENA) images over energies from ~10 eV to 6 keV. IBEX's high-apogee (~50 RE) orbit enables heliospheric ENA measurements by providing viewing from far above the Earth's relatively bright magnetospheric ENA emissions. This high energy orbit is achieved from a Pegasus XL launch vehicle by adding the propulsion from an IBEX-supplied solid rocket motor and the spacecraft's hydrazine propulsion system. IBEX carries two very large-aperture, single-pixel ENA cameras that view perpendicular to the spacecraft's Sun-pointed spin axis. Each six months, the continuous spinning of the spacecraft and periodic re-pointing to maintain the sun-pointing spin axis naturally lead to global, all-sky images. Over the course of our NASA Phase B program, the IBEX team optimized the designs of all subsystems. In this paper we summarize several significant advances in both IBEX sensors, our expected signal to noise (and background), and our groundbreaking approach to achieve a very high-altitude orbit from a Pegasus launch vehicle for the first time. IBEX is in full scale development and on track for launch in June of 2008.

  11. Generalized Selectivity Description for Polymeric Ion-Selective Electrodes Based on the Phase Boundary Potential Model.

    Science.gov (United States)

    Bakker, Eric

    2010-02-15

    A generalized description of the response behavior of potentiometric polymer membrane ion-selective electrodes is presented on the basis of ion-exchange equilibrium considerations at the sample-membrane interface. This paper includes and extends on previously reported theoretical advances in a more compact yet more comprehensive form. Specifically, the phase boundary potential model is used to derive the origin of the Nernstian response behavior in a single expression, which is valid for a membrane containing any charge type and complex stoichiometry of ionophore and ion-exchanger. This forms the basis for a generalized expression of the selectivity coefficient, which may be used for the selectivity optimization of ion-selective membranes containing electrically charged and neutral ionophores of any desired stoichiometry. It is shown to reduce to expressions published previously for specialized cases, and may be effectively applied to problems relevant in modern potentiometry. The treatment is extended to mixed ion solutions, offering a comprehensive yet formally compact derivation of the response behavior of ion-selective electrodes to a mixture of ions of any desired charge. It is compared to predictions by the less accurate Nicolsky-Eisenman equation. The influence of ion fluxes or any form of electrochemical excitation is not considered here, but may be readily incorporated if an ion-exchange equilibrium at the interface may be assumed in these cases.

  12. Extrinsic response enhancement at the polymorphic phase boundary in piezoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa, Diego A.; García, José E., E-mail: jose.eduardo.garcia@upc.edu [Department of Physics, Universitat Politècnica de Catalunya - BarcelonaTech, Barcelona 08034 (Spain); Esteves, Giovanni; Jones, Jacob L. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27696 (United States); Rubio-Marcos, Fernando; Fernández, José F. [Department of Electroceramics, Instituto de Cerámica y Vidrio - CSIC, Madrid 28049 (Spain)

    2016-04-04

    Polymorphic phase boundaries (PPBs) in piezoelectric materials have attracted significant interest in recent years, in particular, because of the unique properties that can be found in their vicinity. However, to fully harness their potential as micro-nanoscale functional entities, it is essential to achieve reliable and precise control of their piezoelectric response, which is due to two contributions known as intrinsic and extrinsic. In this work, we have used a (K,Na)NbO{sub 3}-based lead-free piezoceramic as a model system to investigate the evolution of the extrinsic contribution around a PPB. X-ray diffraction measurements are performed over a wide range of temperatures in order to determine the structures and transitions. The relevance of the extrinsic contribution at the PPB region is evaluated by means of nonlinear dielectric response measurements. Though it is widely appreciated that certain intrinsic properties of ferroelectric materials increase as PPBs are approached, our results demonstrate that the extrinsic contribution also maximizes. An enhancement of the extrinsic contribution is therefore also responsible for improving the functional properties at the PPB region. Rayleigh's law is used to quantitatively analyze the nonlinear response. As a result, an evolution of the domain wall motion dynamics through the PPB region is detected. This work demonstrates that the extrinsic contribution at a PPB may have a dynamic role in lead-free piezoelectric materials, thereby exerting a far greater influence on their functional properties than that considered to date.

  13. Molecular dynamics study on the effect of boundary heating rate on the phase change characteristics of thin film liquid

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mohammad Nasim, E-mail: nasim@me.buet.ac.bd.com; Morshed, A. K. M. Monjur, E-mail: shavik@me.buet.ac.bd.com; Rabbi, Kazi Fazle, E-mail: rabbi35.me10@gmail.com; Haque, Mominul, E-mail: mominulmarup@gmail.com [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology (BUET) Dhaka-1000 (Bangladesh)

    2016-07-12

    In this study, theoretical investigation of thin film liquid phase change phenomena under different boundary heating rates has been conducted with the help of molecular dynamics simulation. To do this, the case of argon boiling over a platinum surface has been considered. The study has been conducted to get a better understanding of the nano-scale physics of evaporation/boiling for a three phase system with particular emphasis on the effect of boundary heating rate. The simulation domain consisted of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system was brought to an equilibrium state at 90 K with the help of equilibrium molecular dynamics and then the temperature of the bottom wall was increased to a higher temperature (250 K/130 K) over a finite heating period. Depending on the heating period, the boundary heating rate has been varied in the range of 1600×10{sup 9} K/s to 8×10{sup 9} K/s. The variations of argon region temperature, pressure, net evaporation number with respect to time under different boundary heating rates have been determined and discussed. The heat fluxes normal to platinum wall for different cases were also calculated and compared with theoretical upper limit of maximum possible heat transfer to elucidate the effect of boundary heating rate.

  14. Introduction to finite temperature and finite density QCD

    International Nuclear Information System (INIS)

    Kitazawa, Masakiyo

    2014-01-01

    It has been pointed out that QCD (Quantum Chromodynamics) in the circumstances of medium at finite temperature and density shows numbers of phenomena similar to the characteristics of solid state physics, e.g. phase transitions. In the past ten years, the very high temperature and density matter came to be observed experimentally at the heavy ion collisions. At the same time, the numerical QCD analysis at finite temperature and density attained quantitative level analysis possible owing to the remarkable progress of computers. In this summer school lecture, it has been set out to give not only the recent results, but also the spontaneous breaking of the chiral symmetry, the fundamental theory of finite temperature and further expositions as in the following four sections. The first section is titled as 'Introduction to Finite Temperature and Density QCD' with subsections of 1.1 standard model and QCD, 1.2 phase transition and phase structure of QCD, 1.3 lattice QCD and thermodynamic quantity, 1.4 heavy ion collision experiments, and 1.5 neutron stars. The second one is 'Equilibrium State' with subsections of 2.1 chiral symmetry, 2.2 vacuum state: BCS theory, 2.3 NJL (Nambu-Jona-Lasinio) model, and 2.4 color superconductivity. The third one is 'Static fluctuations' with subsections of 3.1 fluctuations, 3.2 moment and cumulant, 3.3 increase of fluctuations at critical points, 3.4 analysis of fluctuations by lattice QCD and Taylor expansion, and 3.5 experimental exploration of QCD phase structure. The fourth one is 'Dynamical Structure' with 4.1 linear response theory, 4.2 spectral functions, 4.3 Matsubara function, and 4.4 analyses of dynamical structure by lattice QCD. (S. Funahashi)

  15. In situ synchrotron diffraction of lead-zirconate-titanate at its morphotropic phase boundary

    International Nuclear Information System (INIS)

    Schoenau, K.A.

    2008-01-01

    Ferroelectric lead zirconate titanate ceramics (PZT,Pb(Zr x Ti 1-x )O 3 ) find in industry intensifiedly applications as piezoactors. Their largest macroscopic strain under electric field they show in the region of the morphotropic phase boundary (MPB), the transition region between the Ti rich tetragonal and the Zr rich structure. The structure of PZT at the MPB was controversially discussed since the detection of a monoclinic intermediate phase by Noheda et al. [Appl. Phys. Lett.,74(14), 2059(1999)], whereby into the considerations the domain structure of the material not entered, which however is essentially responsible for the reaction under electric field. In order to understand the domain structure of PZT under electric field and to study possible causes for the fatigue behaviour of the material under bipolar cycling a bridge must be built between macroscopic and local structure. For this at the measuring place B2 of the Hasylab, Hamburg, synchrotron X-ray powder diffractometry was in situ performed under different sample environments in transmission geometry, which was correlated with transmission-electron-microscopical studies and electron spin resonance. Samples with compositions over the whole MPB were beside temperature-dependent measurements measured at room temperature in high resolution and under applied electric field. Furthermore for studies under electric field at elevated temperatures a special E-field furnace was constructed. It could be shown the large piezoelectric reaction of PZT at its MPB is strongly correlated with a diminishment of the domain structure, which simulates in X-ray diffraction a lower symmetric phase. The stability range of the nanodomains with temperature and electric field reflects in the switching behaviour of the matter and by the detection of a relaxor behavior of the nanodomain structure for the first time a direct comparison with relaxoceramics is possible. The varying stress conditions within the sample influence

  16. QCD machines - present and future

    International Nuclear Information System (INIS)

    Christ, N.H.

    1991-01-01

    The present status of the currently working and nearly working dedicated QCD machines is reviewed and proposals for future machines are discussed with particular emphasis on the QCD Teraflop Project in the US. (orig.)

  17. Lattice QCD for cosmology

    International Nuclear Information System (INIS)

    Borsanyi, Sz.; Kampert, K.H.; Fodor, Z.; Forschungszentrum Juelich; Eoetvoes Univ., Budapest

    2016-06-01

    We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to the MeV scale we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (χ) up to the few GeV temperature region. These two results, EoS and χ, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.

  18. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F.M., E-mail: m.lutz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Lange, Jens Sören, E-mail: Soeren.Lange@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Pennington, Michael, E-mail: michaelp@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Bettoni, Diego [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, 44122 Ferrara (Italy); Brambilla, Nora [Physik Department, Technische Universität München, D-85747 Garching (Germany); Crede, Volker [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Eidelman, Simon [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Budker Istitute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Gillitzer, Albrecht [Institut für Kernphysik, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Gradl, Wolfgang [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55128 Mainz (Germany); Lang, Christian B. [Institut für Physik, Universität Graz, A-8010 Graz (Austria); Metag, Volker [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Nakano, Takashi [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); and others

    2016-04-15

    We report on the EMMI Rapid Reaction Task Force meeting ‘Resonances in QCD’, which took place at GSI October 12–14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: • What is needed to understand the physics of resonances in QCD? • Where does QCD lead us to expect resonances with exotic quantum numbers? • What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy–light and heavy–heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  19. Knot topology in QCD

    International Nuclear Information System (INIS)

    Zou, L.P.; Zhang, P.M.; Pak, D.G.

    2013-01-01

    We consider topological structure of classical vacuum solutions in quantum chromodynamics. Topologically non-equivalent vacuum configurations are classified by non-trivial second and third homotopy groups for coset of the color group SU(N) (N=2,3) under the action of maximal Abelian stability group. Starting with explicit vacuum knot configurations we study possible exact classical solutions. Exact analytic non-static knot solution in a simple CP 1 model in Euclidean space–time has been obtained. We construct an ansatz based on knot and monopole topological vacuum structure for searching new solutions in SU(2) and SU(3) QCD. We show that singular knot-like solutions in QCD in Minkowski space–time can be naturally obtained from knot solitons in integrable CP 1 models. A family of Skyrme type low energy effective theories of QCD admitting exact analytic solutions with non-vanishing Hopf charge is proposed

  20. Large Nc QCD at nonzero chemical potential

    International Nuclear Information System (INIS)

    Cohen, Thomas D.

    2004-01-01

    The general issue of large N c QCD at nonzero chemical potential is considered with a focus on understanding the difference between large N c QCD with an isospin chemical potential and large N c QCD with a baryon chemical potential. A simple diagrammatic analysis analogous to 't Hooft's analysis at μ=0 implies that the free energy with a given baryon chemical potential is equal to the free energy with an isospin chemical potential of the same value plus 1/N c corrections. Phenomenologically, these two systems behave quite differently. A scenario to explain this difference in light of the diagrammatic analysis is explored. This scenario is based on a phase transition associated with pion condensation when the isospin chemical potential exceeds m π /2; associated with this transition there is breakdown of the 1/N c expansion--in the pion condensed phase there is a distinct 1/N c expansion including a larger set of diagrams. While this scenario is natural, there are a number of theoretical issues which at least superficially challenge it. Most of these can be accommodated. However, the behavior of quenched QCD which raises a number of apparently analogous issues cannot be easily understood completely in terms of an analogous scenario. Thus, the overall issue remains open

  1. New Methods in Non-Perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Unsal, Mithat [North Carolina State Univ., Raleigh, NC (United States)

    2017-01-31

    In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), and there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.

  2. Novel QCD Phenomena

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.; SLAC

    2007-01-01

    I discuss a number of novel topics in QCD, including the use of the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. In particular, there is an exact correspondence between the fifth-dimension coordinate z of AdS space and a specific impact variable ζ which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. I also discuss a number of novel phenomenological features of QCD. Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and anomalous heavy quark effects. The presence of direct higher-twist processes where a proton is produced in the hard subprocess can explain the large proton-to-pion ratio seen in high centrality heavy ion collisions

  3. Quark model and QCD

    International Nuclear Information System (INIS)

    Anisovich, V.V.

    1989-06-01

    Using the language of the quarks and gluons for description of the soft hadron physics it is necessary to take into account two characteristic phenomena which prevent one from usage of QCD Lagrangian in the straightforward way, chiral symmetry breaking, and confinement of colour particles. The topics discussed in this context are: QCD in the domain of soft processes, phenomenological Lagrangian for soft processes and exotic mesons, spectroscopy of low-lying hadrons (mesons, baryons and mesons with heavy quarks - c,b -), confinement forces, spectral integration over quark masses. (author) 3 refs.; 19 figs.; 3 tabs

  4. Experimental tests of QCD

    International Nuclear Information System (INIS)

    Hansl-Kozanecka, T.

    1992-01-01

    The phenomenological aspects of Quantum Chromodynamics (QCD) are examined which are relevant for lepton-hadron, electron-positron and hadron-hadron collisions. In deep inelastic scattering the virtual γ or W/Z is used as a probe of the nucleon structure. The strong coupling constant (α s ) measurements via deep inelastic scattering and e + e - annihilation are discussed. Parton-parton collisions (e.g., hard hadron-hadron collisions) are examined as the third regime for QCD tests. (K.A.) 122 refs., 84 figs., 4 tabs

  5. Detecting phase boundaries of quantum spin-1/2 XXZ ladder via bipartite and multipartite entanglement transitions

    Science.gov (United States)

    Singha Roy, Sudipto; Dhar, Himadri Shekhar; Rakshit, Debraj; Sen(De), Aditi; Sen, Ujjwal

    2017-12-01

    Phase transition in quantum many-body systems inevitably causes changes in certain physical properties which then serve as potential indicators of critical phenomena. Besides the traditional order parameters, characterization of quantum entanglement has proven to be a computationally efficient and successful method for detection of phase boundaries, especially in one-dimensional models. Here we determine the rich phase diagram of the ground states of a quantum spin-1/2 XXZ ladder by analyzing the variation of bipartite and multipartite entanglements. Our study characterizes the different ground state phases and notes the correspondence with known results, while highlighting the finer details that emerge from the behavior of ground state entanglement. Analysis of entanglement in the ground state provides a clearer picture of the complex ground state phase diagram of the system using only a moderate-size model.

  6. Lattice QCD for Baryon Rich Matter – Beyond Taylor Expansions

    Energy Technology Data Exchange (ETDEWEB)

    Bornyakov, V. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Boyda, D. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Goy, V. [School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Molochkov, A. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Nakamura, A. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka, 567-0047 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198 (Japan); Nikolaev, A. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Zakharov, V.I. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Moscow Inst Phys & Technol, Dolgoprudny, Moscow Region, 141700 (Russian Federation)

    2016-12-15

    We discuss our study for exploring the QCD phase diagram based on the lattice QCD. To go beyond the Taylor expansion and to reach higher density regions, we employ the canonical approach. In order to produce lattice data which meet experimental situation as much as possible, we propose a canonical approach with the charge and baryon number. We present our lattice QCD GPU code for this project which employs the clover improved Wilson fermions and Iwasaki gauge action to investigate pure imaginary chemical potential.

  7. Lattice QCD for Baryon Rich Matter – Beyond Taylor Expansions

    International Nuclear Information System (INIS)

    Bornyakov, V.; Boyda, D.; Goy, V.; Molochkov, A.; Nakamura, A.; Nikolaev, A.; Zakharov, V.I.

    2016-01-01

    We discuss our study for exploring the QCD phase diagram based on the lattice QCD. To go beyond the Taylor expansion and to reach higher density regions, we employ the canonical approach. In order to produce lattice data which meet experimental situation as much as possible, we propose a canonical approach with the charge and baryon number. We present our lattice QCD GPU code for this project which employs the clover improved Wilson fermions and Iwasaki gauge action to investigate pure imaginary chemical potential.

  8. Interaction between the intrinsic edge state and the helical boundary state of topological insulator phase in bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Xiaoling [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Jiang, Liwei [National Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012 (China); Zheng, Yisong, E-mail: zhengys@jlu.edu.cn [National Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012 (China)

    2016-04-22

    Graphene has intrinsic edge states localized at zigzag edge or lattice defect. Helical boundary states can also be established in such a two-dimensional carbon material at the boundary of topological insulator (TI) phase realized by the extrinsic Rashba spin–orbital coupling (SOC) in gated bilayer graphene. We theoretically investigate the interaction between these two kinds of edge (boundary) states when they coexist in a bilayer graphene. We find that this interaction gives rise to some very interesting results. In a zigzag edged nanoribbon of bilayer graphene, it is possible that the TI helical state does not localize at the TI phase boundary. Instead it moves to the nanoribbon edge even though the SOC is absent therein. In a bulk lattice of bilayer graphene embedded with two line defects, the numbers of helical state subbands at the two line defects are not equal to each other. In such a case, the backscattering lacking is still forbidden since the Kramers pairs are valley polarized. - Highlights: • The TI helical state moves to nanoribbon edge in a gated ZENR-BG. • The gapless modes of LD-BG at the two line defects are not equal to each other. • The Kramers pairs are still valley polarized in a gated LD-BG.

  9. Formation of multiple stoichiometric phases in binary systems by combined bulk and grain boundary diffusion: Experiments and model

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; Schillinger, W.

    2013-01-01

    The thermodynamic extremal principle has been used by the authors to treat the evolution of binary and multicomponent systems under the assumption that all phases are nearly stoichiometric. Up to now only bulk diffusion has been taken into account. The concept is now extended to combined bulk and grain boundary diffusion possible in each newly formed phase. The grains are approximated by cylinders allowing interface diffusion along the top and bottom of the grains and grain boundary diffusion along the mantle with different interface/grain boundary diffusion coefficients. A consistent analysis yields an effective diffusion coefficient taking into account the combined interface/grain boundary and bulk diffusion of each individual component. The current concept is applied to the Cu–Sn couple which has been studied by a number of researchers. The results of simulations are compared with experiments at 200 °C on solid systems reported in the literature as well as with our experiments at 250 °C with liquid Sn.

  10. A phase transition in the first passage of a Brownian process through a fluctuating boundary with implications for neural coding.

    Science.gov (United States)

    Taillefumier, Thibaud; Magnasco, Marcelo O

    2013-04-16

    Finding the first time a fluctuating quantity reaches a given boundary is a deceptively simple-looking problem of vast practical importance in physics, biology, chemistry, neuroscience, economics, and industrial engineering. Problems in which the bound to be traversed is itself a fluctuating function of time include widely studied problems in neural coding, such as neuronal integrators with irregular inputs and internal noise. We show that the probability p(t) that a Gauss-Markov process will first exceed the boundary at time t suffers a phase transition as a function of the roughness of the boundary, as measured by its Hölder exponent H. The critical value occurs when the roughness of the boundary equals the roughness of the process, so for diffusive processes the critical value is Hc = 1/2. For smoother boundaries, H > 1/2, the probability density is a continuous function of time. For rougher boundaries, H probability is concentrated on a Cantor-like set of zero measure: the probability density becomes divergent, almost everywhere either zero or infinity. The critical point Hc = 1/2 corresponds to a widely studied case in the theory of neural coding, in which the external input integrated by a model neuron is a white-noise process, as in the case of uncorrelated but precisely balanced excitatory and inhibitory inputs. We argue that this transition corresponds to a sharp boundary between rate codes, in which the neural firing probability varies smoothly, and temporal codes, in which the neuron fires at sharply defined times regardless of the intensity of internal noise.

  11. Delving into QCD jets

    International Nuclear Information System (INIS)

    Konishi, K.

    1980-01-01

    The author discusses, in an introductory fashion, the latest developments in the study of hadronic jets produced in hard processes, based on perturbative QCD. Emphasis is on jet calculus (and its applications and generalizations), and on the appearance of a parton-like consistent, over-all picture of jet evolution in momentum, colour, and real space-time. (Auth.)

  12. QCD and collider physics

    CERN Document Server

    Stirling, William James

    1991-12-01

    1. Some basic theory. 2. Two important applications: - e+ e- annihilation (LEPSLS) ; deep inelastic scattering (HERA). 3. Other applications..., large Pt jets, W and Z, heavy quark production..., (pp- colliders). In this lecture: some basic theory. 1. QCD as a non abelian gauge field theory. 2. Asymptotic freedom. 3. Beyond leading order - renormalisation schemes. 4. MS.

  13. Renormalization of Hamiltonian QCD

    International Nuclear Information System (INIS)

    Andrasi, A.; Taylor, John C.

    2009-01-01

    We study to one-loop order the renormalization of QCD in the Coulomb gauge using the Hamiltonian formalism. Divergences occur which might require counter-terms outside the Hamiltonian formalism, but they can be cancelled by a redefinition of the Yang-Mills electric field.

  14. Phenomenology Using Lattice QCD

    Science.gov (United States)

    Gupta, R.

    2005-08-01

    This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.

  15. Scaling violation in QCD

    International Nuclear Information System (INIS)

    Furmanski, W.

    1981-08-01

    The effects of scaling violation in QCD are discussed in the perturbative scheme, based on the factorization of mass singularities in the light-like gauge. Some recent applications including the next-to-leading corrections are presented (large psub(T) scattering, numerical analysis of the leptoproduction data). A proposal is made for extending the method on the higher twist sector. (author)

  16. Hadronic laws from QCD

    International Nuclear Information System (INIS)

    Cahill, R.T.

