WorldWideScience

Sample records for qcd parton model

  1. QCD parton model at collider energies

    International Nuclear Information System (INIS)

    Ellis, R.K.

    1984-09-01

    Using the example of vector boson production, the application of the QCD improved parton model at collider energies is reviewed. The reliability of the extrapolation to SSC energies is assessed. Predictions at √S = 0.54 TeV are compared with data. 21 references

  2. Diffraction scattering and the parton model in QCD

    International Nuclear Information System (INIS)

    White, A.

    1985-01-01

    Arguments are presented that the validity of the parton model for hadron scattering in QCD is directly related to the occurrence of the Critical Pomeron description of diffraction scattering. An attractive route suggested for Electroweak and Grand Unification is also briefly described

  3. Italian Physical Society Justifying the QCD parton model

    CERN Document Server

    Veneziano, G

    2018-01-01

    I will focus my attention on the two papers I wrote with Roberto and Daniele Amati on justifying the QCD-improved parton model, a very basic tool used every day to estimate a variety of processes involving strong (as well as possibly other) interactions. While doing so, I will also touch on other occasions I had to work —or just interact— with Roberto during more than 30 years of our respective careers.

  4. When is a heavy quark not a parton? Charged Higgs production and heavy quark mass effects in the QCD-based parton model

    International Nuclear Information System (INIS)

    Olness, F.I.; Tung, Wu-Ki

    1989-10-01

    Applications of the QCD-based parton model to new physics processes involving heavy partons are illustrated using charged Higgs production. The naive parton model predictions are found to over-estimate the actual cross section by a factor of 2 to 5. The role of the top quark as a ''parton'' is examined, and the energy range over which heavy quarks (or other particles) should or should not be naturally treated as ''partons'' is delineated. 12 refs., 5 figs

  5. Possible check of the QCD parton model in semiinclusive μ- -production of tau/psi-meson

    International Nuclear Information System (INIS)

    Bagdasaryan, I.A.; Grigoryan, S.G.; Yesaibegyan, S.V.

    1982-01-01

    The process of tau/psi meson production in the semi-inclusive μN → μ+tau/psi+X interaction is discussed. It is shown that the measurement of azimuthal asymmetry in semi-inclusive production of tau/psi can serve as a good test for the check of the QCD parton model. An additional method of the check of distribution gluon functions in photon-gluon fusion model is suggested

  6. Multi parton interactions and multi parton distributions in QCD

    International Nuclear Information System (INIS)

    Diehl, M.

    2012-01-01

    After a brief recapitulation of the general interest of parton densities, we discuss multiple hard interactions and multi parton distributions. We report on recent theoretical progress in their QCD description, on outstanding conceptual problems and on possibilities to use multi parton distributions as a laboratory to test and improve our understanding of hadron structure. (author)

  7. Fully NLO Parton Shower in QCD

    International Nuclear Information System (INIS)

    Skrzypek, M.; Jadach, S.; Slawinska, M.; Gituliar, O.; Kusina, A.; Placzek, W.

    2011-01-01

    The project of constructing a complete NLO-level Parton Shower Monte Carlo for the QCD processes developed in IFJ PAN in Krakow is reviewed. Four issues are discussed: (1) the extension of the standard inclusive collinear factorization into a new, fully exclusive scheme; (2) reconstruction of the LO Parton Shower in the new scheme; (3) inclusion of the exclusive NLO corrections into the hard process and (4) inclusion of the exclusive NLO corrections into the evolution (ladder) part. (authors)

  8. QCD's Partner Needed for Mass Spectra and Parton Structure Functions

    International Nuclear Information System (INIS)

    Kim, Y.S.

    2009-01-01

    as in the case of the hydrogen atom, bound-state wave functions are needed to generate hadronic spectra. For this purpose, in 1971, Feynman and his students wrote down a Lorentz-invariant harmonic oscillator equation. This differential equation has one set of solutions satisfying the Lorentz-covariant boundary condition. This covariant set generates Lorentz-invariant mass spectra with their degeneracies. Furthermore, the Lorentz-covariant wave functions allow us to calculate the valence parton distribution by Lorentz-boosting the quark-model wave function from the hadronic rest frame. However, this boosted wave function does not give an accurate parton distribution. The wave function needs QCD corrections to make a contact with the real world. Likewise, QCD needs the wave function as a starting point for calculating the parton structure function. (author)

  9. Generalized parton distributions and transversity from full lattice QCD

    Science.gov (United States)

    Göckeler, M.; Hägler, Ph.; Horsley, R.; Pleiter, D.; Rakow, P. E. L.; Schäfer, A.; Schierholz, G.; Zanotti, J. M.; Qcdsf Collaboration

    2005-06-01

    We present here the latest results from the QCDSF collaboration for moments of gener- alized parton distributions and transversity in two-flavour QCD, including a preliminary analysis of the pion mass dependence.

  10. Review of Parton Recombination Models

    International Nuclear Information System (INIS)

    Bass, Steffen A

    2006-01-01

    Parton recombination models have been very successful in explaining data taken at RHIC on hadron spectra and emission patterns in Au+Au collisions at transverse momenta above 2 GeV/c, which have exhibited features which could not be understood in the framework of basic perturbative QCD. In this article I will review the current status on recombination models and outline which future challenges need to be addressed by this class of models

  11. QCD collinear factorization, its extensions and the partonic distributions

    OpenAIRE

    Szymanowski, Lech

    2012-01-01

    I review the basics of the collinear factorization theorem applied primarily to deep inelastic scattering (DIS) involving forward parton distributions (PDFs) and the extensions of this theorem for exclusive processes probing non-forward parton distributions (GPDs), the generalized distribution amplitudes (GDAs) and the transition distribution amplitudes (TDAs). These QCD factorization theorem is an important tool in the description of hard processes in QCD. Whenever valid, it permits to repre...

  12. Nucleon generalized parton distributions from full lattice QCD

    International Nuclear Information System (INIS)

    Haegler, P.; Schroers, W.; Bratt, J.; Negele, J.W.; Pochinsky, A.V.

    2007-07-01

    We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N f =2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independent generalized parton distributions for pion masses as low as 350 MeV and volumes as large as (3.5 fm) 3 . (orig.)

  13. QCD evolution equations for high energy partons in nuclear matter

    CERN Document Server

    Kinder-Geiger, Klaus; Geiger, Klaus; Mueller, Berndt

    1994-01-01

    We derive a generalized form of Altarelli-Parisi equations to decribe the time evolution of parton distributions in a nuclear medium. In the framework of the leading logarithmic approximation, we obtain a set of coupled integro- differential equations for the parton distribution functions and equations for the virtuality (``age'') distribution of partons. In addition to parton branching processes, we take into account fusion and scattering processes that are specific to QCD in medium. Detailed balance between gain and loss terms in the resulting evolution equations correctly accounts for both real and virtual contributions which yields a natural cancellation of infrared divergences.

  14. Parton Propagation and Fragmentation in QCD Matter

    Energy Technology Data Exchange (ETDEWEB)

    Alberto Accardi, Francois Arleo, William Brooks, David D' Enterria, Valeria Muccifora

    2009-12-01

    We review recent progress in the study of parton propagation, interaction and fragmentation in both cold and hot strongly interacting matter. Experimental highlights on high-energy hadron production in deep inelastic lepton-nucleus scattering, proton-nucleus and heavy-ion collisions, as well as Drell-Yan processes in hadron-nucleus collisions are presented. The existing theoretical frameworks for describing the in-medium interaction of energetic partons and the space-time evolution of their fragmentation into hadrons are discussed and confronted to experimental data. We conclude with a list of theoretical and experimental open issues, and a brief description of future relevant experiments and facilities.

  15. Systematic improvement of QCD parton showers

    CERN Document Server

    Winter, Jan; Hoeth, Hendrik; Krauss, Frank; Schonherr, Marek; Schumann, Steffen; Siegert, Frank; Zapp, Korinna

    2012-01-01

    In this contribution, we will give a brief overview of the progress that has been achieved in the field of combining matrix elements and parton showers. We exemplify this by focusing on the case of electron--positron collisions and by reporting on recent developments as accomplished within the Sherpa event generation framework.

  16. The effective cross section for double parton scattering within a holographic AdS/QCD approach

    Energy Technology Data Exchange (ETDEWEB)

    Traini, Marco, E-mail: marcoclaudio.traini@unitn.it [Institut de Physique Théorique, Université Paris Saclay, CEA, F-91191 Gif-sur-Yvette (France); INFN - TIFPA, Dipartimento di Fisica, Università degli Studi di Trento, Via Sommarive 14, I-38123 Povo, Trento (Italy); Rinaldi, Matteo [Departament de Fisica Teòrica, Universitat de València and Institut de Fisica Corpuscular, Consejo Superior de Investigaciones Científicas, 46100 Burjassot, València (Spain); Scopetta, Sergio [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, I-06123 (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); Vento, Vicente [Departament de Fisica Teòrica, Universitat de València and Institut de Fisica Corpuscular, Consejo Superior de Investigaciones Científicas, 46100 Burjassot, València (Spain)

    2017-05-10

    A first attempt to apply the AdS/QCD framework for a bottom–up approach to the evaluation of the effective cross section for double parton scattering in proton–proton collisions is presented. The main goal is the analytic evaluation of the dependence of the effective cross section on the longitudinal momenta of the involved partons, obtained within the holographic Soft-Wall model. If measured in high-energy processes at hadron colliders, this momentum dependence could open a new window on 2-parton correlations in a proton.

  17. Three-particle correlations in QCD parton showers

    International Nuclear Information System (INIS)

    Perez-Ramos, Redamy; Mathieu, Vincent; Sanchis-Lozano, Miguel-Angel

    2011-01-01

    Three-particle correlations in quark and gluon jets are computed for the first time in perturbative QCD. We give results in the double logarithmic approximation and the modified leading logarithmic approximation. In both resummation schemes, we use the formalism of the generating functional and solve the evolution equations analytically from the steepest descent evaluation of the one-particle distribution. We thus provide a further test of the local parton hadron duality and make predictions for the LHC.

  18. Parton recombination model

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1978-08-01

    Low P/sub T/ meson production in hadronic collisions is described in the framework of the parton model. The recombination of quark and antiquark is suggested as the dominant mechanism in the large x region. Phenomenological evidences for the mechanism are given. The application to meson initiated reactions yields the quark distribution in mesons. 21 references

  19. Parton distributions and lattice QCD calculations: A community white paper

    Science.gov (United States)

    Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred; Orginos, Kostas; Rojo, Juan; Accardi, Alberto; Alexandrou, Constantia; Bacchetta, Alessandro; Bozzi, Giuseppe; Chen, Jiunn-Wei; Collins, Sara; Cooper-Sarkar, Amanda; Constantinou, Martha; Del Debbio, Luigi; Engelhardt, Michael; Green, Jeremy; Gupta, Rajan; Harland-Lang, Lucian A.; Ishikawa, Tomomi; Kusina, Aleksander; Liu, Keh-Fei; Liuti, Simonetta; Monahan, Christopher; Nadolsky, Pavel; Qiu, Jian-Wei; Schienbein, Ingo; Schierholz, Gerrit; Thorne, Robert S.; Vogelsang, Werner; Wittig, Hartmut; Yuan, C.-P.; Zanotti, James

    2018-05-01

    In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this document we present an overview of lattice-QCD and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. This document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.

  20. QCD next-to-leading-order predictions matched to parton showers for vector-like quark models.

    Science.gov (United States)

    Fuks, Benjamin; Shao, Hua-Sheng

    2017-01-01

    Vector-like quarks are featured by a wealth of beyond the Standard Model theories and are consequently an important goal of many LHC searches for new physics. Those searches, as well as most related phenomenological studies, however, rely on predictions evaluated at the leading-order accuracy in QCD and consider well-defined simplified benchmark scenarios. Adopting an effective bottom-up approach, we compute next-to-leading-order predictions for vector-like-quark pair production and single production in association with jets, with a weak or with a Higgs boson in a general new physics setup. We additionally compute vector-like-quark contributions to the production of a pair of Standard Model bosons at the same level of accuracy. For all processes under consideration, we focus both on total cross sections and on differential distributions, most these calculations being performed for the first time in our field. As a result, our work paves the way to precise extraction of experimental limits on vector-like quarks thanks to an accurate control of the shapes of the relevant observables and emphasise the extra handles that could be provided by novel vector-like-quark probes never envisaged so far.

  1. QCD next-to-leading order predictions matched to parton showers for vector-like quark models

    CERN Document Server

    Fuks, Benjamin

    2017-02-27

    Vector-like quarks are featured by a wealth of beyond the Standard Model theories and are consequently an important goal of many LHC searches for new physics. Those searches, as well as most related phenomenological studies, however rely on predictions evaluated at the leading-order accuracy in QCD and consider well-defined simplified benchmark scenarios. Adopting an effective bottom-up approach, we compute next-to-leading-order predictions for vector-like-quark pair-production and single production in association with jets, with a weak or with a Higgs boson in a general new physics setup. We additionally compute vector-like-quark contributions to the production of a pair of Standard Model bosons at the same level of accuracy. For all processes under consideration, we focus both on total cross sections and on differential distributions, most these calculations being performed for the first time in our field. As a result, our work paves the way to precise extraction of experimental limits on vector-like quarks...

  2. Improved modelling of independent parton hadronization

    International Nuclear Information System (INIS)

    Biddulph, P.; Thompson, G.

    1989-01-01

    A modification is proposed to current versions of the Field-Feynman ansatz for the hadronization of a quark in Monte Carlo models of QCD interactions. This faster-running algorithm has no more parameters and imposes a better degree of energy conservation. It results in naturally introducing a limitation of the transverse momentum distribution, similar to the experimentally observed ''seagull'' effect. There is now a much improved conservation of quantum numbers between the original parton and resultant hadrons, and the momentum of the emitted parton is better preserved in the summed momentum vectors of the final state particles. (orig.)

  3. QCD phenomenology of parton distribution functions at small x

    International Nuclear Information System (INIS)

    Tung, Wu-Ki

    1990-09-01

    The small x behavior of parton distributions is studied phenomenologically by examining in detail a series of QCD-evolved distribution sets obtained in a new global analysis of deep inelastic scattering and lepton-pair production experiments. The importance of 2-loop evolution is discussed. The main features and results of the global analysis are described. The range of small x behavior consistent with next-to-leading order QCD and current data is delineated. The extrapolated small x behavior is parameterized by effective Q-dependent power- and logarithmic-law parameters. Intriguing features of the evolution of these parameters with Q are presented. Alternative parametrizations based on the analytic solution for small x is also explored. 20 refs., 6 figs., 1 tab

  4. Matching next-to-leading order predictions to parton showers in supersymmetric QCD

    CERN Document Server

    Degrande, Celine; Hirschi, Valentin; Proudom, Josselin; Shao, Hua-Sheng

    2016-04-10

    We present a fully automated framework based on the FeynRules and MadGraph5 aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.

  5. Moments of nucleon generalized parton distributions from lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Cyprus Institute, Nicosia; Carbonell, J.; Harraud, P.A.; Papinutto, M.; Constantinou, M.; Kallidonis, C.; Guichon, P.; Jansen, K.; Korzec, T.; Humboldt Univ. Berlin

    2011-07-01

    We present results on the lower moments of the nucleon generalized parton distributions within lattice QCD using two dynamical flavors of degenerate twisted mass fermions. Our simulations are performed on lattices with three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm, allowing the investigation of cut-off effects. The volume dependence is examined using simulations on two lattices of spatial length L=2.1 fm and L=2.8 fm. The simulations span pion masses in the range of 260-470 MeV. Our results are renormalized nonperturbatively and the values are given in the MS scheme at a scale μ=2 GeV. They are chirally extrapolated to the physical point in order to compare with experiment. The consequences of these results on the spin carried by the quarks in the nucleon are investigated. (orig.)

  6. Transverse momentum-dependent parton distribution functions in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, Michael G. [New Mexico State University; Musch, Bernhard U. [Tech. University Munich; Haegler, Philipp G. [Tech. University Munich; Negele, John W. [MIT; Schaefer, Andreas [Regensburg

    2013-08-01

    A fundamental structural property of the nucleon is the distribution of quark momenta, both parallel as well as perpendicular to its propagation. Experimentally, this information is accessible via selected processes such as semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process (DY), which can be parametrized in terms of transversemomentum-dependent parton distributions (TMDs). On the other hand, these distribution functions can be extracted from nucleon matrix elements of a certain class of bilocal quark operators in which the quarks are connected by a staple-shaped Wilson line serving to incorporate initial state (DY) or final state (SIDIS) interactions. A scheme for evaluating such matrix elements within lattice QCD is developed. This requires casting the calculation in a particular Lorentz frame, which is facilitated by a parametrization of the matrix elements in terms of invariant amplitudes. Exploratory results are presented for the time-reversal odd Sivers and Boer-Mulders transverse momentum shifts.

  7. Structure functions and parton distributions

    International Nuclear Information System (INIS)

    Olness, F.; Tung, Wu-Ki

    1991-04-01

    Activities of the structure functions and parton distributions group is summarized. The impact of scheme-dependence of parton distributions (especially sea-quarks and gluons) on the quantitative formulation of the QCD parton model is highlighted. Recent progress on the global analysis of parton distributions is summarized. Issues on the proper use of the next-to-leading parton distributions are stressed

  8. Charge symmetry breaking in parton distribution functions from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R.; Zanotti, J.M. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Tsukuba Univ., Ibaraki (Japan). Center for Computational Sciences; Pleiter, D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (Germany); Thomas, A.W.; Young, R.D. [Adelaide Univ. SA (Australia). School of Physics and Chemistry; Winter, F. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik

    2010-12-15

    By determining the quark momentum fractions of the octet baryons from N{sub f}=2+1 lattice simulations, we are able to predict the degree of charge symmetry violation in the parton distribution functions of the nucleon. This is of importance, not only as a probe of our understanding of the non-perturbative structure of the proton but also because such a violation constrains the accuracy of global ts to parton distribution functions and hence the accuracy with which, for example, cross sections at the LHC can be predicted. A violation of charge symmetry may also be critical in cases where symmetries are used to guide the search for physics beyond the Standard Model. (orig.)

  9. Charge symmetry breaking in parton distribution functions from lattice QCD

    International Nuclear Information System (INIS)

    Horsley, R.; Zanotti, J.M.; Rakow, P.E.L.; Stueben, H.; Thomas, A.W.; Young, R.D.; Winter, F.; Regensburg Univ.

    2010-12-01

    By determining the quark momentum fractions of the octet baryons from N f =2+1 lattice simulations, we are able to predict the degree of charge symmetry violation in the parton distribution functions of the nucleon. This is of importance, not only as a probe of our understanding of the non-perturbative structure of the proton but also because such a violation constrains the accuracy of global ts to parton distribution functions and hence the accuracy with which, for example, cross sections at the LHC can be predicted. A violation of charge symmetry may also be critical in cases where symmetries are used to guide the search for physics beyond the Standard Model. (orig.)

  10. Universality of Generalized Parton Distributions in Light-Front Holographic QCD

    Science.gov (United States)

    de Téramond, Guy F.; Liu, Tianbo; Sufian, Raza Sabbir; Dosch, Hans Günter; Brodsky, Stanley J.; Deur, Alexandre; Hlfhs Collaboration

    2018-05-01

    The structure of generalized parton distributions is determined from light-front holographic QCD up to a universal reparametrization function w (x ) which incorporates Regge behavior at small x and inclusive counting rules at x →1 . A simple ansatz for w (x ) that fulfills these physics constraints with a single-parameter results in precise descriptions of both the nucleon and the pion quark distribution functions in comparison with global fits. The analytic structure of the amplitudes leads to a connection with the Veneziano model and hence to a nontrivial connection with Regge theory and the hadron spectrum.

  11. Novel applications of Lattice QCD: Parton Distributions, proton charge radius and neutron electric dipole moment

    Directory of Open Access Journals (Sweden)

    Alexandrou Constantia

    2017-01-01

    Full Text Available We briefly discuss the current status of lattice QCD simulations and review selective results on nucleon observables focusing on recent developments in the lattice QCD evaluation of the nucleon form factors and radii, parton distribution functions and their moments, and the neutron electric dipole moment. Nucleon charges and moments of parton distribution functions are presented using simulations generated at physical values of the quark masses, while exploratory studies are performed for the parton distribution functions and the neutron electric dipole moment at heavier than physical value of the pion mass.

  12. Analytic solutions of QCD evolution equations for parton cascades inside nuclear matter at small x

    International Nuclear Information System (INIS)

    Geiger, K.

    1994-01-01

    An analytical method is presented to solve generalized QCD evolution equations for the time development of parton cascades in a nuclear environment. In addition to the usual parton branching processes in vacuum, these evolution equations provide a consistent description of interactions with the nuclear medium by accounting for stimulated branching processes, fusion, and scattering processes that are specific to QCD in a medium. Closed solutions for the spectra of produced partons with respect to the variables time, longitudinal momentum, and virtuality are obtained under some idealizing assumptions about the composition of the nuclear medium. Several characteristic features of the resulting parton distributions are discussed. One of the main conclusions is that the evolution of a parton shower in a medium is dilated as compared to free space and is accompanied by an enhancement of particle production. These effects become stronger with increasing nuclear density

  13. QCD

    CERN Document Server

    Catani, S; Soper, Davison Eugene; Stirling, William James; Tapprogge, Stefan; Alekhin, S I; Aurenche, Patrick; Balázs, C; Ball, R D; Battistoni, G; Berger, E L; Binoth, T; Brock, R L; Casey, D; Corcella, Gennaro; Del Duca, V; Fabbro, A D; de Roeck, A; Ewerz, C; de Florian, D; Fontannaz, M; Frixione, Stefano; Giele, W T; Grazzini, Massimiliano; Guillet, J P; Marlen-Heinrich, G; Huston, J; Kalk, J; Kataev, A L; Kato, K; Keller, S; Klasen, M; Kosower, D A; Kulesza, A; Kunszt, Zoltán; Kupco, A; Ilyin, V A; Magnea, L; Mangano, Michelangelo L; Martin, A D; Mazumdar, K; Miné, P; Moretti, M; van Neerven, W L; Parente, G; Perret-Gallix, D; Pilon, E; Pukhov, A E; Puljak, I; Pumplin, Jon; Richter-Was, Elzbieta; Roberts, R G; Salam, Gavin P; Seymour, Michael H; Skachkov, N B; Sidorov, A V; Stenzel, H; Stump, D R; Thorne, R S; Treleani, D; Tung, W K; Vogt, A; Webber, Bryan R; Werlen, M; Zmouchko, S; Mine, Ph.

    2000-01-01

    We discuss issues of QCD at the LHC including parton distributions, Monte Carlo event generators, the available next-to-leading order calculations, resummation, photon production, small x physics, double parton scattering, and backgrounds to Higgs production.

  14. On AdS/QCD correspondence and the partonic picture of deep inelastic scattering

    International Nuclear Information System (INIS)

    Pire, B.; Roiesnel, C.; Szymanowski, L.; Wallon, S.

    2008-01-01

    We critically examine the question of scaling of the Deep Inelastic Scattering process in the medium Bjorken x region on a scalar boson in the framework of the AdS/QCD correspondence. To get the right polarization structure of the forward electroproduction amplitude, we show that one needs to add (at least) the scalar to scalar and scalar to vector hadronic amplitudes. This illustrates how the partonic picture may emerge from a simple scenario based on the AdS/QCD correspondence, provided one allows the conformal dimension of the hadronic field to equal 1 and use the concept of 'hadron-parton duality'

  15. On AdS/QCD correspondence and the partonic picture of deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pire, B. [Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau (France)], E-mail: pire@cpht.polytechnique.fr; Roiesnel, C. [Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Szymanowski, L. [Soltan Institute for Nuclear Studies, Warsaw (Poland); Wallon, S. [LPT, Universite d' Orsay, CNRS, 91404 Orsay (France)

    2008-12-04

    We critically examine the question of scaling of the Deep Inelastic Scattering process in the medium Bjorken x region on a scalar boson in the framework of the AdS/QCD correspondence. To get the right polarization structure of the forward electroproduction amplitude, we show that one needs to add (at least) the scalar to scalar and scalar to vector hadronic amplitudes. This illustrates how the partonic picture may emerge from a simple scenario based on the AdS/QCD correspondence, provided one allows the conformal dimension of the hadronic field to equal 1 and use the concept of 'hadron-parton duality'.

  16. Reweighting QCD matrix-element and parton-shower calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bothmann, Enrico; Schumann, Steffen [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Schoenherr, Marek [Universitaet Zuerich, Physik-Institut, Zuerich (Switzerland)

    2016-11-15

    We present the implementation and validation of the techniques used to efficiently evaluate parametric and perturbative theoretical uncertainties in matrix-element plus parton-shower simulations within the Sherpa event-generator framework. By tracing the full α{sub s} and PDF dependences, including the parton-shower component, as well as the fixed-order scale uncertainties, we compute variational event weights on-the-fly, thereby greatly reducing the computational costs to obtain theoretical-uncertainty estimates. (orig.)

  17. Spin correlations in the Drell–Yan process, parton entanglement, and other unconventional QCD effects

    Energy Technology Data Exchange (ETDEWEB)

    Nachtmann, O., E-mail: O.Nachtmann@thphys.uni-heidelberg.de

    2014-11-15

    We review ideas on the structure of the QCD vacuum which had served as motivation for the discussion of various non-standard QCD effects in high-energy reactions in articles from 1984 to 1995. These effects include, in particular, transverse-momentum and spin correlations in the Drell–Yan process and soft photon production in hadron–hadron collisions. We discuss the relation of the approach introduced in the above-mentioned articles to the approach, developed later, using transverse-momentum-dependent parton distributions (TDMs). The latter approach is a special case of our more general one which allows for parton entanglement in high-energy reactions. We discuss signatures of parton entanglement in the Drell–Yan reaction. Also for Higgs-boson production in pp collisions via gluon–gluon annihilation effects of entanglement of the two gluons are discussed and are found to be potentially important. These effects can be looked for in the current LHC experiments. In our opinion studying parton-entanglement effects in high-energy reactions is, on the one hand, very worthwhile by itself and, on the other hand, it allows to perform quantitative tests of standard factorisation assumptions. Clearly, the experimental observation of parton-entanglement effects in the Drell–Yan reaction and/or in Higgs-boson production would have a great impact on our understanding how QCD works in high-energy collisions.

  18. QCD-aware partonic jet clustering for truth-jet flavour labelling

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Andy; Pollard, Chris [University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom)

    2016-02-15

    We present an algorithm for deriving partonic flavour labels to be applied to truth particle jets in Monte Carlo event simulations. The inputs to this approach are final pre-hadronisation partons, to remove dependence on unphysical details such as the order of matrix element calculation and shower generator frame recoil treatment. These are clustered using standard jet algorithms, modified to restrict the allowed pseudo-jet combinations to those in which tracked flavour labels are consistent with QCD and QED Feynman rules. The resulting algorithm is shown to be portable between the major families of shower generators, and largely insensitive to many possible systematic variations: it hence offers significant advantages over existing ad hoc labelling schemes. However, it is shown that contamination from multi-parton scattering simulations can disrupt the labelling results. Suggestions are made for further extension to incorporate more detailed QCD splitting function kinematics, robustness improvements, and potential uses for truth-level physics object definitions and tagging. (orig.)

  19. QCD-aware partonic jet clustering for truth-jet flavour labelling

    International Nuclear Information System (INIS)

    Buckley, Andy; Pollard, Chris

    2016-01-01

    We present an algorithm for deriving partonic flavour labels to be applied to truth particle jets in Monte Carlo event simulations. The inputs to this approach are final pre-hadronisation partons, to remove dependence on unphysical details such as the order of matrix element calculation and shower generator frame recoil treatment. These are clustered using standard jet algorithms, modified to restrict the allowed pseudo-jet combinations to those in which tracked flavour labels are consistent with QCD and QED Feynman rules. The resulting algorithm is shown to be portable between the major families of shower generators, and largely insensitive to many possible systematic variations: it hence offers significant advantages over existing ad hoc labelling schemes. However, it is shown that contamination from multi-parton scattering simulations can disrupt the labelling results. Suggestions are made for further extension to incorporate more detailed QCD splitting function kinematics, robustness improvements, and potential uses for truth-level physics object definitions and tagging. (orig.)

  20. Nucleon-generalized parton distributions in the light-front quark model

    Indian Academy of Sciences (India)

    2016-01-12

    Jan 12, 2016 ... 1. Introduction. Generalized parton distributions (GPDs) are the important set of parameters that give us ... The AdS/CFT is the correspondence between the string theory on a higher-dimensional anti-de Sitter ... matching the soft-wall model of AdS/QCD and light-front QCD for EFFs of hadrons with arbitrary ...

  1. The QCD coupling and parton distributions at high precision

    International Nuclear Information System (INIS)

    Bluemlein, Johannes

    2010-07-01

    A survey is given on the present status of the nucleon parton distributions and related precision calculations and precision measurements of the strong coupling constant α s (M 2 Z ). We also discuss the impact of these quantities on precision observables at hadron colliders. (orig.)

  2. The QCD coupling and parton distributions at high precision

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes

    2010-07-15

    A survey is given on the present status of the nucleon parton distributions and related precision calculations and precision measurements of the strong coupling constant {alpha}{sub s}(M{sup 2}{sub Z}). We also discuss the impact of these quantities on precision observables at hadron colliders. (orig.)

  3. Baryon stopping and strangeness baryon production in a parton cascade model

    International Nuclear Information System (INIS)

    Nara, Yasushi

    1999-01-01

    A parton cascade model which is based on pQCD incorporating hard partonic scattering and dynamical hadronization scheme describes the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with experimental data at SPS energies. Using new version of parton cascade code VNI in which baryonic cluster formation is implemented, we calculate the net baryon number distributions and Λ yield. It is found that baryon stopping behavior at SPS energies is well accounted for within the parton cascade picture. As a consequence of the production of the baryon (u and d quark) rich parton matter, parton coalescence naturally explains the enhanced yield of Λ particle which has been observed in experiment. (author)

  4. QCD event generators with next-to-leading order matrix-elements and parton showers

    International Nuclear Information System (INIS)

    Kurihara, Y.; Fujimoto, J.; Ishikawa, T.; Kato, K.; Kawabata, S.; Munehisa, T.; Tanaka, H.

    2003-01-01

    A new method to construct event-generators based on next-to-leading order QCD matrix-elements and leading-logarithmic parton showers is proposed. Matrix elements of loop diagram as well as those of a tree level can be generated using an automatic system. A soft/collinear singularity is treated using a leading-log subtraction method. Higher order resummation of the soft/collinear correction by the parton shower method is combined with the NLO matrix-element without any double-counting in this method. An example of the event generator for Drell-Yan process is given for demonstrating a validity of this method

  5. Collinear and TMD quark and gluon densities from parton branching solution of QCD evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    Hautmann, F. [Rutherford Appleton Laboratory, Chilton (United Kingdom); Oxford Univ. (United Kingdom). Dept. of Theoretical Physics; Antwerpen Univ. (Belgium). Elementaire Deeltjes Fysica; Jung, H.; Lelek, A.; Zlebcik, R. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Radescu, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2017-08-15

    We study parton-branching solutions of QCD evolution equations and present a method to construct both collinear and transverse momentum dependent (TMD) parton densities from this approach. We work with next-to-leading-order (NLO) accuracy in the strong coupling. Using the unitarity picture in terms of resolvable and non-resolvable branchings, we analyze the role of the soft-gluon resolution scale in the evolution equations. For longitudinal momentum distributions, we find agreement of our numerical calculations with existing evolution programs at the level of better than 1 percent over a range of five orders of magnitude both in evolution scale and in longitudinal momentum fraction. We make predictions for the evolution of transverse momentum distributions. We perform fits to the high-precision deep inelastic scattering (DIS) structure function measurements, and we present a set of NLO TMD distributions based on the parton branching approach.

  6. Elementary amplitudes from full QCD and the stochastic vacuum model

    International Nuclear Information System (INIS)

    Martini, A.F.; Menon, M.J.

    2002-01-01

    In a previous work, making use of the gluon gauge-invariant two-point correlation function determined from lattice QCD in the quenched approximation and the stochastic vacuum model, we determined the elementary (parton-parton) scattering amplitude in the momentum transfer space. In this communication we compute the elementary amplitude from new lattice QCD calculations that include the effects of dynamical fermions (full QCD). The main conclusion is that the inclusion of dynamical fermions leads to a normalized elementary amplitude that decreases more quickly with the momentum transfer than that in the quenched approximation. (author)

  7. TMD parton distributions based on three-body decay functions in NLL order of QCD

    International Nuclear Information System (INIS)

    Tanaka, Hidekazu

    2015-01-01

    Three-body decay functions in space-like parton branches are implemented to evaluate transverse-momentum-dependent (TMD) parton distribution functions in the next-to-leading logarithmic (NLL) order of quantum chromodynamics (QCD). Interference contributions due to the next-to-leading-order terms are taken into account for the evaluation of the transverse momenta in initial state parton radiations. Some properties of the decay functions are also examined. As an example, the calculated results are compared with those evaluated by an algorithm proposed in [M. A. Kimber, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C 12, 655 (2000)], [M. A. Kimber, A. D. Martin, and M. G. Ryskin, Phys. Rev. D 63, 11402 (2001)], [G. Watt, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C 31, 73 (2003)], and [A. D. Martin, M. G. Ryskin, and G. Watt, Eur. Phys. J. C 66, 167 (2010)], in which the TMD parton distributions are defined based on the k t -factorization method with angular ordering conditions due to interference effects

  8. Parton distribution functions with QED corrections in the valon model

    Science.gov (United States)

    Mottaghizadeh, Marzieh; Taghavi Shahri, Fatemeh; Eslami, Parvin

    2017-10-01

    The parton distribution functions (PDFs) with QED corrections are obtained by solving the QCD ⊗QED DGLAP evolution equations in the framework of the "valon" model at the next-to-leading-order QCD and the leading-order QED approximations. Our results for the PDFs with QED corrections in this phenomenological model are in good agreement with the newly related CT14QED global fits code [Phys. Rev. D 93, 114015 (2016), 10.1103/PhysRevD.93.114015] and APFEL (NNPDF2.3QED) program [Comput. Phys. Commun. 185, 1647 (2014), 10.1016/j.cpc.2014.03.007] in a wide range of x =[10-5,1 ] and Q2=[0.283 ,108] GeV2 . The model calculations agree rather well with those codes. In the latter, we proposed a new method for studying the symmetry breaking of the sea quark distribution functions inside the proton.

  9. Aspects of perturbative QCD in Monte Carlo shower models

    International Nuclear Information System (INIS)

    Gottschalk, T.D.

    1986-01-01

    The perturbative QCD content of Monte Carlo models for high energy hadron-hadron scattering is examined. Particular attention is given to the recently developed backwards evolution formalism for initial state parton showers, and the merging of parton shower evolution with hard scattering cross sections. Shower estimates of K-factors are discussed, and a simple scheme is presented for incorporating 2 → QCD cross sections into shower model calculations without double counting. Additional issues in the development of hard scattering Monte Carlo models are summarized. 69 references, 20 figures

  10. Dual model for parton densities

    International Nuclear Information System (INIS)

    El Hassouni, A.; Napoly, O.

    1981-01-01

    We derive power-counting rules for quark densities near x=1 and x=0 from parton interpretations of one-particle inclusive dual amplitudes. Using these rules, we give explicit expressions for quark distributions (including charm) inside hadrons. We can then show the compatibility between fragmentation and recombination descriptions of low-p/sub perpendicular/ processes

  11. QCD prediction of jet structure in 2D trigger-associated momentum correlations and implications for multiple parton interactions

    Directory of Open Access Journals (Sweden)

    Trainor Thomas A.

    2015-01-01

    Full Text Available The expression “multiple parton interactions” (MPI denotes a conjectured QCD mechanism representing contributions from secondary (semihard parton scattering to the transverse azimuth region (TR of jet-triggered p-p collisions. MPI is an object of underlying-event (UE studies that consider variation of TR nch or pt yields relative to a trigger condition (leading hadron or jet pt. An alternative approach is 2D trigger-associated (TA correlations on hadron transverse momentum pt or rapidity yt in which all hadrons from all p-p events are included. Based on a two-component (soft+hard model (TCM of TA correlations a jet-related TA hard component is isolated. Contributions to the hard component from the triggered dijet and from secondary dijets (MPI can be distinguished, including their azimuth dependence relative to the trigger direction. Measured e+-e− and p-p̄ fragmentation functions and a minimum-bias jet spectrum from 200 GeV p-p̄ collisions are convoluted to predict the 2D hard component of TA correlations as a function of p-p collision multiplicity. The agreement between QCD predictions and TA correlation data is quantitative, confirming a dijet interpretation for the TCM hard component. The TA azimuth dependence is inconsistent with conventional UE assumptions.

  12. QCD Analysis of Polarized Scattering Data and New Polarized Parton Distributions

    International Nuclear Information System (INIS)

    Bluemlein, J.; Boettcher, H.

    2002-01-01

    In this talk results from a new QCD analysis in Leading (LO) and Next-to-Leading (NLO) Order are presented. New parametrizations of the polarized quark and gluon densities are derived together with parametrizations of their fully correlated 1σ error bands. Furthermore the value of α s (M 2 Z ) is determined. Finally a number of low moments of the polarized parton densities are compared with results from lattice simulations. All details of the analysis are given in J. Bluemlein, H. Boettcher, Nucl. Phys. B636, 225 (2002). (author)

  13. Nonpointlike-parton model with asymptotic scaling and with scaling violationat moderate Q2 values

    International Nuclear Information System (INIS)

    Chen, C.K.

    1981-01-01

    A nonpointlike-parton model is formulated on the basis of the assumption of energy-independent total cross sections of partons and the current-algebra sum rules. No specific strong-interaction Lagrangian density is introduced in this approach. This model predicts asymptotic scaling for the inelastic structure functions of nucleons on the one hand and scaling violation at moderate Q 2 values on the other hand. The predicted scaling-violation patterns at moderate Q 2 values are consistent with the observed scaling-violation patterns. A numerical fit of F 2 functions is performed in order to demonstrate that the predicted scaling-violation patterns of this model at moderate Q 2 values fit the data, and to see how the predicted asymptotic scaling behavior sets in at various x values. Explicit analytic forms of F 2 functions are obtained from this numerical fit, and are compared in detail with the analytic forms of F 2 functions obtained from the numerical fit of the quantum-chromodynamics (QCD) parton model. This comparison shows that this nonpointlike-parton model fits the data better than the QCD parton model, especially at large and small x values. Nachtman moments are computed from the F 2 functions of this model and are shown to agree with data well. It is also shown that the two-dimensional plot of the logarithm of a nonsinglet moment versus the logarithm of another such moment is not a good way to distinguish this nonpointlike-parton model from the QCD parton model

  14. VNI 3.1 MC-simulation program to study high-energy particle collisions in QCD by space-time evolution of parton-cascades and parton-hadron conversion

    Science.gov (United States)

    Geiger, Klaus

    1997-08-01

    VNI is a general-purpose Monte Carlo event generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. On the basis of renormalization-group improved parton description and quantum-kinetic theory, it uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme that is governed by the dynamics itself. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position space, momentum space and color space. The parton evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi) hard interactions in QCD, involving 2 → 2 parton collisions, 2 → 1 parton fusion processes, and 1 → 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. This article gives a brief review of the physics underlying VNI, which is followed by a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including a simple example), annotates input and control parameters, and discusses output data provided by it.

  15. Effective field theory approach to parton-hadron conversion in high energy QCD processes

    CERN Document Server

    Kinder-Geiger, Klaus

    1995-01-01

    A QCD based effective action is constructed to describe the dynamics of confinement and symmetry breaking in the process of parton-hadron conversion. The deconfined quark and gluon degrees of freedom of the perturbative QCD vacuum are coupled to color singlet collective fields representing the non-perturbative vacuum with broken scale and chiral symmetry. The effective action recovers QCD with its scale and chiral symmetry properties at short space-time distances, but yields at large distances (r > 1 fm) to the formation of symmetry breaking gluon and quark condensates. The approach is applied to the evolution of a fragmenting q\\bar q pair with its generated gluon distribution, starting from a large hard scale Q^2. The modification of the gluon distribution arising from the coupling to the non-perturbative collective field results eventually in a complete condensation of gluons. Color flux tube configurations of the gluons in between the q\\bar q pair are obtained as solutions of the equations of motion. With ...

  16. QCD parton showers and NLO EW corrections to Drell-Yan

    CERN Document Server

    Richardson, P; Sapronov, A A; Seymour, M H; Skands, P Z

    2012-01-01

    We report on the implementation of an interface between the SANC generator framework for Drell-Yan hard processes, which includes next-to-leading order electroweak (NLO EW) corrections, and the Herwig++ and Pythia8 QCD parton shower Monte Carlos. A special aspect of this implementation is that the initial-state shower evolution in both shower generators has been augmented to handle the case of an incoming photon-in-a-proton, diagrams for which appear at the NLO EW level. The difference between shower algorithms leads to residual differences in the relative corrections of 2-3% in the p_T(mu) distributions at p_T(mu)>~50 GeV (where the NLO EW correction itself is of order 10%).

  17. What Exactly is a Parton Density ?

    International Nuclear Information System (INIS)

    Collins, J.C.

    2003-01-01

    I give an account of the definitions of parton densities, both the conventional ones, integrated over parton transverse momentum, and unintegrated transverse-momentum-dependent densities. The aim is to get a precise and correct definition of a parton density as the target expectation value of a suitable quantum mechanical operator, so that a clear connection to non-perturbative QCD is provided. Starting from the intuitive ideas in the parton model that predate QCD, we will see how the simplest operator definitions suffer from divergences. Corrections to the definition are needed to eliminate the divergences. An improved definition of unintegrated parton densities is proposed. (author)

  18. Orbital angular momentum parton distributions in quark models

    International Nuclear Information System (INIS)

    Scopetta, S.; Vento, V.

    2000-01-01

    At the low energy, hadronic, scale we calculate Orbital Angular Momentum (OAM) twist-two parton distributions for the relativistic MIT bag model and for nonrelativistic quark models. We reach the scale of the data by leading order evolution in perturbative QCD. We confirm that the contribution of quarks and gluons OAM to the nucleon spin grows with Q 2 , and it can be relevant at the experimental scale, even if it is negligible at the hadronic scale, irrespective of the model used. The sign and shape of the quark OAM distribution at high Q 2 may depend strongly on the relative size of the OAM and spin distributions at the hadronic scale. Sizeable quark OAM distributions at the hadronic scale, as proposed by several authors, can produce the dominant contribution to the nucleon spin at high Q 2 . (author)

  19. QCD

    CERN Multimedia

    1999-01-01

    Basic Properties of QCD: the Lagrangian, the running coupling, asymptotic freedom and colour confinement. Examples of perturbative calculations in electron- positron physics (total cross sections and event) Parton branching approach will be used to derive the evolution equations for hadron structure functions Comarison with data on deep inelastic scattering and jet production will be for hadron structure functions and jet fragmentation functions

  20. Pion transverse momentum dependent parton distributions in the Nambu and Jona-Lasinio model

    Energy Technology Data Exchange (ETDEWEB)

    Noguera, Santiago [Departament de Fisica Teòrica and IFIC, Universitat de València - CSIC,E-46100 Burjassot (Spain); Scopetta, Sergio [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia,via A. Pascoli, I - 06123 Perugia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, via A. Pascoli, I - 06123 Perugia (Italy)

    2015-11-16

    An explicit evaluation of the two pion transverse momentum dependent parton distributions at leading twist is presented, in the framework of the Nambu-Jona Lasinio model with Pauli-Villars regularization. The transverse momentum dependence of the obtained distributions is generated solely by the dynamics of the model. Using these results, the so called generalized Boer-Mulders shift is studied and compared with recent lattice data. The obtained agreement is very encouraging, in particular because no additional parameter has been introduced. A more conclusive comparison would require a precise knowledge of the QCD evolution of the transverse momentum dependent parton distributions under scrutiny.

  1. Double parton correlations in Light-Front constituent quark models

    Directory of Open Access Journals (Sweden)

    Rinaldi Matteo

    2015-01-01

    Full Text Available Double parton distribution functions (dPDF represent a tool to explore the 3D proton structure. They can be measured in high energy proton-proton and proton nucleus collisions and encode information on how partons inside a proton are correlated among each other. dPFDs are studied here in the valence quark region, by means of a constituent quark model, where two particle correlations are present without any additional prescription. This framework allows to understand the dynamical origin of the correlations and to clarify which, among the features of the results, are model independent. Use will be made of a relativistic light-front scheme, able to overcome some drawbacks of the previous calculation. Transverse momentum correlations, due to the exact treatment of the boosts, are predicted and analyzed. The role of spin correlations is also shown. Due to the covariance of the approach, some symmetries of the dPDFs are seen unambigously. For the valence sector, also the study of the QCD evolution of the model results, which can be performed safely thanks to the property of good support, has been also completed.

  2. Deep inelastic processes and the parton model

    International Nuclear Information System (INIS)

    Altarelli, G.

    The lecture was intended as an elementary introduction to the physics of deep inelastic phenomena from the point of view of theory. General formulae and facts concerning inclusive deep inelastic processes in the form: l+N→l'+hadrons (electroproduction, neutrino scattering) are first recalled. The deep inelastic annihilation e + e - →hadrons is then envisaged. The light cone approach, the parton model and their relation are mainly emphasized

  3. Quantum chromodynamics (QCD) and collider physics

    International Nuclear Information System (INIS)

    Ellis, R.K.; Stirling, W.J.

    1990-01-01

    This report discusses: fundamentals of perturbative QCD; QCD in e + e - → hadrons; deep inelastic scattering and parton distributions; the QCD parton model in hadron-hadron collisions; large p T jet production in hadron-hadron collisions; the production of vector bosons in hadronic collisions; and the production of heavy quarks

  4. New results in the Dual Parton Model

    International Nuclear Information System (INIS)

    Van, J.T.T.; Capella, A.

