WorldWideScience

Sample records for q-tof mass spectrometry

  1. Rapid identification of fluorochrome modification sites in proteins by LC ESI-Q-TOF mass spectrometry.

    Science.gov (United States)

    Manikwar, Prakash; Zimmerman, Tahl; Blanco, Francisco J; Williams, Todd D; Siahaan, Teruna J

    2011-07-20

    Conjugation of either a fluorescent dye or a drug molecule to the ε-amino groups of lysine residues of proteins has many applications in biology and medicine. However, this type of conjugation produces a heterogeneous population of protein conjugates. Because conjugation of fluorochrome or drug molecule to a protein may have deleterious effects on protein function, the identification of conjugation sites is necessary. Unfortunately, the identification process can be time-consuming and laborious; therefore, there is a need to develop a rapid and reliable way to determine the conjugation sites of the fluorescent label or drug molecule. In this study, the sites of conjugation of fluorescein-5'-isothiocyanate and rhodamine-B-isothiocyanate to free amino groups on the insert-domain (I-domain) protein derived from the α-subunit of lymphocyte function-associated antigen-1 (LFA-1) were determined by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF MS) along with peptide mapping using trypsin digestion. A reporter fragment of the fluorochrome moiety that is generated in the collision cell of the Q-TOF without explicit MS/MS precursor selection was used to identify the conjugation site. Selected ion plots of the reporter ion readily mark modified peptides in chromatograms of the complex digest. Interrogation of theses spectra reveals a neutral loss/precursor pair that identifies the modified peptide. The results show that one to seven fluorescein molecules or one to four rhodamine molecules were attached to the lysine residue(s) of the I-domain protein. No modifications were found in the metal ion-dependent adhesion site (MIDAS), which is an important binding region of the I-domain.

  2. Determination of Sphingosine-1-Phosphate in Human Plasma Using Liquid Chromatography Coupled with Q-Tof Mass Spectrometry

    Science.gov (United States)

    Egom, Emmanuel E.; Fitzgerald, Ross; Canning, Rebecca; Pharithi, Rebabonye B.; Murphy, Colin; Maher, Vincent

    2017-01-01

    Evidence suggests that high-density lipoprotein (HDL) components distinct from cholesterol, such as sphingosine-1-phosphate (S1P), may account for the anti-atherothrombotic effects attributed to this lipoprotein. The current method for the determination of plasma levels of S1P as well as levels associated with HDL particles is still cumbersome an assay method to be worldwide practical. Recently, a simplified protocol based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the sensitive and specific quantification of plasma levels of S1P with good accuracy has been reported. This work utilized a triple quadrupole (QqQ)-based LC-MS/MS system. Here we adapt that method for the determination of plasma levels of S1P using a quadrupole time of flight (Q-Tof) based LC-MS system. Calibration curves were linear in the range of 0.05 to 2 µM. The lower limit of quantification (LOQ) was 0.05 µM. The concentration of S1P in human plasma was determined to be 1 ± 0.09 µM (n = 6). The average accuracy over the stated range of the method was found to be 100 ± 5.9% with precision at the LOQ better than 10% when predicting the calibration standards. The concentration of plasma S1P in the prepared samples was stable for 24 h at room temperature. We have demonstrated the quantification of plasma S1P using Q-Tof based LC-MS with very good sensitivity, accuracy, and precision that can used for future studies in this field. PMID:28820460

  3. Rapid label-free profiling of oral cancer biomarker proteins using nano-UPLC-Q-TOF ion mobility mass spectrometry.

    Science.gov (United States)

    Nassar, Ala F; Williams, Brad J; Yaworksy, Dustin C; Patel, Vyomesh; Rusling, James F

    2016-03-01

    It has become quite clear that single cancer biomarkers cannot in general provide high sensitivity and specificity for reliable clinical cancer diagnostics. This paper explores the feasibility of rapid detection of multiple biomarker proteins in model oral cancer samples using label-free protein relative quantitation. MS-based label-free quantitative proteomics offer a rapid alternative that bypasses the need for stable isotope containing compounds to chemically bind and label proteins. Total protein content in oral cancer cell culture conditioned media was precipitated, subjected to proteolytic digestion, and then analyzed using a nano-UPLC (where UPLC is ultra-performance liquid chromatography) coupled to a hybrid Q-Tof ion-mobility mass spectrometry (MS). Rapid, simultaneous identification and quantification of multiple possible cancer biomarker proteins was achieved. In a comparative study between cancer and noncancer samples, approximately 952 proteins were identified using a high-throughput 1D ion mobility assisted data independent acquisition (IM-DIA) approach. As we previously demonstrated that interleukin-8 (IL-8) and vascular endothelial growth factor A (VEGF-A) were readily detected in oral cancer cell conditioned media(1), we targeted these biomarker proteins to validate our approach. Target biomarker protein IL-8 was found between 3.5 and 8.8 fmol, while VEGF-A was found at 1.45 fmol in the cancer cell media. Overall, our data suggest that the nano-UPLC-IM-DIA bioassay is a feasible approach to identify and quantify proteins in complex samples without the need for stable isotope labeling. These results have significant implications for rapid tumor diagnostics and prognostics by monitoring proteins such as IL-8 and VEGF-A implicated in cancer development and progression. The analysis in tissue or plasma is not possible at this time, but the subsequent work would be needed for validation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (LC-Q-TOF MS) Study for Analyzing 35 Corticosteroid Compounds: Elucidation of MS/MS Fragmentation Pathways

    International Nuclear Information System (INIS)

    Noh, Eunyoung; Yoon, Chang-Yong; Lee, Ji Hyun; Baek, Sun-Young; Do, Jung-Ah; Lee, Jung-min; Oh, Han Bin

    2016-01-01

    Corticosteroids have been often found to be added to a dietary supplement for the purpose of illegally improving the effect of their products. Thus, it is imperative to develop or improve a method that enables one to rapidly and reliably analyze corticosteroids in health or dietary supplements, for the safety management purpose. In the present study, results from liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) experiments for the selected 35 corticosteroid compounds are presented, which can be useful for the qualitative screening of corticosteroids in health or dietary supplements. Specifically, retention times, accurate mass data of the protonated steroids, m/z values of major fragment ions are given for the 35 corticosteroids. Further, fragmentation pathways for the selected steroids are also suggested. Based on the suggested fragmentation pathways, it was shown that an unknown steroid compound can be readily identified using the knowledge of a group of unique and specific common skeletal fragments. The high selectivity and sensitivity of the LC-Q-TOF-MS/MS results combined with the knowledge of the fragmentation pathways can offer a new opportunity for rapid and accurate screening of corticosteroids, thus preventing health-related incidents involving adulterated products and clamping down on illegally circulated health products.

  5. A Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (LC-Q-TOF MS) Study for Analyzing 35 Corticosteroid Compounds: Elucidation of MS/MS Fragmentation Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Eunyoung; Yoon, Chang-Yong; Lee, Ji Hyun; Baek, Sun-Young; Do, Jung-Ah [Ministry of Food and Drug Safety, Cheongju (Korea, Republic of); Lee, Jung-min; Oh, Han Bin [Sogang University, Seoul (Korea, Republic of)

    2016-07-15

    Corticosteroids have been often found to be added to a dietary supplement for the purpose of illegally improving the effect of their products. Thus, it is imperative to develop or improve a method that enables one to rapidly and reliably analyze corticosteroids in health or dietary supplements, for the safety management purpose. In the present study, results from liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) experiments for the selected 35 corticosteroid compounds are presented, which can be useful for the qualitative screening of corticosteroids in health or dietary supplements. Specifically, retention times, accurate mass data of the protonated steroids, m/z values of major fragment ions are given for the 35 corticosteroids. Further, fragmentation pathways for the selected steroids are also suggested. Based on the suggested fragmentation pathways, it was shown that an unknown steroid compound can be readily identified using the knowledge of a group of unique and specific common skeletal fragments. The high selectivity and sensitivity of the LC-Q-TOF-MS/MS results combined with the knowledge of the fragmentation pathways can offer a new opportunity for rapid and accurate screening of corticosteroids, thus preventing health-related incidents involving adulterated products and clamping down on illegally circulated health products.

  6. Metabolites profiling of Pulsatilla saponin D in rat by ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS/MS).

    Science.gov (United States)

    Ouyang, Hui; Zhou, Maofu; Guo, Yicheng; He, Mingzhen; Huang, Hesong; Ye, Xide; Feng, Yulin; Zhou, Xin; Yang, Shilin

    2014-07-01

    Pulsatilla saponin D, an antitumor substance isolated from traditional Chinese herbal medicine Pulsatilla chinensis (Bge.) Regel, is a promising candidate for new drug development. The purpose of the present study is to establish a simple and practical strategy for the metabolite profiling of Pulsatilla saponin D in vivo. A total of 18 metabolites were identified in rat plasma, urine and feces samples based on MS and MS/MS data by using ESI-Q-TOF-MS/MS, and eight of them (M11-M18) were reported for the first time. The results indicated that deglycosylation, dehydrogenation, hydroxylation and sulfation were the major metabolic transformations of Pulsatilla saponin D in vivo. This study has improved our understanding of the metabolic fate of Pulsatilla saponin D in vivo, and the information gained from the current study is relevant to the pharmacological activity of Pulsatilla saponin D. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Screening of 439 Pesticide Residues in Fruits and Vegetables by Gas Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry Based on TOF Accurate Mass Database and Q-TOF Spectrum Library.

    Science.gov (United States)

    Li, Jian-Xun; Li, Xiao-Ying; Chang, Qiao-Ying; Li, Yan; Jin, Ling-He; Pang, Guo-Fang; Fan, Chun-Lin

    2018-05-03

    Because of its unique characteristics of accurate mass full-spectrum acquisition, high resolution, and fast acquisition rates, GC-quadrupole-time-of-flight MS (GC-Q-TOF/MS) has become a powerful tool for pesticide residue analysis. In this study, a TOF accurate mass database and Q-TOF spectrum library of 439 pesticides were established, and the parameters of the TOF database were optimized. Through solid-phase extraction (SPE), whereby pesticides are extracted from fruit and vegetable substrates by using 40 mL 1% acetic acid in acetonitrile (v/v), purified by the Carbon/NH₂ SPE cartridge, and finally detected by GC-Q-TOF/MS, the rapid analysis of 439 pesticides in fruits and vegetables can be achieved. The methodology verification results show that more than 70 and 91% of pesticides, spiked in fruits and vegetables with concentrations of 10 and 100 μg/kg, respectively, saw recoveries that conform to the European Commission's criterion of between 70 and 120% with RSD ≤20%. Eighty-one percent of pesticides have screening detection limits lower than 10 μg/kg, which makes this a reliable analysis technology for the monitoring of pesticide residues in fruits and vegetables. This technology was further validated for its characteristics of high precision, high speed, and high throughput through successful detection of 9817 samples during 2013-2015.

  8. Urinary metabolomic profiling in rats exposed to dietary di(2-ethylhexyl) phthalate (DEHP) using ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS).

    Science.gov (United States)

    Dong, Xinwen; Zhang, Yunbo; Dong, Jin; Zhao, Yue; Guo, Jipeng; Wang, Zhanju; Liu, Mingqi; Na, Xiaolin; Wang, Cheng

    2017-07-01

    Di(2-ethylhexyl) phthalate (DEHP) is an omnipresent environmental chemical with widespread nonoccupational human exposure through multiple ways. Although considerable efforts have been invested to investigate mechanisms of DEHP toxicity, the key metabolic biomarkers of DEHP toxicity remain to be identified. The aim of this study was to assess the urinary metabonomics of dietary DEHP in rats using the technique of ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS). Fourteen female Wistar rats were divided into two groups and given increasing dietary doses of DEHP for 30 consecutive days. The urinary metabolite profile was studied using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) enabled clusters to be clearly separated. Eleven principal urinary metabolites were identified as contributing to the clusters. The clusters in the positive electrospray ionization (ESI) mode were xanthurenic acid, kynurenic acid, nonate, N6-methyladenosine, and L-isoleucyl-L-proline. The clusters in the negative ESI mode were hippuric acid, tetrahydrocortisol, citric acid, phenylpropionylglycine, cPA(18:2(9Z, 12Z)/0:0), and LysoPC(14:1(9Z)). The urinary metabonomic changes indicated that exposure to dietary DEHP can affect energy-related metabolism, liver and renal function, fatty acid metabolism, and cause DNA damage in rats. The findings of this study on the urinary metabolites and metabolic pathways of DEHP may form the basis for future studies on the mechanisms of toxicity of this commonly found environmental chemical.

  9. Metabolomic analysis using ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS uncovers the effects of light intensity and temperature under shading treatments on the metabolites in tea.

    Directory of Open Access Journals (Sweden)

    Qunfeng Zhang

    Full Text Available To investigate the effect of light intensity and temperature on the biosynthesis and accumulation of quality-related metabolites, field grown tea plants were shaded by Black Net and Nano-insulating Film (with additional 2-4°C cooling effect with un-shaded plants as a control. Young shoots were subjected to UPLC-Q-TOF MS followed by multivariate statistical analysis. Most flavonoid metabolites (mainly flavan-3-ols, flavonols and their glycosides decreased significantly in the shading treatments, while the contents of chlorophyll, β-carotene, neoxanthin and free amino acids, caffeine, benzoic acid derivatives and phenylpropanoids increased. Comparison between two shading treatments indicated that the lower temperature under Nano shading decreased flavonols and their glycosides but increased accumulation of flavan-3-ols and proanthocyanidins. The comparison also showed a greater effect of temperature on galloylation of catechins than light intensity. Taken together, there might be competition for substrates between the up- and down-stream branches of the phenylpropanoid/flavonoid pathway, which was influenced by light intensity and temperature.

  10. Quantification of the IgG2/4 kappa Monoclonal Therapeutic Eculizumab from Serum Using Isotype Specific Affinity Purification and Microflow LC-ESI-Q-TOF Mass Spectrometry.

    Science.gov (United States)

    Ladwig, Paula M; Barnidge, David R; Willrich, Maria A V

    2017-05-01

    As therapeutic monoclonal antibodies (mAbs) become more humanized, traditional tryptic peptide approaches used to measure biologics in serum become more challenging since unique clonotypic peptides used for quantifying the mAb may also be found in the normal serum polyclonal background. An alternative approach is to monitor the unique molecular mass of the intact light chain portion of the mAbs using liquid chromatography-mass spectrometry (LC-MS). Distinguishing a therapeutic mAb from a patient's normal polyclonal immunoglobulin (Ig) repertoire is the primary limiting factor when determining the limit of quantitation (LOQ) in serum. The ability to selectively extract subclass specific Igs from serum reduces the polyclonal background in a sample. We present here the development of an LC-MS method to quantify eculizumab in serum. Eculizumab is a complement component 5 (C5) binding mAb that is fully humanized and contains portions of both IgG2 and IgG4 subclasses. Our group developed a method that uses Life Technologies CaptureSelect IgG4 (Hu) affinity matrix. We show here the ability to quantitate eculizumab with a LOQ of 5 mcg/mL by removing the higher abundance IgG1, IgG2, and IgG3 from the polyclonal background, making this approach a simple and efficient procedure. Graphical Abstract ᅟ.

  11. Screening and identification of metabolites of two kinds of main active ingredients and hepatotoxic pyrrolizidine alkaloids in rat after lavage Farfarae Flos extract by UHPLC-Q-TOF-MS mass spectrometry.

    Science.gov (United States)

    Cheng, Xiaoye; Liao, Man; Diao, Xinpeng; Sun, Yupeng; Zhang, Lantong

    2018-02-01

    Farfarae Flos, the dried flower buds of Tussilago farfara L., is usually used to treat coughs, bronchitic and asthmatic conditions as an important traditional Chinese medicine. Tussilagone and methl butyric acid tussilagin ester are seen as representatives of two kinds of active substances. In addition, the pyrrolizidine alkaloids, mainly senkirkine and senecionine, present in the herb can be hepatoxic. In this study, a rapid and sensitive ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry method was successfully applied to identify the metabolites of tussilagone, methl butyric acid tussilagin ester, senkirkine and senecionine. A total of 35, 37, 18 and nine metabolites of tussilagone, methl butyric acid tussilagin ester, senkirkine and senecionine in rats were tentatively identified. Hydrolysis, oxidation, reduction and demethylation were the major metabolic reactions for tussilagone and methl butyric acid tussilagin ester. The main biotransformation routes of senkirkine and senecionine were identified as demethylation, N-methylation, oxidation and reduction. This study is the first reported analysis and characterization of the metabolites and the proposed metabolic pathways might provide further understanding of the metabolic fate of the chemical constituents after oral administration of Farfarae Flos extract in vivo. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Contaminant screening of wastewater with HPLC-IM-qTOF-MS and LC+LC-IM-qTOF-MS using a CCS database.

    Science.gov (United States)

    Stephan, Susanne; Hippler, Joerg; Köhler, Timo; Deeb, Ahmad A; Schmidt, Torsten C; Schmitz, Oliver J

    2016-09-01

    Non-target analysis has become an important tool in the field of water analysis since a broad variety of pollutants from different sources are released to the water cycle. For identification of compounds in such complex samples, liquid chromatography coupled to high resolution mass spectrometry are often used. The introduction of ion mobility spectrometry provides an additional separation dimension and allows determining collision cross sections (CCS) of the analytes as a further physicochemical constant supporting the identification. A CCS database with more than 500 standard substances including drug-like compounds and pesticides was used for CCS data base search in this work. A non-target analysis of a wastewater sample was initially performed with high performance liquid chromatography (HPLC) coupled to an ion mobility-quadrupole-time of flight mass spectrometer (IM-qTOF-MS). A database search including exact mass (±5 ppm) and CCS (±1 %) delivered 22 different compounds. Furthermore, the same sample was analyzed with a two-dimensional LC method, called LC+LC, developed in our group for the coupling to IM-qTOF-MS. This four dimensional separation platform revealed 53 different compounds, identified over exact mass and CCS, in the examined wastewater sample. It is demonstrated that the CCS database can also help to distinguish between isobaric structures exemplified for cyclophosphamide and ifosfamide. Graphical Abstract Scheme of sample analysis and database screening.

  13. Rapid analysis of the main components of the total glycosides of Ranunculus japonicus by UPLC/Q-TOF-MS.

    Science.gov (United States)

    Rui, Wen; Chen, Hongyuan; Tan, Yuzhi; Zhong, Yanmei; Feng, Yifan

    2010-05-01

    A rapid method for the analysis of the main components of the total glycosides of Ranunculus japonicus (TGOR) was developed using ultra-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS). The separation analysis was performed on a Waters Acquity UPLC system and the accurate mass of molecules and their fragment ions were determined by Q-TOF MS. Twenty compounds, including lactone glycosides, flavonoid glycosides and flavonoid aglycones, were identified and tentatively deduced on the basis of their elemental compositions, MS/MS data and relevant literature. The results demonstrated that lactone glycosides and flavonoids were the main constituents of TGOR. Furthermore, an effective and rapid pattern was established allowing for the comprehensive and systematic characterization of the complex samples.

  14. Identification of hydroxylcinnamoyl tartaric acid esters in Bidens pilosa by UPLC-tandem mass spectrometry

    CSIR Research Space (South Africa)

    Khoza, BS

    2016-03-01

    Full Text Available of these extracts using UPLC-qTOF-MS/MS revealed the presence of several hydoxylcinnamoyl tartaric acids. Here, different isomers of coutaric-, caftaric-, fertaric-, chicoric acid and caftaric acid glycosides were detected. The contribution of mass spectrometry...

  15. Secondary metabolite profiling of Curcuma species grown at different locations using GC/TOF and UPLC/Q-TOF MS.

    Science.gov (United States)

    Lee, Jueun; Jung, Youngae; Shin, Jeoung-Hwa; Kim, Ho Kyoung; Moon, Byeong Cheol; Ryu, Do Hyun; Hwang, Geum-Sook

    2014-07-04

    Curcuma, a genus of rhizomatous herbaceous species, has been used as a spice, traditional medicine, and natural dye. In this study, the metabolite profile of Curcuma extracts was determined using gas chromatography-time of flight mass spectrometry (GC/TOF MS) and ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) to characterize differences between Curcuma aromatica and Curcuma longa grown on the Jeju-do or Jin-do islands, South Korea. Previous studies have performed primary metabolite profiling of Curcuma species grown in different regions using NMR-based metabolomics. This study focused on profiling of secondary metabolites from the hexane extract of Curcuma species. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) plots showed significant differences between the C. aromatica and C. longa metabolite profiles, whereas geographical location had little effect. A t-test was performed to identify statistically significant metabolites, such as terpenoids. Additionally, targeted profiling using UPLC/Q-TOF MS showed that the concentration of curcuminoids differed depending on the plant origin. Based on these results, a combination of GC- and LC-MS allowed us to analyze curcuminoids and terpenoids, the typical bioactive compounds of Curcuma, which can be used to discriminate Curcuma samples according to species or geographical origin.

  16. Secondary Metabolite Profiling of Curcuma Species Grown at Different Locations Using GC/TOF and UPLC/Q-TOF MS

    Directory of Open Access Journals (Sweden)

    Jueun Lee

    2014-07-01

    Full Text Available Curcuma, a genus of rhizomatous herbaceous species, has been used as a spice, traditional medicine, and natural dye. In this study, the metabolite profile of Curcuma extracts was determined using gas chromatography-time of flight mass spectrometry (GC/TOF MS and ultrahigh-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS to characterize differences between Curcuma aromatica and Curcuma longa grown on the Jeju-do or Jin-do islands, South Korea. Previous studies have performed primary metabolite profiling of Curcuma species grown in different regions using NMR-based metabolomics. This study focused on profiling of secondary metabolites from the hexane extract of Curcuma species. Principal component analysis (PCA and partial least-squares discriminant analysis (PLS-DA plots showed significant differences between the C. aromatica and C. longa metabolite profiles, whereas geographical location had little effect. A t-test was performed to identify statistically significant metabolites, such as terpenoids. Additionally, targeted profiling using UPLC/Q-TOF MS showed that the concentration of curcuminoids differed depending on the plant origin. Based on these results, a combination of GC- and LC-MS allowed us to analyze curcuminoids and terpenoids, the typical bioactive compounds of Curcuma, which can be used to discriminate Curcuma samples according to species or geographical origin.

  17. Analysis of plasma protein adsorption onto DC-Chol-DOPE cationic liposomes by HPLC-CHIP coupled to a Q-TOF mass spectrometer

    KAUST Repository

    Capriotti, Anna Laura; Caracciolo, Giulio; Caruso, Giuseppe; Cavaliere, Chiara; Pozzi, Daniela; Samperi, Roberto; Laganà , Aldo

    2010-01-01

    Plasma protein adsorption is regarded as a key factor in the in vivo organ distribution of intravenously administered drug carriers, and strongly depends on vector surface characteristics. The present study aimed to characterize the "protein corona" absorbed onto DC-Chol-DOPE cationic liposomes. This system was chosen because it is one of the most efficient and widely used non-viral formulations in vitro and a potential candidate for in vivo transfection of genetic material. After incubation of human plasma with cationic liposomes, nanoparticle-protein complex was separated from plasma by centrifugation. An integrated approach based on protein separation by one-dimensional 12% polyacrylamide gel electrophoresis followed by the automated HPLC-Chip technology coupled to a high-resolution mass spectrometer was employed for protein corona characterization. Thirty gel lanes, approximately 2 mm, were cut, digested and analyzed by HPLC-MS/MS. Fifty-eight human plasma proteins adsorbed onto DC-Chol-DOPE cationic liposomes were identified. The knowledge of the interactions of proteins with liposomes can be exploited for future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins in body fluids. © 2010 Springer-Verlag.