    1992-01-01

    A review is given of progress in deriving the effective action for hadronic physics, S[π, ρ, ω, .., anti N, N, ..], from the fundamental defining action of QCD, S[anti q, q, A μ a ]. This is a problem in quantum field theory and the most success so far has been achieved using functional integral calculus (FIC) techniques. This formulates the problem as an exercise in changing the variables of integration in the functional integrals, from those of the quark and gluon fields to those of the (bare) meson and baryon fields. The appropriate variables are determined by the dynamics of QCD, and the final hadronic variables (essentially the 'normal modes' of QCD) are local fields describing the 'centre-of-mass' motion of extended bound states of quarks. The quarks are extensively dressed by the gluons, and the detailed aspects of the hidden chiral symmetry emerge naturally from the formalism. Particular attention is given to covariant integral equations which determine bare nucleon structure (i.e. in the quenched approximation). These equations, which arise from the closed double-helix diagrams of the FIC analysis, describe the baryons in terms of quark-diquark structure, in the form of Faddeev equations. This hadronisation of QCD also generates the dressing of these baryons by the pions, and the non-local πNN coupling. (orig.)

  17. Observables of QCD diffraction

    Science.gov (United States)

    Mieskolainen, Mikael; Orava, Risto

    2017-03-01

    A new combinatorial vector space measurement model is introduced for soft QCD diffraction. The model independent mathematical construction resolves experimental complications; the theoretical framework of the approach includes the Good-Walker view of diffraction, Regge phenomenology together with AGK cutting rules and random fluctuations.

  18. QCD at LEP

    CERN Document Server

    Metzger, W.J.

    2003-01-01

    Several preliminary QCD results from e+e- interactions at LEP are reported. These include studies of event shape variables, which are used to determine alpha_s and for studies of the validity of power corrections. Further, a study of color reconnection effects in 3-jet Z decays is reported.

  19. Baryons and QCD

    International Nuclear Information System (INIS)

    Nathan Isgur

    1997-01-01

    The author presents an idiosyncratic view of baryons which calls for a marriage between quark-based and hadronic models of QCD. He advocates a treatment based on valence quark plus glue dominance of hadron structure, with the sea of q pairs (in the form of virtual hadron pairs) as important corrections

  20. A multilevel simulation approach to derive the slip boundary condition of the solid phase in two-fluid models

    Science.gov (United States)

    Feng, Zhi-Gang; Michaelides, Efstathios; Mao, Shaolin

    2011-11-01

    The simulation of particulate flows for industrial applications often requires the use of a two-fluid model (TFM), where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of aTFM in multiphase computations comes from the boundary condition of the solid phase. The no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. In the present work we propose a multilevel simulation approach to compute the slip length that is applicable to a TFM. We investigate the motion of a number of particles near a vertical solid wall, while the particles are in fluidization using a direct numerical simulation (DNS); the positions and velocities of the particles are being tracked and analyzed at each time step. It is found that the time- and vertical-space averaged values of the particle velocities converge, yielding velocity profiles that can be used to deduce the particle slip length close to a solid wall. This work was supported by a grant from the DOE-NETL (DE-NT0008064) and by a grant from NSF (HRD-0932339).

  1. Interaction on boundary of current-conducting and glass-forming phases in cermet films under annealing

    International Nuclear Information System (INIS)

    Shulishova, O.I.; Zyrin, A.V.; Ismalgaliev, R.K.; Izmajlov, Sh.Z.; Kovylyaev, V.V.; Shevchuk, N.V.; Shcherbak, I.A.

    1990-01-01

    The electron-probe microanalysis permits investigating the interaction on the boundary of current-conducting and glass-binding phases in cermet films without noble metals on the base of ruthenium oxide. The performed studies along with experiments on model microsections subject to annealing in different media have shown the differences in the process of formation of structure and properties of cermet resistive elements as well as a significance of the oxidation process of current-conducting phase in formation of high working characteristics of cermet resistors on the base of hexaborides of the rare-earth elements

  2. Planar experiment as possible method of QCD tube investigation

    International Nuclear Information System (INIS)

    Levintov, I.I.

    1989-01-01

    It is proposed to distinguish the plane events with Δq tr /q-bar tr tr /q-bar tr at azimuth-independent distribution of transverse momenta in the phase volume was calculated. The arguments, owing to which the probability of plane event observation grows sufficiently at fragmentation of isolated QCD strings, are presented. Probability of formation of plane events, conditioned by isolated QCD string fragmentation, decreases with momentum as ∼ P lab -1/2 . 6 refs.; 1 fig

  3. Extrinsic coefficient charcterisation of PZT ceramics near the morphotropic phase boundary

    Directory of Open Access Journals (Sweden)

    Albareda, A.

    2006-06-01

    Full Text Available PZT ceramics with high piezoelectric coefficients have high extrinsic contributions. This extrinsic behaviour, which is related to the domain wall movement, produces high non-linear effects that are sometimes inconvenient, for example when it increases the losses in power devices. The relation between extrinsic behaviour and non-linearities could be used to provide a good extrinsic characterization of materials in order to optimise the piezoelectric devices. In all cases the physical explanation of the behaviour is sought. The aim of this work is to study the dependence of the linear and non-linear dielectric, piezoelectric and mechanical coefficients on the Ti fraction in PZT ceramic compositions near the morphotropic phase boundary (MPB. The dependence of these coefficients on the defect concentration is also analysed. Hard ceramics belonging to Ferroperm Piezoceramics, with two different acceptor dopant levels, high and low, have been measured.

    Las cerámicas PZT con coeficientes piezoeléctricos elevados poseen contribuciones extrínsecas grandes. Este comportamiento extrínseco, relacionado con el movimiento de las paredes de los dominios, comporta efectos no lineales grandes que no siempre son deseables, por ejemplo, al incrementar las pérdidas de los dispositivos piezoeléctricos. Esta correspondencia entre efectos extrínsecos y no linealidades puede ser utilizada para caracterizar las cerámicas con el fin de optimizar sus propiedades piezoeléctricas. En todos los casos se busca una interpretación física de los resultados obtenidos. El objetivo de este trabajo es el estudio de la dependencia de los coeficientes lineales y no lineales dieléctricos, piezoeléctricos y elásticos con la fracción de Ti en cerámicas PZT con composiciones de Zr-Ti cerca de la transición de fase morfotrópica (MPB. También se analiza la dependencia de estos coeficientes con la concentración de impurezas, utilizando para ello cerámicas de

  4. Wavelet phase analysis of two velocity components to infer the structure of interscale transfers in a turbulent boundary-layer

    Energy Technology Data Exchange (ETDEWEB)

    Keylock, Christopher J [Sheffield Fluid Mechanics Group and Department of Civil and Structural Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Nishimura, Kouichi, E-mail: c.keylock@sheffield.ac.uk [Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2016-04-15

    Scale-dependent phase analysis of velocity time series measured in a zero pressure gradient boundary layer shows that phase coupling between longitudinal and vertical velocity components is strong at both large and small scales, but minimal in the middle of the inertial regime. The same general pattern is observed at all vertical positions studied, but there is stronger phase coherence as the vertical coordinate, y, increases. The phase difference histograms evolve from a unimodal shape at small scales to the development of significant bimodality at the integral scale and above. The asymmetry in the off-diagonal couplings changes sign at the midpoint of the inertial regime, with the small scale relation consistent with intense ejections followed by a more prolonged sweep motion. These results may be interpreted in a manner that is consistent with the action of low speed streaks and hairpin vortices near the wall, with large scale motions further from the wall, the effect of which penetrates to smaller scales. Hence, a measure of phase coupling, when combined with a scale-by-scale decomposition of perpendicular velocity components, is a useful tool for investigating boundary-layer structure and inferring process from single-point measurements. (paper)

  5. Wavelet phase analysis of two velocity components to infer the structure of interscale transfers in a turbulent boundary-layer

    International Nuclear Information System (INIS)

    Keylock, Christopher J; Nishimura, Kouichi

    2016-01-01

    Scale-dependent phase analysis of velocity time series measured in a zero pressure gradient boundary layer shows that phase coupling between longitudinal and vertical velocity components is strong at both large and small scales, but minimal in the middle of the inertial regime. The same general pattern is observed at all vertical positions studied, but there is stronger phase coherence as the vertical coordinate, y, increases. The phase difference histograms evolve from a unimodal shape at small scales to the development of significant bimodality at the integral scale and above. The asymmetry in the off-diagonal couplings changes sign at the midpoint of the inertial regime, with the small scale relation consistent with intense ejections followed by a more prolonged sweep motion. These results may be interpreted in a manner that is consistent with the action of low speed streaks and hairpin vortices near the wall, with large scale motions further from the wall, the effect of which penetrates to smaller scales. Hence, a measure of phase coupling, when combined with a scale-by-scale decomposition of perpendicular velocity components, is a useful tool for investigating boundary-layer structure and inferring process from single-point measurements. (paper)

  6. Conformal Aspects of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S

    2003-11-19

    Theoretical and phenomenological evidence is now accumulating that the QCD coupling becomes constant at small virtuality; i.e., {alpha}{sub s}(Q{sup 2}) develops an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. For example, the hadronic decays of the {tau} lepton can be used to determine the effective charge {alpha}{sub {tau}}(m{sub {tau}{prime}}{sup 2}) for a hypothetical {tau}-lepton with mass in the range 0 < m{sub {tau}{prime}} < m{sub {tau}}. The {tau} decay data at low mass scales indicates that the effective charge freezes at a value of s = m{sub {tau}{prime}}{sup 2} of order 1 GeV{sup 2} with a magnitude {alpha}{sub {tau}} {approx} 0.9 {+-} 0.1. The near-constant behavior of effective couplings suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer and why there are no significant running coupling corrections to quark counting rules for exclusive processes. The AdS/CFT correspondence of large N{sub c} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time also has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes and light-front wavefunctions. The utility of light-front quantization and light-front Fock wavefunctions for analyzing nonperturbative QCD and representing the dynamics of QCD bound states is also discussed.

  7. Extension of the HAL QCD approach to inelastic and multi-particle scatterings in lattice QCD

    Science.gov (United States)

    Aoki, S.

    We extend the HAL QCD approach, with which potentials between two hadrons can be obtained in QCD at energy below inelastic thresholds, to inelastic and multi-particle scatterings. We first derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than 2 particles, in terms of the one-shell $T$-matrix consrainted by the unitarity of quantum field theories. We show that its asymptotic behavior contains phase shifts and mixing angles of $n$ particle scatterings. This property is one of the essential ingredients of the HAL QCD scheme to define "potential" from the NBS wave function in quantum field theories such as QCD. We next construct energy independent but non-local potentials above inelastic thresholds, in terms of these NBS wave functions. We demonstrate an existence of energy-independent coupled channel potentials with a non-relativistic approximation, where momenta of all particles are small compared with their own masses. Combining these two results, we can employ the HAL QCD approach also to investigate inelastic and multi-particle scatterings.

  8. Determination of baryon-baryon elastic scattering phase shift from finite volume spectra in elongated boxes

    Science.gov (United States)

    Li, Ning; Wu, Ya-Jie; Liu, Zhan-Wei

    2018-01-01

    The relations between the baryon-baryon elastic scattering phase shifts and the two-particle energy spectrum in the elongated box are established. We studied the cases with both the periodic boundary condition and twisted boundary condition in the center of mass frame. The framework is also extended to the system of nonzero total momentum with periodic boundary condition in the moving frame. Moreover, we discussed the sensitivity functions σ (q ) that represent the sensitivity of higher scattering phases. Our analytical results will be helpful to extract the baryon-baryon elastic scattering phase shifts in the continuum from lattice QCD data by using elongated boxes.

  9. QCD and asymptotic freedom: Perspectives and prospects

    International Nuclear Information System (INIS)

    Wilczek, F.

    1993-01-01

    QCD is now a mature theory, and it is possible to begin to view its place in the conceptual universe of physics with an appropriate perspective. There is a certain irony in the achievements of QCD. For the problems which initially drove its development - specifically, the desire to understand in detail the force that holds atomic nuclei together, and later the desire to calculate the spectrum of hadrons and their interactions - only limited insight has been achieved. However, the author shall argue that QCD is actually more special and important a theory than one had any right to anticipate. In many ways, the importance of the solution transcends that of the original motivating problems. After elaborating on these quasiphilosophical remarks, he discusses two current frontiers of physics that illustrate the continuing vitality of the ideas. The recent wealth of beautiful precision experiments measuring the parameters of the standard model have made it possible to consider the unification of couplings in unprecedented quantitative detail. One central result emerging from these developments is a tantalizing hint of virtual supersymmetry. The possibility of phase transitions in matter at temperatures of order ∼ 10 2 MeV, governed by QCD dynamics, is of interest from several points of view. Finally, at the end, there is a brief discussion on the relation between scaling violations and running of the coupling

  10. The Top Quark, QCD, And New Physics.

    Science.gov (United States)

    Dawson, S.

    2002-06-01

    The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup+}e{sup -}+ t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup+}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.

  11. Holographic QCD with topologically charged domain-wall/membranes

    International Nuclear Information System (INIS)

    Lin Fengli; Wu Shangyu

    2008-01-01

    We study the thermodynamical phase structures of holographic QCD with nontrivial topologically charged domain-wall/membranes which are originally related to the multiple θ-vacua in the large N c limit. We realize the topologically charged membranes as the holographic D6-brane fluxes in the Sakai-Sugimoto model. The D6-brane fluxes couple to the probe D8-D8-bar via Chern-Simon term, and act as the source for the baryonic current density of QCD. We find rich phase structures of the dual meson system by varying asymptotic separation of D8 and D8-bar. Especially, there can be a thermodynamically favored and stable phase of finite baryonic current density. This provides the supporting evidence for the discovery of the topologically charged membranes found in the lattice QCD calculations. We also find a crossover phase with the limiting baryonic current density and temperature which suggest a Hagedorn-like phase transition of meson dissociation.

  12. Lattice QCD at finite temperature with Wilson fermions

    International Nuclear Information System (INIS)

    Pinke, Christopher

    2014-01-01

    The subatomic world is governed by the strong interactions of quarks and gluons, described by Quantum Chromodynamics (QCD). Quarks experience confinement into colour-less objects, i.e. they can not be observed as free particles. Under extreme conditions such as high temperature or high density, this constraint softens and a transition to a phase where quarks and gluons are quasi-free particles (Quark-Gluon-Plasma) can occur. This environment resembles the conditions prevailing during the early stages of the universe shortly after the Big Bang. The phase diagram of QCD is under investigation in current and future collider experiments, for example at the Large Hadron Collider (LHC) or at the Facility for Antiproton and Ion Research (FAIR). Due to the strength of the strong interactions in the energy regime of interest, analytic methods can not be applied rigorously. The only tool to study QCD from first principles is given by simulations of its discretised version, Lattice QCD (LQCD). These simulations are in the high-performance computing area, hence, the numerical aspects of LQCD are a vital part in this field of research. In recent years, Graphic Processing Units (GPUs) have been incorporated in these simulations as they are a standard tool for general purpose calculations today. In the course of this thesis, the LQCD application CL 2 QCD has been developed, which allows for simulations on GPUs as well as on traditional CPUs, as it is based on OpenCL. CL 2 QCD constitutes the first application for Wilson type fermions in OpenCL. It provides excellent performance and has been applied in physics studies presented in this thesis. The investigation of the QCD phase diagram is hampered by the notorious sign-problem, which restricts current simulation algorithms to small values of the chemical potential. Theoretically, studying unphysical parameter ranges allows for constraints on the phase diagram. Of utmost importance is the clarification of the order of the finite

  13. Particle states of lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Kapoyannis, A.S.; Panagiotou, A.D. [University of Athens, Nuclear and Particle Physics Section, Faculty of Physics, Athens (Greece)

    2017-11-15

    We determine the degeneracy factor and the average particle mass of particles that produce the lattice QCD pressure and specific entropy at zero baryon chemical potential. The number of states of the gluons and the quarks are found to converge above T = 230 MeV to almost constant values, close to the number of states of an ideal quark-gluon phase, while their assigned masses retain high values. The number of states and the average mass of a system containing quarks in interaction with gluons are found to decrease steeply with increase of temperature between T ∝ 150 and 160 MeV, a region contained within the region of the chiral transition. The minimum value of the number of states within this temperature interval indicates that the states are of hadronic nature. (orig.)

  14. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohashi, Teruo, E-mail: teruo.kohashi.fc@hitachi.com; Motai, Kumi [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Nishiuchi, Takeshi; Hirosawa, Satoshi [Magnetic Materials Research Laboratory, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  15. Role of polyamines at the G1/S boundary and G2/M phase of the cell cycle.

    Science.gov (United States)

    Yamashita, Tomoko; Nishimura, Kazuhiro; Saiki, Ryotaro; Okudaira, Hiroyuki; Tome, Mayuko; Higashi, Kyohei; Nakamura, Mizuho; Terui, Yusuke; Fujiwara, Kunio; Kashiwagi, Keiko; Igarashi, Kazuei

    2013-06-01

    The role of polyamines at the G1/S boundary and in the G2/M phase of the cell cycle was studied using synchronized HeLa cells treated with thymidine or with thymidine and aphidicolin. Synchronized cells were cultured in the absence or presence of α-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, plus ethylglyoxal bis(guanylhydrazone) (EGBG), an inhibitor of S-adenosylmethionine decarboxylase. When polyamine content was reduced by treatment with DFMO and EGBG, the transition from G1 to S phase was delayed. In parallel, the level of p27(Kip1) was greatly increased, so its mechanism was studied in detail. Synthesis of p27(Kip1) was stimulated at the level of translation by a decrease in polyamine levels, because of the existence of long 5'-untranslated region (5'-UTR) in p27(Kip1) mRNA. Similarly, the transition from the G2/M to the G1 phase was delayed by a reduction in polyamine levels. In parallel, the number of multinucleate cells increased by 3-fold. This was parallel with the inhibition of cytokinesis due to an unusual distribution of actin and α-tubulin at the M phase. Since an association of polyamines with chromosomes was not observed by immunofluorescence microscopy at the M phase, polyamines may have only a minor role in structural changes of chromosomes at the M phase. In general, the involvement of polyamines at the G2/M phase was smaller than that at the G1/S boundary. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Hole-expansion formability of dual-phase steels using representative volume element approach with boundary-smoothing technique

    International Nuclear Information System (INIS)

    Kim, Ji Hoon; Lee, M.G.; Kim, D.; Matlock, D.K.; Wagoner, R.H.

    2010-01-01

    Research highlights: → Robust microstructure-based FE mesh generation technique was developed. → Local deformation behavior near phase boundaries could be quantitatively understood. → Macroscopic failure could be connected to microscopic deformation behavior of multi-phase steel. - Abstract: A qualitative analysis was carried out on the formability of dual-phase (DP) steels by introducing a realistic microstructure-based finite element approach. The present microstructure-based model was constructed using a mesh generation process with a boundary-smoothing algorithm after proper image processing. The developed model was applied to hole-expansion formability tests for DP steel sheets having different volume fractions and morphological features. On the basis of the microstructural inhomogeneity observed in the scanning electron micrographs of the DP steel sheets, it was inferred that the localized plastic deformation in the ferritic phase might be closely related to the macroscopic formability of DP steel. The experimentally observed difference between the hole-expansion formability of two different microstructures was reasonably explained by using the present finite element model.

  17. Solving QCD using multi-regge theory

    International Nuclear Information System (INIS)

    White, A. R.

    1998-01-01

    This talk outlines the derivation of a high-energy, transverse momentum cut-off, solution of QCD in which the Regge pole and ''single gluon'' properties of the pomeron are directly related to the confinement and chiral symmetry breaking properties of the hadron spectrum. In first approximation, the pomeron is a single reggeized gluon plus a ''wee parton'' component that compensates for the color and particle properties of the gluon. This solution corresponds to a supercritical phase of Reggeon Field Theory

  18. Diffraction theory in QCD and beyond

    International Nuclear Information System (INIS)

    White, A.R.

    1987-01-01

    A study of the Pomeron in QCD is briefly outlined. Implications for the production of W + W - and Z 0 Z 0 pairs are described and the possibility that the electroweak scale is a major strong-interaction threshold discussed. The application of Pomeron phase-transition theory to SU(5) dynamical symmetry breaking is suggested and the related ''strong-interaction'' properties of the photon briefly mentioned

  19. Critical Opalescence in Baryonic QCD Matter

    OpenAIRE

    Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.; Kousouris, K. S.

    2006-01-01

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behaviour is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associ...

  20. Divergence of dielectric permittivity near phase transition within ferroelectric domain boundaries

    Czech Academy of Sciences Publication Activity Database

    Márton, Pavel; Stepkova, Vilgelmina; Hlinka, Jiří

    2013-01-01

    Roč. 86, č. 1 (2013), s. 103-108 ISSN 0141-1594 R&D Projects: GA ČR GAP204/10/0616 Institutional support: RVO:68378271 Keywords : Bloch wall * domain boundary * BaTiO 3 * Ginzburg-Landau-Devonshire theory * permittivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.044, year: 2013

  1. Crystallographic and morphological relationships between β phase and the Widmanstaetten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Viswanathan, G.B.; Fraser, Hamish L.

    2007-01-01

    In the present study, the relationship between the crystallographic orientations and growth directions of grain boundary-allotriomorphic-α (GB α) and secondary Widmanstaetten α laths growing from the GB α at grain boundaries separating β grains with specific misorientations has been examined. These relationships have been determined using a variety of characterization techniques, including scanning electron microscopy, orientation imaging microscopy, transmission electron microscopy (TEM) and a dual-beam focused ion beam instrument to provide site-selected TEM foils. Two very interesting cases, one in which the two adjacent β grains are rotated mutually by approximately 10.5 o about a common direction and the other in which the two β grains are in a twin relationship, i.e. a 60 o rotation about a common direction, have been studied. It was discovered that the α laths growing into two adjacent β grains from the common grain boundary may have the same orientation in both grains, while they may have either large (∼88.8 o ) or small (28.8 o ) angular differences in growth directions in the two adjacent β grains, depending on the relative misorientation of the β grains. The growth directions of the α laths growing from such boundaries are explained on the basis of the Burgers orientation relationship between the Widmanstaetten α and the β phases and the interfacial structure proposed previously by various workers

  2. Microprobe measurements to determine phase boundaries and diffusion paths in ternary phase diagrams taking a Cu-Ni-Al system as an example

    International Nuclear Information System (INIS)

    Rudolph, G.