    1984-01-01

    In this paper, the similarity between the x distribution for particle production and the fragmentation functions are observed in e+e- collisions and in deep inelastic scattering are presented. Based on the observation, the authors develop a complete approach to multiparticle production which incorporates the most important features and concepts learned about high energy collisions. 1. Topological expansion : the dominant diagram at high energy corresponds to the simplest topology. 2. Unitarity : diagrams of various topology contribute to the cross sections in a way that unitary is preserved. 3. Regge behaviour and Duality. 4. Partonic structure of hadrons. These general theoretical ideas, result from many joint experimental and theoretical efforts on the study of soft hadron physics. The dual parton model is able to explain all the experimental features from FNAL to SPS collider energies. It has all the properties of an S-matrix theory and provides a unified description of hadron-hadron, hadron-nucleus and nucleus-nucleus collisions

  5. What is a parton shower?

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2017-05-01

    We consider idealized parton shower event generators that treat parton spin and color exactly, leaving aside the choice of practical approximations for spin and color. We investigate how the structure of such a parton shower generator is related to the structure of QCD. We argue that a parton shower with splitting functions proportional to αs can be viewed not just as a model, but as the lowest order approximation to a shower that is defined at any perturbative order. To support this argument, we present a formulation for a parton shower at order α k s for any k. Since some of the input functions needed are specified by their properties but not calculated, this formulation does not provide a useful recipe for an order α k s parton shower algorithm. However, in this formulation we see how the operators that generate the shower are related to operators that specify the infrared singularities of QCD.

  6. D-meson production according to the parton model and their detection in ALICE

    CERN Document Server

    Kalliokoski, Tuomo; Trzaska, Wladyslaw

    2007-01-01

    Modern understanding in particle physics is constructed over lay- ers and layers of work. Most of the work was done during last century, starting from the quantum mechanics. Modern theoretical basis is the parton model, which is constructed from three independent parts: distribution of momentum to partons inside hadron, partonic cross-sections from QCD and from fragmentation of parton to hadrons. All of these parts are discussed in this work. Future experiments are aiming for higher energies and/or greater number of intresting events than what previous experiments were capable to gain. Main example of this is LHC and ALICE-experiment on it in CERN. While simulations have benefited greatly from fast increase of computing power during last few decades. With the following assumptions, p$_t$ $>$ 1 GeV, fixed QCD scale Q = 5 GeV, massless quarks and only gluon-gluon channel in partonic cross-section and $\\delta$-function fragmentation, the lowest order simulations for production of D-meson with midrapidity y = 0 a...

  7. Are Parton Distributions Positive?

    CERN Document Server

    Forte, Stefano; Ridolfi, Giovanni; Altarelli, Guido; Forte, Stefano; Ridolfi, Giovanni

    1999-01-01

    We show that the naive positivity conditions on polarized parton distributions which follow from their probabilistic interpretation in the naive parton model are reproduced in perturbative QCD at the leading log level if the quark and gluon distribution are defined in terms of physical processes. We show how these conditions are modified at the next-to-leading level, and discuss their phenomenological implications, in particular in view of the determination of the polarized gluon distribution

  8. Are parton distributions positive?

    International Nuclear Information System (INIS)

    Forte, Stefano; Altarelli, Guido; Ridolfi, Giovanni

    1999-01-01

    We show that the naive positivity conditions on polarized parton distributions which follow from their probabilistic interpretation in the naive parton model are reproduced in perturbative QCD at the leading log level if the quark and gluon distribution are defined in terms of physical processes. We show how these conditions are modified at the next-to-leading level, and discuss their phenomenological implications, in particular in view of the determination of the polarized gluon distribution

  9. Moments of nucleon's parton distribution for the sea and valence quarks from lattice QCD

    International Nuclear Information System (INIS)

    Deka, M.; Doi, T.; Dong, S. J.; Draper, T.; Liu, K. F.; Streuer, T.; Mathur, N.; Thomas, A. W.

    2009-01-01

    We extend the study of lowest moments, and 2 >, of the parton distribution function of the nucleon to include those of the sea quarks; this entails a disconnected insertion calculation in lattice QCD. This is carried out on a 16 3 x24 quenched lattice with Wilson fermion. The quark loops are calculated with Z 2 noise vectors and unbiased subtractions, and multiple nucleon sources are employed to reduce the statistical errors. We obtain 5σ signals for for the u, d, and s quarks, but 2 > is consistent with zero within errors. We provide results for both the connected and disconnected insertions. The perturbatively renormalized for the strange quark at μ=2 GeV is s+s =0.027±0.006 which is consistent with the experimental result. The ratio of for s vs u/d in the disconnected insertion with quark loops is calculated to be 0.88±0.07. This is about twice as large as the phenomenologically fitted ( s+s / u + d ) from experiments where u and d include both the connected and disconnected insertion parts. We discuss the source and implication of this difference.

  10. Small-χ behavior and patron staturation: A QCD model

    International Nuclear Information System (INIS)

    Mueller, A.H.

    1990-01-01

    A QCD model is defined to study questions of quark and gluon parton saturation at small χ-values. The model uses a source consisting of a nucleus of heavy quarkonium bound states, states well understood in QCD. Deeply inelastic scattering, using the currents j(χ)=1/4F a μν F a μν and j μ (χ)=ψγ μ ψ, is evaluated in Born and one-loop approximation in order to extract quark and gluon distributions. Quark distributions are observed to saturate while gluon distributions have a saturating and a nonsaturating component. (orig.)

  11. Quark-parton model from dual topological unitarization

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.; El Hassouni, A.; Kalinowski, J.; Peschanski, R.

    1979-01-01

    Topology, which occurs in the topological expansion of quantum chromodynamics (QCD) and in the dual topological unitarization (DTU) schemes, allows us to establish a quantitative correspondence between QCD and the dual S-matrix approaches. This topological correspondence, proposed by Veneziano and made more explicit in a recent paper for current-induced reactions, provides a clarifying and unifying quark-parton interpretation of soft inclusive processes. Precise predictions for inclusive cross sections in hadron-hadron collisions, structure functions of hadrons, and quark fragmentation functions including absolute normalizations are shown to agree with data. On a more theoretical ground the proposed scheme suggests a new approach to the confinement problem

  12. Large psub(T) pion production and clustered parton model

    Energy Technology Data Exchange (ETDEWEB)

    Kanki, T [Osaka Univ., Toyonaka (Japan). Coll. of General Education

    1977-05-01

    Recent experimental results on the large p sub(T) inclusive ..pi../sup 0/ productions by pp and ..pi..p collisions are interpreted by the parton model in which the constituent quarks are defined to be the clusters of the quark-partons and gluons.

  13. Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Atri [Department of Physics, University of Arizona,1118 E. 4th St. Tucson, AZ 85704 (United States); Space sciences, Technologies and Astrophysics Research (STAR) Institute,Université de Liège,Bât. B5a, 4000 Liège (Belgium); Enberg, Rikard [Department of Physics and Astronomy, Uppsala University,Box 516, SE-75120 Uppsala (Sweden); Jeong, Yu Seon [Department of Physics and IPAP, Yonsei University,50 Yonsei-ro Seodaemun-gu, Seoul 03722 (Korea, Republic of); National Institute of Supercomputing and Networking, KISTI,245 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Kim, C.S. [Department of Physics and IPAP, Yonsei University,50 Yonsei-ro Seodaemun-gu, Seoul 03722 (Korea, Republic of); Reno, Mary Hall [Department of Physics and Astronomy, University of Iowa,Iowa City, Iowa 52242 (United States); Sarcevic, Ina [Department of Physics, University of Arizona,1118 E. 4th St. Tucson, AZ 85704 (United States); Department of Astronomy, University of Arizona,933 N. Cherry Ave., Tucson, AZ 85721 (United States); Stasto, Anna [Department of Physics, 104 Davey Lab, The Pennsylvania State University,University Park, PA 16802 (United States)

    2016-11-28

    We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, k{sub T} factorization including low-x resummation, and the dipole model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest data on forward charm meson production from LHCb at 7 TeV and at 13 TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due to nuclear effects varies from 10% to 50% at the highest energies. Finally, we compare our results with the IceCube limit on the prompt neutrino flux, which is already providing valuable information about some of the QCD models.

  14. Quark model and QCD

    International Nuclear Information System (INIS)

    Anisovich, V.V.

    1989-06-01

    Using the language of the quarks and gluons for description of the soft hadron physics it is necessary to take into account two characteristic phenomena which prevent one from usage of QCD Lagrangian in the straightforward way, chiral symmetry breaking, and confinement of colour particles. The topics discussed in this context are: QCD in the domain of soft processes, phenomenological Lagrangian for soft processes and exotic mesons, spectroscopy of low-lying hadrons (mesons, baryons and mesons with heavy quarks - c,b -), confinement forces, spectral integration over quark masses. (author) 3 refs.; 19 figs.; 3 tabs

  15. Parton model (Moessbauer) sum rules for b → c decays

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1993-01-01

    The parton model is a starting point or zero-order approximation in many treatments. The author follows an approach previously used for the Moessbauer effect and shows how parton model sum rules derived for certain moments of the lepton energy spectrum in b → c semileptonic decays remain valid even when binding effects are included. The parton model appears as a open-quote semiclassical close-quote model whose results for certain averages also hold (correspondence principle) in quantum mechanics. Algebraic techniques developed for the Moessbauer effect exploit simple features of the commutator between the weak current operator and the bound state Hamiltonian to find the appropriate sum rules and show the validity of the parton model in the classical limit, ℎ → 0, where all commutators vanish

  16. Modeling the thermodynamics of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Hell, Thomas

    2010-07-26

    Strongly interacting (QCD) matter is expected to exhibit a multifaceted phase structure: a hadron gas at low temperatures, a quark-gluon plasma at very high temperatures, nuclear matter in the low-temperature and high-density region, color superconductors at asymptotically high densities. Most of the conjectured phases cannot yet be scrutinized by experiments. Much of the present picture - particularly concerning the intermediate temperature and density area of the phase diagram of QCD matter - is based on model calculations. Further insights come from Lattice-QCD computations. The present thesis elaborates a nonlocal covariant extension of the Nambu and Jona-Lasinio (NJL) model with built-in constraints from the running coupling of QCD at high-momentum and instanton physics at low-momentum scales. We present this model for two and three quark flavors (in the latter case paying particular attention to the axial anomaly). At finite temperatures and densities, gluon dynamics is incorporated through a gluonic background field, expressed in terms of the Polyakov loop (P). The thermodynamics of this nonlocal PNJL model accounts for both chiral and deconfinement transitions. We obtain results in mean-field approximation and beyond, including additional pionic and kaonic contributions to the chiral condensate, the pressure and other thermodynamic quantities. Finally, the nonlocal PNJL model is applied to the finite-density region of the QCD phase diagram; for three quark flavors we investigate, in particular, the dependence of the critical point appearing in the models on the axial anomaly. The thesis closes with a derivation of the nonlocal PNJL model from first principles of QCD. (orig.)

  17. Multiplicities and parton dynamics

    International Nuclear Information System (INIS)

    Knuteson, R.O.

    1987-01-01

    The production of strongly interacting particles from the annihilation of electrons and positrons at high energies is studied, with emphasis on the multiplicity, or number, of particles produced. A probabilistic branching model based on the leading log approximation in QCD is formulated to predict the evolution of particle number with the energy of collision. Direct integration of a master equation for the probabilities allows a comparison to the experimentally observed particle distribution. The production of strongly interacting particles from proton-antiproton collisions is also considered. A model for the production of particles from parton-parton collisions is presented and the growth in multiplicity with energy demonstrated

  18. Correlations in the Parton Recombination Model

    Energy Technology Data Exchange (ETDEWEB)

    Bass, S.A. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); RIKEN BNL Research Center, Brookhaven Nat. Lab., Upton, NY 11973 (United States); Fries, R.J. [School of Physics and Astronomy, Univ. of Minnesota, Minneapolis, MN 55455 (United States); Mueller, B. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States)

    2006-08-07

    We describe how parton recombination can address the recent measurement of dynamical jet-like two particle correlations. In addition we discuss the possible effect realistic light-cone wave-functions including higher Fock-states may have on the well-known elliptic flow valence-quark number scaling law.

  19. Nucleon parton distributions in a light-front quark model

    International Nuclear Information System (INIS)

    Gutsche, Thomas; Lyubovitskij, Valery E.; Schmidt, Ivan

    2017-01-01

    Continuing our analysis of parton distributions in the nucleon, we extend our light-front quark model in order to obtain both the helicity-independent and the helicity-dependent parton distributions, analytically matching the results of global fits at the initial scale μ∝ 1 GeV; they also contain the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. We also calculate the transverse parton, Wigner and Husimi distributions from a unified point of view, using our light-front wave functions and expressing them in terms of the parton distributions q_v(x) and δq_v(x). Our results are very relevant for the current and future program of the COMPASS experiment at SPS (CERN). (orig.)

  20. Nucleon parton distributions in a light-front quark model

    Energy Technology Data Exchange (ETDEWEB)

    Gutsche, Thomas [Universitaet Tuebingen, Institut fuer Theoretische Physik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Lyubovitskij, Valery E. [Universitaet Tuebingen, Institut fuer Theoretische Physik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Tomsk Polytechnic University, Laboratory of Particle Physics, Mathematical Physics Department, Tomsk (Russian Federation); Universidad Tecnica Federico Santa Maria, Departamento de Fisica y Centro Cientifico Tecnologico de Valparaiso (CCTVal), Valparaiso (Chile); Schmidt, Ivan [Universidad Tecnica Federico Santa Maria, Departamento de Fisica y Centro Cientifico Tecnologico de Valparaiso (CCTVal), Valparaiso (Chile)

    2017-02-15

    Continuing our analysis of parton distributions in the nucleon, we extend our light-front quark model in order to obtain both the helicity-independent and the helicity-dependent parton distributions, analytically matching the results of global fits at the initial scale μ∝ 1 GeV; they also contain the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. We also calculate the transverse parton, Wigner and Husimi distributions from a unified point of view, using our light-front wave functions and expressing them in terms of the parton distributions q{sub v}(x) and δq{sub v}(x). Our results are very relevant for the current and future program of the COMPASS experiment at SPS (CERN). (orig.)

  1. VNI version 4.1. Simulation of high-energy particle collisions in QCD: Space-time evolution of e+e-... A + B collisions with parton-cascades, cluster-hadronization, final-state hadron cascades

    International Nuclear Information System (INIS)

    Geiger, K.; Longacre, R.

    1999-01-01

    VNI is a general-purpose Monte-Carlo event-generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. It uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme, as well as the development of hadron cascades after hadronization. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time-development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position-space, momentum-space and color-space. The parton-evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi)hard interactions in QCD, involving 2 → 2 parton collisions, 2 → 1 parton fusion processes, and 1 → 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. Finally, the cascading of produced prehadronic clusters and of hadrons includes a multitude of 2 → n processes, and is modeled in parallel to the parton cascade description. This paper gives a brief review of the physics underlying VNI, as well as a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including simple examples), annotates input and control parameters, and discusses output data provided by it

  2. QCD and string theories

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1990-01-01

    This paper is devoted to a review of the connections between quantumchromodynamics (QCD) and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality

  3. QCD and hadronic strings

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1989-01-01

    This series of lectures is devoted to review ot he connections between QCD and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality.(author)

  4. Partonic transverse momenta in non-relativistic hyper-central quark potential models

    International Nuclear Information System (INIS)

    Diakonos, F.K.; Kaplis, N.K.; Maintas, X.N.

    2009-01-01

    We investigate the impact of three-body forces on the transverse-momentum distribution of partons inside the proton. This is achieved by considering the three-body problem in a class of hyper-central quark potential models. Solving the corresponding Schroedinger equation, we determine the quark wave function in the proton and with appropriate transformations and projections we find the transverse-momentum distribution of a single quark. In each case the parameters of the quark potentials are adjusted in order to sufficiently describe observable properties of the proton. Using a factorization ansatz, we incorporate the obtained transverse-momentum distribution in a perturbative QCD scheme for the calculation of the cross-section for prompt photon production in pp collisions. A large set of experimental data is fitted using as a single free parameter the mean partonic transverse momentum. The dependence of left angle k T right angle on the collision characteristics (initial energy and transverse momentum of the final photon) is much smoother when compared with similar results found in the literature using a Gaussian distribution for the partonic transverse momenta. Within the considered class of hyper-central quark potentials the one with the weaker dependence on the hyper-radius is preferred for the description of the data since it leads to the smoothest mean partonic transverse-momentum profile. We have repeated all the calculations using a two-body potential of the same form as the optimal (within the considered class) hyper-central potential in order to check if the presence of three-body forces is supported by the experimental data. Our analysis indicates that three-body forces influence significantly the form of the parton transverse-momentum distribution and consequently lead to an improved description of the considered data. (orig.)

  5. The breaking of Bjorken scaling in the covariant parton model

    International Nuclear Information System (INIS)

    Polkinghorne, J.C.

    1976-01-01

    Scale breaking is investigated in terms of a covariant parton model formulation of deep inelastic processes. It is shown that a consistent theory requires that the convergence properties of parton-hadron amplitudes should be modified as well as the parton being given form factors. Purely logarithmic violation is possible and the resulting model has many features in common with asymtotically free gauge theories. Behaviour at large and small ω and fixed q 2 is investigated. γW 2 should increase with q 2 at large ω and decrease with q 2 at small ω. Heuristic arguments are also given which suggest that the model would only lead to logarithmic modifications of dimensional counting results in purely hadronic deep scattering. (Auth.)

  6. What is a parton shower?

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science

    2017-05-15

    We consider idealized parton shower event generators that treat parton spin and color exactly, leaving aside the choice of practical approximations for spin and color. We investigate how the structure of such a parton shower generator is related to the structure of QCD. We argue that a parton shower with splitting functions proportional to αs can be viewed not just as a model, but as the lowest order approximation to a shower that is defined at any perturbative order. To support this argument, we present a formulation for a parton shower at order α{sup k}{sub s} for any k. Since some of the input functions needed are specified by their properties but not calculated, this formulation does not provide a useful recipe for an order α{sup k}{sub s} parton shower algorithm. However, in this formulation we see how the operators that generate the shower are related to operators that specify the infrared singularities of QCD.

  7. Valence QCD: Connecting QCD to the quark model

    International Nuclear Information System (INIS)

    Liu, K.F.; Dong, S.J.; Draper, T.; Sloan, J.; Leinweber, D.; Woloshyn, R.M.

    1999-01-01

    A valence QCD theory is developed to study the valence quark properties of hadrons. To keep only the valence degrees of freedom, the pair creation through the Z graphs is deleted in the connected insertions, whereas the sea quarks are eliminated in the disconnected insertions. This is achieved with a new 'valence QCD' Lagrangian where the action in the time direction is modified so that the particle and antiparticle decouple. It is shown in this valence version of QCD that the ratios of isovector to isoscalar matrix elements (e.g., F A /D A and F S /D S ratios) in the nucleon reproduce the SU(6) quark model predictions in a lattice QCD calculation. We also consider how the hadron masses are affected on the lattice and discover new insights into the origin of dynamical mass generation. It is found that, within statistical errors, the nucleon and the Δ become degenerate for the quark masses we have studied (ranging from 1 to 4 times the strange mass). The π and ρ become nearly degenerate in this range. It is shown that valence QCD has the C, P, T symmetries. The lattice version is reflection positive. It also has the vector and axial symmetries. The latter leads to a modified partially conserved axial Ward identity. As a result, the theory has a U(2N F ) symmetry in the particle-antiparticle space. Through lattice simulation, it appears that this is dynamically broken down to U q (N F )xU bar q (N F ). Furthermore, the lattice simulation reveals spin degeneracy in the hadron masses and various matrix elements. This leads to an approximate U q (2N F )xU bar q (2N F ) symmetry which is the basis for the valence quark model. In addition, we find that the masses of N, Δ,ρ,π,a 1 , and a 0 all drop precipitously compared to their counterparts in the quenched QCD calculation. This is interpreted as due to the disappearance of the 'constituent' quark mass which is dynamically generated through tadpole diagrams. The origin of the hyperfine splitting in the baryon is

  8. Nuclear physics aspects in the parton model of Feynman

    International Nuclear Information System (INIS)

    Pauchy Hwang, W.Y.

    1995-01-01

    The basic fact that pions couple strongly to nucleons has dominated various nuclear physics thinkings since the birth of the field more than sixty years ago. The parton model of Feynman, in which the structure of a nucleon (or a hadron) is characterized by a set of parton distributions, was proposed originally in late 1960's to treat high energy deep inelastic scattering, and later many other high energy physics experiments involving hadrons. Introduction of the concept of parton distributions signifies the departure of particle physics from nuclear physics. Following the suggestion that the sea quark distributions in a nucleon, at low and moderate Q 2 (at least up to a few GeV 2 ), can be attributed primarily to the probability of finding such quarks or antiquarks in the mesons (or recoiling baryons) associated with the nucleon, the author examines how nuclear physics aspects offer quantitative understanding of several recent experimental results, including the observed violation of the Gotfried sum rule and the so-called open-quotes proton spin crisisclose quotes. These results suggest that determination of parton distributions of a hadron at Q 2 of a few GeV 2 (and at small x) must in general take into account nuclear physics aspects. Implication of these results for other high-energy reactions, such as semi-inclusive hadron production in deep inelastic scattering, are also discussed

  9. Parton saturation and $N_{part}$ scaling of semi-hard processes in QCD

    CERN Document Server

    Kharzeev, Dima E; McLerran, L; 10.1016/S0370-2693(03)00420-9

    2003-01-01

    We argue that the suppression of high p/sub t/ hadrons discovered recently in heavy ion collisions at RHIC may be a consequence of saturation in the color glass condensate. We qualitatively and semi- quantitatively describe the data, in particular, the dependence upon the number of nucleon participants. We show that if parton saturation sets in at sufficiently small energy, then in nucleus-nucleus collisions at RHIC and LHC energies the cross sections of semi-hard processes should scale approximately with the number of participants, N/sub part/. Our results provide a possible explanation of both the absence of apparent jet quenching at SPS energies and its presence at RHIC. Under the same assumption we predict that in semi-central and central pA (dA) collisions at collider energies the dependence of semi-hard processes on the number of participating nucleons of the nucleus will change to ~(N/sub part//sup A/)/sup 1/2/. The forthcoming data on dA collisions will provide a crucial test of this description. (61 ...

  10. Scalar quantum chromodynamics in two dimensions and the parton model

    International Nuclear Information System (INIS)

    Shei, S.S.; Tsao, H.-S.

    1978-01-01

    SU(N) scalar quantum chromodynamics is studied in two space-time dimensions in the large-N limit. This is the model of color gauge fields interacting with scalar quarks. It is found that the consensual properties of four-dimensional QCD, i.e. infrared slavery, quark confinement, the charmonium picture. etc, are all realized. Moreover, the current in this model mimics nicely the behaviour of the current in four-dimensional QCD, in contrast to the original model of 't Hooft. (Auth.)

  11. Scalar quantum chromodynamics in two dimensions and parton model

    International Nuclear Information System (INIS)

    Shei, S.S.; Tsao, H.S.

    1977-05-01

    The SU(N) scalar quantum chromodynamics in two space-time dimensions in the large N limit are studied. This is the model of color gauge fields interacting with scalar quarks. It is found that the consensual properties of the four dimensional QCD, i.e., the infrared slavery, quark confinement, the charmonium picture etc. are all realized. Moreover, the current in this model mimics nicely the behaviors of current in the four dimensional QCD, in contrast to the original model of 't Hooft

  12. Understanding of QCD through solvable models

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, G.

    1980-07-01

    Various aspects of strong interaction physics are discussed. It is shown that several nontrivial features arise from non-perturbative 'solutions' of QCD-like models in (1+1) dimensions. An attempt is made to bring these features in (3+1) dimensional semiclassical treatments of QCD.

  13. Solvable models and hidden symmetries in QCD

    International Nuclear Information System (INIS)

    Yepez-Martinez, Tochtli; Hess, P. O.; Szczepaniak, A.; Civitarese, O.; Lerma H., S.

    2010-01-01

    We show that QCD Hamiltonians at low energy exhibit an SU(2) structure, when only few orbital levels are considered. In case many orbital levels are taken into account we also find a semi-analytic solution for the energy levels of the dominant part of the QCD Hamiltonian. The findings are important to propose the structure of phenomenological models.

  14. Massive lepton pair production: what has QCD done to the classical Drell-Yan model

    International Nuclear Information System (INIS)

    Berger, E.L.

    1982-11-01

    A report is presented of recent experimental and theoretical progress in studies of the production of massive lepton pairs in hadronic collisions. Among the topics discussed are deviations from scaling, the status of the proofs of factorization in the parton model, higher-order terms in the QCD expansion, the discrepancy between measured and predicted yields (K factor), high-twist terms, soft gluon effects, and transverse momentum distributions

  15. Deep inelastic processes. Phenomenology. Quark-parton model

    International Nuclear Information System (INIS)

    Ioffe, B.L.; Lipatov, L.N.; Khoze, V.A.

    1983-01-01

    Main theoretical approaches and experimental results related to deep inelastic processes are systematically outlined: electroproduction, neutrino scattering on nucleon, electron-positron pairs annihilation into hadron γγ collisions, production of lepton pairs in hadron collisions with a large effective mass or hadrons with large transverse momenta. Kinematics and phenomenology, space-time description of deep inelastic processes, sum rules, parton and quark-parton models are considered. The experiment is briefly discussed in the book. It is performed from the stand point of comparing it with the theory, experimental data are given as of June, 1982. Since the time of accomplishing the study on the manuscript a number of new experimental results not changing however the statements made in the book appeared. Principal consists in experiments with colliding proton-antiproton beams in CERN, which resulted in discovery of intermediate W-bozon

  16. On positivity of parton distributions

    International Nuclear Information System (INIS)

    Altarelli, G.; Forte, S.; Ridolfi, G.

    1998-01-01

    We discuss the bounds on polarized parton distributions which follow from their definition in terms of cross section asymmetries. We spell out how the bounds obtained in the naive parton model can be derived within perturbative QCD at leading order when all quark and gluon distributions are defined in terms of suitable physical processes. We specify a convenient physical definition for the polarized and unpolarized gluon distributions in terms of Higgs production from gluon fusion. We show that these bounds are modified by subleading corrections, and we determine them up to NLO. We examine the ensuing phenomenological implications, in particular in view of the determination of the polarized gluon distribution. (orig.)

  17. On positivity of parton distributions

    CERN Document Server

    Altarelli, Guido; Ridolfi, G; Altarelli, Guido; Forte, Stefano; Ridolfi, Giovanni

    1998-01-01

    We discuss the bounds on polarized parton distributions which follow from their definition in terms of cross section asymmetries. We spell out how the bounds obtained in the naive parton model can be derived within perturbative QCD at leading order when all quark and gluon distributions are defined in terms of suitable physical processes. We specify a convenient physical definition for the polarized and unpolarized gluon distributions in terms of Higgs production from gluon fusion. We show that these bounds are modified by subleading corrections, and we determine them up to NLO. We examine the ensuing phenomenological implications, in particular in view of the determination of the polarized gluon distribution.

  18. The parton model for the diffusion

    International Nuclear Information System (INIS)

    Ducati, M.B. Gay; Machado, M.V.T.

    1999-01-01

    We analyze the Buchmueller-Hebecker model for diffraction processes, point out its predictions to the diffractive structure function F D(3) 2 (x IP , β,Q 2 ). The break of factorization for the F D93) 2 present in recent H1 data is well described introducing an extra soft (reggeon) contribution as an extension to the model. (author)

  19. How do we model continuum QCD

    International Nuclear Information System (INIS)

    Cornwall, J.M.

    1986-01-01

    The nonperturbative aspects of continuum QCD are so complex that one can only hope to approach them through well-motivated models. The author reviews the general properties that any such model must have, based on the understanding of the gluon condensate in the QCD vacuum. A specific, practical model is proposed motivated by a picture of the condensate as made of thick vortex sheets self-consistently constructed from dynamically massive gluons. (author)

  20. Multiparticle production in a two-component dual parton model

    International Nuclear Information System (INIS)

    Aurenche, P.; Bopp, F.W.; Capella, A.; Kwiecinski, J.; Maire, M.; Ranft, J.; Tran Thanh Van, J.

    1992-01-01

    The dual parton model (DPM) describes soft and semihard multiparticle production. The version of the DPM presented in this paper includes soft and hard mechanisms as well as diffractive processes. The model is formulated as a Monte Carlo event generator. We calculate in this model, in the energy range of the hadron colliders, rapidity distributions and the rise of the rapidity plateau with the collision energy, transverse-momentum distributions and the rise of average transverse momenta with the collision energy, multiplicity distributions in different pseudorapidity regions, and transverse-energy distributions. For most of these quantities we find a reasonable agreement with experimental data

  1. Parton recombination model including resonance production. RL-78-040

    International Nuclear Information System (INIS)

    Roberts, R.G.; Hwa, R.C.; Matsuda, S.

    1978-05-01

    Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references

  2. Nonscaling parametrization of hadronic spectra and dual parton model

    International Nuclear Information System (INIS)

    Gaponenko, O.N.

    2001-01-01

    Using the popular Wdowczyk-Wolfendale parametrization (WW-parametrization) as an example one studies restrictions imposed by a dual parton model for different nonscaling parametrizations of the pulsed hadron spectra in soft hadron-hadron and hadron-nuclear interactions. One derived a new parametrization free from basic drawback of the WW-formulae. In the central range the determined parametrization show agreement with the Wdowczyk-Wolfendale formula, but in contrast to the last-named one it does not result in contradiction with the experiment due to fast reduction of inelastic factor reduction with energy increase [ru

  3. Parton recombination model including resonance production. RL-78-040

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R. G.; Hwa, R. C.; Matsuda, S.

    1978-05-01

    Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references.

  4. Explaining jet quenching with perturbative QCD alone

    CERN Document Server

    Zapp, Korinna C; Wiedemann, Urs A

    2011-01-01

    We present a new formulation of jet quenching in perturbative QCD beyond the eikonal approximation. Multiple scattering in the medium is modelled through infra-red-continued (2 -> 2) scattering matrix elements in QCD and the parton shower describing further emissions. The interplay between these processes is arranged in terms of a formation time constraint such that coherent emissions can be treated consistently. Emerging partons are hadronised by the Lund string model, tuned to describe LEP data in conjunction with the parton shower. Based on this picture we obtain a good description of the nuclear modification factor R_AA at RHIC and LHC.

  5. Scale breaking effects in the quark-parton model for large P perpendicular phenomena

    International Nuclear Information System (INIS)

    Baier, R.; Petersson, B.

    1977-01-01

    We discuss how the scaling violations suggested by an asymptotically free parton model, i.e., the Q 2 -dependence of the transverse momentum of partons within hadrons may affect the parton model description of large p perpendicular phenomena. We show that such a mechanism can provide an explanation for the magnitude of the opposite side correlations and their dependence on the trigger momentum. (author)

  6. Fractal structures and intermittency in QCD

    International Nuclear Information System (INIS)

    Gustafson, Goesta.

    1990-04-01

    New results are presented for fractal structures and intermittency in QCD parton showers. A geometrical interpretation of the anomalous dimension in QCD is given. It is shown that model predications for factorial moments in the PEP-PETRA energy range are increased. if the properties of directly produced pions are more carefully taken into account

  7. Holographic models and the QCD trace anomaly

    International Nuclear Information System (INIS)

    Goity, Jose L.; Trinchero, Roberto C.

    2012-01-01

    Five dimensional dilaton models are considered as possible holographic duals of the pure gauge QCD vacuum. In the framework of these models, the QCD trace anomaly equation is considered. Each quantity appearing in that equation is computed by holographic means. Two exact solutions for different dilaton potentials corresponding to perturbative and non-perturbative β-functions are studied. It is shown that in the perturbative case, where the β-function is the QCD one at leading order, the resulting space is not asymptotically AdS. In the non-perturbative case, the model considered presents confinement of static quarks and leads to a non-vanishing gluon condensate, although it does not correspond to an asymptotically free theory. In both cases analyses based on the trace anomaly and on Wilson loops are carried out.

  8. The instanton liquid model of QCD

    International Nuclear Information System (INIS)

    Blotz, A.

    1998-01-01

    Within a microscopic model for the non-perturbative vacuum of QCD, hadronic correlation functions are calculated. In the model the vacuum is a statistical, interacting ensemble of instantons and anti-instantons at the scale of Λ QCD . Hadronic two-point as well as three-point correlation functions are evaluated and compared with phenomenological information about the spectra, couplings and form factors. Especially the electro magnetic form factor of the pion is obtained and new predictions for the charm contribution to DIS structure functions are made

  9. A QCD motivated model for soft processes

    International Nuclear Information System (INIS)

    Kormilitzin, A.; Levin, E.

    2009-01-01

    In this talk we give a brief description of a QCD motivated model for both hard and soft interactions at high energies. In this model the long distance behaviour of the scattering amplitude is determined by the dipole scattering amplitude in the saturation domain.

  10. QCD and Standard Model Studies

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Carl A [Texas A & M Univ., College Station, TX (United States)

    2017-02-28

    Our group has focused on using jets in STAR to investigate the longitudinal and transverse spin structure of the proton. We performed measurements of the longitudinal double-spin asymmetry for inclusive jet production that provide the strongest evidence to date that the gluons in the proton with x>0.05 are polarized. We also made the first observation of the Collins effect in pp collisions, thereby providing an important test of the universality of the Collins fragmentation function and opening a new tool to probe quark transversity in the proton. Our studies of forward rapidity electromagnetic jet-like events raise serious question whether the large transverse spin asymmetries that have been seen for forward inclusive hadron production arise from conventional 2 → 2 parton scattering. This is the final technical report for DOE Grant DE-FG02-93ER40765. It covers activities during the period January 1, 2015 through November 30, 2016.

  11. Measurement of parton shower observables with OPAL

    Directory of Open Access Journals (Sweden)

    Fischer N.

    2016-01-01

    Full Text Available A study of QCD coherence is presented based on a sample of about 397,000 e+e- hadronic annihilation events collected at √s = 91 GeV with the OPAL detector at LEP. The study is based on four recently proposed observables that are sensitive to coherence effects in the perturbative regime. The measurement of these observables is presented, along with a comparison with the predictions of different parton shower models. The models include both conventional parton shower models and dipole antenna models. Different ordering variables are used to investigate their influence on the predictions.

  12. Unraveling hadron structure with generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Andrei Belitsky; Anatoly Radyushkin

    2004-10-01

    The recently introduced generalized parton distributions have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes - the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We discuss physical interpretation and basic properties of generalized parton distributions, their modeling and QCD evolution in the leading and next-to-leading orders. We describe how these functions enter a wide class of exclusive reactions, such as electro- and photo-production of photons, lepton pairs, or mesons.

  13. VNI version 4.1. Simulation of high-energy particle collisions in QCD: Space-time evolution of e{sup +}e{sup {minus}}...A + B collisions with parton-cascades, cluster-hadronization, final-state hadron cascades

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, K.; Longacre, R. [Brookhaven National Lab., Upton, NY (United States). Physics Dept.; Srivastava, D.K. [Variable Energy Cyclotron Centre, Calcutta (India)

    1999-02-01

    VNI is a general-purpose Monte-Carlo event-generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. It uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme, as well as the development of hadron cascades after hadronization. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time-development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position-space, momentum-space and color-space. The parton-evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi)hard interactions in QCD, involving 2 {r_arrow} 2 parton collisions, 2 {r_arrow} 1 parton fusion processes, and 1 {r_arrow} 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. Finally, the cascading of produced prehadronic clusters and of hadrons includes a multitude of 2 {r_arrow} n processes, and is modeled in parallel to the parton cascade description. This paper gives a brief review of the physics underlying VNI, as well as a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including simple examples), annotates input and control parameters, and discusses output data provided by it.

  14. Pre-equilibrium parton dynamics: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin-Nian [ed.

    1993-12-31

    This report contains papers on the following topics: parton production and evolution; QCD transport theory; interference in the medium; QCD and phase transition; and future heavy ion experiments. This papers have been indexed separately elsewhere on the data base.

  15. Pre-equilibrium parton dynamics: Proceedings

    International Nuclear Information System (INIS)

    Wang, Xin-Nian

    1993-01-01

    This report contains papers on the following topics: parton production and evolution; QCD transport theory; interference in the medium; QCD and phase transition; and future heavy ion experiments. This papers have been indexed separately elsewhere on the data base

  16. Partons and the EMC spin effect

    International Nuclear Information System (INIS)

    Bass, S.D.

    1992-03-01

    We focus on the patron model and the role of the axial anomaly in polarised deep inelastic scattering. We show that the axial anomaly is relevant to each of the higher moments of the spin dependent structure function g 1 (x) and not just the first moment. This result implies that the factorisation of mass singularities is not sufficient to define the parton model in spin dependent quantum chromodynamics (QCD). (It is certainly a necessary condition.) We also need to consider the locality of the photon parton interaction. The anomaly is observed over all x in the (EMC)g 1 (x) data. (author)

  17. Hadron Azimuthal Correlations and Mach-like Structures in a Partonic/Hadronic Transport Model

    International Nuclear Information System (INIS)

    Ma, G.L.; Zhang, S.; Ma, Y.G.; Cai, X.Z.; Chen, J.H.; He, Z.J.; Huang, H.Z.; Long, J.L.; Shen, W.Q.; Shi, X.H.; Zhong, C.; Zuo, J.X.

    2007-01-01

    With a multi-phase transport model (AMPT) with both partonic and hadronic interactions, two- and three-particle azimuthal correlations in Au + Au collisions at s NN =200 GeV have been studied by the mixing-event technique. A Mach-like structure has been observed in two- and three-particle correlations in central collisions. It has been found that both partonic and hadronic dynamical mechanisms contribute to the Mach-like structure. However, only hadronic rescattering is unable to reproduce experimental amplitude of Mach-like structure, and parton cascade process is indispensable. The results of three-particle correlation indicate a partonic Mach-like shock wave can be produced by strong parton cascade in central Au+Au collisions

  18. Parton Distributions Working Group

    International Nuclear Information System (INIS)

    Barbaro, L. de; Keller, S. A.; Kuhlmann, S.; Schellman, H.; Tung, W.-K.

    2000-01-01

    This report summarizes the activities of the Parton Distributions Working Group of the QCD and Weak Boson Physics workshop held in preparation for Run II at the Fermilab Tevatron. The main focus of this working group was to investigate the different issues associated with the development of quantitative tools to estimate parton distribution functions uncertainties. In the conclusion, the authors introduce a Manifesto that describes an optimal method for reporting data

  19. Semihard QCD

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1989-01-01

    Recent results concerning the small x limit of parton distributions in perturbative QCD are reviewed. This includes in particular discussion of the bare Pomeron in perturbative QCD and of shadowing corrections. The minijet production processes and possible manifestation of semihard interactions in high energy pp-bar elastic scattering are also discussed. 46 refs., 8 figs. (author)

  20. One-loop QCD and Higgs bosons to partons processes using six-dimensional helicity and generalized unitarity

    International Nuclear Information System (INIS)

    Davies, Scott

    2011-01-01

    We combine the six-dimensional helicity formalism of Cheung and O'Connell with D-dimensional generalized unitarity to obtain a new formalism for computing one-loop amplitudes in dimensionally regularized QCD. With this procedure, we simultaneously obtain the pieces that are constructible from four-dimensional unitarity cuts and the rational pieces that are missed by them, while retaining a helicity formalism. We illustrate the procedure using four- and five-point one-loop amplitudes in QCD, including examples with external fermions. We also demonstrate the technique's effectiveness in next-to-leading order QCD corrections to Higgs processes by computing the next-to-leading order correction to the Higgs plus three positive-helicity gluons amplitude in the large top-quark mass limit.

  1. Problem with parton-model descriptions of neutrino data

    International Nuclear Information System (INIS)

    Barger, V.; Weiler, T.; Phillips, R.J.N.

    1976-01-01

    The present results from νN and ν-barN scattering experiments appear to place conflicting requirements on conventional quark--parton models. The strong rise with energy of /sup ν-barN and sigma/sup ν-barN/sub T//sigma/ sup νN//sub T/ seems to require new-particle (charm) production from valence quarks in ν-barN interactions, whereas the x dependence of dimuon events and the dsigma/dy anomaly suggest that ν-barN charm production comes from sea quarks. No single model gives a fully satisfactory explanation of all the present data. We draw attention to this problem, illustrate the conflicting requirements of data with particular models, and discuss possible resolutions. The closest overall compromise with the present data is obtained with the six-quark model, using charm-quark masses m/sub c/ = 1.5 GeV, m/sub b/ = 5 GeV, and a higher t-quark mass

  2. QCD ghost f(T)-gravity model

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K.; Abdolmaleki, A.; Asadzadeh, S. [University of Kurdistan, Department of Physics, Sanandaj (Iran, Islamic Republic of); Safari, Z. [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)

    2013-09-15

    Within the framework of modified teleparallel gravity, we reconstruct a f(T) model corresponding to the QCD ghost dark energy scenario. For a spatially flat FRW universe containing only the pressureless matter, we obtain the time evolution of the torsion scalar T (or the Hubble parameter). Then, we calculate the effective torsion equation of state parameter of the QCD ghost f(T)-gravity model as well as the deceleration parameter of the universe. Furthermore, we fit the model parameters by using the latest observational data including SNeIa, CMB and BAO data. We also check the viability of our model using a cosmographic analysis approach. Moreover, we investigate the validity of the generalized second law (GSL) of gravitational thermodynamics for our model. Finally, we point out the growth rate of matter density perturbation. We conclude that in QCD ghost f(T)-gravity model, the universe begins a matter dominated phase and approaches a de Sitter regime at late times, as expected. Also this model is consistent with current data, passes the cosmographic test, satisfies the GSL and fits the data of the growth factor well as the {Lambda}CDM model. (orig.)

  3. Dynamical equilibration in strongly-interacting parton-hadron matter

    Directory of Open Access Journals (Sweden)

    Gorenstein M.

    2011-04-01

    Full Text Available We study the kinetic and chemical equilibration in 'infinite' parton-hadron matter within the Parton-Hadron-String Dynamics transport approach, which is based on a dynamical quasiparticle model for partons matched to reproduce lattice-QCD results – including the partonic equation of state – in thermodynamic equilibrium. The 'infinite' matter is simulated within a cubic box with periodic boundary conditions initialized at different baryon density (or chemical potential and energy density. The transition from initially pure partonic matter to hadronic degrees of freedom (or vice versa occurs dynamically by interactions. Different thermody-namical distributions of the strongly-interacting quark-gluon plasma (sQGP are addressed and discussed.

  4. Hard QCD at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S

    2008-02-15

    We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W{sup {+-}}/Z-boson, Higgs boson or top quark production. (orig.)

  5. Hard QCD at hadron colliders

    International Nuclear Information System (INIS)

    Moch, S.

    2008-02-01

    We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W ± /Z-boson, Higgs boson or top quark production. (orig.)

  6. New approach to parton shower Monte Carlo event generators for precision QCD theory: HERWIRI1.0(31)

    International Nuclear Information System (INIS)

    Joseph, S.; Ward, B. F. L.; Majhi, S.; Yost, S. A.

    2010-01-01

    By implementing the new IR-improved Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-Callan-Symanzik (DGLAP-CS) kernels recently developed by one of us in the HERWIG6.5 environment we generate a new Monte Carlo (MC), HERWIRI1.0(31), for hadron-hadron scattering at high energies. We use MC data to illustrate the comparison between the parton shower generated by the standard DGLAP-CS kernels and that generated by the new IR-improved DGLAP-CS kernels. The interface to MC-NLO, MC-NLO/HERWIRI, is illustrated. Comparisons with FNAL data and some discussion of possible implications for LHC phenomenology are also presented.

  7. CPsup(N-1) model: a toy model for QCD

    International Nuclear Information System (INIS)

    Cant, R.J.; Davis, A.C.

    1979-01-01

    The authors examine the CP 2 sup(N-1) models and discuss their relevance as toy models for QCD 4 . Specifically, they study the role of instantons, theta vacua, and confinement in the 1/N expansion. The results, and comparisons with other two-dimensional models, suggest that most of the interesting features of these models are peculiarities of two-dimensional space-time and cannot be expected to reappear in QCD 4 . (Auth.)

  8. Parton distributions with QED corrections

    NARCIS (Netherlands)

    Collaboration, The NNPDF; Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Debbio, Luigi Del; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Rojo, Juan

    2013-01-01

    We present a set of parton distribution functions (PDFs), based on the NNPDF2.3 set, which includes a photon PDF, and QED contributions to parton evolution. We describe the implementation of the combined QCD+QED evolution in the NNPDF framework. We then provide a first determination of the full set

  9. Tuning of the PYTHIA 6.4 Multiple Parton Interaction model to Minimum Bias and Underlying Event data

    CERN Document Server

    Firdoua, Nameequa

    QCD has been quite successful in describing hadronic interactions at large transfer momenta, also known as hard interactions. However high energy pp and p p collisions are dominated by soft partonic collisions. Di erent phenomenological models are implemented in several Monte Carlo (MC) event generators such as PYTHIA, PHOJET and HERWIG etc., which attempt to simulate these interactions. These MC event generators have free parameters which need to be tuned to improve the agreement with the data. In this thesis the MC event generator PYTHIA6.424 is considered and the optimization of its model parameters have been presented. This work mainly focuses on tuning of multiple parton interaction parameters to Minimum Bias and Underlying event published data from ATLAS at 0.9 and 7TeV and from CDF II at 1.96 TeV. The method employed to tune the parameters is based on a linear and iterative approach and allows the simultaneous variation of many parameters. Six parameters are tuned, which are found to be...

  10. A transverse lattice QCD model for mesons

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Apoorva D.; Ratabole, Raghunath

    2004-03-01

    QCD is analysed with two light-front continuum dimensions and two transverse lattice dimensions. In the limit of large number of colours and strong transverse gauge coupling, the contributions of light-front and transverse directions factorise in the dynamics, and the theory can be analytically solved in a closed form. An integral equation is obtained, describing the properties of mesons, which generalises the 't Hooft equation by including spin degrees of freedom. The meson spectrum, light-front wavefunctions and form factors can be obtained by solving this equation numerically. These results would be a good starting point to model QCD observables which only weakly depend on transverse directions, e.g. deep inelastic scattering structure functions.