  18. Analysis of plasma protein adsorption onto DC-Chol-DOPE cationic liposomes by HPLC-CHIP coupled to a Q-TOF mass spectrometer

    KAUST Repository

    Capriotti, Anna Laura

    2010-09-22

    Plasma protein adsorption is regarded as a key factor in the in vivo organ distribution of intravenously administered drug carriers, and strongly depends on vector surface characteristics. The present study aimed to characterize the "protein corona" absorbed onto DC-Chol-DOPE cationic liposomes. This system was chosen because it is one of the most efficient and widely used non-viral formulations in vitro and a potential candidate for in vivo transfection of genetic material. After incubation of human plasma with cationic liposomes, nanoparticle-protein complex was separated from plasma by centrifugation. An integrated approach based on protein separation by one-dimensional 12% polyacrylamide gel electrophoresis followed by the automated HPLC-Chip technology coupled to a high-resolution mass spectrometer was employed for protein corona characterization. Thirty gel lanes, approximately 2 mm, were cut, digested and analyzed by HPLC-MS/MS. Fifty-eight human plasma proteins adsorbed onto DC-Chol-DOPE cationic liposomes were identified. The knowledge of the interactions of proteins with liposomes can be exploited for future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins in body fluids. © 2010 Springer-Verlag.

  19. Untargeted LC-Q-TOF mass spectrometry method for the detection of adulterations in skimmed-milk powder

    NARCIS (Netherlands)

    Cordewener, J.H.G.; Luykx, D.M.A.M.; Frankhuizen, R.; Bremer, M.G.E.G.; Hooijerink, H.; America, A.H.P.

    2009-01-01

    A nontargeted protein identification method was developed to screen for adulterations in skimmed-milk powder (SMP). There are indications of falsified SMP content due to the addition of plant proteins. To demonstrate the reliability and accuracy of the developed comparative LC-MS method using a

  20. Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry.

    Science.gov (United States)

    Barnidge, David R; Dasari, Surendra; Ramirez-Alvarado, Marina; Fontan, Adrian; Willrich, Maria A V; Tschumper, Renee C; Jelinek, Diane F; Snyder, Melissa R; Dispenzieri, Angela; Katzmann, Jerry A; Murray, David L

    2014-11-07

    We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.

  1. Determination of Curcuminoids in Curcuma longa Linn. by UPLC/Q-TOF-MS: An Application in Turmeric Cultivation.

    Science.gov (United States)

    Ashraf, Kamran; Mujeeb, Mohd; Ahmad, Altaf; Ahmad, Niyaz; Amir, Mohd

    2015-09-01

    Cucuma longa Linn. (Fam-Zingiberaceae) is a valued medicinal plant contains curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) as major bioactive constituents. Previously reported analytical methods for analysis of curcuminoids were found to suffer from low resolution, lower sensitivity and longer analytical times. In this study, a rapid, sensitive, selective high-throughput ultra high performance liquid chromatography-tandem mass spectrometry (UPLC/Q-TOF-MS) method was developed and validated for the quantification of curcuminoids with an aim to reduce analysis time and enhance efficiency. UPLC/Q-TOF-MS analysis showed large variation (1.408-5.027% w/w) of curcuminoids among different samples with respect to their occurrence of metabolite and their concentration. The results showed that Erode (south province) contains highest quantity of curcuminoids and concluded to be the superior varieties. The results obtained here could be valuable for devising strategies for cultivating this medicinal plant. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Mass spectrometry

    DEFF Research Database (Denmark)

    Nyvang Hartmeyer, Gitte; Jensen, Anne Kvistholm; Böcher, Sidsel

    2010-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently being introduced for the rapid and accurate identification of bacteria. We describe 2 MALDI-TOF MS identification cases - 1 directly on spinal fluid and 1 on grown bacteria. Rapidly obtained...

  3. [Rapidly identify oligosaccharides in Morinda officinalis by UPLC-Q-TOF-MSE].

    Science.gov (United States)

    Hao, Qing-Xiu; Kang, Li-Ping; Zhu, Shou-Dong; Yu, Yi; Hu, Ming-Hua; Ma, Fang-Li; Zhou, Jie; Guo, Lan-Ping

    2018-03-01

    In this paper, an approach was applied for separation and identification of oligosaccharides in Morinda officinalis How by Ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) with collision energy. The separation was carried out on an ACQUITY UPLC BEH Amide C₁₈(2.1mm×100 mm,1.7 μm) with gradient elution using acetonitrile(A) and water(B) containing 0.1% ammonia as mobile phase at a flow rate of 0.2 mL·min⁻¹. The column temperature was maintained at 40 °C. The information of accurate mass and characteristic fragment ion were acquired by MSE in ESI negative mode in low and high collision energy. The chemical structures and formula of oligosaccharides were obtained and identified by the software of UNIFI and Masslynx 4.1 based on the accurate mass, fragment ions, neutral losses, mass error, reference substance, isotope information, the intensity of fragments, and retention time. A total of 19 inulin oligosaccharide structures were identified including D(+)-sucrose, 1-kestose, nystose, 1F-fructofuranosyl nystose and other inulin oligosaccharides (DP 5-18). This research provided important information about the inulin oligosaccharides in M. officinalis. The results would provide scientific basis for innovative utilization of M. officinalis. Copyright© by the Chinese Pharmaceutical Association.

  4. Analysis of phosphatidylcholine oxidation products in human plasma using quadrupole time-of flight mass spectrometry

    OpenAIRE

    Adachi, Junko; Asano, Migiwa; Yoshioka, Naoki; Nushida, Hideyuki; Ueno, Yasuhiro

    2006-01-01

    We report here an application of the previous method for the analysis ofphosphatidylcholine (PC) and lysophosphatidylcholine (lysoPC) oxidation products inhuman plasma using quadrupole time of flight (Q-TOF) mass spectrometry withelectrospray ionization. We separated these products using an HPLC C8 column witha gradient of methanol and 10 mM aqueous ammonium acetate. Monohydroperoxides,epoxyhydroxy derivatives, oxo derivatives, and trihydroxides of palmitoyl-linoleoyl(C16:0/C18:2) PC and stea...

  5. UPLC/Q-TOF MS-based metabolomics and qRT-PCR in enzyme gene screening with key role in triterpenoid saponin biosynthesis of Polygala tenuifolia.

    Science.gov (United States)

    Zhang, Fusheng; Li, Xiaowei; Li, Zhenyu; Xu, Xiaoshuang; Peng, Bing; Qin, Xuemei; Du, Guanhua

    2014-01-01

    The dried root of Polygala tenuifolia, named Radix Polygalae, is a well-known traditional Chinese medicine. Triterpenoid saponins are some of the most important components of Radix Polygalae extracts and are widely studied because of their valuable pharmacological properties. However, the relationship between gene expression and triterpenoid saponin biosynthesis in P. tenuifolia is unclear. In this study, ultra-performance liquid chromatography (UPLC) coupled with quadrupole time-of-flight mass spectrometry (Q-TOF MS)-based metabolomic analysis was performed to identify and quantify the different chemical constituents of the roots, stems, leaves, and seeds of P. tenuifolia. A total of 22 marker compounds (VIP>1) were explored, and significant differences in all 7 triterpenoid saponins among the different tissues were found. We also observed an efficient reference gene GAPDH for different tissues in this plant and determined the expression level of some genes in the triterpenoid saponin biosynthetic pathway. Results showed that MVA pathway has more important functions in the triterpenoid saponin biosynthesis of P. tenuifolia. The expression levels of squalene synthase (SQS), squalene monooxygenase (SQE), and beta-amyrin synthase (β-AS) were highly correlated with the peak area intensity of triterpenoid saponins compared with data from UPLC/Q-TOF MS-based metabolomic analysis. This finding suggested that a combination of UPLC/Q-TOF MS-based metabolomics and gene expression analysis can effectively elucidate the mechanism of triterpenoid saponin biosynthesis and can provide useful information on gene discovery. These findings can serve as a reference for using the overexpression of genes encoding for SQS, SQE, and/or β-AS to increase the triterpenoid saponin production of P. tenuifolia.

  6. UPLC/Q-TOF MS-based metabolomics and qRT-PCR in enzyme gene screening with key role in triterpenoid saponin biosynthesis of Polygala tenuifolia.

    Directory of Open Access Journals (Sweden)

    Fusheng Zhang

    Full Text Available The dried root of Polygala tenuifolia, named Radix Polygalae, is a well-known traditional Chinese medicine. Triterpenoid saponins are some of the most important components of Radix Polygalae extracts and are widely studied because of their valuable pharmacological properties. However, the relationship between gene expression and triterpenoid saponin biosynthesis in P. tenuifolia is unclear.In this study, ultra-performance liquid chromatography (UPLC coupled with quadrupole time-of-flight mass spectrometry (Q-TOF MS-based metabolomic analysis was performed to identify and quantify the different chemical constituents of the roots, stems, leaves, and seeds of P. tenuifolia. A total of 22 marker compounds (VIP>1 were explored, and significant differences in all 7 triterpenoid saponins among the different tissues were found. We also observed an efficient reference gene GAPDH for different tissues in this plant and determined the expression level of some genes in the triterpenoid saponin biosynthetic pathway. Results showed that MVA pathway has more important functions in the triterpenoid saponin biosynthesis of P. tenuifolia. The expression levels of squalene synthase (SQS, squalene monooxygenase (SQE, and beta-amyrin synthase (β-AS were highly correlated with the peak area intensity of triterpenoid saponins compared with data from UPLC/Q-TOF MS-based metabolomic analysis.This finding suggested that a combination of UPLC/Q-TOF MS-based metabolomics and gene expression analysis can effectively elucidate the mechanism of triterpenoid saponin biosynthesis and can provide useful information on gene discovery. These findings can serve as a reference for using the overexpression of genes encoding for SQS, SQE, and/or β-AS to increase the triterpenoid saponin production of P. tenuifolia.

  7. Identification of novel autophagic Radix Polygalae fraction by cell membrane chromatography and UHPLC-(Q)TOF-MS for degradation of neurodegenerative disease proteins.

    Science.gov (United States)

    Wu, An-Guo; Wong, Vincent Kam-Wai; Zeng, Wu; Liu, Liang; Law, Betty Yuen-Kwan

    2015-11-24

    With its traditional use in relieving insomnia and anxiety, our previous study has identified onjisaponin B from Radix Polygalae (RP), as a novel autophagic enhancer with potential neuroprotective effects. In current study, we have further identified a novel active fraction from RP, contains 17 major triterpenoid saponins including the onjisaponin B, by the combinational use of cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry {UHPLC-(Q)TOF-MS}. By exhibiting more potent autophagic effect in cells, the active fraction enhances the clearance of mutant huntingtin, and reduces protein level and aggregation of α-synuclein in a higher extent when compared with onjisaponin B. Here, we have reported for the first time the new application of cell-based CMC and UHPLC-(Q)TOF-MS analysis in identifying new autophagy inducers with neuroprotective effects from Chinese medicinal herb. This result has provided novel insights into the possible pharmacological actions of the active components present in the newly identified active fraction of RP, which may help to improve the efficacy of the traditional way of prescribing RP, and also provide new standard for the quality control of decoction of RP or its medicinal products in the future.

  8. Antioxidant activity of leaf extracts from different Hibiscus sabdariffa accessions and simultaneous determination five major antioxidant compounds by LC-Q-TOF-MS.

    Science.gov (United States)

    Wang, Jin; Cao, Xianshuang; Jiang, Hao; Qi, Yadong; Chin, Kit L; Yue, Yongde

    2014-12-17

    Hibiscus sabdariffa has gained attention for its antioxidant activity. There are many accessions of H. sabdariffa in the world. However, information on the quantification of antioxidant compounds in different accessions is rather limited. In this paper, a liquid chromatography/quadrupole-time-of-flight mass spectrometry (LC-Q-TOF-MS) method for simultaneous determination of five antioxidant compounds (neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, rutin, and isoquercitrin) in H. sabdariffa leaves was developed. The method was validated for linearity, sensitivity, precision, repeatability and accuracy. The validated method has been successfully applied for determination of the five analytes in eight accessions of H. sabdariffa. The eight accessions of H. sabdariffa were evaluated for their antioxidant activities by DPPH free radical scavenging assay. The investigated accessions of H. sabdariffa were rich in rutin and exhibited strong antioxidant activity. The two accessions showing the highest antioxidant activities were from Cuba (No. 2) and Taiwan (No. 5). The results indicated that H. sabdariffa leaves could be considered as a potential antioxidant source for the food industry. The developed LC-Q-TOF-MS method is helpful for quality control of H. sabdariffa.

  9. Polydopamine-Coated Magnetic Molecularly Imprinted Polymers with Fragment Template for Identification of Pulsatilla Saponin Metabolites in Rat Feces with UPLC-Q-TOF-MS.

    Science.gov (United States)

    Zhang, Yu-Zhen; Zhang, Jia-Wei; Wang, Chong-Zhi; Zhou, Lian-Di; Zhang, Qi-Hui; Yuan, Chun-Su

    2018-01-24

    In this work, a modified pretreatment method using magnetic molecularly imprinted polymers (MMIPs) was successfully applied to study the metabolites of an important botanical with ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The MMIPs for glucoside-specific adsorption was used to identify metabolites of Pulsatilla chinensis in rat feces. Polymers were prepared by using Fe 3 O 4 nanoparticles as the supporting matrix, d-glucose as fragment template, and dopamine as the functional monomer and cross-linker. Results showed that MMIPs exhibited excellent extraction performance, large adsorption capacity (5.65 mg/g), fast kinetics (60 min), and magnetic separation. Furthermore, the MMIPs coupled with UPLC-Q-TOF-MS were successfully utilized for the identification of 17 compounds including 15 metabolites from the Pulsatilla saponin metabolic pool. This study provides a reliable protocol for the separation and identification of saponin metabolites in a complex biological sample, including those from herbal medicines.

  10. Systematic identification and quantification of tetracyclic monoterpenoid oxindole alkaloids in Uncaria rhynchophylla and their fragmentations in Q-TOF-MS spectra.

    Science.gov (United States)

    Xie, Shuanglu; Shi, Yuanyuan; Wang, Yixiang; Wu, Chunyong; Liu, Wenyuan; Feng, Feng; Xie, Ning

    2013-01-01

    Uncaria rhynchophylla (UR) is a species of Uncaria that is distributed mainly in China and Japan. In this study, the chemical constituents, including alkaloids, flavonoids, and quinic acids, in UR have been systematically identified and quantified by a developed method of high-performance liquid chromatography coupled with diode-array detection and quadrupole time-of-flight mass spectrometry (Q-TOF-MS). Tetracyclic monoterpenoid oxindole alkaloids (TMOAs) are characteristic compounds in this herb, and their fragmentations in Q-TOF-MS have been investigated. Diagnostic fragmentation ions (DFIs) were first delineated for isorhynchophylline-type (7S, C20-ethyl) and corynoxeine-type (7R, C20-vinyl) TMOAs, and these were used for identification of these alkaloids in UR. In this study, a total of 29 compounds, comprising 18 alkaloids, six flavonoids, and five quinic acids, were identified. Among them, there are four novel TMOAs, named as 22-O-β-glucopyranosyl isorhynchophyllic acid (10), 22-O-β-glucopyranosyl rhynchophyllic acid (11), 9-hydroxy isocorynoxeine (16), and 9-hydroxy corynoxeine (20), which have not been reported previously. Furthermore, eight marker compounds, namely chlorogenic acid (3), catechin (8), epicatechin (9), isocorynoxeine (24), rhynchophylline (25), isorhynchophylline (27), vincoside lactam (28), and corynoxeine (29), have been simultaneously quantified. The developed method has been validated and successfully applied to analyze three samples of UR from Jiangxi Province. The contents of the marker compounds have been detected and compared. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. An improved pseudotargeted metabolomics approach using multiple ion monitoring with time-staggered ion lists based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Wang, Yang; Liu, Fang; Li, Peng; He, Chengwei; Wang, Ruibing; Su, Huanxing; Wan, Jian-Bo

    2016-01-01

    Pseudotargeted metabolomics is a novel strategy integrating the advantages of both untargeted and targeted methods. The conventional pseudotargeted metabolomics required two MS instruments, i.e., ultra-high performance liquid chromatography/quadrupole-time- of-flight mass spectrometry (UHPLC/Q-TOF MS) and UHPLC/triple quadrupole mass spectrometry (UHPLC/QQQ-MS), which makes method transformation inevitable. Furthermore, the picking of ion pairs from thousands of candidates and the swapping of the data between two instruments are the most labor-intensive steps, which greatly limit its application in metabolomic analysis. In the present study, we proposed an improved pseudotargeted metabolomics method that could be achieved on an UHPLC/Q-TOF/MS instrument operated in the multiple ion monitoring (MIM) mode with time-staggered ion lists (tsMIM). Full scan-based untargeted analysis was applied to extract the target ions. After peak alignment and ion fusion, a stepwise ion picking procedure was used to generate the ion lists for subsequent single MIM and tsMIM. The UHPLC/Q-TOF tsMIM MS-based pseudotargeted approach exhibited better repeatability and a wider linear range than the UHPLC/Q-TOF MS-based untargeted metabolomics method. Compared to the single MIM mode, the tsMIM significantly increased the coverage of the metabolites detected. The newly developed method was successfully applied to discover plasma biomarkers for alcohol-induced liver injury in mice, which indicated its practicability and great potential in future metabolomics studies. - Highlights: • An UHPLC/Q-TOF tsMIM MS-based pseudotargeted metabolomics was proposed. • Compared to full scan, the improved method exhibits better repeatability and a wider linear range. • The proposed method could achieve pseudotargeted analysis on one UHPLC/Q-TOF/MS instrument. • The developed method was successfully used to discover biomarkers for alcohol-induced liver injury.

  12. An improved pseudotargeted metabolomics approach using multiple ion monitoring with time-staggered ion lists based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Liu, Fang; Li, Peng; He, Chengwei; Wang, Ruibing; Su, Huanxing; Wan, Jian-Bo, E-mail: jbwan@umac.mo

    2016-07-13

    Pseudotargeted metabolomics is a novel strategy integrating the advantages of both untargeted and targeted methods. The conventional pseudotargeted metabolomics required two MS instruments, i.e., ultra-high performance liquid chromatography/quadrupole-time- of-flight mass spectrometry (UHPLC/Q-TOF MS) and UHPLC/triple quadrupole mass spectrometry (UHPLC/QQQ-MS), which makes method transformation inevitable. Furthermore, the picking of ion pairs from thousands of candidates and the swapping of the data between two instruments are the most labor-intensive steps, which greatly limit its application in metabolomic analysis. In the present study, we proposed an improved pseudotargeted metabolomics method that could be achieved on an UHPLC/Q-TOF/MS instrument operated in the multiple ion monitoring (MIM) mode with time-staggered ion lists (tsMIM). Full scan-based untargeted analysis was applied to extract the target ions. After peak alignment and ion fusion, a stepwise ion picking procedure was used to generate the ion lists for subsequent single MIM and tsMIM. The UHPLC/Q-TOF tsMIM MS-based pseudotargeted approach exhibited better repeatability and a wider linear range than the UHPLC/Q-TOF MS-based untargeted metabolomics method. Compared to the single MIM mode, the tsMIM significantly increased the coverage of the metabolites detected. The newly developed method was successfully applied to discover plasma biomarkers for alcohol-induced liver injury in mice, which indicated its practicability and great potential in future metabolomics studies. - Highlights: • An UHPLC/Q-TOF tsMIM MS-based pseudotargeted metabolomics was proposed. • Compared to full scan, the improved method exhibits better repeatability and a wider linear range. • The proposed method could achieve pseudotargeted analysis on one UHPLC/Q-TOF/MS instrument. • The developed method was successfully used to discover biomarkers for alcohol-induced liver injury.

  13. Rapid Determination of Major Compounds in the Ethanol Extract of Geopropolis from Malaysian Stingless Bees, Heterotrigona itama, by UHPLC-Q-TOF/MS and NMR.

    Science.gov (United States)

    Zhao, Lingling; Yu, Mengjiao; Sun, Minghui; Xue, Xiaofeng; Wang, Tongtong; Cao, Wei; Sun, Liping

    2017-11-10

    A reliable, rapid analytical method was established for the characterization of constituents of the ethanol extract of geopropolis (EEGP) produced by Malaysian stingless bees- Heterotrigona itama -by combining ultra-high-performance liquid chromatography with quadruple time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). Based on known standards, the online METLIN database, and published literature, 28 compounds were confirmed. Phenolic acids, flavones, triterpenes and phytosterol were identified or tentatively identified using characteristic diagnostic fragment ions. The results indicated that terpenoids were the main components of EEGP, accompanied by low levels of phenolic acids, flavonoids, and phytosterol. Two major components were further purified by preparative high-performance liquid chromatography (PHPLC) and identified by nuclear magnetic resonance (NMR) as 24( E )-cycloart-24-ene-26-ol-3-one and 20-hydroxy-24-dammaren-3-one. These two triterpenes, confirmed in this geopropolis for the first time, are potential chemical markers for the identification of geopropolis from Malaysian stingless bees, H. itama .

  14. UPLC-PDA-Q/TOF-MS Profile of Polyphenolic Compounds of Liqueurs from Rose Petals (Rosa rugosa).

    Science.gov (United States)

    Cendrowski, Andrzej; Ścibisz, Iwona; Kieliszek, Marek; Kolniak-Ostek, Joanna; Mitek, Marta

    2017-10-27

    Polyphenolic compounds, as a secondary metabolite of plants, possess great nutritional and pharmacological potential. Herein, we applied the green analytical method to study the nutrient profile of Rosa rugosa petals and liqueurs manufactured from them. Using the fast and validated ultra performance liquid chromatography-photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS) method, we confirm the presence of the following compounds: phenolic acids, flavonols, flavan-3-ols and hydrolisable tannins (gallotannins and ellagitannins). R. rugosa petals contains up to 2175.43 mg polyphenols per 100 g fresh weight, therein 1517.01 mg ellagitannins per 100 g fresh weight. Liqueurs, traditionally manufactured from said petals using a conventional extraction method (maceration), also contain polyphenols in significant amounts (from 72% to 96% corresponding to percentage of theoretical polyphenol content in the used petals), therein ellagitannins amount to 69.7% on average. We confirmed that traditional maceration, most common for the isolation of polyphenols, is still suitable for the food industry due to its using aqueous ethanol, a common bio-solvent, easily available in high purity and completely biodegradable. Therefore R. rugosa used as a food may be considered as an ellagitannin-rich plant of economic importance. Manufactured rose liqueurs were stable and kept all their properties during the whole period of aging.

  15. Urinary metabolite profiling of flavonoids in Chinese volunteers after consumption of orange juice by UFLC-Q-TOF-MS/MS.

    Science.gov (United States)

    Zeng, Xuan; Su, Weiwei; Bai, Yang; Chen, Taobin; Yan, Zenghao; Wang, Jiawei; Su, Minmin; Zheng, Yuying; Peng, Wei; Yao, Hongliang

    2017-09-01

    The metabolism of flavonoids derived from orange juice in Chinese volunteers has not been well investigated. With the ultra-fast liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/MS) system, orange juice-derived flavonoids, as well as metabolites contained in urine collected from healthy Chinese volunteers after consumption of 250mL orange juice, were systematically identified and quantified. Finally, a total of 9 flavonoids and 30 metabolites were detected. Obtained results revealed that flavonoids derived from orange juice underwent extensive phase II metabolism in human, mainly comprising glucuronidation and sulfation. The overall recovery of the primary flavonoid aglycones, i.e., naringenin and hesperetin, were both approximately equivalent 22% of intake, primarily occurred in 4-12h post consumption. Meanwhile, additional 35 phenolic catabolites were identified in urine collected post consumption. However, it is difficult to determine the exact amounts of phenolic catabolites derived from specific flavonoid due to the interference of diets and other flavonoids. This work would be valuable for the clarification of metabolic profiles for flavonoids in Chinese population. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Metabolomics driven analysis of artichoke leaf and its commercial products via UHPLC-q-TOF-MS and chemometrics.