    1983-01-01

    With the aid of quantitative microprobe tests, diffusion phenomena and phase formation in the ternary CuNiAl system at 600 - 900 0 C were investigated taking as an example the diffusion couple CuNi5Al5-nickel. The diffusion paths in the ternary system are dependent on temperature and assume an S-form in the copper corner of the phase diagram. In the copper corner, the curves swing away from the more rapid component aluminium towards the copper. Due to this non-linear course of the curves, the intermetallic theta-phase of the type (Ni,Cu) 3 Al can be observed as a layer at all temperatures in the boundary zone. At 800 0 C and to a lesser extend at 900 0 C the solubility of α-CuNi40 for aluminium, at around 5 mass-%, is higher than the value given by W.O. Alexander (1938). As far as it is possible with the diffusion couple under analysis, the microprobe measurements taken otherwise conform at 700 and 600 0 C the position of the phase boundary α-(Cu,Ni)/(α+theta)-miscibility gap indicated in W.O. Alexander (1938). (Author)

  3. QCD tests at CDF

    International Nuclear Information System (INIS)

    Kovacs, E.

    1996-02-01

    We present results for the inclusive jet cross section and the dijet mass distribution. The inclusive cross section and dijet mass both exhibit significant deviations from the predictions of NLO QCD for jets with E T >200 GeV, or dijet masses > 400 GeV/c 2 . We show that it is possible, within a global QCD analysis that includes the CDF inclusive jet data, to modify the gluon distribution at high x. The resulting increase in the jet cross-section predictions is 25-35%. Owing to the presence of k T smearing effects, the direct photon data does not provide as strong a constraint on the gluon distribution as previously thought. A comparison of the CDF and UA2 jet data, which have a common range in x, is plagued by theoretical and experimental uncertainties, and cannot at present confirm the CDF excess or the modified gluon distribution

  4. The QCD Effective String

    International Nuclear Information System (INIS)

    Espriu, D.

    2003-01-01

    QCD can be described in a certain kinematical regime by an effective string theory. This string must couple to background chiral fields in a chirally invariant manner, thus taking into account the true chirally non-invariant QCD vacuum. By requiring conformal symmetry of the string and the unitarity constraint on chiral fields we reconstruct the equations of motion for the latter ones. These provide a consistent background for the propagation of the string. By further requiring locality of the effective action we recover the Lagrangian of non-linear sigma model of pion interactions. The prediction is unambiguous and parameter-free. The estimated chiral structural constants of Gasser and Leutwyler fit very well the phenomenological values. (author)

  5. Phase relations in a forced turbulent boundary layer: implications for modelling of high Reynolds number wall turbulence.

    Science.gov (United States)

    Duvvuri, Subrahmanyam; McKeon, Beverley

    2017-03-13

    Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  6. QCD and RHIC

    International Nuclear Information System (INIS)

    Kharzeev, D.

    2004-01-01

    In this talk I discuss recent advances in Quantum Chromo-Dynamics, in particular the progress in understanding the collective dynamics of the theory. I emphasise the significance of the RHIC program for establishing the properties of hot and dense QCD matter and for understanding the dynamics of the theory at the high parton density, strong color field frontier. Hopes and expectations for the future are discussed as well

  7. WORKSHOP QCD at 20

    International Nuclear Information System (INIS)

    Nachtmann, O.

    1992-01-01

    The modern theory of strong interactions - Quantum Chromodynamics (QCD), where quarks and gluons carrying the 'colour' quantum number play the essential role, is twenty years old. This birthday was duly celebrated at RWTH Aachen from 9-13 June, where recurring themes were - what has been achieved in the past twenty years?, where do we stand?, and what are the perspectives for the future?

  8. Future directions for QCD

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1996-10-01

    New directions for exploring QCD at future high-energy colliders are sketched. These include jets within jets. BFKL dynamics, soft and hard diffraction, searches for disoriented chiral condensate, and doing a better job on minimum bias physics. The new experimental opportunities include electron-ion collisions at HERA, a new collider detector at the C0 region of the TeVatron, and the FELIX initiative at the LHC

  9. String dynamics in QCD

    International Nuclear Information System (INIS)

    Gervais, J.L.; Neveu, A.

    1980-01-01

    Recent works of the authors on string interpretation of the Wilson loop operators in QCD are reviewed in a self-contained fashion. Although most of the results habe already appeared in print, some new material is presented in renormalization of the Wilson loop operator and on the use of light-cone expansion to derive a linear string-like equation in light-cone formalism. (orig.)

  10. Introduction to QCD

    OpenAIRE

    Skands, Peter

    2012-01-01

    These lectures were originally given at TASI and are directed at a level suitable for graduate students in High Energy Physics. They are intended to give an introduction to the theory and phenomenology of quantum chromodynamics (QCD), focusing on collider physics applications. The aim is to bring the reader to a level where informed decisions can be made concerning different approaches and their uncertainties. The material is divided into five main areas: 1) fundamentals, 2) fixed-order pertu...

  11. The QCD Teraflops Project

    International Nuclear Information System (INIS)

    Gottlieb, S.

    1992-01-01

    Increased computer power is essential for future progress in lattice gauge theory and for other Grand challenge applications. We address the physics that can be done with a computer capable of sustaining 1 Teraflops for QCD and the technology that will make it possible to construct such a computer within the next three years. Our collaboration has proposed to build a computer based on the Thinking Machines CM5 communication network, but with nodes 10 times faster

  12. Dual QCD: A review

    International Nuclear Information System (INIS)

    Baker, M.; Ball, J.S.; Zachariasen, F.

    1991-01-01

    We review the attempts to use dual (electric) vector potentials rather than the standard magnetic vector potentials to describe QCD, particularly in the infrared regime. The use of dual potentials is motivated by the fact that in classical electrodynamics, in a medium with a dielectric constant vanishing at small momenta (as is believed to be the case in QCD), electric potentials provide a far more convenient language than do magnetic potentials. To begin with, we outline attempts to construct the QCD Lagrangian in terms of dual potentials and describe the various possibilities, their shortcomings and advantages, which so far exist. We then proceed to use the most attractive (albeit consistent as a field theory only at the tree level) of these Lagrangians in a number of applications. We show that it describes a non-Abelian dual superconductor (so that it automatically confines color), derive the static quark-antiquark potential, and various temperature dependent effects, such as deconfinement and chiral symmetry breaking. (orig.)

  13. Electric-field-induced phase transitions in co-doped Pb(Zr1−xTixO3 at the morphotropic phase boundary

    Directory of Open Access Journals (Sweden)

    Daniel J Franzbach

    2014-02-01

    Full Text Available The strain- and polarization-electric field behavior was characterized at room temperature for Pb0.98Ba0.01(Zr1−xTix0.98Nb0.02O3, 0.40 ≤ x ≤ 0.60. The investigated compositions were located in the vicinity of the morphotropic phase boundary, giving insight into the influence of crystal structure on the hysteretic ferroelectric behavior. The remanent strain of particular compositions is shown to be larger than theoretically allowed by ferroelectric switching alone, indicating the presence of additional remanent strain mechanisms. A phenomenological free energy analysis was used to simulate the effect of an applied electric field on the initial equilibrium phase. It is shown that electric-field-induced phase transitions in polycrystalline ferroelectrics can account for the experimental observations. The experimental and simulation results are contrasted to neutron diffraction measurements performed on representative compositions in the virgin and remanent states.

  14. QCD: Renormalization for the practitioner

    International Nuclear Information System (INIS)

    Pascual, P.; Tarrach, R.

    1984-01-01

    These notes correspond to a GIFT (Grupo Interuniversitario de Fisica Teorica) course which was given by us in autumn 1983 at the University of Barcelona. Their main subject is renormalization in perturbative QCD and only the last chapter goes beyond perturbation theory. They are essentially self contained and their aim is to teach the student the techniques of perturbative QCD and the QCD sum rules. (orig./HSI)

  15. Effects of QCD equation of state on the stochastic gravitational wave background

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Sampurn; Mohanty, Subhendra [Physical Research Laboratory, Ahmedabad 380009 (India); Dey, Ujjal Kumar, E-mail: sampurn@prl.res.in, E-mail: ujjal@cts.iitkgp.ernet.in, E-mail: mohanty@prl.res.in [Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302 (India)

    2017-03-01

    Cosmological phase transitions can be a source of Stochastic Gravitational Wave (SGW) background. Apart from the dynamics of the phase transition, the characteristic frequency and the fractional energy density Ω{sub gw} of the SGW depends upon the temperature of the transition. In this article, we compute the SGW spectrum in the light of QCD equation of state provided by the lattice results. We find that the inclusion of trace anomaly from lattice QCD, enhances the SGW signal generated during QCD phase transition by ∼ 50% and the peak frequency of the QCD era SGW are shifted higher by ∼ 25% as compared to the earlier estimates without trace anomaly. This result is extremely significant for testing the phase transition dynamics near QCD epoch.

  16. The spontaneous breakdown of chiral symmetry in QCD

    International Nuclear Information System (INIS)

    Yoshida, K.

    1980-02-01

    It is suggested that the usual path integral representation of Euclidean vacuum amplitude (tunneling amplitude) in QCD must be supplemented by the explicit boundary condition corresponding to the spontaneous breaking of chiral SU(N) x SU(N). Adopting the trial wave function introduced by Nambu and Jona-Lasinio, one sees that such a path integral automatically breaks also the additional chiral U(1) symmetry of massless quarks. The catastrophe of semi-classical approach to QCD and 'U(1) problem' would be avoided in this way and one has, in principle, a better starting point for the self-consistent calculation

  17. A volume-preserving sharpening approach for the propagation of sharp phase boundaries in multiphase lattice Boltzmann simulations

    KAUST Repository

    Reis, T.; Dellar, P.J.

    2011-01-01

    Lattice Boltzmann models that recover a macroscopic description of multiphase flow of immiscible liquids typically represent the boundaries between phases using a scalar function, the phase field, that varies smoothly over several grid points. Attempts to tune the model parameters to minimise the widths of these interfaces typically lead to the interfaces becoming fixed to the underlying grid instead of advecting with the fluid velocity. This phenomenon, known as lattice pinning, is strikingly similar to that associated with the numerical simulation of conservation laws coupled to stiff algebraic source terms. We present a lattice Boltzmann formulation of the model problem proposed by LeVeque and Yee (1990) [3] to study the latter phenomenon in the context of computational combustion, and offer a volume-conserving extension in multiple space dimensions. Inspired by the random projection method of Bao and Jin (2000) [1] we further generalise this formulation by introducing a uniformly distributed quasi-random variable into the term responsible for the sharpening of phase boundaries. This method is mass conserving, gives correct average propagation speeds over many timesteps, and is shown to significantly delay the onset of pinning as the interface width is reduced. © 2010 Elsevier Ltd.

  18. A volume-preserving sharpening approach for the propagation of sharp phase boundaries in multiphase lattice Boltzmann simulations

    KAUST Repository

    Reis, T.

    2011-07-01

    Lattice Boltzmann models that recover a macroscopic description of multiphase flow of immiscible liquids typically represent the boundaries between phases using a scalar function, the phase field, that varies smoothly over several grid points. Attempts to tune the model parameters to minimise the widths of these interfaces typically lead to the interfaces becoming fixed to the underlying grid instead of advecting with the fluid velocity. This phenomenon, known as lattice pinning, is strikingly similar to that associated with the numerical simulation of conservation laws coupled to stiff algebraic source terms. We present a lattice Boltzmann formulation of the model problem proposed by LeVeque and Yee (1990) [3] to study the latter phenomenon in the context of computational combustion, and offer a volume-conserving extension in multiple space dimensions. Inspired by the random projection method of Bao and Jin (2000) [1] we further generalise this formulation by introducing a uniformly distributed quasi-random variable into the term responsible for the sharpening of phase boundaries. This method is mass conserving, gives correct average propagation speeds over many timesteps, and is shown to significantly delay the onset of pinning as the interface width is reduced. © 2010 Elsevier Ltd.

  19. Experimental application of QCD antennas

    International Nuclear Information System (INIS)

    Bobrovskyi, Sergei

    2010-02-01

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  20. Recent QCD results from ATLAS

    CERN Document Server

    Meyer, C; The ATLAS collaboration

    2014-01-01

    The ATLAS collaboration has performed studies of a wide range of QCD phenomena, from soft particle to hard photon and jet production. Recent soft-QCD measurements include studies of underlying event and vector meson production. Differential measurements of inclusive and dijet production provide stringent tests of high-order QCD predictions and provide input for determination of parton density functions. Measurements of isolated inclusive and di-photons cross sections for high transverse momentum photons test theoretical predictions of perturbative QCD and constrain parton density functions. An overview of these results is given.

  1. Experimental application of QCD antennas

    Energy Technology Data Exchange (ETDEWEB)

    Bobrovskyi, Sergei

    2010-02-15

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  2. Renormalization of Extended QCD2

    International Nuclear Information System (INIS)

    Fukaya, Hidenori; Yamamura, Ryo

    2015-01-01

    Extended QCD (XQCD), proposed by Kaplan [D. B. Kaplan, arXiv:1306.5818], is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low-energy hadronic models. We analyze the renormalization group flow of 2D (X)QCD, which is solvable in the limit of a large number of colors N c , to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low-energy region

  3. Hadron structure from lattice QCD

    International Nuclear Information System (INIS)

    Schaefer, Andreas

    2008-01-01

    Some elements and current developments of lattice QCD are reviewed, with special emphasis on hadron structure observables. In principle, high precision experimental and lattice data provide nowadays a very detailled picture of the internal structure of hadrons. However, to relate both, a very good controle of perturbative QCD is needed in many cases. Finally chiral perturbation theory is extremely helpful to boost the precision of lattice calculations. The mutual need and benefit of all four elements: experiment, lattice QCD, perturbative QCD and chiral perturbation theory is the main topic of this review

  4. Novel QCD Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins

    2011-08-12

    I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation. Such 'direct' processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed x{sub T} = 2p{sub T}/{radical}s, as well as the 'baryon anomaly', the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, the soft-gluon rescattering associated with its Wilson line, lead to Bjorken-scaling single-spin asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish 'static' structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus 'dynamical' structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. Eliminating the renormalization scale ambiguity greatly improves the precision of QCD predictions and increases the sensitivity of

  5. Passive membrane penetration by ZnO nanoparticles is driven by the interplay of electrostatic and phase boundary conditions.

    Science.gov (United States)

    Tiwari, Anuj; Prince, Ashutosh; Arakha, Manoranjan; Jha, Suman; Saleem, Mohammed

    2018-02-15

    The internalization of nanoparticles through the biological membrane is of immense importance for biomedical applications. A fundamental understanding of the lipid specificity and the role of the membrane biochemical and physical forces at play in modulating penetration are lacking. The current understanding of nanoparticle-membrane interaction is drawn mostly from computational studies and lacks sufficient experimental evidence. Herein, using confocal fluorescence imaging and potentiometric dye-based fluorimetry, we first investigated the interaction of ZnONP in both multi-component and individual lipid membranes using cell-like giant unilamellar vesicles to dissect the lipid specificity; also, we investigated the changes in membrane order, anisotropy and hydrophobicity. ZnONP was found to interact with phosphatidylinositol and phosphatidylcholine head-group-containing lipids specifically. We further investigated the interaction of ZnONP with three physiologically relevant membrane conditions varying in composition and dipole potential. We found that ZnONP interaction leads to a photoinduced enhancement of the partial-to-complete phase separation depending upon the membrane composition and cholesterol content. Interestingly, while the lipid order of a partially-phase-separated membrane remained unchanged upon ZnONP crowding, a fully-phase-separated membrane showed an increase in the lipid order. Strikingly, ZnONP crowding induced a contrasting effect on the fluorescence anisotropy of the membrane upon binding to the two membrane conditions, in line with the measured diffusion coefficient. ZnONP seems to preferentially penetrate through the liquid disordered areas of the membrane and the boundaries of the phase-separated regions driven by the interplay between the electrostatics and phase boundary conditions, which are collectively dictated by the composition and ZnONP-induced lipid reorganization. The results may lead to a greater understanding of the interplay of

  6. A Cassie-Like Law Using Triple Phase Boundary Line Fractions for Faceted Droplets on Chemically Heterogeneous Surfaces

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard; Taboryski, Rafael Jozef

    2009-01-01

    We present experimental contact angle data for surfaces, which were surface-engineered with a hydrophobic micropattern of hexagonal geometry. The chemically heterogeneous surface of the same hexagonal pattern of defects resulted in faceted droplets of hexagonal shape. When measuring the advancing...... contact angles with a viewing position aligned parallel to rows of defects, we found that an area averaged Cassie-law failed in describing the data. By replacing the area fractions by line fractions of the triple phase boundary Line segments in the Cassie equation, we found excellent agreement with data....

  7. Electrochemically Scavenging the Silica Impurities at the Ni-YSZ Triple Phase Boundary of Solid Oxide Cells

    DEFF Research Database (Denmark)

    Tao, Youkun; Shao, Jing; Cheng, Shiyang

    2016-01-01

    Silica impurity originated from the sealing or raw materials of the solid oxide cells (SOCs) accumulating at the. Ni-YSZ triple phase boundaries (TPBs) is known as one major reason for electrode passivation. Here we report nanosilica precipitates inside Ni grains instead of blocking the TPBs when...... operating the SOCs at vertical bar i vertical bar >= 1.5 A cm-2 for electrolysis of H2O/CO2. An electrochemical scavenging mechanism was proposed to explain this unique behavior: the removal of silica proceeded through the reduction of the silica to Si under strong cathodic polarization, followed by bulk...

  8. A Comparison between Boundary and Continuous Conduction Modes in Single Phase PFC Using 600V Range Devices

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

    2015-01-01

    This paper presents an analysis and comparison of boundary conduction mode (BCM) and continuous conduction mode (CCM) in single phase power factor correction (PFC) applications. The comparison is based on double pulse tester (DPT) characterization results of state-of-the-art superjunction devices...... in the 600V range. The measured switching energy is used to evaluate the devices performance in a conventional PFC. This data is used together with a mathematical model for prediction of the conducted electromagnetic interference (EMI). This allows comparing the different devices in BCM and CCM operation...

  9. Aspects of the QCD cascade

    International Nuclear Information System (INIS)

    Olsson, Magnus.

    1993-02-01

    A model is proposed for the production of transverse jets from diffractively excited protons. We propose that transverse jets can be obtained from gluonic bremsstrahlung in a way similar to the emission in DIS. Qualitative agreement is obtained between the model and the uncorrected data published by the UA8 collaboration. Perturbative QCD in the MLLA approximation is applied to multiple jet production in e + e - -annihilation. We propose modified evolution equations for deriving the jet cross sections, defined in the 'k t ' or 'Durham' algorithm. The mean number of jets as a function of the jet resolution is studied, and analytical predictions are compared to the results of MC simulations. We also study a set of differential-difference equations for multiplicity distributions in e + e - -annihilations, supplemented with appropriate boundary conditions. These equations take into account nonsingular terms in the GLAP splitting functions as well as kinematical constraints related to recoil effects. The presence of retarded terms imply that the cascade develops more slowly and reduces the fluctuations. The solutions agree well with MC simulations and experimental data. (authors)

  10. Nuclear physics from strong coupling QCD

    CERN Document Server

    Fromm, Michael

    2009-01-01

    The strong coupling limit (beta_gauge = 0) of QCD offers a number of remarkable research possibilities, of course at the price of large lattice artifacts. Here, we determine the complete phase diagram as a function of temperature T and baryon chemical potential mu_B, for one flavor of staggered fermions in the chiral limit, with emphasis on the determination of a tricritical point and on the T ~ 0 transition to nuclear matter. The latter is known to happen for mu_B substantially below the baryon mass, indicating strong nuclear interactions in QCD at infinite gauge coupling. This leads us to studying the properties of nuclear matter from first principles. We determine the nucleon-nucleon potential in the strong coupling limit, as well as masses m_A of nuclei as a function of their atomic number A. Finally, we clarify the origin of nuclear interactions at strong coupling, which turns out to be a steric effect.

  11. QCD and the chiral critical point

    International Nuclear Information System (INIS)

    Gavin, S.; Gocksch, A.; Pisarski, R.D.

    1994-01-01

    As an extension of QCD, consider a theory with ''2+1'' flavors, where the current quark masses are held in a fixed ratio as the overall scale of the quark masses is varied. At nonzero temperature and baryon density it is expected that in the chiral limit the chiral phase transition is of first order. Increasing the quark mass from zero, the chiral transition becomes more weakly first order, and can end in a chiral critical point. We show that the only massless field at the chiral critical point is a σ meson, with the universality class that of the Ising model. Present day lattice simulations indicate that QCD is (relatively) near to the chiral critical point

  12. Hidden QCD in Chiral Gauge Theories

    DEFF Research Database (Denmark)

    Ryttov, Thomas; Sannino, Francesco

    2005-01-01

    The 't Hooft and Corrigan-Ramond limits of massless one-flavor QCD consider the two Weyl fermions to be respectively in the fundamental representation or the two index antisymmetric representation of the gauge group. We introduce a limit in which one of the two Weyl fermions is in the fundamental...... representation and the other in the two index antisymmetric representation of a generic SU(N) gauge group. This theory is chiral and to avoid gauge anomalies a more complicated chiral theory is needed. This is the generalized Georgi-Glashow model with one vector like fermion. We show that there is an interesting...... phase in which the considered chiral gauge theory, for any N, Higgses via a bilinear condensate: The gauge interactions break spontaneously to ordinary massless one-flavor SU(3) QCD. The additional elementary fermionic matter is uncharged under this SU(3) gauge theory. It is also seen that when...