  11. The average number of partons per clan in rapidity intervals in parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, A. [Turin Univ. (Italy). Ist. di Fisica Teorica; Lupia, S. [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut; Ugoccioni, R. [Lund Univ. (Sweden). Dept. of Theoretical Physics

    1996-04-01

    The dependence of the average number of partons per clan on virtuality and rapidity variables is analytically predicted in the framework of the Generalized Simplified Parton Shower model, based on the idea that clans are genuine elementary subprocesses. The obtained results are found to be qualitatively consistent with experimental trends. This study extends previous results on the behavior of the average number of clans in virtuality and rapidity and shows how important physical quantities can be calculated analytically in a model based on essentials of QCD allowing local violations of the energy-momentum conservation law, still requiring its global validity. (orig.)

  12. The average number of partons per clan in rapidity intervals in parton showers

    International Nuclear Information System (INIS)

    Giovannini, A.; Lupia, S.; Ugoccioni, R.

    1996-01-01

    The dependence of the average number of partons per clan on virtuality and rapidity variables is analytically predicted in the framework of the Generalized Simplified Parton Shower model, based on the idea that clans are genuine elementary subprocesses. The obtained results are found to be qualitatively consistent with experimental trends. This study extends previous results on the behavior of the average number of clans in virtuality and rapidity and shows how important physical quantities can be calculated analytically in a model based on essentials of QCD allowing local violations of the energy-momentum conservation law, still requiring its global validity. (orig.)

  13. High momentum transfer processes in QCD

    International Nuclear Information System (INIS)

    Efremov, A.V.; Radyushkin, A.V.

    1978-01-01

    A unified approach to the investigation of inclusive high momentum transfer processes in the QCD framework is proposed. A modified parton model (with parton distribution functions depending on an additional renormalization parameter) is shown to be valid in all orders of perturbation theory. The approach is also applicable for studying wide-angle elastic scattering processes of colourless bound states of quarks (the hadrons). The asymptotic behaviour of pion electromagnetic form factor is calculated as an example

  14. A Parton Shower for High Energy Jets

    CERN Document Server

    Andersen, Jeppe R; Smillie, Jennifer M

    2011-01-01

    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss in detail the arising description of the soft, collinear and hard regions by examples in pure QCD jet-production.

  15. Chiral models of low energy QCD

    International Nuclear Information System (INIS)

    Ripka, G.

    1993-01-01

    Two processes may be distinguished when a hadron propagates in a dense baryonic medium. The polarization of the medium and the change in the quark structure of the hadron. The polarization of the medium is better described in terms of colorless mesons and nucleons while the intrinsic change of the hadron is better described by quark models. It is shown how to couple the two processes. The scaling of effective Lagrangians, is related to changes in the quark constituent masses, based on the QCD scale anomaly. (author) 62 refs

  16. Challenges for QCD theory: some personal reflections

    International Nuclear Information System (INIS)

    Sjöstrand, T

    2013-01-01

    At the LHC all processes are QCD ones, whether ‘signal’ or ‘background’. In this review the frontiers of current QCD research are addressed, towards increased understanding, improved calculational precision, and role in potential future discoveries. Issues raised include: - the limits of perturbative QCD calculations and parton distribution usage,; - the nature of multiparton interactions,; - the impact of colour reconnection on physical observables,; - the need for progress on hadronization modelling,; - the improvements of parton showers and their combination with the matrix-element description,; - the use of QCD concepts in Beyond-the-Standard-Model scenarios and; - the key position of event generators and other software in the successful exploration of LHC physics. On the way, several questions are posed, where further studies are needed. (paper)

  17. Cross sections and multiparticle production at supercollider energies in the dual parton model

    International Nuclear Information System (INIS)

    Ranft, J.

    1993-01-01

    The dual parton model (DPM) describes soft and semihard multiparticle production and treats diffractive processes for the first time in a consistent way. The model is formulated in the form of a Monte-Carlo event generator, DTUJET for hadron-hadron collisions at collider energies. The uncertainties in the model predictions in the TeV energy range due to the unknown parton structure functions at x≤0.02 is explored. The behaviour of the model studied in the forward fragmentation region, which is especially relevant for the interaction of Cosmic Rays

  18. QCD Monte-Carlo model tuning studies with CMS data at 13 TeV

    CERN Document Server

    Sunar Cerci, Deniz

    2018-01-01

    New CMS PYTHIA 8 event tunes are presented. The new tunes are obtained using minimum bias and underlying event observables using Monte Carlo configurations with consistent parton distribution functions and strong coupling constant values in the matrix element and the parton shower. Validation and performance studies are presented by comparing the predictions of the new tune to various soft- and hard-QCD measurements at 7, 8 and 13 TeV with CMS.

  19. A new perturbative approach to QCD

    International Nuclear Information System (INIS)

    Pervushin, V.N.; Kallies, W.; Sarikov, N.A.

    1988-01-01

    For the description of bound states in QED and QCD the physical perturbation theory on the spatial components of the vector over the exact solution, defined by the time one, is proposed. It is shown this perturbation theory in QCD can be redefined so that it reproduces the main elements of hadron physics: confinement, spectroscopy of light and heavy quarkonia, dual-resonance amplitudes, chiral Lagrangians and the parton model

  20. Large transverse momentum processes in a non-scaling parton model

    International Nuclear Information System (INIS)

    Stirling, W.J.

    1977-01-01

    The production of large transverse momentum mesons in hadronic collisions by the quark fusion mechanism is discussed in a parton model which gives logarithmic corrections to Bjorken scaling. It is found that the moments of the large transverse momentum structure function exhibit a simple scale breaking behaviour similar to the behaviour of the Drell-Yan and deep inelastic structure functions of the model. An estimate of corresponding experimental consequences is made and the extent to which analogous results can be expected in an asymptotically free gauge theory is discussed. A simple set of rules is presented for incorporating the logarithmic corrections to scaling into all covariant parton model calculations. (Auth.)

  1. Importance of Lorentz structure in the parton model: Target mass corrections, transverse momentum dependence, positivity bounds

    International Nuclear Information System (INIS)

    D'Alesio, U.; Leader, E.; Murgia, F.

    2010-01-01

    We show that respecting the underlying Lorentz structure in the parton model has very strong consequences. Failure to insist on the correct Lorentz covariance is responsible for the existence of contradictory results in the literature for the polarized structure function g 2 (x), whereas with the correct imposition we are able to derive the Wandzura-Wilczek relation for g 2 (x) and the target-mass corrections for polarized deep inelastic scattering without recourse to the operator product expansion. We comment briefly on the problem of threshold behavior in the presence of target-mass corrections. Careful attention to the Lorentz structure has also profound implications for the structure of the transverse momentum dependent parton densities often used in parton model treatments of hadron production, allowing the k T dependence to be derived explicitly. It also leads to stronger positivity and Soffer-type bounds than usually utilized for the collinear densities.

  2. How dense does parton matter get in Pb + Pb collisions at the CERN SPS?

    International Nuclear Information System (INIS)

    Geiger, K.; Mueller, B.

    1998-01-01

    The qualitative features of parton production through materialization in heavy-ion collisions are examined within perturbative QCD, and the magnitude of the resulting parton density created during the early stage of the collisions is estimated. The implications for 'anomalous' J/ψ suppression observed in Pb + Pb collisions at the CERN SPS are discussed. The A-dependence of absorption of J/ψ by (partonic) comovers is steeper than assumed in most phenomenological models, because the absorption process is dominated by quasi-perturbative QCD interactions. The argument is supported by results recently obtained in the framework of the parton cascade model. Significant 'anomalous' suppression for Pb + Pb collisions at the CERN-SPS are predicted, but not for S + U collisions. (author)

  3. Dissociation of 1P states in hot QCD Medium Using Quasi-Particle Model

    Science.gov (United States)

    Nilima, Indrani; Agotiya, Vineet Kumar

    2018-03-01

    We extend the analysis of a very recent work [1] to study the dissociation phenomenon of 1P states of the charmonium and bottomonium spectra (χc and χb) in a hot QCD medium using Quasi-Particle Model. This study employed a medium modified heavy quark potential which has quite different form in the sense that it has a lomg range Coulombic tail in addition to the Yukawa term even above the deconfinement temperature. Then we study the flavor dependence of their binding energies and explore the nature of dissociation temperatures by employing the Quasi-Particle debye mass for pure gluonic and full QCD case. Interestingly, the dissociation temperatures obtained by employing EoS1 and EoS2 with the Γ criterion, is closer to the upper bound of the dissociation temperatures which are obtained by the dissolution of a given quarkonia state by the mean thermal energy of the quasi-partons in the hot QCD/QGP medium.

  4. Evolution equation for the shape function in the parton model approach to inclusive B decays

    International Nuclear Information System (INIS)

    Baek, Seungwon; Lee, Kangyoung

    2005-01-01

    We derive an evolution equation for the shape function of the b quark in an analogous way to the Altarelli-Parisi equation by incorporating the perturbative QCD correction to the inclusive semileptonic decays of the B meson. Since the parton picture works well for inclusive B decays due to the heavy mass of the b quark, the scaling feature manifests and the decay rate may be expressed by a single structure function describing the light-cone distribution of the b quark apart from the kinematic factor. The evolution equation introduces a q 2 dependence of the shape function and violates the scaling properties. We solve the evolution equation and discuss the phenomenological implication.

  5. Electroweak Higgs boson production in the standard model effective field theory beyond leading order in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Degrande, Celine [CERN, Theory Division, Geneva 23 (Switzerland); Fuks, Benjamin [Sorbonne Universites, UPMC Univ. Paris 06, Paris (France); CNRS, Paris (France); Mawatari, Kentarou [Universite Grenoble-Alpes, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Vrije Universiteit Brussel, Theoretische Natuurkunde and IIHE/ELEM, International Solvay Institutes, Brussels (Belgium); Mimasu, Ken [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Universite catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium); Sanz, Veronica [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-04-15

    We study the impact of dimension-six operators of the standard model effective field theory relevant for vector-boson fusion and associated Higgs boson production at the LHC. We present predictions at the next-to-leading order accuracy in QCD that include matching to parton showers and that rely on fully automated simulations. We show the importance of the subsequent reduction of the theoretical uncertainties in improving the possible discrimination between effective field theory and standard model results, and we demonstrate that the range of the Wilson coefficient values allowed by a global fit to LEP and LHC Run I data can be further constrained by LHC Run II future results. (orig.)

  6. Description of inelastic nucleus-nucleus interactions at medium energy using dual parton model

    International Nuclear Information System (INIS)

    Polanski, A.; Shmakov, S.Yu.; Uzhinskij, V.V.

    1989-01-01

    It is shown that the dual parton model taking into account the processes of diffraction dissociation to the low mass states and finite energy corrections to the asymptotic Abramovski-Gribov-Kancheli cutting rules allows satisfactory description of existing experimental data on hadron-nucleus and nucleus-nucleus interactions at medium energy. (orig.)

  7. Constituent quarks as clusters in quark-gluon-parton model. [Total cross sections, probability distributions

    Energy Technology Data Exchange (ETDEWEB)

    Kanki, T [Osaka Univ., Toyonaka (Japan). Coll. of General Education

    1976-12-01

    We present a quark-gluon-parton model in which quark-partons and gluons make clusters corresponding to two or three constituent quarks (or anti-quarks) in the meson or in the baryon, respectively. We explicitly construct the constituent quark state (cluster), by employing the Kuti-Weisskopf theory and by requiring the scaling. The quark additivity of the hadronic total cross sections and the quark counting rules on the threshold powers of various distributions are satisfied. For small x (Feynman fraction), it is shown that the constituent quarks and quark-partons have quite different probability distributions. We apply our model to hadron-hadron inclusive reactions, and clarify that the fragmentation and the diffractive processes relate to the constituent quark distributions, while the processes in or near the central region are controlled by the quark-partons. Our model gives the reasonable interpretation for the experimental data and much improves the usual ''constituent interchange model'' result near and in the central region (x asymptotically equals x sub(T) asymptotically equals 0).

  8. Measurements of Particle Production, Underlying Event and Double Parton Interactions at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00439671; The ATLAS collaboration

    2016-01-01

    The effects of soft, non-pertubative strong interactions (QCD) are an important part of the phenomenology of the events at hadron colliders, as the LHC. In order to constrain the parameters of models of soft QCD, diverse measurements are provided by the ALICE, ATLAS and CMS collaborations. Measurements of particle production, underlying event and double parton interactions are presented. In general, reasonable agreement between the measured data and the models is found, but discrepancies hint at the need for a better description.

  9. The color dielectric model of QCD

    International Nuclear Information System (INIS)

    Pirner, H.-J.; Massachusetts Inst. of Tech., Cambridge, MA; Massachusetts Inst. of Tech., Cambridge, MA

    1992-01-01

    This paper demonstrates the emergence of valence gluons and their bound states, the glueballs from perturbative quantum chromodynamics (QCD). We discuss the phenomenological constraints and theoretical method needed to generate effective glueballs actions. We show how color dielectric confinement works naively and in the lattice model of color dielectrics. This lattice model is derived for SU(2) color by a blockspinning Monte Carlo renormalization group procedure. We interpret the resulting long-distance as a strongly interacting lattice string theory where the valence link gluon fields randomize in the color dielectric background which mimics the integrated out high-frequency gluon modes in the vacuum. The fluctuations of the color dielectric fields are related to color neutral glueballs modes. We give the extension of this color dielectric SU(2) theory for general SU(N) with quarks and address the problems associated with combining confinement and chiral symmetry breaking. Finally we prove the efficiency of the effective theory in applications to the heavy quark system, the the baryon, to the nucleon-nucleon interaction, to baryon models and the gluon plasma transition. In all those cases the behavior of the higher energy gluons can be monitored via the color dielectric fields. An increase in the energy density from ''deconfining'' the higher frequency modes inside the flux tube or in thermally excited matter shows up as an increase in the value of the color dielectric field and its associated energy density. (Author)

  10. QCD inspired bag model of quarkonium

    International Nuclear Information System (INIS)

    Hasenfratz, P.; Horgan, R.R.; Kuti, J.; Richard, J.M.

    1981-01-01

    The QCD motivated bag model is applied to heavy quark-antiquark systems. The effect of colored glue in the model is shown to explain the rapid cross-over of the static QQ potential from the asymptotically free Coulomb region into the linear confinement regime. The spin-dependent force between static quarks is derived in Coulomb gauge from the exchange of a confined transverse gluon. The dimensional bag parameter Λ/sub B/ = 235 MeV and the quark-gluon coupling constant α = 0.38 as defined at r/sub QQ/approx.0.2 fermi are determined from a good fit of the cc-bar and bb-bar spectra. The fit is in serious disagreement with the widely accepted MIT parameters. As an important test of our model, we calculate the rich spectrum of QQ glue states. In UPSILON particle spectroscopy we predict a narrow QQ glue state with exotic quantum numbers J/sup PC/ = 1 -+ below the BB threshold. Its experimental confirmation would be the first direct evidence for colored glue in the hadron spectrum

  11. QCD inspired bag model of quarkonium

    CERN Document Server

    Hasenfratz, Peter; Kuti, Julius; Richard, J M

    1981-01-01

    The QCD motivated bag model is applied to heavy quark-antiquark systems. The effect of colored glue in the model is shown to explain the rapid cross-over of the static QQ potential from the asymptotically free Coulomb region into the linear confinement regime. The spin-dependent force between static quarks is derived in Coulomb gauge from the exchange of a confined transverse gluon. The dimensional bag parameter Lambda /sub B/=235 MeV and the quark-gluon coupling constant alpha =0.38 as defined at r/sub QQ/ approximately 0.2 fermi are determined from a good fit of the cc and bb spectra. The fit is in serious disagreement with the widely accepted MIT parameters. As an important test of their model, the authors calculate the rich spectrum of QQ glue states. In Upsilon particle spectroscopy they predict a narrow QQglue state with exotic quantum numbers J/sup PC/=1/sup -+/ below the BB threshold. Its experimental confirmation would be the first direct evidence for colored glue in the hadron spectrum. (3 refs).

  12. Identification of Parton Pairs in a Dijet Event and Investigation of Its Effects on Dijet Resonance Search

    Directory of Open Access Journals (Sweden)

    Sertac Ozturk

    2014-01-01

    Full Text Available Being able to distinguish parton pair type in a dijet event could significantly improve the search for new particles that are predicted by the theories beyond the Standard Model at the Large Hadron Collider. To explore whether parton pair types manifesting themselves as a dijet event could be distinguished on an event-by-event basis, I performed a simulation based study considering observable jet variables. I found that using a multivariate approach can filter out about 80% of the other parton pairs while keeping more than half of the quark-quark or gluon-gluon parton pairs in an inclusive QCD dijet distribution. The effects of event-by-event parton pair tagging for dijet resonance searches were also investigated and I found that improvement on signal significance after applying parton pair tagging can reach up to 4 times for gluon-gluon resonances.

  13. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators.

    Science.gov (United States)

    Backović, Mihailo; Krämer, Michael; Maltoni, Fabio; Martini, Antony; Mawatari, Kentarou; Pellen, Mathieu

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s -channel mediators. We implement such models in the FeynRules/MadGraph5_aMC@NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s -channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties.

  14. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators

    Energy Technology Data Exchange (ETDEWEB)

    Backović, Mihailo [Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Krämer, Michael [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, 52056, Aachen (Germany); Maltoni, Fabio; Martini, Antony [Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Mawatari, Kentarou, E-mail: kentarou.mawatari@vub.ac.be [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Pleinlaan 2, 1050, Brussels (Belgium); Pellen, Mathieu [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, 52056, Aachen (Germany)

    2015-10-07

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s-channel mediators. We implement such models in the FeynRules/MadGraph5{sub a}MC@NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s-channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties.

  15. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators

    Energy Technology Data Exchange (ETDEWEB)

    Backovic, Mihailo; Maltoni, Fabio; Martini, Antony [Universite catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium); Kraemer, Michael; Pellen, Mathieu [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany); Mawatari, Kentarou [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Brussels (Belgium)

    2015-10-15

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s-channel mediators. We implement such models in the FeynRules/MadGraph5{sub a}MC rate at NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s-channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties. (orig.)

  16. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators

    International Nuclear Information System (INIS)

    Backovic, Mihailo; Maltoni, Fabio; Martini, Antony; Kraemer, Michael; Pellen, Mathieu; Mawatari, Kentarou

    2015-01-01

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s-channel mediators. We implement such models in the FeynRules/MadGraph5 a MC rate at NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s-channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties. (orig.)

  17. Geometrical parton

    Energy Technology Data Exchange (ETDEWEB)

    Ebata, T [Tohoku Univ., Sendai (Japan). Coll. of General Education

    1976-06-01

    The geometrical distribution inferred from the inelastic cross section is assumed to be proportional to the partial waves. The precocious scaling and the Q/sup 2/-dependence of various quantities are treated from the geometrical point of view. It is shown that the approximate conservation of the orbital angular momentum may be a very practical rule to understand the helicity structure of various hadronic and electromagnetic reactions. The rule can be applied to inclusive reactions as well. The model is also applied to large angle processes. Through the discussion, it is suggested that many peculiar properties of the quark-parton can be ascribed to the geometrical effects.

  18. The first lap in QCD

    International Nuclear Information System (INIS)

    Close, F.E.

    1980-07-01

    The idea that quantum chromodynamics is Nature's choice for the theory of quark interactions and that desirable phenomena, such as quark confinement, are consequences of it are considered. The lecture is presented under the headings: (1) Why do we believe that quarks have colour. (2) A rapid summary of the parton model in deep inelastic scattering. (3) Non Abelian theories: the vertices. (4) Hyperfine splitting of hadrons: more evidence for colour. (5) Renormalisation. (6) Alpha(Q 2 ). (7) The renormalisation group equations. (8) QCD, the renormalisation group equation and deep inelastic data. (9) Higher order corrections in QCD. (U.K.)

  19. QCD and panti p collider physics

    International Nuclear Information System (INIS)

    Altarelli, G.

    1983-01-01

    The relevance for QCD of experiments at the SPS collider rests on the possibility they offer of testing parton dynamics in a new and highly non trivial configuration. For example, hadron-hadron interactions in the deep inelastic, large Psub(perpendicular to), region are non linear in parton densities. Also the relevant predictions cannot be derived by less committed formulations than the explicit QCD improved parton model, as for example light cone dominance and operator expansion. This complexity, which is important for providing qualitatively new testing grounds is however paid for by a loss of precision in predictive power. In addition to that, panti p collisions are also important as jet sources with an energy scale comparable to that of an e + e - ring with beam energy up to 50 GeV and more. (orig./HSI)

  20. Neural network and parton two fireball model for pseudo-rapidity distribution in proton-proton collision

    International Nuclear Information System (INIS)

    El-Bakry, M.Y.

    2000-01-01

    Pseudo-Rapidity distribution of created pions from proton-proton (p-p) interaction has been studied in the framework of artificial neural network (ANN) and the parton two fireball model (PTFM). The predicted distributions from the ANN based model and the parton two fireball model is compared with the corresponding experimental results. The ANN model has proved better matching for experimental data specially at high energies where the conventional two fireball model representation deteriorates

  1. The Drell-Yan process in a non-scaling parton model

    International Nuclear Information System (INIS)

    Polkinghorne, J.C.

    1976-01-01

    The Drell-Yan process of heavy lepton pair production in hadronic collisions is discussed in a parton model which gives logarithmic corrections to Bjorken scaling. It is found that the moments of the Drell-Yan structure function exhibit a simple scale breaking behaviour closely related to the behaviour of moments of the deep inelastic structure function of the model. The extent to which analogous results can be expected in an asymptotically free gauge theory is discussed. (Auth.)

  2. Test of quark fragmentation in the quark-parton model framework

    International Nuclear Information System (INIS)

    Derrick, M.; Barish, S.J.; Barnes, V.E.

    1979-08-01

    The hadronic system produced in charged-current antineutrino interactions is used to study fragmentation of the d-quark. Some problems encountered in separating the current quark-fragments are discussed. The fragmentation function for the current quark is in good agreement with the expectations of the naive quark-parton model and, in particular, there is no evidence of either a Q 2 - or x/sub BJ/-dependence. 10 references

  3. Investigation of high-p{sub T} phenomena within a partonic transport model

    Energy Technology Data Exchange (ETDEWEB)

    Fochler, Oliver

    2011-10-26

    In the work presented herein the microscopic transport model BAMPS (Boltzmann Approach to Multi-Parton Scatterings) is applied to simulate the time evolution of the hot partonic medium that is created in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and in Pb+Pb collisions at the recently started Large Hadron Collider (LHC). The study is especially focused on the investigation of the nuclear modification factor R{sub AA}, that quantifies the suppression of particle yields at large transverse momentum with respect to a scaled proton+proton reference, and the simultaneous description of the collective properties of the medium in terms of the elliptic flow v{sub 2} within a common framework. (orig.)

  4. Investigation of high-pT phenomena within a partonic transport model

    International Nuclear Information System (INIS)

    Fochler, Oliver

    2011-01-01

    In the work presented herein the microscopic transport model BAMPS (Boltzmann Approach to Multi-Parton Scatterings) is applied to simulate the time evolution of the hot partonic medium that is created in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and in Pb+Pb collisions at the recently started Large Hadron Collider (LHC). The study is especially focused on the investigation of the nuclear modification factor R AA , that quantifies the suppression of particle yields at large transverse momentum with respect to a scaled proton+proton reference, and the simultaneous description of the collective properties of the medium in terms of the elliptic flow v 2 within a common framework. (orig.)

  5. Photoproduction within the two-component Dual Parton Model: amplitudes and cross sections

    International Nuclear Information System (INIS)

    Engel, R.; Siegen Univ.

    1995-01-01

    In the framework of the Dual Parton Model an approximation scheme to describe high energy photoproduction processes is presented. Based on the distinction between direct, resolved soft, and resolved hard interaction processes we construct effective impact parameter amplitudes. In order to treat low mass diffraction within the eikonal formalism in a consistent way a phenomenological ansatz is proposed. The free parameters of the model are determined by fits to high energy hadro- and photoproduction cross sections. We calculate the partial photoproduction cross sections and discuss predictions of the model at HERA energies. Using hadro- and photoproduction data together, the uncertainties of the model predictions are strongly reduced. (orig.)

  6. Jet evolution in hot and cold QCD matter

    Energy Technology Data Exchange (ETDEWEB)

    Domdey, Svend Oliver

    2010-07-23

    In this thesis, we study the evolution of energetic partons in hot and cold QCD matter. In both cases, interactions with the medium lead to energy loss of the parton and its transverse momentum broadens. The propagation of partons in cold nuclear matter can be investigated experimentally in deep-inelastic scattering (DIS) on nuclei. We use the dipole model to calculate transverse momentum broadening in DIS on nuclei and compare to experimental data from HERMES. In hot matter, the evolution of the parton shower is strongly modified. To calculate this modification, we construct an additional scattering term in the QCD evolution equations which accounts for scattering of partons in the quark-gluon plasma. With this scattering term, we compute the modified gluon distribution in the shower at small momentum fractions. Furthermore, we calculate the modified fragmentation function of gluons into pions. The scattering term causes energy loss of the parton shower which leads to a suppression of hadrons with large transverse momentum. In the third part of this thesis, we study double dijet production in hadron collisions. This process contains information about the transverse parton distribution of hadrons. As main result, we find that double dijet production will allow for a study of the transverse growth of hadronic wave functions at the LHC. (orig.)

  7. Applying the parton model to the fast hadrons at low p(perpendicular)

    International Nuclear Information System (INIS)

    Teper, M.J.

    1978-03-01

    The spectra of fast produced hadrons at low p (perpendicular) are discussed within the context of the parton model. Several specific models are critically considered from the experimental and theoretical point of view. Attention is focussed on the quark recombination model and improvements are suggested to overcome its problems; in particular the concept of a chameleon quark is introduced. Contamination of pseudoscalar fragments of the proton by vector meson decay is shown to be small for x > approximately 0.5. Predictions for polarised pp scattering are made. (author)

  8. A Toy Model for QCD: Hadrons, Penta- and Heptaquarks

    International Nuclear Information System (INIS)

    Nunez, M.; Hess, P.O.; Civitarese, O.; Reboiro, M.

    2004-01-01

    A toy model for QCD is presented and applied to the hadron spectrum. As a byproduct the structure of penta- and hepta-quarks is obtained. A complete classification of the states is given. One essential feature of the model is the non-conservation of particle number

  9. N-N potentials in QCD-motivated quark models

    International Nuclear Information System (INIS)

    Bender, I.; Dosch, H.G.

    1982-01-01

    Nucleon-nucleon interaction has been investigated in different QCD-inspired quark models, particularly the influence of configuration mixing. A string-motivated model is advocated, which yields a realistic short-range part of the nucleon-nucleon potential. (author)

  10. The problem of nucleon production in the quark parton model

    International Nuclear Information System (INIS)

    Ranft, J.; Ranft, G.

    1977-06-01

    Quark fragmentation into hadrons, esp. nucleons, is studied fitting empirical fragmentation functions to e + e - annihilation data. We find fragmentation functions deviating from counting rule predictions as well as from scaling due to the threshold in kaon and nucleon production. Using these fragmentation functions we study particle production ratios in ep and large transverse momentum hadronic reactions. In both cases we find the ratios p/π + and antip/π - to agree roughly in magnitude with the measured ratios. The model is however inconsistent with the transverse momentum -12 behaviour of large transverse momentum proton spectra. (author)

  11. Testing the standard model of particle physics using lattice QCD

    International Nuclear Information System (INIS)

    Water, Ruth S van de

    2007-01-01

    Recent advances in both computers and algorithms now allow realistic calculations of Quantum Chromodynamics (QCD) interactions using the numerical technique of lattice QCD. The methods used in so-called '2+1 flavor' lattice calculations have been verified both by post-dictions of quantities that were already experimentally well-known and by predictions that occurred before the relevant experimental determinations were sufficiently precise. This suggests that the sources of systematic error in lattice calculations are under control, and that lattice QCD can now be reliably used to calculate those weak matrix elements that cannot be measured experimentally but are necessary to interpret the results of many high-energy physics experiments. These same calculations also allow stringent tests of the Standard Model of particle physics, and may therefore lead to the discovery of new physics in the future

  12. QCD model and comparison with the results of e+e- of annihilation in 60 GeV centre of mass energy

    Directory of Open Access Journals (Sweden)

    W. Hayati

    2003-06-01

    Full Text Available   We present the QCD models based on the hadronization of final states of e+e- annihilations, in 60 GeV centre of mass energy in the AMY detector at the KEK collider TRISTAN. To achieve this, we first find the jet axis by using the momentum tensor and diagonilizing it for each event. The models under consideration are the Webber, the Matrix Elements and the Parton Shower. In most cases our results are consistent with the models. Our results are also consistent with those obtained from other experiments.

  13. Lower bounds for ν and Q2 values leading to scaling in the simple parton model

    International Nuclear Information System (INIS)

    Nataf, R.S.

    1979-06-01

    The simple parton model leads to the Bjorken scaling law only for rather large values of the transfer. For small values, the scale invariance is broken by a purely kinematical effect which is shown to depend on: (1+(4M 2 x 2 /Q 2 ))sup(1/2)-1, M being the mass of the target nucleon. Thus, one has to consider: ν>=5M (5GeV) and: Q 2 >=10M 2 x (9GeV/c) 2 for the whole x range) if it is demanded that scaling holds within 10% to error

  14. The High Energy Asymptotics of Scattering Processes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Enberg, Rikard; Golec-Biernat, K.; Munier, S.

    2005-05-12

    High energy scattering in the QCD parton model was recently shown to be a reaction-diffusion process, and thus to lie in the universality class of the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation. We recall that the latter appears naturally in the context of the parton model. We provide a thorough numerical analysis of the mean field approximation, given in QCD by the Balitsky-Kovchegov equation. In the framework of a simple stochastic toy model that captures the relevant features of QCD, we discuss and illustrate the universal properties of such stochastic models. We investigate in particular the validity of the mean field approximation and how it is broken by fluctuations. We find that the mean field approximation is a good approximation in the initial stages of the evolution in rapidity.

  15. Parton showers with quantum interference

    CERN Document Server

    Nagy, Zoltan

    2007-01-01

    We specify recursive equations that could be used to generate a lowest order parton shower for hard scattering in hadron-hadron collisions. The formalism is based on the factorization soft and collinear interactions from relatively harder interactions in QCD amplitudes. It incorporates quantum interference between different amplitudes in those cases in which the interference diagrams have leading soft or collinear singularities. It incorporates the color and spin information carried by partons emerging from a hard interaction. One motivation for this work is to have a method that can naturally cooperate with next-to-leading order calculations.

  16. Parton showers with quantum interference

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2007-01-01

    We specify recursive equations that could be used to generate a lowest order parton shower for hard scattering in hadron-hadron collisions. The formalism is based on the factorization soft and collinear interactions from relatively harder interactions in QCD amplitudes. It incorporates quantum interference between different amplitudes in those cases in which the interference diagrams have leading soft or collinear singularities. It incorporates the color and spin information carried by partons emerging from a hard interaction. One motivation for this work is to have a method that can naturally cooperate with next-to-leading order calculations

  17. Novel QCD Phenomena at Electron-Proton Colliders

    International Nuclear Information System (INIS)

    Brodsky, S

    2008-01-01

    I discuss several novel phenomenological features of QCD which are observable in deep inelastic lepton-nucleon and lepton-nucleus scattering. Initial- and final-state interactions from gluon exchange, normally neglected in the parton model, have a profound effect on QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, the diffractive contribution to deep inelastic scattering, and the breakdown of the pQCD Lam-Tung relation in Drell-Yan reactions. Leading-twist diffractive processes in turn lead to nuclear shadowing and non-universal antishadowing--physics not incorporated in the light-front wavefunctions of the nucleus computed in isolation

  18. Novel QCD Phenomena

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.; SLAC

    2007-01-01

    I discuss a number of novel topics in QCD, including the use of the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. In particular, there is an exact correspondence between the fifth-dimension coordinate z of AdS space and a specific impact variable ζ which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. I also discuss a number of novel phenomenological features of QCD. Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and anomalous heavy quark effects. The presence of direct higher-twist processes where a proton is produced in the hard subprocess can explain the large proton-to-pion ratio seen in high centrality heavy ion collisions

  19. Recent QCD results from ATLAS

    CERN Document Server

    Meyer, C; The ATLAS collaboration

    2014-01-01

    The ATLAS collaboration has performed studies of a wide range of QCD phenomena, from soft particle to hard photon and jet production. Recent soft-QCD measurements include studies of underlying event and vector meson production. Differential measurements of inclusive and dijet production provide stringent tests of high-order QCD predictions and provide input for determination of parton density functions. Measurements of isolated inclusive and di-photons cross sections for high transverse momentum photons test theoretical predictions of perturbative QCD and constrain parton density functions. An overview of these results is given.

  20. Novel Aspects of Hard Diffraction in QCD

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2005-01-01

    Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, and nuclear shadowing and antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency

  1. Monte-Carlo code PARJET to simulate e+e--annihilation events via QCD jets

    International Nuclear Information System (INIS)

    Ritter, S.

    1983-01-01

    The Monte-Carlo code PARJET simulates exclusive hadronic final states produced in e + e - -annihilation via a virtual photon by two steps: (i) the fragmentation of the original quark-antiquark pair into further partons using results of perturbative QCD in the leading logarithmic approximation (LLA), and (ii) the transition of these parton jets into hadrons on the basis of a chain decay model. Program summary and code description are given. (author)

  2. Di-hadron azimuthal correlation and Mach-like cone structure in a parton/hadron transport model

    International Nuclear Information System (INIS)

    Ma, G.L.; Zhang, S.; Ma, Y.G.; Huang, H.Z.; Cai, X.Z.; Chen, J.H.; He, Z.J.; Long, J.L.; Shen, W.Q.; Shi, X.H.; Zuo, J.X.

    2006-01-01

    In the framework of a multi-phase transport model (AMPT) with both partonic and hadronic interactions, azimuthal correlations between trigger particles and associated scattering particles have been studied by the mixing-event technique. The momentum ranges of these particles are 3 T trig T assoc T trig T assoc NN =200 GeV. A Mach-like structure has been observed in correlation functions for central collisions. By comparing scenarios with and without parton cascade and hadronic rescattering, we show that both partonic and hadronic dynamical mechanisms contribute to the Mach-like structure of the associated particle azimuthal correlations. The contribution of hadronic dynamical process cannot be ignored in the emergence of Mach-like correlations of the soft scattered associated hadrons. However, hadronic rescattering alone cannot reproduce experimental amplitude of Mach-like cone on away-side, and the parton cascade process is essential to describe experimental amplitude of Mach-like cone on away-side. In addition, both the associated multiplicity and the sum of p T decrease, while the T > increases, with the impact parameter in the AMPT model including partonic dynamics from string melting scenario

  3. Four-jet production at LHC and Tevatron in QCD

    International Nuclear Information System (INIS)

    Blok, B.; Dokshitzer, Yu.; Frankfurt, L.; Strikman, M.

    2011-01-01

    We demonstrate that in the back-to-back kinematics the production of four jets in the collision of two partons is suppressed in the leading log approximation of pQCD, compared to the E-circumflex hard processes involving the collision of four partons. We derive the basic equation for four-jet production in QCD in terms of the convolution of generalized two-parton distributions of colliding hadrons in the momentum space representation. Our derivation leads to geometrical approach in the impact parameter space close to that suggested within the parton model and used before to describe the four-jet production. We develop the independent parton approximation to the light-cone wave function of the proton. Comparison with the CDF and D0 data shows that the independent parton approximation to the light-cone wave function of the proton is insufficient to explain the data. We argue that the data indicate the presence of significant multiparton correlations in the light-cone wave functions of colliding protons.

  4. Jet Hadronization via Recombination of Parton Showers in Vacuum and in Medium

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J.; Han, Kyongchol; Ko, Che Ming

    2016-12-15

    We introduce a hadronization algorithm for jet parton showers based on a hybrid approach involving recombination of quarks and fragmentation of strings. The algorithm can be applied to parton showers from a shower Monte Carlo generator at the end of their perturbative evolution. The algorithm forces gluon decays and then evaluates the recombination probabilities for quark-antiquark pairs into mesons and (anti)quark triplets into (anti)baryons. We employ a Wigner phase space formulation based on the assumption of harmonic oscillator wave functions for stable hadrons and resonances. Partons too isolated in phase space to find recombination partners are connected by QCD strings to other quarks. Fragmentation of those remnant strings and the decay of all hadron resonances complete the hadronization process. We find that our model applied to parton showers from the PYTHIA Monte Carlo event generator leads to results very similar to pure Lund string fragmentation. We suggest that our algorithm can be readily generalized to jets embedded in quark-gluon plasma by adding sampled thermal partons from the phase transition hypersurface. The recombination of thermal partons and shower partons leads to an enhancement of pions and protons at intermediate momentum at both RHIC and LHC.

  5. One-dimensional model for QCD at high energy

    International Nuclear Information System (INIS)

    Iancu, E.; Santana Amaral, J.T. de; Soyez, G.; Triantafyllopoulos, D.N.

    2007-01-01

    We propose a stochastic particle model in (1+1) dimensions, with one dimension corresponding to rapidity and the other one to the transverse size of a dipole in QCD, which mimics high-energy evolution and scattering in QCD in the presence of both saturation and particle-number fluctuations, and hence of pomeron loops. The model evolves via non-linear particle splitting, with a non-local splitting rate which is constrained by boost-invariance and multiple scattering. The splitting rate saturates at high density, so like the gluon emission rate in the JIMWLK evolution. In the mean field approximation obtained by ignoring fluctuations, the model exhibits the hallmarks of the BK equation, namely a BFKL-like evolution at low density, the formation of a traveling wave, and geometric scaling. In the full evolution including fluctuations, the geometric scaling is washed out at high energy and replaced by diffusive scaling. It is likely that the model belongs to the universality class of the reaction-diffusion process. The analysis of the model sheds new light on the pomeron loops equations in QCD and their possible improvements

  6. Entropic information of dynamical AdS/QCD holographic models

    Energy Technology Data Exchange (ETDEWEB)

    Bernardini, Alex E., E-mail: alexeb@ufscar.br [Departamento de Física, Universidade Federal de São Carlos, PO Box 676, 13565-905, São Carlos, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, UFABC, 09210-580, Santo André (Brazil)

    2016-11-10

    The Shannon based conditional entropy that underlies five-dimensional Einstein–Hilbert gravity coupled to a dilaton field is investigated in the context of dynamical holographic AdS/QCD models. Considering the UV and IR dominance limits of such AdS/QCD models, the conditional entropy is shown to shed some light onto the meson classification schemes, which corroborate with the existence of light-flavor mesons of lower spins in Nature. Our analysis is supported by a correspondence between statistical mechanics and information entropy which establishes the physical grounds to the Shannon information entropy, also in the context of statistical mechanics, and provides some specificities for accurately extending the entropic discussion to continuous modes of physical systems. From entropic informational grounds, the conditional entropy allows one to identify the lower experimental/phenomenological occurrence of higher spin mesons in Nature. Moreover, it introduces a quantitative theoretical apparatus for studying the instability of high spin light-flavor mesons.

  7. The QCD model of hadron cores of the meson theory

    International Nuclear Information System (INIS)

    Pokrovskii, Y.E.

    1985-01-01

    It was shown that in the previously proposed QCD model of hadron cores the exchange and self-energy contributions of the virtual quark-antiquark-gluon cloud on the outside of a bag which radius coincides with the hardon core radius of the meson theory (∼ 0.4 Fm) have been taken into account at the phenomenological level. Simulation of this cloud by the meson field results in realistic estimations of the nucleon's electroweak properties, moment fractions carried by gluons, quarks, antiquarks and hadron-hadron interaction cross-sections within a wide range of energies. The authors note that the QCD hadron core model proposed earlier not only realistically reflects the hadron masses, but reflects self-consistently main elements of the structure and interaction of hadrons at the quark-gluon bag radius (R - 0.4Fm) being close to the meson theory core radius

  8. Hadron spectrum in quenched lattice QCD and quark potential models

    International Nuclear Information System (INIS)

    Iwasaki, Y.; Yoshie, T.

    1989-01-01

    We show that the quenched lattice QCD gives a hadron spectrum which remarkably agrees with that of quark potential models for quark mass m q ≥ m strange , even when one uses the standard one-plaquette gauge action. This is contrary to what is stated in the literature. We clarify the reason of the discrepancy, paying close attention to systematic errors in numerical calculations. (orig.)

  9. A quantum liquid model for the QCD vacuum

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Olesen, P.

    1979-06-01

    It is shown that domains are formed in a homogeneous SU(2) color magnetic field. Due to quantum fluctuations the domains have fluid properties. It is then argued that quantum mechanically superpositions of such domains must be considered. The resulting state is gauge and rotational invariant, in spite of the fact that the original color magnetic field breaks these invariances. It is pointed out that in the model for the QCD vacuum color magnetic monopoles are not confined. (Auth.)

  10. A model of confinement in 2+1 dimensional QCD

    International Nuclear Information System (INIS)

    Frenkel, J.; Silva Filho, A.C. da.

    1985-01-01

    A dielectric model of QCD in 2-space dimensions which yields confinement of two opposite color charges via a static linear potential is discussed. The non-leading contributions to the asymptotic potential as well as the structure of the confinement domain are studied analytically and numerically. For large separations of the color charges, a behavior which contrasts with the usual string-like picture is found. (Author) [pt

  11. Strangeness production in hadronic and nuclear collisions in the dual parton model

    International Nuclear Information System (INIS)

    Capella, A.; Tran Thanh Van, J.; Ranft, J.

    1993-01-01

    Λ, antiΛ and K s 0 production is studied in a Monte Carlo Dual Parton model for hadron-hadron, hadron-nucleus and nucleus-nucleus collisions with a SU(3) symmetric sea for chain formation (chain ends) but strangeness suppression in the chain fragmentation. Additionally, (qq)-(antiqantiq) production from the sea was introduced into the chain formation process with the same probability as for the q → qq branching within the chain decay process. This together with the popcorn mechanism of diquark fragmentation result in a new central component of hyperon production, which was not present in previous versions of the model. With these assumptions rapidity distributions and multiplicity ratios for strange particles in hadron-hadron, hadron-nucleus and nucleus-nucleus collisions are compared to a comprehensive collection of experimental data. 5 figs., 2 tabs., 15 refs

  12. Standard model group, QCD subgroup - dynamics isolating and testing the elementary QCD subprocess

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1982-01-01

    QCD to an experimentalist is the theory of interactions of quarks and gluons. Experimentalists like QCD because QCD is analogous to QED. Thus, following Drell and others who have for many years studied the validity of QED, one has a ready-made menu for tests of QCD. There are the static and long distance tests. These topics are covered by Peter LePage in the static properties group. In this report, dynamic and short distance tests of QCD will be discussed, primarily via reactions with large transverse momenta. This report is an introduction and overview of the subject, to serve as a framework for other reports from the subgroup. In the last two sections, the author has taken the opportunity to discuss his own ideas and opinions

  13. NNLO QCD corrections to the Drell-Yan cross section in models of TeV-scale gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Taushif; Banerjee, Pulak; Dhani, Prasanna K.; Rana, Narayan [The Institute of Mathematical Sciences, Chennai, Tamil Nadu (India); Homi Bhabha National Institute, Mumbai (India); Kumar, M.C. [Indian Institute of Technology Guwahati, Department of Physics, Guwahati (India); Mathews, Prakash [Saha Institute of Nuclear Physics, Kolkata, West Bengal (India); Ravindran, V. [The Institute of Mathematical Sciences, Chennai, Tamil Nadu (India)

    2017-01-15

    The first results on the complete next-to-next-to-leading order (NNLO) Quantum Chromodynamic (QCD) corrections to the production of di-leptons at hadron colliders in large extra dimension models with spin-2 particles are reported in this article. In particular, we have computed these corrections to the invariant mass distribution of the di-leptons taking into account all the partonic sub-processes that contribute at NNLO. In these models, spin-2 particles couple through the energy-momentum tensor of the Standard Model with the universal coupling strength. The tensorial nature of the interaction and the presence of both quark annihilation and gluon fusion channels at the Born level make it challenging computationally and interesting phenomenologically. We have demonstrated numerically the importance of our results at Large Hadron Collider energies. The two-loop corrections contribute an additional 10% to the total cross section. We find that the QCD corrections are not only large but also important to make the predictions stable under renormalisation and factorisation scale variations, providing an opportunity to stringently constrain the parameters of the models with a spin-2 particle. (orig.)

  14. Thermodynamics of QCD from Sakai-Sugimoto model

    International Nuclear Information System (INIS)

    Isono, Hiroshi; Mandal, Gautam; Morita, Takeshi

    2015-01-01

    Till date, the only consistent description of the deconfinement phase of the Sakai-Sugimoto model appears to be provided by the analysis of http://dx.doi.org/10.1007/JHEP09(2011)073. The current version of the analysis, however, has a subtlety regarding the monodromy of quarks around the Euclidean time circle. In this note, we revisit and resolve this issue by considering the effect of an imaginary baryon chemical potential on quark monodromies. With this ingredient, the proposal of http://dx.doi.org/10.1007/JHEP09(2011)073 for investigating finite temperature QCD using holography is firmly established. Additionally, our technique allows a holographic computation of the free energy as a function of the imaginary chemical potential in the deconfinement phase; we show that our result agrees with the corresponding formula obtained from perturbative QCD, namely the Roberge-Weiss potential.

  15. Universality of correlation functions in random matrix models of QCD

    International Nuclear Information System (INIS)

    Jackson, A.D.; Sener, M.K.; Verbaarschot, J.J.M.

    1997-01-01

    We demonstrate the universality of the spectral correlation functions of a QCD inspired random matrix model that consists of a random part having the chiral structure of the QCD Dirac operator and a deterministic part which describes a schematic temperature dependence. We calculate the correlation functions analytically using the technique of Itzykson-Zuber integrals for arbitrary complex supermatrices. An alternative exact calculation for arbitrary matrix size is given for the special case of zero temperature, and we reproduce the well-known Laguerre kernel. At finite temperature, the microscopic limit of the correlation functions are calculated in the saddle-point approximation. The main result of this paper is that the microscopic universality of correlation functions is maintained even though unitary invariance is broken by the addition of a deterministic matrix to the ensemble. (orig.)