    Science.gov (United States)

    Farag, Mohamed A; El-Ahmady, Sherweit H; Elian, Fatma S; Wessjohann, Ludger A

    2013-11-01

    The demand to develop efficient and reliable analytical methods for the quality control of herbal medicines and nutraceuticals is on the rise, together with an increase in the legal requirements for safe and consistent levels of active principles. Here, we describe an ultra-high performance liquid chromatography method (UHPLC) coupled with quadrupole high resolution time of flight mass spectrometry (qTOF-MS) analysis for the comprehensive measurement of metabolites from three Cynara scolymus (artichoke) cultivars: American Green Globe, French Hyrious, and Egyptian Baladi. Under optimized conditions, 50 metabolites were simultaneously quantified and identified including: eight caffeic acid derivatives, six saponins, 12 flavonoids and 10 fatty acids. Principal component analysis (PCA) was used to define both similarities and differences among the three artichoke leaf cultivars. In addition, batches from seven commercially available artichoke market products were analysed and showed variable quality, particularly in caffeic acid derivatives, flavonoid and fatty acid contents. PCA analysis was able to discriminate between various preparations, including differentiation between various batches from the same supplier. To the best of our knowledge, this study provides the first approach utilizing UHPLC-MS based metabolite fingerprinting to reveal secondary metabolite compositional differences in artichoke leaf extracts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Simultaneous quantitative determination of eight index constituents and compatibility changes in Longchai Decoction by UPLC–Q-TOF-MS

    Directory of Open Access Journals (Sweden)

    Yizhi Zhou

    2013-07-01

    Full Text Available The goal of this research was to develop a simple, rapid and sensitive method for simultaneous quantitative determination of salidroside, gardenoside, liquiritin, baicalin, wogonoside, wogonin, saikosaponin A and saikosaponin D in Longchai Decoction by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC–Q-TOF-MS, in order to control the quality of Longchai Decoction and to analyze the changes of chemical components before and after the compatibility of the component herb drugs. The chromatographic separation was performed on the Waters ACQUITY BEH C18 column (2.1 mm×100 mm, 1.8 μm using the mixture of acetonitrile and 0.1% (v/v methanoic acid as mobile phase with a gradient elution program at the flow rate of 0.3 mL/min and the column temperature of 30 °C. The eight components of the standards achieved baseline separation. Regression analysis revealed a linear relationship (r2>0.9998 between the contents and the peak areas of the mixed standard substances. The average recovery rates were between 99.72% and 102.13% with RSD values were less than 2.82% (n=5. The obtained results indicated that the content of index components were higher in co-decoction compared to mixed decoction. This method with a good resolution and high precision can be used for the quality control of Longchai Decoction.

  18. UPLC/Q-TOF-MS profiling of phenolics from Canarium pimela leaves and its vasorelaxant and antioxidant activities

    Directory of Open Access Journals (Sweden)

    Juan Wu

    Full Text Available ABSTRACT Canarium pimela K.D. Koenig, Burseraceae, have a long history of use in the Chinese traditional medicine treatment of various ailments including hypertension, and our research team has reported the anti-hypertensive activity and delineated the mechanism involved in the action. The following research aims to evaluate the vasorelaxant and antioxidant activities of ethanol extract from C. pimela leaves and to analyze its chemical composition by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS that may correlate with their pharmacological activities. The results showed that pre-incubation of aortic rings with the extract (0.3, 1, 3, 10, 30 and 100 mg/l significantly inhibited the contractile response of the rings to norepinephrine-induced contraction (p < 0.01or p < 0.05. Crude ethanol extract and refined ethanol extract showed a highest inhibitory effect against 2,2dipheyl-2-picrylhydrazyl hydrate scavenging activity (IC50 of crude ethanol extract = 15.42 ± 0.14 µg/ml and IC50 of refined ethanol extract = 5.72 ± 0.31 µg/ml and 2,2′-azinobis (3-ethyl-benzothiazoline-6-sulphonic acid ammonium salt (ABTS (IC50 of crude ethanol extract = 3.24 ± 0.18 µg/ml and IC50 of refined ethanol extract = 1.88 ± 0.07 µg/ml scavenging activity, which was considerably higher than that reported for butylated hydroxytoluene and lower of that measured for ascorbic acid. Moreover, its chemical composition was analyzed by UPLC/Q-TOF-MS. Sixteen compounds including nine flavonoids, four tannins, two phenolic acids and one dianthrone were identified for the first time as constituents of this species. And of this, six major phenolic components were simultaneous quantitative analysis by HPLC-UV, chlorogenic acid is the major compounds in C. pimela leaves. These results indicate that the phenolic-rich extract of C. pimela leaves is a promising natural pharmaceutical for combating hypertension and oxidative

  19. Rapid identification and simultaneous analysis of multiple constituents from Rheum tanguticum Maxim. ex Balf. by UPLC/Q-TOF-MS.

    Science.gov (United States)

    Gao, Liang-Liang; Guo, Tao; Xu, Xu-Dong; Yang, Jun-Shan

    2017-07-01

    Rhubarb contains biologically active compounds such as anthraquinones, anthrones, stilbenes and tannins. A rapid and efficient UPLC/Q-TOF-MS/MS method was developed and applied towards identifying the constituents of Rheum tanguticum Maxim. ex Balf. for the first time. Chemical constituents were separated and investigated by UPLC/Q-TOF-MS/MS in the negative ion mode. The ESI-MS 2 fragmentation pathways of four types of compounds were interpreted, providing a very useful guidance for the characterisation of different types of compounds. Based on the exact mass information, fragmentation characteristic and LC retention time of 7 reference standards, 30 constituents were tentatively identified from the methanol extract of R. tanguticum. Among them, seven compounds were described for the first time from R. tanguticum and two from the genus Rheum were described for the first time. The analytical tool used here is valuable for the rapid separation and identification of multiple and minor constituents in methanol extracts of R. tanguticum.

  20. Integrated quantitative and qualitative workflow for in vivo bioanalytical support in drug discovery using hybrid Q-TOF-MS.

    Science.gov (United States)

    Ranasinghe, Asoka; Ramanathan, Ragu; Jemal, Mohammed; D'Arienzo, Celia J; Humphreys, W Griffith; Olah, Timothy V

    2012-03-01

    UHPLC coupled with orthogonal acceleration hybrid quadrupole-TOF (Q-TOF)-MS is an emerging technique offering new strategies for the efficient screening of new chemical entities and related molecules at the early discovery stage within the pharmaceutical industry. In the first part of this article, we examine the main instrumental parameters that are critical for the integration of UHPLC-Q-TOF technology to existing bioanalytical workflows, in order to provide simultaneous quantitative and qualitative bioanalysis of samples generated following in vivo studies. Three modern Q-TOF mass spectrometers, including Bruker maXis™, Agilent 6540 and Sciex TripleTOF™ 5600, all interfaced with UHPLC systems, are evaluated in the second part of the article. The scope of this work is to demonstrate the potential of Q-TOF for the analysis of typical small molecules, therapeutic peptides (molecular weight <6000 Da), and enzymatically (i.e., trypsin, chymotrypsin and pepsin) cleaved peptides from larger proteins. This work focuses mainly on full-scan TOF data obtained under ESI conditions, the major mode of TOF operation in discovery bioanalytical research, where the compounds are selected based on their pharmacokinetic/pharmacodynamic behaviors using animal models prior to selecting a few desirable candidates for further development. Finally, important emerging TOF technologies that could potentially benefit bioanalytical research in the semi-quantification of metabolites without synthesized standards are discussed. Particularly, the utility of captive spray ionization coupled with TripleTOF 5600 was evaluated for improving sensitivity and providing normalized MS response for drugs and their metabolites. The workflow proposed compromises neither the efficiency, nor the quality of pharmacokinetic data in support of early drug discovery programs.

  1. Fragmentation patterns involving ammonium adduct fragment ions: A comparison of the determination of metaldehyde in human blood by HPLC-QqQ-MS/MS and UHPLC-Q-TOF-MS.

    Science.gov (United States)

    Szpot, Paweł; Buszewicz, Grzegorz; Jurek, Tomasz; Teresiński, Grzegorz

    2018-05-15

    This paper presents a rapid, sensitive and precise method for the determination of metaldehyde in human blood, using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry. Separation was performed with a Poroshell 120 EC-C18 column; 2.7 μm atrazine‑d5 (IS) and 200 mg NaCl were added to the blood sample. Proteins in human blood were precipitated using acetonitrile; the supernatant was then analyzed with the UHPLC-Q-TOF-MS or HPLC-QqQ-MS/MS system. The results of selectivity, linearity, accuracy, precision, limits of quantification, recovery, and matrix effects were sufficient to enable the measurement of metaldehyde in human blood samples. In addition, we proposed a fragmentation pathway involving ammonium adduct fragment ions for metaldehyde. Copyright © 2018. Published by Elsevier B.V.

  2. Identification and quantification of flavonoids and chromes in Baeckea frutescens by using HPLC coupled with diode-array detection and quadruple time-of-flight mass spectrometry.

    Science.gov (United States)

    Jia, Bei-Xi; Huangfu, Qian-Qian; Ren, Feng-Xiao; Jia, Lu; Zhang, Yan-Bing; Liu, Hong-Min; Yang, Jie; Wang, Qiang

    2015-01-01

    This article marks the first report on high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD) and quadruple time-of-flight mass spectrometry (Q-TOF/MS) for the identification and quantification of main bioactive constituents in Baeckea frutescens. In total, 24 compounds were identified or tentatively characterised based on their retention behaviours, UV profiles and MS fragment information. Furthermore, a validated method with good linearity, sensitivity, precision, stability, repeatability and accuracy was successfully applied for simultaneous determination of five flavonoids and one chromone in different plant parts of B. frutescens collected at different harvest times, and their dynamic contents revealed the appropriate harvest times. The established HPLC-DAD-Q-TOF/MS using multi-bioactive markers was proved to be a validated strategy for the quality evaluation on both raw materials and related products of B. frutescens.

  3. Glycomics using mass spectrometry

    OpenAIRE

    Wuhrer, Manfred

    2013-01-01

    Mass spectrometry plays an increasingly important role in structural glycomics. This review provides an overview on currently used mass spectrometric approaches such as the characterization of glycans, the analysis of glycopeptides obtained by proteolytic cleavage of proteins and the analysis of glycosphingolipids. The given examples are demonstrating the application of mass spectrometry to study glycosylation changes associated with congenital disorders of glycosylation, lysosomal storage di...

  4. Fourier Transform Mass Spectrometry

    Science.gov (United States)

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  5. Fourier Transform Mass Spectrometry.

    Science.gov (United States)

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  6. Atomic mass spectrometry

    International Nuclear Information System (INIS)

    Sanz-Medel, A.

    1997-01-01

    The elemental inorganic analysis seems to be dominated today by techniques based on atomic spectrometry. After an evaluation of advantages and limitations of using mass analysers (ion detectors) versus conventional photomultipliers (photon detector) a brief review of the more popular techniques of the emerging Atomic Mass spectrometry is carried out. Their huge potential for inorganic trace analysis is such that in the future we could well witness how this end of the century and millennium marked the fall of the photons empire in Analytical Atomic Spectrometry. (Author)

  7. Forensic Mass Spectrometry

    Science.gov (United States)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  8. Mass spectrometry in oceanography

    International Nuclear Information System (INIS)

    Aggarwal, Suresh K.

    2000-01-01

    Mass spectrometry plays an important role in oceanography for various applications. Different types of inorganic as well as organic mass spectrometric techniques are being exploited world-wide to understand the different aspects of marine science, for palaeogeography, palaeoclimatology and palaeoecology, for isotopic composition and concentrations of different elements as well as for speciation studies. The present paper reviews some of the applications of atomic mass spectrometric techniques in the area of oceanography

  9. UHPLC-Q-TOF-MS/MS Method Based on Four-Step Strategy for Metabolism Study of Fisetin in Vitro and in Vivo.

    Science.gov (United States)

    Zhang, Xia; Yin, Jintuo; Liang, Caijuan; Sun, Yupeng; Zhang, Lantong

    2017-12-20

    Fisetin has been identified as an anticancer agent with antiangiogenic properties in mice. However, its metabolism in vitro (rat liver microsomes) and in vivo (rats) is presently not characterized. In this study, ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) was employed for data acquiring, and a four-step analytical strategy was developed to screen and identify metabolites. First, full-scan was applied, which was dependent on a multiple mass defect filter (MMDF) combined with dynamic background subtraction (DBS). Then PeakView 1.2 and Metabolitepilot 1.5 software were used to load data to seek possible metabolites. Finally, metabolites were identified according to mass measurement and retention time. Moreover, isomers were distinguished based on Clog P parameter. Based on the proposed method, 53 metabolites in vivo and 14 metabolites in vitro were characterized. Moreover, metabolic pathways mainly included oxidation, reduction, hydrogenation, methylation, sulfation, and glucuronidation.

  10. Identification and differentiation of major components in three different “Sheng-ma” crude drug species by UPLC/Q-TOF-MS

    Directory of Open Access Journals (Sweden)

    Mengxue Fan

    2017-03-01

    Full Text Available Cimicifugae Rhizoma (Sheng ma is a Ranunculaceae herb belonging to a composite family and well known in China. has been widely used in traditional Chinese medicine. The Pharmacopoeia of the People׳s Republic of China contains three varieties (Cimicifuga dahurica (Turcz., Cimicifuga foetida L. and Cimicifuga heracleifolia Kom. which have been used clinically as “Sheng-ma”. However, the chemical constituents of three components of “Sheng-ma” have never been documented. In this study, a rapid method for the analysis of the main components of “Sheng-ma” was developed using ultra-high performance liquid chromatography with quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS. The present study reveals the major common and distinct chemical constituents of C. dahurica, C. foetida and C. heracleifolia and also reports principal component and statistical analyses of these results. The components were identified by comparing the retention time, accurate mass, mass spectrometric fragmentation characteristic ions and matching empirical molecular formula with that of the published compounds. A total of 32 common components and 8 markers for different “Sheng-ma” components were identified. These findings provide an important basis for the further study and clinical utilities of the three “Sheng-ma” varieties.

  11. Ambient ionization mass spectrometry

    International Nuclear Information System (INIS)

    Lebedev, A T

    2015-01-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references

  12. Identification of Iridoids in Edible Honeysuckle Berries (Lonicera caerulea L. var. kamtschatica Sevast. by UPLC-ESI-qTOF-MS/MS

    Directory of Open Access Journals (Sweden)

    Alicja Z. Kucharska

    2016-09-01

    Full Text Available Iridoid profiles of honeysuckle berry were studied. Compounds were identified by ultra-performance liquid chromatography coupled with electrospray ionization mass spectrometry UPLC-ESI-qTOF-MS/MS in positive and negative ions mode. The MS fragmentation pathways of detected iridoid glycosides were also studied in both modes. In the negative ESI mass spectra, iridoids with a methyl ester or lactone structure have preferentially produced adduct [M + HCOOH − H]− ions. However, protonated ions of molecular fragments, which were released by glycosidic bond cleavage and following fragmentation of aglycone rings, were more usable for iridoid structure analysis. In addition, the neutral losses of H2O, CO, CO2, CH3OH, acetylene, ethenone and cyclopropynone have provided data confirming the presence of functional substituents in the aglycone. Among the 13 iridoids, 11 were identified in honeysuckle berries for the first time: pentosides of loganic acid (two isomers, pentosides of loganin (three isomers, pentosyl sweroside, and additionally 7-epi-loganic acid, 7-epi-loganin, sweroside, secologanin, and secoxyloganin. The five pentoside derivatives of loganic acid and loganin have not been previously detected in the analyzed species. Honeysuckle berries are a source of iridoids with different structures, compounds that are rarely present in fruits.

  13. Miniaturization and Mass Spectrometry

    NARCIS (Netherlands)

    le Gac, S.; le Gac, Severine; van den Berg, Albert; van den Berg, A.; Unknown, [Unknown

    2009-01-01

    With this book we want to illustrate how two quickly growing fields of instrumentation and technology, both applied to life sciences, mass spectrometry and microfluidics (or microfabrication) naturally came to meet at the end of the last century and how this marriage impacts on several types of

  14. Analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  15. Analytical mass spectrometry. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  16. Rapid Determination of Major Compounds in the Ethanol Extract of Geopropolis from Malaysian Stingless Bees, Heterotrigona itama, by UHPLC-Q-TOF/MS and NMR

    Directory of Open Access Journals (Sweden)

    Lingling Zhao

    2017-11-01

    Full Text Available A reliable, rapid analytical method was established for the characterization of constituents of the ethanol extract of geopropolis (EEGP produced by Malaysian stingless bees—Heterotrigona itama—by combining ultra-high-performance liquid chromatography with quadruple time-of-flight mass spectrometry (UHPLC-Q-TOF/MS. Based on known standards, the online METLIN database, and published literature, 28 compounds were confirmed. Phenolic acids, flavones, triterpenes and phytosterol were identified or tentatively identified using characteristic diagnostic fragment ions. The results indicated that terpenoids were the main components of EEGP, accompanied by low levels of phenolic acids, flavonoids, and phytosterol. Two major components were further purified by preparative high-performance liquid chromatography (PHPLC and identified by nuclear magnetic resonance (NMR as 24(E-cycloart-24-ene-26-ol-3-one and 20-hydroxy-24-dammaren-3-one. These two triterpenes, confirmed in this geopropolis for the first time, are potential chemical markers for the identification of geopropolis from Malaysian stingless bees, H. itama.

  17. Neuroprotective effects and UPLC-Q-TOF/MS-based active components identification of external applied a novel Wen-Luo-Tong microemulsion.

    Science.gov (United States)

    Lin, Hong-Mei; Lin, Long-Fei; Xia, Zhen-Zhen; Mao, Yong; Liu, Jia; Xu, Ling-Yan; Wu, Qing

    2017-11-13

    Chemotherapy induced neuropathy causes excruciating pain to cancer patients. Wen-Luo-Tong (WLT), a traditional Chinese medicinal compound, has been used to alleviate anti-cancer drug such as oxaliplatin-induced neuropathic pain for many years. However, the current route of administration of WLT is inconvenient and the active ingredients and mechanism of action of WLT are still unclear. To address these issues, we developed a novel formulation of WLT (W/O microemulsion) for the ease of application. New ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) methods were employed for analysis of the ingredients. We identified seven ingredients that penetrated through the skin into the Franz cell receptor solution and four of those ingredients were retained in skin tissue when WLT microemulsion was applied. We tested the microemulsion formulation on an oxaliplatin-induced neuropathy rat model and showed that this formulation significantly decreased oxaliplatin-induced mechanical hyperalgesia responses. Schwann cells (SCs) viability experiment in vitro was studied to test the protective effect of the identified seven ingredients. The result showed that Hydroxysafflor Yellow A, icariin, epimedin B and 4-dihydroxybenzoic acid significantly increased the viability of SCs after injured by Oxaliplatin. Our report presents the first novel formulation of WLT with neuroprotective effect and ease of use, which has potential for clinical applications.

  18. UPLC Q-TOF/MS-Based Metabolic Profiling of Urine Reveals the Novel Antipyretic Mechanisms of Qingkailing Injection in a Rat Model of Yeast-Induced Pyrexia

    Directory of Open Access Journals (Sweden)

    Xiaoyan Gao

    2013-01-01

    Full Text Available Fever is one of the most common clinical symptoms of many diseases. Qingkailing (QKL injection is widely used in China as a clinical emergency medicine due to its good antipyretic effects. It is a herbal formula which is composed by eight kinds of traditional Chinese medicines (TCM. As a kind of typical multiple constituents and multiple actions of TCM, it is very difficult to elaborate the antipyretic mechanism by conventional pharmacological method. Metabonomics technique provides beneficial tool for this challenge. In this study, an ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC Q-TOF/MS metabonomics method was developed to explore the changing process of biochemical substances in rats of yeast-induced pyrexia. Partial least squares discriminate analysis (PLS-DA was used to distinguish the normal control group, the pyrexia model group, and the pyrexia model group treated by QKL injection. The potential biomarkers related to pyrexia were confirmed and identified. MetPA was used to find the possible metabolic pathways. The results indicated that the antipyretic effect of QKL injection on yeast-induced pyrexia rats was performed by repairing the perturbed metabolism of amino acids.

  19. UFLC-Q-TOF-MS/MS-Based Screening and Identification of Flavonoids and Derived Metabolites in Human Urine after Oral Administration of Exocarpium Citri Grandis Extract

    Directory of Open Access Journals (Sweden)

    Xuan Zeng

    2018-04-01

    Full Text Available Exocarpium Citri grandis (ECG is an important Traditional Chinese Medicine (TCM for the treatment of cough and phlegm, and the flavonoids contained were considered the main effective components. To date, the systematic chemical profiling of these flavonoids and derived in vivo metabolites in human have not been well investigated. ECG was extracted using boiling water and then provided to volunteers for oral administration. Following the ingestion, urine samples were collected from volunteers over 48 h. The extract and urine samples were analyzed using ultra-fast liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/MS system to screen and identify flavonoids and derived in vivo metabolites. A total of 18 flavonoids were identified in the ECG extract, and 20 metabolites, mainly glucuronide and sulfate conjugates, were screened in urine samples collected post consumption. The overall excretion of naringenin metabolites corresponded to 5.45% of intake and occurred mainly within 4–12 h after the ingestion. Meanwhile, another 29 phenolic catabolites were detected in urine. Obtained data revealed that flavonoids were abundant in the ECG extract, and these components underwent extensive phase II metabolism in humans. These results provided valuable information for further study of the pharmacology and mechanism of action of ECG.

  20. Development of a Matrix Solid-Phase Dispersion Extraction Combined with UPLC/Q-TOF-MS for Determination of Phenolics and Terpenoids from the Euphorbia fischeriana.

    Science.gov (United States)

    Li, Wenjing; Lin, Yu; Wang, Yuchun; Hong, Bo

    2017-09-11

    A method based on a simplified extraction by matrix solid phase dispersion (MSPD) followed by ultra-performance liquid chromatography coupled with the quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS) determination is validated for analysis of two phenolics and three terpenoids in Euphorbia fischeriana . The optimized experimental parameters of MSPD including dispersing sorbent (silica gel), ratio of sample to dispersing sorbent (1:2), elution solvent (water-ethanol: 30-70) and volume of the elution solvent (10 mL) were examined and set down. The highest extraction yields of chromatogram information and the five compounds were obtained under the optimized conditions. A total of 25 constituents have been identified and five components have been quantified from Euphorbia fischeriana . A linear relationship (r² ≥ 0.9964) between the concentrations and the peak areas of the mixed standard substances were revealed. The average recovery was between 92.4% and 103.2% with RSD values less than 3.45% ( n = 5). The extraction yields of two phenolics and three terpenoids obtained by the MSPD were higher than those of traditional reflux and sonication extraction with reduced requirement on sample, solvent and time. In addition, the optimized method will be applied for analyzing terpenoids in other Chinese herbal medicine samples.

  1. [Dynamic variation of components in exocarp of Juglans mandshurica with browning based on UPLC-Q-TOF/MS].

    Science.gov (United States)

    Sun, Guo-Dong; Huo, Jin-Hai; Xie, Rong-Juan; Wang, Wei-Ming

    2017-08-01

    To analyze the dynamic changes in components in exocarp of Juglans mandshurica at different browning periods. Twenty-six batches of exocarp of J. mandshurica samples from thirteen browning periods were assessed by UPLC-Q-TOF-MS/MS. The formula of different compounds were determined by accurate mass and isotopic abundance ratio from target screening function of Peakview 2.0/masterview1.0 software. Then their structures were determined by analysis of MS/MS fragment or comparison with standard substances and references. The contents of chemical components were changed significantly in different browning periods and twenty five compounds were identified or inferred. Of the 13 naphthoquinone compounds, the contents of 6 compounds with similar parent nucleus as juglone and 3 naphthoquinone glycosides compounds were decreased significantly, and 4 naphthoquinone derivatives such as regiolone were produced; the contents of four flavones and two phenolic acids compounds were decreased significantly; and the contents of 6 diarylheptanoids compounds were increased significantly. UPLC-Q-TOF/MS method can be used to identify and analyze the chemical constituents from exocarp of J. mandshurica rapidly and accurately, and analyze the rules of dynamic changes, to reveal the browning of Chinese medicinal materials and its effects on compositions of fruits and vegetables. Copyright© by the Chinese Pharmaceutical Association.