  13. Domain wall and interphase boundary motion in (1−x)Bi(Mg{sub 0.5}Ti{sub 0.5})O{sub 3}–xPbTiO{sub 3} near the morphotropic phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Tutuncu, Goknur [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Chen, Jun; Fan, Longlong [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Fancher, Chris M.; Zhao, Jianwei [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Forrester, Jennifer S.; Jones, Jacob L., E-mail: JacobJones@ncsu.edu [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-07-28

    Electric field-induced changes in the domain wall motion of (1−x)Bi(Mg{sub 0.5}Ti{sub 0.5})O{sub 3}–xPbTiO{sub 3} (BMT-xPT) near the morphotropic phase boundary (MPB) where x = 0.37 (BMT-37PT) and x = 0.38 (BMT-38PT), are studied by means of synchrotron x-ray diffraction. Through Rietveld analysis and profile fitting, a mixture of coexisting monoclinic (Cm) and tetragonal (P4mm) phases is identified at room temperature. Extrinsic contributions to the property coefficients are evident from electric-field-induced domain wall motion in both the tetragonal and monoclinic phases, as well as through the interphase boundary motion between the two phases. Domain wall motion in the tetragonal and monoclinic phases for BMT-37PT is larger than that of BMT-38PT, possibly due to this composition's closer proximity to the MPB. Increased interphase boundary motion was also observed in BMT-37PT. Lattice strain, which is a function of both intrinsic piezoelectric strain and elastic interactions of the grains (the latter originating from domain wall and interphase boundary motion), is similar for the respective tetragonal and monoclinic phases.

  14. Effect of dilute magnetic ions on the optical, dielectric and ferroelectric properties of PZT at morphotopic phase boundary

    Science.gov (United States)

    Rao, T. Lakshmana; Pradhan, M. K.; Ramakrishna, P. V.; Dash, S.

    2018-05-01

    Modified-PZT ceramics with a formula Pb0.9Ni0.1[(Zr0.52Ti0.48)]1-xSnxO3 located near the morphotropic phase boundary (MPB) were prepared by conventional solid state process to investigate effects of dilute doping of Ni and Sn in different sites of PZT. The single phase structure of the series of samples has been identified by x-ray diffraction technique. The optical band gap has been obtained from the UV-Vis spectra and found to be shrinkage with doping. The detail dielectric and impedance studies are being carried out to investigate the conduction mechanism of the samples. A significant enhancement in the electric polarization is observed for the maximum Sn doping in a modified PZT.

  15. Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: test of three approaches

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2008-12-01

    Full Text Available Arctic boundary-layer clouds were investigated with remote sensing and in situ instruments during the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR campaign in March and April 2007. The clouds formed in a cold air outbreak over the open Greenland Sea. Beside the predominant mixed-phase clouds pure liquid water and ice clouds were observed. Utilizing measurements of solar radiation reflected by the clouds three methods to retrieve the thermodynamic phase of the cloud are introduced and compared. Two ice indices IS and IP were obtained by analyzing the spectral pattern of the cloud top reflectance in the near infrared (1500–1800 nm wavelength spectral range which is characterized by ice and water absorption. While IS analyzes the spectral slope of the reflectance in this wavelength range, IS utilizes a principle component analysis (PCA of the spectral reflectance. A third ice index IA is based on the different side scattering of spherical liquid water particles and nonspherical ice crystals which was recorded in simultaneous measurements of spectral cloud albedo and reflectance.

    Radiative transfer simulations show that IS, IP and IA range between 5 to 80, 0 to 8 and 1 to 1.25 respectively with lowest values indicating pure liquid water clouds and highest values pure ice clouds. The spectral slope ice index IS and the PCA ice index IP are found to be strongly sensitive to the effective diameter of the ice crystals present in the cloud. Therefore, the identification of mixed-phase clouds requires a priori knowledge of the ice crystal dimension. The reflectance-albedo ice index IA is mainly dominated by the uppermost cloud layer (τ<1.5. Therefore, typical boundary-layer mixed-phase clouds with a liquid cloud top layer will

  16. Continuum Models for Irregular Phase Boundary Motion in Shape-Memory Tensile Bars

    National Research Council Canada - National Science Library

    Rosakis, Phoebus

    1997-01-01

    ... observed experimentally. We show that when the model involves a kinetic relation that is 'unstable' in a definite sense, 'stick-slip' motion of the interface between phases and serration of the accompanying stress-elongation...

  17. Quantum theoretical calculations of activation energies for the mass transfer at phase boundaries of ionic crystals. 4

    International Nuclear Information System (INIS)

    Winzer, A.

    1978-01-01

    It is shown that a direct proportionality exists between the activation energy for the mass transfer at the respective crystal faces of ionic crystals and the frequency of the phonones (longitudinal-optical), Planck's constant being found once more as a proportionality constant. Thus it could be demonstrated that the different activation energies measured at different time intervals for the mass transfer processes at phase boundaries of ionic crystals can be attributed to the specific growth of the crystal faces. Thus, NaCl crystal fractions which were mechanically stressed (pulverized and sifted) and consequently contained a great amount of [111]- and [110]-faces, respectively, experimentally yielded an activation energy which agrees with the values determined by quantum theory when the frequency of propagation of the phonons is inserted into a derived equation. This relation was also confirmed by NaCl crystal fractions predominantly containing cubic faces. This also indicates that in mass transfer processes on phase boundaries of ionic crystals quantum mechanical laws are of importance. (author)

  18. QCD: Questions, challenges, and dilemmas

    International Nuclear Information System (INIS)

    Bjorken, J.

    1996-11-01

    An introduction to some outstanding issues in QCD is presented, with emphasis on work by Diakonov and co-workers on the influence of the instanton vacuum on low-energy QCD observables. This includes the calculation of input valence-parton distributions for deep-inelastic scattering. 35 refs., 3 figs

  19. Perturbative QCD (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Perturbative QCD is the general theoretical framework for describing hard scattering processes yielding multiparticle production at hadron colliders. In these lectures, we shall introduce fundamental features of perturbative QCD and describe its application to several high energy collider processes, including jet production in electron-positron annihilation, deep inelastic scattering, Higgs boson and gauge boson production at the LHC.

  20. Experimental Summary Moriond QCD 2007

    CERN Document Server

    Rolandi, Gigi

    2007-01-01

    More than 90 speakers gave a presentation at this years Moriond QCD conference and more than 60 talks reported the experimental status and perspectives on Standard Model, especially QCD, search for new physics, quark spectroscopy and Heavy Ions physics. I summarize what I consider the highlights of these presentations.

  1. Nuclear properties from perturbative QCD

    International Nuclear Information System (INIS)

    Close, F.E.; Roberts, R.G.; Ross, G.G.

    1986-01-01

    Two apparently different descriptions of quark distributions in a nucleus may in fact be connected. A ''duality'' between the QCD approach and the conventional model of nucleon binding leads to nuclear properties being simply related to the anomalous dimensions of QCD. (orig.)

  2. Quarklei: nuclear physics from QCD

    International Nuclear Information System (INIS)

    Goldman, T.

    1985-01-01

    The difficulties posed for nuclear physics by either recognizing or ignoring QCD, are discussed. A QCD model for nuclei is described. A crude approximation is shown to qualitatively reproduce saturation of nuclear binding energies and the EMC effect. The model is applied seriously to small nuclei, and to hypernuclei

  3. Light-Front QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.

    2004-11-30

    In these lectures, I survey a number of applications of light-front methods to hadron and nuclear physics phenomenology and dynamics, including light-front statistical physics. Light-front Fock-state wavefunctions provide a frame-independent representation of hadrons in terms of their fundamental quark and gluon degrees of freedom. Nonperturbative methods for computing LFWFs in QCD are discussed, including string/gauge duality which predicts the power-law fall-off at high momentum transfer of light-front Fock-state hadronic wavefunctions with an arbitrary number of constituents and orbital angular momentum. The AdS/CFT correspondence has important implications for hadron phenomenology in the conformal limit, including an all-orders derivation of counting rules for exclusive processes. One can also compute the hadronic spectrum of near-conformal QCD assuming a truncated AdS/CFT space. Given the LFWFs, one can compute form factors, heavy hadron decay amplitudes, hadron distribution amplitudes, and the generalized parton distributions underlying deeply virtual Compton scattering. The quantum fluctuations represented by the light-front Fock expansion leads to novel QCD phenomena such as color transparency, intrinsic heavy quark distributions, diffractive dissociation, and hidden-color components of nuclear wavefunctions. A new test of hidden color in deuteron photodisintegration is proposed. The origin of leading-twist phenomena such as the diffractive component of deep inelastic scattering, single-spin asymmetries, nuclear shadowing and antishadowing is also discussed; these phenomena cannot be described by light-front wavefunctions of the target computed in isolation. Part of the anomalous NuTeV results for the weak mixing angle {theta}{sub W} could be due to the non-universality of nuclear antishadowing for charged and neutral currents.

  4. Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face

    Science.gov (United States)

    Bollati, Julieta; Tarzia, Domingo A.

    2018-04-01

    Recently, in Tarzia (Thermal Sci 21A:1-11, 2017) for the classical two-phase Lamé-Clapeyron-Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).

  5. Determination of phase boundaries and diffusion parameters in tantalum hydrides in pulsed NMR

    International Nuclear Information System (INIS)

    Hornung, P.A.

    1978-04-01

    Proton spin-lattice relaxation times T 1 were measured over a wide range of temperature (77 K to 470 K) and compositions (H/Ta = 0.155 to 0.677) in the tantalum-hydrogen system at a frequency of 40,000 MHz. In the high temperature solid solution α phase, the activation energy for hydrogen diffusion was found to be 0.140 +- 0.002 eV/atom, and the value of the jump rate (or its corresponding correlation time) was found to be essentially constant throughout the range of compositions studied. The conduction electron contribution to T 1 measured in the α phase agreed qualitatively with the trend shown by previously published susceptibility data. The single phase epsilon region and the α + epsilon two-phase region were particularly noted. It could also be concluded from the measurements that the hydrogen jump rate decreased by a factor of approximately 7.2 from the α phase to the ordered phases at low temperatures and slightly decreased further in the epsilon phase. Anomalous relaxation times were found in the low temperature range (77 K less than or equal to T less than or equal to K). In this region, T 1 remains essentially constant, and does not follow the usual temperature dependence for either motional or electronic relaxation. Two possible explanations for this behavior were considered. The first involves proton cross-relaxation to the 181 Ta nuclei which would sample the spectral density of magnetic fluctuations in the sample at several frequencies because of the probable very strong 181 Ta quadrupole interaction strength. The second explanation postulates that the hydrogen diffusional jump path involves an intermediate metastable state

  6. Composite operators in QCD

    International Nuclear Information System (INIS)

    Sonoda, Hidenori

    1992-01-01

    We give a formula for the derivatives of a correlation function of composite operators with respect to the parameters (i.e. the strong fine structure constant and the quark mass) of QCD in four- dimensional euclidean space. The formula is given as spatial integration of the operator conjugate to a parameter. The operator product of a composite operator and a conjugate operator has an unintegrable part, and the formula requires divergent subtractions. By imposing consistency conditions we drive a relation between the anomalous dimensions of the composite operators and the unintegrable part of the operator product coefficients. (orig.)

  7. QCD: color or glow

    International Nuclear Information System (INIS)

    Reya, E.

    1982-01-01

    The some of motivations for color and the numerous qualitative successes of QCD are presented. Non-leading higher order contributions to the (x, Q 2 )-dependence of scaling violations of non-singlet and singlet structure functions are discussed, especially non-perturbative correction to deep inelastic processes such as higher twist contributions. Finally the topic of how to account theoretically for the existence of free fractionally charged particles by concentrating mainly on spontaneously breaking SU(3) color is presented. (M.F.W.)

  8. Modelling and characterization of chi-phase grain boundary precipitation during aging of Fe-Cr-Ni-Mo stainless steel

    International Nuclear Information System (INIS)

    Xu, W.; San Martin, D.; Rivera Diaz del Castillo, P.E.J.; Zwaag, S. van der

    2007-01-01

    High molybdenum stainless steels may contain the chi-phase precipitate (χ, Fe 36 Cr 12 Mo 10 ) which may lead to undesirable effects on strength, toughness and corrosion resistance. In the present work, specimens of a 12Cr-9Ni-4Mo wt% steel are heat treated at different temperatures and times, and the average particle size and particle size distribution of chi-phase precipitate are studied quantitatively. A computer model based on the KWN framework has been developed to describe the evolution of chi-phase precipitation. The kinetic model takes advantage of the KWN model to describe the precipitate particle size distribution, and is coupled with the thermodynamic software ThermoCalc for calculating the instantaneous local thermodynamic equilibrium condition at the interface and the driving force for nucleation. A modified version of Zener's theory accounting for capillarity effects at early growth stages is implemented in this model. The prediction of the model for chi-phase precipitation at a grain boundary is compared to experimental results and both the average particle size and the particle size distribution are found to be in good agreement with experimental observations at late precipitation stages

  9. On the accuracy of triple phase boundary lengths calculated from tomographic image data

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Yakal-Kremski, Kyle; Wilson, James

    2014-01-01

    to systematic errors in TPB estimates. Here, two approaches for calculating the TPB density are compared to investigate how different TPB aspects such as curvature, orientation, and phase contact angles affect the results. The first approach applies a correction factor to the TPB length calculated by simply...

  10. Boundary Induced Phase Transition in Cellular Automata Models of Pedestrian Flow

    Czech Academy of Sciences Publication Activity Database

    Bukáček, M.; Hrabák, Pavel

    2016-01-01

    Roč. 11, č. 4 (2016), s. 327-338 ISSN 1557-5969 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Adaptive time-span * Cellular automata model * Floor-field * Pedestrian flow * Phase transition * Principle of bonds Subject RIV: BD - Theory of Information Impact factor: 0.696, year: 2016

  11. Jets and QCD

    International Nuclear Information System (INIS)

    Ali, A.; Kramer, G.

    2010-12-01

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e + e - collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W ± ,Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  12. Jets and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kramer, G. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2010-12-15

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e{sup +}e{sup -} collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W{sup {+-}},Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  13. Massively Parallel QCD

    International Nuclear Information System (INIS)

    Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G

    2007-01-01

    The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results

  14. From notes to chords in QCD

    International Nuclear Information System (INIS)

    Wilczek, F.

    1998-01-01

    After a very brief overview recollecting the 'classic' parts of QCD, that is its application to describe hard processes and static properties of hadrons, I survey recent work - some very recent - on QCD at non-zero temperature and density. At finite temperature and zero density there is a compelling theoretical framework allowing us to predict highly specific, non-trivial dependence of the phase structure on the number of flavors and colors. Several aspects have been rigorously, and successfully, tested against massive numerical realizations of the microscopic theory. The theoretical description of high density is nowhere near as mature, but some intriguing possibilities have been put forward. The color/flavor locked state recently proposed for three flavors has many remarkable features connected to its basic symmetry structure, notably including chiral symmetry re-breaking and the existence (unlike for two flavors) of a gauge invariant order parameter. I survey potential applications to heavy ion collisions, astrophysics, and cosmology. A noteworthy possibility is that stellar explosions are powered by release of QCD latent heat. (orig.)

  15. QCD ghost f(T)-gravity model

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K.; Abdolmaleki, A.; Asadzadeh, S. [University of Kurdistan, Department of Physics, Sanandaj (Iran, Islamic Republic of); Safari, Z. [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)

    2013-09-15

    Within the framework of modified teleparallel gravity, we reconstruct a f(T) model corresponding to the QCD ghost dark energy scenario. For a spatially flat FRW universe containing only the pressureless matter, we obtain the time evolution of the torsion scalar T (or the Hubble parameter). Then, we calculate the effective torsion equation of state parameter of the QCD ghost f(T)-gravity model as well as the deceleration parameter of the universe. Furthermore, we fit the model parameters by using the latest observational data including SNeIa, CMB and BAO data. We also check the viability of our model using a cosmographic analysis approach. Moreover, we investigate the validity of the generalized second law (GSL) of gravitational thermodynamics for our model. Finally, we point out the growth rate of matter density perturbation. We conclude that in QCD ghost f(T)-gravity model, the universe begins a matter dominated phase and approaches a de Sitter regime at late times, as expected. Also this model is consistent with current data, passes the cosmographic test, satisfies the GSL and fits the data of the growth factor well as the {Lambda}CDM model. (orig.)

  16. QCD under extreme conditions. Inhomogeneous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, Achim

    2014-10-15

    Almost 40 years after the first publication on the phase diagram of quantum chromodynamics (QCD) big progress has been made but many questions are still open. This work covers several aspects of low-energy QCD and introduces advanced methods to calculate selected parts of the QCD phase diagram. Spontaneous chiral symmetry breaking as well as its restoration is a major aspect of QCD. Two effective models, the Nambu-Jona-Lasinio (NJL) model and the linear σ-model, are widely used to describe the QCD chiral phase transition. We study the large-N{sub c} behavior of the critical temperature T{sub c} for chiral symmetry restoration in the framework of both models. While in the NJL model T{sub c} is independent of N{sub c} (and in agreement with the expected QCD scaling), the scaling behavior in the linear σ-model reads T{sub c} ∝ N{sup 1/2}{sub c}. However, this mismatch can be corrected: phenomenologically motivated temperature-dependent parameters or the extension with the Polyakov-loop renders the scaling in the linear σ-model compatible with the QCD scaling. The requirement that the chiral condensate which is the order parameter of the chiral symmetry is constant in space is too restrictive. Recent studies on inhomogeneous chiral condensation in cold, dense quark matter suggest a rich crystalline structure. These studies feature models with quark degrees of freedom. In this thesis we investigate the formation of the chiral density wave (CDW) in the framework of the so-called extended linear sigma model (eLSM) at high densities and zero temperature. The eLSM is a modern development of the linear σ-model which contains scalar, pseudoscalar, vector, as well as axial-vector mesons, and in addition, a light tetraquark state. The nucleon and its chiral partner are introduced as parity doublets in the mirror assignment. The model describes successfully the vacuum phenomenology and nuclear matter ground-state properties. As a result we find that an inhomogeneous phase

  17. Local rhombohedral symmetry in Tb0.3Dy0.7Fe2 near the morphotropic phase boundary

    International Nuclear Information System (INIS)

    Ma, Tianyu; Liu, Xiaolian; Pan, Xingwen; Li, Xiang; Jiang, Yinzhu; Yan, Mi; Li, Huiying; Fang, Minxia; Ren, Xiaobing

    2014-01-01

    The recently reported morphotropic phase boundary (MPB) in a number of giant magnetostrictive materials (GMMs) has drawn considerable interest to the local symmetry/structure near MPB region of these materials. In this letter, by in-situ X-ray diffraction and AC magnetic susceptibility measurements, we show that Tb 0.3 Dy 0.7 Fe 2 , the typical composition of Terfenol-D GMMs, has coexistence of rhombohedral and tetragonal phases over a wide temperature range in the vicinity of MPB. High resolution transmission electron microscopy provides direct evidence for local rhombohedral symmetry of the ferromagnetic phase and reveals regular-shaped nanoscale domains below 10 nm. The nano-sized structural/magnetic domains are hierarchically inside a single micron-sized stripe-like domain with the same average magnetization direction. Such domain structures are consistent with the low magnetocrystalline anisotropy and easy magnetic/structural domain switching under magnetic field, thus generating large magnetostriction at low field

  18. Optical properties of mixed phase boundary layer clouds observed from a tethered balloon platform in the Arctic

    International Nuclear Information System (INIS)

    Sikand, M.; Koskulics, J.; Stamnes, K.; Hamre, B.; Stamnes, J.J.; Lawson, R.P.

    2010-01-01

    A tethered balloon system was used to collect data on radiometric and cloud microphysical properties for mixed phase boundary layer clouds, consisting of ice crystals and liquid water droplets during a May-June 2008 experimental campaign in Ny-Alesund, Norway, located high in the Arctic at 78.9 o N, 11.9 o E. The balloon instrumentation was controlled and powered from the ground making it possible to fly for long durations and to profile clouds vertically in a systematic manner. We use a radiative transfer model to analyze the radiometric measurements and estimate the optical properties of mixed-phase clouds. The results demonstrate the ability of instruments deployed on a tethered balloon to provide information about optical properties of mixed-phase clouds in the Arctic. Our radiative transfer simulations show that cloud layering has little impact on the total downward irradiance measured at the ground as long as the total optical depth remains unchanged. In contrast, the mean intensity measured by an instrument deployed on a balloon depends on the vertical cloud structure and is thus sensitive to the altitude of the balloon. We use the total downward irradiance measured by a ground-based radiometer to estimate the total optical depth and the mean intensity measured at the balloon to estimate the vertical structure of the cloud optical depth.

  19. An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods.

    Science.gov (United States)

    Frank, Florian; Liu, Chen; Scanziani, Alessio; Alpak, Faruk O; Riviere, Beatrice

    2018-08-01

    We consider an energy-based boundary condition to impose an equilibrium wetting angle for the Cahn-Hilliard-Navier-Stokes phase-field model on voxel-set-type computational domains. These domains typically stem from μCT (micro computed tomography) imaging of porous rock and approximate a (on μm scale) smooth domain with a certain resolution. Planar surfaces that are perpendicular to the main axes are naturally approximated by a layer of voxels. However, planar surfaces in any other directions and curved surfaces yield a jagged/topologically rough surface approximation by voxels. For the standard Cahn-Hilliard formulation, where the contact angle between the diffuse interface and the domain boundary (fluid-solid interface/wall) is 90°, jagged surfaces have no impact on the contact angle. However, a prescribed contact angle smaller or larger than 90° on jagged voxel surfaces is amplified. As a remedy, we propose the introduction of surface energy correction factors for each fluid-solid voxel face that counterbalance the difference of the voxel-set surface area with the underlying smooth one. The discretization of the model equations is performed with the discontinuous Galerkin method. However, the presented semi-analytical approach of correcting the surface energy is equally applicable to other direct numerical methods such as finite elements, finite volumes, or finite differences, since the correction factors appear in the strong formulation of the model. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Single-phase liquid flow forced convection under a nearly uniform heat flux boundary condition in microchannels

    KAUST Repository

    Lee, Man; Lee, Yi-Kuen; Zohar, Yitshak

    2012-01-01

    A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.

  1. Single-phase liquid flow forced convection under a nearly uniform heat flux boundary condition in microchannels

    KAUST Repository

    Lee, Man

    2012-02-22

    A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.

  2. Heavy flavor production in QCD

    International Nuclear Information System (INIS)

    Hoyer, P.

    1989-01-01

    In this paper a brief survey is given of the status of heavy quark hadroproduction in QCD. The next-to-leading order calculation allows an estimate of the theoretical uncertainties to be made. They are manageable for top, but considerable for charm. The data on charm continues to show an excess of events at large x F , compared to QCD expectations. This may be linked to the measured anomalous A-dependence of the cross section on nuclear targets, also present at large x F . QCD models for the diffractive production of heavy quarks remain to be tested experimentally

  3. Boundary-enhancement in propagation-based x-ray phase-contrast tomosynthesis improves depth position characterization.