  16. Fourier-positivity constraints on QCD dipole models

    Directory of Open Access Journals (Sweden)

    Bertrand G. Giraud

    2016-09-01

    Full Text Available Fourier-positivity (F-positivity, i.e. the mathematical property that a function has a positive Fourier transform, can be used as a constraint on the parametrization of QCD dipole-target cross-sections or Wilson line correlators in transverse position space r. They are Bessel transforms of positive transverse momentum dependent gluon distributions. Using mathematical F-positivity constraints on the limit r→0 behavior of the dipole amplitudes, we identify the common origin of the violation of F-positivity for various, however phenomenologically convenient, dipole models. It is due to the behavior r2+ϵ, ϵ>0 softer, even slightly, than color transparency. F-positivity seems thus to conflict with the present dipole formalism when it includes a QCD running coupling constant α(r.

  17. Charge symmetry at the partonic level

    Energy Technology Data Exchange (ETDEWEB)

    Londergan, J. T.; Peng, J. C.; Thomas, A. W.

    2010-07-01

    This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.

  18. An Anderson-like model of the QCD chiral transition

    International Nuclear Information System (INIS)

    Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc

    2016-01-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian (“Dirac-Anderson Hamiltonian”) carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.

  19. Transverse momentum dependent (TMD) parton distribution functions : status and prospects

    NARCIS (Netherlands)

    Angeles-Martinez, R.; Bacchetta, A.; Balitsky, I.I.; Boer, D.; Boglione, M.; Boussarie, R.; Ceccopieri, F.A.; Cherednikov, I.O.; Connor, P.; Echevarria, M. G.; Ferrera, G.; Luyando, J. Grados; Hautmann, F.; Jung, H.; Kasemets, T.; Kutak, K.; Lansberg, J.P.; Lelek, A.; Lykasov, G.; Martinez, J. D. Madrigal; Mulders, P. J.; Nocera, Emanuele R.; Petreska, E.; Pisano, C.; Placakyte, R.; Radescu, V.; Radici, M.; Schnell, G.; Scimemi, I.; Signori, A.; Szymanowski, L.; Monfared, S. Taheri; van der Veken, F.F.; van Haevermaet, H.J.; van Mechelen, P.; Vladimirov, A.; Wallon, S.

    2015-01-01

    We review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of

  20. Insight into nucleon structure from generalized parton distributions

    International Nuclear Information System (INIS)

    J.W. Negele; R.C. Brower; P. Dreher; R. Edwards; G. Fleming; Ph. Hagler; Th. Lippert; A.V.Pochinsky; D.B. Renner; D. Richards; K. Schilling; W. Schroers

    2004-01-01

    The lowest three moments of generalized parton distributions are calculated in full QCD and provide new insight into the behavior of nucleon electromagnetic form factors, the origin of the nucleon spin, and the transverse structure of the nucleon

  1. Experimental tests of QCD

    International Nuclear Information System (INIS)

    Hansl-Kozanecka, T.

    1992-01-01

    The phenomenological aspects of Quantum Chromodynamics (QCD) are examined which are relevant for lepton-hadron, electron-positron and hadron-hadron collisions. In deep inelastic scattering the virtual γ or W/Z is used as a probe of the nucleon structure. The strong coupling constant (α s ) measurements via deep inelastic scattering and e + e - annihilation are discussed. Parton-parton collisions (e.g., hard hadron-hadron collisions) are examined as the third regime for QCD tests. (K.A.) 122 refs., 84 figs., 4 tabs

  2. Unified models of the QCD axion and supersymmetry breaking

    Directory of Open Access Journals (Sweden)

    Keisuke Harigaya

    2017-08-01

    Full Text Available Similarities between the gauge meditation of supersymmetry breaking and the QCD axion model suggest that they originate from the same dynamics. We present a class of models where supersymmetry and the Peccei–Quinn symmetry are simultaneously broken. The messengers that mediate the effects of these symmetry breakings to the Standard Model are identical. Since the axion resides in the supersymmetry breaking sector, the saxion and the axino are heavy. We show constraints on the axion decay constant and the gravitino mass.

  3. Parton distribution in relativistic hadrons

    International Nuclear Information System (INIS)

    Kopeliovich, B.Z.; Lapidus, L.I.; Zamolodchikov, Al.B.

    1979-01-01

    The distribution in the slow-parton number in the relativistic hadron is considered as a function of its rapidity (y). Neglecting corrections due to the tarton chain recombination the equation is derived and its explicit solution is found. It describes this distribution depending on the initial distribution at y approximately 1. Comparison with the reggeon diagrams results in relations between the parton model and the regaeon field theory parameters. The interpretation of the cutting rules in the framework of the parton model is presented. The numerical estimation of the parton model parameters is performed. It is shown that the slow-parton density corresponding to accessible energies seems to be close to the saturated density. Therefore, the enhanced graphs contributions turn out to be of considerable importance

  4. Clan properties in parton showers

    International Nuclear Information System (INIS)

    Ugoccioni, R.; Giovannini, A.; Lupia, S.

    1994-01-01

    By considering clans as genuine elementary sub-processes, i.e., intermediate parton sources in the Simplified Parton Shower model, a generalized version of this model is defined. It predicts analytically clan properties at parton level in agreement with the general trends observed experimentally at hadronic level and in Monte Carlo simulations both at partonic and hadronic level. In particular the model shows a linear rising in rapidity of the average number of clans at fixed energy of the initial parton and its subsequent bending for rapidity intervals at the border of phase space, and approximate energy independence of the average number of clans in fixed rapidity intervals. The energy independence becomes stricter by properly normalizing the average number of clans (orig.)

  5. Clan properties in parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Ugoccioni, R. (Dipt. di Fisica Teorica, Univ. di Torino (Italy) INFN (Italy)); Giovannini, A. (Dipt. di Fisica Teorica, Univ. di Torino (Italy) INFN (Italy)); Lupia, S. (Dipt. di Fisica Teorica, Univ. di Torino (Italy) INFN (Italy))

    1994-11-01

    By considering clans as genuine elementary sub-processes, i.e., intermediate parton sources in the Simplified Parton Shower model, a generalized version of this model is defined. It predicts analytically clan properties at parton level in agreement with the general trends observed experimentally at hadronic level and in Monte Carlo simulations both at partonic and hadronic level. In particular the model shows a linear rising in rapidity of the average number of clans at fixed energy of the initial parton and its subsequent bending for rapidity intervals at the border of phase space, and approximate energy independence of the average number of clans in fixed rapidity intervals. The energy independence becomes stricter by properly normalizing the average number of clans (orig.)

  6. Are partons confined tachyons?

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1996-03-01

    The author notes that if hadrons are gravitationally stabilized ''black holes'', as discrete physics suggests, it is possible that partons, and in particular quarks, could be modeled as tachyons, i.e. particles having v 2 > c 2 , without conflict with the observational fact that neither quarks nor tachyons have appeared as ''free particles''. Some consequences of this model are explored

  7. Global study of nuclear modifications on parton distribution functions

    Directory of Open Access Journals (Sweden)

    Rong Wang

    2017-07-01

    Full Text Available A global analysis of nuclear medium modifications of parton distributions is presented using deeply inelastic scattering data of various nuclear targets. Two obtained data sets are provided for quark and gluon nuclear modification factors, referred as nIMParton16. One is from the global fit only to the experimental data of isospin-scalar nuclei (Set A, and the other is from the fit to all the measured nuclear data (Set B. The scale-dependence is described by DGLAP equations with nonlinear corrections in this work. The Fermi motion and off-shell effect, nucleon swelling, and parton–parton recombination are taken into account together for modeling the complicated x-dependence of nuclear modification. The nuclear gluon shadowing in this paper is dynamically generated by the QCD evolution of parton splitting and recombination processes with zero gluon density at the input scale. Sophisticated nuclear dependence of nuclear medium effects is studied with only two free parameters. With the obtained free parameters from the global analysis, the nuclear modifications of parton distribution functions of unmeasured nuclei can be predicted in our model. Nuclear modification of deuteron is also predicted and shown with recent measurement at JLab.

  8. QCD: Questions, challenges, and dilemmas

    International Nuclear Information System (INIS)

    Bjorken, J.

    1996-11-01

    An introduction to some outstanding issues in QCD is presented, with emphasis on work by Diakonov and co-workers on the influence of the instanton vacuum on low-energy QCD observables. This includes the calculation of input valence-parton distributions for deep-inelastic scattering. 35 refs., 3 figs

  9. Quarks and partons

    International Nuclear Information System (INIS)

    Close, F.E.

    1976-01-01

    The studies of inelastic electron scattering at SLAC and of neutrino scattering at CERN have been widely interpreted as giving support to the idea that the nucleon is built from elementary constituents, called partons, and that these partons have the same quantum numbers as the quarks that are familiar in spectroscopy. In particular, a very simple regularity in the data, known as scale invariance or just 'scaling' was seen at least at moderate energies (2 2 > approximately 1 GeV) which is natural in the parton model. The data on e + e - annihilation also appear to be consistent with scaling when Esub(cm) approximately 5 GeV. These lectures are concerned with the scaling phenomena. One may expect the new hadronic degree of freedom to generate scaling violations in inelastic electron and neutrino scattering. These are mentioned briefly in these lectures. (Auth.)

  10. Working Group I: Parton distributions: Summary report for the HERA LHC Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Dittmar, M.; /Zurich, ETH; Forte, S.; /Milan U. /INFN, Milan; Glazov, A.; /DESY; Moch, S.; /DESY, Zeuthen; Alekhin, S.; Altarelli, G.; Andersen, Jeppe R.; Ball, R.D.; Blumlein, J.; Bottcher, H.; Carli, T.; Ciafaloni, M.; Colferai, D.; Cooper-Sarkar, A.; Corcella, G.; Del Debbio, L.; Dissertori, G.; Feltesse, J.; Guffanti, A.; Gwenlan, C.; Huston, J.; /Zurich, ETH /DESY, Zeuthen /Serpukhov, IHEP /CERN /Rome III U. /INFN, Rome3 /Cambridge U. /Edinburgh U. /Florence U. /INFN, Florence /Oxford U. /DSM, DAPNIA, Saclay

    2005-11-01

    We provide an assessment of the impact of parton distributions on the determination of LHC processes, and of the accuracy with which parton distributions (PDFs) can be extracted from data, in particular from current and forthcoming HERA experiments. We give an overview of reference LHC processes and their associated PDF uncertainties, and study in detail W and Z production at the LHC.We discuss the precision which may be obtained from the analysis of existing HERA data, tests of consistency of HERA data from different experiments, and the combination of these data. We determine further improvements on PDFs which may be obtained from future HERA data (including measurements of F{sub L}), and from combining present and future HERA data with present and future hadron collider data. We review the current status of knowledge of higher (NNLO) QCD corrections to perturbative evolution and deep-inelastic scattering, and provide reference results for their impact on parton evolution, and we briefly examine non-perturbative models for parton distributions. We discuss the state-of-the art in global parton fits, we assess the impact on them of various kinds of data and of theoretical corrections, by providing benchmarks of Alekhin and MRST parton distributions and a CTEQ analysis of parton fit stability, and we briefly presents proposals for alternative approaches to parton fitting. We summarize the status of large and small x resummation, by providing estimates of the impact of large x resummation on parton fits, and a comparison of different approaches to small x resummation, for which we also discuss numerical techniques.

  11. NLO QCD Corrections to Drell-Yan in TeV-scale Gravity Models

    International Nuclear Information System (INIS)

    Mathews, Prakash; Ravindran, V.

    2006-01-01

    In TeV scale gravity models, we present the NLO-QCD corrections for the double differential cross sections in the scattering angle for dilepton production at hadron colliders. The quantitative impact of QCD corrections for extra dimension searches at LHC and Tevatron are investigated for both ADD and RS models through K-factors. We also show how the inclusion of QCD corrections to NLO stabilises the cross section with respect to renormalisation and factorisation scale variations

  12. Proton-antiproton annihilation into a lambdaC-antiLambdaC pair within the generalized parton picture

    International Nuclear Information System (INIS)

    Goritschnig, A. T.

    2009-01-01

    The proton-antiproton annihilation into a LambdaC-AntiLambdaC pair is investigated within the handbag approach. It is shown that the dominant dynamical mechanism, characterized by the partonic subprocess anti-u u -> anti-c c, factorizes in the sense that only the subprocess contains highly virtual partons, a gluon to lowest order of perturbative QCD, while the hadronic matrix elements embody only soft scales and can be parameterized in terms of helicity flip and non-flip generalized parton distributions. Modelling these parton distributions by overlaps of light-cone wave functions for the involved baryons were able to predict cross sections and spin correlation parameters for the process of interest. (author) [de

  13. Models for light QCD bound states

    International Nuclear Information System (INIS)

    LaCourse, D.P.

    1992-01-01

    After a brief overview of Regge, tower, and heavy-quark experimental data, this thesis examines two massless wave equations relevant to quark bound states. We establish general conditions on the Lorentz scalar and Lorentz vector potentials which yield arbitrary leading Regge trajectories for the case of circular classical motion. A semi-classical approximation which includes radial motion reproduces remarkably well the exact solutions. Conditions for tower structure are examined, and found to be incompatible with conditions which give a Nambu stringlike Regge slope. The author then proposes a generalization of the usual potential model of quark bound states in which the confining flux tube is a dynamical object carrying both angular momentum and energy. The Q bar Q-string system with spinless quarks is quantized using an implicit operator technique and the resulting relativistic wave equation is solved. For heavy quarks the usual Schroedinger valence-quark model is recovered. The Regge slope with light quarks agree with the classical rotating-string result and is significantly larger and the effects of short-range forces are also considered. A relativistic generalization of the quantized flux tube model predicts the glueball ground state mass to be √3/α' ≅ 1.9 GeV where α' is the normal Regge slope. The groundstate as well as excited levels like considerably above the expectations of previous models and also above various proposed experimental candidates. The glueball Regge slope is only about three-eighths that for valence quark hadrons. A semi-classical calculation of the Regge slope is in good agreement with a numerically exact value

  14. QCD topological susceptibility from the nonlocal chiral quark model

    Science.gov (United States)

    Nam, Seung-Il; Kao, Chung-Wen

    2017-06-01

    We investigate the quantum chromodynamics (QCD) topological susceptibility χ by using the semi-bosonized nonlocal chiral-quark model (SB-NLχQM) for the leading large- N c contributions. This model is based on the liquid-instanton QCD-vacuum configuration, in which SU(3) flavor symmetry is explicitly broken by the finite current-quark mass ( m u,d, m s) ≈ (5, 135) MeV. To compute χ, we derive the local topological charge-density operator Q t( x) from the effective action of SB-NLχQM. We verify that the derived expression for χ in our model satisfies the Witten- Veneziano (WV) and the Leutwyler-Smilga (LS) formulae, and the Crewther theorem in the chiral limit by construction. Once the average instanton size and the inter-instanton distance are fixed with ρ¯ = 1/3 fm and R¯ = 1 fm, respectively, all the other parameters are determined self-consistently within the model. We obtain χ = (167.67MeV)4, which is comparable with the empirical value χ = (175±5MeV)4 whereas it turns out that χ QL = (194.30MeV)4 in the quenched limit. Thus, we conclude that the value of χ will be reduced around 10 20% by the dynamical-quark contribution.

  15. Partons and jets at the LHC

    Indian Academy of Sciences (India)

    Partons and jets at the LHC. DAVISON E SOPER. Institute of Theoretical Science, University of Oregon, Eugene, OR 97403-5203, USA. Abstract. I review some issues related to short distance QCD and its relation to the experimental program of the large hadron collider (LHC) now under construction in Geneva. Keywords.

  16. Small-x physics in perturbative QCD

    International Nuclear Information System (INIS)

    Lipatov, L.N.

    1996-07-01

    We review the parton model and the Regge approach to the QCD description of the deep-inelastic ep scattering at the small Bjorken variable x and demonstrate their relation with the DGLAP and BFKL evolution equations. It is shown, that in the leading logarithmic approximation the gluon is reggeized and the pomeron is a compound state of two reggeized gluons. The conformal invariance of the BFKL pomeron in the impact parameter space is used to investigate the scattering amplitudes at high energies and fixed momentum transfers. The remarkable properties of the Schroedinger equation for compound states of an arbitrary number of reggeized gluons in the multi-colour QCD are reviewed. The gauge-invariant effective action describing the gluon-Reggeon interactions is constructed. The known next-to-leading corrections to the QCD pomeron are discussed. (orig.)

  17. Helicity-dependent generalized parton distributions for nonzero skewness

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2017-09-15

    We investigate the helicity-dependent generalized parton distributions (GPDs) in momentum as well as transverse position (impact) spaces for the u and d quarks in a proton when the momentum transfer in both the transverse and the longitudinal directions are nonzero. The GPDs are evaluated using the light-front wave functions of a quark-diquark model for nucleon where the wave functions are constructed by the soft-wall AdS/QCD correspondence. We also express the GPDs in the boost-invariant longitudinal position space. (orig.)

  18. Insights into nucleon structure from parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    We review recent progress in understanding the substructure of the nucleon from global QCD analysis of parton distribution functions (PDFs). New high-precision data onW-boson production in p ¯ p collisions have significantly reduced the uncertainty on the d=u PDF ratio at large values of x, indirectly constraining models of the medium modification of bound nucleons. Drell-Yan data from pp and pd scattering reveal new information on the d¯-u¯ asymmetry, clarifying the role of chiral symmetry breaking in the nucleon. In the strange sector, a new chiral SU(3) analysis finds a valence-like component of the strange-quark PDF, giving rise to a nontrivial s- ¯ s asymmetry at moderate x values. We also review recent analyses of charm in the nucleon, which have found conflicting indications of the size of the nonperturbative charm component.

  19. QCD coherence in deep inelastic scattering at small x at HERA

    International Nuclear Information System (INIS)

    Golec-Biernat, K.

    1998-01-01

    QCD coherence effects in initial state radiation at small x in deep inelastic scattering in HERA kinematics are studied with the help of the Monte Carlo model SMALLX. Theoretical assumptions based on the CCFM evolution equation are reviewed and the basic properties of the partonic final states are investigated. The results are compared with those obtained in the conventional DGLAP evolution scheme. (orig.)

  20. Delving into QCD jets

    International Nuclear Information System (INIS)

    Konishi, K.

    1980-01-01

    The author discusses, in an introductory fashion, the latest developments in the study of hadronic jets produced in hard processes, based on perturbative QCD. Emphasis is on jet calculus (and its applications and generalizations), and on the appearance of a parton-like consistent, over-all picture of jet evolution in momentum, colour, and real space-time. (Auth.)

  1. QED, QCD en pratique

    OpenAIRE

    Aurenche , P; Guillet , J.-Ph; Pilon , E

    2016-01-01

    3rd cycle; Ces notes sont une introduction à l'application de l'électrodynamique quantique (QED) et de la chromodynamiques quantique (QCD) aux réactions de diffusion à hautes énergies. Le premier thème abordé est celui des divergences ultraviolettes et de la renormalisation à une boucle, avec comme conséquence pour QCD la liberté asymptotique. Le deuxième thème est celui des divergences infrarouges et colinéaires qui dans QCD sont traitées dans le cadre du modèle des partons avec l'introducti...

  2. Parton distributions and EMC ratios of the 6Li nucleus in the constituent quark exchange model

    Science.gov (United States)

    Modarres, M.; Hadian, A.

    2017-10-01

    While the constituent quark model (CQM), in which the quarks are assumed to be the complex objects, is used to calculate the parton distribution functions of the iso-scalar lithium-6 (6Li) nucleus, the u-d constituent quark distribution functions of the 6Li nucleus are evaluated from the valence quark exchange formalism (VQEF) for the A = 6 iso-scalar system. After computing the valence quark, sea quark, and gluon distribution functions in the constituent quark exchange model (CQEM, i.e., CQM +VQEF), the nucleus structure function is calculated for the 6Li nucleus at the leading order (LO) and the next-to-leading-order (NLO) levels to extract the European muon collaboration (EMC) ratio, at different hard scales, using the standard Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGALP) evolution equations. The outcomes are compared with those of our previous works and the available NMC experimental data, and various physical points are discussed. It is observed that the present EMC ratios are considerably improved compared with those of our previous works, in which only the valence quark distributions were considered to calculate the EMC ratio, and are closer to the NMC data. Finally, it is concluded that at a given appropriate hard scale, the LO approximation may be enough for calculating the nucleus EMC ratio.

  3. Quark parton model with logarithmic scaling violation and high energy neutrino interactions

    International Nuclear Information System (INIS)

    Isaev, P.S.; Kovalenko, S.G.

    1979-01-01

    In the framework of the proposed earlier quark parton model with logarithmic scaling violation the cross sections of deep inelastic ν(anti ν)N interactions are calculated, the contribution of the charmed particle production are evaluated. The kinematical mass corrections to scaling violations and threshold effects are taken into account. Joint analysis of the experimental data on deep inelastic ep, ed scattering and charged current neutrino interaction are performed by using the unique set of free parameters of the model. Evaluations of the c-quark and W-boson masses are obtained. Neutral current data as well are analysed. The analysis is performed with taken into account scaling violation effects. The obtained estimations of the charmed quark mass Msub(c)=3.0+-1.2 GeV. W-boson mass Mw=50+-10 GeV, and the Weinberg angle SINsup(2)THETAsub(w)=0.26+-0.04 are within errors in agreement with the generally accepted ones

  4. 'Hard' effects in Monte Carlo proton-(anti) proton events of soft two-string dual parton model, e+e- annihilation and cascade scaling break of string and the theory of the open string

    International Nuclear Information System (INIS)

    Lugovoj, V.V.

    1998-01-01

    At proton-(anti) proton scattering in the frame of two-string Dual Parton Model the semihard parton-parton interactions can lead to the valence (anti) (di) quark excitations which lead to the production of up to four fast hadron leaders, and the process of soft colour interaction between constituents leads to formation of two primary strings, which decay into secondary hadrons according to a new cascade model of string breaking, which corresponds to the fundamental interaction of the theory of the open string. Therefore the recent results of the theory of QCD open string (about the small deviations of the string stretch direction near the longitudinal direction) are used in the algorithm of string breaking. For the fitted values of the free parameters in the process of decay of mother string into two daughter strings the energy (momentum) distributions for the first and second daughter strings are similar to momentum distributions for valence quark and antiquark in meson. This Monte Carlo model with 9 free parameters agrees well with the multiplicity, pseudorapidity, transverse momentum (up to p T =4GeV) distributions and correlations between the average transverse momentum and multiplicity of secondary particles produced by ISR, SS, Tevatron experiments (√s=27 to 1800 GeV). There is quantitative (and qualitative) explanation for correlations between the average transverse momentum and multiplicity for different types of secondary particles (antiprotons, kaons, pions) at √s =1800 GeV. A cascade model of string breaking is a new Monte Carlo model for hadronization which agrees well with the experimental multiplicity, rapidity, transverse momentum distributions of secondary particles produced by e + e - annihilation at E c.m. =3GeV. (author)

  5. Charge asymmetry in e+e- → γ + hadrons: New tests of the quark-parton model and fractional charge

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Carlson, C.E.; Suaya, R.

    1976-01-01

    We consider the process e + e - → γ + h + X, where h is a hadron and γ is a hard photon, and show how it can be used to test the quark-parton model. Detailed formulas are given for the cross sections, which in the quark-parton model are products of cross sections for e + e - → γμanti μ and quark breakup functions. We focus on the asymmetry between h and h-bar production, and display sum rules and ratio tests which measure the quark charge, the quark Compton amplitude, and the large-x behavior of the quark breakup function. The asymmetry is calculated for the muon case, and is about 100% for the forward direction

  6. Parton distributions with threshold resummation

    CERN Document Server

    Bonvini, Marco; Rojo, Juan; Rottoli, Luca; Ubiali, Maria; Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Hartland, Nathan P.

    2015-01-01

    We construct a set of parton distribution functions (PDFs) in which fixed-order NLO and NNLO calculations are supplemented with soft-gluon (threshold) resummation up to NLL and NNLL accuracy respectively, suitable for use in conjunction with any QCD calculation in which threshold resummation is included at the level of partonic cross sections. These resummed PDF sets, based on the NNPDF3.0 analysis, are extracted from deep-inelastic scattering, Drell-Yan, and top quark pair production data, for which resummed calculations can be consistently used. We find that, close to threshold, the inclusion of resummed PDFs can partially compensate the enhancement in resummed matrix elements, leading to resummed hadronic cross-sections closer to the fixed-order calculation. On the other hand, far from threshold, resummed PDFs reduce to their fixed-order counterparts. Our results demonstrate the need for a consistent use of resummed PDFs in resummed calculations.

  7. Q.C.D. estimates of hadronic cross sections

    International Nuclear Information System (INIS)

    Navelet, H.; Peschanski, R.

    1983-03-01

    Estimates for hadron-hadron cross-sections are made using the leading log approximation of Q.C.D. The rise of the total inelastic pp cross-sections at high energy is reproduced, thanks to the competition between the small parton-parton interaction and the large multiplicity of gluons predicted by Q.C.D

  8. QCD and Fermi gas model interpretations of the E.M.C. effect

    International Nuclear Information System (INIS)

    Close, F.E.

    1986-07-01

    It is suggested that there is a correspondence between the quantum chromo-dynamic (QCD) approach and the conventional model of nucleon binding which leads to nuclear properties being related to the anomalous dimensions of QCD. This in turn may lead to a 'unified' approach to nuclear and quark-gluon physics. A discussion is given with respect to the EMC effect. (UK)

  9. QCD phenomenology of the large P/sub T/ processes

    International Nuclear Information System (INIS)

    Stroynowski, R.

    1979-11-01

    Quantum Chromodynamics (QCD) provides a framework for the possible high-accuracy calculations of the large-p/sub T/ processes. The description of the large-transverse-momentum phenomena is introduced in terms of the parton model, and the modifications expected from QCD are described by using as an example single-particle distributions. The present status of available data (π, K, p, p-bar, eta, particle ratios, beam ratios, direct photons, nuclear target dependence), the evidence for jets, and the future prospects are reviewed. 80 references, 33 figures, 3 tables

  10. Are partons confined tachyons?

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1996-03-01

    The author notes that if hadrons are gravitationally stabilized ``black holes``, as discrete physics suggests, it is possible that partons, and in particular quarks, could be modeled as tachyons, i.e. particles having v{sup 2} > c{sup 2}, without conflict with the observational fact that neither quarks nor tachyons have appeared as ``free particles``. Some consequences of this model are explored.

  11. Quarks and partons

    International Nuclear Information System (INIS)

    Paschos, E.A.

    1976-08-01

    The quark parton model describes the inclusive electro- and neutrino production data if a clear distinction is made between reactions which take place at high and at low energies. For the low energy region the classical view of six structure functions of the proton is still adequate. For the high energy region models can be constructed which are consistent with the experimental data. (BJ) [de

  12. Pion form factor within QCD instanton vacuum model

    International Nuclear Information System (INIS)

    Dorokhov, A.E.

    1997-01-01

    Instanton induced pion wave function is constructed. It provides an intrinsic k 1 dependence which suppress soft virtual one-gluon exchanges and thus legitimate the perturbative QCD (pQCD) calculations of the pion electromagnetic form factor in the region of momentum transfers above the scale. (author)

  13. Two-dimensional QCD as a model for strong interaction

    International Nuclear Information System (INIS)

    Ellis, J.

    1977-01-01

    After an introduction to the formalism of two-dimensional QCD, its applications to various strong interaction processes are reviewed. Among the topics discussed are spectroscopy, deep inelastic cross-sections, ''hard'' processes involving hadrons, ''Regge'' behaviour, the existence of the Pomeron, and inclusive hadron cross-sections. Attempts are made to abstracts features useful for four-dimensional QCD phenomenology. (author)

  14. The partonic nature of instantons

    International Nuclear Information System (INIS)

    Collie, Benjamin; Tong, David

    2009-01-01

    In both Yang-Mills theories and sigma models, instantons are endowed with degrees of freedom associated to their scale size and orientation. It has long been conjectured that these degrees of freedom have a dual interpretation as the positions of partonic constituents of the instanton. These conjectures are usually framed in d = 3+1 and d = 1+1 dimensions respectively where the partons are supposed to be responsible for confinement and other strong coupling phenomena. We revisit this partonic interpretation of instantons in the context of d = 4+1 and d = 2+1 dimensions. Here the instantons are particle-like solitons and the theories are non-renormalizable. We present an explicit and calculable model in d = 2+1 dimensions where the single soliton in the CP N sigma-model can be shown to be a multi-particle state whose partons are identified with the ultra-violet degrees of freedom which render the theory well-defined at high energies. We introduce a number of methods which reveal the partons inside the soliton, including deforming the sigma model and a dual version of the Bogomolnyi equations. We conjecture that partons inside Yang-Mills instantons hold the key to understanding the ultra-violet completion of five-dimensional gauge theories.

  15. A QCD analysis of ZEUS diffractive data

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2009-11-15

    ZEUS inclusive diffractive cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density. Predictions based on the extracted parton densities are compared to diffractive charm and dijet photoproduction data. (orig.)

  16. A QCD analysis of ZEUS diffractive data

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2009-11-01

    ZEUS inclusive diffractive cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density. Predictions based on the extracted parton densities are compared to diffractive charm and dijet photoproduction data. (orig.)

  17. Unpolarized structure functions and the parton distributions for nucleon in an independent quark model

    International Nuclear Information System (INIS)

    Barik, N.; Mishra, R.N.

    2001-01-01

    Considering the nucleon as consisting entirely of its valence quarks confined independently in a scalar-vector harmonic potential; unpolarized structure functions F 1 (x, μ 2 ) and F 2 (x, μ 2 ) are derived in the Bjorken limit under certain simplifying assumptions; from which valence quark distribution functions u v (x, μ 2 ) and d v (x, μ 2 ) are appropriately extracted satisfying the normalization constraints. QCD-evolution of these input distributions from a model scale of μ 2 = 0.07 GeV 2 to a higher Q 2 scale of Q 0 2 = 15 GeV 2 yields xu v (x, Q 0 2 ) and xd v (x, Q 0 2 ) in good agreement with experimental data. The gluon and sea-quark distributions such as G (x, Q 0 2 ) and q s (x, Q 0 2 ) are dynamically generated with a reasonable qualitative agreement with the available data; using the leading order renormalization group equations with appropriate valence-quark distributions as the input. (author)

  18. Unpolarized structure functions and the parton distributions for nucleon in an independent quark model

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N [Dept. of Physics, Utkal Univ., Bhubaneswar (India); Mishra, R N [Dept. of Physics, Dhenkanal College, Dhenkanal (India)

    2001-04-01

    Considering the nucleon as consisting entirely of its valence quarks confined independently in a scalar-vector harmonic potential; unpolarized structure functions F{sub 1} (x, {mu}{sup 2}) and F{sub 2} (x, {mu}{sup 2}) are derived in the Bjorken limit under certain simplifying assumptions; from which valence quark distribution functions u{sub v} (x, {mu}{sup 2}) and d{sub v} (x, {mu}{sup 2}) are appropriately extracted satisfying the normalization constraints. QCD-evolution of these input distributions from a model scale of {mu}{sup 2} = 0.07 GeV{sup 2} to a higher Q{sup 2} scale of Q{sub 0}{sup 2} = 15 GeV{sup 2} yields xu{sub v} (x, Q{sub 0}{sup 2}) and xd{sub v} (x, Q{sub 0}{sup 2}) in good agreement with experimental data. The gluon and sea-quark distributions such as G (x, Q{sub 0}{sup 2}) and q{sub s} (x, Q{sub 0}{sup 2}) are dynamically generated with a reasonable qualitative agreement with the available data; using the leading order renormalization group equations with appropriate valence-quark distributions as the input. (author)

  19. Insights on non-perturbative aspects of TMDs from models

    Energy Technology Data Exchange (ETDEWEB)

    H. Avakian, A. Efremov, P. Schweitzer, O. Teryaev, F. Yuan, P. Zavada

    2009-12-01

    Transverse momentum dependent parton distribution functions are a key ingredient in the description of spin and azimuthal asymmetries in deep-inelastic scattering processes. Recent results from non-perturbative calculations in effective approaches are reviewed, with focus on relations among different parton distribution functions in QCD and models.

  20. Thermalization through parton transport

    International Nuclear Information System (INIS)

    Zhang Bin

    2010-01-01

    A radiative transport model is used to study kinetic equilibration during the early stage of a relativistic heavy ion collision. The parton system is found to be able to overcome expansion and move toward thermalization via parton collisions. Scaling behaviors show up in both the pressure anisotropy and the energy density evolutions. In particular, the pressure anisotropy evolution shows an approximate α s scaling when radiative processes are included. It approaches an asymptotic time evolution on a time scale of 1 to 2 fm/c. The energy density evolution shows an asymptotic time evolution that decreases slower than the ideal hydro evolution. These observations indicate that partial thermalization can be achieved and viscosity is important for the evolution during the early longitudinal expansion stage of a relativistic heavy ion collision.

  1. Consequences of the partial restoration of chiral symmetry in an AdS/QCD model

    International Nuclear Information System (INIS)

    Kim, Youngman; Lee, Hyun Kyu

    2008-01-01

    Chiral symmetry is an essential concept in understanding QCD at low energy. We treat the chiral condensate, which measures the spontaneous breaking of chiral symmetry, as a free parameter to investigate the effect of partially restored chiral symmetry on the physical quantities in the framework of an AdS/QCD model. We observe an interesting scaling behavior among the nucleon mass, pion decay constant, and chiral condensate. We propose a phenomenological way to introduce the temperature dependence of a physical quantity in the AdS/QCD model with the thermal AdS metric.

  2. Strangeness production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions in the dual parton model

    International Nuclear Information System (INIS)

    Moehring, H.; Ranft, J.; Capella, A.; Tran Thanh Van, J.

    1993-01-01

    Λ, bar Λ, and K S 0 production is studied in a Monte Carlo dual parton model for hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions with an SU(3) symmetric sea for chain formation (chain ends) but strangeness suppression in the chain fragmentation process. Additionally, (qq)-(bar q bar q) production from the sea was introduced into the chain formation process with the same probability as for the q→qq branching within the chain decay process. With these assumptions, multiplicity ratios and Feynman-x distributions for strange particles in h-h and multiplicity ratios in heavy ion collisions are reasonably well reproduced

  3. The QCD vacuum at infinite momentum

    International Nuclear Information System (INIS)

    White, A.R.

    1988-01-01

    We outline how ''topological confinement'' can be seen by the analysis of Regge limit infra-red divergences. We suggest that it is a necessary bridge between conventional confinement and the parton model at infinite momentum. It is produced by adding a chiral doublet of color sextet quarks to conventional QCD. An immediate signature of the resultant electroweak symmetry breaking would be large cross-sections for W + W/sup /minus// and Z 0 Z 0 pairs at the CERN and Fermilab /bar p/p colliders. 24 refs

  4. Hadroproduction of massive lepton pairs and QCD

    International Nuclear Information System (INIS)

    Berger, E.L.

    1979-04-01

    A survey is presented of some current issues of interest in attempts to describe the production of massive lepton pairs in hadronic collisions at high energies. I concentrate on the interpretation of data in terms of the parton model and on predictions derived from quantum-chromodynamics (QCD), their reliability and their confrontation with experiment. Among topics treated are the connection with deep-inelastic lepton scattering, universality of structure functions, and the behavior of cross-sections as a function of transverse momentum

  5. QCD physics with the CMS experiment

    CERN Document Server

    Cerci, Salim

    2017-01-01

    Jets which are the signatures of quarks and gluons in the detector can be described by Quantum Chromodynamics (QCD) in terms of parton-parton scattering. Jets are abundantly produced at the LHC's high energy scales. Measurements of inclusive jets, dijets and multijets can be used to test perturbative QCD predictions and to constrain parton distribution functions (PDF), as well as to measure the strong coupling constant $\\alpha_{S}$. The measurements use the samples of proton-proton collisions collected with the CMS detector at the LHC at various center-of-mass energies of 7, 8 and 13 TeV.

  6. QCD Physics with the CMS Experiment

    Science.gov (United States)

    Cerci, S.

    2017-12-01

    Jets which are the signatures of quarks and gluons in the detector can be described by Quantum Chromodynamics (QCD) in terms of parton-parton scattering. Jets are abundantly produced at the LHC's high energy scales. Measurements of inclusive jets, dijets and multijets can be used to test perturbative QCD predictions and to constrain parton distribution functions (PDF), as well as to measure the strong coupling constant αS . The measurements use the samples of proton-proton collisions collected with the CMS detector at the LHC at various center-of-mass energies of 7, 8 and 13 TeV.

  7. Pion parton distribution functions from lattice QCD

    International Nuclear Information System (INIS)

    Wetzorke, I.; Jansen, K.; Shindler, A.; Palombi, F.

    2003-09-01

    We report on recent results for the pion matrix element of the twist-2 operator corresponding to the average momentum of non-singlet quark densities. For the first time finite volume effects of this matrix element are investigated and come out to be surprisingly large. We use standard Wilson and non-perturbatively improved clover actions in order to control better the extrapolation to the continuum limit. Moreover, we compute, fully non-perturbatively, the renormalization group invariant matrix element, which allows a comparison with experimental results in a broad range of energy scales. Finally, we discuss the remaining uncertainties, the extrapolation to the chiral limit and the quenched approximation. (orig.)

  8. Evolution of parton densities beyond leading order

    International Nuclear Information System (INIS)

    Curci, G.; Petronzio, R.; Furmanski, W.

    1980-01-01

    We develop a technique, based explicitly on the factorization properties of mass singularities, which allows one to calculate the evolution of parton densities beyond leading order. We present the results for the evolution of hadronic structure functions as well as for parton fragmentation functions into hadrons. Within our scheme the predictions for a particular process are obtained by convoluting a universal parton density with a short-distance cross section specific to the process. As an application, we calculate the QCD predictions for the Q 2 dependence of deep inelastic lepton-hadron scattering and of one-particle inclusive e + e - annihilation cross sections. Our results for electroproduction agree with those obtained with the operator product expansion technique. Physical quantitites in scattering are related to the corresponding ones in annihilation by analytic continuation, whereas the Gribov-Lipatov relation is strongly violated. (orig.)

  9. Electroweak Higgs production with HiggsPO at NLO QCD

    International Nuclear Information System (INIS)

    Greljo, Admir; Isidori, Gino; Zhang, Hantian; Lindert, Jonas M.; Marzocca, David

    2017-01-01

    We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p T for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available. (orig.)

  10. Electroweak Higgs production with HiggsPO at NLO QCD

    Science.gov (United States)

    Greljo, Admir; Isidori, Gino; Lindert, Jonas M.; Marzocca, David; Zhang, Hantian

    2017-12-01

    We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p_T for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available.

  11. Electroweak Higgs production with HiggsPO at NLO QCD

    Energy Technology Data Exchange (ETDEWEB)

    Greljo, Admir [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Johannes Gutenberg-Universitaet Mainz, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz (Germany); University of Sarajevo, Faculty of Science, Sarajevo (Bosnia and Herzegovina); Isidori, Gino; Zhang, Hantian [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Lindert, Jonas M. [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Marzocca, David [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); INFN, Sezione di Trieste(Italy); SISSA, Trieste (Italy)

    2017-12-15

    We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p{sub T} for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available. (orig.)

  12. Partons and quarks. Daresbury lecture note series No. 12

    Energy Technology Data Exchange (ETDEWEB)

    Close, F. E.

    1973-04-15

    The report is based on a series of lectures given at Daresbury Laboratory on 2 to 12 Apri1 1973. It is stated that the purpose was to show the reasons why parton models describe the data, show what other phenomena can be understood and what predictions can be made within the parton hypothesis. The report is in sections: elastic electron scattering; inelastic electron scattering; deep inelastic scattering and partons; structure functions and surn rules in the quark parton model; inelastic neutrinto scattering; forward Compton scattering; Compton scattering in simple models; a J = 0 fixed pole in Compton scattering; the non-perturbative parton model without tears; the parton model and vector-meson dominance-rivals or partners; do resonances scale; resonances, SU(6) and the quark parton model; towards a dynamical parton model. (UK)

  13. Reweighting Parton Showers

    CERN Document Server

    Bellm, Johannes; Richardson, Peter; Siódmok, Andrzej; Webster, Stephen

    2016-01-01

    We report on the possibility of reweighting parton-shower Monte Carlo predictions for scale variations in the parton-shower algorithm. The method is based on a generalization of the Sudakov veto algorithm. We demonstrate the feasibility of this approach using example physical distributions. Implementations are available for both the parton-shower modules in the Herwig 7 event generator.

  14. Multi-parton interactions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Kulesza, A. [RWTH Aachen (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Nagy, Z. (eds.) [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-11-15

    We review the recent progress in the theoretical description and experimental observation of multiple parton interactions. Subjects covered include experimental measurements of minimum bias interactions and of the underlying event, models of soft physics implemented in Monte Carlo generators, developments in the theoretical description of multiple parton interactions and phenomenological studies of double parton scattering. This article stems from contributions presented at the Helmholtz Alliance workshop on ''Multi-Parton Interactions at the LHC'', DESY Hamburg, 13-15 September 2010. (orig.)

  15. Nuclear parton distributions

    Directory of Open Access Journals (Sweden)

    Kulagin S. A.

    2017-01-01

    Full Text Available We review a microscopic model of the nuclear parton distribution functions, which accounts for a number of nuclear effects including Fermi motion and nuclear binding, nuclear meson-exchange currents, off-shell corrections to bound nucleon distributions and nuclear shadowing. We also discuss applications of this model to a number of processes including lepton-nucleus deep inelastic scattering, proton-nucleus Drell-Yan lepton pair production at Fermilab, as well as W± and Z0 boson production in proton-lead collisions at the LHC.

  16. Dyon Condensation and Dual Superconductivity in Abelian Higgs Model of QCD

    Directory of Open Access Journals (Sweden)

    B. S. Rajput

    2010-01-01

    Full Text Available Constructing the effective action for dyonic field in Abelian projection of QCD, it has been demonstrated that any charge (electrical or magnetic of dyon screens its own direct potential to which it minimally couples and antiscreens the dual potential leading to dual superconductivity in accordance with generalized Meissner effect. Taking the Abelian projection of QCD, an Abelian Higgs model, incorporating dual superconductivity and confinement, has been constructed and its representation has been obtained in terms of average of Wilson loop.

  17. QCD and RHIC

    International Nuclear Information System (INIS)

    Kharzeev, D.

    2004-01-01

    In this talk I discuss recent advances in Quantum Chromo-Dynamics, in particular the progress in understanding the collective dynamics of the theory. I emphasise the significance of the RHIC program for establishing the properties of hot and dense QCD matter and for understanding the dynamics of the theory at the high parton density, strong color field frontier. Hopes and expectations for the future are discussed as well

  18. QCD Results from ATLAS and CMS

    CERN Document Server

    Leyton, M; The ATLAS collaboration

    2014-01-01

    The ATLAS and CMS collaborations have performed a wide range of studies of QCD phenomena, from soft particle to hard photon and jet production. Recent soft-­QCD measurements include studies of the underlying event, double parton interactions and vector meson production. Differential measurements of inclusive and dijet production provide stringent tests of high­-order QCD predictions and provide input for the determination of parton density functions. Measurements of isolated, inclusive and di­-photon cross sections for high-pT photons test various theoretical predictions and further constrain PDFs. An overview of these results is given.


  19. The role of the input scale in parton distribution analyses

    International Nuclear Information System (INIS)

    Jimenez-Delgado, Pedro

    2012-01-01

    A first systematic study of the effects of the choice of the input scale in global determinations of parton distributions and QCD parameters is presented. It is shown that, although in principle the results should not depend on these choices, in practice a relevant dependence develops as a consequence of what is called procedural bias. This uncertainty should be considered in addition to other theoretical and experimental errors, and a practical procedure for its estimation is proposed. Possible sources of mistakes in the determination of QCD parameter from parton distribution analysis are pointed out.

  20. Chiral dynamics and partonic structure at large transverse distances

    Energy Technology Data Exchange (ETDEWEB)

    Strikman, M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Physics; Weiss, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States). Theory Center

    2009-12-30

    In this paper, we study large-distance contributions to the nucleon’s parton densities in the transverse coordinate (impact parameter) representation based on generalized parton distributions (GPDs). Chiral dynamics generates a distinct component of the partonic structure, located at momentum fractions x≲Mπ/MN and transverse distances b~1/Mπ. We calculate this component using phenomenological pion exchange with a physical lower limit in b (the transverse “core” radius estimated from the nucleon’s axial form factor, Rcore=0.55 fm) and demonstrate its universal character. This formulation preserves the basic picture of the “pion cloud” model of the nucleon’s sea quark distributions, while restricting its application to the region actually governed by chiral dynamics. It is found that (a) the large-distance component accounts for only ~1/3 of the measured antiquark flavor asymmetry d¯-u¯ at x~0.1; (b) the strange sea quarks s and s¯ are significantly more localized than the light antiquark sea; (c) the nucleon’s singlet quark size for x<0.1 is larger than its gluonic size, (b2)q+q¯>(b2)g, as suggested by the t-slopes of deeply-virtual Compton scattering and exclusive J/ψ production measured at HERA and FNAL. We show that our approach reproduces the general Nc-scaling of parton densities in QCD, thanks to the degeneracy of N and Δ intermediate states in the large-Nc limit. Finally, we also comment on the role of pionic configurations at large longitudinal distances and the limits of their applicability at small x.

  1. Correlations in double parton distributions: perturbative and non-perturbative effects

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, Matteo; Scopetta, Sergio [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia andIstituto Nazionale di Fisica Nucleare, Sezione di Perugia, via A. Pascoli, I-06123 Perugia (Italy); Traini, Marco [Institut de Physique Théorique CEA-Saclay, F-91191 Gif-sur-Yvette (France); INFN - TIFPA, Dipartimento di Fisica, Università degli Studi di Trento,Via Sommarive 14, I-38123 Povo (Trento) (Italy); Vento, Vicente [Departament de Física Teòrica, Universitat de València and Institut de Física Corpuscular,Consejo Superior de Investigaciones Científicas, 46100 Carrer del Dr. Moliner 50 València (Spain)

    2016-10-12

    The correct description of Double Parton Scattering (DPS), which represents a background in several channels for the search of new Physics at the LHC, requires the knowledge of double parton distribution functions (dPDFs). These quantities represent also a novel tool for the study of the three-dimensional nucleon structure, complementary to the possibilities offered by electromagnetic probes. In this paper we analyze dPDFs using Poincaré covariant predictions obtained by using a Light-Front constituent quark model proposed in a recent paper, and QCD evolution. We study to what extent factorized expressions for dPDFs, which neglect, at least in part, two-parton correlations, can be used. We show that they fail in reproducing the calculated dPDFs, in particular in the valence region. Actually measurable processes at existing facilities occur at low longitudinal momenta of the interacting partons; to have contact with these processes we have analyzed correlations between pairs of partons of different kind, finding that, in some cases, they are strongly suppressed at low longitudinal momenta, while for other distributions they can be sizeable. For example, the effect of gluon-gluon correlations can be as large as 20 %. We have shown that these behaviors can be understood in terms of a delicate interference of non-perturbative correlations, generated by the dynamics of the model, and perturbative ones, generated by the model independent evolution procedure. Our analysis shows that at LHC kinematics two-parton correlations can be relevant in DPS, and therefore we address the possibility to study them experimentally.