  2. Mass spectrometry with accelerators.

    Science.gov (United States)

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  3. Hydrogen Exchange Mass Spectrometry

    Science.gov (United States)

    Mayne, Leland

    2018-01-01

    Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data. PMID:26791986

  4. An improved pseudotargeted metabolomics approach using multiple ion monitoring with time-staggered ion lists based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Wang, Yang; Liu, Fang; Li, Peng; He, Chengwei; Wang, Ruibing; Su, Huanxing; Wan, Jian-Bo

    2016-07-13

    Pseudotargeted metabolomics is a novel strategy integrating the advantages of both untargeted and targeted methods. The conventional pseudotargeted metabolomics required two MS instruments, i.e., ultra-high performance liquid chromatography/quadrupole-time- of-flight mass spectrometry (UHPLC/Q-TOF MS) and UHPLC/triple quadrupole mass spectrometry (UHPLC/QQQ-MS), which makes method transformation inevitable. Furthermore, the picking of ion pairs from thousands of candidates and the swapping of the data between two instruments are the most labor-intensive steps, which greatly limit its application in metabolomic analysis. In the present study, we proposed an improved pseudotargeted metabolomics method that could be achieved on an UHPLC/Q-TOF/MS instrument operated in the multiple ion monitoring (MIM) mode with time-staggered ion lists (tsMIM). Full scan-based untargeted analysis was applied to extract the target ions. After peak alignment and ion fusion, a stepwise ion picking procedure was used to generate the ion lists for subsequent single MIM and tsMIM. The UHPLC/Q-TOF tsMIM MS-based pseudotargeted approach exhibited better repeatability and a wider linear range than the UHPLC/Q-TOF MS-based untargeted metabolomics method. Compared to the single MIM mode, the tsMIM significantly increased the coverage of the metabolites detected. The newly developed method was successfully applied to discover plasma biomarkers for alcohol-induced liver injury in mice, which indicated its practicability and great potential in future metabolomics studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Mass spectrometry in clinical chemistry

    International Nuclear Information System (INIS)

    Pettersen, J.E.

    1977-01-01

    A brief description is given of the functional elements of a mass spectrometer and of some currently employed mass spectrometric techniques, such as combined gas chromatography-mass spectrometry, mass chromatography, and selected ion monitoring. Various areas of application of mass spectrometry in clinical chemistry are discussed, such as inborn errors of metabolism and other metabolic disorders, intoxications, quantitative determinations of drugs, hormones, gases, and trace elements, and the use of isotope dilution mass spectrometry as a definitive method for the establishment of true values for concentrations of various compounds in reference sera. It is concluded that mass spectrometry is of great value in clinical chemistry. (Auth.)

  6. Lipidomics study of plasma phospholipid metabolism in early type 2 diabetes rats with ancient prescription Huang-Qi-San intervention by UPLC/Q-TOF-MS and correlation coefficient.

    Science.gov (United States)

    Wu, Xia; Zhu, Jian-Cheng; Zhang, Yu; Li, Wei-Min; Rong, Xiang-Lu; Feng, Yi-Fan

    2016-08-25

    Potential impact of lipid research has been increasingly realized both in disease treatment and prevention. An effective metabolomics approach based on ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) along with multivariate statistic analysis has been applied for investigating the dynamic change of plasma phospholipids compositions in early type 2 diabetic rats after the treatment of an ancient prescription of Chinese Medicine Huang-Qi-San. The exported UPLC/Q-TOF-MS data of plasma samples were subjected to SIMCA-P and processed by bioMark, mixOmics, Rcomdr packages with R software. A clear score plots of plasma sample groups, including normal control group (NC), model group (MC), positive medicine control group (Flu) and Huang-Qi-San group (HQS), were achieved by principal-components analysis (PCA), partial least-squares discriminant analysis (PLS-DA) and orthogonal partial least-squares discriminant analysis (OPLS-DA). Biomarkers were screened out using student T test, principal component regression (PCR), partial least-squares regression (PLS) and important variable method (variable influence on projection, VIP). Structures of metabolites were identified and metabolic pathways were deduced by correlation coefficient. The relationship between compounds was explained by the correlation coefficient diagram, and the metabolic differences between similar compounds were illustrated. Based on KEGG database, the biological significances of identified biomarkers were described. The correlation coefficient was firstly applied to identify the structure and deduce the metabolic pathways of phospholipids metabolites, and the study provided a new methodological cue for further understanding the molecular mechanisms of metabolites in the process of regulating Huang-Qi-San for treating early type 2 diabetes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Combined Mass Spectrometry-Based Metabolite Profiling of Different Pigmented Rice (Oryza sativa L. Seeds and Correlation with Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Ga Ryun Kim

    2014-09-01

    Full Text Available Nine varieties of pigmented rice (Oryza sativa L. seeds that were black, red, or white were used to perform metabolite profiling by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS and gas chromatography (GC TOF-MS, to measure antioxidant activities. Clear grouping patterns determined by the color of the rice seeds were identified in principle component analysis (PCA derived from UPLC-Q-TOF-MS. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimer, proanthocyanidin trimer, apigenin-6-C-glugosyl-8-C-arabiboside, tricin-O-rhamnoside-O-hexoside, and lipids were identified as significantly different secondary metabolites. In PCA score plots derived from GC-TOF-MS, Jakwangdo (JKD and Ilpoom (IP species were discriminated from the other rice seeds by PC1 and PC2. Valine, phenylalanine, adenosine, pyruvate, nicotinic acid, succinic acid, maleic acid, malonic acid, gluconic acid, xylose, fructose, glucose, maltose, and myo-inositol were significantly different primary metabolites in JKD species, while GABA, asparagine, xylitol, and sucrose were significantly distributed in IP species. Analysis of antioxidant activities revealed that black and red rice seeds had higher activity than white rice seeds. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimers, proanthocyanidin trimers, and catechin were highly correlated with antioxidant activities, and were more plentiful in black and red rice seeds. These results are expected to provide valuable information that could help improve and develop rice-breeding techniques.

  8. Systematic HPLC/ESI-High Resolution-qTOF-MS Methodology for Metabolomic Studies in Nonfluorescent Chlorophyll Catabolites Pathway

    Directory of Open Access Journals (Sweden)

    José Julián Ríos

    2015-01-01

    Full Text Available Characterization of nonfluorescent chlorophyll catabolites (NCCs and dioxobilane-type nonfluorescent chlorophyll catabolite (DNCC in peel extracts of ripened lemon fruits (Citrus limon L. was performed by HPLC/ESI-high resolution-qTOF-MS method. Compounds were identified in samples on the basis of measured accurate mass, isotopic pattern, and characteristic fragmentation profile with an implemented software postprocessing routine. Three NCC structures already identified in other vegetal tissues were present in the lemon fruit peels (Cl-NCC1; Cl-NCC2; Cl-NCC4 while a new structure not defined so far was characterized (Cl-NCC3. This catabolite exhibits an exceptional arrangement of the peripheral substituents, allowing concluding that the preferences for the NCC modifications could be a species-related matter.

  9. Quantification of short- and medium-chain chlorinated paraffins in environmental samples by gas chromatography quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Gao, Wei; Wu, Jing; Wang, Yawei; Jiang, Guibin

    2016-06-24

    Chlorinated paraffins (CPs) are technical products produced and used in bulk for a number of purposes. However, the analysis of CPs is challenging, as they are complex mixtures of compounds and isomers. We herein report the development of an analytical method for the analysis of short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) using quadrupole time-of-flight high-resolution mass spectrometry (GC-NCI-qTOF-HRMS). This method employs gas chromatography with a chemical ionization source working in negative mode. The linear relationship between chlorination and the CP total response factors was applied to quantify the CP content and the congener group distribution patterns. In a single injection, 24 SCCP formula groups and 24 MCCP formula groups were quantified. Extraction of accurate masses using qTOF-HRMS allowed the SCCPs and MCCPs to be distinguished, with interference from other chemicals (e.g., PCBs) being largely avoided. The SCCP and MCCP detection limits were 24-81ng/mL and 27-170ng/mL, respectively. Comparison of the obtained results with analytical results from gas chromatography coupled with electron capture negative ionization low-resolution mass spectrometry (GC-ECNI-LRMS) indicate that the developed technique is a more accurate and convenient method for the analysis of CPs in samples from a range of matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Examining the Heterogeneous Genome Content of Multipartite Viruses BMV and CCMV by Native Mass Spectrometry

    Science.gov (United States)

    van de Waterbeemd, Michiel; Snijder, Joost; Tsvetkova, Irina B.; Dragnea, Bogdan G.; Cornelissen, Jeroen J.; Heck, Albert J. R.

    2016-06-01

    Since the concept was first introduced by Brian Chait and co-workers in 1991, mass spectrometry of proteins and protein complexes under non-denaturing conditions (native MS) has strongly developed, through parallel advances in instrumentation, sample preparation, and data analysis tools. However, the success rate of native MS analysis, particularly in heterogeneous mega-Dalton (MDa) protein complexes, still strongly depends on careful instrument modification. Here, we further explore these boundaries in native mass spectrometry, analyzing two related endogenous multipartite viruses: the Brome Mosaic Virus (BMV) and the Cowpea Chlorotic Mottle Virus (CCMV). Both CCMV and BMV are approximately 4.6 megadalton (MDa) in mass, of which approximately 1 MDA originates from the genomic content of the virion. Both viruses are produced as mixtures of three particles carrying different segments of the genome, varying by approximately 0.1 MDA in mass (~2%). This mixture of particles poses a challenging analytical problem for high-resolution native MS analysis, given the large mass scales involved. We attempt to unravel the particle heterogeneity using both Q-TOF and Orbitrap mass spectrometers extensively modified for analysis of very large assemblies. We show that manipulation of the charging behavior can provide assistance in assigning the correct charge states. Despite their challenging size and heterogeneity, we obtained native mass spectra with resolved series of charge states for both BMV and CCMV, demonstrating that native MS of endogenous multipartite virions is feasible.

  11. Preface Miniaturization and Mass Spectrometry

    NARCIS (Netherlands)

    Unknown, [Unknown; le Gac, Severine; le Gac, S.; van den Berg, Albert; van den Berg, A.

    2009-01-01

    Miniaturization and Mass Spectrometry illustrates this trend and focuses on one particular analysis technique, mass spectrometry whose popularity has "dramatically" increased in the last two decades with the explosion of the field of biological analysis and the development of two "soft" ionization

  12. Negative chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Smit, A.L.C.

    1979-01-01

    This thesis describes some aspects of Negative Chemical Ionization (NCI) mass spectrometry. The reasons for the growing interest in NCI are: (i) to extend the basic knowledge of negative ions and their reactions in the gas phase; (ii) to investigate whether or not this knowledge of negative ions can be used successfully to elucidate the structure of molecules by mass spectrometry. (Auth.)

  13. Laboratory of acceleration mass spectrometry

    International Nuclear Information System (INIS)

    Hybler, P.; Chrapan, J.

    2002-01-01

    In this paper authors describe the principle of the method of acceleration mass spectrometry and the construction plans of this instrument at the Faculty of ecology and environmental sciences in Banska Stiavnica. Using of this instrument for radiocarbon dating is discussed. A review of laboratories with acceleration mass spectrometry is presented

  14. Accelerator mass spectrometry.

    Science.gov (United States)

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples. Copyright 2008 Wiley Periodicals, Inc.

  15. Characterization of goat colostrum oligosaccharides by nano-liquid chromatography on chip quadrupole time-of-flight mass spectrometry and hydrophilic interaction liquid chromatography-quadrupole mass spectrometry.

    Science.gov (United States)

    Martín-Ortiz, A; Salcedo, J; Barile, D; Bunyatratchata, A; Moreno, F J; Martin-García, I; Clemente, A; Sanz, M L; Ruiz-Matute, A I

    2016-01-08

    A detailed qualitative and quantitative characterization of goat colostrum oligosaccharides (GCO) has been carried out for the first time. Defatted and deproteinized colostrum samples, previously treated by size exclusion chromatography (SEC) to remove lactose, were analyzed by nanoflow liquid chromatography-quadrupole-time of flight mass spectrometry (Nano-LC-Chip-Q-TOF MS). Up to 78 oligosaccharides containing hexose, hexosamine, fucose, N-acetylneuraminic acid or N-glycolylneuraminic acid monomeric units were identified in the samples, some of them detected for the first time in goat colostra. As a second step, a hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS) methodology was developed for the separation and quantitation of the main GCO, both acidic and neutral carbohydrates. Among other experimental chromatographic conditions, mobile phase additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry of target carbohydrates. Narrow peaks (wh: 0.2-0.6min) and good symmetry (As: 0.8-1.4) were obtained for GCO using an acetonitrile:water gradient with 0.1% ammonium hydroxide at 40°C. These conditions were selected to quantify the main oligosaccharides in goat colostrum samples. Values ranging from 140 to 315mgL(-1) for neutral oligosaccharides and from 83 to 251mgL(-1) for acidic oligosaccharides were found. The combination of both techniques resulted to be useful to achieve a comprehensive characterization of GCO. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Imaging mass spectrometry statistical analysis.

    Science.gov (United States)

    Jones, Emrys A; Deininger, Sören-Oliver; Hogendoorn, Pancras C W; Deelder, André M; McDonnell, Liam A

    2012-08-30

    Imaging mass spectrometry is increasingly used to identify new candidate biomarkers. This clinical application of imaging mass spectrometry is highly multidisciplinary: expertise in mass spectrometry is necessary to acquire high quality data, histology is required to accurately label the origin of each pixel's mass spectrum, disease biology is necessary to understand the potential meaning of the imaging mass spectrometry results, and statistics to assess the confidence of any findings. Imaging mass spectrometry data analysis is further complicated because of the unique nature of the data (within the mass spectrometry field); several of the assumptions implicit in the analysis of LC-MS/profiling datasets are not applicable to imaging. The very large size of imaging datasets and the reporting of many data analysis routines, combined with inadequate training and accessible reviews, have exacerbated this problem. In this paper we provide an accessible review of the nature of imaging data and the different strategies by which the data may be analyzed. Particular attention is paid to the assumptions of the data analysis routines to ensure that the reader is apprised of their correct usage in imaging mass spectrometry research. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. A practical strategy for the characterization of ponicidin metabolites in vivo and in vitro by UHPLC-Q-TOF-MS based on nontargeted SWATH data acquisition.

    Science.gov (United States)

    Xie, Weiwei; Jin, Yiran; Hou, Ludan; Ma, Yinghua; Xu, Huijun; Zhang, Kerong; Zhang, Lantong; Du, Yingfeng

    2017-10-25

    Ponicidin is an active natural ent-kaurane diterpenoid ingredient originating from many Isondon herbs and is expected to become a new anticancer agent. In this study, a practical strategy was developed for the identification of ponicidin metabolites in vivo and in vitro utilizing ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). The analytical strategy was as follows: potential ponicidin metabolites were detected by a novel on-line data acquisition approach, i.e., sequential window acquisition of all theoretical fragment-ion spectra (SWATH™). Compared to the traditional information-dependent acquisition (IDA) method, SWATH™ significantly improved the hit rate of low-level or trace metabolites because it could obtain all MS/MS spectra. Moreover, many data post-processing methods were used to deduce the metabolites structures. As a result, a total of 20 metabolites were characterized in vivo and in vitro. The results showed that ponicidin could undergo general metabolic reactions, such as oxidation, reduction, hydrolysis, methylation and glucuronidation. Furthermore, there was an obvious difference in the ponicidin metabolites among four species in vitro. This is the first time that the SWATH™ data acquisition mode has been used to characterize ponicidin metabolites in trace amounts or in a biological matrix. These results not only provided a better understanding of the safety and efficacy of ponicidin but also showed a valuable methodology for the identification of other ent-kaurane diterpenoid metabolites. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Accelerator-based ultrasensitive mass spectrometry

    International Nuclear Information System (INIS)

    Gove, H.E.

    1985-01-01

    This chapter describes a new mass spectrometry technique involving charged particle accelerators normally used for basic research in nuclear science. Topics considered include the limitations of conventional mass spectrometry, the limitations of the direct measurement of radioactive decay, mass spectrometry using a tandem electrostatic accelerator, mass spectrometry using a cyclotron, how accelerator mass spectrometry circumvents the limitations of conventional mass spectrometry, measurements of stable isotopes, nuclear physics and astrophysics applications, modifications to existing accelerators, descriptions of dedicated systems, and future applications

  19. Mass Spectrometry of Halopyrazolium Salts

    DEFF Research Database (Denmark)

    Larsen, Elfinn; Egsgaard, Helge; Pande, U. C.

    1983-01-01

    Eleven halogen substituted 1-methyl-2-phenylpyrazolium bromides or chlorides were investigated by field desorption, field ionization, and electron impact mass spectrometry. Dealkylation was found to be the predominant thermal decomposition. An exchange between covalent and ionic halogen prior...

  20. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    Science.gov (United States)

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Characterization of ornidazole metabolites in human bile after intraveneous doses by ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    Jiangbo Du

    2012-04-01

    Full Text Available Ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS was used to characterize ornidazole metabolites in human bile after intravenous doses. A liquid chromatography tandem mass spectrometry (LC–MS/MS assay was developed for the determination of the bile level of ornidazole. Bile samples, collected from four patients with T-tube drainage after biliary tract surgery, were prepared by protein precipitation with acetonitrile before analysis. A total of 12 metabolites, including 10 novel metabolites, were detected and characterized. The metabolites of ornidazole in human bile were the products of hydrochloride (HCl elimination, oxidative dechlorination, hydroxylation, sulfation, diastereoisomeric glucuronation, and substitution of NO2 or Cl atom by cysteine or N-acetylcysteine, and oxidative dechlorination followed by further carboxylation. The bile levels of ornidazole at 12 h after multiple intravenous infusions were well above its minimal inhibitory concentration for common strains of anaerobic bacteria.

  2. Identification of metabolites of Helicid in vivo using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Diao, Xinpeng; Liao, Man; Cheng, Xiaoye; Liang, Caijuan; Sun, Yupeng; Zhang, Xia; Zhang, Lantong

    2018-04-18

    Helicid is an active natural aromatic phenolic glycoside ingredient originating from well-known traditional Chinese herb medicine and has the significant effects of sedative hypnosis, anti-inflammatory analgesia and antidepressant. In this study, we analyzed the potential metabolites of Helicid in rats by multiple mass defect filter (MMDF)and dynamic background subtraction (DBS)in ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). Moreover, we used a novel data processing method 'key product ions (KPIs)' to rapidly detect and identifymetabolites as an assistant tool. MetabolitePilot TM 2.0 software and PeakView TM 2.2 software were used for analyzing metabolites. Twenty metabolites of Helicid (including 15 phase I metabolites and 5 phase II metabolites) were detected by comparing with the blank samples, respectively. Thebiotransformationroute of Helicid was identified as demethylation, oxidation, dehydroxylation, hydrogenation, decarbonylation,glucuronide conjugation and methylation.This is the first study of simultaneously detecting and identifying Helicid metabolism in rats by employing UHPLC-Q-TOF-MS technology. This experiment not only proposed a method for rapidly detecting and identifying metabolites, but also provided useful information for further study of the pharmacology and mechanism of Helicid in vivo. Furthermore, it provided an effective method for the analysis of other aromatic phenolic glycosides metabolic components in vivo. This article is protected by copyright. All rights reserved.

  3. Mass spectrometry. [in organic chemistry

    Science.gov (United States)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  4. Mass Spectrometry Instrumentation in Proteomics

    DEFF Research Database (Denmark)

    Sprenger, Richard Remko; Roepstorff, Peter

    2012-01-01

    Mass spectrometry has evolved into a crucial technology for the field of proteomics, enabling the comprehensive study of proteins in biological systems. Innovative developments have yielded flexible and versatile mass spectrometric tools, including quadrupole time-of-flight, linear ion trap......, Orbitrap and ion mobility instruments. Together they offer various and complementary capabilities in terms of ionization, sensitivity, speed, resolution, mass accuracy, dynamic range and methods of fragmentation. Mass spectrometers can acquire qualitative and quantitative information on a large scale...

  5. Instrumentation for mass spectrometry: 1997

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  6. Arsenic-containing fatty acids and hydrocarbons in marine oils - determination using reversed-phase HPLC-ICP-MS and HPLC-qTOF-MS.

    Science.gov (United States)

    Sele, Veronika; Sloth, Jens J; Holmelid, Bjarte; Valdersnes, Stig; Skov, Kasper; Amlund, Heidi

    2014-04-01

    Arsenolipids are the major arsenic species present in marine oils. Several structures of arsenolipids have been elucidated the last 5 years, demonstrating the chemical complexity of this trace element in the marine environment. Several commercial fish oils and marine oils, ranging in total arsenic concentrations from 1.6 to 12.5 mg kg(-1) oil, were analyzed for arsenolipids using reversed-phase high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The arsenolipids were quantified using three different arsenic-containing calibration standards; dimethylarsinate (DMA), triphenylarsinoxide (Ph₃AsO) and a synthesized arsenic-containing hydrocarbon (AsHC) (dimethylarsinoyl nonadecane; C₂₁H₄₃AsO). The observed variation in signal intensity for arsenic during the gradient elution profile in reversed-phase HPLC was compensated for by determining the time-resolved response factors for the arsenolipids. Isotopes of germanium ((74)Ge) and indium ((115)In) were suited as internal standards for arsenic, and were used for verification of the arsenic signal response factors during the gradient elution. Dimethylarsinate was the most suitable calibration standard for the quantification of arsenolipids, with recoveries between 91% and 104% compared to total arsenic measurements in the same extracts. A range of marine oils was investigated, including oils of several fish species, cod liver and seal, as well as three commercial fish oils. The AsHCs - C₁₇H₃₈AsO, C₁₉H₄₂AsO and C₂₃H₃₈AsO - were identified as the major arsenolipids in the extracts of all oils by HPLC coupled with quadrupole time-of-flight mass spectrometry (qTOF-MS). Minor amounts of two arsenic-containing fatty acids (AsFAs) (C₂₃H₃₈AsO₃ and C₂₄H₃₈AsO₃) were also detected in the oils. The sum of the AsHCs and the AsFAs determined in the present study accounted for 17-42% of the total arsenic in the oils

  7. Metabolomics Analysis of Health Functions of Physalis Pubescens L. using by Ultra-performance Liquid Chromatography/Electrospray Ionization Quadruple Time-of-Flight Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    Hang Chu; Hui Sun; Guang-Li Yan; Ai-Hua Zhang; Chang Liu; Hui Dong; Xiang-Cai Meng; Xi-Jun Wang

    2015-01-01

    Herbal medicines may benefit from metabolomics studies, and applying metabolomics may provide answers about which herbal interventions may be effective for individuals, which metabolic processes are triggered, and the subsequent chemical pathways of activity. Physalis pubescens L (PPL) is an herbal fruit for one year living plant and has been developed into healthy function’s food. However, the mechanisms of health functions are still unclear. To comprehensively and holistically assess its anti-fatigue and antioxidant effects, a novel integrative metabolomics approach was applied. In this study, we present metabolomics analysis applying ultra performance liquid chromatography coupled to quadrupole with time-of-flight mass spectrometry (UPLC-Q/TOF-MS) to determine metabolite alterations after oral administration PPL to rats. Fifteen metabolites in urine were identified as potential biomarkers. Pattern analysis of the UPLC-Q/TOF-MS data disclosed that PPL could relieve fatigue rats by ameliorating the disturbance in amino acids metabolism and energy metabolism, alleviating the oxidative stress from reactive oxygen species and the inflammatory damage, and recovering the destructed regulation. Based on these results, we demonstrated that PPL is a promising source of natural anti-fatigue and antioxidants material for use in functional foods and medicines.

  8. Symposium on accelerator mass spectrometry

    International Nuclear Information System (INIS)

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base

  9. Symposium on accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  10. Mass spectrometry for biomarker development

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  11. Rapid Characterization of Constituents in Tribulus terrestris from Different Habitats by UHPLC/Q-TOF MS

    Science.gov (United States)

    Zheng, Wei; Wang, Fangxu; Zhao, Yang; Sun, Xinguang; Kang, Liping; Fan, Ziquan; Qiao, Lirui; Yan, Renyi; Liu, Shuchen; Ma, Baiping

    2017-08-01

    A strategy for rapid identification of the chemical constituents from crude extracts of Tribulus terrestris was proposed using an informatics platform for the UHPLC/Q-TOF MSE data analyses. This strategy mainly utilizes neutral losses, characteristic fragments, and in-house library to rapidly identify the structure of the compounds. With this strategy, rapid characterization of the chemical components of T. terrestris from Beijing, China was successfully achieved. A total of 82 steroidal saponins and nine flavonoids were identified or tentatively identified from T. terrestris. Among them, 15 new components were deduced based on retention times and characteristic MS fragmentation patterns. Furthermore, the chemical components of T. terrestris, including the other two samples from Xinjiang Uygur Autonomous region, China, and Rome, Italy, were also identified with this strategy. Altogether, 141 chemical components were identified from these three samples, of which 39 components were identified or tentatively identified as new compounds, including 35 groups of isomers. It demonstrated that this strategy provided an efficient protocol for the rapid identification of chemical constituents in complex samples such as traditional Chinese medicines (TCMs) by UHPLC/Q-TOF MSE with informatics platform. [Figure not available: see fulltext.