    Science.gov (United States)

    Guan, Huifeng; Xu, Qiaofeng; Garson, Alfred B; Anastasio, Mark A

    2015-04-21

    Propagation-based x-ray phase-contrast (PB XPC) tomosynthesis combines the concepts of tomosynthesis and XPC imaging to realize the advantages of both for biological imaging applications. Tomosynthesis permits reductions in acquisition times compared with full-view tomography, while XPC imaging provides the opportunity to resolve weakly absorbing structures. In this note, an investigation of the depth resolving properties of PB XPC tomosynthesis is conducted. The results demonstrate that in-plane structures display strong boundary-enhancement while out-of-plane structures do not. This effect can facilitate the identification of in-plane structures in PB XPC tomosynthesis that could normally not be distinguished from out-of-plane structures in absorption-based tomosynthesis.

  4. Boundary-enhancement in propagation-based x-ray phase-contrast tomosynthesis improves depth position characterization

    International Nuclear Information System (INIS)

    Guan, Huifeng; Xu, Qiaofeng; Garson, Alfred B III; Anastasio, Mark A

    2015-01-01

    Propagation-based x-ray phase-contrast (PB XPC) tomosynthesis combines the concepts of tomosynthesis and XPC imaging to realize the advantages of both for biological imaging applications. Tomosynthesis permits reductions in acquisition times compared with full-view tomography, while XPC imaging provides the opportunity to resolve weakly absorbing structures. In this note, an investigation of the depth resolving properties of PB XPC tomosynthesis is conducted. The results demonstrate that in-plane structures display strong boundary-enhancement while out-of-plane structures do not. This effect can facilitate the identification of in-plane structures in PB XPC tomosynthesis that could normally not be distinguished from out-of-plane structures in absorption-based tomosynthesis. (note)

  5. Relations between temperature coefficients of permittivity and elastic compliances in PZT ceramics near the morphotropic phase boundary.

    Science.gov (United States)

    Boudys, M

    1991-01-01

    Variations of temperature coefficients of permittivity epsilon(33)(T), elastic compliances at constant electric fields s(11)(E), and constant polarization s(11)(P) with a Zr/Ti ratio of Pb(Zr(x)Ti(1-x))O(3) and Pb[(Sb(1/3)Mn(2/3))(0.05)Zr(x)Ti (0.95-x)]O(3) solid solutions, were investigated. Relations between temperature coefficients of epsilon(33)(T ), S(11)(E), and S(11) (P) were theoretically derived; a discrepancy was found between theoretical relations and experimental results. On the basis of the observed discrepancy, it is proposed that some extrinsic effects arising from the motion of interphase boundaries between the tetragonal and the rhombohedral phases which exist in grains contribute to values of both elastic compliances.

  6. Experimental determination of the phase boundary between kornelite and pentahydrated ferric sulfate at 0.1MPa

    Science.gov (United States)

    Kong, W.G.; Wang, A.; Chou, I.-Ming

    2011-01-01

    Recent findings of various ferric sulfates on Mars emphasize the importance of understanding the fundamental properties of ferric sulfates at temperatures relevant to that of Martian surface. In this study, the phase boundary between kornelite (Fe2(SO4)3.7H2O) and pentahydrated ferric sulfate (Fe2(SO4)3.5H2O) was experimentally determined using the humidity-buffer technique together with gravimetric measurements and Raman spectroscopy at 0.1MPa in the 36-56??C temperature range. Through the thermodynamic analysis of our experimental data, the enthalpy change (-290.8??0.3kJ/mol) and the Gibbs free energy change (-238.82??0.02kJ/mol) for each water molecule of crystallization in the rehydration of pentahydrated ferric sulfate to kornelite were obtained. ?? 2011 Elsevier B.V.

  7. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, Mark Jay [University of Michigan

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  8. Datagrids for lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Buechner, O. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Ernst, M. [Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, 15738 Zeuthen (Germany); Lippert, Th. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Melkumyan, D. [Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen (Germany); Orth, B. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Pleiter, D. [John von Neumann-Institut fuer Computing NIC/DESY, 15738 Zeuthen (Germany)]. E-mail: dirk.pleiter@desy.de; Stueben, H. [Konrad-Zuse-Institut fuer Informationstechnik ZIB, 14195 Berlin (Germany); Wegner, P. [Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen (Germany); Wollny, S. [Konrad-Zuse-Institut fuer Informationstechnik ZIB, 14195 Berlin (Germany)

    2006-04-01

    As the need for computing resources to carry out numerical simulations of Quantum Chromodynamics (QCD) formulated on a lattice has increased significantly, efficient use of the generated data has become a major concern. To improve on this, groups plan to share their configurations on a worldwide level within the International Lattice DataGrid (ILDG). Doing so requires standardized description of the configurations, standards on binary file formats and common middleware interfaces. We describe the requirements and problems, and discuss solutions. Furthermore, an overview is given on the implementation of the LatFor DataGrid [http://www-zeuthen.desy.de/latfor/ldg], a France/German/Italian grid that will be one of the regional grids within the ILDG grid-of-grids concept.

  9. Vacuum structure and QCD

    International Nuclear Information System (INIS)

    Gross, D.

    1979-01-01

    An overview of QCD is given, and some of the dynamical issues that arise in attempts to solve this theory are discussed. In particular, attention is focused on the problems that appear in attempts to discuss the structure of low-lying hadrons, e.g. nucleons, on the basis of a color gauge theory of quarks. The picture of hadronic structure developed by Callan, Dashen, and Gross is reviewed; this picture maintains that it presents the qualitative features of hadronic structure emerging in a direct way from first principles. Finally, the relevance of the emerging understanding of the structure of hadrons to the question of what hadronic matter (nuclear or quark matter) might look like at high densities is discussed

  10. openQ*D simulation code for QCD+QED

    Science.gov (United States)

    Campos, Isabel; Fritzsch, Patrick; Hansen, Martin; Krstić Marinković, Marina; Patella, Agostino; Ramos, Alberto; Tantalo, Nazario

    2018-03-01

    The openQ*D code for the simulation of QCD+QED with C* boundary conditions is presented. This code is based on openQCD-1.6, from which it inherits the core features that ensure its efficiency: the locally-deflated SAP-preconditioned GCR solver, the twisted-mass frequency splitting of the fermion action, the multilevel integrator, the 4th order OMF integrator, the SSE/AVX intrinsics, etc. The photon field is treated as fully dynamical and C* boundary conditions can be chosen in the spatial directions. We discuss the main features of openQ*D, and we show basic test results and performance analysis. An alpha version of this code is publicly available and can be downloaded from http://rcstar.web.cern.ch/.

  11. Arctic boundary layer properties and its influence on cloud occurrence frequency, phase and structure in autumn season

    Science.gov (United States)

    Qiu, S.; Dong, X.; Xi, B.

    2017-12-01

    In this study, autumnal boundary layer characteristics and cloud properties have been investigated using data collected at the Atmospheric Radiation Measurement North Slope of Alaska (ARM NSA) site from January 2002 to December 2008. We found that both cloud and planetary boundary layer (PBL) properties can be well distinguished by surface wind directions. When the ARM NSA site is dominated by a northerly wind during the period September- November, the PBL is at near saturation for all three months; while the maximum RH layer varies from low and thin in September, to higher and thicker in October, and then it becomes close to surface again in November. Both the ceilometer and the MPL derived cloud base heights coincide well with the RH maximum layer in the PBL for all three autumnal months. The frequencies of occurrence of mixed phase clouds in September and October are around 60-80% under a northerly wind, which are about 1.5 times higher than those during a southerly wind. Under northerly wind, the PDFs of PBL temperature and specific humidity are narrow and unimodal, with a peak probability around 0.4-0.5. Under a southerly wind, on the other hand, the PBL is both warmer and wetter than northerly wind profiles, which result in lower RH values (10-15% lower) in September and October; and the PDFs of PBL temperature and specific humidity are more evenly distributed with larger distribution range and lower PDF peak values (<0.3). In September, colder and dryer PBL is more favorable for mixed phase cloud formation, cloud occurrence frequency decreases from 90% to 60% as PBL temperature and specific humidity increase. In October, the frequency of occurrence of mixed phase clouds also decreases from 90% to 50-60% as PBL temperature increases. While in November, it increases first and then decreases with increasing PBL temperature and specific humidity. The frequency of occurrence of mixed phase clouds is linearly correlated to PBL RH values: for all three months, it

  12. Numerical investigation of influence on heat transfer characteristics to pneumatically conveyed dense phase flow by selecting models and boundary conditions

    Science.gov (United States)

    Zheng, Y.; Liu, Q.; Li, Y.

    2012-03-01

    Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with

  13. Size effects on structural and dielectric properties of PZT thin films at compositions around the morpho tropic phase boundary

    International Nuclear Information System (INIS)

    Lima, Elton Carvalho; Araujo, Eudes Borges; Souza Filho, Antonio Gomes de; Bdikin, Igor

    2011-01-01

    Full text: The demand for portability in consumer electronics has motivated the understanding of size effects on ferroelectric thin films. The actual comprehension of these effects in ferroelectrics is unsatisfactory, since the polarization interacts more strongly than other order parameters such as strain and charge. As a result, extrinsic effects are produced if these variables are uncontrolled and problems such as ferroelectric paraelectric phase transition at nanometers scale remains an unsolved issue. In the present work, the effects of thickness and compositional fractions on the structural and dielectric properties of PbZr 1-x Ti x O 3 (PZT) thin films were studied at a composition around the morphotropic phase boundary (x = 0.50). For this purpose, thin films with different thicknesses and different PbO excess were deposited on Si(100) and Pt=T iO 2 =SiO 2 =Si substrates by a chemical method and crystallized in electric furnace at 700 deg C for 1 hour. The effects of substrate, pyrolysis temperature and excess lead addition in the films are reported. For films with 10 mol% PbO in excess, the pyrolysis in the regime of 300 deg C for 30 minutes was observed to yield PZT pyrochlore free thin films deposited on Pt=T iO 2 =SiO 2 =Si substrate. Out this condition, the transformation from amorphous to the pyrochlore metastable phase is kinetically more favorable that a transformation to the perovskite phase, which is thermodynamically stable. Rietveld refinements based on X-ray diffraction results showed that films present a purely tetragonal phase and that this phase does not change when the film thickness decreases. The dielectric permittivity measurements showed a monoclinic → tetragonal phase transition at 198K. Results showed that the dielectric permittivity (ε) increases continuously from 257 to 463, while the thickness of the PZT films increases from 200 to 710 nm. These results suggests that interface pinning centers can be the responsible mechanism by

  14. Phase of N=2 theories in 1+1 dimensions with boundary

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, M. [CERN, Geneva (Switzerland). Theory Division, Dept. of Physics; Hori, K.; Page, D. [Toronto Univ., ON (Canada). Dept. of Physics

    2008-03-15

    We study B-type D-branes in linear sigma models with Abelian gauge groups. The most important finding is the grade restriction rule. It classifies representations of the gauge group on the Chan-Paton factor, which can be used to define a family of D-branes over a region of the Kahler moduli space that connects special points of different character. As an application, we find a precise, transparent relation between D-branes in various geometric phases as well as free orbifold and Landau-Ginzburg points. The result reproduces and unifies many of the earlier mathematical results on equivalences of D-brane categories, including the McKay correspondence and Orlov's construction. (orig.)

  15. Status of the theory of QCD plasma

    International Nuclear Information System (INIS)

    Kapusta, J.I.

    1984-01-01

    There is mounting evidence, based on many theoretical approaches, that color is deconfined and chiral symmetry is restored at temperatures greater than about 200 MeV. Reasonable estimates of the energy density to be expected in high energy heavy ion collisions suggest that QCD plasma may be formed in the laboratory. Proposed experimental signals may allow us to infer such quantities as the temperature, the quark dispersion relation, the space-time evolution and, perhaps, even the order of the phase transition. 52 references

  16. Bottomonium above Deconfinement in Lattice Nonrelativistic QCD

    International Nuclear Information System (INIS)

    Aarts, G.; Kim, S.; Lombardo, M. P.; Oktay, M. B.; Ryan, S. M.; Sinclair, D. K.; Skullerud, J.-I.

    2011-01-01

    We study the temperature dependence of bottomonium for temperatures in the range 0.4T c c , using nonrelativistic dynamics for the bottom quark and full relativistic lattice QCD simulations for N f =2 light flavors on a highly anisotropic lattice. We find that the Υ is insensitive to the temperature in this range, while the χ b propagators show a crossover from the exponential decay characterizing the hadronic phase to a power-law behavior consistent with nearly free dynamics at T≅2T c .

  17. International Meeting: Excited QCD 2014

    CERN Document Server

    Giacosa, Francesco; Malek, Magdalena; Marinkovic, Marina; Parganlija, Denis

    2014-01-01

    Excited QCD 2014 will take place on the beautiful Bjelasnica mountain located in the vicinity of the Bosnian capital Sarajevo. Bjelasnica was a venue of the XIV Winter Olympic Games and it is situated only 30 kilometers from Sarajevo International Airport. The workshop program will start on February 2 and finish on February 8, 2014, with scientific lectures taking place from February 3 to 7. Workshop participants will be accomodated in Hotel Marsal, only couple of minutes by foot from the Olympic ski slopes. ABOUT THE WORKSHOP This edition is the sixth in a series of workshops that were previously organised in Poland, Slovakia, France and Portugal. Following the succesful meeting in 2013, the Workshop is returning to Sarajevo Olympic mountains in 2014, exactly thirty years after the Games. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-...

  18. Threshold resummation and higher order effects in QCD

    International Nuclear Information System (INIS)

    Ringer, Felix Maximilian

    2015-01-01

    Quantum chromodynamics (QCD) is a quantum field theory that describes the strong interactions between quarks and gluons, the building blocks of all hadrons. Thanks to the experimental progress over the past decades, there has been an ever-growing need for QCD precision calculations for scattering processes involving hadrons. For processes at large momentum transfer, perturbative QCD offers a systematic approach for obtaining precise predictions. This approach relies on two key concepts: the asymptotic freedom of QCD and factorization. In a perturbative calculation at higher orders, the infrared cancellation between virtual and real emission diagrams generally leaves behind logarithmic contributions. In many observables relevant for hadronic scattering these logarithms are associated with a kinematic threshold and are hence known as ''threshold logarithms''. They become large when the available phase space for real gluon emission shrinks. In order to obtain a reliable prediction from QCD, the threshold logarithms need to be taken into account to all orders in the strong coupling constant, a procedure known as ''threshold resummation''. The main focus of my PhD thesis is on studies of QCD threshold resummation effects beyond the next-to-leading logarithmic order. Here we primarily consider the production of hadron pairs in hadronic collisions as an example. In addition, we also consider hadronic jet production, which is particularly interesting for the phenomenology at the LHC. For both processes, we fully take into account the non-trivial QCD color structure of the underlying partonic hard- scattering cross sections. We find that threshold resummation leads to sizable numerical effects in the kinematic regimes relevant for comparisons to experimental data.

  19. Shock-Driven Hydrodynamic Instability Growth Near Phase Boundaries and Material Property Transitions: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, Pedro [Arizona State Univ., Tempe, AZ (United States); Fortin, Elizabeth [Arizona State Univ., Tempe, AZ (United States); Opie, Saul [Arizona State Univ., Tempe, AZ (United States); Gautam, Sudrishti [Arizona State Univ., Tempe, AZ (United States); Gopalakrishnan, Ashish [Arizona State Univ., Tempe, AZ (United States); Lynch, Jenna [Arizona State Univ., Tempe, AZ (United States); Chen, Yan [Arizona State Univ., Tempe, AZ (United States); Loomis, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-01

    Activities for this grant included: 1) Development of dynamic impact experiments to probe strength and phase transition influence on dynamic deformation, 2) development of modern strength and phase aware simulation capabilities, 3) and post-processing of experimental data with simulation and closed form analytical techniques. Two different dynamic experiments were developed to probe material strengths in solid metals (largely copper and iron in this effort). In the first experiment a flyer plate impacts a flat target with an opposite rippled surface that is partially supported by a weaker window material. Post mortem analysis of the target sample showed a strong and repeatable residual plastic deformation dependence on grain orientation. Yield strengths for strain rates near 105 s-1 and plastic strains near ~50% were estimated to be around 180 to 240 MPa, varying in this range with grain orientation. Unfortunately dynamic real-time measurements were difficult with this setup due to diagnostic laser scattering; hence, an additional experimental setup was developed to complement these results. In the second set of experiments a rippled surface was ablated by a controlled laser pulsed, which launched a rippled shock front to an opposite initially flat diagnostic surface that was monitored in real-time with spatially resolved velocimetry techniques, e.g., line VISAR in addition to Transient Imaging Displacement Interferometry (TIDI) displacement measurements. This setup limited the displacements at the diagnostic surface to a reasonable level for TIDI measurements (~ less than one micrometer). These experiments coupled with analytical and numerical solutions provided evidence that viscous and elastic deviatoric strength affect shock front perturbation evolution in clearly different ways. Particularly, normalized shock front perturbation amplitudes evolve with viscosity (η) and perturbation wavelength (λ) as η/λ, such that increasing viscosity

  20. Computations of finite temperature QCD with the pseudofermion method

    International Nuclear Information System (INIS)

    Fucito, F.; Solomon, S.

    1985-01-01

    The authors discuss the phase diagram of finite temperature QCD as it is obtained including the effects of dynamical quarks by the pseudofermion method. They compare their results with the results obtained by other groups and comment on the actual state of the art for these kind of computations

  1. Inverse boundary design of a radiative smelting furnace with ablative phase change phenomena

    International Nuclear Information System (INIS)

    Farzan, H.; Hosseini Sarvari, S.M.; Mansouri, S.H.

    2016-01-01

    Highlights: • The ablation phenomenon in a reverberatory smelting furnace is simulated numerically. • The results are verified by comparing with exact analytic solution. • Inverse design problem is solved to construct the desired melting rate. • The conjugate gradient method is used to solve the inverse phase change problem. - Abstract: An inverse analysis is employed to control the time rate of heaters in a 2-D smelting furnace to provide the specified radiative heat flux across the design surface to establish a desired melting rate. The design surface in the smelting furnace is the melting surface of the metal concentrate bank, and the melting process is considered to occur as an ablation phenomenon. The net radiation method is used to determine the radiation exchange between the elements of the furnace surfaces and the melting surface. The conjugate gradient method is employed to minimize the objective function, which is the sum of square residuals between the estimated and the desired heat fluxes over the design surface. It is shown that the proposed inverse technique is reliable and accurate for predicting the heater power distribution.

  2. Spin-1/2 Triangular-Lattice Heisenberg Antiferromagnet with √{3} × √{3} -Type Distortion — Behavior around the Boundaries of the Intermediate Phase

    Science.gov (United States)

    Shimada, Alisa; Nakano, Hiroki; Sakai, Tôru; Yoshimura, Kazuyoshi

    2018-03-01

    The S = 1/2 triangular-lattice Heisenberg antiferromagnet with distortion is investigated by the numerical-diagonalization method. The examined distortion type is √{3} × √{3} . We study the case when the distortion connects the undistorted triangular lattice and the dice lattice. For the intermediate phase reported previously in this system, we obtain results of the boundaries of the intermediate phase for a larger system than those in the previous report and examine the system size dependence of the boundaries in detail. We also report the specific heat of this system, which shows a marked peak structure related to the appearance of the intermediate state.

  3. Aspects of confinement in QCD from lattice simulations

    Energy Technology Data Exchange (ETDEWEB)

    Spielmann, Daniel

    2011-01-12

    We study confinement in quantum chromodynamics via numerical simulations in the framework of lattice gauge theory. In Landau gauge, the mechanism of confinement is related to the infrared behavior of the ghost and gluon propagators via the Gribov-Zwanziger and Kugo- Ojima scenarios. These scenarios entail a scaling behavior. Functional methods in the continuum allow both for this behavior and for decoupling solutions, while lattice simulations in three and four dimensions yield only the latter. A possible explanation for this mismatch is based on limitations of standard lattice gauge fixing methods. Hence, we investigate a number of alternative gauge fixing algorithms in pure SU(2) gauge theory in two, three and four dimensions. We find that stochastic quantization yields an infrared behavior of the propagators in agreement with the results of standard procedures, even though the Faddeev-Popov operator spectrum indicates some different properties. In the strong-coupling limit, our results challenge the standard picture. In particular, we find in a non-perturbative completion of Landau gauge an enormous effect of the Gribov ambiguity. It entails that no subset of infrared solutions can be excluded yet. Moreover, we study the gluon propagator with free boundary conditions. On large lattices, the results mostly show the standard behavior. We also examine non-periodic gauge transformations. Furthermore, we analyze two topics related to the phase diagram of QCD. First, we explore the sign problem for fermions on the lattice by simulating the three-dimensional Thirring model with a complex Langevin equation. The algorithm succeeds in yielding a 'Silver Blaze' behavior of observables, but it does not reliably describe the onset to a phase with non-zero density. Second, we determine properties of the deconfinement phase transition of pure SU(2) gauge theory in 2+1 dimensions, like the critical temperature, by means of the gluon propagator in Landau gauge. (orig.)

  4. Aspects of confinement in QCD from lattice simulations

    International Nuclear Information System (INIS)

    Spielmann, Daniel

    2011-01-01

    We study confinement in quantum chromodynamics via numerical simulations in the framework of lattice gauge theory. In Landau gauge, the mechanism of confinement is related to the infrared behavior of the ghost and gluon propagators via the Gribov-Zwanziger and Kugo- Ojima scenarios. These scenarios entail a scaling behavior. Functional methods in the continuum allow both for this behavior and for decoupling solutions, while lattice simulations in three and four dimensions yield only the latter. A possible explanation for this mismatch is based on limitations of standard lattice gauge fixing methods. Hence, we investigate a number of alternative gauge fixing algorithms in pure SU(2) gauge theory in two, three and four dimensions. We find that stochastic quantization yields an infrared behavior of the propagators in agreement with the results of standard procedures, even though the Faddeev-Popov operator spectrum indicates some different properties. In the strong-coupling limit, our results challenge the standard picture. In particular, we find in a non-perturbative completion of Landau gauge an enormous effect of the Gribov ambiguity. It entails that no subset of infrared solutions can be excluded yet. Moreover, we study the gluon propagator with free boundary conditions. On large lattices, the results mostly show the standard behavior. We also examine non-periodic gauge transformations. Furthermore, we analyze two topics related to the phase diagram of QCD. First, we explore the sign problem for fermions on the lattice by simulating the three-dimensional Thirring model with a complex Langevin equation. The algorithm succeeds in yielding a 'Silver Blaze' behavior of observables, but it does not reliably describe the onset to a phase with non-zero density. Second, we determine properties of the deconfinement phase transition of pure SU(2) gauge theory in 2+1 dimensions, like the critical temperature, by means of the gluon propagator in Landau gauge. (orig.)