  2. The FLUKA Monte Carlo, Non-Perturbative QCD and Cosmic Ray Cascades

    International Nuclear Information System (INIS)

    Battistoni, G.

    2005-01-01

    The FLUKA Monte Carlo code, presently used in cosmic ray physics, contains packages to sample soft hadronic processes which are built according to the Dual Parton Model. This is a phenomenological model capable of reproducing many of the features of hadronic collisions in the non perturbative QCD regime. The basic principles of the model are summarized and, as an example, the associated Lambda-K production is discussed. This is a process which has some relevance for the calculation of atmospheric neutrino fluxes

  3. Multiplicity distributions in QCD cascades

    International Nuclear Information System (INIS)

    Gustafson, G.

    1992-03-01

    Multiplicity distributions for hadrons and for jets are studied in QCD parton cascades. The colour dipole formalism is used and earlier results in the double log approximation are generalized to include terms which are suppressed by colour factors or factors of ln s. The result is a set of coupled differential equations, together with appropriate boundary conditions

  4. Comparative study between a QCD inspired model and a multiple diffraction model

    International Nuclear Information System (INIS)

    Luna, E.G.S.; Martini, A.F.; Menon, M.J.

    2003-01-01

    A comparative study between a QCD Inspired Model (QCDIM) and a Multiple Diffraction Model (MDM) is presented, with focus on the results for pp differential cross section at √s = 52.8 GeV. It is shown that the MDM predictions are in agreement with experimental data, except for the dip region and that the QCDIM describes only the diffraction peak region. Interpretations in terms of the corresponding eikonals are also discussed. (author)

  5. Moments of nucleon spin-dependent generalized parton distributions

    International Nuclear Information System (INIS)

    Schroers, W.; Brower, R.C.; Dreher, P.; Edwards, R.; Fleming, G.; Haegler, Ph.; Heller, U.M.; Lippert, Th.; Negele, J.W.; Pochinsky, A.V.; Renner, D.B.; Richards, D.; Schilling, K.

    2004-01-01

    We present a lattice measurement of the first two moments of the spin-dependent GPD H∼(x, ξ, t). From these we obtain the axial coupling constant and the second moment of the spin-dependent forward parton distribution. The measurements are done in full QCD using Wilson fermions. In addition, we also present results from a first exploratory study of full QCD using Asqtad sea and domain-wall valence fermions

  6. On possible resolutions of the spin crisis in the parton model

    International Nuclear Information System (INIS)

    Anselmino, M.; Ioffe, B.L.; Leader, E.

    1989-01-01

    The recent experimental data of the EMC group on deep inelastic scattering of polarized muons on polarized protons has led to serious doubt on the correctness of our understanding of how the total spin of the proton is built up from the spins of its parton constituents (the so-called spin crisis). Several attempts have been made to solve this problem. From our point of view none of these is satisfactory. Based on the Gerasimov-Drell-Hearn sum rule, we show that in the range of Q 2 values characteristic for the EMC experiment there should be substantial corrections from higher twist terms. Taking these corrections into account gives the possibility to resolve the problem both in sign and in magnitude of the effect

  7. CT14 intrinsic charm parton distribution functions from CTEQ-TEA global analysis

    Science.gov (United States)

    Hou, Tie-Jiun; Dulat, Sayipjamal; Gao, Jun; Guzzi, Marco; Huston, Joey; Nadolsky, Pavel; Schmidt, Carl; Winter, Jan; Xie, Keping; Yuan, C.-P.

    2018-02-01

    We investigate the possibility of a (sizable) nonperturbative contribution to the charm parton distribution function (PDF) in a nucleon, theoretical issues arising in its interpretation, and its potential impact on LHC scattering processes. The "fitted charm" PDF obtained in various QCD analyses contains a process-dependent component that is partly traced to power-suppressed radiative contributions in DIS and is generally different at the LHC. We discuss separation of the universal component of the nonperturbative charm from the rest of the radiative contributions and estimate its magnitude in the CT14 global QCD analysis at the next-to-next-to leading order in the QCD coupling strength, including the latest experimental data from HERA and the Large Hadron Collider. Models for the nonperturbative charm PDF are examined as a function of the charm quark mass and other parameters. The prospects for testing these models in the associated production of a Z boson and a charm jet at the LHC are studied under realistic assumptions, including effects of the final-state parton showering.

  8. Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO

    NARCIS (Netherlands)

    Collaboration, The NNPDF; Ball, Richard D.; Bertone, Valerio; Cerutti, Francesco; Debbio, Luigi Del; Forte, Stefano; Guffanti, Alberto; Latorre, Jose I.; Rojo, Juan; Ubiali, Maria

    2012-01-01

    We present a determination of the parton distributions of the nucleon from a global set of hard scattering data using the NNPDF methodology at LO and NNLO in perturbative QCD, thereby generalizing to these orders the NNPDF2.1 NLO parton set. Heavy quark masses are included using the so-called FONLL

  9. Hadron Correlations and Parton Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: rjfries@comp.tamu.edu

    2007-02-15

    Parton recombination has been found to be an extremely useful model to understand hadron production at the Relativistic Heavy Ion Collider. It is particularly important to explore its connections with hard processes. This article reviews some of the aspects of the quark recombination model and places particular emphasis on hadron correlations.

  10. Hadronization of dense partonic matter

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2006-12-15

    The parton recombination model has turned out to be a valuable tool to describe hadronization in high-energy heavy-ion collisions. I review the model and revisit recent progress in our understanding of hadron correlations. I also discuss higher Fock states in the hadrons, possible violations of the elliptic flow scaling and recombination effects in more dilute systems.

  11. Hadron seagulls and parton jets

    International Nuclear Information System (INIS)

    Satz, H.; Zarmi, Y.

    1976-01-01

    For the lepton production of hadrons in the current fragmentation region it was recently shown that the two-level partonic picture leads to a broadening of the average transverse momentum of the observed secondaries. This ''seagull'' effect is well known for hadron-hadron interactions. In the note it is considered the possibility that parton arguments can explain it here as well and it is discussed what information on the constituent structure of hadrons can be obtained through an investigation of the seagull effect from such a point of view. It is shown that a non trivial seagull effect is a consequence of a simple two step production mechanism and the parton model predicts significant differences between baryon, meson and virtual-photon fragmentation seagull

  12. Initial-state parton shower kinematics for NLO event generators

    International Nuclear Information System (INIS)

    Odaka, Shigeru; Kurihara, Yoshimasa

    2007-01-01

    We are developing a consistent method to combine tree-level event generators for hadron collision interactions with those including one additional QCD radiation from the initial-state partons, based on the limited leading-log (LLL) subtraction method, aiming at an application to NLO event generators. In this method, a boundary between non-radiative and radiative processes necessarily appears at the factorization scale (μ F ). The radiation effects are simulated using a parton shower (PS) in non-radiative processes. It is therefore crucial in our method to apply a PS which well reproduces the radiation activities evaluated from the matrix-element (ME) calculations for radiative processes. The PS activity depends on the applied kinematics model. In this paper we introduce two models for our simple initial-state leading-log PS: a model similar to the 'old' PYTHIA-PS and a p T -prefixed model motivated by ME calculations. PS simulations employing these models are tested using W-boson production at LHC as an example. Both simulations show a smooth matching to the LLL subtracted W+1 jet simulation in the p T distribution of W bosons, and the summed p T spectra are stable against a variation of μ F , despite that the p T -prefixed PS results in an apparently harder p T spectrum. (orig.)

  13. Constraints on parton density functions from D0

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Jonathan M.; /Imperial Coll., London

    2008-04-01

    Five recent results from D0 which either impact or have the potential to impact on uncertainties in parton density functions are presented. Many analyses at D0 are sensitive to the modeling of the partonic structure of the proton. When theoretical and experimental uncertainties are well controlled there exists the possibility for additional constraints on parton density functions (PDF). Five measurements are presented which either have already been included in global parton fits or have the potential to contribute in the future.

  14. Spin structure at the partonic level. Pt. 2

    International Nuclear Information System (INIS)

    Leader, E.

    1983-01-01

    Knowledge of the spin and momentum distribution of partons inside a polarised nucleon, as deduced from lepton scattering, is combined with lowest order QCD to calculate spin dependent parameters in large psub(T) hadronic reactions. Clear predictions emerge in some cases and are in conflict with present experimental results. There is a real challenge to improve both theory and experiment. (orig.)

  15. QCD condensates in ADS/QCD

    DEFF Research Database (Denmark)

    Bechi, Jacopo

    2009-01-01

    This paper focuses on some issues about condensates and renormalization in AdS/QCD models. In particular we consider the consistency of the AdS/QCD approach for scale dependent quantities as the chiral condensate questioned in some recent papers and the 4D meaning of the 5D cosmological constant...... in a model in which the QCD is dual to a 5D gravity theory. We will be able to give some arguments that the cosmological constant is related to the QCD gluon condensate....

  16. Kaon-nucleon S-wave phase shifts in a QCD-motivated quark model

    International Nuclear Information System (INIS)

    Bender, I.; Dosch, H.G.

    1982-01-01

    We calculate kaon-nucleon central potentials and S-wave phase shifts for I = 0 and I = 1 in an QCD-motivated quark model. In our model the K-N interaction is derived from short-range perturbative quark-quark interactions. (orig.)

  17. Parton distributions from SMC and SLAC data

    International Nuclear Information System (INIS)

    Ramsey, G.P.

    1996-01-01

    We have extracted spin-weighted parton distributions in a proton from recent data at CERN and SLAC. The valence, sea quark and Antiquark spin-weighted distributions are determined separately. The data are all consistent with a small to moderate polarized gluon distribution, so that the anomaly term is not significant in the determination of the constituent contributions to the spin of the proton. We have analyzed the consistency of the results obtained from various sets of data and the Biorken sum rule. Although all data are consistent with the sum rule, the polarized distributions from different experiments vary, even with higher order QCD corrections taken into account. Results split into two models, one set implying a large polarized strange sea which violates the positivity bound, and the other set yielding a smaller polarized strange sea. Only further experiments which extract information about the polarized sea will reconcile these differences. We suggest specific experiments which can be performed to determine the size of the polarized sea and gluons

  18. Automation of NLO QCD and EW corrections with Sherpa and Recola

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Benedikt; Denner, Ansgar; Pellen, Mathieu [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Braeuer, Stephan; Schumann, Steffen [Georg-August Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Thompson, Jennifer M. [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany)

    2017-07-15

    This publication presents the combination of the one-loop matrix-element generator Recola with the multipurpose Monte Carlo program Sherpa. Since both programs are highly automated, the resulting Sherpa +Recola framework allows for the computation of - in principle - any Standard Model process at both NLO QCD and EW accuracy. To illustrate this, three representative LHC processes have been computed at NLO QCD and EW: vector-boson production in association with jets, off-shell Z-boson pair production, and the production of a top-quark pair in association with a Higgs boson. In addition to fixed-order computations, when considering QCD corrections, all functionalities of Sherpa, i.e. particle decays, QCD parton showers, hadronisation, underlying events, etc. can be used in combination with Recola. This is demonstrated by the merging and matching of one-loop QCD matrix elements for Drell-Yan production in association with jets to the parton shower. The implementation is fully automatised, thus making it a perfect tool for both experimentalists and theorists who want to use state-of-the-art predictions at NLO accuracy. (orig.)

  19. Quasilocal quark models as effective theory of non-perturbative QCD

    International Nuclear Information System (INIS)

    Andrianov, A.A.

    2006-01-01

    We consider the Quasilocal Quark Model of NJL type (QNJLM) as effective theory of non-perturbative QCD including scalar (S), pseudo-scalar (P), vector (V) and axial-vector (A) four-fermion interaction with derivatives. In the presence of a strong attraction in the scalar channel the chiral symmetry is spontaneously broken and as a consequence the composite meson states are generated in all channels. With the help of Operator Product Expansion the appropriate set of Chiral Symmetry Restoration (CSR) Sum Rules in these channels are imposed as matching rules to QCD at intermediate energies. The mass spectrum and some decay constants for ground and excited meson states are calculated

  20. QCD studies in ep collisions

    International Nuclear Information System (INIS)

    Smith, W.H.

    1997-01-01

    These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F 2 , which is used to determine the gluon momentum distribution. Both low and high Q 2 regimes are discussed. The low Q 2 transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure α s , and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs

  1. QCD studies in ep collisions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.H. [Univ. of Wisconsin, Madison, WI (United States). Physics Dept.

    1997-06-01

    These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F{sub 2}, which is used to determine the gluon momentum distribution. Both low and high Q{sup 2} regimes are discussed. The low Q{sup 2} transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure {alpha}{sub s}, and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs.

  2. Solving QCD evolution equations in rapidity space with Markovian Monte Carlo

    CERN Document Server

    Golec-Biernat, K; Placzek, W; Skrzypek, M

    2009-01-01

    This work covers methodology of solving QCD evolution equation of the parton distribution using Markovian Monte Carlo (MMC) algorithms in a class of models ranging from DGLAP to CCFM. One of the purposes of the above MMCs is to test the other more sophisticated Monte Carlo programs, the so-called Constrained Monte Carlo (CMC) programs, which will be used as a building block in the parton shower MC. This is why the mapping of the evolution variables (eikonal variable and evolution time) into four-momenta is also defined and tested. The evolution time is identified with the rapidity variable of the emitted parton. The presented MMCs are tested independently, with ~0.1% precision, against the non-MC program APCheb especially devised for this purpose.

  3. Consideration of the vacuum of QCD in a composite quark model. Strange hadrons

    International Nuclear Information System (INIS)

    Dorokhov, A.E.; Kochelev, N.I.

    1986-01-01

    The method of inclusion of QCD vacuum condensates within the quark composite model is generalized to the case of hadrons containing strange quarks. The mass formula for such hadrons is obtained. The mass of strange quark is defined by analysing the energy spectrum of hadron ground states. The mixing angles of pseudoscalar mesons are estimated

  4. Thermodynamic potential with condensate fields in an SU(2) model of QCD

    International Nuclear Information System (INIS)

    Ebert, D.

    1996-06-01

    We calculate the thermodynamic potential of the quark-gluon plasma in an SU(2) model of QCD, taking into account the gluon condensate configuration with a constant A 4 -potential and a uniform chromomagnetic field H. Within this scheme the interplay of condensate fields, as well as the role of quarks in the possible dynamical stabilization of the system is investigated. (orig.)

  5. Hadron static properties in the model considering the structure of QCD vacuum

    International Nuclear Information System (INIS)

    Dorokhov, A.E.; Kochelev, N.I.

    1987-01-01

    The model taking into account the interaction of quarks with QCD vacuum fields is applied to calculate the mean-square charge radii, magnetic moments and axial-vector constants of the hadron interaction. It is shown that one-particle contributions of these characteristics describe the experimental data with 20% accuracy

  6. Isgur–Wise function in a QCD-inspired potential model with WKB ...

    Indian Academy of Sciences (India)

    2017-02-28

    Feb 28, 2017 ... DOI 10.1007/s12043-016-1357-9. Isgur–Wise function in a QCD-inspired potential model with WKB approximation. BHASKAR JYOTI HAZARIKA1,∗ and D K CHOUDHURY1,2. 1Centre for Theoretical Studies, Pandu College, Guwahati 781 012, India. 2Physics Academy of North East, Gauhati University, ...

  7. A parton description of the nucleus fragmentation region in heavy-ion collisions

    International Nuclear Information System (INIS)

    Hwa, R.C.; Oregon Univ., Eugene

    1984-01-01

    In nucleus-nucleus collisions, the rapidity distribution of partons in the nucleus fragmentation region is highly asymmetrical. Thermalization that randomizes the momenta of partons far apart in rapidity cannot be expected. A local thermalization model is introduced which relates temperature to the range of parton interaction in rapidity. The parton number density and energy density are then calculated. (orig.)

  8. On the effect of scalar partons at short distances in unified theories with spontaneously broken colour symmetry

    International Nuclear Information System (INIS)

    Craigie, N.S.; Salam, Abdus

    1979-05-01

    The effect of scalar partons arising in QCD if the colour symmetry is spontaneously broken is discussed. The authors use a previous result, which states that such scalars can be incorporated into the theory without disturbing asymptotic freedom. (author)

  9. An analytic parton shower. Algorithms, implementation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Sebastian

    2012-06-15

    The realistic simulation of particle collisions is an indispensable tool to interpret the data measured at high-energy colliders, for example the now running Large Hadron Collider at CERN. These collisions at these colliders are usually simulated in the form of exclusive events. This thesis focuses on the perturbative QCD part involved in the simulation of these events, particularly parton showers and the consistent combination of parton showers and matrix elements. We present an existing parton shower algorithm for emissions off final state partons along with some major improvements. Moreover, we present a new parton shower algorithm for emissions off incoming partons. The aim of these particular algorithms, called analytic parton shower algorithms, is to be able to calculate the probabilities for branchings and for whole events after the event has been generated. This allows a reweighting procedure to be applied after the events have been simulated. We show a detailed description of the algorithms, their implementation and the interfaces to the event generator WHIZARD. Moreover we discuss the implementation of a MLM-type matching procedure and an interface to the shower and hadronization routines from PYTHIA. Finally, we compare several predictions by our implementation to experimental measurements at LEP, Tevatron and LHC, as well as to predictions obtained using PYTHIA. (orig.)

  10. An analytic parton shower. Algorithms, implementation and validation

    International Nuclear Information System (INIS)

    Schmidt, Sebastian

    2012-06-01

    The realistic simulation of particle collisions is an indispensable tool to interpret the data measured at high-energy colliders, for example the now running Large Hadron Collider at CERN. These collisions at these colliders are usually simulated in the form of exclusive events. This thesis focuses on the perturbative QCD part involved in the simulation of these events, particularly parton showers and the consistent combination of parton showers and matrix elements. We present an existing parton shower algorithm for emissions off final state partons along with some major improvements. Moreover, we present a new parton shower algorithm for emissions off incoming partons. The aim of these particular algorithms, called analytic parton shower algorithms, is to be able to calculate the probabilities for branchings and for whole events after the event has been generated. This allows a reweighting procedure to be applied after the events have been simulated. We show a detailed description of the algorithms, their implementation and the interfaces to the event generator WHIZARD. Moreover we discuss the implementation of a MLM-type matching procedure and an interface to the shower and hadronization routines from PYTHIA. Finally, we compare several predictions by our implementation to experimental measurements at LEP, Tevatron and LHC, as well as to predictions obtained using PYTHIA. (orig.)

  11. Metastable vacuum decay and θ dependence in gauge theory. Deformed QCD as a toy model

    Energy Technology Data Exchange (ETDEWEB)

    Bhoonah, Amit; Thomas, Evan, E-mail: zucchini@phas.ubc.ca; Zhitnitsky, Ariel R., E-mail: arz@phas.ubc.ca

    2015-01-15

    We study a number of different ingredients related to the θ dependence, metastable excited vacuum states and other related subjects using a simplified version of QCD, the so-called “deformed QCD”. This model is a weakly coupled gauge theory, which, however, preserves all the relevant essential elements allowing us to study hard and nontrivial features which are known to be present in real strongly coupled QCD. Our main focus in this work is to test the ideas related to the metastable vacuum states (which are known to be present in strongly coupled QCD in large N limit) in a theoretically controllable manner using the “deformed QCD” as a toy model. We explicitly show how the metastable states emerge in the system, why their lifetime is large, and why these metastable states must be present in the system for the self-consistency of the entire picture of the QCD vacuum. We also speculate on possible relevance of the metastable vacuum states in explanation of the violation of local P and CP symmetries in heavy ion collisions.

  12. Metastable vacuum decay and θ dependence in gauge theory. Deformed QCD as a toy model

    International Nuclear Information System (INIS)

    Bhoonah, Amit; Thomas, Evan; Zhitnitsky, Ariel R.

    2015-01-01

    We study a number of different ingredients related to the θ dependence, metastable excited vacuum states and other related subjects using a simplified version of QCD, the so-called “deformed QCD”. This model is a weakly coupled gauge theory, which, however, preserves all the relevant essential elements allowing us to study hard and nontrivial features which are known to be present in real strongly coupled QCD. Our main focus in this work is to test the ideas related to the metastable vacuum states (which are known to be present in strongly coupled QCD in large N limit) in a theoretically controllable manner using the “deformed QCD” as a toy model. We explicitly show how the metastable states emerge in the system, why their lifetime is large, and why these metastable states must be present in the system for the self-consistency of the entire picture of the QCD vacuum. We also speculate on possible relevance of the metastable vacuum states in explanation of the violation of local P and CP symmetries in heavy ion collisions

  13. Partons and their applications at high energies

    International Nuclear Information System (INIS)

    Drell, Sidney D.; Yan, Tung-Mow

    2000-01-01

    We discuss Feynman's parton model for deep inelastic weak or electromagnetic processes as an application of the impulse approximation to elementary particle interactions. The special features and conditions permitting this application are elaborated upon in some detail including the dependence of the parton model and the impulse treatment on an appropriate choice of coordinate frames and the role of the very soft or wee partons. Application of the parton model is made to the calculation of the cross section for massive lepton pair production in very high energy hadron-hadron collisions and compared with experiment. The conjectured role of light cone singularities in describing this and the other deep inelastic amplitudes is also discussed. (c) 2000 Academic Press, Inc

  14. ABM11 parton distributions and benchmarks

    International Nuclear Information System (INIS)

    Alekhin, Sergey; Bluemlein, Johannes; Moch, Sven-Olaf

    2012-08-01

    We present a determination of the nucleon parton distribution functions (PDFs) and of the strong coupling constant α s at next-to-next-to-leading order (NNLO) in QCD based on the world data for deep-inelastic scattering and the fixed-target data for the Drell-Yan process. The analysis is performed in the fixed-flavor number scheme for n f =3,4,5 and uses the MS scheme for α s and the heavy quark masses. The fit results are compared with other PDFs and used to compute the benchmark cross sections at hadron colliders to the NNLO accuracy.

  15. ABM11 parton distributions and benchmarks

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, Sergey [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Institut Fiziki Vysokikh Ehnergij, Protvino (Russian Federation); Bluemlein, Johannes; Moch, Sven-Olaf [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2012-08-15

    We present a determination of the nucleon parton distribution functions (PDFs) and of the strong coupling constant {alpha}{sub s} at next-to-next-to-leading order (NNLO) in QCD based on the world data for deep-inelastic scattering and the fixed-target data for the Drell-Yan process. The analysis is performed in the fixed-flavor number scheme for n{sub f}=3,4,5 and uses the MS scheme for {alpha}{sub s} and the heavy quark masses. The fit results are compared with other PDFs and used to compute the benchmark cross sections at hadron colliders to the NNLO accuracy.

  16. A Lattice Calculation of Parton Distributions

    International Nuclear Information System (INIS)

    Alexandrou, Constantia; Cichy, Krzysztof; Poznan Univ.; Drach, Vincent; Univ. of Southern Denmark, Odense; Garcia-Ramos, Elena; Humboldt-Universitaet, Berlin; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian

    2015-04-01

    We report on our exploratory study for the direct evaluation of the parton distribution functions from lattice QCD, based on a recently proposed new approach. We present encouraging results using N f =2+1+1 twisted mass fermions with a pion mass of about 370 MeV. The focus of this work is a detailed description of the computation, including the lattice calculation, the matching to an infinite momentum and the nucleon mass correction. In addition, we test the effect of gauge link smearing in the operator to estimate the influence of the Wilson line renormalization, which is yet to be done.

  17. QCD and jets

    International Nuclear Information System (INIS)

    Munehisa, Tomo

    1990-01-01

    We present a review on the parton shower in e + e - annihilation. Also we discuss the next-to-leading-logarithmic parton shower. We emphasize that this new model provides a useful tool for the determinations of Λ MS from jet distributions. Analysis by the new model gives us Λ MS = 0.235±0.052 GeV from data of PETRA, PEP and TRISTAN. (author)

  18. Supporting the search for the CEP location with nonlocal PNJL models constrained by lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Contrera, Gustavo A. [IFLP, UNLP, CONICET, Facultad de Ciencias Exactas, La Plata (Argentina); Gravitation, Astrophysics and Cosmology Group, FCAyG, UNLP, La Plata (Argentina); CONICET, Buenos Aires (Argentina); Grunfeld, A.G. [CONICET, Buenos Aires (Argentina); Comision Nacional de Energia Atomica, Departamento de Fisica, Buenos Aires (Argentina); Blaschke, David [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Joint Institute for Nuclear Research, Moscow Region (Russian Federation); National Research Nuclear University (MEPhI), Moscow (Russian Federation)

    2016-08-15

    We investigate the possible location of the critical endpoint in the QCD phase diagram based on nonlocal covariant PNJL models including a vector interaction channel. The form factors of the covariant interaction are constrained by lattice QCD data for the quark propagator. The comparison of our results for the pressure including the pion contribution and the scaled pressure shift Δ P/T {sup 4} vs. T/T{sub c} with lattice QCD results shows a better agreement when Lorentzian form factors for the nonlocal interactions and the wave function renormalization are considered. The strength of the vector coupling is used as a free parameter which influences results at finite baryochemical potential. It is used to adjust the slope of the pseudocritical temperature of the chiral phase transition at low baryochemical potential and the scaled pressure shift accessible in lattice QCD simulations. Our study, albeit presently performed at the mean-field level, supports the very existence of a critical point and favors its location within a region that is accessible in experiments at the NICA accelerator complex. (orig.)

  19. Hadron production in high energy muon scattering. [Quark-parton model, 225 GeV, structure functions, particle ratios

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10/sup 10/ muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s//sup 0/ and ..lambda../sup 0/ decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references.

  20. An investigation of single diffractive p-Be, p-Al, and p-W interactions within the Dual Parton Model

    International Nuclear Information System (INIS)

    Ranft, J.; Roesler, S.

    1994-01-01

    Single diffractive proton-beryllium, -aluminium, and -tungsten interactions are studied within the framework of the Dual Parton Model. Their implementation into the Monte-Carlo event generator DTUNUC is described, and the main features of single diffractive particle production are discussed, comparing them to recent experimental results. Furthermore, single diffractive hadron-nucleus cross sections are calculated using the Glauber theory and the influence of hadronic cross section fluctuations is investigated. (author). 17 refs., 3 figs., 2 tabs

  1. The QCD form factor of massive quarks and applications

    International Nuclear Information System (INIS)

    Moch, S.

    2009-11-01

    We review the electromagnetic form factor of heavy quarks with emphasis on the QCD radiative corrections at two-loop order in the perturbative expansion. We discuss important properties of the heavy-quark form factor such as its exponentiation in the high-energy limit and its role in QCD factorization theorems for massive n-parton amplitudes. (orig.)

  2. Thermo-magnetic effects in quark matter: Nambu-Jona-Lasinio model constrained by lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Ricardo L.S. [Universidade Federal de Santa Maria, Departamento de Fisica, Santa Maria, RS (Brazil); Kent State University, Physics Department, Kent, OH (United States); Timoteo, Varese S. [Universidade Estadual de Campinas (UNICAMP), Grupo de Optica e Modelagem Numerica (GOMNI), Faculdade de Tecnologia, Limeira, SP (Brazil); Avancini, Sidney S.; Pinto, Marcus B. [Universidade Federal de Santa Catarina, Departamento de Fisica, Florianopolis, Santa Catarina (Brazil); Krein, Gastao [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)

    2017-05-15

    The phenomenon of inverse magnetic catalysis of chiral symmetry in QCD predicted by lattice simulations can be reproduced within the Nambu-Jona-Lasinio model if the coupling G of the model decreases with the strength B of the magnetic field and temperature T. The thermo-magnetic dependence of G(B, T) is obtained by fitting recent lattice QCD predictions for the chiral transition order parameter. Different thermodynamic quantities of magnetized quark matter evaluated with G(B, T) are compared with the ones obtained at constant coupling, G. The model with G(B, T) predicts a more dramatic chiral transition as the field intensity increases. In addition, the pressure and magnetization always increase with B for a given temperature. Being parametrized by four magnetic-field-dependent coefficients and having a rather simple exponential thermal dependence our accurate ansatz for the coupling constant can be easily implemented to improve typical model applications to magnetized quark matter. (orig.)

  3. Shadowing of gluons in perturbative QCD: A comparison of different models

    International Nuclear Information System (INIS)

    Jalilian-Marian, Jamal; Wang, Xin-Nian

    2001-01-01

    We investigate the different perturbative QCD-based models for nuclear shadowing of gluons. We show that, in the kinematic region appropriate to the BNL relativistic heavy ion collider experiment, all models give similar estimates for the magnitude of gluon shadowing. At scales relevant to CERN large hadron collider (LHC), there is a sizable difference between the predictions of the different models. However, the uncertainties in gluon shadowing coming from a different parametrization of the gluon distribution in nucleons, are larger than those due to different perturbative QCD models of gluon shadowing. We also investigate the effect of initial nonperturbative shadowing on the magnitude of perturbative shadowing and show that the magnitudes of perturbative and nonperturbative shadowing are comparable at RHIC but perturbative shadowing dominates over nonperturbative shadowing at smaller values of x reached at LHC

  4. The supercritical pomeron in QCD

    International Nuclear Information System (INIS)

    White, A. R.

    1998-01-01

    Deep-inelastic diffractive scaling violations have provided fundamental insight into the QCD pomeron, suggesting a single gluon inner structure rather than that of a perturbative two-gluon bound state. This talk outlines a derivation of a high-energy, transverse momentum cut-off, confining solution of QCD. The pomeron, in first approximation, is a single reggeized gluon plus a ''wee parton'' component that compensates for the color and particle properties of the gluon. This solution corresponds to a super-critical phase of Reggeon Field Theory

  5. Reaction-diffusion processes in zero transverse dimensions as toy models for high-energy QCD

    International Nuclear Information System (INIS)

    Armesto, Nestor; Bondarenko, Sergey; Quiroga-Arias, Paloma; Milhano, Jose Guilherme

    2008-01-01

    We examine numerically different zero-dimensional reaction-diffusion processes as candidate toy models for high-energy QCD evolution. Of the models examined-Reggeon Field Theory, Directed Percolation and Reversible Processes-only the latter shows the behaviour commonly expected, namely an increase of the scattering amplitude with increasing rapidity. Further, we find that increasing recombination terms, quantum loops and the heuristic inclusion of a running of the couplings, generically slow down the evolution.

  6. QCD mixing effects in a gauge invariant quark model for photo- and electroproduction of baryon resonances

    International Nuclear Information System (INIS)

    Zhenping Li; Close, F.E.

    1990-03-01

    The photo and electroproduction of baryon resonances has been calculated using the Constituent Quark Model with chromodynamics consistent with O(υ 2 /c 2 ) for the quarks. We find that the successes of the nonrelativistic quark model are preserved, some problems are removed and that QCD mixing effects may become important with increasing q 2 in electroproduction. For the first time both spectroscopy and transitions receive a unified treatment with a single set of parameters. (author)

  7. Parton-hadron cascade approach at SPS and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Nara, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-07-01

    A parton-hadron cascade model which is the extension of hadronic cascade model incorporating hard partonic scattering based on HIJING is presented to describe the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with HIJING and VNI. Baryon density, energy density and temperature for RHIC are calculated within this model. (author)

  8. Transverse momentum dependent (TMD) parton distribution functions. Status and prospects

    International Nuclear Information System (INIS)

    Angeles-Martinez, R.; Bacchetta, A.; Pavia Univ.; Balitsky, I.I.

    2015-07-01

    We provide a concise overview on transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum q T spectra of Higgs and vector bosons for low q T , and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present an application of a new tool, TMDlib, to parton density fits and parameterizations.

  9. Colour singlets in perturbative QCD

    International Nuclear Information System (INIS)

    Bassetto, A.

    1979-01-01

    In the axial gauge and at the leading log level, a definite and consistent picture seems to emerge of a parton decay into states in which many partons are found just before confinement should take place. They are grouped into colourless clusters in a number sufficient to exhaust the ''final'' state, still possessing a finite average mass. This result is peculiar of QCD, in particular of its non-abelian nature. Large transverse momenta or more generally average invariant quantities of partons are mainly due to the multiplicities involved in the branching processes. If eventually confinement would convert these clusters into hadrons (and this is of course the main issue which has still to be proven) without a large rearrangement of the colour lines, the picture we have found for colour singlets could apply to the real hadronic world. (author)

  10. Transverse momentum distributions inside the nucleon from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Musch, Bernhard Ulrich

    2009-05-29

    Nucleons, i.e., protons and neutrons, are composed of quarks and gluons, whose interactions are described by the theory of quantum chromodynamics (QCD), part of the standard model of particle physics. This work applies lattice QCD to compute quark momentum distributions in the nucleon. The calculations make use of lattice data generated on supercomputers that has already been successfully employed in lattice studies of spatial quark distributions (''nucleon tomography''). In order to be able to analyze transverse momentum dependent parton distribution functions, this thesis explores a novel approach based on non-local operators. One interesting observation is that the transverse momentum dependent density of polarized quarks in a polarized nucleon is visibly deformed. A more elaborate operator geometry is required to enable a quantitative comparison to high energy scattering experiments. First steps in this direction are encouraging. (orig.)

  11. Photon structure functions at small x in holographic QCD

    International Nuclear Information System (INIS)

    Watanabe, Akira; Li, Hsiang-nan

    2015-01-01

    We investigate the photon structure functions at small Bjorken variable x in the framework of the holographic QCD, assuming dominance of the Pomeron exchange. The quasi-real photon structure functions are expressed as convolution of the Brower–Polchinski–Strassler–Tan (BPST) Pomeron kernel and the known wave functions of the U(1) vector field in the five-dimensional AdS space, in which the involved parameters in the BPST kernel have been fixed in previous studies of the nucleon structure functions. The predicted photon structure functions, as confronted with data, provide a clean test of the BPST kernel. The agreement between theoretical predictions and data is demonstrated, which supports applications of holographic QCD to hadronic processes in the nonperturbative region. Our results are also consistent with those derived from the parton distribution functions of the photon proposed by Glück, Reya, and Schienbein, implying realization of the vector meson dominance in the present model setup.

  12. The status of perturbative QCD

    International Nuclear Information System (INIS)

    Ellis, R.K.

    1988-10-01

    The advances in perturbative QCD are reviewed. The status of determinations of the coupling constant α/sub S/ and the parton distribution functions is presented. New theoretical results on the spin dependent structure functions of the proton are also reviewed. The theoretical description of the production of vector bosons, jets and heavy quarks is outlined with special emphasis on new results. Expected rates for top quark production at hadronic colliders are presented. 111 refs., 8 figs

  13. Recent QCD results from ATLAS at the LHC

    CERN Document Server

    Keoshkerian, H; The ATLAS collaboration

    2014-01-01

    The ATLAS collaboration has performed studies of a wide range of QCD phenomena, from soft particle to hard photon and jet production. Recent soft-QCD measurements include studies of underlying event, vector meson production. Differential measurements of inclusive and dijet production provide stringent tests of high-order QCD predictions and provide input for determination of parton density functions. Measurements of isolated inclusive and di-photons cross sections for high p_T photons test various theoretical predictions and constrain parton density functions. An overview of these results is given.



  14. arXiv Proceedings of the Sixth International Workshop on Multiple Partonic Interactions at the Large Hadron Collider

    CERN Document Server

    Astalos, R.; Bartalini, P.; Belyaev, I.; Bierlich, Ch.; Blok, B.; Buckley, A.; Ceccopieri, F.A.; Cherednikov, I.; Christiansen, J.R.; Ciangottini, D.; Deak, M.; Ducloue, B.; Field, R.; Gaunt, J.R.; Golec-Biernat, K.; Goerlich, L.; Grebenyuk, A.; Gueta, O.; Gunnellini, P.; Helenius, I.; Jung, H.; Kar, D.; Kepka, O.; Klusek-Gawenda, M.; Knutsson, A.; Kotko, P.; Krasny, M.W.; Kutak, K.; Lewandowska, E.; Lykasov, G.; Maciula, R.; Moraes, A.M.; Martin, T.; Mitsuka, G.; Motyka, L.; Myska, M.; Otwinowski, J.; Pierog, T.; Pleskot, V.; Rinaldi, M.; Schafer, W.; Siodmok, A.; Sjostrand, T.; Snigirev, A.; Stasto, A.; Staszewski, R.; Stebel, T.; Strikman, M.; Szczurek, A.; Treleani, D.; Trzebinski, M.; van Haevermaet, H.; van Hameren, A.; van Mechelen, P.; Waalewijn, W.; Wang, W.Y.; MPI@LHC 2014

    2014-01-01

    Multiple Partonic Interactions are often crucial for interpreting results obtained at the Large Hadron Collider (LHC). The quest for a sound understanding of the dynamics behind MPI - particularly at this time when the LHC is due to start its "Run II" operations - has focused the aim of this workshop. MPI@LHC2014 concentrated mainly on the phenomenology of LHC measurements whilst keeping in perspective those results obtained at previous hadron colliders. The workshop has also debated some of the state-of-the-art theoretical considerations and the modeling of MPI in Monte Carlo event generators. The topics debated in the workshop included: Phenomenology of MPI processes and multiparton distributions; Considerations for the description of MPI in Quantum Chromodynamics (QCD); Measuring multiple partonic interactions; Experimental results on inelastic hadronic collisions: underlying event, minimum bias, forward energy flow; Monte Carlo generator development and tuning; Connections with low-x phenomena, diffractio...

  15. Minkowski space pion model inspired by lattice QCD running quark mass

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Clayton S. [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil); Melo, J.P.B.C. de [Laboratório de Física Teórica e Computacional – LFTC, Universidade Cruzeiro do Sul, 01506-000 São Paulo, SP (Brazil); Frederico, T., E-mail: tobias@ita.br [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil)

    2017-03-10

    The pion structure in Minkowski space is described in terms of an analytic model of the Bethe–Salpeter amplitude combined with Euclidean Lattice QCD results. The model is physically motivated to take into account the running quark mass, which is fitted to Lattice QCD data. The pion pseudoscalar vertex is associated to the quark mass function, as dictated by dynamical chiral symmetry breaking requirements in the limit of vanishing current quark mass. The quark propagator is analyzed in terms of a spectral representation, and it shows a violation of the positivity constraints. The integral representation of the pion Bethe–Salpeter amplitude is also built. The pion space-like electromagnetic form factor is calculated with a quark electromagnetic current, which satisfies the Ward–Takahashi identity to ensure current conservation. The results for the form factor and weak decay constant are found to be consistent with the experimental data.

  16. Minkowski space pion model inspired by lattice QCD running quark mass

    Directory of Open Access Journals (Sweden)

    Clayton S. Mello

    2017-03-01

    Full Text Available The pion structure in Minkowski space is described in terms of an analytic model of the Bethe–Salpeter amplitude combined with Euclidean Lattice QCD results. The model is physically motivated to take into account the running quark mass, which is fitted to Lattice QCD data. The pion pseudoscalar vertex is associated to the quark mass function, as dictated by dynamical chiral symmetry breaking requirements in the limit of vanishing current quark mass. The quark propagator is analyzed in terms of a spectral representation, and it shows a violation of the positivity constraints. The integral representation of the pion Bethe–Salpeter amplitude is also built. The pion space-like electromagnetic form factor is calculated with a quark electromagnetic current, which satisfies the Ward–Takahashi identity to ensure current conservation. The results for the form factor and weak decay constant are found to be consistent with the experimental data.

  17. Tests of models for parton fragmentation in e+e- annihilation

    International Nuclear Information System (INIS)

    Gary, J.W.

    1985-11-01

    We examine the distribution of particles in the three jet events of e + e - annihilation. The data was collected with the PEP-4/Time Projection Chamber detector at 29 GeV center-of-mass energy at PEP. The experimental distributions are compared to the predictions of several fragmentation models which describe the transition of quarks and gluons into hadrons. In particular, our study emphasizes the three fragmentation models which are currently in widest use: the Lund string model, the Webber cluster model and the independent fragmentation model. These three models each possess different Lorentz frame structures for the distribution of hadron sources relative to the overall event c.m. in three jet events. The Lund string and independent fragmentation models are tuned to describe global event properties of our multihadronic annihilation event sample. This tuned Lund string model provides a good description of the distribution of particles between jet axes in three jet events, while the independent fragmentation model does not. We verify that the failure of the independent fragmentation model is not a consequence of parameter tuning or of model variant. The Webber cluster model, which is untuned, does not describe the absolute particle densities between jets but correctly predicts the ratios of those densities, which are less sensitive to the tuning. These results provide evidence that the sources of hadrons are boosted with respect to the overall center-of-mass in three jet events, with components of motion normal to the jet axes. The distribution of particles close to jet axes provides additional support for this conclusion. 94 refs

  18. The QCD/SM working group: Summary report

    International Nuclear Information System (INIS)

    Giele, W.

    2004-01-01

    Quantum Chromo-Dynamics (QCD), and more generally the physics of the Standard Model (SM), enter in many ways in high energy processes at TeV Colliders, and especially in hadron colliders (the Tevatron at Fermilab and the forthcoming LHC at CERN), First of all, at hadron colliders, QCD controls the parton luminosity, which rules the production rates of any particle or system with large invariant mass and/or large transverse momentum. Accurate predictions for any signal of possible ''New Physics'' sought at hadron colliders, as well as the corresponding backgrounds, require an improvement in the control of uncertainties on the determination of PDF and of the propagation of these uncertainties in the predictions. Furthermore, to fully exploit these new types of PDF with uncertainties, uniform tools (computer interfaces, standardization of the PDF evolution codes used by the various groups fitting PDF's) need to be proposed and developed. The dynamics of colour also affects, both in normalization and shape, various observables of the signals of any possible ''New Physics'' sought at the TeV scale, such as, e.g. the production rate, or the distributions in transverse momentum of the Higgs boson. Last, but not least, QCD governs many backgrounds to the searches for this ''New Physics''. Large and important QCD corrections may come from extra hard parton emission (and the corresponding virtual corrections), involving multi-leg and/or multi-loop amplitudes. This requires complex higher order calculations, and new methods have to be designed to compute the required multi-legs and/or multi-loop corrections in a tractable form. In the case of semi-inclusive observables, logarithmically enhanced contributions coming from multiple soft and collinear gluon emission require sophisticated QCD resummation techniques. Resummation is a catch-all name for efforts to extend the predictive power of QCD by summing the large logarithmic corrections to all orders in perturbation theory. In

  19. The QCD/SM working group: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    W. Giele et al.

    2004-01-12

    Quantum Chromo-Dynamics (QCD), and more generally the physics of the Standard Model (SM), enter in many ways in high energy processes at TeV Colliders, and especially in hadron colliders (the Tevatron at Fermilab and the forthcoming LHC at CERN), First of all, at hadron colliders, QCD controls the parton luminosity, which rules the production rates of any particle or system with large invariant mass and/or large transverse momentum. Accurate predictions for any signal of possible ''New Physics'' sought at hadron colliders, as well as the corresponding backgrounds, require an improvement in the control of uncertainties on the determination of PDF and of the propagation of these uncertainties in the predictions. Furthermore, to fully exploit these new types of PDF with uncertainties, uniform tools (computer interfaces, standardization of the PDF evolution codes used by the various groups fitting PDF's) need to be proposed and developed. The dynamics of colour also affects, both in normalization and shape, various observables of the signals of any possible ''New Physics'' sought at the TeV scale, such as, e.g. the production rate, or the distributions in transverse momentum of the Higgs boson. Last, but not least, QCD governs many backgrounds to the searches for this ''New Physics''. Large and important QCD corrections may come from extra hard parton emission (and the corresponding virtual corrections), involving multi-leg and/or multi-loop amplitudes. This requires complex higher order calculations, and new methods have to be designed to compute the required multi-legs and/or multi-loop corrections in a tractable form. In the case of semi-inclusive observables, logarithmically enhanced contributions coming from multiple soft and collinear gluon emission require sophisticated QCD resummation techniques. Resummation is a catch-all name for efforts to extend the predictive power of QCD by summing the large

  20. QCD-motivated Nambu-Jona-Lasinio model with quark and gluon condensates

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1991-01-01

    A systematic study of the role of the nonperturbative gluon condensate arising in a QCD-motivated Nambu-Jona-Lasinio model is presented. The effects of the gluon condensate on induced meson couplings, the pion decay constant, quark condensate and mass formulae are investigated. An interesting result is the change of the scale Λ of chiral symmetry breaking and of the universal four-quark coupling constant κ. 20 refs

  1. QCD-motivated Nambu-Jona-Lasinio model with quark and gluon condensates

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1991-01-01

    We present a systematic study of the role of the nonperturbative gluon condensate arising in a QCD-motivated NJL model. The effects of the gluon condensate on induced meson couplings, the pion decay constant, quark condensate and mass formulae are investigated. An interesting result is the change of the scale Λ of chiral symmetry breaking and of the universal four-quark coupling κ. (orig.)

  2. Structure functions of the deuteron with allowance for meson exchange currents within QCD-VMD model

    International Nuclear Information System (INIS)

    Burov, V.V.

    1992-01-01

    The deuteron structure functions A(q 2 ), B(q 2 ) and tensor polarization T 20 (q 2 ) are studied within the QCD-VMD model. It is shown that the calculation of the structure functions with allowance for meson exchange currents does not allow us to improve the agreement with experiment at large transfer momenta where probably other degrees of freedom are to be taken into account. 24 refs.; 6 figs

  3. From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Venugopalan, R.

    2010-07-22

    We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.

  4. Parton distribution functions in the context of parton showers

    International Nuclear Information System (INIS)

    Nagy, Zoltán; Soper, Davison E.