  12. Identification of the Metabolic Enzyme Involved Morusin Metabolism and Characterization of Its Metabolites by Ultraperformance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (UPLC/Q-TOF-MS/MS

    Directory of Open Access Journals (Sweden)

    Xianbao Shi

    2016-01-01

    Full Text Available Morusin, the important active component of a traditional Chinese medicine, Morus alba L., has been shown to exhibit many vital pharmacological activities. In this study, six recombinant CYP450 supersomes and liver microsomes were used to perform metabolic studies. Chemical inhibition studies and screening assays with recombinant human cytochrome P450s were also used to characterize the CYP450 isoforms involved in morusin metabolism. The morusin metabolites identified varied greatly among different species. Eight metabolites of morusin were detected in the liver microsomes from pigs (PLMs, rats (RLMs, and monkeys (MLMs by LC-MS/MS and six metabolites were detected in the liver microsomes from humans (HLMs, rabbits (RAMs, and dogs (DLMs. Four metabolites (M1, M2, M5, and M7 were found in all species and hydroxylation was the major metabolic transformation. CYP1A2, CYP2C9, CYP2D6, CYP2E1, CYP3A4, and CYP2C19 contributed differently to the metabolism of morusin. Compared to other CYP450 isoforms, CYP3A4 played the most significant role in the metabolism of morusin in human liver microsomes. These results are significant to better understand the metabolic behaviors of morusin among various species.

  13. Isolation and structural characterization of a novel sibutramine analogue, chlorosipentramine, in a slimming dietary supplement, by using HPLC-PDA, LC-Q-TOF/MS, FT-IR, and NMR.

    Science.gov (United States)

    Yun, Jisuk; Shin, Kye Jung; Choi, Jangduck; Jo, Cheon-Ho

    2018-05-01

    A novel sibutramine analogue was detected in a slimming formula by high performance liquid chromatography with a photo diode detector array (HPLC-PDA). The unknown compound exhibited an ultraviolet (UV) spectrum that was similar to that of chlorosibutramine, despite having a different HPLC retention time. Further analysis of the slimming formula by LC-quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) showed that the unknown compound had the formula C 18 H 27 Cl 2 N. To elucidate the structure of this new sibutramine analogue, the target compound in the slimming formula was isolated on a preparative-LC system equipped with a PDA. After analysis by fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy, the unknown compound was identified as a sibutramine analogue in which the iso-butyl group on the side chain is replaced with an iso-pentyl group. This new sibutramine analogue was identified to be 1-(1-(3,4-dichlorophenyl)cyclobutyl)-N,N,4-trimethylpentan-1-amine and has been named as chlorosipentramine. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Eleventh ISMAS workshop on mass spectrometry

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Jaison, P.G.

    2004-10-01

    This volume deals with the latest developments in this field, exposing the innumerable applications of mass spectrometry. The topics covered include basic fundamentals of mass spectrometry, qualitative and quantitative aspects and data interpretation, maintenance of mass spectrometers, selection of a mass spectrometer, its applications in various branches of science as well as recent advances in mass spectrometry. Emphasis is also laid on the practical aspects of mass spectrometry. Papers relevant to INIS are indexed separately

  15. Mass spectrometry in epigenetic research

    DEFF Research Database (Denmark)

    Beck, Hans Christian

    2010-01-01

    cancers has gained tremendous interest in recent years, and many of these inhibitors are currently undergoing clinical trials. Despite intense research, however, the exact molecular mechanisms of action of these molecules remain, to a wide extent, unclear. The recent application of mass spectrometry...

  16. Mass spectrometry of large molecules

    International Nuclear Information System (INIS)

    Facchetti, S.

    1985-01-01

    The lectures in this volume were given at a course on mass spectrometry of large molecules, organized within the framework of the Training and Education programme of the Joint Research Centre of the European Communities. Although first presented in 1983, most of the lectures have since been updated by their authors. (orig.)

  17. Mass spectrometry with particle accelerator

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The heavy ion accelerator use is renewing the ultrasensitive mass spectrometry in extending the detection limits. These new devices allow the measurement of rare isotope ratio, as 10 Be, 14 C, 26 Al, 36 Cl or 41 Ca, from the earth natural reservoirs [fr

  18. Mass spectrometry and tandem mass spectrometry of citrus limonoids.

    Science.gov (United States)

    Tian, Qingguo; Schwartz, Steven J

    2003-10-15

    Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring

  19. Determination of thyroid hormones in mouse tissues by isotope-dilution microflow liquid chromatography-mass spectrometry method

    DEFF Research Database (Denmark)

    De Angelis, Meri; Giesert, Florian; Finan, Brian

    2016-01-01

    ). The nano-UPLC system was interfaced with a quadrupole time-of-flight mass spectrometer (Q-TOF2-MS) using the positive ion mode electrospray ionization. In our analytical method the instrumental calibration curves were constructed from 0 to 100pgμL(-1) and all of them showed good linearity (r(2)>0.99...

  20. Imaging Mass Spectrometry in Neuroscience

    Science.gov (United States)

    2013-01-01

    Imaging mass spectrometry is an emerging technique of great potential for investigating the chemical architecture in biological matrices. Although the potential for studying neurobiological systems is evident, the relevance of the technique for application in neuroscience is still in its infancy. In the present Review, a principal overview of the different approaches, including matrix assisted laser desorption ionization and secondary ion mass spectrometry, is provided with particular focus on their strengths and limitations for studying different neurochemical species in situ and in vitro. The potential of the various approaches is discussed based on both fundamental and biomedical neuroscience research. This Review aims to serve as a general guide to familiarize the neuroscience community and other biomedical researchers with the technique, highlighting its great potential and suitability for comprehensive and specific chemical imaging. PMID:23530951

  1. Neutral Loss Scan - Based Strategy for Integrated Identification of Amorfrutin Derivatives, New Peroxisome Proliferator-Activated Receptor Gamma Agonists, from Amorpha Fruticosa by UPLC-QqQ-MS/MS and UPLC-Q-TOF-MS.

    Science.gov (United States)

    Chen, Chu; Xue, Ying; Li, Qing-Miao; Wu, Yan; Liang, Jian; Qing, Lin-Sen

    2018-04-01

    Amorfrutins with a 2-hydroxybenzoic acid core structure are promising natural PPARγ agonists with potent antidiabetic activity. Owing to the complex matrix and low concentration in botanical material, the identification of unknown amorfrutins remains a challenge. In the present study, a combined application of UPLC-Q-TOF-MS and UPLC-QqQ-MS was developed to discover unknown amorfrutins from fruits of Amorpha fruticosa. First, reference compounds of amorfrutin A (AA), amorfrutin B (AB), and 2-carboxy-3,5-dihydroxy-4-geranylbibenzyl (AC) were analyzed using UPLC-Q-TOF-MS to reveal the characteristic fragment ions and the possible neutral loss. Second, the extract of A. fruticosa was separated and screened by UPLC-QqQ-MS using neutral loss scan to find out suspect compounds associated with the specified neutral fragment Δm/z 44. Third, the extract was re-analyzed by UPLC-Q-TOF-MS to obtain the exact mass of quasi-molecular ion and fragment ions of each suspect compound, and to subsequently calculate their corresponding molecular formulas. Finally, according to the molecular formula of suspect compound and its fragment ions and comparing with literature data, structure elucidation of four unidentified amorfrutins was achieved. The results indicated that the combination of QqQ-MS neutral loss scan and Q-TOF-MS molecular formula calculation was proven to be a powerful tool for unknown natural product identification, and this strategy provides an effective solution to discover natural products or metabolites of trace content. Graphical Abstract ᅟ.

  2. Mass Spectrometry Applications for Toxicology

    OpenAIRE

    Mbughuni, Michael M.; Jannetto, Paul J.; Langman, Loralie J.

    2016-01-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used i...

  3. Mass spectrometry. [review of techniques

    Science.gov (United States)

    Burlingame, A. L.; Kimble, B. J.; Derrick, P. J.

    1976-01-01

    Advances in mass spectrometry (MS) and its applications over the past decade are reviewed in depth, with annotated literature references. New instrumentation and techniques surveyed include: modulated-beam MS, chromatographic MS on-line computer techniques, digital computer-compatible quadrupole MS, selected ion monitoring (mass fragmentography), and computer-aided management of MS data and interpretation. Areas of application surveyed include: organic MS and electron impact MS, field ionization kinetics, appearance potentials, translational energy release, studies of metastable species, photoionization, calculations of molecular orbitals, chemical kinetics, field desorption MS, high pressure MS, ion cyclotron resonance, biochemistry, medical/clinical chemistry, pharmacology, and environmental chemistry and pollution studies.

  4. Functional genomics by mass spectrometry

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Mann, M

    2000-01-01

    Systematic analysis of the function of genes can take place at the oligonucleotide or protein level. The latter has the advantage of being closest to function, since it is proteins that perform most of the reactions necessary for the cell. For most protein based ('proteomic') approaches to gene f...... numbers of intact proteins by mass spectrometry directly. Examples from this laboratory illustrate biological problem solving by modern mass spectrometric techniques. These include the analysis of the structure and function of the nucleolus and the analysis of signaling complexes....

  5. A high throughput mass spectrometry screening analysis based on two-dimensional carbon microfiber fractionation system.

    Science.gov (United States)

    Ma, Biao; Zou, Yilin; Xie, Xuan; Zhao, Jinhua; Piao, Xiangfan; Piao, Jingyi; Yao, Zhongping; Quinto, Maurizio; Wang, Gang; Li, Donghao

    2017-06-09

    A novel high-throughput, solvent saving and versatile integrated two-dimensional microscale carbon fiber/active carbon fiber system (2DμCFs) that allows a simply and rapid separation of compounds in low-polar, medium-polar and high-polar fractions, has been coupled with ambient ionization-mass spectrometry (ESI-Q-TOF-MS and ESI-QqQ-MS) for screening and quantitative analyses of real samples. 2DμCFs led to a substantial interference reduction and minimization of ionization suppression effects, thus increasing the sensitivity and the screening capabilities of the subsequent MS analysis. The method has been applied to the analysis of Schisandra Chinensis extracts, obtaining with a single injection a simultaneous determination of 33 compounds presenting different polarities, such as organic acids, lignans, and flavonoids in less than 7min, at low pressures and using small solvent amounts. The method was also validated using 10 model compounds, giving limit of detections (LODs) ranging from 0.3 to 30ngmL -1 , satisfactory recoveries (from 75.8 to 93.2%) and reproducibilities (relative standard deviations, RSDs, from 1.40 to 8.06%). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Laser sputter neutral mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    King, B V; Clarke, M; Hu, H; Betz, [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    Laser sputter neutral mass spectrometry (LSNMS) is an emerging technique for highly sensitive surface analysis. In this technique a target is bombarded with a pulsed beam of keV ions. The sputtered particles are intercepted by a high intensity pulsed laser beam above the surface and ionised with almost 100% efficiency. The photions may then be mass analysed using a quadrupole or, more commonly, using time of flight (TOF) techniques. In this method photoions are extracted from the ionisation region, accelerated to a known energy E{sub o} and strike a channelplate detector a distance `d` away. The flight time `t` of the photoions is then related to their mass by `d` {radical}m / {radical} 2E{sub o} so measurement of `t` allows mass spectra to be obtained. It is found that LSNMS is an emerging technique of great sensitivity and flexibility, useful for both applied analysis and to investigate basic sputtering processes. 4 refs., 3 figs.

  7. Laser sputter neutral mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    King, B.V.; Clarke, M.; Hu, H.; Betz [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    Laser sputter neutral mass spectrometry (LSNMS) is an emerging technique for highly sensitive surface analysis. In this technique a target is bombarded with a pulsed beam of keV ions. The sputtered particles are intercepted by a high intensity pulsed laser beam above the surface and ionised with almost 100% efficiency. The photions may then be mass analysed using a quadrupole or, more commonly, using time of flight (TOF) techniques. In this method photoions are extracted from the ionisation region, accelerated to a known energy E{sub o} and strike a channelplate detector a distance `d` away. The flight time `t` of the photoions is then related to their mass by `d` {radical}m / {radical} 2E{sub o} so measurement of `t` allows mass spectra to be obtained. It is found that LSNMS is an emerging technique of great sensitivity and flexibility, useful for both applied analysis and to investigate basic sputtering processes. 4 refs., 3 figs.

  8. Qualitative and quantitative analysis of the saponins in Panax notoginseng leaves using ultra-performance liquid chromatography coupled with time-of-flight tandem mass spectrometry and high performance liquid chromatography coupled with UV detector

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2018-04-01

    Full Text Available Background: Panax notoginseng leaves (PNL exhibit extensive activities, but few analytical methods have been established to exclusively determine the dammarane triterpene saponins in PNL. Methods: Ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC/Q-TOF MS and HPLC-UV methods were developed for the qualitative and quantitative analysis of ginsenosides in PNL, respectively. Results: Extraction conditions, including solvents and extraction methods, were optimized, which showed that ginsenosides Rc and Rb3, the main components of PNL, are transformed to notoginsenosides Fe and Fd, respectively, in the presence of water, by removing a glucose residue from position C-3 via possible enzymatic hydrolysis. A total of 57 saponins were identified in the methanolic extract of PNL by UPLC/Q-TOF MS. Among them, 19 components were unambiguously characterized by their reference substances. Additionally, seven saponins of PNL—ginsenosides Rb1, Rc, Rb2, and Rb3, and notoginsenosides Fc, Fe, and Fd—were quantified using the HPLC-UV method after extraction with methanol. The separation of analytes, particularly the separation of notoginsenoside Fc and ginsenoside Rc, was achieved on a Zorbax ODS C8 column at a temperature of 35°C. This developed HPLC-UV method provides an adequate linearity (r2>0.999, repeatability (relative standard deviation, RSD < 2.98%, and inter- and intraday variations (RSD < 4.40% with recovery (98.7–106.1% of seven saponins concerned. This validated method was also conducted to determine seven components in 10 batches of PNL. Conclusion: These findings are beneficial to the quality control of PNL and its relevant products. Keywords: ginsenoside transformation, notoginsenoside Fd, notoginsenoside Fe, Panax notoginseng leaves, UPLC/Q-TOF MS

  9. Separation and characterization of chemical constituents in Ginkgo biloba extract by off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography coupled with quadrupole-time of flight mass spectrometry.

    Science.gov (United States)

    Ji, Shuai; He, Dan-Dan; Wang, Tian-Yun; Han, Jie; Li, Zheng; Du, Yan; Zou, Jia-Hui; Guo, Meng-Zhe; Tang, Dao-Quan

    2017-11-30

    Ginkgo biloba extract (GBE), derived from the leaves of Ginkgo biloba L., is one of the most widely used traditional Chinese medicines worldwide. Due to high structural diversity and low abundance of chemical constituents in GBE, conventional reversed-phase liquid chromatography has limited power to meet the needs of its quality control. In this study, an off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography (HILIC×RP 2D-LC) system coupled with diode array detection (DAD) and quadrupole time-of-flight mass spectrometry (qTOF-MS) was established to comprehensively analyze the chemical constituents of GBE. After optimizing the chromatographic columns and mobile phase of 2D-LC, a Waters XBridge Amide column using acetonitrile/water/formic acid as the mobile phase was selected as the first dimension to fractionate GBE, and the obtained fractions were further separated on an Agilent Zorbax XDB-C18 column with methanol/water/formic acid as the mobile phase. As a result, a total of 125 compounds were detected in GBE. The orthogonality of the 2D-LC system was 69.5%, and the practical peak capacity was 3864 and 2994, respectively, calculated by two different methods. The structures of 104 compounds were tentatively characterized by qTOF-MS analysis, and 21 of them were further confirmed by comparing with reference standards. This established HILIC×RP 2D-LC-qTOF/MS system can greatly improve the separation and characterization of natural products in GBE or other complicated herbal extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A systematic data acquisition and mining strategy for chemical profiling of Aster tataricus rhizoma (Ziwan) by UHPLC-Q-TOF-MS and the corresponding anti-depressive activity screening.

    Science.gov (United States)

    Sun, Yupeng; Li, Li; Liao, Man; Su, Min; Wan, Changchen; Zhang, Lantong; Zhang, Hailin

    2018-05-30

    In this study, a systematic data acquisition and mining strategy aimed at the traditional Chinese medicine (TCM) complex system based on ultra high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS) was reported. The workflow of this strategy is as follows: First, the high resolution mass data are acquired by both data-dependent acquisition mode (DDA) and data-independent acquisition mode (DIA). Then a global data mining that combined targeted and non-targeted compound finding is applied to analyze mass spectral data. Furthermore, some assistant tools, such as key product ions (KPIs), are employed for compound hunting and identification. The TCM Ziwan (ZW, Aster tataricus rhizoma) was used to illustrate this strategy for the first time. In this research, total 131 compounds including organic acids, peptides, terpenes, steroids, flavonoids, coumarins, anthraquinones and aldehydes were identified or tentatively characterized in ZW based on accurate mass measurements within ±5 ppm error, and 50 of them were unambiguously confirmed by comparing standard compounds. Afterwards, based on the traditional Chinese medical theory and the key determinants of firing patterns of ventral tegmental area (VTA) dopamine (DA) neurons in the development of depression, the confirmed compounds were subsequently evaluated the pharmacological effect of activity of VTA DA neurons and anti-depressive efficacy. This research provided not only a chemical profiling for further in vivo study of ZW, but also an efficient data acquisition and mining strategy to profile the chemical constituents and find new bioactive substances for other TCM complex system. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Ninth ISMAS workshop on mass spectrometry

    International Nuclear Information System (INIS)

    Aggarwal, S.K.

    2000-12-01

    Mass spectrometry has wide-ranging applications in such diverse areas as nuclear industry, agriculture, drugs, environment, petroleum and lentils. There is an urgent need to absorb and assimilate state-of-the-art technological developments in the field. Emerging trends in atomic mass spectrometry, advances in organic mass spectrometry, qualitative and quantitative analyses by mass spectrometry and mass spectrometry in oceanography are some of the areas that need to be expeditiously examined and are covered in this volume. Papers relevant to INIS are indexed separately

  12. Quantitative mass spectrometry: an overview

    Science.gov (United States)

    Urban, Pawel L.

    2016-10-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue 'Quantitative mass spectrometry'.

  13. Principle of accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Matsuzaki, Hiroyuki

    2007-01-01

    The principle of accelerator mass spectrometry (AMS) is described mainly on technical aspects: hardware construction of AMS, measurement of isotope ratio, sensitivity of measurement (measuring limit), measuring accuracy, and application of data. The content may be summarized as follows: rare isotope (often long-lived radioactive isotope) can be detected by various use of the ion energy obtained by the acceleration of ions, a measurable isotope ratio is one of rare isotope to abundant isotopes, and a measured value of isotope ratio is uncertainty to true one. Such a fact must be kept in mind on the use of AMS data to application research. (M.H.)

  14. Electrospray Ionization with High-Resolution Mass Spectrometry as a Tool for Lignomics: Lignin Mass Spectrum Deconvolution

    Science.gov (United States)

    Andrianova, Anastasia A.; DiProspero, Thomas; Geib, Clayton; Smoliakova, Irina P.; Kozliak, Evguenii I.; Kubátová, Alena

    2018-05-01

    The capability to characterize lignin, lignocellulose, and their degradation products is essential for the development of new renewable feedstocks. Electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR TOF-MS) method was developed expanding the lignomics toolkit while targeting the simultaneous detection of low and high molecular weight (MW) lignin species. The effect of a broad range of electrolytes and various ionization conditions on ion formation and ionization effectiveness was studied using a suite of mono-, di-, and triarene lignin model compounds as well as kraft alkali lignin. Contrary to the previous studies, the positive ionization mode was found to be more effective for methoxy-substituted arenes and polyphenols, i.e., species of a broadly varied MW structurally similar to the native lignin. For the first time, we report an effective formation of multiply charged species of lignin with the subsequent mass spectrum deconvolution in the presence of 100 mmol L-1 formic acid in the positive ESI mode. The developed method enabled the detection of lignin species with an MW between 150 and 9000 Da or higher, depending on the mass analyzer. The obtained M n and M w values of 1500 and 2500 Da, respectively, were in good agreement with those determined by gel permeation chromatography. Furthermore, the deconvoluted ESI mass spectrum was similar to that obtained with matrix-assisted laser desorption/ionization (MALDI)-HR TOF-MS, yet featuring a higher signal-to-noise ratio. The formation of multiply charged species was confirmed with ion mobility ESI-HR Q-TOF-MS. [Figure not available: see fulltext.

  15. Protein Analysis by Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Cindic, M.

    2008-04-01

    Full Text Available Soft ionization techniques, electrospray (ESI and matrix-assisted laser desorption/ionization (MALDI make the analysis of biomolecules by mass spectrometry (MS possible. MS is used for determination of the molecular weight of peptides and protein, sequence analysis, characterization of protein-ligand interactions etc. The detection limit, resolution and mass accuracy depend on instrument used (Table 1. Impurities (buffers, salts, detergents can reduce the ion intensities or even totally suppress them, so a separation method (chromatography, 2D-gel electrophoresis must be used for purification of the sample.Molecular mass of intact protein can be determined by ESI or MALDI MS. Multiply charged ions are produced by ESI MS, while singly charged ions are predominant in MALDI spectra (Fig. 2.Sequence analysis of proteins by MS can be performed using peptide mass fingerprint. In this method, proteins are separated by 2-D gel electrophoresis and digested with specific protease (Table 2 or digested and then separated by two-dimensional chromatography (Fig. 1. The obtained peptide mixtures are analyzed by MS or MALDI-TOF technique. The masses determined by MS are compared with calculated masses from database entries. Different algorithms have been developed for protein identification. Example of posttranslational modifications (N- and O-glycosylation and protein sequence complex analysis after dual digestion (endoproteinase digestion followed by endoglycosidase digestion is shown in Fig. 3.It is known that detection of peptides by MS is influenced by intrinsic properties like amino acid composition, the basicity of the C-terminal amino acid, hydrophobicity, etc. Arginine-containing peptides dominate in MS spectra of tryptic digest, so the chemical derivatization of lysine terminal residue by O-methilisourea or 2-methoxy-4,5-1H-imidazole was suggested (Fig. 4.The peptide mass fingerprint method can be improved further by peptide fragmentation using tandem

  16. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.; Wolff, Jeremy J.; Somogyi, Árpád; Pedder, Randall E.; Quintyn, Royston S.; Morrison, Lindsay J.; Easterling, Michael L.; Paša-Tolić, Ljiljana; Wysocki, Vicki H.

    2017-01-03

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on non-covalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 kDa to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.

  17. Ion detection in mass spectrometry

    International Nuclear Information System (INIS)

    Bolbach, Gerard

    2016-03-01

    This course aims at providing some elements for a better understanding of ion detectors used in mass spectrometers, of their operations, and of their limitations. A first part addresses the functions and properties of an ideal detector, how to detect ions in gas phase, and particle detectors and ion detectors used in mass spectrometry. The second part proposes an overview of currently used detectors with respect to their operation principle: detection from the ion charge (Faraday cylinder), detection by inductive effects (FTICR, Fourier Transform Ion Cyclotron Resonance), and detection by secondary electron emission. The third part discusses the specificities of secondary electron emission. The fourth one addresses operating modes and parameters related to detectors. The sixth part proposes a prospective view on future detectors by addressing the following issues: cryo-detector, inductive effect and charge detectors, ion detection and nano materials

  18. Mass Spectrometry Applications for Toxicology.

    Science.gov (United States)

    Mbughuni, Michael M; Jannetto, Paul J; Langman, Loralie J

    2016-12-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MS n ) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology.