  5. Electric field-induced phase transitions in Li-modified Na{sub 0.5}K{sub 0.5}NbO{sub 3} at the polymorphic phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Iamsasri, Thanakorn; Jones, Jacob L., E-mail: jacobjones@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Tutuncu, Goknur [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Uthaisar, Chunmanus; Pojprapai, Soodkhet [School of Ceramic Engineering, Institute of Engineering, Suranaree University of Technology, Nakorn Ratchasima 30000 (Thailand); Wongsaenmai, Supattra [Program in Materials Science, Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand)

    2015-01-14

    The electric field-induced phase transitions in Li-modified Na{sub 0.5}K{sub 0.5}NbO{sub 3} at the polymorphic phase boundary (PPB) were observed using in situ X-ray diffraction. The ratio of monoclinic to tetragonal phase fraction was used as an indicator of the extent and reversibility of the phase transitions. The reversibility of the phase transition was greater in compositions further from the PPB. These results demonstrate that the field-induced phase transition is one of the origins of high piezoelectric properties in lead-free ferroelectric materials.

  6. Non-perturbative supersymmetry anomaly in supersymmetric QCD

    International Nuclear Information System (INIS)

    Shamir, Y.

    1991-03-01

    The zero modes of the Dirac operator in an instanton and other topologically non-trivial backgrounds are unstable in a large class of massless or partially massless supersymmetric gauge theories. We show that under a generic perturbation of the scalar fields all zero modes become resonances, and discuss the ensuing breakdown of conventional perturbation theory. As a result, despite of the presence of massless fermions, the field theoretic tunneling amplitude is not suppressed. In massless supersymmetric QCD with N c ≤ N f the effective potential is found to be negative and monotonically increasing in the weak coupling regime for scalar VEVs which lie on the perturbatively flat directions. Consequently, massless supersymmetric QCD with N c ≤ N f exhibits a non-perturbative supersymmetry anomaly and exists in a strongly interacting phase which closely resembles ordinary QCD. The same conclusions apply if small masses are added to the lagrangian and the massless limit is smooth. (author). 21 refs, 5 figs

  7. Form factors and QCD in spacelike and timelike region

    International Nuclear Information System (INIS)

    A.P. Bakulev; A.V. Radyushkin; N.G. Stefanis

    2000-01-01

    The authors analyze the basic hard exclusive processes: πγ * γ-transition, pion and nucleon electromagnetic form factors, and discuss the analytic continuation of QCD formulas from the spacelike q 2 2 > 0 of the relevant momentum transfers. They describe the construction of the timelike version of the coupling constant α s . They show that due to the analytic continuation of the collinear logarithms each eigenfunction of the evolution equation acquires a phase factor and investigate the resulting interference effects which are shown to be very small. They found no sources for the K-factor-type enhancements in the perturbative QCD contribution to the hadronic form factors. To study the soft part of the pion electromagnetic form factor, they use a QCD sum rule inspired model and show that there are non-canceling Sudakov double logarithms which result in a K-factor-type enhancement in the timelike region

  8. Form factors and QCD in spacelike and timelike regions

    International Nuclear Information System (INIS)

    Bakulev, A. P.; Radyushkin, A. V.; Stefanis, N. G.

    2000-01-01

    We analyze the basic hard exclusive processes, the πγ * γ-transition and the pion and nucleon electromagnetic form factors, and discuss the analytic continuation of QCD formulas from the spacelike q 2 2 >0 of the relevant momentum transfers. We describe the construction of the timelike version of the coupling constant α s . We show that due to the analytic continuation of the collinear logarithms, each eigenfunction of the evolution equation acquires a phase factor and investigate the resulting interference effects which are shown to be very small. We find no sources for the K-factor-type enhancements in the perturbative QCD contribution to the hadronic form factors. To study the soft part of the pion electromagnetic form factor, we use a QCD sum rule inspired model and show that there are noncanceling Sudakov double logarithms which result in a K-factor-type enhancement in the timelike region

  9. Liquid-liquid electro-organo-synthetic processes in a carbon nanofibre membrane microreactor: Triple phase boundary effects in the absence of intentionally added electrolyte

    International Nuclear Information System (INIS)

    Watkins, John D.; Ahn, Sunyhik D.; Taylor, James E.; Bull, Steven D.; Bulman-Page, Philip C.; Marken, Frank

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → Amphiphilic carbon nanofiber membrane employed in electro-synthesis. → Triple phase boundary process within a carbon membrane. → Electrochemical deuteration in a liquid|liquid micro-reactor system. → Triple phase boundary reaction zone effects in electro-synthesis. - Abstract: An amphiphilic carbon nanofibre membrane electrode (ca. 50 nm fibre diameter, 50-100 μm membrane thickness) is employed as an active working electrode and separator between an aqueous electrolyte phase (with reference and counter electrode) and an immiscible organic acetonitrile phase (containing only the redox active material). Potential control is achieved with a reference and counter electrode located in the aqueous electrolyte phase, but the electrolysis is conducted in the organic acetonitrile phase in the absence of intentionally added supporting electrolyte. For the one-electron oxidation of n-butylferrocene coupled to perchlorate anion transfer from aqueous to organic phase effective electrolysis is demonstrated with an apparent mass transfer coefficient of m = 4 x 10 -5 m s -1 and electrolysis of typically 1 mg n-butylferrocene in a 100 μL volume. For the two-electron reduction of tetraethyl-ethylenetetracarboxylate the apparent mass transfer coefficient m = 4 x 10 -6 m s -1 is lower due to a less extended triple phase boundary reaction zone in the carbon nanofibre membrane. Nevertheless, effective electrolysis of up to 6 mg tetraethyl-ethylenetetracarboxylate in a 100 μL volume is demonstrated. Deuterated products are formed in the presence of D 2 O electrolyte media. The triple phase boundary dominated mechanism and future microreactor design improvements are discussed.

  10. QCD teraflops computer

    International Nuclear Information System (INIS)

    Negele, J.W.

    1993-01-01

    Architectural enhancements are described to increase the performance of the arithmetic accelerator and memory of the nodes in the CM-5 for QCD and a broad range of general problems while maintaining compatibility with existing software, compilers, communications network and I/O subsystems. A factor of 10 increase in performance is obtained by increasing the number of floating point processors by a factor of 4, extending the vector instruction set for dual execution of single-precision arithmetic, and increasing the clock rate from 32 to 40 MHz. The required memory bandwidth is obtained by using synchronous DRAMs and 4 floating point processors are packaged into a multichip module which occupies the same area as a present processor package. The proposed 2048 node machine will provide 2.6 Teraflops peak, 0.5 - 1.5 Teraflops sustained on lattices of 32 2 x 64 - 128 3 x 256, will have 256 Gigabytes of memory, 1 Terabyte of disk, an estimated cost of approximately $40 million, and can be built in 2.5 years. (orig.)

  11. Induced QCD I: theory

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Bastian B. [Institute for Theoretical Physics, Goethe-University of Frankfurt,60438 Frankfurt (Germany); Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany); Lohmayer, Robert; Wettig, Tilo [Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany)

    2016-11-14

    We explore an alternative discretization of continuum SU(N{sub c}) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N{sub b} auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N{sub b} can be as small as N{sub c}. In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U(N{sub c}) to SU(N{sub c}), (ii) derive refined bounds on N{sub b} for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the gauge fields to arrive at a dual formulation of lattice QCD.

  12. QCD at finite isospin chemical potential

    Science.gov (United States)

    Brandt, Bastian B.; Endrődi, Gergely; Schmalzbauer, Sebastian

    2018-03-01

    We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.

  13. Accessible triple-phase boundary length: A performance metric to account for transport pathways in heterogeneous electrochemical materials

    Science.gov (United States)

    Nakajo, A.; Cocco, A. P.; DeGostin, M. B.; Peracchio, A. A.; Cassenti, B. N.; Cantoni, M.; Van herle, J.; Chiu, W. K. S.

    2016-09-01

    The performance of materials for electrochemical energy conversion and storage depends upon the number of electrocatalytic sites available for reaction and their accessibility by the transport of reactants and products. For solid oxide fuel/electrolysis cell materials, standard 3-D measurements such as connected triple-phase boundary (TPB) length and effective transport properties partially inform on how local geometry and network topology causes variability in TPB accessibility. A new measurement, the accessible TPB, is proposed to quantify these effects in detail and characterize material performance. The approach probes the reticulated pathways to each TPB using an analytical electrochemical fin model applied to a 3-D discrete representation of the heterogeneous structure provided by skeleton-based partitioning. The method is tested on artificial and real structures imaged by 3-D x-ray and electron microscopy. The accessible TPB is not uniform and the pattern varies depending upon the structure. Connected TPBs can be even passivated. The sensitivity to manipulations of the local 3-D geometry and topology that standard measurements cannot capture is demonstrated. The clear presence of preferential pathways showcases a non-uniform utilization of the 3-D structure that potentially affects the performance and the resilience to alterations due to degradation phenomena. The concepts presented also apply to electrochemical energy storage and conversion devices such as other types of fuel cells, electrolyzers, batteries and capacitors.

  14. Electric-field-dependent phase volume fractions and enhanced piezoelectricity near the polymorphic phase boundary of (K0.5Na0.5)1-xLixNbO3 textured ceramics

    Science.gov (United States)

    Ge, Wenwei; Li, Jiefang; Viehland, D.; Chang, Yunfei; Messing, Gary L.

    2011-06-01

    The structure, ferroelectric and piezoelectric properties of textured (K0.5Na0.5)0.98Li0.02NbO3 ceramics were investigated as a function of temperature and dc bias E. X-ray diffraction revealed an orthorhombic (O) → tetragonal (T) polymorphic phase boundary (PPB). Phase coexistence was found near the PPB over a 30 °C temperature range, where the relative phase volume fractions changed with temperature. Furthermore, increasing E applied along the texture direction resulted in a notable increase in the volume fraction of the T phase at the expense of the O phase, effectively shifting the O → T boundary to lower temperature. An enhancement in the piezoelectric properties was found to accompany this increase in the T volume fraction.

  15. Dual QCD thermodynamics and quark–gluon plasma

    International Nuclear Information System (INIS)

    Chandola, H.C.; Punetha, Garima; Dehnen, H.

    2016-01-01

    Using grand canonical ensemble formulation of a multi-particle statistical system, the thermodynamical description of dual QCD based on magnetic symmetry has been presented and analyzed for the quark–gluon plasma phase of hadronic matter. The dual QCD based bag construction has been shown to lead to the radial pressure on bag surface in terms of the vector glueball masses of magnetically condensed QCD vacuum. Constructing the grand canonical partition function, the energy density and plasma pressure have been derived and used to compute the critical temperatures for QGP–hadron phase transition along with its dynamics. A comparison of the values of critical temperatures for QGP–hadron phase transition with those obtained for the deconfinement-phase transition, has been shown to lead to either the relaxation of the system via a mixed phase of QGP and hot hadron gas or go through a crossover. The associated profiles of the normalized energy density and specific heat have been shown to lead to a large latent heat generation and indicate the onset of a first-order QGP phase transition which turns into a rapid crossover for the case of temperature dependent bag parameter. The squared speed of sound has been shown to act as a physical measure of large thermodynamical fluctuations near transition point. The possible implications of trace anomaly and conformal measure on QGP formation have also been discussed.

  16. Weak-interacting holographic QCD

    International Nuclear Information System (INIS)

    Gazit, D.; Yee, H.-U.

    2008-06-01

    We propose a simple prescription for including low-energy weak-interactions into the frame- work of holographic QCD, based on the standard AdS/CFT dictionary of double-trace deformations. As our proposal enables us to calculate various electro-weak observables involving strongly coupled QCD, it opens a new perspective on phenomenological applications of holographic QCD. We illustrate efficiency and usefulness of our method by performing a few exemplar calculations; neutron beta decay, charged pion weak decay, and meson-nucleon parity non-conserving (PNC) couplings. The idea is general enough to be implemented in both Sakai-Sugimoto as well as Hard/Soft Wall models. (author)

  17. Analytic continuation in perturbative QCD

    International Nuclear Information System (INIS)

    Caprini, Irinel

    2002-01-01

    We discuss some attempts to improve standard perturbative expansion in QCD by using the analytic continuation in the momentum and the Borel complex planes. We first analyse the momentum-plane analyticity properties of the Borel-summed Green functions in perturbative QCD and the connection between the Landau singularities and the infrared renormalons. By using the analytic continuation in the Borel complex plane, we propose a new perturbative series replacing the standard expansion in powers of the normalized coupling constant a. The new expansion functions have branch point and essential singularities at the origin of the complex a-plane and divergent Taylor expansions in powers of a. On the other hand the modified expansion of the QCD correlators is convergent under rather conservative conditions. (author)

  18. Quantum chromodynamics (QCD) and collider physics

    International Nuclear Information System (INIS)

    Ellis, R.K.; Stirling, W.J.

    1990-01-01

    This report discusses: fundamentals of perturbative QCD; QCD in e + e - → hadrons; deep inelastic scattering and parton distributions; the QCD parton model in hadron-hadron collisions; large p T jet production in hadron-hadron collisions; the production of vector bosons in hadronic collisions; and the production of heavy quarks

  19. Theoretical summary talk of QCD 2002

    International Nuclear Information System (INIS)

    Basu, Rahul

    2003-01-01

    This is a summary of the talks on QCD, not including QCD at finite temperature or density (which are discussed elsewhere) presented at the QCD 2002 meeting held at IIT, Kanpur. I have attempted to give only an overview of the talks since the details may be found in the individual contributions. (author)

  20. Exotic meson decay widths using lattice QCD

    International Nuclear Information System (INIS)

    Cook, M. S.; Fiebig, H. R.

    2006-01-01

    A decay width calculation for a hybrid exotic meson h, with J PC =1 -+ , is presented for the channel h→πa 1 . This quenched lattice QCD simulation employs Luescher's finite box method. Operators coupling to the h and πa 1 states are used at various levels of smearing and fuzzing, and at four quark masses. Eigenvalues of the corresponding correlation matrices yield energy spectra that determine scattering phase shifts for a discrete set of relative πa 1 momenta. Although the phase shift data is sparse, fits to a Breit-Wigner model are attempted, resulting in a decay width of about 60 MeV when averaged over two lattice sizes having a lattice spacing of 0.07 fm

  1. Recent QCD results from CDF

    International Nuclear Information System (INIS)

    Yun, J.C.

    1990-01-01

    In this paper we report recent QCD analysis with the new data taken from CDF detector. CDF recorded an integrated luminosity of 4.4 nb -1 during the 1988--1989 run at center of mass system (CMS) energy of 1.8 TeV. The major topics of this report are inclusive jet, dijet, trijet and direct photon analysis. These measurements are compared of QCD predictions. For the inclusive jet an dijet analysis, tests of quark compositeness are emphasized. 11 refs., 6 figs

  2. Simulating QCD at finite density

    CERN Document Server

    de Forcrand, Philippe

    2009-01-01

    In this review, I recall the nature and the inevitability of the "sign problem" which plagues attempts to simulate lattice QCD at finite baryon density. I present the main approaches used to circumvent the sign problem at small chemical potential. I sketch how one can predict analytically the severity of the sign problem, as well as the numerically accessible range of baryon densities. I review progress towards the determination of the pseudo-critical temperature T_c(mu), and towards the identification of a possible QCD critical point. Some promising advances with non-standard approaches are reviewed.

  3. The first lap in QCD

    International Nuclear Information System (INIS)

    Close, F.E.

    1980-07-01

    The idea that quantum chromodynamics is Nature's choice for the theory of quark interactions and that desirable phenomena, such as quark confinement, are consequences of it are considered. The lecture is presented under the headings: (1) Why do we believe that quarks have colour. (2) A rapid summary of the parton model in deep inelastic scattering. (3) Non Abelian theories: the vertices. (4) Hyperfine splitting of hadrons: more evidence for colour. (5) Renormalisation. (6) Alpha(Q 2 ). (7) The renormalisation group equations. (8) QCD, the renormalisation group equation and deep inelastic data. (9) Higher order corrections in QCD. (U.K.)

  4. Neutron star structure from QCD

    CERN Document Server

    Fraga, Eduardo S; Vuorinen, Aleksi

    2016-01-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  5. Quark mass effects in QCD

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1982-01-01

    In this paper recent studies of invariant QCD coupling anti asub(s)(Qsup(2)) in the 2-loop approximation with account of fermionic mass effects are summarized. The main results are: An explicit expression for anti asub(s)(Qsup(2)) in the 2-loop approximation with accurate account of heavy quark masses. A quantitative analysis on the basis of the above-mentioned expression for anti asub(s)(Qsup(2)) of the energy dependence of the scale QCD parameter ν and the conclusion about its inadequacy in the modern energy range

  6. Lattice QCD: Status and Prospect

    International Nuclear Information System (INIS)

    Ukawa, Akira

    2006-01-01

    A brief review is given of the current status and near-future prospect of lattice QCD studies of the Standard Model. After summarizing a bit of history, we describe current attempts toward inclusion of dynamical up, down and strange quarks. Recent results on the light hadron mass spectrum as well as those on the heavy quark quantities are described. Recent work on lattice pentaquark search is summarized. We touch upon the PACS-CS Project for building our next machine for lattice QCD, and conclude with a summary of computer situation and the physics possibilities over the next several years

  7. Hadron scattering, resonances, and QCD

    Science.gov (United States)

    Briceño, R. A.

    2016-11-01

    The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.

  8. Archeology and evolution of QCD

    CERN Document Server

    De Rújula, A.

    2017-01-01

    These are excerpts from the closing talk at the "XIIth Conference on Quark Confinement and the Hadron Spectrum", which took place last Summer in Thessaloniki --an excellent place to enjoy an interest in archeology. A more complete personal view of the early days of QCD and the rest of the Standard Model is given in [1]. Here I discuss a few of the points which --to my judgement-- illustrate well the QCD evolution (in time), both from a scientific and a sociological point of view.

  9. The dual description of long-distance QCD (Dual QCD)

    International Nuclear Information System (INIS)

    Baker, M.

    1990-01-01

    We construct and solve a local field theory which describes in terms of dual variables a system having an A μ propagator behaving like M 2 /q 4 in the infrared and discuss how this theory can be used as a starting point for describing long-distance QCD. 3 refs

  10. Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD

    DEFF Research Database (Denmark)

    Ryttov, Thomas A.

    2016-01-01

    order by order in $\\Delta_f$. We then compute $\\gamma_*$ through $O(\\Delta_f^2)$ for supersymmetric QCD in the $\\overline{\\text{DR}}$ scheme and find that it matches the exact known result. We find that $\\gamma_*$ is astonishingly well described in perturbation theory already at the few loops level...

  11. Valence QCD: Connecting QCD to the quark model

    International Nuclear Information System (INIS)

    Liu, K.F.; Dong, S.J.; Draper, T.; Sloan, J.; Leinweber, D.; Woloshyn, R.M.

    1999-01-01

    A valence QCD theory is developed to study the valence quark properties of hadrons. To keep only the valence degrees of freedom, the pair creation through the Z graphs is deleted in the connected insertions, whereas the sea quarks are eliminated in the disconnected insertions. This is achieved with a new 'valence QCD' Lagrangian where the action in the time direction is modified so that the particle and antiparticle decouple. It is shown in this valence version of QCD that the ratios of isovector to isoscalar matrix elements (e.g., F A /D A and F S /D S ratios) in the nucleon reproduce the SU(6) quark model predictions in a lattice QCD calculation. We also consider how the hadron masses are affected on the lattice and discover new insights into the origin of dynamical mass generation. It is found that, within statistical errors, the nucleon and the Δ become degenerate for the quark masses we have studied (ranging from 1 to 4 times the strange mass). The π and ρ become nearly degenerate in this range. It is shown that valence QCD has the C, P, T symmetries. The lattice version is reflection positive. It also has the vector and axial symmetries. The latter leads to a modified partially conserved axial Ward identity. As a result, the theory has a U(2N F ) symmetry in the particle-antiparticle space. Through lattice simulation, it appears that this is dynamically broken down to U q (N F )xU bar q (N F ). Furthermore, the lattice simulation reveals spin degeneracy in the hadron masses and various matrix elements. This leads to an approximate U q (2N F )xU bar q (2N F ) symmetry which is the basis for the valence quark model. In addition, we find that the masses of N, Δ,ρ,π,a 1 , and a 0 all drop precipitously compared to their counterparts in the quenched QCD calculation. This is interpreted as due to the disappearance of the 'constituent' quark mass which is dynamically generated through tadpole diagrams. The origin of the hyperfine splitting in the baryon is

  12. Leading infrared logarithms and vacuum structure of QCD3

    International Nuclear Information System (INIS)

    Guendelman, E.I.

    1990-01-01

    QCD 3 is a superrenormalizable, massless theory; therefore off-mass-shell infrared divergences appear in the loop expansion. This paper shows how certain infrared divergences can be subtracted by changing the boundary conditions in the functional integral, letting the vector potentials approach non-zero constant values at infinity. Infrared divergences, in the Green's functions, come together with powers of logarithms of the external momenta, and among the infrared divergences we deal with, there are those that give rise to the leading and first subleading logarithms. The authors show how for two-point functions it is possible to sum the leading and first subleading logarithms to all orders. This procedure defines a nonperturbative approximation for QCD 3 . The authors find that in the ultraviolet region these summations are well defined, while in the infrared region, some additional prescription is needed to make sense out of them

  13. QCD's Partner Needed for Mass Spectra and Parton Structure Functions

    International Nuclear Information System (INIS)

    Kim, Y.S.