    2014-01-01

    When the initial state evolution of a parton shower is organized according to the standard “backward evolution” prescription, ratios of parton distribution functions appear in the splitting probabilities. The shower thus organized evolves from a hard scale to a soft cutoff scale. At the end of the shower, one expects that only the parton distributions at the soft scale should affect the results. The other effects of the parton distributions should have cancelled. This means that the kernels for parton evolution should be related to the shower splitting functions. If the initial state partons can have non-zero masses, this requires that the evolution kernels cannot be the usual (MS)-bar kernels. We work out what the parton evolution kernels should be to match the shower evolution contained in the parton shower event generator DEDUCTOR, in which the b and c quarks have non-zero masses.

  5. Multiparton interactions and multiparton distributions in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus

    2011-11-15

    After a brief recapitulation of the general interest of parton densities, we discuss multiple hard interactions and multiparton distributions. We report on recent theoretical progress in their QCD description, on outstanding conceptual problems and on possibilities to use multiparton distributions as a laboratory to test and improve our understanding of hadron structure. (orig.)

  6. Multiparton interactions and multiparton distributions in QCD

    International Nuclear Information System (INIS)

    Diehl, Markus

    2011-11-01

    After a brief recapitulation of the general interest of parton densities, we discuss multiple hard interactions and multiparton distributions. We report on recent theoretical progress in their QCD description, on outstanding conceptual problems and on possibilities to use multiparton distributions as a laboratory to test and improve our understanding of hadron structure. (orig.)

  7. On-Shell Methods in Perturbative QCD

    International Nuclear Information System (INIS)

    Bern, Zvi; Dixon, Lance J.; Kosower, David A.

    2007-01-01

    We review on-shell methods for computing multi-parton scattering amplitudes in perturbative QCD, utilizing their unitarity and factorization properties. We focus on aspects which are useful for the construction of one-loop amplitudes needed for phenomenological studies at the Large Hadron Collider

  8. Current issues and challenges in global analysis of parton distributions

    International Nuclear Information System (INIS)

    Tung, Wu-Ki

    2007-01-01

    A new implementation of precise perturbative QCD calculation of deep inelastic scattering structure functions and cross sections, incorporating heavy quark mass effects, is applied to the global analysis of the full HERA I data sets on NC and CC cross sections, in conjunction with other experiments. Improved agreement between the NLO QCD theory and the global data sets are obtained. Comparison of the new results to that of previous analysis based on conventional zero-mass parton formalism is made. Exploratory work on implications of new fixed-target neutrino scattering and Drell-Yan data on global analysis is also discussed. (author)

  9. HERAFitter, Open Source QCD Fit Project

    CERN Document Server

    Alekhin, S.; Belov, P.; Borroni, S.; Botje, M.; Britzger, D.; Camarda, S.; Cooper-Sarkar, A.M.; Daum, K.; Diaconu, C.; Feltesse, J.; Gizhko, A.; Glazov, A.; Guffanti, A.; Guzzi, M.; Hautmann, F.; Jung, A.; Jung, H.; Kolesnikov, V.; Kowalski, H.; Kuprash, O.; Kusina, A.; Levonian, S.; Lipka, K.; Lobodzinski, B.; Lohwasser, K.; Luszczak, A.; Malaescu, B.; McNulty, R.; Myronenko, V.; Naumann-Emme, S.; Nowak, K.; Olness, F.; Perez, E.; Pirumov, H.; Plačakytė, R.; Rabbertz, K.; Radescu, V.; Sadykov, R.; Salam, G.P.; Sapronov, A.; Schöning, A.; Schörner-Sadenius, T.; Shushkevich, S.; Slominski, W.; Spiesberger, H.; Starovoitov, P.; Sutton, M.; Tomaszewska, J.; Turkot, O.; Vargas, A.; Watt, G.; Wichmann, K.

    2015-07-02

    HERAFitter is an open-source package that provides a framework for the determination of the parton distribution functions (PDFs) of the proton and for many different kinds of analyses in Quantum Chromodynamics (QCD). It encodes results from a wide range of experimental measurements in lepton-proton deep inelastic scattering and proton-proton (proton-antiproton) collisions at hadron colliders. These are complemented with a variety of theoretical options for calculating PDF-dependent cross section predictions corresponding to the measurements. The framework covers a large number of the existing methods and schemes used for PDF determination. The data and theoretical predictions are brought together through numerous methodological options for carrying out PDF fits and plotting tools to help visualise the results. While primarily based on the approach of collinear factorisation, HERAFitter also provides facilities for fits of dipole models and transverse-momentum dependent PDFs. The package can be used to study t...

  10. Dual parton model and the process π + n → pω

    International Nuclear Information System (INIS)

    Bandyopad, P.

    1975-01-01

    The differential cross section for the process π + n→pω has been determined on the basis of the dynamical dual model of hadrons. It is shown that the theoretical prediction is in excellent agreement with the experimental results. Also, it can nicely explain the fact that there is no dip in the differential cross section. Moreover, it is shown that the large value of the density matrix element σsub(oo) in the Gottfried-Jackson frame, as observed in experiments, can be interpreted in a nice way. (author)

  11. Testing nuclear parton distributions with pA collisions at the LHC

    CERN Document Server

    Quiroga-Arias, Paloma; Wiedemann, Urs Achim

    2010-01-01

    Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non-linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program at...

  12. Testing collinear factorization and nuclear parton distributions with pA collisions at the LHC

    CERN Document Server

    Quiroga-Arias, Paloma; Wiedemann, Urs Achim

    2011-01-01

    Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non- linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program a...

  13. QCD and nuclei

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1989-01-01

    To apply QCD to nuclear physics one needs methods of long-distance QCD. A new method, method of Confining Background Fields, CBF, which incorporates confinement, is presented with applications to heavy and light quarks, both in mesons and baryons. Spin-dependent forces are calculated for light and heavy quarks. The quark potential model in some limiting case is derived. 25 refs

  14. Properties of the vacuum in models for QCD. Holography vs. resummed field theory. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Zayakin, Andrey V.

    2011-01-17

    This Thesis is dedicated to a comparison of the two means of studying the electromagnetic properties of the QCD vacuum - holography and resummed field theory. I compare two classes of distinct models for the dynamics of the condensates. The first class consists of the so-called holographic models of QCD. Based upon the Maldacena conjecture, it tries to establish the properties of QCD correlation functions from the behavior of classical solutions of field equations in a higher-dimensional theory. Yet in many aspects the holographic approach has been found to be in an excellent agreement with data. These successes are the prediction of the very small viscosity-to-entropy ratio and the predictions of meson spectra up to 5% accuracy in several models. On the other hand, the resummation methods in field theory have not been discarded so far. Both classes of methods have access to condensates. Thus a comprehensive study of condensates becomes possible, in which I compare my calculations in holography and resummed field theory with each other, as well as with lattice results, field theory and experiment. I prove that the low-energy theorems of QCD keep their validity in holographic models with a gluon condensate in a non-trivial way. I also show that the so-called decoupling relation holds in holography models with chiral and gluon condensates, whereas this relation fails in the Dyson-Schwinger approach. On the contrary, my results on the chiral magnetic effect in holography disagree with the weak-field prediction; the chiral magnetic effect (that is, the electric current generation in a magnetic field) is three times less than the current in the weakly-coupled QCD. The chiral condensate behavior is found to be quadratic in external field both in the Dyson-Schwinger approach and in holography, yet we know that in the exact limit the condensate must be linear, thus both classes of models are concluded to be deficient for establishing the correct condensate behaviour in the

  15. Properties of the vacuum in models for QCD. Holography vs. resummed field theory. A comparative study

    International Nuclear Information System (INIS)

    Zayakin, Andrey V.

    2011-01-01

    This Thesis is dedicated to a comparison of the two means of studying the electromagnetic properties of the QCD vacuum - holography and resummed field theory. I compare two classes of distinct models for the dynamics of the condensates. The first class consists of the so-called holographic models of QCD. Based upon the Maldacena conjecture, it tries to establish the properties of QCD correlation functions from the behavior of classical solutions of field equations in a higher-dimensional theory. Yet in many aspects the holographic approach has been found to be in an excellent agreement with data. These successes are the prediction of the very small viscosity-to-entropy ratio and the predictions of meson spectra up to 5% accuracy in several models. On the other hand, the resummation methods in field theory have not been discarded so far. Both classes of methods have access to condensates. Thus a comprehensive study of condensates becomes possible, in which I compare my calculations in holography and resummed field theory with each other, as well as with lattice results, field theory and experiment. I prove that the low-energy theorems of QCD keep their validity in holographic models with a gluon condensate in a non-trivial way. I also show that the so-called decoupling relation holds in holography models with chiral and gluon condensates, whereas this relation fails in the Dyson-Schwinger approach. On the contrary, my results on the chiral magnetic effect in holography disagree with the weak-field prediction; the chiral magnetic effect (that is, the electric current generation in a magnetic field) is three times less than the current in the weakly-coupled QCD. The chiral condensate behavior is found to be quadratic in external field both in the Dyson-Schwinger approach and in holography, yet we know that in the exact limit the condensate must be linear, thus both classes of models are concluded to be deficient for establishing the correct condensate behaviour in the

  16. Polarized 3 parton production in inclusive DIS at small x

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México 04510 (Mexico); Centre for Theoretical and Mathematical Physics, and Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Hentschinski, Martin, E-mail: hentschinski@correo.nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México 04510 (Mexico); Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla 1152 (Mexico); Jalilian-Marian, Jamal [Department of Natural Sciences, Baruch College, CUNY, 17 Lexington Avenue, New York, NY 10010 (United States); CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016 (United States); Tejeda-Yeomans, Maria Elena [Departamento de Física, Universidad de Sonora, Boulevard Luis Encinas J. y Rosales, Colonia Centro, Hermosillo, Sonora 83000 (Mexico)

    2016-10-10

    Azimuthal angular correlations between produced hadrons/jets in high energy collisions are a sensitive probe of the dynamics of QCD at small x. Here we derive the triple differential cross section for inclusive production of 3 polarized partons in DIS at small x. The target proton or nucleus is described using the Color Glass Condensate (CGC) formalism. The resulting expressions are used to study azimuthal angular correlations between produced partons in order to probe the gluon structure of the target hadron or nucleus. Our analytic expressions can also be used to calculate the real part of the Next to Leading Order (NLO) corrections to di-hadron production in DIS by integrating out one of the three final state partons.

  17. Polarized 3 parton production in inclusive DIS at small x

    International Nuclear Information System (INIS)

    Ayala, Alejandro; Hentschinski, Martin; Jalilian-Marian, Jamal; Tejeda-Yeomans, Maria Elena

    2016-01-01

    Azimuthal angular correlations between produced hadrons/jets in high energy collisions are a sensitive probe of the dynamics of QCD at small x. Here we derive the triple differential cross section for inclusive production of 3 polarized partons in DIS at small x. The target proton or nucleus is described using the Color Glass Condensate (CGC) formalism. The resulting expressions are used to study azimuthal angular correlations between produced partons in order to probe the gluon structure of the target hadron or nucleus. Our analytic expressions can also be used to calculate the real part of the Next to Leading Order (NLO) corrections to di-hadron production in DIS by integrating out one of the three final state partons.

  18. Polarized 3 parton production in inclusive DIS at small x

    Directory of Open Access Journals (Sweden)

    Alejandro Ayala

    2016-10-01

    Full Text Available Azimuthal angular correlations between produced hadrons/jets in high energy collisions are a sensitive probe of the dynamics of QCD at small x. Here we derive the triple differential cross section for inclusive production of 3 polarized partons in DIS at small x. The target proton or nucleus is described using the Color Glass Condensate (CGC formalism. The resulting expressions are used to study azimuthal angular correlations between produced partons in order to probe the gluon structure of the target hadron or nucleus. Our analytic expressions can also be used to calculate the real part of the Next to Leading Order (NLO corrections to di-hadron production in DIS by integrating out one of the three final state partons.

  19. New advances in the statistical parton distributions approach*

    Directory of Open Access Journals (Sweden)

    Soffer Jacques

    2016-01-01

    Full Text Available The quantum statistical parton distributions approach proposed more than one decade ago is revisited by considering a larger set of recent and accurate Deep Inelastic Scattering experimental results. It enables us to improve the description of the data by means of a new determination of the parton distributions. This global next-to-leading order QCD analysis leads to a good description of several structure functions, involving unpolarized parton distributions and helicity distributions, in terms of a rather small number of free parameters. There are many serious challenging issues. The predictions of this theoretical approach will be tested for single-jet production and charge asymmetry in W± production in p̄p and pp collisions up to LHC energies, using recent data and also for forthcoming experimental results.

  20. Ordering variable for parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science

    2014-01-15

    The parton splittings in a parton shower are ordered according to an ordering variable, for example the transverse momentum of the daughter partons relative to the direction of the mother, the virtuality of the splitting, or the angle between the daughter partons. We analyze the choice of the ordering variable and conclude that one particular choice has the advantage of factoring softer splittings from harder splittings graph by graph in a physical gauge.

  1. Ordering variable for parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Zoltán [DESY,Notkestrasse 85, 22607 Hamburg (Germany); Soper, Davison E. [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403-5203 (United States)

    2014-06-30

    The parton splittings in a parton shower are ordered according to an ordering variable, for example the transverse momentum of the daughter partons relative to the direction of the mother, the virtuality of the splitting, or the angle between the daughter partons. We analyze the choice of the ordering variable and conclude that one particular choice has the advantage of factoring softer splittings from harder splittings graph by graph in a physical gauge.

  2. Ordering variable for parton showers

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2014-01-01

    The parton splittings in a parton shower are ordered according to an ordering variable, for example the transverse momentum of the daughter partons relative to the direction of the mother, the virtuality of the splitting, or the angle between the daughter partons. We analyze the choice of the ordering variable and conclude that one particular choice has the advantage of factoring softer splittings from harder splittings graph by graph in a physical gauge.

  3. Implications of new deep inelastic scattering data for parton distributions

    International Nuclear Information System (INIS)

    Martin, A.D.; Stirling, W.J.; Roberts, R.G.

    1988-01-01

    We perform a next-to-leading order structure function F 2 analysis of μN and νN deep inelastic data in an attempt to resolve the disagreement between recent EMC (European muon collaboration effect) and BCDMS measurements of F 2 for μp scattering. Equally acceptable QCD fits are obtained including either set of μN data, but a comparison with Drell-Yan data appears to favour the parton distributions derived from the BCDMS data. (author)

  4. QCD Dual

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2009-01-01

    We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...

  5. Tests of QCD factorisation in the diffractive production of dijets in deep-inelastic scattering and photoproduction at HERA

    Science.gov (United States)

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schätzel, S.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-08-01

    Measurements are presented of differential dijet cross sections in diffractive photoproduction (Q2<0.01 GeV2) and deep-inelastic scattering processes (DIS, 4QCD predictions based on diffractive parton densities previously obtained from a QCD analysis of inclusive diffractive DIS cross sections by H1. In DIS, the dijet data are well described, supporting the validity of QCD factorisation. The diffractive DIS dijet data are more sensitive to the diffractive gluon density at high fractional parton momentum than the measurements of inclusive diffractive DIS. In photoproduction, the predicted dijet cross section has to be multiplied by a factor of approximately 0.5 for both direct and resolved photon interactions to describe the measurements. The ratio of measured dijet cross section to NLO prediction in photoproduction is a factor 0.5±0.1 smaller than the same ratio in DIS. This suppression is the first clear observation of QCD hard scattering factorisation breaking at HERA. The measurements are also compared to the two soft colour neutralisation models SCI and GAL. The SCI model describes diffractive dijet production in DIS but not in photoproduction. The GAL model fails in both kinematic regions.

  6. A QCD Model Using Generalized Yang-Mills Theory

    International Nuclear Information System (INIS)

    Wang Dianfu; Song Heshan; Kou Lina

    2007-01-01

    Generalized Yang-Mills theory has a covariant derivative, which contains both vector and scalar gauge bosons. Based on this theory, we construct a strong interaction model by using the group U(4). By using this U(4) generalized Yang-Mills model, we also obtain a gauge potential solution, which can be used to explain the asymptotic behavior and color confinement.

  7. Dark matter, constrained minimal supersymmetric standard model, and lattice QCD.

    Science.gov (United States)

    Giedt, Joel; Thomas, Anthony W; Young, Ross D

    2009-11-13

    Recent lattice measurements have given accurate estimates of the quark condensates in the proton. We use these results to significantly improve the dark matter predictions in benchmark models within the constrained minimal supersymmetric standard model. The predicted spin-independent cross sections are at least an order of magnitude smaller than previously suggested and our results have significant consequences for dark matter searches.

  8. Modeling Soft Gluons and Fiducial Cross Sections: New Physics or Old QCD?

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    In this talk I will describe some of the consequences of the consistently discrepant WW cross section measured at ATLAS and CMS. I will describe models where stops can be as light as 200 GeV satisfying naturalness constraints. I will also discuss the current states of the art modeling of QCD effects in the measurement of the cross section using p_T resummation. I will show that there is a sizable effect caused by a jet veto in extrapolating to the total cross section, but ultimately not enough to explain the current discrepancy.

  9. A model for string-breaking in QCD

    International Nuclear Information System (INIS)

    Antonov, Dmitri; Del Debbio, Luigi; Di Giacomo, Adriano

    2003-01-01

    We present a model for string breaking based on the existence of chromoelectric flux tubes. We predict the form of the long-range potential and obtain an estimate of the string breaking length. A prediction is also obtained for the behaviour with temperature of the string breaking length near the deconfinement phase transition. We plan to use this model as a guide for a program of study of string breaking on the lattice. (author)

  10. On the transverse momentum in Z-boson production in a virtually ordered parton shower

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science

    2009-12-15

    Cross sections for physical processes that involve very different momentum scales in the same process will involve large logarithms of the ratio of the momentum scales when calculated in perturbation theory. One goal of calculations using parton showers is to sum these large logarithms. We ask whether this goal is achieved for the transverse momentum distribution of a Z-boson produced in hadron-hadron collisions when the shower is organized with higher virtuality parton splittings coming first, followed successively by lower virtuality parton splittings. We find that the virtuality ordered shower works well in reproducing the known QCD result. (orig.)

  11. Hard scattering on light nuclei: a convenient way to study parton correlations

    International Nuclear Information System (INIS)

    Calucci, G.; Treleani, D.

    2011-01-01

    The one-body partonic distributions in the hadrons are well investigated using electromagnetic or weak interactions. If we wish to exploit the same procedure to study the two-body distributions we should study the very rare events with multiple electromagnetic or weak interactions on the same hadron.The alternative is to study events with hard QCD double scattering of partons of the same hadron, such events become more and more abundant when the energy of the colliding hadrons grows. In fact at very high energies even the parton at small fractional momentum χ may suffer collisions with momentum transfer large enough to allow a perturbative treatment

  12. On the transverse momentum in Z-boson production in a virtually ordered parton shower

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2009-12-01

    Cross sections for physical processes that involve very different momentum scales in the same process will involve large logarithms of the ratio of the momentum scales when calculated in perturbation theory. One goal of calculations using parton showers is to sum these large logarithms. We ask whether this goal is achieved for the transverse momentum distribution of a Z-boson produced in hadron-hadron collisions when the shower is organized with higher virtuality parton splittings coming first, followed successively by lower virtuality parton splittings. We find that the virtuality ordered shower works well in reproducing the known QCD result. (orig.)

  13. Obe approximation of NN scattering in bag-model QCD

    International Nuclear Information System (INIS)

    Bakker, B.L.G.; Maslow, J.N.; Weber, H.J.

    1981-01-01

    A partial-wave helicity-state analysis of nucleon-nucleon scattering is carried out in momentum space. Its basis is a one-boson and two-pion exchange amplitude from bag-model quantum chromodynamics. The resulting phase shifts and bound-state parameters of the deuteron are compared with data up to laboratory energies of approx. equal to 350 MeV. (orig.)

  14. Melting spectral functions of the scalar and vector mesons in a holographic QCD model

    International Nuclear Information System (INIS)

    Fujita, Mitsutoshi; Kikuchi, Toru; Fukushima, Kenji; Misumi, Tatsuhiro; Murata, Masaki

    2010-01-01

    We investigate the finite-temperature spectral functions of heavy quarkonia by using the soft-wall anti-de Sitter/QCD model. We discuss the scalar, the pseudoscalar, the vector, and the axial-vector mesons and compare their qualitative features of the melting temperature and growing width. We find that the axial-vector meson melts earlier than the vector meson, while there appears only a slight difference between the scalar and pseudoscalar mesons, which also melt earlier than the vector meson.

  15. A model for pion-pion scattering in large-N QCD

    Energy Technology Data Exchange (ETDEWEB)

    Veneziano, G. [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Collège de France,11 place M. Berthelot, 75005 Paris (France); Yankielowicz, S. [Raymond and Beverly Sackler School of Physics Tel-Aviv University,Ramat-Aviv 69978 (Israel); Onofri, E. [I.N.F.N., Gruppo Collegato di Parma, c/o Department of Mathematical,Physical and Computer Sciences, Università di Parma,Parco Area delle Scienze 7/a, Parma, 43124 (Italy)

    2017-04-26

    Following up on recent work by Caron-Huot et al. we consider a generalization of the old Lovelace-Shapiro model as a toy model for ππ scattering satisfying (most of) the properties expected to hold in (’t Hooft’s) large-N limit of massless QCD. In particular, the model has asymptotically linear and parallel Regge trajectories at positive t, a positive leading Regge intercept α{sub 0}<1, and an effective bending of the trajectories in the negative-t region producing a fixed branch point at J=0 for tQCD: A(s,t)∼s{sup −β}log (s){sup −γ}F(θ). Tree-level unitarity (i.e. positivity of residues for all values of s and J) imposes strong constraints on the allowed region in the α{sub 0}-β-γ parameter space, which nicely includes a physically interesting region around α{sub 0}=0.5, β=2 and γ=3. The full consistency of the model would require an extension to multi-pion processes, a program we do not undertake in this paper.

  16. Top quark pair production and modeling via QCD in CMS

    CERN Document Server

    Gonzalez Fernandez, Juan Rodrigo

    2017-01-01

    Measurements of the inclusive and differential top quark pair ($\\textrm{t}\\bar{\\textrm{t}}$) production cross section at centre-of-mass energies of 13 TeV and 5.02 TeV are presented, performed using CMS data collected in 2015 and 2016. The inclusive cross section is measured in the lepton+jets, dilepton and fully hadronic channels. Top quark pair differential cross sections are measured and are given as functions of various kinematic observables of (anti)top quark, the $\\textrm{t}\\bar{\\textrm{t}}$ system, and of the jets and leptons in the final state. Furthermore, the multiplicity and kinematic distributions of the additional jets produced in $\\textrm{t}\\bar{\\textrm{t}}$ events are also investigated and its modeling is compared for several generators. A new tune of parameters is developed for some of the generators. In addition, first measurements of top quark pair production with additional b quarks in the final state are presented. Furthermore, searches for four top quark production in CMS are also present...

  17. Dynamics of a quantum spin liquid beyond integrability: The Kitaev-Heisenberg-Γ model in an augmented parton mean-field theory

    Science.gov (United States)

    Knolle, Johannes; Bhattacharjee, Subhro; Moessner, Roderich

    2018-04-01

    We present an augmented parton mean-field theory which (i) reproduces the exact ground state, spectrum, and dynamics of the quantum spin-liquid phase of Kitaev's honeycomb model, and (ii) is amenable to the inclusion of integrability breaking terms, allowing a perturbation theory from a controlled starting point. Thus, we exemplarily study dynamical spin correlations of the honeycomb Kitaev quantum spin liquid within the K -J -Γ model, which includes Heisenberg and symmetric-anisotropic (pseudodipolar) interactions. This allows us to trace changes of the correlations in the regime of slowly moving fluxes, where the theory captures the dominant deviations when integrability is lost. These include an asymmetric shift together with a broadening of the dominant peak in the response as a function of frequency, the generation of further-neighbor correlations and their structure in real and spin space, and a resulting loss of an approximate rotational symmetry of the structure factor in reciprocal space. We discuss the limitations of this approach and also view the neutron-scattering experiments on the putative proximate quantum spin-liquid material α -RuCl3 in the light of the results from this extended parton theory.

  18. Complex conjugate poles and parton distributions

    International Nuclear Information System (INIS)

    Tiburzi, B.C.; Detmold, W.; Miller, G.A.

    2003-01-01

    We calculate parton and generalized parton distributions in Minkowski space using a scalar propagator with a pair of complex conjugate poles. Correct spectral and support properties are obtained only after careful analytic continuation from Euclidean space. Alternately the quark distribution function can be calculated from modified cutting rules, which put the intermediate state on its complex mass shells. Distribution functions agree with those resulting from the model's Euclidean space double distribution which we calculate via nondiagonal matrix elements of twist-two operators. Thus one can use a wide class of analytic parametrizations of the quark propagator to connect Euclidean space Green functions to light-cone dominated amplitudes

  19. On chiral-odd Generalized Parton Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France); UPMC Univ. Paris 6, Paris (France); Pire, Bernard [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France); Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland)

    2010-07-01

    The chiral-odd transversity generalized parton distributions of the nucleon can be accessed experimentally through the exclusive photoproduction process {gamma} + N {yields} {pi} + {rho} + N', in the kinematics where the meson pair has a large invariant mass and the final nucleon has a small transverse momentum, provided the vector meson is produced in a transversally polarized state. Estimated counting rates show that the experiment is feasible with real or quasi real photon beams expected at JLab at 12 GeV and in the COMPASS experiment. (Phys Letters B688,154,2010) In addition, a consistent classification of the chiral-odd pion GPDs beyond the leading twist 2 is presented. Based on QCD equations of motion and on the invariance under rotation on the light-cone of any scattering amplitude involving such GPDs, we reduce the basis of these chiral-odd GPDs to a minimal set. (author)

  20. 3D parton imaging of the nucleon in high-energy p p and p A collisions

    CERN Document Server

    Frankfurt, L; Weiss, C

    2004-01-01

    We discuss several examples of how the transverse spatial distribution of partons in the nucleon, as well as multiparton correlations, can be probed by observing hard processes (dijets) in high-energy pp(pp) and pA(dA) collisions. Such studies can complement the information gained from measurements of hard exclusive processes in ep scattering. The transverse spatial distribution of partons determines the distribution over pp impact parameters of events with hard dijet production. Correlations in the transverse positions of partons can be studied in multiple dijet production. We find that the correlation cross section measured by the CDF Collaboration, sigma//e //f//f = 14.5 plus or minus 1.7//-//2//.//3**+**1**.**7 mb, can be explained by "constituent quark" type quark-gluon correlations with r //q approximately equals r//N/3, as suggested by the instanton liquid model of the QCD vacuum. Longitudinal and transverse multiparton correlations can be separated in a model-independent way by comparing multiple dije...

  1. On the model dependence of the determination of the strong coupling constant in second order QCD from e+e--annihilation into hadrons

    International Nuclear Information System (INIS)

    Achterberg, O.; D'Agostini, G.; Apel, W.D.; Engler, J.; Fluegge, G.; Forstbauer, B.; Fries, D.C.; Fues, W.; Gamerdinger, K.; Henkes, T.; Hopp, G.; Krueger, M.; Kuester, H.; Mueller, H.; Randoll, H.; Schmidt, G.; Schneider, H.; Boer, W. de; Buschhorn, G.; Grindhammer, G.; Grosse-Wiesmann, P.; Gunderson, B.; Kiesling, C.; Kotthaus, R.; Kruse, U.; Lierl, H.; Lueers, D.; Oberlack, H.; Schacht, P.; Bonneaud, G.; Colas, P.; Cordier, A.; Davier, M.; Fournier, D.; Grivaz, J.F.; Haissinski, J.; Journe, V.; Laplanche, F.; Le Diberder, F.; Mallik, U.; Ros, E.; Veillet, J.J.; Behrend, H.J.; Fenner, H.; Schachter, M.J.; Schroeder, V.; Sindt, H.

    1983-12-01

    Hadronic events obtained with the CELLO detector at PETRA are compared with second order QCD predictions using different models for the fragmentation of quarks and gluons into hadrons. We find that the model dependence in the determination of the strong coupling constant persists when going from first to second order QCD calculations. (orig.)

  2. Quark–hadron phase structure, thermodynamics, and magnetization of QCD matter

    Science.gov (United States)

    Nasser Tawfik, Abdel; Magied Diab, Abdel; Hussein, M. T.

    2018-05-01

    The SU(3) Polyakov linear-sigma model (PLSM) is systematically implemented to characterize the quark-hadron phase structure and to determine various thermodynamic quantities and the magnetization of quantum chromodynamic (QCD) matter. Using mean-field approximation, the dependence of the chiral order parameter on a finite magnetic field is also calculated. Under a wide range of temperatures and magnetic field strengths, various thermodynamic quantities including trace anomaly, speed of sound squared, entropy density, and specific heat are presented, and some magnetic properties are described as well. Where available these results are compared to recent lattice QCD calculations. The temperature dependence of these quantities confirms our previous finding that the transition temperature is reduced with the increase in the magnetic field strength, i.e. QCD matter is characterized by an inverse magnetic catalysis. Furthermore, the temperature dependence of the magnetization showing that QCD matter has paramagnetic properties slightly below and far above the pseudo-critical temperature is confirmed as well. The excellent agreement with recent lattice calculations proves that our QCD-like approach (PLSM) seems to possess the correct degrees of freedom in both the hadronic and partonic phases and describes well the dynamics deriving confined hadrons to deconfined quark-gluon plasma.

  3. Generalized parton distribution for non zero skewness

    International Nuclear Information System (INIS)

    Kumar, Narinder; Dahiya, Harleen; Teryaev, Oleg

    2012-01-01

    In the theory of strong interactions the main open question is how the nucleon and other hadrons are built from quarks and gluons, the fundamental degrees of freedom in QCD. An essential tool to investigate hadron structure is the study of deep inelastic scattering processes, where individual quarks and gluons can be resolved. The parton densities extracted from such processes encode the distribution of longitudinal momentum and polarization carried by quarks, antiquarks and gluons within a fast moving hadron. They have provided much to shape the physical picture of hadron structure. In the recent years, it has become clear that appropriate exclusive scattering processes may provide such information encoded in the general parton distributions (GPDs). Here, we investigate the GPD for deep virtual compton scattering (DVCS) for the non zero skewness. The study has investigated the GPDs by expressing them in terms of overlaps of light front wave functions (LFWFs). The work represented a spin 1/2 system as a composite of spin 1/2 fermion and spin 1 boson with arbitrary masses

  4. Double parton scattering. A tale of two partons

    Energy Technology Data Exchange (ETDEWEB)

    Kasemets, Tomas

    2013-08-15

    Double parton scattering in proton-proton collisions can give sizable contributions to final states in parts of phase space. We investigate the correlations between the partons participating in the two hard interactions of double parton scattering. With a detailed calculation of the differential cross section for the double Drell-Yan process we demonstrate how initial state correlations between the partons affect the rate and distribution of final state particles. We present our results with focus on correlations between the polarizations of the partons. In particular transversely polarized quarks lead to a dependence of the cross section on angles between final state particles of the two hard interactions, and thereby on the invariant mass of particle pairs. The size of the spin correlations, and therewith the degree to which the final state particles are correlated, depends on unknown double parton distributions. We derive positivity bounds on the double parton distributions that follow from their interpretation as probability densities, taking into account all possible spin correlations between two partons in an unpolarized proton. We show that the bounds are stable under homogeneous leading-order DGLAP evolution to higher scales. We make direct use of the positivity bounds in numerical investigations on the double DGLAP evolution for two linearly polarized gluons and for two transversely polarized quarks. We find that the linearly polarized gluons are likely to be negligible at high scales but that transversely polarized quarks can still play a significant role. We examine the dependence of the double parton distributions on the transverse distance between the two partons, and therewith between the two hard interactions. We further study the interplay between transverse and longitudinal variables of the distributions, as well as the impact of the differences in integration limits between the evolution equations for single and double parton distributions. (orig.)

  5. Chiral phase transition and Anderson localization in the instanton liquid model for QCD

    International Nuclear Information System (INIS)

    Garcia-Garcia, Antonio M.; Osborn, James C.

    2006-01-01

    We study the spectrum and eigenmodes of the QCD Dirac operator in a gauge background given by an instanton liquid model (ILM) at temperatures around the chiral phase transition. Generically we find the Dirac eigenvectors become more localized as the temperature is increased. At the chiral phase transition, both the low lying eigenmodes and the spectrum of the QCD Dirac operator undergo a transition to localization similar to the one observed in a disordered conductor. This suggests that Anderson localization is the fundamental mechanism driving the chiral phase transition. We also find an additional temperature dependent mobility edge (separating delocalized from localized eigenstates) in the bulk of the spectrum which moves toward lower eigenvalues as the temperature is increased. In both regions, the origin and the bulk, the transition to localization exhibits features of a 3D Anderson transition including multifractal eigenstates and spectral properties that are well described by critical statistics. Similar results are obtained in both the quenched and the unquenched case though the critical temperature in the unquenched case is lower. Finally we argue that our findings are not in principle restricted to the ILM approximation and may also be found in lattice simulations

  6. Extended soft wall model with background related to features of QCD thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zoellner, R.; Kaempfer, B. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, Dresden (Germany)

    2017-06-15

    The soft wall model is extended to accommodate at the same time i) approximately linear ρ meson Regge trajectories at zero temperature T, ii) various options for the thermodynamics with reference to QCD (cross-over or second-order transition or first-order transition at T{sub c}), and iii) the appearance of vector meson states at T model dependence very near to T{sub c}, they stay below T{sub c} to good accuracy independent of the temperature, that is nearly as at T = 0, thus being very consistent with the thermo-statistical models widely employed in analyses of the hadron yields in relativistic heavy-ion collisions in a region where baryon density effects can be neglected and the vacuum hadron masses are used. (orig.)

  7. Structure functions and parton distributions in deep inelastic lepton-hadron scattering at high energies

    International Nuclear Information System (INIS)

    Bluemlein, J.

    1993-08-01

    The possibilities to measure structure functions, to extract parton distributions, and to measure α s and Λ QCD in current and future high energy deep inelastic scattering experiments are reviewed. A comparison is given for experiments at HERA, an ep option at LEP xLHC, and a high energy neutrino experiment. (orig.)

  8. Possible signature of multiple parton interactions in collider four-jet events

    International Nuclear Information System (INIS)

    Ametller, L.; Paver, N.; Treleani, D.

    1985-07-01

    We discuss the role of multiple parton scattering in the production of four-jet events of the Ssub(pp-bar)S Collider. Taking into account the experimental conditions, we find that such a mechanism can contribute to the psub(out) distribution appreciably enough to be differentiated from the leading perturbative QCD. (author)

  9. Probing the perturbative NLO parton evolution in the small-x region

    International Nuclear Information System (INIS)

    Glueck, M.; Pisano, C.; Reya, E.

    2005-01-01

    A dedicated test of the perturbative QCD NLO parton evolution in the very small-x region is performed. We find a good agreement with recent precision HERA data for F 2 p (x,Q 2 ), as well as with the present determination of the curvature of F 2 p . Characteristically, perturbative QCD evolutions result in a positive curvature which increases as xdecreases. Future precision measurements in the very small x-region, x -4 , could provide a sensitive test of the range of validity of perturbative QCD. (orig.)

  10. Nucleon fragmentation into baryons in proton-nucleon interactions at 19 GeV/c compared with some quark-parton model predictions

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, V.; Breivik, F.O.; Jacobsen, T. (Oslo Univ. (Norway). Fysisk Inst.)

    1983-06-21

    We present some new data on baryon production in pn interactions at 19 GeV/c obtained in a bubble chamber experiment. We determine the longitudinal-momentum spectra dsigma/dx of the baryon in the reaction pn->psub(F)+X, pn->psub(B)+X, pn->..delta..sub(F)/sup + +/(1232)+X and pn->..delta..sub(B)/sup + +/(1232)+X, where F(B) labels the forward (backward) c.m. hemisphere. The spectra of psub(F) and psub(B) are also given when the effects of diffraction and ..delta../sup + +/(1232) resonance production are substracted. These data, together with dsigma/dx of pp->..lambda../sup 0/+X at the same beam momentum, are compared with the predictions of some quark-parton models. Particle multiplicities of nucleons, ..delta../sup + +/(1232) and hyperons are found to be incompatible with the probabilistic quark model of Van Hove.

  11. QCD phenomenology

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1979-01-01

    Selected topics in QCD phenomenology are reviewed: the development of an effective jet perturbation series with applications to factorization, energy flow analysis and photon physics; implications of non-perturbative phenomena for hard scattering processes and the pseudoscalar mass spectrum; resonance properties as extracted from the combined technologies of perturbative and non-perturbative QCD. (orig.)

  12. Multi-parton loop amplitudes and next-to-leading order jet cross-sections

    International Nuclear Information System (INIS)

    Bern, Z.; Dixon, L.; Kosower, D.A.; Signer, A.

    1998-02-01

    The authors review recent developments in the calculation of QCD loop amplitudes with several external legs, and their application to next-to-leading order jet production cross-sections. When a number of calculational tools are combined together--helicity, color and supersymmetry decompositions, plus unitarity and factorization properties--it becomes possible to compute multi-parton one-loop QCD amplitudes without ever evaluating analytically standard one-loop Feynman diagrams. One-loop helicity amplitudes are now available for processes with five external partons (ggggg, q anti qggg and q anti qq anti q' g), and for an intermediate vector boson V ≡ γ * , Z, W plus four external partons (V q anti q and V q anti qq'anti q'). Using these amplitudes, numerical programs have been constructed for the next-to-leading order corrections to the processes p anti p → 3 jets (ignoring quark contributions so far) and e + e - → 4 jets

  13. Medium Modifications of Hadron Properties and Partonic Processes

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, W. K.; Strauch, S.; Tsushima, K.

    2011-06-01

    Chiral symmetry is one of the most fundamental symmetries in QCD. It is closely connected to hadron properties in the nuclear medium via the reduction of the quark condensate , manifesting the partial restoration of chiral symmetry. To better understand this important issue, a number of Jefferson Lab experiments over the past decade have focused on understanding properties of mesons and nucleons in the nuclear medium, often benefiting from the high polarization and luminosity of the CEBAF accelerator. In particular, a novel, accurate, polarization transfer measurement technique revealed for the first time a strong indication that the bound proton electromagnetic form factors in 4He may be modified compared to those in the vacuum. Second, the photoproduction of vector mesons on various nuclei has been measured via their decay to e+e- to study possible in-medium effects on the properties of the rho meson. In this experiment, no significant mass shift and some broadening consistent with expected collisional broadening for the rho meson has been observed, providing tight constraints on model calculations. Finally, processes involving in-medium parton propagation have been studied. The medium modifications of the quark fragmentation functions have been extracted with much higher statistical accuracy than previously possible.

  14. Progress on Complex Langevin simulations of a finite density matrix model for QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, Jacques [Univ. of Regensburg (Germany). Inst. for Theorectical Physics; Glesaan, Jonas [Swansea Univ., Swansea U.K.; Verbaarschot, Jacobus [Stony Brook Univ., NY (United States). Dept. of Physics and Astronomy; Zafeiropoulos, Savvas [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Heidelberg Univ. (Germany). Inst. for Theoretische Physik

    2018-04-01

    We study the Stephanov model, which is an RMT model for QCD at finite density, using the Complex Langevin algorithm. Naive implementation of the algorithm shows convergence towards the phase quenched or quenched theory rather than to intended theory with dynamical quarks. A detailed analysis of this issue and a potential resolution of the failure of this algorithm are discussed. We study the effect of gauge cooling on the Dirac eigenvalue distribution and time evolution of the norm for various cooling norms, which were specifically designed to remove the pathologies of the complex Langevin evolution. The cooling is further supplemented with a shifted representation for the random matrices. Unfortunately, none of these modifications generate a substantial improvement on the complex Langevin evolution and the final results still do not agree with the analytical predictions.

  15. Salty popcorn in a homogeneous low-dimensional toy model of holographic QCD

    International Nuclear Information System (INIS)

    Elliot-Ripley, Matthew

    2017-01-01

    Recently, a homogeneous ansatz has been used to study cold dense nuclear matter in the Sakai–Sugimoto model of holographic QCD. To justify this homogeneous approximation we here investigate a homogeneous ansatz within a low-dimensional toy version of Sakai–Sugimoto to study finite baryon density configurations and compare it to full numerical solutions. We find the ansatz corresponds to enforcing a dyon salt arrangement in which the soliton solutions are split into half-soliton layers. Within this ansatz we find analogues of the proposed baryonic popcorn transitions, in which solutions split into multiple layers in the holographic direction. The homogeneous results are found to qualitatively match the full numerical solutions, lending confidence to the homogeneous approximations of the full Sakai–Sugimoto model. In addition, we find exact compact solutions in the high density, flat space limit which demonstrate the existence of further popcorn transitions to three layers and beyond. (paper)

  16. Deconfinement, chiral transition and localisation in a QCD-like model

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, Matteo; Katz, Sándor D. [Institute for Theoretical Physics, Eötvös University,Pázmány P. sétány 1/A, H-1117 Budapest (Hungary); MTA-ELTE “Lendület” Lattice Gauge Theory Research Group,Pázmány P. sétány 1/A, H-1117 Budapest (Hungary); Kovács, Tamás G. [Institute for Nuclear Research of the Hungarian Academy of Sciences,Bem tér 18/c, H-4026 Debrecen (Hungary); Pittler, Ferenc [HISKP(Theory), University of Bonn,Nussallee 14-16, D-53115 Bonn (Germany)

    2017-02-10

    We study the problems of deconfinement, chiral symmetry restoration and localisation of the low Dirac eigenmodes in a toy model of QCD, namely unimproved staggered fermions on lattices of temporal extension N{sub T}=4. This model displays a genuine deconfining and chirally-restoring first-order phase transition at some critical value of the gauge coupling. Our results indicate that the onset of localisation of the lowest Dirac eigenmodes takes place at the same critical coupling where the system undergoes the first-order phase transition. This provides further evidence of the close relation between deconfinement, chiral symmetry restoration and localisation of the low modes of the Dirac operator on the lattice.

  17. Parton dynamics in hadronic processes. Final report

    International Nuclear Information System (INIS)

    Sukhatme, U.P.

    1984-07-01

    We have elucidated several aspects of the dual parton fragmentation model for low transverse momentum multiparticle production in hadronic collisions previously developed by the author and collaborators at Orsay, France. In particular, we have verified that the dual parton model correctly reproduces recently obtained two particle inclusive distributions and particle ratios in the central region of pp and anti pp collisions. This work sheds light on the dynamics of partons in a hadronic collision since it strongly indicates that a valence quark from each initial hadron is held back with a small momentum fraction. Also, we have extended the dual parton approach to include diffraction dissocation and studied the consequences on inclusive pion production in pp interactions. We have investigated the virtues and limitations of logarithmic perturbation theory, which is often a much simpler alternative to standard Rayleigh-Schroedinger perturbation theory. Finally, we have developed and studied the shifted 1/N expansion for the enrgy eigenstates in non-relativistic quantum mechanics. Our results provide an accurate, rapidly convergent, powerful new way of handling any spherically symmetric potential. 18 references

  18. Hard QCD Measurements at LHC

    CERN Document Server

    Pasztor, Gabriella

    2018-01-01

    The rich proton-proton collision data of the LHC allow to study QCD processes in a previously unexplored region with ever improving precision. This paper summarises recent results of the ATLAS, CMS and LHCb Collaborations using primarily multi-jet and vector boson plus jet data collected at $\\sqrt s$ = 8 and 13 TeV. Comparisons to higher-order theoretical calculations and sophisticated Monte Carlo predictions are presented, as well as the impact of the data on the determination of the parton distribution functions and the measurement of the strong coupling constant, $\\alpha_s$.

  19. Sensitivity of the LHC isolated-gamma+jet data to the parton distribution functions of the proton

    CERN Document Server

    Carminati, L.; D'Enterria, D.; Koletsou, I.; Marchiori, G.; Rojo, J.; Stockton, M.; Tartarelli, F.

    2013-01-01

    We study the impact of differential isolated-photon+jet cross sections measured in proton-proton collisions at a center-of-mass energy of sqrt{s} = 7 TeV on the parton distribution functions (PDF) of the proton. Next-to-leading order perturbative QCD (pQCD) calculations complemented with the NNPDF2.1 parton densities, and a Bayesian PDF reweighting method are employed. We find that although the current data provide only mild constraints to the parton densities, future gamma-jet measurements with reduced experimental uncertainties can improve our knowledge of the gluon density over a wide range of parton fractional momenta x as well as of the quarks at low-x.

  20. Structure functions of the deuteron with allowance for meon-exchange currents within the QCD-VMD model

    International Nuclear Information System (INIS)

    Burov, V.V.; Dostovalov, V.N.; Sus'kov, S.Eh.

    1993-01-01

    The deuteron structure functions and tensor polarization are studied within the QCD-VMD model. It is shown that the calculation of the structure functions with allowance for meson-exchange currents does not allow to improve the agreement with experiment at large transfer momenta where probably other degrees of freedom are to be taken into accout

  1. Lepton pair production at ISR energies and QCD

    International Nuclear Information System (INIS)

    Altarelli, G.; Martinelli, G.

    1985-01-01

    Motivated by some recent results from the ISR we have considered all available data on the production of Drell-Yan pairs by high energy proton beams. We show that the lepton pair cross sections and qsub(T) distributions are correctly described by QCD using the known distributions of partons in the proton and acceptable values of the QCD scale Λ. No other free parameter is required. Within the accuracy of the data no appreciable intrinsic transverse momentum is needed. (orig.)

  2. Three-Prong Distribution of Massive Narrow QCD Jets

    CERN Document Server

    Field, Matan; Kosower, David A; Mannelli, Lorenzo; Perez, Gilad

    2013-01-01

    We study the planar-flow distributions of narrow, highly boosted, massive QCD jets. Using the factorization properties of QCD in the collinear limit, we compute the planar-flow jet function from the one-to-three splitting function at tree-level. We derive the leading-log behavior of the jet function analytically. We also compare our semi-analytic jet function with parton-shower predictions using various generators.