  19. Mass Spectrometry Applications for Toxicology

    Science.gov (United States)

    Mbughuni, Michael M.; Jannetto, Paul J.

    2016-01-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MSn) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology. PMID:28149262

  20. Progress in mass spectrometry for the analysis of set-off phenomena in plastic food packaging materials.

    Science.gov (United States)

    Aznar, Margarita; Alfaro, Pilar; Nerín, Cristina; Jones, Emrys; Riches, Eleanor

    2016-07-01

    In most cases, food packaging materials contain inks whose components can migrate to food by diffusion through the material as well as by set-off phenomena. In this work, different mass spectrometry approaches had been used in order to identify and confirm the presence of ink components in ethanol (95%) and Tenax(®) as food simulants. Three different sets of materials, manufactured with different printing technologies and with different structures, were analyzed. Sample analysis by ultra performance liquid chromatography mass spectrometry (UPLC-MS), using a quadrupole-time of flight (Q-TOF) as a mass analyser proved to be an excellent tool for identification purposes while ion mobility mass spectrometry (IM-MS) shown to be very useful for the confirmation of the candidates proposed. The results showed the presence of different non-volatile ink components in migration such as colorants (Solvent Red 49), plasticizers (dimethyl sebacate, tributyl o-acetyl citrate) or surfactants (SchercodineM, triethylene glycol caprilate). An oxidation product of an ink additive (triphenyl phosphine oxide) was also detected. In addition, a surface analysis technique, desorption electrospray mass spectrometry (DESI-MS), was used for analyzing the distribution of some ink components (tributyl o-acetyl citrate Schercodine L, phthalates) in the material. The detection of some of these compounds in the back-printed side confirmed the transference of this compound from the non-food to the food contact side. The results also showed that concentration of ink migrants decreased when an aluminum or polypropylene layer covered the ink. When aluminum was used, concentration of most of ink migrants decreased, and for 5 out of the 9 even disappeared. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. MALDI Q-TOF CID MS for Diagnostic Ion Screening of Human Milk Oligosaccharide Samples

    Directory of Open Access Journals (Sweden)

    Marko Jovanović

    2014-04-01

    Full Text Available Human milk oligosaccharides (HMO represent the bioactive components of human milk, influencing the infant’s gastrointestinal microflora and immune system. Structurally, they represent a highly complex class of analyte, where the main core oligosaccharide structures are built from galactose and N-acetylglucosamine, linked by 1-3 or 1-4 glycosidic linkages and potentially modified with fucose and sialic acid residues. The core structures can be linear or branched. Additional structural complexity in samples can be induced by endogenous exoglycosidase activity or chemical procedures during the sample preparation. Here, we show that using matrix-assisted laser desorption/ionization (MALDI quadrupole-time-of-flight (Q-TOF collision-induced dissociation (CID as a fast screening method, diagnostic structural information about single oligosaccharide components present in a complex mixture can be obtained. According to sequencing data on 14 out of 22 parent ions detected in a single high molecular weight oligosaccharide chromatographic fraction, 20 different oligosaccharide structure types, corresponding to over 30 isomeric oligosaccharide structures and over 100 possible HMO isomers when biosynthetic linkage variations were taken into account, were postulated. For MS/MS data analysis, we used the de novo sequencing approach using diagnostic ion analysis on reduced oligosaccharides by following known biosynthetic rules. Using this approach, de novo characterization has been achieved also for the structures, which could not have been predicted.

  2. Classification of Opium by UPLC-Q-TOF Analysis of Principal and Minor Alkaloids.

    Science.gov (United States)

    Liu, Cuimei; Hua, Zhendong; Bai, Yanping

    2016-11-01

    Opium is the raw material for the production of heroin, and the characterization of opium seizures through laboratory analysis is a valuable tool for law enforcement agencies to trace clandestine opium production and trafficking. In this work, a method for opium profiling based on the relative content of five principal and 14 minor opium alkaloids was developed and validated. UPLC-Q-TOF was adopted in alkaloid analysis for its high selectivity and sensitivity, which facilitated the sample preparation and testing. The authentic sample set consisted of 100 "Myanmar" and 45 "Afghanistan" opium seizures; based on the data set of the 19 alkaloid variables in them, a partial least squares discriminant analysis classification model was successfully achieved. Minor alkaloids were found to be vitally important for opium profiling, although combined use of both principal and minor alkaloids resulted in the best geographical classification result. The developed method realized a simple and accurate way to differentiate opium from Myanmar and Afghanistan, which may find wide application in forensic laboratories. © 2016 American Academy of Forensic Sciences.

  3. Qualitative and quantitative analysis of the saponins in Panax notoginseng leaves using ultra-performance liquid chromatography coupled with time-of-flight tandem mass spectrometry and high performance liquid chromatography coupled with UV detector.

    Science.gov (United States)

    Liu, Fang; Ma, Ni; He, Chengwei; Hu, Yuanjia; Li, Peng; Chen, Meiwan; Su, Huanxing; Wan, Jian-Bo

    2018-04-01

    Panax notoginseng leaves (PNL) exhibit extensive activities, but few analytical methods have been established to exclusively determine the dammarane triterpene saponins in PNL. Ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC/Q-TOF MS) and HPLC-UV methods were developed for the qualitative and quantitative analysis of ginsenosides in PNL, respectively. Extraction conditions, including solvents and extraction methods, were optimized, which showed that ginsenosides Rc and Rb3, the main components of PNL, are transformed to notoginsenosides Fe and Fd, respectively, in the presence of water, by removing a glucose residue from position C-3 via possible enzymatic hydrolysis. A total of 57 saponins were identified in the methanolic extract of PNL by UPLC/Q-TOF MS. Among them, 19 components were unambiguously characterized by their reference substances. Additionally, seven saponins of PNL-ginsenosides Rb1, Rc, Rb2, and Rb3, and notoginsenosides Fc, Fe, and Fd-were quantified using the HPLC-UV method after extraction with methanol. The separation of analytes, particularly the separation of notoginsenoside Fc and ginsenoside Rc, was achieved on a Zorbax ODS C8 column at a temperature of 35°C. This developed HPLC-UV method provides an adequate linearity ( r 2  > 0.999), repeatability (relative standard deviation, RSD PNL. These findings are beneficial to the quality control of PNL and its relevant products.

  4. Role of Mass Spectrometry in Clinical Endocrinology.

    Science.gov (United States)

    Ketha, Siva S; Singh, Ravinder J; Ketha, Hemamalini

    2017-09-01

    The advent of mass spectrometry into the clinical laboratory has led to an improvement in clinical management of several endocrine diseases. Liquid chromatography tandem mass spectrometry found some of its first clinical applications in the diagnosis of inborn errors of metabolism, in quantitative steroid analysis, and in drug analysis laboratories. Mass spectrometry assays offer analytical sensitivity and specificity that is superior to immunoassays for many analytes. This article highlights several areas of clinical endocrinology that have witnessed the use of liquid chromatography tandem mass spectrometry to improve clinical outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Accelerator mass spectrometry in NIPNE

    International Nuclear Information System (INIS)

    Ivascu, M; Marinescu, L.; Dima, R.; Cata-Danil, D.; Petrascu, M.; Popescu, I.; Stan-Sion, C.; Radulescu, M.; Plostinaru, D.

    1997-01-01

    The Accelerator Mass Spectrometry (AMS) is today the method capable to measure the lowest concentration of a particular nuclide in sample materials. The method has applications in environmental physics, medicine, measurements of cosmic-ray or nuclear power plant produced radionuclides in the earth's atmosphere. All over the world, more than 40 charged particles and heavy ion accelerators are performing such analyses concerning the research interest of a huge number of laboratories. The Romanian Institute of Nuclear Physics and Engineering in Bucharest has initiated a construction project for the AMS facility at the FN - Van de Graaff Tandem accelerator. This program benefits of technical and financial assistance provided by IAEA in the frame of the IAEA-TC Project ROM 8014-265C. A general lay-out of the AMS project is presented. The construction work has begun and first tests of the AMS injector will take place between July - September this year. (authors)

  6. A REVIEW ON MASS SPECTROMETRY DETECTORS

    OpenAIRE

    Khatri Neetu; Gupta Ankit; Taneja Ruchi; Bilandi Ajay; Beniwal Prashant

    2012-01-01

    Mass spectrometry is an analytical technique for "weighing" molecules. Obviously, this is not done with a conventional scale or balance. Instead, mass spectrometry is based upon the principle of the motion of a charged particle that is called an ion, in an electric or magnetic field. The mass to charge ratio (m/z) of the ion affects particles motion. Since the charge of an electron is known, the mass to charge ratio (m/z) is a measurement of mass of an ion. Mass spectrometry research focuses ...

  7. UPLC-Q-TOF/MS based metabolomic profiling of serum and urine of hyperlipidemic rats induced by high fat diet

    Directory of Open Access Journals (Sweden)

    Qiong Wu

    2014-12-01

    Full Text Available Hyperlipidemia is considered to be a high lipid level in blood, can induce metabolic disorders and dysfunctions of the body, and results in some severe complications. Therefore, hunting for some metabolite markers and clarifying the metabolic pathways in vivo will be an important strategy in the treatment and prevention of hyperlipidemia. In this study, a rat model of hyperlipidemia was constructed according to histopathological data and biochemical parameters, and the metabolites of serum and urine were analyzed by UPLC-Q-TOF/MS. Combining pattern recognition and statistical analysis, 19 candidate biomarkers were screened and identified. These changed metabolites indicated that during the development and progression of hyperlipidemia, energy metabolism, lipid metabolism, amino acid metabolism and nucleotide metabolism were mainly disturbed, which are reported to be closely related to diabetes, cardiovascular diseases, etc. This study demonstrated that a UPLC-Q-TOF/MS based metabolomic approach is useful to profile the alternation of endogenous metabolites of hyperlipidemia. Keywords: UPLC-Q-TOF/MS, Hyperlipidemia, Metabolomic, Pattern recognition

  8. Alpha spectrometry and secondary ion mass spectrometry of thorium

    International Nuclear Information System (INIS)

    Strisovska, Jana; Kuruc, Jozef; Galanda, Dusan; Matel, Lubomir; Velic, Dusan; Aranyosiova, Monika

    2009-01-01

    A sample of thorium content on steel discs was prepared by electrodeposition with a view to determining the natural thorium isotope. Thorium was determined by alpha spectrometry and by secondary ion mass spectrometry and the results of the two methods were compared

  9. NICHD Biomedical Mass Spectrometry Core Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Biomedical Mass Spectrometry Core Facility was created under the auspices of the Office of the Scientific Director to provide high-end mass-spectrometric...

  10. Atom counting with accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Kutschera, Walter

    1995-01-01

    A brief review of the current status and some recent applications of accelerator mass spectrometry (AMS) are presented. Some connections to resonance ionization mass spectroscopy (RIS) as the alternate atom counting method are discussed

  11. Mass spectrometry-assisted protease substrate screening

    DEFF Research Database (Denmark)

    Schlüter, Hartmut; Rykl, Jana; Thiemann, Joachim

    2007-01-01

    -phase chromatography they are analyzed by tandem mass spectrometry and the substrates identified by database searching. The proof of principle in this study is demonstrated by incubating immobilized human plasma proteins with thrombin and by identifying by tandem mass spectrometry the fibrinopeptides, released...

  12. Inorganic mass spectrometry of solid samples

    International Nuclear Information System (INIS)

    Adams, F.; Vertes, A.

    1990-01-01

    In this review some recent developments in the field of inorganic mass spectrometry of solids are described with special emphasis on the actual state of understanding of the ionization processes. It concentrates on the common characteristics of methods such as spark source-, laser-, secondary ion-, inductively coupled plasma- and glow discharge mass spectrometry. (orig.)

  13. Surface analysis by imaging mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Vidová, Veronika; Volný, Michael; Lemr, Karel; Havlíček, Vladimír

    2009-01-01

    Roč. 74, 7-8 (2009), s. 1101-1116 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z50200510 Keywords : secondary ion mass spectrometry * matrix assisted laser desorption ionization * mass spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.856, year: 2009

  14. Introduction to mass spectrometry-based proteomics

    DEFF Research Database (Denmark)

    Matthiesen, R.; Bunkenborg, J.

    2013-01-01

    Mass spectrometry has been widely applied to study biomolecules and one rapidly developing field is the global analysis of proteins, proteomics. Understanding and handling mass spectrometry data is a multifaceted task that requires many decisions to be made to get the most comprehensive informati...

  15. Zero voltage mass spectrometry probes and systems

    Science.gov (United States)

    Cooks, Robert Graham; Wleklinski, Michael Stanley; Bag, Soumabha; Li, Yafeng

    2017-10-10

    The invention generally relates to zero volt mass spectrometry probes and systems. In certain embodiments, the invention provides a system including a mass spectrometry probe including a porous material, and a mass spectrometer (bench-top or miniature mass spectrometer). The system operates without an application of voltage to the probe. In certain embodiments, the probe is oriented such that a distal end faces an inlet of the mass spectrometer. In other embodiments, the distal end of the probe is 5 mm or less from an inlet of the mass spectrometer.

  16. Mass spectrometry at the Pittsburgh conference

    International Nuclear Information System (INIS)

    Borman, S.

    1987-01-01

    Each year analytical chemists flock to the Pittsburgh Conference to learn about the latest trends in analytical instrumentation. In this Focus, a number of prominent mass spectroscopists who attended this year's meeting in Atlantic City, NJ, discuss their perceptions of current developments in the field of mass spectrometry (MS). In the June 1 issue of Analytical Chemistry, the authors coverage of the Pittsburgh Conferences continues with a follow-up article on specific developments in hyphenated mass spectrometry - primarily liquid chromatography - MS (LC/MS) and gas chromatography - infrared spectrometry MS (GC/IR/MS)

  17. Chromatography–mass spectrometry in aerospace industry

    International Nuclear Information System (INIS)

    Buryak, Alexey K; Serduk, T M

    2013-01-01

    The applications of chromatography–mass spectrometry in aerospace industry are considered. The primary attention is devoted to the development of physicochemical grounds of the use of various chromatography–mass spectrometry procedures to solve topical problems of this industry. Various methods for investigation of the composition of rocket fuels, surfaces of structural materials and environmental media affected by aerospace activities are compared. The application of chromatography–mass spectrometry for the development and evaluation of processes for decontaminations of equipment, industrial wastes and soils from rocket fuel components is substantiated. The bibliography includes 135 references.

  18. Mass spectrometry of long-lived radionuclides

    International Nuclear Information System (INIS)

    Becker, Johanna Sabine.

    2003-01-01

    The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated--therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129 Xe + for the determination of 129 I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass

  19. Ultra-sensitive radionuclide spectrometry. Radiometrics and mass spectrometry synergy

    International Nuclear Information System (INIS)

    Povinec, P.P.

    2005-01-01

    Recent developments in radiometrics and mass spectrometry techniques for ultra-sensitive analysis of radionuclides in the marine environment are reviewed. In the radiometrics sector the dominant development has been the utilization of large HPGe detectors in underground laboratories with anti-cosmic or anti-Compton shielding for the analysis of short and medium-lived radionuclides in the environment. In the mass spectrometry sector, applications of inductively coupled plasma mass spectrometry (ICP-MS) and accelerator mass spectrometry (AMS) for the analysis of long-lived radionuclides in the environment are the most important recent achievements. The recent developments do not only considerably decrease the detection limits for several radionuclides (up to several orders of magnitude), but they also enable to decrease sample volumes so that sampling, e.g., of the water column can be much easier and more effective. A comparison of radiometrics and mass spectrometry results for the analysis of radionuclides in the marine environment shows a reasonable agreement - within quoted uncertainties, for wide range of activities and different sample matrices analyzed. (author)

  20. Classification and analysis of corn steep liquor by UPLC/Q-TOF MS and HPLC.

    Science.gov (United States)

    Xiao, Xue; Hou, Yuanyuan; Liu, Yang; Liu, Yanjie; Zhao, Hongzhi; Dong, Linyi; Du, Jun; Wang, Yiming; Bai, Gang; Luo, Guoan

    2013-03-30

    Corn steep liquor (CSL), an important raw material with high nutritional value, serves as a nitrogen source in the fermentation industry. The CSL quality directly affects the yield and quality of fermentation products. In this work, a fingerprinting technique was used to identify the potential markers of CSL. Forty-two CSL samples from different manufacturers were profiled by ultra-performance liquid chromatography with tandem quadrupole time-of-flight mass spectrometry. Sixteen compounds, almost all of which were amino acids and their derivatives, were considered as the potential markers. Then, o-phthalaldehyde-9-fluorenylmethyl chloroformate precolumn derivatization by high-performance liquid chromatography was performed to identify the free amino acids in CSL. Principal component analysis (PCA) was used to distinguish among the samples from different manufacturers. The results demonstrated that the fingerprinting technique combined with PCA analysis was a powerful tool for determining the CSL quality. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Tandem mass spectrometry at low kinetic energy

    International Nuclear Information System (INIS)

    Cooks, R.G.; Hand, O.W.

    1987-01-01

    Recent progress in mass spectrometry, as applied to molecular analysis, is reviewed with emphasis on tandem mass spectrometry. Tandem instruments use multiple analyzers (sector magnets, quadrupole mass filters and time-of-flight devices) to select particular molecules in ionic form, react them in the gas-phase and then record the mass, momenta or kinetic energies of their products. The capabilities of tandem mass spectrometry for identification of individual molecules or particular classes of compounds in complex mixtures are illustrated. Several different types of experiments can be run using a tandem mass spectrometer; all share the feature of sifting the molecular mixture being analyzed on the basis of chemical properties expressed in terms of ionic mass, kinetic energy or charge state. Applications of mass spectrometry to biological problems often depend upon desorption methods of ionization in which samples are bombarded with particle beams. Evaporation of preformed charged species from the condensed phase into the vacuum is a particularly effective method of ionization. It is suggested that the use of accelerator mass spectrometers be extended to include problems of molecular analysis. In such experiments, low energy tandem mass spectrometry conducted in the eV or keV range of energies, would be followed by further characterization of the production ion beam using high selective MeV collision processes

  2. Profiling the Metabolism of Astragaloside IV by Ultra Performance Liquid Chromatography Coupled with Quadrupole/Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Xu-Dong Cheng

    2014-11-01

    Full Text Available Astragaloside IV is a compound isolated from the Traditional Chinese Medicine Astragalus membranaceus, that has been reported to have bioactivities against cardiovascular disease and kidney disease. There is limited information on the metabolism of astragaloside IV, which impedes comprehension of its biological actions and pharmacology. In the present study, an ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS-based approach was developed to profile the metabolites of astragaloside IV in rat plasma, bile, urine and feces samples. Twenty-two major metabolites were detected. The major components found in plasma, bile, urine and feces included the parent chemical and phases I and II metabolites. The major metabolic reactions of astragaloside IV were hydrolysis, glucuronidation, sulfation and dehydrogenation. These results will help to improve understanding the metabolism and reveal the biotransformation profiling of astragaloside IV in vivo. The metabolic information obtained from our study will guide studies into the pharmacological activity and clinical safety of astragaloside IV.

  3. Metabolite Analysis of Toosendanin by an Ultra-High Performance Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry Technique

    Directory of Open Access Journals (Sweden)

    Na Li

    2013-09-01

    Full Text Available Toosendanin is the major bioactive component of Melia toosendan Sieb. et Zucc., which is traditionally used for treatment of abdominal pain and as an insecticide. Previous studies reported that toosendanin possesses hepatotoxicity, but the mechanism remains unknown. Its bioavailability in rats is low, which indicates the hepatotoxicity might be induced by its metabolites. In this connection, in the current study, we examined the metabolites obtained by incubating toosendanin with human live microsomes, and then six of these metabolites (M1–M6 were identified for the first time by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF/MS. Further analysis on the MS spectra showed M1, M2, and M3 are oxidative products and M6 is a dehydrogenation product, while M4 and M5 are oxidative and dehydrogenation products of toosendanin. Moreover, their possible structures were deduced from the MS/MS spectral features. Quantitative analysis demonstrated that M1-M5 levels rapidly increased and reached a plateau at 30 min, while M6 rapidly reached a maximal level at 20 min and then decreased slowly afterwards. These findings have provided valuable data not only for understanding the metabolic fate of toosendanin in liver microsomes, but also for elucidating the possible molecular mechanism of its hepatotoxicity.

  4. Analysis of the Constituents in “Zhu She Yong Xue Shuan Tong” by Ultra High Performance Liquid Chromatography with Quadrupole Time-of-Flight Mass Spectrometry Combined with Preparative High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Lin-Lin Wang

    2015-11-01

    Full Text Available “Zhu She Yong Xue Shuan Tong” lyophilized powder (ZSYXST, consists of a series of saponins extracted from Panax notoginseng, which has been widely used in China for the treatment of strokes. In this study, an ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS combined with preparative high performance liquid chromatography (PHPLC method was developed to rapidly identify both major and minor saponins in ZSYXST. Some high content components were removed through PHPLC in order to increase the sensitivity of the trace saponins. Then, specific characteristic fragment ions in both positive and negative mode were utilized to determine the types of aglycone, saccharide, as well as the saccharide chain linkages. As a result, 94 saponins, including 20 pairs of isomers and ten new compounds, which could represent higher than 98% components in ZSYXST, were identified or tentatively identified in commercial ZSYXST samples.

  5. Methods for recalibration of mass spectrometry data

    Science.gov (United States)

    Tolmachev, Aleksey V [Richland, WA; Smith, Richard D [Richland, WA

    2009-03-03

    Disclosed are methods for recalibrating mass spectrometry data that provide improvement in both mass accuracy and precision by adjusting for experimental variance in parameters that have a substantial impact on mass measurement accuracy. Optimal coefficients are determined using correlated pairs of mass values compiled by matching sets of measured and putative mass values that minimize overall effective mass error and mass error spread. Coefficients are subsequently used to correct mass values for peaks detected in the measured dataset, providing recalibration thereof. Sub-ppm mass measurement accuracy has been demonstrated on a complex fungal proteome after recalibration, providing improved confidence for peptide identifications.

  6. Pyrolysis - gas chromatography - mass spectrometry of lignins

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F; Saiz-Jimenez, C; Gonzalez-Vila, F J

    1979-01-01

    Milled wood lignins from spruce, beech and bamboo were pyrolysed. The high-boiling products of pyrolysis were studied by GLC and mass spectrometry. The forty-three products identified provide information on the structural units of lignin.

  7. Stable isotope mass spectrometry in petroleum exploration

    International Nuclear Information System (INIS)

    Mathur, Manju

    1997-01-01

    The stable isotope mass spectrometry plays an important role to evaluate the stable isotopic composition of hydrocarbons. The isotopic ratios of certain elements in petroleum samples reflect certain characteristics which are useful for petroleum exploration

  8. Mass Spectrometry-Based Biomarker Discovery.

    Science.gov (United States)

    Zhou, Weidong; Petricoin, Emanuel F; Longo, Caterina

    2017-01-01

    The discovery of candidate biomarkers within the entire proteome is one of the most important and challenging goals in proteomic research. Mass spectrometry-based proteomics is a modern and promising technology for semiquantitative and qualitative assessment of proteins, enabling protein sequencing and identification with exquisite accuracy and sensitivity. For mass spectrometry analysis, protein extractions from tissues or body fluids and subsequent protein fractionation represent an important and unavoidable step in the workflow for biomarker discovery. Following extraction of proteins, the protein mixture must be digested, reduced, alkylated, and cleaned up prior to mass spectrometry. The aim of our chapter is to provide comprehensible and practical lab procedures for sample digestion, protein fractionation, and subsequent mass spectrometry analysis.

  9. Radiation Biomarker Research Using Mass Spectrometry

    National Research Council Canada - National Science Library

    Bach, Stephan B; Hubert, Walter

    2007-01-01

    .... This review is intended to give an overview of mass spectrometry and its application to biological systems and biomarker discovery and how that might relate to relevant radiation dosimetry studies...