    2009-01-01

    as in the case of the hydrogen atom, bound-state wave functions are needed to generate hadronic spectra. For this purpose, in 1971, Feynman and his students wrote down a Lorentz-invariant harmonic oscillator equation. This differential equation has one set of solutions satisfying the Lorentz-covariant boundary condition. This covariant set generates Lorentz-invariant mass spectra with their degeneracies. Furthermore, the Lorentz-covariant wave functions allow us to calculate the valence parton distribution by Lorentz-boosting the quark-model wave function from the hadronic rest frame. However, this boosted wave function does not give an accurate parton distribution. The wave function needs QCD corrections to make a contact with the real world. Likewise, QCD needs the wave function as a starting point for calculating the parton structure function. (author)

  14. Non-perturbative QCD correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Cyrol, Anton Konrad

    2017-11-27

    Functional methods provide access to the non-perturbative regime of quantum chromo- dynamics. Hence, they allow investigating confinement and chiral symmetry breaking. In this dissertation, correlation functions of Yang-Mills theory and unquenched two-flavor QCD are computed from the functional renormalization group. Employing a self-consistent vertex expansion of the effective action, Yang-Mills correlation functions are obtained in four as well as in three spacetime dimensions. To this end, confinement and Slavnov-Taylor identities are discussed. Our numerical results show very good agreement with corresponding lattice results. Next, unquenched two-flavor QCD is considered where it is shown that the unquenched two-flavor gluon propagator is insensitive to the pion mass. Furthermore, the necessity for consistent truncations is emphasized. Finally, correlation functions of finite-temperature Yang-Mills theory are computed in a truncation that includes the splitting of the gluon field into directions that are transverse and longitudinal to the heat bath. In particular, it includes the splitting of the three- and four-gluon vertices. The obtained gluon propagator allows to extract a Debye screening mass that coincides with the hard thermal loop screening mass at high temperatures, but is meaningful also at temperatures below the phase transition temperature.

  15. On-shell recurrence relations for one-loop QCD amplitudes

    International Nuclear Information System (INIS)

    Bern, Zvi; Dixon, Lance J.; Kosower, David A.

    2005-01-01

    We present examples of on-shell recurrence relations for determining rational functions appearing in one-loop QCD amplitudes. In particular, we give relations for one-loop QCD amplitudes with all legs of positive helicity, or with one leg of negative helicity and the rest of positive helicity. Our recurrence relations are similar to the tree-level ones described by Britto, Cachazo, Feng, and Witten. A number of new features arise for loop amplitudes in nonsupersymmetric theories like QCD, including boundary terms and double poles. We show how to eliminate the boundary terms, which would interfere with obtaining useful relations. Using the relations we give compact explicit expressions for the n-gluon amplitudes with one negative-helicity gluon, up through n=7

  16. Basics of QCD perturbation theory

    International Nuclear Information System (INIS)

    Soper, D.E.

    1997-01-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs

  17. Current issues in perturbative QCD

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1994-12-01

    This review talk discusses some issues of active research in perturbative QCD. The following topics are discussed: (1) current value of αs; (2) heavy quark production in hadron collisions; (3) production of Ψ and Υ in p anti p collisions; (4) prompt photon production; (5) small-x and related phenomena; and (6) particle multiplicity in heavy quark jets

  18. New results in perturbative QCD

    International Nuclear Information System (INIS)

    Ellis, R.K.

    1986-01-01

    Three topics in perturbative QCD important for Super-collider physics are reviewed. The topics are: 1. (2 → 2) jet phenomena calculated in O(αs 3 ). 2. New techniques for the calculation of tree graphs. 3. Color coherence in jet phenomena. 31 references, 6 figures

  19. Hard QCD at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S

    2008-02-15

    We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W{sup {+-}}/Z-boson, Higgs boson or top quark production. (orig.)

  20. Hard QCD at hadron colliders

    International Nuclear Information System (INIS)

    Moch, S.

    2008-02-01

    We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W ± /Z-boson, Higgs boson or top quark production. (orig.)

  1. Seven topics in perturbative QCD

    International Nuclear Information System (INIS)

    Buras, A.J.

    1980-09-01

    The following topics of perturbative QCD are discussed: (1) deep inelastic scattering; (2) higher order corrections to e + e - annihilation, to photon structure functions and to quarkonia decays; (3) higher order corrections to fragmentation functions and to various semi-inclusive processes; (4) higher twist contributions; (5) exclusive processes; (6) transverse momentum effects; (7) jet and photon physics

  2. Reggeon interactions in perturbative QCD

    International Nuclear Information System (INIS)

    Kirschner, R.

    1994-08-01

    We study the pairwise interaction of reggeized gluons and quarks in the Regge limit of perturbative QCD. The interactions are represented as integral kernels in the transverse momentum space and as operators in the impact parameter space. We observe conformal symmetry and holomorphic factorization in all cases. (orig.)

  3. LHC physics: challenges for QCD

    OpenAIRE

    Frixione, S.

    2003-01-01

    I review the status of the comparisons between a few measurements at hadronic colliders and perturbative QCD predictions, which emphasize the need for improving the current computations. Such improvements will be mandatory for a satisfactory understanding of high-energy collisions at the LHC

  4. An overview of lattice QCD

    International Nuclear Information System (INIS)

    Woloshyn, R.M.

    1988-03-01

    The basic concepts of the Lagrangian formulation of lattice field theory are discussed. The Wilson and staggered schemes for dealing with fermions on the lattice are described. Some recent results for hadron masses and vector and axial vector current matrix elements in lattice QCD are reviewed. (Author) (118 refs., 16 figs.)

  5. Basics of QCD perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Soper, D.E. [Univ. of Oregon, Eugene, OR (United States). Inst. of Theoretical Science

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  6. Two flavor QCD and Confinement

    DEFF Research Database (Denmark)

    D'Elia, M.; Di Giacomo, A.; Pica, Claudio

    2005-01-01

    We argue that the order of the chiral transition for N_f=2 is a sensitive probe of the QCD vacuum, in particular of the mechanism of color confinement. A strategy is developed to investigate the order of the transition by use of finite size scaling analysis. An in-depth numerical investigation is...

  7. Chiral symmetry in perturbative QCD

    International Nuclear Information System (INIS)

    Trueman, T.L.

    1979-04-01

    The chiral symmetry of quantum chromodynamics with massless quarks is unbroken in perturbation theory. Dimensional regularization is used. The ratio of the vector and axial vector renormalization constante is shown to be independent of the renormalization mass. The general results are explicitly verified to fourth order in g, the QCD coupling constant

  8. Beyond QCD: Why and How

    International Nuclear Information System (INIS)

    Preparata, G.

    1983-01-01

    In this paper the necessity of going beyond Quantum chromodynamics is argued, and a new theory of Isotropic Chromodynamics (ICD) is introduced. The basic theoretical notions behind QCD--quarks, colors, and gauge theory are retained, but the conclusion that QCD must be the theory of hadrions is questioned. Two points of QCD are reviewed, gluons (including glueballs), and asymptotic freedom. It is suggested that much of this theory is wishful thinking. Beyond QCD, aspects which are puzzling in hadrodynamics are well understood in two-dimensional gauge theories (confinement, freedom at short distances etc). Anisotropic chromodynamics is proposed in the attempt to conjugate the basic pillars of hadrodynamics with the peculiar characteristics of two-dimensional gauge dynamics. In order to construct a gauge dynamics for the color field which is isomorphic to a two-dimensional gauge-theory base space must be enlarged to a seven dimension space-time structure, to be called Anisotropic Space-Time (AST). The ideas and present achievements of ICD are then reviewed

  9. A classical primer for QCD

    International Nuclear Information System (INIS)

    Moriyasu, K.

    1981-01-01

    A basic primer for QCD is presented using a semiclassical approach to the colour Maxwell equations. The non-Abelian nature of colour symmetry and the violation of superposition by colour fields is compared with QED. A simple discussion of asymptotic freedom is also presented. (author)

  10. Hadronic signals of the QCD phase transition

    CERN Document Server

    Stock, Reinhard

    1998-01-01

    Using LEP1 data taken in 1994 and 1995, the DELPHI collaboration has a preliminary measurement of $Gamma_{b\\overline{b}}/\\Gamma_{had}$ which was submitted to the Jerusalem HEP'97 conference. Use of the upgraded microvertex detector, installed in spring 1994, together with an improved track search procedure has allowed the development of powerful new b-quark tags. The combination of these tags in a multivariate analysis is presented with particular emphasis on new features of the method compared to DELPHI publications on earlier data sets.

  11. QCD phase diagram : heating or compressing ?

    CERN Multimedia

    Maire, Antonin

    2011-01-01

    The sketch tries to address the question of the difference between heating and compressing the baryonic matter in relativistic heavy-ion collisions, i.e. how one can reach in the laboratory "high" temperature at "low" net baryon density (baryon chemical potential) or "low" temperature at "high" net baryon density.

  12. Experiment-based modelling of grain boundary β-phase (Mg2Al3) evolution during sensitisation of aluminium alloy AA5083.

    Science.gov (United States)

    Zhang, R; Steiner, M A; Agnew, S R; Kairy, S K; Davies, C H J; Birbilis, N

    2017-06-07

    An empirical model for the evolution of β-phase (Mg 2 Al 3 ) along grain boundaries in aluminium alloy AA5083 (Al-Mg-Mn) during isothermal exposures is proposed herein. Developing a quantitative understanding of grain boundary precipitation is important to interpreting intergranular corrosion and stress corrosion cracking in this alloy system. To date, complete ab initio models for grain boundary precipitation based upon fundamental principles of thermodynamics and kinetics are not available, despite the critical role that such precipitates play in dictating intergranular corrosion phenomena. Empirical models can therefore serve an important role in advancing the understanding of grain boundary precipitation kinetics, which is an approach applicable beyond the present context. High resolution scanning electron microscopy was to quantify the size and distribution of β-phase precipitates on Ga-embrittled intergranular fracture surfaces of AA5083. The results are compared with the degree of sensitisation (DoS) as judged by nitric acid mass loss testing (ASTM-G67-04), and discussed with models for sensitisation in 5xxx series Al-alloys. The work herein allows sensitisation to be quantified from an unambiguous microstructural perspective.

  13. Influence of incoherent twin boundaries on the electrical properties of β-Ga2O3 layers homoepitaxially grown by metal-organic vapor phase epitaxy

    Science.gov (United States)

    Fiedler, A.; Schewski, R.; Baldini, M.; Galazka, Z.; Wagner, G.; Albrecht, M.; Irmscher, K.

    2017-10-01

    We present a quantitative model that addresses the influence of incoherent twin boundaries on the electrical properties in β-Ga2O3. This model can explain the mobility collapse below a threshold electron concentration of 1 × 1018 cm-3 as well as partly the low doping efficiency in β-Ga2O3 layers grown homoepitaxially by metal-organic vapor phase epitaxy on (100) substrates of only slight off-orientation. A structural analysis by transmission electron microscopy (TEM) reveals a high density of twin lamellae in these layers. In contrast to the coherent twin boundaries parallel to the (100) plane, the lateral incoherent twin boundaries exhibit one dangling bond per unit cell that acts as an acceptor-like electron trap. Since the twin lamellae are thin, we consider the incoherent twin boundaries to be line defects with a density of 1011-1012 cm-2 as determined by TEM. We estimate the influence of the incoherent twin boundaries on the electrical transport properties by adapting Read's model of charged dislocations. Our calculations quantitatively confirm that the mobility reduction and collapse as well as partly the compensation are due to the presence of twin lamellae.

  14. Two-color lattice QCD with staggered quarks

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, David

    2015-07-20

    The study of quantum chromodynamics (QCD) at finite temperature and density provides important contributions to the understanding of strong-interaction matter as it is present e.g. in nuclear matter and in neutron stars or as produced in heavy-ion collision experiments. Lattice QCD is a non-perturbative approach, where equations of motion for quarks and gluons are discretized on a finite space-time lattice. The method successfully describes the behavior of QCD in the vacuum and at finite temperature, however it cannot be applied to finite baryon density due to the fermion sign problem. Various QCD-like theories, that offer to draw conclusions about QCD, allow simulations also at finite densities. In this work we investigate two-color QCD as a popular example of a QCD-like theory free from the sign problem with methods from lattice gauge theory. For the generation of gauge configurations with two dynamical quark flavors in the staggered formalism with the ''rooting trick'' we apply the Rational Hybrid Monte Carlo (RHMC) algorithm. We carry out essential preparatory work for future simulations at finite density. As a start, we concentrate on the calculation of the effective potential for the Polyakov loop, which is an order parameter for the confinement-deconfinement transition, in dependence of the temperature and quark mass. It serves as an important input for effective models of QCD. We obtain the effective potential via the histogram method from local distributions of the Polyakov loop. To study the influence of dynamical quarks on gluonic observables, the simulations are performed with large quark masses and are compared to calculations in the pure gauge theory. In the second part of the thesis we examine aspects of the chiral phase transition along the temperature axis. The symmetry group of chiral symmetry in two-color QCD is enlarged to SU(2N{sub f}). Discretized two-color QCD in the staggered formalism exhibits a chiral symmetry breaking

  15. High Frequency Measurements in Shock-Wave/Turbulent Boundary-Layer Interaction at Duplicated Flight Conditions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Large amplitude, unsteady heating loads and steep flow gradients produced in regions of shock-wave/turbulent boundary-layer interaction (SWTBLI) pose a serious and...

  16. High Frequency Measurements in Shock-Wave/Turbulent Boundary-Layer Interaction at Duplicated Flight Conditions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Large amplitude, unsteady heating loads and steep flow gradients produced in regions of shock-wave/turbulent boundary-layer interaction (SWTBLI) pose a serious and...

  17. Lattice simulations of QCD-like theories at finite baryon density

    International Nuclear Information System (INIS)

    Scior, Philipp Friedrich

    2016-01-01

    The exploration of the phase diagram of quantum chromodynamics (QCD) is of great importance to describe e.g. the properties of neutron stars or heavy-ion collisions. Due to the sign problem of lattice QCD at finite chemical potential we need effective theories to study QCD at finite density. Here, we use a three-dimensional Polyakov-loop theory to study the phase diagrams of QCD-like theories. In particular, we investigate the heavy quark limit of the QCD-like theories where the effective theory can be derived from the full theory by a combined strong coupling and hopping expansion. This expansion can be systematically improved order by order. Since there is no sign problem for the QCD-like theories we consider, we can compare our results to data from lattice calculations of the full theories to make qualitative and quantitative statements of the effective theory's validity. We start by deriving the effective theory up to next-to-next-to leading-order, in particular for two-color and G_2-QCD where replace the three colors in QCD with only two colors or respectively replace the gauge group SU(3) of QCD with G_2. We will then apply the effective theory at finite temperature mainly to test the theory and the implementation but also to make some predictions for the deconfinement phase transition in G_2 Yang-Mills theory. Finally, we turn our attention to the cold and dense regime of the phase diagram where we observe a sharp increase of the baryon density with the quark chemical potential μ, when μ reaches half the diquark mass. At vanishing temperature this is expected to happen in a quantum phase transition with Bose-Einstein-condensation of diquarks. In contrast to the liquid-gas transition in QCD, the phase transition to the Bose-Einstein condensate is continuous. We find evidence that the effective theories for heavy quarks are able to describe the qualitative difference between first and second order phase transitions. For even higher μ we find the rise of the

  18. Lattice simulations of QCD-like theories at finite baryon density

    Energy Technology Data Exchange (ETDEWEB)

    Scior, Philipp Friedrich

    2016-07-13

    The exploration of the phase diagram of quantum chromodynamics (QCD) is of great importance to describe e.g. the properties of neutron stars or heavy-ion collisions. Due to the sign problem of lattice QCD at finite chemical potential we need effective theories to study QCD at finite density. Here, we use a three-dimensional Polyakov-loop theory to study the phase diagrams of QCD-like theories. In particular, we investigate the heavy quark limit of the QCD-like theories where the effective theory can be derived from the full theory by a combined strong coupling and hopping expansion. This expansion can be systematically improved order by order. Since there is no sign problem for the QCD-like theories we consider, we can compare our results to data from lattice calculations of the full theories to make qualitative and quantitative statements of the effective theory's validity. We start by deriving the effective theory up to next-to-next-to leading-order, in particular for two-color and G{sub 2}-QCD where replace the three colors in QCD with only two colors or respectively replace the gauge group SU(3) of QCD with G{sub 2}. We will then apply the effective theory at finite temperature mainly to test the theory and the implementation but also to make some predictions for the deconfinement phase transition in G{sub 2} Yang-Mills theory. Finally, we turn our attention to the cold and dense regime of the phase diagram where we observe a sharp increase of the baryon density with the quark chemical potential μ, when μ reaches half the diquark mass. At vanishing temperature this is expected to happen in a quantum phase transition with Bose-Einstein-condensation of diquarks. In contrast to the liquid-gas transition in QCD, the phase transition to the Bose-Einstein condensate is continuous. We find evidence that the effective theories for heavy quarks are able to describe the qualitative difference between first and second order phase transitions. For even higher μ we

  19. Thermodynamics of QCD from Sakai-Sugimoto model

    International Nuclear Information System (INIS)

    Isono, Hiroshi; Mandal, Gautam; Morita, Takeshi

    2015-01-01

    Till date, the only consistent description of the deconfinement phase of the Sakai-Sugimoto model appears to be provided by the analysis of http://dx.doi.org/10.1007/JHEP09(2011)073. The current version of the analysis, however, has a subtlety regarding the monodromy of quarks around the Euclidean time circle. In this note, we revisit and resolve this issue by considering the effect of an imaginary baryon chemical potential on quark monodromies. With this ingredient, the proposal of http://dx.doi.org/10.1007/JHEP09(2011)073 for investigating finite temperature QCD using holography is firmly established. Additionally, our technique allows a holographic computation of the free energy as a function of the imaginary chemical potential in the deconfinement phase; we show that our result agrees with the corresponding formula obtained from perturbative QCD, namely the Roberge-Weiss potential.

  20. Stick–slip boundary friction mode as a second-order phase transition with an inhomogeneous distribution of elastic stress in the contact area

    Directory of Open Access Journals (Sweden)

    Iakov A. Lyashenko

    2017-09-01

    Full Text Available This article presents an investigation of the dynamical contact between two atomically flat surfaces separated by an ultrathin lubricant film. Using a thermodynamic approach we describe the second-order phase transition between two structural states of the lubricant which leads to the stick–slip mode of boundary friction. An analytical description and numerical simulation with radial distributions of the order parameter, stress and strain were performed to investigate the spatial inhomogeneity. It is shown that in the case when the driving device is connected to the upper part of the friction block through an elastic spring, the frequency of the melting/solidification phase transitions increases with time.

  1. Scale hierarchy in high-temperature QCD

    CERN Document Server

    Akerlund, Oscar

    2013-01-01

    Because of asymptotic freedom, QCD becomes weakly interacting at high temperature: this is the reason for the transition to a deconfined phase in Yang-Mills theory at temperature $T_c$. At high temperature $T \\gg T_c$, the smallness of the running coupling $g$ induces a hierachy betwen the "hard", "soft" and "ultrasoft" energy scales $T$, $g T$ and $g^2 T$. This hierarchy allows for a very successful effective treatment where the "hard" and the "soft" modes are successively integrated out. However, it is not clear how high a temperature is necessary to achieve such a scale hierarchy. By numerical simulations, we show that the required temperatures are extremely high. Thus, the quantitative success of the effective theory down to temperatures of a few $T_c$ appears surprising a posteriori.

  2. Concluding Talk : QCD 2005

    CERN Document Server

    Altarelli, Guido

    2006-01-01

    This is neither a summary talk (too much for too short a talk) nor a conclusion (a gigantic work is in progress and we are not at the end of a particular phase), rather an overview of the field as reflected at this Conference.

  3. Thermal Transport and Drag Force in Improved Holographic QCD

    CERN Document Server

    Gürsoy, Umut; Michalogiorgakis, Georgios; Nitti, Francesco; 10.1088

    2009-01-01

    We calculate the bulk viscosity, drag force and jet quenching parameter in Improved Holographic QCD. We find that the bulk viscosity rises near the phase transition but does not exceed the shear viscosity. The drag force shows the effects of asymptotic freedom both as a function of velocity and temperature. It indicates diffusion times of heavy quarks in rough agreement with data. The jet quenching parameter values computed via the light-like Wilson loop are in the lower range suggested by data.

  4. A remark on the large difference between the glueball mass and T sub c in quenched QCD

    CERN Document Server

    Ishii, N

    2003-01-01

    The lattice QCD studies indicate that the critical temperature T sub c approx =260-280 MeV of the deconfinement phase transition in quenched QCD is considerably smaller than the lowest-lying glueball mass m sub G approx =1500-1700 MeV, i.e., T sub c <phase is strongly suppressed by the statistical factor e sup - sup m sup sub G sup / sup T sup sub c approx =0.00207 even near T approx =T sub c. We consider its physical implication, and argue the abnormal feature of the deconfinement phase transition in quenched QCD from the statistical viewpoint. To appreciate this, we demonstrate a statistical argument of the QCD phase transition using the recent lattice QCD data. From the phenomenological relation between T sub c and the glueball mass, the deconfinement transition is found to take place in quenched QCD before a reasonable amount of glueballs is thermally excited. In this way, quenched QCD reve...

  5. Anomalous magnetoelastic behaviour near morphotropic phase boundary in ferromagnetic Tb{sub 1-x}Nd{sub x}Co{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Murtaza, Adil; Yang, Sen, E-mail: yang.sen@mail.xjtu.edu.cn; Zhou, Chao; Chang, Tieyan; Chen, Kaiyun; Tian, Fanghua; Song, Xiaoping [School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Suchomel, Matthrew R.; Ren, Y. [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2016-08-01

    In this work, we report a morphotropic phase boundary (MPB) involved ferromagnetic system Tb{sub 1-x}Nd{sub x}Co{sub 2} and reveal the corresponding structural and magnetoelastic properties of this system. With high resolution synchrotron X-ray diffractometry, the crystal structure of the TbCo{sub 2}-rich side is detected to be rhombohedral and that of NdCo{sub 2}-rich side is tetragonal below their respective Curie temperatures T{sub C}. The MPB composition Tb{sub 0.35}Nd{sub 0.65}Co{sub 2} corresponds to the coexistence of the rhombohedral phase (R-phase) and tetragonal phase (T-phase). Contrary to previously reported MPB involved ferromagnetic systems, the MPB composition of Tb{sub 0.35}Nd{sub 0.65}Co{sub 2} shows minimum magnetization which can be understood as compensation of sublattice moments between the R-phase and the T-phase. Furthermore, magnetostriction of Tb{sub 1-x}Nd{sub x}Co{sub 2} decreases with increasing Nd concentration until x = 0.8 and then increases in the negative direction with further increasing Nd concentration; the optimum point for magnetoelastic properties lies towards the rhombohedral phase. Our work not only shows an anomalous type of ferromagnetic MPB but also provides an effective way to design functional materials.