  3. Chiral phase transition in the soft-wall model of AdS/QCD

    International Nuclear Information System (INIS)

    Chelabi, Kaddour; Fang, Zhen; Huang, Mei; Li, Danning; Wu, Yue-Liang

    2016-01-01

    We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t’Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realized perfectly. In the two-flavor case, it gives a second order chiral phase transition in the chiral limit, while the transition turns to be a crossover for any finite quark mass. In the case of three-flavor, the phase transition becomes a first order one in the chiral limit, while above sufficient large quark mass it turns to be a crossover again. This scenario agrees exactly with the current understanding on chiral phase transition from lattice QCD and other effective model studies.

  4. Born term for high-energy meson-hadron collisions from QCD and chiral quark model

    International Nuclear Information System (INIS)

    Ochs, W.; Shimada, T.

    1988-01-01

    Various experimental observations reveal a sizeable hard component in the high-energy 'soft' hadronic collisions. For primary meson beams we propose a QCD Born term which describes the dissociation of the primary meson into a quark-antiquark pair in the gluon field of the target. A pointlike effective pion-quark coupling is assumed as in the chiral quark model by Manohar and Georgi. We derive the total cross sections which for pion beams, for example, are given in terms of f π -2 and some properties of the hadronic final states. In particular, we stress the importance of studying three-jet events in meson-nucleon scattering and discuss the seagull effect. (orig.)

  5. Quasi-particle model for lattice QCD: quark-gluon plasma in heavy ion collisions

    International Nuclear Information System (INIS)

    Chandra, Vinod; Ravishankar, V.

    2009-01-01

    We propose a quasi-particle model to describe the lattice QCD equation of state for pure SU(3) gauge theory in its deconfined state, for T≥1.5T c . The method involves mapping the interaction part of the equation of state to an effective fugacity of otherwise non-interacting quasi-gluons. We find that this mapping is exact. Using the quasi-gluon distribution function, we determine the energy density and the modified dispersion relation for the single particle energy, in which the trace anomaly is manifest. As an application, we first determine the Debye mass, and then the important transport parameters, viz., the shear viscosity, η, and the shear viscosity to entropy density ratio, η/S. We find that both η and η/S are sensitive to the interactions, and that the interactions significantly lower both η and η/S. (orig.)

  6. Monte Carlo evidence for the gluon-chain model of QCD string formation

    International Nuclear Information System (INIS)

    Greensite, J.; San Francisco State Univ., CA

    1988-08-01

    The Monte Carlo method is used to calculate the overlaps string vertical stroken gluons>, where Ψ string [A] is the Yang-Mills wavefunctional due to a static quark-antiquark pair, and vertical stroken gluons > are orthogonal trial states containing n=0, 1, or 2 gluon operators multiplying the true ground state. The calculation is carried out for SU(2) lattice gauge theory in Coulomb gauge, in D=4 dimensions. It is found that the string state is dominated, at small qanti q separations, by the vacuum ('no-gluon') state, at larger separations by the 1-gluon state, and, at the largest separations attempted, the 2-gluon state begins to dominate. This behavior is in qualitative agreement with the gluon-chain model, which is a large-N colors motivated theory of QCD string formation. (orig.)

  7. Violations of the Callan-Gross relation as function of X,Q2 from QCD

    International Nuclear Information System (INIS)

    Gonzalez-Arroyo, A.

    1980-07-01

    The Callan-Gross relation, originally based on the parton model, predicts that, in (say) electroproduction, sigmasub(L)/sigmasub(T) = 0. When QCD corrections are taken into account this relation gets modified by terms of order αsub(c)(Q 2 ). We define R approximately sigmasub(L)/sigmasub(T) to measure the violation of the Callan-Gross relation. One can obtain exactly the behaviour of R(x,Q 2 ) at the endpoints x = 0,1 from QCD. This will incidentally allow us to write a simple and explicit parametrization, which is exact at x = 0,1 and a good approximation at all other x. We will carry out the analysis for proton targets and e, μ projectiles; the extension to ν scattering or other targets is straightforward

  8. PDF and QCD effects in the precision measurement of the W boson mass at CDF

    International Nuclear Information System (INIS)

    Beecher, Daniel

    2011-01-01

    A sample of W → eν (W → μν) and Z 0 → e + e - (Z 0 → μ + μ - ) events recorded by the CDF detector for p(bar p) collisions at √s = 1.96 TeV are used to evaluate the systematic uncertainty in the determination of the W boson mass arising from uncertainties in the parton distribution functions and higher-order QCD effects. The systematic contribution of PDFs is determined to be 10 MeV/c 2 for MSTW2008 NLO and 12 MeV/c 2 for CTEQ6.6. The total systematic contribution arising from higher-order QCD effects in 9 MeV/c 2 . The Z 0 events are used to extract improved estimates of the phenomenological parameters in the BLNY model that describes low transverse momentum.

  9. The multiparton distribution equations in QCD

    International Nuclear Information System (INIS)

    Shelest, V.P.; Snigirev, A.M.; Zinovjev, G.M.

    1982-01-01

    The equations for multiparton distribution functions of deep-inelastic lepton-hadron scattering and fragmentation functions of e + e - annihilation are obtained by using parton interpretation of the leading logarithm diagrams of perturbative QCD theory. These equations have essentially different structute but the solutions are the same on the definite initial conditions and coincide with the jet calculus rules. The difference is crucial when these equations for hadron jets description are generalized [ru

  10. Solving QCD using multi-regge theory

    International Nuclear Information System (INIS)

    White, A. R.

    1998-01-01

    This talk outlines the derivation of a high-energy, transverse momentum cut-off, solution of QCD in which the Regge pole and ''single gluon'' properties of the pomeron are directly related to the confinement and chiral symmetry breaking properties of the hadron spectrum. In first approximation, the pomeron is a single reggeized gluon plus a ''wee parton'' component that compensates for the color and particle properties of the gluon. This solution corresponds to a supercritical phase of Reggeon Field Theory

  11. Light-Front QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.

    2004-11-30

    In these lectures, I survey a number of applications of light-front methods to hadron and nuclear physics phenomenology and dynamics, including light-front statistical physics. Light-front Fock-state wavefunctions provide a frame-independent representation of hadrons in terms of their fundamental quark and gluon degrees of freedom. Nonperturbative methods for computing LFWFs in QCD are discussed, including string/gauge duality which predicts the power-law fall-off at high momentum transfer of light-front Fock-state hadronic wavefunctions with an arbitrary number of constituents and orbital angular momentum. The AdS/CFT correspondence has important implications for hadron phenomenology in the conformal limit, including an all-orders derivation of counting rules for exclusive processes. One can also compute the hadronic spectrum of near-conformal QCD assuming a truncated AdS/CFT space. Given the LFWFs, one can compute form factors, heavy hadron decay amplitudes, hadron distribution amplitudes, and the generalized parton distributions underlying deeply virtual Compton scattering. The quantum fluctuations represented by the light-front Fock expansion leads to novel QCD phenomena such as color transparency, intrinsic heavy quark distributions, diffractive dissociation, and hidden-color components of nuclear wavefunctions. A new test of hidden color in deuteron photodisintegration is proposed. The origin of leading-twist phenomena such as the diffractive component of deep inelastic scattering, single-spin asymmetries, nuclear shadowing and antishadowing is also discussed; these phenomena cannot be described by light-front wavefunctions of the target computed in isolation. Part of the anomalous NuTeV results for the weak mixing angle {theta}{sub W} could be due to the non-universality of nuclear antishadowing for charged and neutral currents.

  12. Lattice QCD and physics beyond the Standar Model: an experimentalist perspective

    Science.gov (United States)

    Artuso, Marina

    2017-01-01

    The new frontier in elementary particle physics is to find evidence for new physics that may lead to a deeper understanding of observations such as the baryon-antibaryon asymmetry of the universe, mass hierarchy, dark matter, or dark energy to name a few. Flavor physics provides a wealth of opportunities to find such signatures, and a vast body of data taken at e+e- b-factories and at hadron machines has provided valuable information, and a few tantalizing ``tensions'' with respect to the Standard Model predictions. While the window for new physics is still open, the chance that its manifestations will be subtle is very real. A vibrant experimental program is ongoing, and significant upgrades, such as the upgraded LHCb experiment at LHC and Belle 2 at KEKb, are imminent. One of the challenges in extracting new physics from flavor physics data is the need to relate observed hadron decays to fundamental particles and interactions. The continuous improvement of Lattice QCD predictions is a key element to achieve success in this quest. Improvements in algorithms and hardware have led to predictions of increasing precision on several fundamental matrix elements, and the continuous breaking of new grounds, thus allowing a broader spectrum of measurements to become relevant to this quest. An important aspect of the experiment-lattice synergy is a comparison between lattice predictions with experiment for a variety of hadronic quantities. This talk summarizes current synergies between lattice QCD theory and flavor physics experiments, and gives some highlights of expectations from future upgrades. this work was supported by NSF.

  13. Quarklei: nuclear physics from QCD

    International Nuclear Information System (INIS)

    Goldman, T.

    1985-01-01

    The difficulties posed for nuclear physics by either recognizing or ignoring QCD, are discussed. A QCD model for nuclei is described. A crude approximation is shown to qualitatively reproduce saturation of nuclear binding energies and the EMC effect. The model is applied seriously to small nuclei, and to hypernuclei

  14. Angular distribution of Drell-Yan process at hadron colliders to NLO-QCD in models of TeV scale gravity

    International Nuclear Information System (INIS)

    Mathews, Prakash; Ravindran, V.

    2006-01-01

    In TeV scale gravity models, for dilepton production at hadron colliders, we present the NLO-QCD corrections for the double differential cross section in the invariant mass and scattering angle. For both ADD and RS models, the quantitative impact of QCD corrections for extra dimension searches at LHC and Tevatron are investigated. We present the K-factors for both ADD and RS models at LHC and Tevatron. Inclusion of QCD corrections to NLO stabilises the cross section with respect to scale variations

  15. Renormalization of Extended QCD2

    International Nuclear Information System (INIS)

    Fukaya, Hidenori; Yamamura, Ryo

    2015-01-01

    Extended QCD (XQCD), proposed by Kaplan [D. B. Kaplan, arXiv:1306.5818], is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low-energy hadronic models. We analyze the renormalization group flow of 2D (X)QCD, which is solvable in the limit of a large number of colors N c , to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low-energy region

  16. Lattice QCD

    International Nuclear Information System (INIS)

    Hasenfratz, P.

    1983-01-01

    The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)

  17. Phases of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Roessner, Simon

    2009-04-09

    Quantum Chromodynamics (QCD) is the theory of the strong interaction within the Standard Model of elementary particles. Today's research in this area dedicates substantial resources to numeric solutions of the QCD field equations and experimental programs exploring the phases of QCD. This thesis proceeds along a complementary line - that of modelling QCD, with the aim of identifying its dominant degrees of freedom. This is possible by minimally coupling effective potentials for the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields to model chiral symmetry breaking respecting colour confinement. The fermion sign problem resulting from the minimal coupling is addressed in this work establishing a novel, systematically ordered approach. The modifications to the approximative order parameter of colour confinement, the Polyakov loop, are in direct connection with the fermion sign problem. Furthermore an effective coupling of quark densities of different flavours is induced. This mechanism, most likely also present in QCD, produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities are amongst the most promising physical quantities for the experimental exploration of the phase transition at high temperatures and densities. (orig.)

  18. Phases of QCD

    International Nuclear Information System (INIS)

    Roessner, Simon

    2009-01-01

    Quantum Chromodynamics (QCD) is the theory of the strong interaction within the Standard Model of elementary particles. Today's research in this area dedicates substantial resources to numeric solutions of the QCD field equations and experimental programs exploring the phases of QCD. This thesis proceeds along a complementary line - that of modelling QCD, with the aim of identifying its dominant degrees of freedom. This is possible by minimally coupling effective potentials for the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields to model chiral symmetry breaking respecting colour confinement. The fermion sign problem resulting from the minimal coupling is addressed in this work establishing a novel, systematically ordered approach. The modifications to the approximative order parameter of colour confinement, the Polyakov loop, are in direct connection with the fermion sign problem. Furthermore an effective coupling of quark densities of different flavours is induced. This mechanism, most likely also present in QCD, produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities are amongst the most promising physical quantities for the experimental exploration of the phase transition at high temperatures and densities. (orig.)

  19. Gazing into the multiparton distribution equations in QCD

    International Nuclear Information System (INIS)

    Shelest, V.P.; Sinigirev, A.M.; Zinovjev, G.M.

    1982-01-01

    Using a parton interpretation of the leading logarithm diagrams of perturbative QCD theory we obtain the equations for the multiparton distribution and fragmentation functions. These equations are not identical but the solutions are the same on the definite initial conditions and coincide with the jet calculus rules. The difference is crucial when we generalize these equations for a hardron-jet description. (orig.)

  20. Taming the pion condensation in QCD at finite baryon density: a numerical test in a random matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Sinya [Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Hanada, Masanori [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); The Hakubi Center for Advanced Research, Kyoto University,Yoshida Ushinomiyacho, Sakyo-ku, Kyoto 606-8501 (Japan); Nakamura, Atsushi [Research Institute for Information Science and Education, Hiroshima University,Higashi-Hiroshima 739-8527 (Japan)

    2015-05-14

    In the Monte Carlo study of QCD at finite baryon density based upon the phase reweighting method, the pion condensation in the phase-quenched theory and associated zero-mode prevent us from going to the low-temperature high-density region. We propose a method to circumvent them by a simple modification of the density of state method. We first argue that the standard version of the density of state method, which is invented to solve the overlapping problem, is effective only for a certain ‘good’ class of observables. We then modify it so as to solve the overlap problem for ‘bad’ observables as well. While, in the standard version of the density of state method, we usually constrain an observable we are interested in, we fix a different observable in our new method which has a sharp peak at some particular value characterizing the correct vacuum of the target theory. In the finite-density QCD, such an observable is the pion condensate. The average phase becomes vanishingly small as the value of the pion condensate becomes large, hence it is enough to consider configurations with π{sup +}≃0, where the zero mode does not appear. We demonstrate an effectiveness of our method by using a toy model (the chiral random matrix theory) which captures the properties of finite-density QCD qualitatively. We also argue how to apply our method to other theories including finite-density QCD. Although the example we study numerically is based on the phase reweighting method, the same idea can be applied to more general reweighting methods and we show how this idea can be applied to find a possible QCD critical point.

  1. Electromagnetic contribution to charge symmetry violation in parton distributions

    Directory of Open Access Journals (Sweden)

    X.G. Wang

    2016-02-01

    Full Text Available We report a calculation of the combined effect of photon radiation and quark mass differences on charge symmetry violation (CSV in the parton distribution functions of the nucleon. Following a recent suggestion of Martin and Ryskin, the initial photon distribution is calculated in terms of coherent radiation from the proton as a whole, while the effect of the quark mass difference is based on a recent lattice QCD simulation. The distributions are then evolved to a scale at which they can be compared with experiment by including both QCD and QED radiation. Overall, at a scale of 5 GeV2, the total CSV effect on the phenomenologically important difference between the d and u-quark distributions is some 20% larger than the value based on quark mass differences alone. In total these sources of CSV account for approximately 40% of the NuTeV anomaly.

  2. Combined QCD and electroweak analysis of HERA data

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max-Planck-Institute for Physics, Munich (Germany); Abt, I. [Max-Planck-Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Science; Collaboration: ZEUS Collaboration; and others

    2016-03-15

    A simultaneous fit of parton distribution functions (PDFs) and electroweak parameters to HERA data on deep inelastic scattering is presented. The input data are the neutral current and charged current inclusive cross sections which were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In addition, the polarisation of the electron beam was taken into account for the ZEUS data recorded between 2004 and 2007. Results on the vector and axial-vector couplings of the Z boson to u- and d-type quarks, on the value of the electroweak mixing angle and the mass of the W boson are presented. The values obtained for the electroweak parameters are in agreement with Standard Model predictions.

  3. Combined QCD and electroweak analysis of HERA data

    International Nuclear Information System (INIS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.

    2016-03-01

    A simultaneous fit of parton distribution functions (PDFs) and electroweak parameters to HERA data on deep inelastic scattering is presented. The input data are the neutral current and charged current inclusive cross sections which were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In addition, the polarisation of the electron beam was taken into account for the ZEUS data recorded between 2004 and 2007. Results on the vector and axial-vector couplings of the Z boson to u- and d-type quarks, on the value of the electroweak mixing angle and the mass of the W boson are presented. The values obtained for the electroweak parameters are in agreement with Standard Model predictions.

  4. Combined QCD and electroweak analysis of HERA data

    CERN Document Server

    Abramowicz, H; Adamczyk, L; Adamus, M; Antonelli, S; Aushev, V; Behnke, O; Behrens, U; Bertolin, A; Bloch, I; Boos, EG; Brock, I; Brook, NH; Brugnera, R; Bruni, A; Bussey, PJ; Caldwell, A; Capua, M; Catterall, CD; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cooper-Sarkar, AM; Corradi, M; Dementiev, RK; Devenish, RCE; Dusini, S; Foster, B; Gach, G; Gallo, E; Garfagnini, A; Geiser, A; Gizhko, A; Gladilin, LK; Golubkov, Yu A; Grzelak, G; Guzik, M; Hain, W; Hochman, D; Hori, R; Ibrahim, ZA; Iga, Y; Ishitsuka, M; Januschek, F; Jomhari, NZ; Kadenko, I; Kananov, S; Karshon, U; Kaur, P; Kisielewska, D; Klanner, R; Klein, U; Korzhavina, IA; Kotański, A; Kötz, U; Kovalchuk, N; Kowalski, H; Krupa, B; Kuprash, O; Kuze, M; Levchenko, BB; Levy, A; Limentani, S; Lisovyi, M; Lobodzinska, E; Löhr, B; Lohrmann, E; Longhin, A; Lontkovskyi, D; Lukina, OYu; Makarenko, I; Malka, J; Mohamad Idris, F; Mohammad Nasir, N; Myronenko, V; Nagano, K; Nobe, T; Nowak, RJ; Onishchuk, Yu; Paul, E; Perlański, W; Pokrovskiy, NS; Przybycien, M; Roloff, P; Ruspa, M; Saxon, DH; Schioppa, M; Schneekloth, U; Schörner-Sadenius, T; Shcheglova, LM; Shevchenko, R; Shkola, O; Shyrma, Yu; Singh, I; Skillicorn, IO; Słomiński, W; Solano, A; Stanco, L; Stefaniuk, N; Stern, A; Stopa, P; Sztuk-Dambietz, J; Tassi, E; Tokushuku, K; Tomaszewska, J; Tsurugai, T; Turcato, M; Turkot, O; Tymieniecka, T; Verbytskyi, A; Wan Abdullah, WAT; Wichmann, K; Wing, M; Yamada, S; Yamazaki, Y; Zakharchuk, N; Żarnecki, AF; Zawiejski, L; Zenaiev, O; Zhautykov, BO; Zotkin, DS; Bhadra, S; Gwenlan, C; Hlushchenko, O; Polini, A; Mastroberardino, A

    2016-05-03

    A simultaneous fit of parton distribution functions (PDFs) and electroweak parameters to HERA data on deep inelastic scattering is presented. The input data are the neutral current and charged current inclusive cross sections which were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In addition, the polarisation of the electron beam was taken into account for the ZEUS data recorded between 2004 and 2007. Results on the vector and axial-vector couplings of the Z boson to u- and d-type quarks, on the value of the electroweak mixing angle and the mass of the W boson are presented. The values obtained for the electroweak parameters are in agreement with Standard Model predictions.

  5. Experimental Summary Moriond QCD 2007

    CERN Document Server

    Rolandi, Gigi

    2007-01-01

    More than 90 speakers gave a presentation at this years Moriond QCD conference and more than 60 talks reported the experimental status and perspectives on Standard Model, especially QCD, search for new physics, quark spectroscopy and Heavy Ions physics. I summarize what I consider the highlights of these presentations.

  6. Nuclear properties from perturbative QCD

    International Nuclear Information System (INIS)

    Close, F.E.; Roberts, R.G.; Ross, G.G.

    1986-01-01

    Two apparently different descriptions of quark distributions in a nucleus may in fact be connected. A ''duality'' between the QCD approach and the conventional model of nucleon binding leads to nuclear properties being simply related to the anomalous dimensions of QCD. (orig.)

  7. QCD parametrizations of the parton distribution of deep inelastic scattering

    International Nuclear Information System (INIS)

    Kotikov, A.V.; Maksimov, S.J.; Parobij, I.S.

    1993-01-01

    A realistic parametrization of the gluon and quarks distributions is suggested. It is shown that the solutions of the Gribov-Lipatov-Altarelli-Paris equations can be presented by these parametrizations and these equations unambiguously lead to the constraints on the Q 2 -evolution of the parameters. (author). 10 refs

  8. Parton distributions from lattice QCD with momentum smearing

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, Constantia [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Computation-based Science and Technology Research Center, Nicosia (Cyprus). Cyprus Inst.; Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Inst. of Physics; Constantinou, Martha [Temple Univ., Philadelphia, PA (United States); Hadjiyiannakou, Kyriakos [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Jansen, Karl; Steffens, Fernanda; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2017-01-15

    In this work we continue our effort to explore a recent proposal, which allows light-cone distributions to be extracted from purely spatial correlations, being thus accessible to lattice methods. In order to test the feasibility of this method, we present our latest results from a twisted mass lattice calculation of the flavor non-singlet momentum, helicity and transversity distributions of the nucleon. Furthermore, we apply a newly proposed momentum improved smearing, which has the potential to reach higher nucleon momenta as required for a safe matching procedure to the physical distribution functions.

  9. Generalized Parton Distributions and their Singularities

    Energy Technology Data Exchange (ETDEWEB)

    Anatoly Radyushkin

    2011-04-01

    A new approach to building models of generalized parton distributions (GPDs) is discussed that is based on the factorized DD (double distribution) Ansatz within the single-DD formalism. The latter was not used before, because reconstructing GPDs from the forward limit one should start in this case with a very singular function $f(\\beta)/\\beta$ rather than with the usual parton density $f(\\beta)$. This results in a non-integrable singularity at $\\beta=0$ exaggerated by the fact that $f(\\beta)$'s, on their own, have a singular $\\beta^{-a}$ Regge behavior for small $\\beta$. It is shown that the singularity is regulated within the GPD model of Szczepaniak et al., in which the Regge behavior is implanted through a subtracted dispersion relation for the hadron-parton scattering amplitude. It is demonstrated that using proper softening of the quark-hadron vertices in the regions of large parton virtualities results in model GPDs $H(x,\\xi)$ that are finite and continuous at the "border point'' $x=\\xi$. Using a simple input forward distribution, we illustrate the implementation of the new approach for explicit construction of model GPDs. As a further development, a more general method of regulating the $\\beta=0$ singularities is proposed that is based on the separation of the initial single DD $f(\\beta, \\alpha)$ into the "plus'' part $[f(\\beta,\\alpha)]_{+}$ and the $D$-term. It is demonstrated that the "DD+D'' separation method allows to (re)derive GPD sum rules that relate the difference between the forward distribution $f(x)=H(x,0)$ and the border function $H(x,x)$ with the $D$-term function $D(\\alpha)$.

  10. QCD jet evolution at high and low scales

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Jan-Christopher

    2008-07-01

    The formation of jets of hadrons is a basic manifestation of the strong interaction as explored in and measured by high-energy physics collider experiments. Jets appear as narrow cones of particles that yield energy deposits in the calorimeters of the detectors. Invoking Quantum Chromodynamics (QCD) - the underlying theory of the strong interaction and one of the four fundamental forces of nature - leads to predictions and models, which describe the initiation, evolution and hadronization of jets. Good precision and quality of theoretical results and approaches to jet physics are necessary and thus vital for the successful accomplishment of the challenges in elementary particle physics, the current (e.g. proton-antiproton collisions at the Fermilab Tevatron) as well as the upcoming ones (e.g. proton-proton collisions at the CERN Large Hadron Collider). In this thesis various aspects of the eld of QCD jet physics are addressed, all of which under the common denominator of validating and improving the simulations computed by Monte Carlo event generators, in particular that of SHERPA, which has been developed in Dresden. Therefor the following questions were investigated, and, respective results have been achieved: - The method of merging tree-level matrix elements with parton showers has been critically verified against other merging approaches for inclusive gauge boson production at Tevatron and LHC energies. Also, the genesis of dibosons has been studied in comparison to next-to-leading order predictions in the strong coupling and other Monte Carlo generator approaches. These studies triggered improvements of the method of SHERPA, and, finally, important results have been derived, proving its relevance for ongoing and future experimental analyses. In its present form this method hence exhibits a very modern, state-of-the-art, approach to multijet production and evolution in high-energy particle collisions. - A new shower model based on QCD colour dipoles and their

  11. QCD jet evolution at high and low scales

    International Nuclear Information System (INIS)

    Winter, Jan-Christopher

    2008-01-01

    The formation of jets of hadrons is a basic manifestation of the strong interaction as explored in and measured by high-energy physics collider experiments. Jets appear as narrow cones of particles that yield energy deposits in the calorimeters of the detectors. Invoking Quantum Chromodynamics (QCD) - the underlying theory of the strong interaction and one of the four fundamental forces of nature - leads to predictions and models, which describe the initiation, evolution and hadronization of jets. Good precision and quality of theoretical results and approaches to jet physics are necessary and thus vital for the successful accomplishment of the challenges in elementary particle physics, the current (e.g. proton-antiproton collisions at the Fermilab Tevatron) as well as the upcoming ones (e.g. proton-proton collisions at the CERN Large Hadron Collider). In this thesis various aspects of the eld of QCD jet physics are addressed, all of which under the common denominator of validating and improving the simulations computed by Monte Carlo event generators, in particular that of SHERPA, which has been developed in Dresden. Therefor the following questions were investigated, and, respective results have been achieved: - The method of merging tree-level matrix elements with parton showers has been critically verified against other merging approaches for inclusive gauge boson production at Tevatron and LHC energies. Also, the genesis of dibosons has been studied in comparison to next-to-leading order predictions in the strong coupling and other Monte Carlo generator approaches. These studies triggered improvements of the method of SHERPA, and, finally, important results have been derived, proving its relevance for ongoing and future experimental analyses. In its present form this method hence exhibits a very modern, state-of-the-art, approach to multijet production and evolution in high-energy particle collisions. - A new shower model based on QCD colour dipoles and their

  12. Knot topology in QCD

    International Nuclear Information System (INIS)

    Zou, L.P.; Zhang, P.M.; Pak, D.G.

    2013-01-01

    We consider topological structure of classical vacuum solutions in quantum chromodynamics. Topologically non-equivalent vacuum configurations are classified by non-trivial second and third homotopy groups for coset of the color group SU(N) (N=2,3) under the action of maximal Abelian stability group. Starting with explicit vacuum knot configurations we study possible exact classical solutions. Exact analytic non-static knot solution in a simple CP 1 model in Euclidean space–time has been obtained. We construct an ansatz based on knot and monopole topological vacuum structure for searching new solutions in SU(2) and SU(3) QCD. We show that singular knot-like solutions in QCD in Minkowski space–time can be naturally obtained from knot solitons in integrable CP 1 models. A family of Skyrme type low energy effective theories of QCD admitting exact analytic solutions with non-vanishing Hopf charge is proposed

  13. QCD thermodynamics from an imaginary μB: Results on the four flavor lattice model

    International Nuclear Information System (INIS)

    D'Elia, Massimo; Lombardo, Maria-Paola

    2004-01-01

    We study four flavor QCD at nonzero temperature and density by analytic continuation from an imaginary chemical potential. The explored region is T=0.95T c c , and the baryochemical potentials range from 0 to ≅500 MeV. Observables include the number density, the order parameter for chiral symmetry, and the pressure, which is calculated via an integral method at fixed temperature and quark mass. The simulations are carried out on a 16 3 x4 lattice, and the mass dependence of the results is estimated by exploiting the Maxwell relations. In the hadronic region, we confirm that the results are consistent with a simple resonance hadron gas model, and we estimate the critical density by combining the results for the number density with those for the critical line. In the hot phase, above the end point of the Roberge-Weiss transition T E ≅1.1T c , the results are consistent with a free lattice model with a fixed effective number of flavor slightly different from four. We confirm that confinement and chiral symmetry are coincident by a further analysis of the critical line, and we discuss the interrelation between thermodynamics and critical behavior. We comment on the strength and weakness of the method, and propose further developments

  14. Parton fragmentation and string dynamics

    International Nuclear Information System (INIS)

    Andersson, B.; Gustafson, G.; Ingelman, G.; Sjoestrand, T.

    1983-01-01

    While much has been learned recently about quark and gluon interactions in the framework of perturbative Quantum Chromodynamics, the relation between calculated parton properties and observed hadron densities involves models where dynamics and jet empirical rules have to be combined. The purpose of this article is to describe a presently successful approach which is based on a cascade jet model using String dynamics. It can readily lead to Monte Carlo jet programmes of great use when analyzing data. Production processes in an iterative cascade approach, with tunneling in a constant force field, are reviewed. Expected differences between quark and gluon jets are discussed. Low transverse momentum phenomena are also reviewed with emphasis on hyperon polarization. In so far as this approach uses a fragmentation scheme based on String dynamics, it was deemed appropriate to also include under the same cover a special report on the Classical theory of relativistic Strings, seen as the classical limit of the Dual Resonance model. The Equations of motion and interaction among strings are presented. (orig.)

  15. Parton showers in a phenomenological context

    International Nuclear Information System (INIS)

    Bengtsson, M.

    1987-08-01

    Models for generating multiple parton final states, based on the Altarelli-Parisi equations, are presented. Algorithms are described for applications in e + e - physics, leptoproduction and hadron physics. The two latter cases are somewhat special since composite objects are present in the initial state. Constraints from structure function evolution are properly taken into account. The scheme in leptoproduction is made selfconsistent in the sense that parton shower evolution does not affect the measurable structure functions. The scheme developed in e + e - allows for a number of different features which are not given directly in this approach, i.e. matching onto matrix elements, coherence effects, argument in α s , implementation of kinematics etc. These options are systematically studied, using Lund string fragmentation for hadronization, and compared with experimental data. A note on α s determinations in hadron-hadron collisions is also included. (author)

  16. Momentum transfer dependence of generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Neetika [Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab (India)

    2016-11-15

    We revisit the model for parametrization of the momentum dependence of nucleon generalized parton distributions in the light of recent MRST measurements of parton distribution functions (A.D. Martin et al., Eur. Phys. J. C 63, 189 (2009)). Our parametrization method with a minimum set of free parameters give a sufficiently good description of data for Dirac and Pauli electromagnetic form factors of proton and neutron at small and intermediate values of momentum transfer. We also calculate the GPDs for up- and down-quarks by decomposing the electromagnetic form factors for the nucleon using the charge and isospin symmetry and also study the evolution of GPDs to a higher scale. We further investigate the transverse charge densities for both the unpolarized and transversely polarized nucleon and compare our results with Kelly's distribution. (orig.)

  17. Structure functions are not parton probabilities

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.; Hoyer, Paul; Sannino, Francesco; Marchal, Nils; Peigne, Stephane

    2002-01-01

    The common view that structure functions measured in deep inelastic lepton scattering are determined by the probability of finding quarks and gluons in the target is not correct in gauge theory. We show that gluon exchange between the fast, outgoing partons and target spectators, which is usually assumed to be an irrelevant gauge artifact, affects the leading twist structure functions in a profound way. This observation removes the apparent contradiction between the projectile (eikonal) and target (parton model) views of diffractive and small x B phenomena. The diffractive scattering of the fast outgoing quarks on spectators in the target causes shadowing in the DIS cross section. Thus the depletion of the nuclear structure functions is not intrinsic to the wave function of the nucleus, but is a coherent effect arising from the destructive interference of diffractive channels induced by final state interactions. This is consistent with the Glauber-Gribov interpretation of shadowing as a rescattering effect

  18. Parton Distributions in the Higgs Boson Era

    CERN Document Server

    Rojo, Juan

    2013-01-01

    Parton distributions are an essential ingredient of the LHC program. PDFs are relevant for precision Standard Model measurements, for Higgs boson characterization as well as for New Physics searches. In this contribution I review recent progress in the determination of the parton distributions of the proton during the last year. Important developments include the impact of new LHC measurements to pin down poorly known PDFs, studies of theoretical uncertainties, higher order calculations for processes relevant for PDF determinations, PDF benchmarking exercises with LHC data, as well as methodological and statistical improvements in the global analysis framework. I conclude with some speculative considerations about future directions in PDF determinations from the theory point of view.

  19. Phenomenology Using Lattice QCD

    Science.gov (United States)

    Gupta, R.

    2005-08-01

    This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.

  20. Observables of QCD diffraction

    Science.gov (United States)

    Mieskolainen, Mikael; Orava, Risto

    2017-03-01

    A new combinatorial vector space measurement model is introduced for soft QCD diffraction. The model independent mathematical construction resolves experimental complications; the theoretical framework of the approach includes the Good-Walker view of diffraction, Regge phenomenology together with AGK cutting rules and random fluctuations.

  1. Logarithmic correction in the deformed AdS5 model to produce the heavy quark potential and QCD beta function

    International Nuclear Information System (INIS)

    He Song; Huang Mei; Yan Qishu

    2011-01-01

    We study the holographic QCD model, which contains a quadratic term -σz 2 and a logarithmic term -c 0 log[(z IR -z)/z IR ] with an explicit infrared cutoff z IR in the deformed AdS 5 warp factor. We investigate the heavy-quark potential for three cases, i.e., with only a quadratic correction, with both quadratic and logarithmic corrections, and with only a logarithmic correction. We solve the dilaton field and dilation potential from the Einstein equation and investigate the corresponding beta function in the Guersoy-Kiritsis-Nitti framework. Our studies show that in the case with only a quadratic correction, a negative σ or the Andreev-Zakharov model is favored to fit the heavy-quark potential and to produce the QCD beta function at 2-loop level; however, the dilaton potential is unbounded in the infrared regime. One interesting observation for the case of positive σ is that the corresponding beta function exists in an infrared fixed point. In the case with only a logarithmic correction, the heavy-quark Cornell potential can be fitted very well, the corresponding beta function agrees with the QCD beta function at 2-loop level reasonably well, and the dilaton potential is bounded from below in the infrared. At the end, we propose a more compact model which has only a logarithmic correction in the deformed warp factor and has less free parameters.

  2. Phases of Holographic QCD

    International Nuclear Information System (INIS)

    Lippert, Matthew

    2009-01-01

    We investigated the Sakai-Sugimoto model of large N QCD at nonzero temperature and baryon chemical potential and in the presence of background electric and magnetic fields. We studied the holographic representation of baryons and the deconfinement, chiral-symmetry breaking, and nuclear matter phase transitions. In a background electric field, chiral-symmetry breaking corresponds to an insulator-conductor transition. A magnetic field both catalyzes chiral-symmetry breaking and generates, in the confined phase, a pseudo-scalar gradient or, in the deconfined phase, an axial current. The resulting phase diagram is in qualitative agreement with studies of hot, dense QCD.

  3. Gravitational form factors and angular momentum densities in light-front quark-diquark model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Narinder [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Sharma, Neetika [I K Gujral Punjab Technical University, Department of Physical Sciences, Jalandhar, Punjab (India); Panjab University, Department of Physics, Chandigarh (India)

    2017-12-15

    We investigate the gravitational form factors (GFFs) and the longitudinal momentum densities (p{sup +} densities) for proton in a light-front quark-diquark model. The light-front wave functions are constructed from the soft-wall AdS/QCD prediction. The contributions from both the scalar and the axial vector diquarks are considered here. The results are compared with the consequences of a parametrization of nucleon generalized parton distributions (GPDs) in the light of recent MRST measurements of parton distribution functions (PDFs) and a soft-wall AdS/QCD model. The spatial distribution of angular momentum for up and down quarks inside the nucleon has been presented. At the density level, we illustrate different definitions of angular momentum explicitly for an up and down quark in the light-front quark-diquark model inspired by AdS/QCD. (orig.)

  4. Parton fragmentation in the vacuum and in the medium

    CERN Document Server

    Albino, S.; Arleo, F.; Besson, Dave Z.; Brooks, William K.; Buschbeck, B.; Cacciari, M.; Christova, E.; Corcella, G.; D'Enterria, David G.; Dolejsi, Jiri; Domdey, S.; Estienne, M.; Hamacher, Klaus; Heinz, M.; Hicks, K.; Kettler, D.; Kumano, S.; Moch, S.O.; Muccifora, V.; Pacetti, S.; Perez-Ramos, R.; Pirner, H.J.; Pronko, Alexandre Pavlovich; Radici, M.; Rak, J.; Roland, C.; Rudolph, Gerald; Rurikova, Z.; Salgado, C.A.; Sapeta, S.; Saxon, David H.; Seidl, Ralf-Christian; Seuster, R.; Stratmann, M.; Tannenbaum, Michael J.; Tasevsky, M.; Trainor, T.; Traynor, D.; Werlen, M.; Zhou, C.

    2008-01-01

    We present the mini-proceedings of the workshop on ``Parton fragmentation in the vacuum and in the medium'' held at the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*, Trento) in February 2008. The workshop gathered both theorists and experimentalists to discuss the current status of investigations of quark and gluon fragmentation into hadrons at different accelerator facilities (LEP, B-factories, JLab, HERA, RHIC, and Tevatron) as well as preparations for extension of these studies at the LHC. The main physics topics covered were: (i) light-quark and gluon fragmentation in the vacuum including theoretical (global fits analyses and MLLA) and experimental (data from e+e-, p-p, e-p collisions) aspects, (ii) strange and heavy-quark fragmentation, (iii) parton fragmentation in cold QCD matter (nuclear DIS), and (iv) medium-modified fragmentation in hot and dense QCD matter (high-energy nucleus-nucleus collisions). These mini-proceedings consist of an introduction and short summ...

  5. Monte Carlo models: Quo vadimus?

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin-Nian

    2001-01-01

    Coherence, multiple scattering and the interplay between soft and hard processes are discussed. These physics phenomena are essential for understanding the nuclear dependences of rapidity density and p{sub T} spectra in high-energy heavy-ion collisions. The RHIC data have shown the onset of hard processes and indications of high p{sub T} spectra suppression due to parton energy loss. Within the pQCD parton model, the combination of azimuthal anisotropy ({nu}{sub 2}) and hadron spectra suppression at large p{sub T} can help one to determine the initial gluon density in heavy-ion collisions at RHIC.

  6. Monte Carlo models: Quo vadimus?

    International Nuclear Information System (INIS)

    Wang, Xin-Nian

    2001-01-01

    Coherence, multiple scattering and the interplay between soft and hard processes are discussed. These physics phenomena are essential for understanding the nuclear dependences of rapidity density and p T spectra in high-energy heavy-ion collisions. The RHIC data have shown the onset of hard processes and indications of high p T spectra suppression due to parton energy loss. Within the pQCD parton model, the combination of azimuthal anisotropy (ν 2 ) and hadron spectra suppression at large p T can help one to determine the initial gluon density in heavy-ion collisions at RHIC

  7. Nuclear parton distributions with the LHeC

    International Nuclear Information System (INIS)

    Klein, M.

    2016-01-01

    Nuclear parton distributions are far from being known today because of an infant experimental base. Based on design studies of the LHeC and using new simulations, of the inclusive neutral and charged current cross section measurements and of the strange, charm and beauty densities in nuclei, it is demonstrated how that energy frontier electron-ion collider would unfold the complete set of nuclear parton distributions (nPDFs) in a hugely extended kinematic range of deep inelastic scattering, extending in Bjorken x down to values near to 10 -6 in the perturbative domain. Together with a very precise and complete set of proton PDFs, the LHeC nPDFs will thoroughly change the theoretical understanding of parton dynamics and structure inside hadrons. This contribution is organised as follows: Section 2 summarises the status of the current nPDF determinations and presents a summary of the LHeC data simulation. Section 3 briefly summarises initial results of a study of the determination of PDFs in electron-deuteron scattering. Section 4 presents the nPDF simulation using LHeC data performed within an adapted EPS09 pQCD framework. Section 5 discusses the gluon distribution and the possible search for saturation of the rise of the gluon density towards low x. Section 6 includes the determination of the strange, charm and beauty distributions in nuclei from a future eA operation of the LHeC. A brief summary is presented in Section 7

  8. Phenomenological neutron star equations of state. 3-window modeling of QCD matter

    Energy Technology Data Exchange (ETDEWEB)

    Kojo, Toru [University of Illinois at Urbana-Champaign, Department of Physics, Urbana, Illinois (United States)

    2016-03-15

    We discuss the 3-window modeling of cold, dense QCD matter equations of state at density relevant to neutron star properties. At low baryon density, n{sub B} or similar 5n{sub s}, we use the percolated quark matter equations of state which must be very stiff to pass the two-solar mass constraints. The intermediate domain at 2 model for the percolated domain, it is argued that the two-solar mass constraint requires the model parameters to be as large as their vacuum values, indicating that the gluon dynamics remains strongly non-perturbative to n{sub B} ∝ 10n{sub s}. The hyperon puzzle is also briefly discussed in light of quark descriptions. (orig.)

  9. Testing the Standard Model and Fundamental Symmetries in Nuclear Physics with Lattice QCD and Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Walker-Loud, Andre [College of William and Mary, Williamsburg, VA (United States)

    2016-10-14

    The research supported by this grant is aimed at probing the limits of the Standard Model through precision low-energy nuclear physics. The work of the PI (AWL) and additional personnel is to provide theory input needed for a number of potentially high-impact experiments, notably, hadronic parity violation, Dark Matter direct detection and searches for permanent electric dipole moments (EDMs) in nucleons and nuclei. In all these examples, a quantitative understanding of low-energy nuclear physics from the fundamental theory of strong interactions, Quantum Chromo-Dynamics (QCD), is necessary to interpret the experimental results. The main theoretical tools used and developed in this work are the numerical solution to QCD known as lattice QCD (LQCD) and Effective Field Theory (EFT). This grant is supporting a new research program for the PI, and as such, needed to be developed from the ground up. Therefore, the first fiscal year of this grant, 08/01/2014-07/31/2015, has been spent predominantly establishing this new research effort. Very good progress has been made, although, at this time, there are not many publications to show for the effort. After one year, the PI accepted a job at Lawrence Berkeley National Laboratory, so this final report covers just a single year of five years of the grant.

  10. Parton distributions for the LHC Run II

    CERN Document Server

    Ball, Richard D.; Carrazza, Stefano; Deans, Christopher S.; Del Debbio, Luigi; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Latorre, José I.; Rojo, Juan; Ubiali, Maria

    2015-01-01

    We present NNPDF3.0, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test. NNPDF3.0 uses a global dataset including HERA-II deep-inelastic inclusive cross-sections, the combined HERA charm data, jet production from ATLAS and CMS, vector boson rapidity and transverse momentum distributions from ATLAS, CMS and LHCb, W+c data from CMS and top quark pair production total cross sections from ATLAS and CMS. Results are based on LO, NLO and NNLO QCD theory and also include electroweak corrections. To validate our methodology, we show that PDFs determined from pseudo-data generated from a known underlying law correctly reproduce the statistical distributions expected on the basis of the assumed experimental uncertainties. This closure test ensures that our methodological uncertainties are negligible in comparison to the generic theoretical and experimental uncertainties of PDF determination. This enables us to determine with confidence PDFs at different pertu...

  11. Baryons and QCD

    International Nuclear Information System (INIS)

    Nathan Isgur

    1997-01-01

    The author presents an idiosyncratic view of baryons which calls for a marriage between quark-based and hadronic models of QCD. He advocates a treatment based on valence quark plus glue dominance of hadron structure, with the sea of q pairs (in the form of virtual hadron pairs) as important corrections

  12. Double parton scattering in the ultraviolet. Addressing the double counting problem

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gaunt, Jonathan R. [Nikhef Theory Group, Amsterdam (Netherlands); Amsterdam VU Univ. (Netherlands)

    2016-11-15

    An important question in the theory of double parton scattering is how to incorporate the possibility of the parton pairs being generated perturbatively via 1→ 2splitting into the theory, whilst avoiding double counting with single parton scattering loop corrections. Here, we describe a consistent approach for solving this problem, which retains the notion of double parton distributions (DPDs) for individual hadrons. Further, we discuss the construction of appropriate model DPDs in our framework, and the use of these to compute the DPS part, presenting DPS 'luminosities' from our model DPDs for a few sample cases.

  13. Exclusive neutrino production of a charmed vector meson and transversity gluon generalized parton distributions

    Science.gov (United States)

    Pire, B.; Szymanowski, L.

    2017-12-01

    We calculate at the leading order in αs the QCD amplitude for exclusive neutrino production of a D* or Ds* charmed vector meson on a nucleon. We work in the framework of the collinear QCD approach where generalized parton distributions (GPDs) factorize from perturbatively calculable coefficient functions. We include O (mc) terms in the coefficient functions and the O (mD) term in the definition of heavy meson distribution amplitudes. The show that the analysis of the angular distribution of the decay D(s) *→D(s )π allows us to access the transversity gluon GPDs.

  14. New information on parton distributions

    International Nuclear Information System (INIS)

    Martin, A.D.; Stirling, W.J.; Roberts, R.G.

    1992-04-01

    New data on structure functions from deep-inelastic scattering provide new information on parton distributions, particularly in the 0.01 2 data from the New Muon Collaboration (NMC) and its implications for other processes, and the evidence for SU(2) symmetry breaking in the light quark sea. We show that although good fits can be obtained with or without this symmetry breaking, more physically reasonable parton distributions are obtained if we allow d-bar > u-bar at small x. With the inclusion of the latest deep-inelastic data we find α s (M Z ) = 0.111 -0.005 +0.004 . We also show how W, Z and Drell-Yan production at p-barp colliders can give information on parton distributions. (Author)

  15. HERAFitter. Open source QCD fit project

    International Nuclear Information System (INIS)

    Alekhin, S.; Behnke, O.; Belov, P.