  10. Mass Spectrometry Analyses of Multicellular Tumor Spheroids.

    Science.gov (United States)

    Acland, Mitchell; Mittal, Parul; Lokman, Noor A; Klingler-Hoffmann, Manuela; Oehler, Martin K; Hoffmann, Peter

    2018-05-01

    Multicellular tumor spheroids (MCTS) are a powerful biological in vitro model, which closely mimics the 3D structure of primary avascularized tumors. Mass spectrometry (MS) has established itself as a powerful analytical tool, not only to better understand and describe the complex structure of MCTS, but also to monitor their response to cancer therapeutics. The first part of this review focuses on traditional mass spectrometry approaches with an emphasis on elucidating the molecular characteristics of these structures. Then the mass spectrometry imaging (MSI) approaches used to obtain spatially defined information from MCTS is described. Finally the analysis of primary spheroids, such as those present in ovarian cancer, and the great potential that mass spectrometry analysis of these structures has for improved understanding of cancer progression and for personalized in vitro therapeutic testing is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mass spectrometry in life science research.

    Science.gov (United States)

    Lehr, Stefan; Markgraf, Daniel

    2016-12-01

    Investigating complex signatures of biomolecules by mass spectrometry approaches has become indispensable in molecular life science research. Nowadays, various mass spectrometry-based omics technologies are available to monitor qualitative and quantitative changes within hundreds or thousands of biological active components, including proteins/peptides, lipids and metabolites. These comprehensive investigations have the potential to decipher the pathophysiology of disease development at a molecular level and to monitor the individual response of pharmacological treatment or lifestyle intervention.

  12. Chiral separation and chemical profile of Dengzhan Shengmai by integrating comprehensive with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Sheng, Ning; Zheng, Hao; Xiao, Yao; Wang, Zhe; Li, Menglin; Zhang, Jinlan

    2017-09-29

    Chemical profile for Chinese medicine formulas composed of several herbs is always a challenge due to a big array of small molecules with high chemical diversity so much as isomers. The present paper develops a feasible strategy to characterize and identify complex chemical constituents of a four-herb traditional Chinese medicine formula, Denzhan Shenmai (DZSM) by integrating comprehensive two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC×LC-qTOF-MS) with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (MHC-qTOF-MS). DZSM was separated by C8×C18 HPLC column system for comprehensive two-dimensional liquid chromatography system and 283 compounds most of which belonged to phenolic acid, flavonoid, saponin and lignan families were characterized and identified within 75min. Some isomers and compounds at low level were analyzed on C8×Chiral HPLC column system for multiple heart-cutting two-dimensional liquid chromatography system with 1D and 2D optimized gradient elution program. These 1D cutting fractions were successively separated on 2D chiral chromatographic column under extended the 2D gradient elution time from 30s to 5.0min. 12 pairs of isomer compounds were separated with good resolution. The combination of LC×LC and MHC system provides a powerful technique for global chemical profiling of DZSM and provided feasible strategy for other complex systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Mass Spectrometry in the Home and Garden

    Science.gov (United States)

    Pulliam, Christopher J.; Bain, Ryan M.; Wiley, Joshua S.; Ouyang, Zheng; Cooks, R. Graham

    2015-02-01

    Identification of active components in a variety of chemical products used directly by consumers is described at both trace and bulk levels using mass spectrometry. The combination of external ambient ionization with a portable mass spectrometer capable of tandem mass spectrometry provides high chemical specificity and sensitivity as well as allowing on-site monitoring. These experiments were done using a custom-built portable ion trap mass spectrometer in combination with the ambient ionization methods of paper spray, leaf spray, and low temperature plasma ionization. Bactericides, garden chemicals, air fresheners, and other products were examined. Herbicide applied to suburban lawns was detected in situ on single leaves 5 d after application.

  14. Characterization of Printing Inks Using DART-Q-TOF-MS and Attenuated Total Reflectance (ATR) FTIR.

    Science.gov (United States)

    Williamson, Rhett; Raeva, Anna; Almirall, Jose R

    2016-05-01

    The rise in improved and widely accessible printing technology has resulted in an interest to develop rapid and minimally destructive chemical analytical techniques that can characterize printing inks for forensic document analysis. Chemical characterization of printing inks allows for both discrimination of inks originating from different sources and the association of inks originating from the same source. Direct analysis in real-time mass spectrometry (DART-MS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) were used in tandem to analyze four different classes of printing inks: inkjets, toners, offset, and intaglio. A total of 319 samples or ~ 80 samples from each class were analyzed directly on a paper substrate using the two methods. DART-MS was found to characterize the semi-volatile polymeric vehicle components, while ATR-FTIR provided chemical information associated with the bulk components of these inks. Complimentary data results in improved discrimination when both techniques are used in succession resulting in >96% discrimination for all toners, 95% for all inkjets, >92% for all offset, and >54% for all intaglio inks. © 2016 American Academy of Forensic Sciences.

  15. A Metabolomics-Guided Exploration of the Phytochemical Constituents of Vernonia fastigiata with the Aid of Pressurized Hot Water Extraction and Liquid Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Masike, Keabetswe; Khoza, Bradley S; Steenkamp, Paul A; Smit, Elize; Dubery, Ian A; Madala, Ntakadzeni E

    2017-07-27

    Vernonia fastigiata is a multi-purpose nutraceutical plant with interesting biological properties. However, very little is known about its phytochemical composition and, thus the need for its phytochemical characterization. In the current study, an environmentally friendly method, pressurized hot water extraction (PHWE), was used to extract metabolites from the leaves of V. fastigiata at various temperatures (50 °C, 100 °C, 150 °C and 200 °C). Ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-qTOF-MS) analysis in combination with chemometric methods, particularly principal component analysis (PCA) and liquid/gas chromatography mass spectrometry (XCMS) cloud plots, were used to descriptively visualize the data and identify significant metabolites extracted at various temperatures. A total of 25 different metabolites, including hydroxycinnamic acid derivatives, clovamide, deoxy-clovamide and flavonoids, were noted for the first time in this plant. Overall, an increase in extraction temperature resulted in an increase in metabolite extraction during PHWE. This study is the first scientific report on the phytochemical composition of V. fastigiata , providing insight into the components of the chemo-diversity of this important plant.

  16. Analysis of mass spectrometry data in proteomics

    DEFF Research Database (Denmark)

    Matthiesen, Rune; Jensen, Ole N

    2008-01-01

    The systematic study of proteins and protein networks, that is, proteomics, calls for qualitative and quantitative analysis of proteins and peptides. Mass spectrometry (MS) is a key analytical technology in current proteomics and modern mass spectrometers generate large amounts of high-quality data...... that in turn allow protein identification, annotation of secondary modifications, and determination of the absolute or relative abundance of individual proteins. Advances in mass spectrometry-driven proteomics rely on robust bioinformatics tools that enable large-scale data analysis. This chapter describes...... some of the basic concepts and current approaches to the analysis of MS and MS/MS data in proteomics....

  17. Mass spectrometry: a revolution in clinical microbiology?

    Science.gov (United States)

    Lavigne, Jean-Philippe; Espinal, Paula; Dunyach-Remy, Catherine; Messad, Nourredine; Pantel, Alix; Sotto, Albert

    2013-02-01

    Recently, different bacteriological laboratory interventions that decrease reporting time have been developed. These promising new broad-based techniques have merit, based on their ability to identify rapidly many bacteria, organisms difficult to grow or newly emerging strains, as well as their capacity to track disease transmission. The benefit of rapid reporting of identification and/or resistance of bacteria can greatly impact patient outcomes, with an improvement in the use of antibiotics, in the reduction of the emergence of multidrug resistant bacteria and in mortality rates. Different techniques revolve around mass spectrometry (MS) technology: matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), PCR combined with electrospray ionization-mass spectrometry (PCR/ESIMS), iPLEX MassArray system and other new evolutions combining different techniques. This report emphasizes the (r)evolution of these technologies in clinical microbiology.

  18. Mass spectrometry in nuclear science and technology

    International Nuclear Information System (INIS)

    Komori, Takuji

    1985-01-01

    Mass spectrometry has been widely used and playing a very important role in the field of nuclear science and technology. A major reason for this is that not only the types of element but also its isotopes have to be identified and measured in this field. Thus, some applications of this analytical method are reviewed and discussed in this article. Its application to analytical chemistry is described in the second section following an introductory section, which includes subsections for isotropic dilution mass spectrometry, resonance ionization mass spectrometry and isotopic correlation technique. The isotopic ratio measurement for hydrogen, uranium and plutonium as well as nuclear material control and safeguards are also reviewed in this section. In the third section, mass spectrometry is discussed in relation to nuclear reactors, with subsections on natural uranium reactor and neutron flux observation. Some techniques for measuring the burnup fraction, including the heavy isotopic ratio method and fission product monitoring, are also described. In the fourth section, application of mass spectrometry to measurement of nuclear constants, such as ratio of effective cross-sectional area for 235 U, half-life and fission yield is reviewed. (Nogami, K.)

  19. [Imaging Mass Spectrometry in Histopathologic Analysis].

    Science.gov (United States)

    Yamazaki, Fumiyoshi; Seto, Mitsutoshi

    2015-04-01

    Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) enables visualization of the distribution of a range of biomolecules by integrating biochemical information from mass spectrometry with positional information from microscopy. IMS identifies a target molecule. In addition, IMS enables global analysis of biomolecules containing unknown molecules by detecting the ratio of the molecular weight to electric charge without any target, which makes it possible to identify novel molecules. IMS generates data on the distribution of lipids and small molecules in tissues, which is difficult to visualize with either conventional counter-staining or immunohistochemistry. In this review, we firstly introduce the principle of imaging mass spectrometry and recent advances in the sample preparation method. Secondly, we present findings regarding biological samples, especially pathological ones. Finally, we discuss the limitations and problems of the IMS technique and clinical application, such as in drug development.

  20. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    Science.gov (United States)

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  1. Parsimonious Charge Deconvolution for Native Mass Spectrometry

    Science.gov (United States)

    2018-01-01

    Charge deconvolution infers the mass from mass over charge (m/z) measurements in electrospray ionization mass spectra. When applied over a wide input m/z or broad target mass range, charge-deconvolution algorithms can produce artifacts, such as false masses at one-half or one-third of the correct mass. Indeed, a maximum entropy term in the objective function of MaxEnt, the most commonly used charge deconvolution algorithm, favors a deconvolved spectrum with many peaks over one with fewer peaks. Here we describe a new “parsimonious” charge deconvolution algorithm that produces fewer artifacts. The algorithm is especially well-suited to high-resolution native mass spectrometry of intact glycoproteins and protein complexes. Deconvolution of native mass spectra poses special challenges due to salt and small molecule adducts, multimers, wide mass ranges, and fewer and lower charge states. We demonstrate the performance of the new deconvolution algorithm on a range of samples. On the heavily glycosylated plasma properdin glycoprotein, the new algorithm could deconvolve monomer and dimer simultaneously and, when focused on the m/z range of the monomer, gave accurate and interpretable masses for glycoforms that had previously been analyzed manually using m/z peaks rather than deconvolved masses. On therapeutic antibodies, the new algorithm facilitated the analysis of extensions, truncations, and Fab glycosylation. The algorithm facilitates the use of native mass spectrometry for the qualitative and quantitative analysis of protein and protein assemblies. PMID:29376659

  2. A comparative UPLC-Q/TOF-MS-based metabolomics approach for distinguishing Zingiber officinale Roscoe of two geographical origins.

    Science.gov (United States)

    Mais, Enos; Alolga, Raphael N; Wang, Shi-Lei; Linus, Loveth O; Yin, Xiaojin; Qi, Lian-Wen

    2018-02-01

    Ginger, the rhizome of Zingiber officinale Roscoe, is a popular spice used in the food, beverage and confectionary industries. In this study, we report an untargeted UPLC-Q/TOF-MS-based metabolomics approach for comprehensively discriminating between ginger from two geographical locations, Ghana in West Africa and China. Forty batches of fresh ginger from both countries were discriminated using principal component analysis and orthogonal partial least squares discrimination analysis. Sixteen differential metabolites were identified between the gingers from the two geographical locations, six of which were identified as the marker compounds responsible for the discrimination. Our study highlights the essence and predictive power of metabolomics in detecting minute differences in same varieties of plants/plant samples based on the levels and composition of their metabolites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Identification of metabolites of vindoline in rats using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhang, Yuqian; Sun, Yupeng; Mu, Xiyan; Yuan, Lin; Wang, Qiao; Zhang, Lantong

    2017-08-15

    Vindoline (VDL) is an indole alkaloid, possessing hypoglycemic and vasodilator effects, and it is also the prodrug of many vinca alkaloids. In this paper, we analyzed in vivo (including plasma, urine, bile and faeces) and in vitro metabolic profile of VDL in rat with ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). The chromatographic separation was performed on a C 18 column with a mobile phase consisted of 3mM ammonium acetate buffer and acetonitrile at a flow rate of 300μL/min. The mass spectral analysis was conducted in a positive electrospray ionization mode, and on-line data acquisition method multiple mass defect filter (MMDF) combined with dynamic background subtraction (DBS) were used in the biological samples analysis to trace all the potential metabolites of VDL. Twenty-five metabolites of VDL were detected by comparing with the blank sample, of which there were 2 sulfate conjugates. These data suggested that the biotransformation of VDL was deacetylation, oxidation, deoxidization, methylation, dealkylation and sulfate conjugation. This study provides useful information for further study of the pharmacology and mechanism of VDL, meanwhile, the research method can be widely applied to speculate structural features of the metabolites of other vinca alkaloids. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fourier transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  5. A history of mass spectrometry in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Downard, K.M.; de Laeter, J.R. [University of Sydney, Sydney, NSW (Australia)

    2005-09-01

    An interest in mass spectrometry in Australia can be traced back to the 1920s with an early correspondence with Francis Aston who first visited these shores a decade earlier. The region has a rich tradition in both the development of the field and its application, from early measurements of ionization and appearance potentials by Jim Morrison at the Council for Scientific and Industrial Research (CSIR) around 1950 to the design and construction of instrumentation including the first use of a triple quadrupole mass spectrometer for tandem mass spectrometry, the first suite of programs to simulate ion optics (SIMION), the development of early TOF/TOF instruments and orthogonal acceleration and the local design and construction of several generations of a sensitive high-resolution ion microprobe (SHRIMP) instrument. Mass spectrometry has been exploited in the study and characterization of the constituents of this nation's unique flora and fauna from Australian apples, honey, tea plant and eucalyptus oil, snake, spider, fish and frog venoms, coal, oil, sediments and shale, environmental studies of groundwater to geochronological dating of limestone and granite, other terrestrial and meteoritic rocks and coral from the Great Barrier Reef. This article traces the history of mass spectrometry in its many guises and applications in the island continent of Australia. It focuses on contributions of scientists who played a major role in the early establishment of mass spectrometry in Australia. In general, those who are presently active in the field, and whose histories are incomplete, have been mentioned at best only briefly despite their important contributions to the field.

  6. Laser-induced mass spectrometry

    International Nuclear Information System (INIS)

    Polanyi, J.C.

    1981-01-01

    This invention provides a method for the spectroscopic analysis of gas. The gas molecules are internally excited by irradiation with laser light having a wavelength which is absorbed by the sample. The gas is then ionized and passed through a mass spectrometer and the amount of the ionized species in the irradiated and ionized sample is compared with that in a similar ionized but not irradiated sample

  7. Phylogenetic Analysis Using Protein Mass Spectrometry.

    Science.gov (United States)

    Ma, Shiyong; Downard, Kevin M; Wong, Jason W H

    2017-01-01

    Through advances in molecular biology, comparative analysis of DNA sequences is currently the cornerstone in the study of molecular evolution and phylogenetics. Nevertheless, protein mass spectrometry offers some unique opportunities to enable phylogenetic analyses in organisms where DNA may be difficult or costly to obtain. To date, the methods of phylogenetic analysis using protein mass spectrometry can be classified into three categories: (1) de novo protein sequencing followed by classical phylogenetic reconstruction, (2) direct phylogenetic reconstruction using proteolytic peptide mass maps, and (3) mapping of mass spectral data onto classical phylogenetic trees. In this chapter, we provide a brief description of the three methods and the protocol for each method along with relevant tools and algorithms.

  8. Identification of bacteria using mass spectrometry techniques

    Czech Academy of Sciences Publication Activity Database

    Krásný, Lukáš; Hynek, R.; Hochel, I.

    2013-01-01

    Roč. 353, NOV 2013 (2013), s. 67-79 ISSN 1387-3806 R&D Projects: GA ČR GAP503/10/0664 Institutional support: RVO:61388971 Keywords : Mass spectrometry * Bacteria * Identification Subject RIV: EE - Microbiology, Virology Impact factor: 2.227, year: 2013

  9. Four decades of joy in mass spectrometry

    NARCIS (Netherlands)

    Nibbering, N.M.M.

    2006-01-01

    Tremendous developments in mass spectrometry have taken place in the last 40 years. This holds for both the science and the instrumental revolutions in this field. In chemistry the research was heavily focused on organic molecules that upon electron ionization fragmented via complex mechanistic

  10. Inductively coupled plasma- mass spectrometry. Chapter 13

    International Nuclear Information System (INIS)

    Mahalingam, T.R.

    1997-01-01

    Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) is a new technique for elemental and isotopic analysis which is currently attracting a great deal of interest. This relatively new technique has found wide applications in different fields of research viz., nuclear, geological, biological and environmental sciences

  11. Characterization of synthetic peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Mirza, Osman Asghar; Højrup, Peter

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI......-TOF-MS and LC-MS of synthetic peptides....

  12. Nanostructure-initiator mass spectrometry biometrics

    Science.gov (United States)

    Leclerc, Marion; Bowen, Benjamin; Northen, Trent

    2015-09-08

    Several embodiments described herein are drawn to methods of identifying an analyte on a subject's skin, methods of generating a fingerprint, methods of determining a physiological change in a subject, methods of diagnosing health status of a subject, and assay systems for detecting an analyte and generating a fingerprint, by nanostructure-initiator mass spectrometry (NIMS).

  13. Characterization of microbial siderophores by mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Pluháček, Tomáš; Lemr, Karel; Ghosh, D.; Milde, D.; Novák, Jiří; Havlíček, Vladimír

    2016-01-01

    Roč. 35, č. 1 (2016), s. 35-47 ISSN 0277-7037 R&D Projects: GA MŠk(CZ) LD13038; GA ČR(CZ) GAP206/12/1150; GA MŠk(CZ) LO1509 Institutional support: RVO:61388971 Keywords : iron * siderophores * mass spectrometry Subject RIV: CE - Biochemistry Impact factor: 9.373, year: 2016

  14. Polymer and Additive Mass Spectrometry Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Shear, Trevor Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-06

    The use of mass spectrometry in fields related to polymers has increased significantly over the past three decades and will be explored in this literature review. The importance of this technique is highlighted when exploring how polymers degrade, verifying purchased materials, and as internal requirements change. The primary focus will be on four ionization techniques and the triple quadrupole and quadrupole / time-of-flight mass spectrometers. The advantages and limitations of each will also be explored.

  15. Radiocarbon accelerator mass spectrometry: background and contamination

    International Nuclear Information System (INIS)

    Beukens, R.P.

    1993-01-01

    Since the advent of radiocarbon accelerator mass spectrometry (AMS) many studies have been conducted to understand the background from mass spectrometric processes and the origins of contamination associated with the ion source and sample preparation. By studying the individual contributions a better understanding of these processes has been obtained and it has been demonstrated that it is possible to date samples reliably up to 60 000 BP. (orig.)

  16. Optimization Of A Mass Spectrometry Process

    International Nuclear Information System (INIS)

    Lopes, Jose; Alegria, F. Correa; Redondo, Luis; Barradas, N. P.; Alves, E.; Rocha, Jorge

    2011-01-01

    In this paper we present and discuss a system developed in order to optimize the mass spectrometry process of an ion implanter. The system uses a PC to control and display the mass spectrum. The operator interacts with the I/O board, that interfaces with the computer and the ion implanter by a LabVIEW code. Experimental results are shown and the capabilities of the system are discussed.

  17. Accelerator mass spectrometry: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Tuniz, C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Accelerator Mass Spectrometry (AMS) is the analytical technique of choice for the detection of long-lived radionuclides which cannot be practically analysed with decay counting or conventional mass spectrometry. The main use of AMS has been in the analysis of radiocarbon and other cosmogenic radionuclides for archaeological, geological and environmental applications. In addition, AMS has been recently applied in biomedicine to study exposure of human tissues to chemicals and biomolecules at attomole levels. There is also a world-wide effort to analyse rare nuclides of heavier masses, such as long-lived actinides, with important applications in safeguards and nuclear waste disposal. The use of AMS is limited by the expensive accelerator technology required and there are several attempts to develop smaller and cheaper AMS spectrometers. 5 refs.

  18. Accelerator mass spectrometry: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Tuniz, C [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    Accelerator Mass Spectrometry (AMS) is the analytical technique of choice for the detection of long-lived radionuclides which cannot be practically analysed with decay counting or conventional mass spectrometry. The main use of AMS has been in the analysis of radiocarbon and other cosmogenic radionuclides for archaeological, geological and environmental applications. In addition, AMS has been recently applied in biomedicine to study exposure of human tissues to chemicals and biomolecules at attomole levels. There is also a world-wide effort to analyse rare nuclides of heavier masses, such as long-lived actinides, with important applications in safeguards and nuclear waste disposal. The use of AMS is limited by the expensive accelerator technology required and there are several attempts to develop smaller and cheaper AMS spectrometers. 5 refs.

  19. Guideline on Isotope Dilution Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Amy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-19

    Isotope dilution mass spectrometry is used to determine the concentration of an element of interest in a bulk sample. It is a destructive analysis technique that is applicable to a wide range of analytes and bulk sample types. With this method, a known amount of a rare isotope, or ‘spike’, of the element of interest is added to a known amount of sample. The element of interest is chemically purified from the bulk sample, the isotope ratio of the spiked sample is measured by mass spectrometry, and the concentration of the element of interest is calculated from this result. This method is widely used, although a mass spectrometer required for this analysis may be fairly expensive.

  20. Identification of berberrubine metabolites in rats by using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Wang, Kun; Qiao, Miao; Chai, Liwei; Cao, Shijie; Feng, Xinchi; Ding, Liqin; Qiu, Feng

    2018-01-01

    Berberrubine, an isoquinoline alkaloid isolated from many medicinal plants, possesses diverse pharmacological activities, including glucose-lowering, lipid-lowering, anti-inflammatory, and anti-tumor effects. This study aimed to investigate the metabolic profile of berberrubine in vivo. Therefore, a rapid and reliable method using the ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and metabolynx™ software with mass defect filter (MDF) technique was developed. Plasma, bile, urine and feces samples were collected from rats after oral administration of berberrubine with a dose of 30.0mg/kg and analyzed to characterize the metabolites of berberrubine in vivo for the first time. A total of 57 metabolites were identified, including 54 metabolites in urine, 39 metabolites in plasma, 28 metabolites in bile and 18 metabolites in feces. The results indicated that demethylenation, reduction, hydroxylation, demethylation, glucuronidation, and sulfation were the major metabolic pathways of berberrubine in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Liquid chromatography/quadrupole-time-of-flight mass spectrometry with metabolic profiling of human urine as a tool for environmental analysis of dextromethorphan.

    Science.gov (United States)

    Thurman, E Michael; Ferrer, Imma

    2012-10-12

    We use the combination of liquid chromatography/quadrupole-time-of-flight mass spectrometry (LC/Q-TOF-MS) and urine metabolic profiling to find and identify the metabolites of dextromethorphan, a common over-the-counter (OTC) cough suppressant. Next, we use the combination of ion masses, their MS/MS fragmentation, and retention times to determine dextromethorphan and its metabolites in surface water impacted by wastewater. Prior to this study, neither dextromethorphan nor its metabolites have been reported in surface water; in spite of its common use in over 100 various OTC medications. We found that the concentration of the dextrorphan metabolite in surface water greatly exceeded the parent compound by factors of 5-10 times, which reflects the urine profile, where parent compound is approximately <2% of the total excreted drug based on ion intensities. Urine profiling also indicated that glucuronide metabolites are major phase 2 products (92% of the total) in urine and then are completely hydrolyzed in wastewater to dextrorphan and N-demethyldextrorphan, which are phase 1 metabolites-a "kind of reversal" of human metabolism. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Space Applications of Mass Spectrometry. Chapter 31

    Science.gov (United States)

    Hoffman, John H.; Griffin, Timothy P.; Limero, Thomas; Arkin, C. Richard

    2010-01-01

    Mass spectrometers have been involved in essentially all aspects of space exploration. This chapter outlines some of these many uses. Mass spectrometers have not only helped to expand our knowledge and understanding of the world and solar system around us, they have helped to put man safely in space and expand our frontier. Mass spectrometry continues to prove to be a very reliable, robust, and flexible analytical instrument, ensuring that its use will continue to help aid our investigation of the universe and this small planet that we call home.