  6. Morphology of the boron-rich phase along columnar grain boundary and its effect on the compression crack of Fe-6.5Si-0.05B alloy

    International Nuclear Information System (INIS)

    Fu Huadong; Zhang Zhihao; Yang Qiang; Xie Jianxin

    2011-01-01

    Research highlights: → Three morphologies of alloy phases were observed under different conditions. → Three different morphologies were thick-strip, fish-bone like and thin-strip. → These phases were all with enrichment of boron and dilution of silicon. → Three morphologies of alloy phases had different influences on mechanical property. - Abstract: The morphology of precipitated phases along Fe-6.5Si-0.05B columnar grain boundary and its effect on the initiation and propagation of compression cracks were investigated. Under the present experimental condition, alloy phases along the grain boundary exhibited three different morphologies, i.e., thick-strip, fish-bone like and thin-strip. These phases were all with enrichment of boron and dilution of silicon. The grain boundary with dendrite growth mode was apt to generate the thick-strip and fish-bone like phases, while the boundary with cellular growth mode was easy to form the thin-strip phase. The thick-strip phase was favorable to form 'weak plane' containing numerous micropores, which ultimately led to intergranular cracks. The fish-bone like phase was one of the main crack sources under the compression processing and easily caused transgranular cracks. The thin-strip phase enhanced the bond strength of the grain boundary and detained the crack propagation.

  7. Thermodynamic investigation of the phase equilibrium boundary between TiO2 rutile and its α-PbO2-type high-pressure polymorph

    Science.gov (United States)

    Kojitani, Hiroshi; Yamazaki, Monami; Kojima, Meiko; Inaguma, Yoshiyuki; Mori, Daisuke; Akaogi, Masaki

    2018-06-01

    Heat capacity (C P) of rutile and α-PbO2 type TiO2 (TiO2-II) were measured by the differential scanning calorimetry and thermal relaxation method. Using the results, standard entropies at 1 atm and 298.15 K of rutile and TiO2-II were determined to be 50.04(4) and 46.54(2) J/mol K, respectively. Furthermore, thermal expansivity (α) determined by high-temperature X-ray diffraction measurement and mode Grüneisen parameters obtained by high-pressure Raman spectroscopy suggested the thermal Grüneisen parameter (γ th) for TiO2-II of 1.7(1). By applying the obtained low-temperature C P and γ th, the measured C P and α data of TiO2-II were extrapolated to higher temperature region using a lattice vibrational model calculation, as well as rutile. Internally consistent thermodynamic data sets of both rutile and TiO2-II assessed in this study were used to thermodynamically calculate the rutile‒TiO2-II phase equilibrium boundary. The most plausible boundary was obtained to be P (GPa) = 0.0074T (K) - 1.7. Our boundary suggests that the crystal growth of TiO2-II observed below 5.5 GPa and 900 K in previous studies advanced in its stability field. The phase boundary calculation also suggested small, exothermic phase transition enthalpy from rutile to TiO2-II at 1 atm and 298.15 K of - 0.5 to - 1.1 kJ/mol. This implies that the thermodynamic stability of rutile at 1 atm above room temperature is due to larger contribution of entropy term.

  8. QCD on the connection machine

    International Nuclear Information System (INIS)

    Gupta, R.

    1990-01-01

    In this talk I give a brief introduction to the standard model of particle interactions and illustrate why analytical methods fail to solve QCD. I then give some details of our implementation of the high performance QCD code on the CM2 and highlight the important lessons learned. The sustained speed of the code at the time of this conference is 5.2 Gigaflops (scaled to a full 64K machine). Since this is a conference dedicated to computing in the 21st century, I will tailor my expectations (somewhat idiosyncratic) of the physics objectives to reflect what we will be able to do in 10 years time, extrapolating from where we stand today. This work is being done under a joint LANL-TMC collaboration consisting of C. Baillie, R. Brickner, D. Daniel, G. Kilcup, L. Johnson, A. Patel. S. Sharpe and myself. 5 refs

  9. QCD on the light cone

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1992-09-01

    The quantization of gauge theory at fixed light-cone time τ = t - z/c provides new perspectives for solving non-perturbative problems in quantum chromodynamics. The light-cone Fock state expansion provides both a precise definition of the relativistic wavefunctions of hadrons as bound-states of quarks and gluons and a general calculus for predicting QCD processes at the amplitude level. Applications to exclusive processes and weak decay amplitudes are discussed. The problem of computing the hadronic spectrum and the corresponding light-cone wavefunctions of QCD in one space and one time dimension has been successfully reduced to the diagonalization of a discrete representation of the light-cone Hamiltonian. The problems confronting the solution of gauge theories in 3 + 1 dimensions in the light-cone quantization formalism,, including zero modes and non-perturbative renormalization, are reviewed

  10. Innovations in lattice QCD algorithms

    International Nuclear Information System (INIS)

    Orginos, Konstantinos

    2006-01-01

    Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today

  11. Baryon physics in holographic QCD

    Directory of Open Access Journals (Sweden)

    Alex Pomarol

    2009-03-01

    Full Text Available In a simple holographic model for QCD in which the Chern–Simons term is incorporated to take into account the QCD chiral anomaly, we show that baryons arise as stable solitons which are the 5D analogs of 4D skyrmions. Contrary to 4D skyrmions and previously considered holographic scenarios, these solitons have sizes larger than the inverse cut-off of the model, and therefore they are predictable within our effective field theory approach. We perform a numerical determination of several static properties of the nucleons and find a satisfactory agreement with data. We also calculate the amplitudes of “anomalous” processes induced by the Chern–Simons term in the meson sector, such as ω→πγ and ω→3π. A combined fit to baryonic and mesonic observables leads to an agreement with experiments within 16%.

  12. Higher order QCD corrections in exclusive charmless B decays

    International Nuclear Information System (INIS)

    Bell, G.

    2006-10-01

    We discuss exclusive charmless B decays within the Standard Model of particle physics. These decays play a central role in the on-going process to constrain the parameters of the CKM matrix and to clarify the nature of CP violation. In order to exploit the rich source of data that is currently being collected at the experiments, a systematic theoretical treatment of the complicated hadronic dynamics is strongly desired. QCD Factorization represents a model-independent framework to compute hadronic matrix elements from first principles. It is based on a power expansion in Λ QCD /m b and allows for the systematic implementation of perturbative corrections. In particular, we consider hadronic two-body decays as B → ππ and perform a conceptual analysis of heavy-to-light form factors which encode the strong interaction effects in semi-leptonic decays as B → πlν. Concerning the hadronic decays we compute NNLO QCD corrections which are particularly important with respect to strong interaction phases and hence direct CP asymmetries. On the technical level, we perform a 2-loop calculation which is based on an automatized reduction algorithm and apply sophisticated techniques for the calculation of loop-integrals. We indeed find that the considered quantities are well-defined as predicted by QCD Factorization, which is the result of a highly complicated subtraction procedure. We present results for the imaginary part of the topological tree amplitudes and observe that the considered corrections are substantial. The calculation of the real part of the amplitudes is far more complicated and we present a preliminary result which is based on certain simplifications. Our calculation is one part of the full NNLO analysis of nonleptonic B decays within QCD Factorization which is currently pursued by various groups. In our conceptual analysis of the QCD dynamics in heavy-to-light transitions we consider form factors between non-relativistic bound states which can be

  13. Higher order QCD corrections in exclusive charmless B decays

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.

    2006-10-15

    We discuss exclusive charmless B decays within the Standard Model of particle physics. These decays play a central role in the on-going process to constrain the parameters of the CKM matrix and to clarify the nature of CP violation. In order to exploit the rich source of data that is currently being collected at the experiments, a systematic theoretical treatment of the complicated hadronic dynamics is strongly desired. QCD Factorization represents a model-independent framework to compute hadronic matrix elements from first principles. It is based on a power expansion in {lambda}{sub QCD}/m{sub b} and allows for the systematic implementation of perturbative corrections. In particular, we consider hadronic two-body decays as B {yields} {pi}{pi} and perform a conceptual analysis of heavy-to-light form factors which encode the strong interaction effects in semi-leptonic decays as B {yields} {pi}l{nu}. Concerning the hadronic decays we compute NNLO QCD corrections which are particularly important with respect to strong interaction phases and hence direct CP asymmetries. On the technical level, we perform a 2-loop calculation which is based on an automatized reduction algorithm and apply sophisticated techniques for the calculation of loop-integrals. We indeed find that the considered quantities are well-defined as predicted by QCD Factorization, which is the result of a highly complicated subtraction procedure. We present results for the imaginary part of the topological tree amplitudes and observe that the considered corrections are substantial. The calculation of the real part of the amplitudes is far more complicated and we present a preliminary result which is based on certain simplifications. Our calculation is one part of the full NNLO analysis of nonleptonic B decays within QCD Factorization which is currently pursued by various groups. In our conceptual analysis of the QCD dynamics in heavy-to-light transitions we consider form factors between non

  14. Testing QCD with current algebra

    International Nuclear Information System (INIS)

    Leutwyler, H.

    1984-01-01

    Spontaneously broken chiral symmetry fixes the low energy structure of QCD to a large extent. I show how to determine the Green's functions to first nonleading order in a simultaneous expansion in powers of the momenta and of the u- and d-quark masses. In particular, I discuss the corrections of order M π 2 to the low energy theorems for ππ scattering. 19 refs., 1 tab. (author)

  15. Lattice gauge theory for QCD

    International Nuclear Information System (INIS)

    DeGrand, T.

    1997-01-01

    These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and α s (M z ), and B-anti B mixing. 67 refs., 36 figs

  16. Scale setting in lattice QCD

    International Nuclear Information System (INIS)

    Sommer, Rainer

    2014-02-01

    The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.

  17. The status of perturbative QCD

    International Nuclear Information System (INIS)

    Ellis, R.K.

    1988-10-01

    The advances in perturbative QCD are reviewed. The status of determinations of the coupling constant α/sub S/ and the parton distribution functions is presented. New theoretical results on the spin dependent structure functions of the proton are also reviewed. The theoretical description of the production of vector bosons, jets and heavy quarks is outlined with special emphasis on new results. Expected rates for top quark production at hadronic colliders are presented. 111 refs., 8 figs

  18. Hadronic τ decays and QCD

    International Nuclear Information System (INIS)

    Davier, M.

    1999-12-01

    Hadronic decays of the τ lepton provide a clean source to study hadron dynamics in an energy regime dominated by resonances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonperturbative contributions. Strange decays yield a determination of the strange quark mass. (author)

  19. Lattice gauge theory for QCD

    Energy Technology Data Exchange (ETDEWEB)

    DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics

    1997-06-01

    These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.

  20. Nucleon structure from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon

    2012-11-13

    In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.

  1. ADS/CFT and QCD

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.; de Teramond, Guy F.

    2007-01-01

    The AdS/CFT correspondence between string theory in AdS space and conformal .eld theories in physical spacetime leads to an analytic, semi-classical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color confinement at large distances. Although QCD is not conformally invariant, one can nevertheless use the mathematical representation of the conformal group in five-dimensional anti-de Sitter space to construct a first approximation to the theory. The AdS/CFT correspondence also provides insights into the inherently non-perturbative aspects of QCD, such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions. In particular, we show that there is an exact correspondence between the fifth-dimensional coordinate of AdS space z and a specific impact variable ζ which measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions, the fundamental entities which encode hadron properties and allow the computation of decay constants, form factors, and other exclusive scattering amplitudes. New relativistic lightfront equations in ordinary space-time are found which reproduce the results obtained using the 5-dimensional theory. The effective light-front equations possess remarkable algebraic structures and integrability properties. Since they are complete and orthonormal, the AdS/CFT model wavefunctions can also be used as a basis for the diagonalization of the full light-front QCD Hamiltonian, thus systematically improving the AdS/CFT approximation

  2. Hadronic {tau} decays and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Davier, M

    1999-12-01

    Hadronic decays of the {tau} lepton provide a clean source to study hadron dynamics in an energy regime dominated by resonances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonperturbative contributions. Strange decays yield a determination of the strange quark mass. (author)

  3. Nucleon structure from lattice QCD

    International Nuclear Information System (INIS)

    Dinter, Simon

    2012-01-01

    In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a 2 ) discretization effects.

  4. Scale setting in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Rainer [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2014-02-15

    The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.

  5. QCD contributions to vacuum polarization

    International Nuclear Information System (INIS)

    Reinders, L.J.; Rubinstein, H.R.; Yazaki, S.

    1980-01-01

    We have computed to lowest non-trivial order the perturbative and non-perturbative contributions to the vacuum polarization from all currents up to and including spin 2 ++ . These expressions are important, for example to evaluate QCD sum rules for heavy and light quark systems as shown by Shifman, Vainshtein and Zakharov. Most of the known ones are verified, one slightly changed, and many new ones are displayed. (orig.)

  6. Perturbative QCD at finite temperature

    International Nuclear Information System (INIS)

    Altherr, T.

    1989-03-01

    We discuss an application of finite temperature QCD to lepton-pair production in a quark-gluon plasma. The perturbative calculation is performed within the realtime formalism. After cancellation of infrared and mass singularities, the corrections at O (α s ) are found to be very small in the region where the mass of the Drell-Yan pair is much larger than the temperature of the plasma. Interesting effects, however, appear at the annihilation threshold of the thermalized quarks

  7. Perturbative QCD and exclusive processes

    International Nuclear Information System (INIS)

    Bennett, J.; Hawes, F.; Zhao, M.; Zyla, P.

    1991-01-01

    The authors discuss perturbation theory as applied to particle physics calculations. In particle physics one is generally interested in the scattering amplitude for a system going from some initial state to a final state. The intermediate state or states are unknown. To get the scattering amplitude it is necessary to sum the contributions from processes which pass through all possible intermediate states. Intermediate states involve the exchange of intermediate vector bosons between the particles, and with this interaction is associated a coupling constant α. Each additional boson exchange involves an additional contribution of α to the coupling. If α is less than 1, one can see that the relative contribution of higher order processes is less and less important as α falls. In QCD the gluons serve as the intermediate vector bosons exchanged by quarks and gluons, and the interaction constant is not really a constant, but depends upon the distance between the particles. At short distances the coupling is small, and one can assume perturbative expansions may converge rapidly. Exclusive scattering processes, as opposed to inclusive, are those in which all of the final state products are detected. The authors then discuss the application of perturbative QCD to the deuteron. The issues of chiral conservation and color transparancy are also discussed, in the scheme of large Q 2 interations, where perturbative QCD should be applicable

  8. Structural Stabilities of β-Ti Alloys Studied Using a New Mo Equivalent Derived from [ β/( α + β)] Phase-Boundary Slopes

    Science.gov (United States)

    Wang, Qing; Dong, Chuang; Liaw, Peter K.

    2015-08-01

    Structural stabilities of β-Ti alloys are generally investigated by an empirical Mo equivalent, which quantifies the stability contribution of each alloying element, M, in comparison to that of the major β-Ti stabilizer, Mo. In the present work, a new Mo equivalent (Moeq)Q is proposed, which uses the slopes of the boundary lines between the β and ( α + β) phase zones in binary Ti-M phase diagrams. This (Moeq)Q reflects a simple fact that the β-Ti stability is enhanced, when the β phase zone is enlarged by a β-Ti stabilizer. It is expressed as (Moeq)Q = 1.0 Mo + 0.74 V + 1.01 W + 0.23 Nb + 0.30 Ta + 1.23 Fe + 1.10 Cr + 1.09 Cu + 1.67 Ni + 1.81 Co + 1.42 Mn + 0.38 Sn + 0.34 Zr + 0.99 Si - 0.57 Al (at. pct), where the equivalent coefficient of each element is the slope ratio of the [ β/( α + β)] boundary line of the binary Ti-M phase diagram to that of the Ti-Mo. This (Moeq)Q is shown to reliably characterize the critical stability limit of multi-component β-Ti alloys with low Young's moduli, where the critical lower limit for β stabilization is (Moeq)Q = 6.25 at. pct or 11.8 wt pct Mo.

  9. Tetragonal-cubic phase boundary in nanocrystalline ZrO2-Y2O3 solid solutions synthesized by gel-combustion

    International Nuclear Information System (INIS)

    Fabregas, Ismael O.; Craievich, Aldo F.; Fantini, Marcia C.A.; Millen, Ricardo P.; Temperini, Marcia L.A.; Lamas, Diego G.

    2011-01-01

    Research highlights: → Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO 2 -Y 2 O 3 nanopowders, that exhibit the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms (t' and t'') and the cubic phase. → Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. → The crystallographic features of ZrO 2 -Y 2 O 3 nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. → Compositional t'/t'' and t''/cubic phase boundaries are located at (9 ± 1) and (10.5 ± 0.5) mol% Y 2 O 3 , respectively. → For the whole series of nanocrystalline ZrO 2 -Y 2 O 3 solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO 2 -Y 2 O 3 solid solutions, the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO 2 -Y 2 O 3 solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro

  10. Tetragonal-cubic phase boundary in nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions synthesized by gel-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fabregas, Ismael O. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Craievich, Aldo F.; Fantini, Marcia C.A. [Instituto de Fisica, Universidade de Sao Paulo, Travessa R da Rua do Matao, No. 187, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Millen, Ricardo P.; Temperini, Marcia L.A. [Instituto de Quimica, Universidade de Sao Paulo, Avenida Prof. Lineu Prestes 748, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Lamas, Diego G., E-mail: dlamas@uncoma.edu.ar [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Laboratorio de Caracterizacion de Materiales, Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen Capital, Prov. de Neuquen (Argentina)

    2011-04-21

    Research highlights: > Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders, that exhibit the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms (t' and t'') and the cubic phase. > Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. > The crystallographic features of ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. > Compositional t'/t'' and t''/cubic phase boundaries are located at (9 {+-} 1) and (10.5 {+-} 0.5) mol% Y{sub 2}O{sub 3}, respectively. > For the whole series of nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions, the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid

  11. QCD as a Theory of Hadrons

    Science.gov (United States)

    Narison, Stephan

    2007-07-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD

  12. Topology in dynamical lattice QCD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Florian

    2012-08-20

    Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.

  13. Topology in dynamical lattice QCD simulations

    International Nuclear Information System (INIS)

    Gruber, Florian

    2012-01-01

    Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.

  14. Study of the structure of the QCD vacuum by means of overlap fermions; Untersuchung der Struktur des QCD-Vakuums mit Hilfe von Overlap-Fermionen

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, Volker

    2008-12-15

    In this thesis the structure of the QCD vacuum and the nature of the chiral phase transition were studied by means of overlap fermions. The main topic of the theiss lies in the study of the infrared long-range aspects shown by the low-lying eigenmodes of the overlap operator. For the characterization of the structure and dimension of an arbitray density embedded in the four-dimensional space-time diverse analysis tools were developed. These are applied both at low temperature (T=0) in the valence-quark approximation of QCD and in the environment of the high-temperature phase transition of the full QCD for the description of the structure of the modes and the topological density, as well as for the analysis of the local self-duality of the basing gauge fields.

  15. Disconnected Diagrams in Lattice QCD

    Science.gov (United States)

    Gambhir, Arjun Singh

    In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called "disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements

  16. Disconnected Diagrams in Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gambhir, Arjun [College of William and Mary, Williamsburg, VA (United States)

    2017-08-01

    In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called \\disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements

  17. Playing with QCD I: effective field theories. Fourth lecture

    International Nuclear Information System (INIS)

    Fraga, Eduardo S.

    2009-01-01

    Lattice QCD is just starting to explore the finite density region, still far away from the high-density low-temperature sector. pQCD at finite density seems to provide sensible results, even for not so large values of μ. Mass and gap effects provide important contributions to the EoS near the critical region. The phase diagram can be very rich in the high-μ sector, with different possibilities for pairing and color superconductivity. Astrophysical measurements are becoming increasingly precise, and will start killing models soon. Some signatures (for strange, quark or hybrid neutron stars) are still very similar, though. The interior of compact stars is a very rich and intricate medium, which may contain all sorts of condensates as well as deconfined quark matter. (author)

  18. Simulations of dimensionally reduced effective theories of high temperature QCD

    CERN Document Server

    Hietanen, Ari

    Quantum chromodynamics (QCD) is the theory describing interaction between quarks and gluons. At low temperatures, quarks are confined forming hadrons, e.g. protons and neutrons. However, at extremely high temperatures the hadrons break apart and the matter transforms into plasma of individual quarks and gluons. In this theses the quark gluon plasma (QGP) phase of QCD is studied using lattice techniques in the framework of dimensionally reduced effective theories EQCD and MQCD. Two quantities are in particular interest: the pressure (or grand potential) and the quark number susceptibility. At high temperatures the pressure admits a generalised coupling constant expansion, where some coefficients are non-perturbative. We determine the first such contribution of order g^6 by performing lattice simulations in MQCD. This requires high precision lattice calculations, which we perform with different number of colors N_c to obtain N_c-dependence on the coefficient. The quark number susceptibility is studied by perf...

  19. Deconfining chiral transition in QCD on the lattice

    International Nuclear Information System (INIS)

    Kanaya, Kazuyuki

    1995-01-01

    The deconfining chiral transition in finite-temperature QCD is studied on the lattice using Wilson quarks. After discussing the nature of chiral limit with Wilson quarks, we first study the case of two degenerate quarks N F =2, and find that the transition is smooth in the chiral limit on both N t =4 and 6 lattices. For N F =3, on the other hand, clear two state signals are observed for m q t =4 lattices. For a more realistic case of N F =2+1, i.e. two degenerate u and d-quarks and a heavier s-quark, we study the cases m s ≅ 150 and 400 MeV with m u = m d ≅ 0: In contrast to a previous result with staggered quarks, clear two state signals are observed for both cases, suggesting a first order QCD phase transition in the real world. (author)

  20. QCD Jets and particle correlations in heavy-ion collisions

    CERN Document Server

    Nguyen, Matthew

    2017-01-01

    Measurements of jets and particle correlations in nucleus-nucleus collisions are intended to probe QCD interactions in the high temperature phase, where matter is understood to behave as a quark-gluon plasma. Two probes are reviewed: jets which are used to study the energy loss of hard-scattered partons in this medium and particle correlations which are used to understand collective effects of the bulk matter. Whereas collisions of lighter systems, namely proton-ion and proton-proton, initially served primarily as control experiments, certain (but not all) effects first observed in nucleus-nucleus collisions have proven to be pervasive in these systems. Comparative measurements in these three systems have broadened our understanding of many-body QCD phenomena, and raised new questions. This talk reviewed these recent developments.