    2014-11-01

    HERAFitter is an open-source package that provides a framework for the determination of the parton distribution functions (PDFs) of the proton and for many different kinds of analyses in Quantum Chromodynamics (QCD). It encodes results from a wide range of experimental measurements in lepton-proton deep inelastic scattering and proton-proton (proton-antiproton) collisions at hadron colliders. These are complemented with a variety of theoretical options for calculating PDF-dependent cross section predictions corresponding to the measurements. The framework covers a large number of the existing methods and schemes used for PDF determination. The data and theoretical predictions are brought together through numerous methodological options for carrying out PDF fits and plotting tools to help visualise the results. While primarily based on the approach of collinear factorisation, HERAFitter also provides facilities for fits of dipole models and transverse-momentum dependent PDFs. The package can be used to study the impact of new precise measurements from hadron colliders. This paper describes the general structure of HERAFitter and its wide choice of options.

  16. LHC production of forward-center and forward-forward di-jets in the kt-factorization and transverse dependent unintegrated parton distribution frameworks

    Science.gov (United States)

    Modarres, M.; Masouminia, M. R.; Aminzadeh Nik, R.; Hosseinkhani, H.; Olanj, N.

    2017-09-01

    The present work is devoted to study the high-energy QCD events, such as the di-jet productions from proton-proton inelastic collisions at the LHC in the forward-center and the forward-forward configurations. This provides us with much valuable case study, since such phenomena can provide a direct glimpse into the partonic behavior of a hadron in a dominant gluonic region. We use the unintegrated parton distribution functions (UPDF) in the kt-factorization framework. The UPDF of Kimber et al. (KMR) and Martin et al. (MRW) are generated in the leading order (LO) and next-to-leading order (NLO), using the Harland-Lang et al. (MMHT2014) PDF libraries. While working in the forward-center and the forward-forward rapidity sectors, one can probe the parton densities at very low longitudinal momentum fractions (x). Such a model computation can provide simpler analytic description of data with respect to existing formalisms such as perturbative QCD. The differential cross-section calculations are performed at the center of mass energy of 7 TeV corresponding to CMS collaboration measurement. It is shown that the gluonic jet productions are dominant and a good description of data as well as other theoretical attempts (i.e. KS-linear, KS-nonlinear and rcBK) is obtained. The uncertainty of the calculations is derived by manipulating the hard scale of the processes by a factor of two. This conclusion is achieved, due to the particular visualization of the angular ordering constraint (AOC), that is incorporated in the definition of these UPDF.

  17. Influence of heavy hadronic states on the QCD phase diagram and on the freeze-out within a hadronic chiral model; Einfluss schwerer hadronischer Zustaende auf das QCD-Phasendiagramm und die Ausfrierbedingungen in einem hadronischen chiralen Modell

    Energy Technology Data Exchange (ETDEWEB)

    Zeeb, G.

    2006-07-01

    In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized {sigma}-{omega} model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom. A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the

  18. SVZ⊕1/q{sup 2}-expansion versus some QCD holographic models

    Energy Technology Data Exchange (ETDEWEB)

    Jugeau, F., E-mail: frederic.jugeau@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972, Rio de Janeiro (Brazil); Narison, S., E-mail: snarison@yahoo.fr [Laboratoire Particules et Univers de Montpellier, CNRS-IN2P3, Case 070, Place Eugène Bataillon, 34095 Montpellier (France); Ratsimbarison, H., E-mail: herysedra@yahoo.fr [Institute of High-Energy Physics of Madagascar (iHEP-MAD), University of Antananarivo (Madagascar)

    2013-05-13

    Considering the classical two-point correlators built from (axial-) vector, scalar q{sup ¯}q and gluonium currents, we confront results obtained using the SVZ⊕1/q{sup 2}-expansion to the ones from some QCD holographic models in the Euclidean region and with negative dilaton Φ{sub i}(z)=−|c{sub i}{sup 2}|z{sup 2}. We conclude that the presence of the 1/q{sup 2}-term in the SVZ-expansion due to a tachyonic gluon mass appears naturally in the Minimum Soft-Wall (MSW) and the Gauge/String Dual (GSD) models which can also reproduce semi-quantitatively some of the higher dimension condensate contributions appearing in the OPE. The Hard-Wall model shows a large departure from the SVZ⊕1/q{sup 2}-expansion in the vector, scalar and gluonium channels due to the absence of any power corrections. The equivalence of the MSW and GSD models is manifest in the vector channel through the relation of the dilaton parameter with the tachyonic gluon mass. For approximately reproducing the phenomenological values of the dimension d=4,6 condensates, the holographic models require a tachyonic gluon mass (α{sub s}/π)λ{sup 2}≈−(0.12–0.14) GeV{sup 2}, which is about twice the fitted phenomenological value from e{sup +}e{sup −} data. The relation of the inverse length parameter c{sub i} to the tachyonic gluon mass also shows that c{sub i} is channel dependent but not universal for a given holographic model. Using the MSW model and M{sub ρ}=0.78 GeV as input, we predict a scalar q{sup ¯}q mass M{sub S}≈(0.95–1.10) GeV and a scalar gluonium mass M{sub G}≈(1.1–1.3) GeV.

  19. N-jettiness Subtractions for NNLO QCD calculations

    International Nuclear Information System (INIS)

    Gaunt, Jonathan R.; Stahlhofen, Maximilian; Tackmann, Frank J.; Walsh, Jonathan R.; California Univ., CA

    2015-05-01

    We present a subtraction method utilizing the N-jettiness observable, Τ N , to perform QCD calculations for arbitrary processes at next-to-next-to-leading order (NNLO). Our method employs soft-collinear effective theory (SCET) to determine the IR singular contributions of N-jet cross sections for Τ N → 0, and uses these to construct suitable Τ N -subtractions. The construction is systematic and economic, due to being based on a physical observable. The resulting NNLO calculation is fully differential and in a form directly suitable for combining with resummation and parton showers. We explain in detail the application to processes with an arbitrary number of massless partons at lepton and hadron colliders together with the required external inputs in the form of QCD amplitudes and lower-order calculations. We provide explicit expressions for the Τ N -subtractions at NLO and NNLO. The required ingredients are fully known at NLO, and at NNLO for processes with two external QCD partons. The remaining NNLO ingredient for three or more external partons can be obtained numerically with existing NNLO techniques. As an example, we employ our method to obtain the NNLO rapidity spectrum for Drell-Yan and gluon-fusion Higgs production. We discuss aspects of numerical accuracy and convergence and the practical implementation. We also discuss and comment on possible extensions, such as more-differential subtractions, necessary steps for going to N 3 LO, and the treatment of massive quarks.

  20. Imaging partons in exclusive scattering processes

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus

    2012-06-15

    The spatial distribution of partons in the proton can be probed in suitable exclusive scattering processes. I report on recent performance estimates for parton imaging at a proposed Electron-Ion Collider.

  1. Ariadne version 4 - a program for simulation of QCD cascades implementing the colour dipole model

    International Nuclear Information System (INIS)

    Loennblad, L.

    1992-01-01

    The fourth version of the Ariadne program for generating QCD cascades in the colour dipole approximation is presented. The underlying physics issues are discussed and a manual for using the program is given together with a few sample programs. The major changes from previous versions are the introduction of photon radiation from quarks and inclusion of interfaces to the LEPTO and PYTHIA programs. (orig.)

  2. Relating hard QCD processes through universality of mass singularities

    International Nuclear Information System (INIS)

    Amati, D.; Petronzio, R.; Veneziano, G.

    1978-01-01

    Hard QCD processes involving final jets are studied and compared by means of a simple approach to mass singularities. This is based on the Lee-Nauenberg-Kinoshita theorem and on a rather subtle use of gauge invariance in hard collinear gluon bremsstrahlung. One-loop results are easily derived for processes involving any number of initial quarks and/or currents. The method greatly simplifies the computation of higher-order loops at the leading log level and the preliminary results allow one to conclude that the crucial features encountered at the one-loop level will persist. The authors are thus able to relate different hard processes and to show that suitable ratios of cross sections, being free from mass singularities, can be computed perturbatively, as usually assumed in QCD-inspired parton models. It is also possible to relate the universal leading mass singularities to leading scaling violations and to extend therefor the results of the operator product expansion method to processes outside the range of the light-cone analysis. Some delicate points caused by confinement-related singularities (e.g. narrow resonance poles) are also discussed. (Auth.)

  3. Soft gluon resummation formulae for hard proton processes in QCD

    International Nuclear Information System (INIS)

    Craigie, N.S.; Jones, H.F.

    1980-01-01

    We briefly review the treatment of leading logarithmic behaviour of the parton distributions in QCD within the Bethe-Salpeter framework by analysing directly parton hadron Green functions in the limit of parton four-momentum k 2 → - infinitely in a special light-like gauge involving a spectator vector. This technique allows us to derive the factorization of parton probabilities in leading logarithmic order in QCD in the various inclusive processes involving a single short-distance scale. The proof requires us to show that the use of planar gauges eta = psub(A) + psub(B) + ..., where psub(A), psub(B)... are the observed hadron momenta, reduces to choosing the appropriate light-like gauge for each hadron-parton BS channel, after demonstrating a Bloch-Nordsieck cancellation of the real and virtual soft left-over gluons. In the case where two large momentum scales appear, by restricting the transverse phase space into which the gluons are radiated, we derive the double logarithmic eikonal renormalization of the hard scattering formula of the type proposed recently by Parisi and Petronzio. (orig.)

  4. Hadronic top-quark pair-production with one jet and parton showering

    Energy Technology Data Exchange (ETDEWEB)

    Alioli, Simone; Moch, Sven-Olaf [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Uwer, Peter [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2011-10-15

    We present a calculation of heavy-flavor production in hadronic collisions in association with one jet matched to parton shower Monte Carlo programs at next-to-leading order in perturbative QCD. Top-quark decays are included and spin correlations in the decay products are taken into account. The calculation builds on existing results for the radiative corrections to heavy-quark plus one jet production and uses the POWHEG BOX for the interface to the parton shower programs PYTHIA or HERWIG. A broad phenomenological study for the Large Hadron Collider and the Tevatron is presented. In particular we study - as one important sample application - the impact of the parton shower on the top-quark charge asymmetry. (orig.)

  5. QCDNUM: Fast QCD evolution and convolution

    Science.gov (United States)

    Botje, M.

    2011-02-01

    The QCDNUM program numerically solves the evolution equations for parton densities and fragmentation functions in perturbative QCD. Un-polarised parton densities can be evolved up to next-to-next-to-leading order in powers of the strong coupling constant, while polarised densities or fragmentation functions can be evolved up to next-to-leading order. Other types of evolution can be accessed by feeding alternative sets of evolution kernels into the program. A versatile convolution engine provides tools to compute parton luminosities, cross-sections in hadron-hadron scattering, and deep inelastic structure functions in the zero-mass scheme or in generalised mass schemes. Input to these calculations are either the QCDNUM evolved densities, or those read in from an external parton density repository. Included in the software distribution are packages to calculate zero-mass structure functions in un-polarised deep inelastic scattering, and heavy flavour contributions to these structure functions in the fixed flavour number scheme. Program summaryProgram title: QCDNUM version: 17.00 Catalogue identifier: AEHV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public Licence No. of lines in distributed program, including test data, etc.: 45 736 No. of bytes in distributed program, including test data, etc.: 911 569 Distribution format: tar.gz Programming language: Fortran-77 Computer: All Operating system: All RAM: Typically 3 Mbytes Classification: 11.5 Nature of problem: Evolution of the strong coupling constant and parton densities, up to next-to-next-to-leading order in perturbative QCD. Computation of observable quantities by Mellin convolution of the evolved densities with partonic cross-sections. Solution method: Parametrisation of the parton densities as linear or quadratic splines on a discrete grid, and evolution of the spline

  6. LHC data challenges the contemporary parton-to-hadron fragmentation functions

    CERN Document Server

    d'Enterria, David; Helenius, Ilkka; Paukkunen, Hannu

    2014-01-01

    We discuss the inclusive high-pT charged-particle production in proton-proton collisions at the LHC. The experimental data are compared to the NLO perturbative QCD calculations employing various sets of parton-to-hadron fragmentation functions. Most of the theoretical predictions are found to disastrously overpredict the measured cross sections, even if the scale variations and PDF errors are accounted for. The problem appears to arise from the presently too hard gluon-to-hadron fragmentation functions.

  7. GeV partons and TeV hexons from a topological viewpoint

    International Nuclear Information System (INIS)

    Chew, G.F.; Issler, D.; Nicolescu, B.; Poenaru, V.

    1984-04-01

    An elementary TeV topological hadron supermultiplet breaks into GeV-scale mesons, baryons and baryoniums and TeV-scale hexons (extremely-heavy bosons corresponding to six topological constituents). Phenomena on the GeV scale are describable by parton graphs which give meaning to constituent quarks of QCD type. Hexons are responsible - through mixing - for electroweak-boson masses, may be responsible for cosmic-ray Centauro events, and promise novel TeV accelerator phenomena. 25 references

  8. GeV partons and TeV hexons from a topological viewpoint

    International Nuclear Information System (INIS)

    Chew, G.F.; Issler, D.; Nicolescu, B.; Poenaru, V.

    1984-04-01

    An elementary TeV topological hadron supermultiplet breaks into GeV-scale mesons, baryons and baryoniums and TeV-scale ''hexons'' (extremely-heavy bosons corresponding to six topological constituents). Phenomena on the GeV scale are described by parton graphs which give meaning to constituent quarks of QCD type. Hexons are responsible -through mixing- for electroweak-bosons masses, may be responsible for cosmic-ray Centauro events, and promise novel TeV accelerator phenomena

  9. First results with twisted mass fermions towards the computation of parton distribution functions on the lattice

    International Nuclear Information System (INIS)

    Alexandrou, Constantia; Cyprus Institute, Nicosia; Deutsches Elektronen-Synchrotron; Cichy, Krzysztof; Poznan Univ.; Drach, Vincent; Garcia-Ramos, Elena; Humboldt-Universitaet, Berlin; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian

    2014-11-01

    We report on our exploratory study for the evaluation of the parton distribution functions from lattice QCD, based on a new method proposed in Ref.∝arXiv:1305.1539. Using the example of the nucleon, we compare two different methods to compute the matrix elements needed, and investigate the application of gauge link smearing. We also present first results from a large production ensemble and discuss the future challenges related to this method.

  10. Higher order cumulants in colorless partonic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cherif, S. [Sciences and Technologies Department, University of Ghardaia, Ghardaia, Algiers (Algeria); Laboratoire de Physique et de Mathématiques Appliquées (LPMA), ENS-Kouba (Bachir El-Ibrahimi), Algiers (Algeria); Ahmed, M. A. A. [Department of Physics, College of Science, Taibah University Al-Madinah Al-Mounawwarah KSA (Saudi Arabia); Department of Physics, Taiz University in Turba, Taiz (Yemen); Laboratoire de Physique et de Mathématiques Appliquées (LPMA), ENS-Kouba (Bachir El-Ibrahimi), Algiers (Algeria); Ladrem, M., E-mail: mladrem@yahoo.fr [Department of Physics, College of Science, Taibah University Al-Madinah Al-Mounawwarah KSA (Saudi Arabia); Laboratoire de Physique et de Mathématiques Appliquées (LPMA), ENS-Kouba (Bachir El-Ibrahimi), Algiers (Algeria)

    2016-06-10

    Any physical system considered to study the QCD deconfinement phase transition certainly has a finite volume, so the finite size effects are inevitably present. This renders the location of the phase transition and the determination of its order as an extremely difficult task, even in the simplest known cases. In order to identify and locate the colorless QCD deconfinement transition point in finite volume T{sub 0}(V), a new approach based on the finite-size cumulant expansion of the order parameter and the ℒ{sub m,n}-Method is used. We have shown that both cumulants of higher order and their ratios, associated to the thermodynamical fluctuations of the order parameter, in QCD deconfinement phase transition behave in a particular enough way revealing pronounced oscillations in the transition region. The sign structure and the oscillatory behavior of these in the vicinity of the deconfinement phase transition point might be a sensitive probe and may allow one to elucidate their relation to the QCD phase transition point. In the context of our model, we have shown that the finite volume transition point is always associated to the appearance of a particular point in whole higher order cumulants under consideration.

  11. Extra dimension searches at hadron colliders to next-to-leading order-QCD

    Science.gov (United States)

    Kumar, M. C.; Mathews, Prakash; Ravindran, V.

    2007-11-01

    The quantitative impact of NLO-QCD corrections for searches of large and warped extra dimensions at hadron colliders are investigated for the Drell-Yan process. The K-factor for various observables at hadron colliders are presented. Factorisation, renormalisation scale dependence and uncertainties due to various parton distribution functions are studied. Uncertainties arising from the error on experimental data are estimated using the MRST parton distribution functions.

  12. Nucleon structure from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon

    2012-11-13

    In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.

  13. Nucleon structure from lattice QCD

    International Nuclear Information System (INIS)

    Dinter, Simon

    2012-01-01

    In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a 2 ) discretization effects.

  14. Summing threshold logs in a parton shower

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2016-05-01

    When parton distributions are falling steeply as the momentum fractions of the partons increases, there are effects that occur at each order in α s that combine to affect hard scattering cross sections and need to be summed. We show how to accomplish this in a leading approximation in the context of a parton shower Monte Carlo event generator.

  15. Summing threshold logs in a parton shower

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Zoltán [DESY,Notkestrasse 85, 22607 Hamburg (Germany); Soper, Davison E. [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403-5203 (United States)

    2016-10-05

    When parton distributions are falling steeply as the momentum fractions of the partons increases, there are effects that occur at each order in α{sub s} that combine to affect hard scattering cross sections and need to be summed. We show how to accomplish this in a leading approximation in the context of a parton shower Monte Carlo event generator.

  16. Charge symmetry breaking in spin dependent parton distributions and the Bjorken sum rule

    International Nuclear Information System (INIS)

    Cloet, I.C.; Horsley, R.; Londergan, J.T.

    2012-04-01

    We present the rst determination of charge symmetry violation (CSV) in the spin-dependent parton distribution functions of the nucleon. This is done by determining the rst two Mellin moments of the spin-dependent parton distribution functions of the octet baryons from N f =2+1 lattice simulations. The results are compared with predictions from quark models of nucleon structure. We discuss the contribution of partonic spin CSV to the Bjorken sum rule, which is important because the CSV contributions represent the only partonic corrections to the Bjorken sum rule.

  17. Charge symmetry breaking in spin dependent parton distributions and the Bjorken sum rule

    Energy Technology Data Exchange (ETDEWEB)

    Cloet, I.C. [Adelaide Univ, SA (Australia). CSSM, School of Chemistry and Physics; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Londergan, J.T. [Indiana Univ., Bloomington, IN (US). Dept. of Physics and Center for Exploration of Energy and Matter] (and others)

    2012-04-15

    We present the rst determination of charge symmetry violation (CSV) in the spin-dependent parton distribution functions of the nucleon. This is done by determining the rst two Mellin moments of the spin-dependent parton distribution functions of the octet baryons from N{sub f}=2+1 lattice simulations. The results are compared with predictions from quark models of nucleon structure. We discuss the contribution of partonic spin CSV to the Bjorken sum rule, which is important because the CSV contributions represent the only partonic corrections to the Bjorken sum rule.

  18. Coherence effects in parton showers

    International Nuclear Information System (INIS)

    Pettersson, U.

    1988-10-01

    A model for gluon emission based on the colour dipole approximation is presented. Gluons are radiated from dipoles that are stretched from one colour charge to the corresponding anti-charge, with probability distribution given by generalizations of the Altarelli-Parisi equations. The model agrees very well with experimental data on e + e - annihilation. For the reaction e + e - -> W + W - -> qq ' QQ ' it is pointed out how to extract information about the QCD vacuum and the confinement mechanism by varying the CM energy. Finally the model is applied to deep inelastic lepton scattering. When a quark is kicked out in the lepton-proton interaction, separation of the colour charges leads to gluon emission. Since the proton remnant is not a pointlike object, coherence conditions lead to an asymmetry between gluons emitted in the forward and in the backward region. The asymmetry is controlled by the energy distribution in the force field. Experimental data are reproduced with a linear energy distribution, which is consistent with the proton behaving as a vortex line in a type II superconductor. (author)

  19. Parton distributions with LHC data

    NARCIS (Netherlands)

    Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Deans, Christopher S.; Debbio, Luigi Del; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Latorre, Jose I.; Rojo, Juan; Ubiali, Maria

    2013-01-01

    We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF

  20. Heavy flavor production in QCD

    International Nuclear Information System (INIS)

    Hoyer, P.

    1989-01-01

    In this paper a brief survey is given of the status of heavy quark hadroproduction in QCD. The next-to-leading order calculation allows an estimate of the theoretical uncertainties to be made. They are manageable for top, but considerable for charm. The data on charm continues to show an excess of events at large x F , compared to QCD expectations. This may be linked to the measured anomalous A-dependence of the cross section on nuclear targets, also present at large x F . QCD models for the diffractive production of heavy quarks remain to be tested experimentally

  1. Testing collinear factorization and nuclear parton distributions with pA collisions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Quiroga-Arias, Paloma [Departamento de Fisica de PartIculas and IGFAE, Universidade de Santiago de Compostela 15706 Santiago de Compostela (Spain); Milhano, Jose Guilherme [CENTRA, Departamento de Fisica, Instituto Superior Tecnico (IST), Av. Rovisco Pais 1, P-1049-001 Lisboa (Portugal); Wiedemann, Urs Achim, E-mail: pquiroga@fpaxpl.usc.es [Physics Department, Theory Unit, CERN, CH-1211 Geneve 23 (Switzerland)

    2011-01-01

    Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non- linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program at the LHC would provide a set of measurements allowing for unprecedented tests of the factorization assumption underlying global nPDF fits.

  2. Testing nuclear parton distributions with pA collisions at the TeV scale

    International Nuclear Information System (INIS)

    Quiroga-Arias, Paloma; Milhano, Jose Guilherme; Wiedemann, Urs Achim

    2010-01-01

    Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distribution functions (nPDFs) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of nonlinear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here, we argue that a proton-nucleus collision program at the Large Hadron Collider would provide a set of measurements, which allow for unprecedented tests of the factorization assumption, underlying global nPDF fits.

  3. The QCD/SM Working Group: Summary Report

    International Nuclear Information System (INIS)

    Dobbs, M.

    2004-01-01

    Among the many physics processes at TeV hadron colliders, we look most eagerly for those that display signs of the Higgs boson or of new physics. We do so however amid an abundance of processes that proceed via Standard Model (SM) and in particular Quantum Chromodynamics (QCD) interactions, and that are interesting in their own right. Good knowledge of these processes is required to help us distinguish the new from the known. Their theoretical and experimental study teaches us at the same time more about QCD/SM dynamics, and thereby enables us to further improve such distinctions. This is important because it is becoming increasingly clear that the success of finding and exploring Higgs boson physics or other New Physics at the Tevatron and LHC will depend significantly on precise understanding of QCD/SM effects for many observables. To improve predictions and deepen the study of QCD/SM signals and backgrounds was therefore the ambition for our QCD/SM working group at this Les Houches workshop. Members of the working group made significant progress towards this on a number of fronts. A variety of tools were further developed, from methods to perform higher order perturbative calculations or various types of resummation, to improvements in the modeling of underlying events and parton showers. Furthermore, various precise studies of important specific processes were conducted. A significant part of the activities in Les Houches revolved around Monte Carlo simulation of collision events. A number of contributions in this report reflect the progress made in this area. At present a large number of Monte Carlo programs exist, each written with a different purpose and employing different techniques. Discussions in Les Houches revealed the need for an accessible primer on Monte Carlo programs, featuring a listing of various codes, each with a short description, but also providing a low-level explanation of the underlying methods. This primer has now been compiled and a

  4. Pion structure from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Javadi Motaghi, Narjes

    2015-05-12

    In this thesis we use lattice QCD to compute the second Mellin moments of pion generalized parton distributions and pion electromagnetic form factors. For our calculations we are able to analyze a large set of gauge configurations with 2 dynamical flavours using non-perturbatively the improved Wilson-Sheikholeslami-Wohlert fermionic action pion masses ranging down to 151 MeV. By employing improved smearing we were able to suppress excited state contamination. However, our data in the physical quark mass limit show that some excited state contamination remains. We show the non-zero sink momentum is optimal for the computation of the electromagnetic form factors and generalized form factors at finite momenta.

  5. QCD in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Iancu, Edmond [IPhT, Saclay (France)

    2014-07-01

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry.

  6. QCD in heavy ion collisions

    International Nuclear Information System (INIS)

    Iancu, Edmond

    2014-01-01

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry

  7. Prospects of 'Topologically unquenched QCD' from a study of the analogous importance sampling method in the massive Schwinger model

    International Nuclear Information System (INIS)

    Duerr, S.

    2000-01-01

    I give a quick summary of my proposal for simulating an improvement on quenched QCD with dynamical fermions which interact with the gluon configuration only via the topological index of the latter. It amounts to include only the topological part of the functional determinant into the measure, thereby absorbing a correction factor into the observable. I discuss the prospects of this concept from a study in the massive N f- flavour Schwinger model, where the correction factor is indeed found to be of order 0(1)

  8. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    Science.gov (United States)

    Tannenbaum, M. J.

    2018-05-01

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/ Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPS p¯ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.

  9. From Kondo model and strong coupling lattice QCD to the Isgur-Wise function

    International Nuclear Information System (INIS)

    Patel, Apoorva

    1995-01-01

    Isgur-Wise functions parametrise the leading behaviour of weak decay form factors of mesons and baryons containing a single heavy quark. The form factors for the quark mass operator are calculated in strong coupling lattice QCD, and Isgur-Wise functions extracted from them. Based on renormalisation group invariance of the operators involved, it is argued that the Isgur-Wise functions would be the same in the weak coupling continuum theory. (author)

  10. Total Cross Sections at current/Future Colliders, conventional models and QCD

    CERN Document Server

    Fazal-e-Aleem, M

    1999-01-01

    Rise in total cross sections for elastic scattering generated immense interest both for experimental measurements and theoretical investigations. How will total cross section behave at LHC and Cosmic Ray energies is therefore in the limelight of our future measurements. Theoretical studies become even more interesting when we take into consideration the ratio of real and imaginary parts of the scattering amplitudes. We will briefly undertake the current results and future prospects in the light of conventional as well as QCD-based phenomenology.

  11. Tevatron-for-LHC Report of the QCD Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, Michael G.; Begel, M.; Bourilkov, D.; Campanelli, M.; Chlebana, F.; De Roeck, A.; Dittmann, J.R.; Ellis, S.D.; Field, B.; Field, R.; Gallinaro, M.; /Fermilab

    2006-10-01

    The experiments at Run 2 of the Tevatron have each accumulated over 1 fb{sup -1} of high-transverse momentum data. Such a dataset allows for the first precision (i.e. comparisons between theory and experiment at the few percent level) tests of QCD at a hadron collider. While the Large Hadron Collider has been designed as a discovery machine, basic QCD analyses will still need to be performed to understand the working environment. The Tevatron-for-LHC workshop was conceived as a communication link to pass on the expertise of the Tevatron and to test new analysis ideas coming from the LHC community. The TeV4LHC QCD Working Group focused on important aspects of QCD at hadron colliders: jet definitions, extraction and use of Parton Distribution Functions, the underlying event, Monte Carlo tunes, and diffractive physics. This report summarizes some of the results achieved during this workshop.

  12. Nonperturbation aspects of QCD. Monte Carlo and optimization

    International Nuclear Information System (INIS)

    Brezin, E.; Morel, A.; Marinari, E.; Couchot, F.; Narison, S.; Richard, J.M.; Blaizot, J.P.; Souillard, B.

    1986-01-01

    Phase transitions; lattice QCD; numerical simulation of lattice gauge theories; experimental research on gluonic mesons; QCD-duality sum rules; the bag model, potentials, and hadron spectra; and efficient Lagrangian functions and the Skyrme model are introduced [fr

  13. 13. international QCD conference (QCD 06)

    International Nuclear Information System (INIS)

    2006-01-01

    This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations

  14. 13. international QCD conference (QCD 06)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations.

  15. QCD and power corrections to sum rules in deep-inelastic lepton-nucleon scattering

    International Nuclear Information System (INIS)

    Ravindran, V.; Neerven, W.L. van

    2001-01-01

    In this paper we study QCD and power corrections to sum rules which show up in deep-inelastic lepton-hadron scattering. Furthermore we will make a distinction between fundamental sum rules which can be derived from quantum field theory and those which are of a phenomenological origin. Using current algebra techniques the fundamental sum rules can be expressed into expectation values of (partially) conserved (axial-)vector currents sandwiched between hadronic states. These expectation values yield the quantum numbers of the corresponding hadron which are determined by the underlying flavour group SU(n) F . In this case one can show that there exist an intimate relation between the appearance of power and QCD corrections. The above features do not hold for phenomenological sum rules, hereafter called non-fundamental. They have no foundation in quantum field theory and they mostly depend on certain assumptions made for the structure functions like super-convergence relations or the parton model. Therefore only the fundamental sum rules provide us with a stringent test of QCD

  16. Forward and Small-x QCD Physics Results from CMS Experiment at LHC

    CERN Document Server

    AUTHOR|(CDS)2079608

    2016-01-01

    The Compact Muon Solenoid (CMS) is one of the two large, multi-purpose experiments at the Large Hadron Collider (LHC) at CERN. During the Run I Phase a large pp collision dataset has been collected and the CMS collaboration has explored measurements that shed light on a new era. Forward and small-$x$ quantum chromodynamics (QCD) physics measurements with CMS experiment covers a wide range of physics subjects. Some of highlights in terms of testing the very low-$x$ QCD, underlying event and multiple interaction characteristics, photon-mediated processes, jets with large rapidity separation at high pseudo-rapidities and the inelastic proton-proton cross section dominated by diffractive interactions are presented. Results are compared to Monte Carlo (MC) models with different parameter tunes for the description of the underlying event and to perturbative QCD calculations. The prominent role of multi-parton interactions has been confirmed in the semihard sector but no clear deviation from the standard DGLAP parto...

  17. QCD fits to combined H1 and ZEUS inclusive DIS cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Myronenko, Volodymyr [DESY (ZEUS), Hamburg (Germany)

    2015-07-01

    QCD fits to combined inclusive deep inelastic scattering cross sections in neutral and charged current e{sup ±}p are presented. The measurements used for fits cover six orders of magnitude in Q{sup 2} and Bjorken x and correspond to a luminosity of about 1 fb{sup -1}. Within the QCD analysis at NLO (VFNS) parton distribution functions and some electroweak quantities were extracted.

  18. Parton distributions with LHC data

    DEFF Research Database (Denmark)

    Ball, R.D.; Deans, C.S.; Del Debbio, L.

    2013-01-01

    We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF determinati......We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF...... fraction of the proton. We also present collider PDF sets, constructed using only data from HERA, the Tevatron and the LHC, but find that this data set is neither precise nor complete enough for a competitive PDF determination....

  19. Developments in perturbative QCD? challenges from collider physics

    Energy Technology Data Exchange (ETDEWEB)

    Zeppenfeld, Dieter [Valencia Univ. (Spain). Dept. de Fisica Teorica]. E-mail: dieter@phenom.physics.wisc.edu

    1996-07-01

    The search for new phenomena at hadron colliders requires a good understanding of QCD processes. The analysis of multi-jet signatures in the top quark search at the Tevatron is one example, forward jet tagging and rapidity gap techniques in the analysis of weak boson scattering events at the LH C will be another important application. These topics are discussed in the context of multi-parton/multi-jet QCD processes. Also described are some of the calculation tools, like amplitude techniques and automatic code generation for tree level processes. (author)

  20. QCD effects on the event structure in leptoproduction

    International Nuclear Information System (INIS)

    Bengtsson, M.; Sjoestrand, T.

    1988-01-01

    Perturbative QCD corrections to leptoproduction events can be introduced either in the form of matrix elements or of parton showers. Each of these approaches has its advantages and disadvantages, making a comparison of the two interesting. At present energies, both methods can be made to agree reasonably well with data, whereas differences appear at higher energies. The influence of these QCD effects on the expected event structure at ep colliders, HERA in particular, is investigated in detail. This includes multiplicity and momentum distributions transverse momentum flow and correlations, as well as jet properties. (orig.)

  1. Developments in perturbative QCD? challenges from collider physics

    International Nuclear Information System (INIS)

    Zeppenfeld, Dieter

    1996-01-01

    The search for new phenomena at hadron colliders requires a good understanding of QCD processes. The analysis of multi-jet signatures in the top quark search at the Tevatron is one example, forward jet tagging and rapidity gap techniques in the analysis of weak boson scattering events at the LH C will be another important application. These topics are discussed in the context of multi-parton/multi-jet QCD processes. Also described are some of the calculation tools, like amplitude techniques and automatic code generation for tree level processes. (author)

  2. QCD-suppression by black hole production at the LHC

    International Nuclear Information System (INIS)

    Loennblad, Leif; Sjoedahl, Malin; Akesson, Torsten

    2005-01-01

    Possible consequences of the production of small black holes at the LHC for different scenarios with large extra dimensions are investigated. The effects from black hole production on some standard jet observables are examined, concentrating on the reduction of the QCD cross section. It is found that black hole production of partons interacting on a short enough distance indeed seem to generate a drastic drop in the QCD cross section. However from an experimental point of view this will in most cases be camouflaged by energetic radiation from the black holes

  3. Experimental status QCD

    International Nuclear Information System (INIS)

    Radyushkin, A.V.; Slepchenko, L.A.

    1983-01-01

    Analysis of experimental status of quantum chromodynamics (QCD) has been carried out. A short introduction into QCD is given. QCD sum rules are considered. Jets in e + e - annihilation and inclusive processes of lepton-hadron and hadron-hadron scattering are considered. Effect of QCD corrections to perturbation theory on quark count is analyzed

  4. Structure functions and parton distributions

    International Nuclear Information System (INIS)

    Martin, A.D.; Stirling, W.J.; Roberts, R.G.

    1995-01-01

    The MRS parton distribution analysis is described. The latest sets are shown to give an excellent description of a wide range of deep-inelastic and other hard scattering data. Two important theoretical issues-the behavior of the distributions at small x and the flavor structure of the quark sea-are discussed in detail. A comparison with the new structure function data from HERA is made, and the outlook for the future is discussed

  5. Factorization and pion form factor in QCD

    International Nuclear Information System (INIS)

    Efremov, A.V.; Radyushkin, A.V.

    1979-01-01

    The behaviour of the pion electromagnetic form factor (EMFF) in the framework of quantum chromodynamics (QCD) is discussed. Pion is considered to be a quark-antiquark bound state. It is proposed to use an OPE description of the bound state structure by matrix elements of certain local gauge-invariant operators. Short-distance quark interactions is proved using a direct analysis of perturbation theory in the α-parametric representation of the Feynman diagrams. It is shown that the short-distance parton picture privides a self-consistent description of the large Q 2 momentum behaviour of the pion EMFF in QCD. Pion EMFF asymptotics is expressed in terms of fu fundamental constants of the theory

  6. QCD studies at the hadron colliders

    International Nuclear Information System (INIS)

    Flaugher, B.L.

    1990-01-01

    Two hadron collider experiments are actively pursuing QCD jet analyses. They are CDF, with a √s = 1800 GeV, and UA2, with a √s = 630 GeV. Recent results from these collaborations are discussed. The inclusive jet spectrum, dijet mass and angular distribution are compared to QCD predictions and used to set limits on quark substructure. Data from both experiments are compared to the O(α s 3 ) calculations for the inclusive jet cross section. Studies of 3-jet, 4-jet and 5-jet events are described. A limit is set on the cross section for double parton scattering from the UA2 4-jet analysis. The inclusive photon cross section has been measured by both CDF and UA2 and is compared to theoretical predictions. 13 refs., 17 figs., 1 tab

  7. Accurate measuring of cross-sections for e+e- → hadrons: Testing the Standard Model and applications to QCD

    International Nuclear Information System (INIS)

    Malaescu, B.

    2010-01-01

    The scope of this thesis is to obtain and use accurate data on e + e - annihilation into hadrons at energies of 1 GeV of magnitude order. These data represent a very valuable input for Standard Model tests involving vacuum polarization, such as the comparison of the muon magnetic moment to theory, and for QCD tests and applications. The different parts of this thesis describe four aspects of my work in this context. First, the measurements of cross sections as a function of energy necessitate the unfolding of data spectra from detector effects. I have proposed a new iterative unfolding method for experimental data, with improved capabilities compared to existing tools. Secondly, the experimental core of this thesis is a study of the process e + e - → K + K - from threshold to 5 GeV using the initial state radiation (ISR) method (through the measurement of e + e - → K + K - γ) with the BABAR detector. All relevant efficiencies are measured with experimental data and the absolute normalization comes from the simultaneously measured μμγ process. I have performed the full analysis which achieves a systematic uncertainty of 0.7% on the dominant φ resonance. Results on e + e - → π + π - from threshold to 3 GeV are also presented. Thirdly, a comparison based on 2 different ways to get a prediction of the muon magnetic moment: the Standard Model and the hadronic tau decay, shows an interesting hint for new physics effects (3.2 σ effect). Fourthly, QCD sum rules are powerful tools for obtaining precise information on QCD parameters, such as the strong coupling α S . I have worked on experimental data concerning the spectral functions from τ decays measured by ALEPH. I have discussed to some detail the perturbative QCD prediction obtained with two different methods: fixed-order perturbation theory (FOPT) and contour-improved perturbative theory (CIPT). The corresponding theoretical uncertainties have been studied at the τ and Z mass scales. The CIPT method

  8. Chemical and kinetic equilibrations via radiative parton transport

    International Nuclear Information System (INIS)

    Zhang Bin; Wortman, Warner A

    2011-01-01

    A hot and dense partonic system can be produced in the early stage of a relativistic heavy ion collision. How it equilibrates is important for the extraction of Quark-Gluon Plasma properties. We study the chemical and kinetic equilibrations of the Quark-Gluon Plasma using a radiative transport model. Thermal and Color-Glass-Condensate motivated initial conditions are used. We observe that screened parton interactions always lead to partial pressure isotropization. Different initial pressure anisotropies result in the same asymptotic evolution. Comparison of evolutions with and without radiative processes shows that chemical equilibration interacts with kinetic equilibration and radiative processes can contribute significantly to pressure isotropization.

  9. Possible signatures of the hadronisation scale in parton jets

    International Nuclear Information System (INIS)

    Ochs, W.

    1987-01-01

    Models for hardon production in hard collisions differ widely in the energy scale characteristic of the transition from the primary partonic to the secondary hadronic phase of jet evolution. We investigate possible experimental signatures for the existence of both phases. In particular, we consider multiplicity and energy moments, long range charge correlations and angular correlations as a function of total energy or near the exclusive two body limit in e + e - annihilation and deep inelastic scattering processes. The possibility of a dual correspondence between hadronic and partonic states is discussed. (orig.)

  10. Parton distribution functions and benchmark cross sections at NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Institute for High Energy Physics (IHEP), Protvino (Russian Federation); Bluemlein, J.; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2012-02-15

    We present a determination of parton distribution functions (ABM11) and the strong coupling constant {alpha}{sub s} at next-to-leading order and next-to-next-to-leading order (NNLO) in QCD based on world data for deep-inelastic scattering and fixed-target data for the Drell-Yan process. The analysis is performed in the fixed-flavor number scheme for n{sub f}=3,4,5 and uses the MS-scheme for {alpha}{sub s} and the heavy-quark masses. At NNLO we obtain the value {alpha}{sub s}(MZ)=0.1134{+-}0.0011. The fit results are used to compute benchmark cross sections at hadron colliders to NNLO accuracy and to compare to data from the LHC. (orig.)

  11. Effects of next-to-leading order DGLAP evolution on generalized parton distributions of the proton and deeply virtual Compton scattering at high energy

    Energy Technology Data Exchange (ETDEWEB)

    Khanpour, Hamzeh [University of Science and Technology of Mazandaran, Department of Physics, Behshahr (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Goharipour, Muhammad [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Guzey, Vadim [Petersburg Nuclear Physics Institute (PNPI), National Research Center ' ' Kurchatov Institute' ' , Gatchina (Russian Federation)

    2018-01-15

    We studied the effects of NLO Q{sup 2} evolution of generalized parton distributions (GPDs) using the aligned-jet model for the singlet quark and gluon GPDs at an initial evolution scale. We found that the skewness ratio for quarks is a slow logarithmic function of Q{sup 2}, reaching r{sup S} = 1.5-2 at Q{sup 2} = 100 GeV{sup 2} and r{sup g} ∼ 1 for gluons in a wide range of Q{sup 2}. Using the resulting GPDs, we calculated the DVCS cross section on the proton in NLO pQCD and found that this model in conjunction with modern parameterizations of proton PDFs (CJ15 and CT14) provides a good description of the available H1 and ZEUS data in a wide kinematic range. (orig.)

  12. The QCD Effective String

    International Nuclear Information System (INIS)

    Espriu, D.

    2003-01-01

    QCD can be described in a certain kinematical regime by an effective string theory. This string must couple to background chiral fields in a chirally invariant manner, thus taking into account the true chirally non-invariant QCD vacuum. By requiring conformal symmetry of the string and the unitarity constraint on chiral fields we reconstruct the equations of motion for the latter ones. These provide a consistent background for the propagation of the string. By further requiring locality of the effective action we recover the Lagrangian of non-linear sigma model of pion interactions. The prediction is unambiguous and parameter-free. The estimated chiral structural constants of Gasser and Leutwyler fit very well the phenomenological values. (author)

  13. Spin-dependent parton distributions and structure functions

    International Nuclear Information System (INIS)

    Bentz, W.; Ito, T.; Cloet, I.C.; Thomas, A.W.; Yazaki, K.

    2008-01-01

    Nuclear parton distributions and structure functions are determined in an effective chiral quark theory. We also discuss an extension of our model to fragmentation functions. Presented at the 20th Few-Body Conference, Pisa, Italy, 10-14 September 2007. (author)

  14. Framework for evolution in double parton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Buffing, Maarten G.A.

    2017-07-15

    Double parton scattering (DPS) describes two colliding hadrons having interactions in the form of two hard processes, each initiated by a separate pair of partons. Just as for single parton scattering, the resummation of soft gluon exchange gives rise to a soft function, which is a necessary ingredient for obtaining rapidity evolution equations. For various regions of phase space, we derive the rapidity evolution and the scale evolution of double transverse momentum dependent parton distribution functions (DTMDs) as well as of the p{sub T}-resummed cross section for double Drell-Yan like processes. This contributes to a framework that can be used for phenomenological DPS studies including resummation.

  15. On some aspects of optimisation of factorisation scheme dependence at the next-to-leading order in QCD

    International Nuclear Information System (INIS)

    Chyla, J.

    1989-01-01

    Several recent papers attempting to apply the optimised QCD perturbation theory to reactions involving real or virtual photons are discussed with particular attention paid to the ambiguity appearing in the definition of parton distribution and fragmentation functions at the next-to-leading order (NLO). The necessity to use NLO parametrisations of quark densities is stressed and the problem with respect to the factorisation mass M for the 'physical' definition of parton densities is pointed out. (orig.)

  16. Gluon condensation and modelling of quark confinement in QCD-motivated Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Bel'kov, A.A.; Ebert, D.; Emel'yanenko, A.V.

    1992-01-01

    The possibility of modelling of a quark propagator without poles realizing quark confinement is considered on the basis of a nonperturbative gluon propagator including gluon condensation and a dynamical gluon mass. The property of spontaneous chiral symmetry breaking is retained providing us with a reasonable pattern of low-lying meson properties. 2 figs.; 1 tab

  17. The Emergence of Hadrons from QCD Color

    Science.gov (United States)

    Brooks, William; Color Dynamics in Cold Matter (CDCM) Collaboration

    2015-10-01

    The formation of hadrons from energetic quarks, the dynamical enforcement of QCD confinement, is not well understood at a fundamental level. In Deep Inelastic Scattering, modifications of the distributions of identified hadrons emerging from nuclei of different sizes reveal a rich variety of spatial and temporal characteristics of the hadronization process, including its dependence on spin, flavor, energy, and hadron mass and structure. The EIC will feature a wide range of kinematics, allowing a complete investigation of medium-induced gluon bremsstrahlung by the propagating quarks, leading to partonic energy loss. This fundamental process, which is also at the heart of jet quenching in heavy ion collisions, can be studied for light and heavy quarks at the EIC through observables quantifying hadron ``attenuation'' for a variety of hadron species. Transverse momentum broadening of hadrons, which is sensitive to the nuclear gluonic field, will also be accessible, and can be used to test our understanding from pQCD of how this quantity evolves with pathlength, as well as its connection to partonic energy loss. The evolution of the forming hadrons in the medium will shed new light on the dynamical origins of the forces between hadrons, and thus ultimately on the nuclear force. Supported by the Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) of Chile.

  18. Multiple Parton Interactions in ALICE

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    We will present in detail the measurement of the charged particle multiplicity dependence of per-trigger pair yields in azimuthal direction induced by low-energetic di-jets produced in proton-proton collisions. Using two-particle angular correlations with low transverse momentum thresholds, jet properties are measured on a statistical basis down to the lowest possible jet energies. The analysis can give information about the contribution from multiple parton interactions to particle production. Moreover, the results allow to optimize the parametrization of the jet fragmentation in phenomenological mode...

  19. Investigation of the factorization scheme dependence of finite order perturbative QCD calculations

    Czech Academy of Sciences Publication Activity Database

    Kolář, Karel

    -, č. 11 (2011), 005/1-005/44 ISSN 1126-6708 R&D Projects: GA MŠk LC527 Institutional research plan: CEZ:AV0Z10100502 Keywords : QCD * parton distribution functions * factorization schemes * NLO Monte Carlo event generators Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.831, year: 2011

  20. Dijet Cross Sections and Parton Densities in Diffractive DIS at HERA

    CERN Document Server

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-01-01

    Differential dijet cross sections in diffractive deep-inelastic scattering are measured with the H1 detector at HERA using an integrated luminosity of 51.5 pb-1. The selected events are of the type ep --> eXY, where the system X contains at least two jets and is well separated in rapidity from the low mass proton dissociation system Y. The dijet data are compared with QCD predictions at next-to-leading order based on diffractive parton distribution functions previously extracted from measurements of inclusive diffractive deep-inelastic scattering. The prediction describes the dijet data well at low and intermediate zpom (the fraction of the momentum of the diffractive exchange carried by the parton entering the hard interaction) where the gluon density is well determined from the inclusive diffractive data, supporting QCD factorisation. A new set of diffractive parton distribution functions is obtained through a simultaneous fit to the diffractive inclusive and dijet cross sections. This allows for a precise ...