  3. Thermal ionisation mass spectrometry (TIMS): what, how and why?

    International Nuclear Information System (INIS)

    Aggarwal, S.K.

    2002-01-01

    Thermal ionisation mass spectrometry (TIMS) is one of the oldest mass spectrometric techniques, which has been used for determining the isotopic composition and concentration of different elements using isotope dilution. In spite of the introduction of many other inorganic mass spectrometric techniques like spark source mass spectrometry (SSMS), glow discharge mass spectrometry (GDMS), inductively coupled plasma-mass spectrometry (ICP-MS), secondary ion mass spectrometry (SIMS), the TIMS technique plays the role of a definitive analytical methodology and still occupies a unique position in terms of its capabilities with respect to precision and accuracy as well as sensitivity

  4. Alpha spectrometry and the secondary ion mass spectrometry of thorium

    International Nuclear Information System (INIS)

    Strisovska, J.; Kuruc, J.; Galanda, D.; Matel, L.; Aranyosiova, M.; Velic, D.

    2009-01-01

    The main objective of this master thesis was preparation of samples with thorium content on the steel discs by electrodeposition for determination of natural thorium isotope by alpha spectrometry and the secondary ion mass spectrometry and finding out their possible linear correlation between these methods. The samples with electrolytically excluded isotope of 232 Th were prepared by electrodeposition from solution Th(NO 3 ) 4 ·12 H2 O on steel discs in electrodeposition cell with use of solutions Na 2 SO 4 , NaHSO 4 , KOH and (NH 4 ) 2 (C 2 O 4 ) by electric current 0.75 A. Discs were measured by alpha spectrometer. Activity was calculated from the registered impulses for 232 Th and surface's weight. After alpha spectrometry measurements discs were analyzed by TOF-SIMS IV which is installed in the International Laser Centre in Bratislava. Intensities of isotope of 232 Th and ions of ThO + , ThOH + , ThO 2 H + , Th 2 O 4 H + , ThO 2 - , ThO 3 H - , ThH 3 O 3 - and ThN 2 O 5 H - were identified. The linear correlation is between surface's weights of Th and intensities of ions of Th + from SIMS, however the correlation coefficient has relatively low value. We found out with SIMS method that oxidized and hydride forms of thorium are significantly represented in samples with electroplated thorium. (authors)

  5. Mass Spectrometry Imaging under Ambient Conditions

    Science.gov (United States)

    Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.

    2012-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  6. Boundaries of mass resolution in native mass spectrometry

    NARCIS (Netherlands)

    Lössl, Philip|info:eu-repo/dai/nl/371559693; Snijder, Joost|info:eu-repo/dai/nl/338018328; Heck, Albert J R|info:eu-repo/dai/nl/105189332

    Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)-protein interactions, to nanomachineries such as the proteasome and ribosome, to even

  7. Burnup determination of mass spectrometry for nuclear fuels

    International Nuclear Information System (INIS)

    Zhang Chunhua.

    1987-01-01

    The various methods currently being used in burnup determination of nuclear fuels are studied and reviewed. The mass spectrometry method of destructive testing is discussed emphatically. The burnup determination of mass spectrometry includes heavy isotopic abundance ratio method and isotope dilution mass spectrometry used as burnup indicator for the fission products. The former is applied to high burnup level, but the later to various burnup level. According to experiences, some problems which should be noticed in burnup determination of mass spectrometry are presented

  8. [Sample preparation and bioanalysis in mass spectrometry].

    Science.gov (United States)

    Bourgogne, Emmanuel; Wagner, Michel

    2015-01-01

    The quantitative analysis of compounds of clinical interest of low molecular weight (sample preparation. Sample preparation is a crucial part of chemical/biological analysis and in a sense is considered the bottleneck of the whole analytical process. The main objectives of sample preparation are the removal of potential interferences, analyte preconcentration, and converting (if needed) the analyte into a more suitable form for detection or separation. Without chromatographic separation, endogenous compounds, co-eluted products may affect a quantitative method in mass spectrometry performance. This work focuses on three distinct parts. First, quantitative bioanalysis will be defined, different matrices and sample preparation techniques currently used in bioanalysis by mass spectrometry of/for small molecules of clinical interest in biological fluids. In a second step the goals of sample preparation will be described. Finally, in a third step, sample preparation strategies will be made either directly ("dilute and shoot") or after precipitation.

  9. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    Science.gov (United States)

    Wang, Daojing [Daly City, CA; Yang, Peidong [Kensington, CA; Kim, Woong [Seoul, KR; Fan, Rong [Pasadena, CA

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  10. Accelerator mass spectrometry - From DNA to astrophysics

    International Nuclear Information System (INIS)

    Kutschera, W.

    2013-01-01

    A brief review of accelerator mass spectrometry (AMS) is presented. The present work touches on a few technical aspects and recent developments of AMS, and describes two specific applications of AMS, the dating of human DNA with the 14 C bomb peak and the search for superheavy elements in nature. Since two extended general reviews on technical developments in AMS [1] and applications of AMS [2] will appear in 2013, frequent reference to these reviews is made. (authors)

  11. A mass spectrometry proteomics data management platform.

    Science.gov (United States)

    Sharma, Vagisha; Eng, Jimmy K; Maccoss, Michael J; Riffle, Michael

    2012-09-01

    Mass spectrometry-based proteomics is increasingly being used in biomedical research. These experiments typically generate a large volume of highly complex data, and the volume and complexity are only increasing with time. There exist many software pipelines for analyzing these data (each typically with its own file formats), and as technology improves, these file formats change and new formats are developed. Files produced from these myriad software programs may accumulate on hard disks or tape drives over time, with older files being rendered progressively more obsolete and unusable with each successive technical advancement and data format change. Although initiatives exist to standardize the file formats used in proteomics, they do not address the core failings of a file-based data management system: (1) files are typically poorly annotated experimentally, (2) files are "organically" distributed across laboratory file systems in an ad hoc manner, (3) files formats become obsolete, and (4) searching the data and comparing and contrasting results across separate experiments is very inefficient (if possible at all). Here we present a relational database architecture and accompanying web application dubbed Mass Spectrometry Data Platform that is designed to address the failings of the file-based mass spectrometry data management approach. The database is designed such that the output of disparate software pipelines may be imported into a core set of unified tables, with these core tables being extended to support data generated by specific pipelines. Because the data are unified, they may be queried, viewed, and compared across multiple experiments using a common web interface. Mass Spectrometry Data Platform is open source and freely available at http://code.google.com/p/msdapl/.

  12. High-sensitivity mass spectrometry with a tandem accelerator

    International Nuclear Information System (INIS)

    Henning, W.

    1984-01-01

    The characteristic features of accelerator mass spectrometry are discussed. A short overview is given of the current status of mass spectrometry with high-energy (MeV/nucleon) heavy-ion accelerators. Emphasis is placed on studies with tandem accelerators and on future mass spectrometry of heavier isotopes with the new generation of higher-voltage tandems

  13. Comprehensive Two-Dimensional Hydrophilic Interaction Chromatography (HILIC) × Reversed-Phase Liquid Chromatography Coupled to High-Resolution Mass Spectrometry (RP-LC-UV-MS) Analysis of Anthocyanins and Derived Pigments in Red Wine.

    Science.gov (United States)

    Willemse, Chandré M; Stander, Maria A; Vestner, Jochen; Tredoux, Andreas G J; de Villiers, André

    2015-12-15

    Changes in anthocyanin chemistry represent some of the most important transformations involved in red wine aging. However, accurate analysis of the derived pigments, as required to study the evolution of anthocyanins and tannins during aging, is hampered by their extreme structural diversity, low levels, and the fact that many of these compounds have identical mass spectral characteristics. In this context, chromatographic separation is critical. In this contribution, the application of online hydrophilic interaction chromatography (HILIC) × reversed-phase liquid chromatography (RP-LC) separation coupled to high-resolution mass spectrometry (MS) is described for the detailed characterization of anthocyanins and their derived pigments in aged red wine. A systematic approach was followed for the optimization of HILIC × RP-LC separation parameters using a capillary liquid chromatography (LC) system in the first dimension and an ultrahigh-pressure LC system in the second dimension to ensure maximum sensitivity and performance. Ninety four (94) anthocyanin-derived pigments were tentatively identified in one- and six-year-old Pinotage wines using accurate mass and fragmentation information obtained using quadrupole-time-of-flight mass spectrometry (Q-TOF-MS). Online HILIC × RP-LC-MS was found to offer high-resolution separation, because of the combination of two different separation modes, while the structured elution order observed improved the certainty in compound identification. Therefore, this approach shows promise for the detailed elucidation of the chemical alteration of anthocyanins during wine aging.

  14. Mass spectrometry by means of tandem accelerators

    International Nuclear Information System (INIS)

    Tuniz, C.

    1985-01-01

    Mass spectrometry based on an accelerator allows to measure rare cosmogenic isotopes found in natural samples with isotopic abundances up to 10E-15. The XTU Tandem of Legnaro National Laboratories can measure mean heavy isotopes (36Cl, 41Ca, 129I) in applications interesting cosmochronology and Medicine. The TTT-3 Tandem of the Naples University has been modified in view of precision studies of C14 in Archeology, Paleantology and Geology. In this paper a review is made of principles and methodologies and of some applicationy in the framework of the National Program for mass spectrametry research with the aid of accelerators

  15. Identification of Proteins and Peptide Biomarkers for Detecting Banned Processed Animal Proteins (PAPs) in Meat and Bone Meal by Mass Spectrometry.

    Science.gov (United States)

    Marbaix, Hélène; Budinger, Dimitri; Dieu, Marc; Fumière, Olivier; Gillard, Nathalie; Delahaut, Philippe; Mauro, Sergio; Raes, Martine

    2016-03-23

    The outbreak of bovine spongiform encephalopathy (BSE) in the United Kingdom in 1986, with processed animal proteins (PAPs) as the main vector of the disease, has led to their prohibition in feed. The progressive release of the feed ban required the development of new analytical methods to determine the exact origin of PAPs from meat and bone meal. We set up a promising MS-based method to determine the species and the source (legal or not) present in PAPs: a TCA-acetone protein extraction followed by a cleanup step, an in-solution tryptic digestion of 5 h (with a 1:20 protein/trypsin ratio), and mass spectrometry analyses, first without any a priori, with a Q-TOF, followed by a targeted triple-quadrupole analysis. Using this procedure, we were able to overcome some of the major limitations of the official methods to analyze PAPs, detecting and identifying prohibited animal products in feedstuffs by the monitoring of peptides specific for cows, pigs, and sheep in PAPs.

  16. Metabolism of Genipin in Rat and Identification of Metabolites by Using Ultraperformance Liquid Chromatography/Quadrupole Time-of-Flight Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Yue Ding

    2013-01-01

    Full Text Available The in vivo and in vitro metabolism of genipin was systematically investigated in the present study. Urine, plasma, feces, and bile were collected from rats after oral administration of genipin at a dose of 50 mg/kg body weight. A rapid and sensitive method using ultraperformance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-Q/TOF MS was developed for analysis of metabolic profile of genipin in rat biological samples (urine, plasma, feces, and bile. A total of ten metabolites were detected and identified by comparing their fragmentation patterns with that of genipin using MetaboLynx software tools. On the basis of the chromatographic peak area, the sulfated and glucuronidated conjugates of genipin were identified as major metabolites. And the existence of major metabolites G1 and G2 was confirmed by the in vitro enzymatic study further. Then, metabolite G1 was isolated from rat bile by semipreparative HPLC. Its structure was unambiguously identified as genipin-1-o-glucuronic acid by comparison of its UV, IR, ESI-MS, 1H-NMR, and 13C-NMR spectra with conference. In general, genipin was a very active compound that would transform immediately, and the parent form of genipin could not be observed in rats biological samples. The biotransformation pathways of genipin involved demethylated, ring-opened, cysteine-conjugated, hydroformylated, glucuronidated, and sulfated transformations.

  17. Metabolite characterization of a novel anti-cancer agent, icotinib, in humans through liquid chromatography/quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Liu, Dongyang; Jiang, Ji; Zhang, Li; Tan, Fenlai; Wang, Yingxiang; Hu, Pei

    2011-08-15

    Icotinib is a novel anti-cancer drug that has shown promising clinical efficacy and safety in patients with non-small-cell lung cancer (NSCLC). At this time, the metabolic fate of icotinib in humans is unknown. In the present study, a liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (LC/Q-TOF MS) method was established to characterize metabolites of icotinib in human plasma, urine and feces. In addition, nuclear magnetic resonance (NMR) detection was utilized to determine the connection between side-chain and quinazoline groups for some complex metabolites. In total, 29 human metabolites (21 isomer metabolites) were characterized, of which 23 metabolites are novel compared to the metabolites in rats. This metabolic study revealed that icotinib was extensively metabolized at the 12-crown-4 ether moiety (ring-opening and further oxidation), carbon 15 (hydroxylation) and an acetylene moiety (oxidation) to yield 19 oxidized metabolites and to further form 10 conjugates with sulfate acid or glucuronic acid. To our knowledge, this is the first report of the human metabolic profile of icotinib. Study results indicated that significant attention should be paid to the metabolic profiles of NSCLC patients during the development of icotinib. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Early Metabolome Profiling and Prognostic Value in Paraquat-Poisoned Patients: Based on Ultraperformance Liquid Chromatography Coupled To Quadrupole Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Hu, Lufeng; Hong, Guangliang; Tang, Yahui; Wang, Xianqin; Wen, Congcong; Lin, Feiyan; Lu, Zhongqiu

    2017-12-18

    Paraquat (PQ) has caused countless deaths throughout the world. There remains no effective treatment for PQ poisoning. Here we study the blood metabolome of PQ-poisoned patients using ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS). Patients were divided into groups according to blood PQ concentration. Healthy subjects served as controls. Metabolic features were statistically analyzed using multivariate pattern-recognition techniques to identify the most important metabolites. Selected metabolites were further compared with a series of clinical indexes to assess the prognostic value. PQ-poisoned patients showed substantial differences compared with healthy subjects. Based on variable of importance in the project (VIP) values and statistical analysis, 17 metabolites were selected and identified. These metabolites well-classified low PQ-poisoned patients, high PQ-poisoned patients, and healthy subjects, which was better than that of a complete blood count (CBC). Among the 17 metabolites, 20:3/18:1-PC (PC), LPA (0:0/16:0) (LPA), 19-oxo-deoxycorticosterone (19-oxo-DOC), and eicosapentaenoic acid (EPA) had prognostic value. In particular, EPA was the most sensitive one. Besides, the levels of EPA was correlated with LPA and 19-oxo-DOC. If EPA was excessively consumed, then prognosis was poor. In conclusion, the serum metabolome is substantially perturbed by PQ poisoning. EPA is the most important biomarker in early PQ poisoning.

  19. A Metabonomics Profiling Study on Phlegm Syndrome and Blood-Stasis Syndrome in Coronary Heart Disease Patients Using Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Linlin Zhao

    2014-01-01

    Full Text Available A metabonomics approach based on liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS was utilized to obtain potential biomarkers of coronary heart disease (CHD patients and investigate the ZHENG types differentiation in CHD patients. The plasma samples of 20 CHD patients with phlegm syndrome, 20 CHD patients with blood-stasis syndrome, and 16 healthy volunteers were collected in the study. 26 potential biomarkers were identified in the plasma of CHD patients and 19 differential metabolites contributed to the discrimination of phlegm syndrome and blood-stasis syndrome in CHD patients (VIP>1.5; P<0.05 which mainly involved purine metabolism, pyrimidine metabolism, amino acid metabolism, steroid biosynthesis, and arachidonic acid metabolism. This study demonstrated that metabonomics approach based on LC-MS was useful for studying pathologic changes of CHD patients and interpreting the differentiation of ZHENG types (phlegm and blood-stasis syndrome in traditional Chinese medicine (TCM.

  20. In Vitro and in Vivo Metabolite Profiling of Valnemulin Using Ultraperformance Liquid Chromatography–Quadrupole/Time-of-Flight Hybrid Mass Spectrometry

    Science.gov (United States)

    2015-01-01

    Valnemulin, a semisynthetic pleuromutilin derivative related to tiamulin, is broadly used to treat bacterial diseases of animals. Despite its widespread use, metabolism in animals has not yet been fully investigated. To better understand valnemulin biotransformation, in this study, metabolites of valnemulinin in in vitro and in vivo rats, chickens, swines, goats, and cows were identified and elucidated using ultraperformance liquid chromatography–quadrupole/time-of-flight hybrid mass spectrometry (UPLC-Q/TOF-MS). As a result, there were totally 7 metabolites of valnemulin identified in vitro and 75, 61, and 74 metabolites detected in in vivo rats, chickens, and swines, respectively, and the majority of metabolites were reported for the first time. The main metabolic pathways of valnemulin were found to be hydroxylation in the mutilin part (the ring system) and the side chain, oxidization on the sulfur of the side chain to form S-oxides, hydrolysis of the amido bond, and acetylization in the amido of the side chain. In addition, hydroxylation in the mutilin part was proposed to be the primary metabolic route. Furthermore, the results revealed that 2β-hydroxyvalnemulin (V1) and 8α-hydroxyvalnemulin (V2) were the major metabolites for rats and swines and S-oxides (V6) in chickens. PMID:25156794

  1. Capillary zone electrophoresis method to assay tipranavir capsules and identification of oxidation product and organic impurity by quadrupole-time of flight mass spectrometry.

    Science.gov (United States)

    Lago, Matheus Wagner; Friedrich, Mariane Lago; Iop, Gabrielle Dineck; de Souza, Thiago Belarmino; de Azevedo Mello, Paola; Adams, Andréa Inês Horn

    2018-05-01

    Tipranavir (TPV) is one of the most recently developed protease inhibitors (PI) and it is specially recommended for treatment-experienced patients who are resistant to other PI drugs. In this work, a simple and friendly environmental CZE stability-indicating method to assay TPV capsules was developed and two TPV organic impurities were identified by high resolution mass spectrometry (HRMS). The optimized analytical conditions were: background electrolyte composed of sodium borate 50mM, pH 9.0 and 5% of methanol; voltage + 28kV; hydrodynamic injection of 5s (100mbar), detection wavelength 240nm, at 25°C. The separation was achieved in a fused silica capillary with 50µm × 40cm (inner diameter × effective length), using furosemide as internal standard. All the validation parameters were met and the method was specific, even in the presence of degradation products and impurities. Oxidation was indicated as the main degradation pathway among those evaluated in this study (acidic, alkaline, thermal, photolytic and oxidative) and it showed a second order degradation kinetic, under the conditions used in this study. The main oxidation product and an organic impurity detected in the standard were characterized by Q-TOF, and both of them correspond to oxidation products of TPV. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Metabolic profiles of physalin A in rats using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Feng, Xinchi; Liu, Hongxia; Chai, Liwei; Ding, Liqin; Pan, Guixiang; Qiu, Feng

    2017-03-01

    Physalin A, one of the major active components isolated from the calyces of Physalis alkekengi var. franchetii is considered to be a promising natural product due to its anti-inflammatory and excellent antitumor activities. Until now, only one paper is available from our group concerning identification of two sulfonate metabolites from rat feces after physalin A treatment. All the other researches related to physalin A were focused on its extraction, separation and biological activities. In this research, a rapid and reliable ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS/MS) method was developed and employed for the comprehensive study of the metabolism of physalin A in vivo for the first time. A total of 24 proposed metabolites were identified in plasma, bile, urine and feces of rats after oral administration of physalin A. The results indicated that sulfonation, reduction and hydroxylation were the major metabolic pathways of physalin A in vivo. Furthermore, this research provides scientific and reliable support for full understanding of the metabolism of physalin A and the results could help to elucidate the safety and efficacy of physalin A, as well as other physalins. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Systematic chemical profiling of Citrus grandis 'Tomentosa' by ultra-fast liquid chromatography/diode-array detector/quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Li, Pan-lin; Liu, Meng-hua; Hu, Jie-hui; Su, Wei-wei

    2014-03-01

    Citrus grandis 'Tomentosa', as the original plant of the traditional Chinese medicine "Huajuhong", has been used as antitussive and expectorant in clinic for thousands of years. The fruit epicarp and whole fruit of this plant were both literarily recorded and commonly used. In the present study, an ultra-fast liquid chromatography coupled with diode-array detection and quadrupole/time-of-flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS) based chemical profiling method was developed for rapid holistic quality evaluation of C. grandis 'Tomentosa', which laid basis for chemical comparison of two medicinal parts. As a result, forty-eight constituents, mainly belonging to flavonoids and coumarins, were unambiguously identified by comparison with reference standards and/or tentatively characterized by elucidating UV spectra, quasi-molecular ions and fragment ions referring to information available in literature. Both of the epicarp and whole fruit samples were rich in flavonoids and coumarins, but major flavonoids contents in whole fruit were significantly higher than in epicarp (P<0.5). The proposed method could be useful in quality control and standardization of C. grandis 'Tomentosa' raw materials and its products. Results obtained in this study will provide a basis for quality assessment and further study in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Metabolomic study of corticosterone-induced cytotoxicity in PC12 cells by ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhang, Hongye; Zheng, Hua; Zhao, Gan; Tang, Chaoling; Lu, Shiyin; Cheng, Bang; Wu, Fang; Wei, Jinbin; Liang, Yonghong; Ruan, Junxiang; Song, Hui; Su, Zhiheng

    2016-03-01

    Glucocorticoids (GCs) have been proved to be an important pathogenic factor of some neuropsychiatric disorders. Usually, a classical injury model based on corticosterone-induced cytotoxicity of differentiated rat pheochromocytoma (PC12) cells was used to stimulate the state of GC damage of hippocampal neurons and investigate its potential mechanisms involved. However, up to now, the mechanism of corticosterone-induced cytotoxicity in PC12 cells was still looking forward to further elucidation. In this work, the metabolomic study of the biochemical changes caused by corticosterone-induced cytotoxicity in differentiated PC12 cells with different corticosterone concentrations was performed for the first time, using the ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS). Partial least squares-discriminate analysis (PLS-DA) indicated that metabolic profiles of different corticosterone treatment groups deviated from the control group. A total of fifteen metabolites were characterized as potential biomarkers involved in corticosterone-induced cytotoxicity, which were corresponding to the dysfunctions of five pathways including glycerophospholipid metabolism, sphingolipid metabolism, oxidation of fatty acids, glycerolipid metabolism and sterol lipid metabolism. This study indicated that the rapid and holistic cell metabolomics approach might be a powerful tool to further study the pathogenesis mechanism of corticosterone-induced cytotoxicity in PC12 cells.

  5. Identification and Quantification of Alkaloid in KHR98 and Fragmentation Pathways in HPLC-Q-TOF-MS.

    Science.gov (United States)

    Long, Jiakun; Wang, Yang; Xu, Chen; Liu, Tingting; Duan, Gengli; Yu, Yingjia

    2018-05-01

    Uncaria rhynchophylla is woody climber plant distributed mainly in China and Japan, the stems and hooks of which can be collected as "Gou-Teng" for the treatment of hyperpyrexia, epilepsy and preeclampsia. Fudan University first manufactured KHR98, the extract of Uncaria rhynchophylla. In order to study the active components and structural information of KHR98, we established a HPLC coupled with quadrupole time-of-flight (Q-TOF)-MS method for rapid analysis of alkaloids. In qualitative analysis, a total of eight compounds, including four known alkaloids and four unknown components, were detected and identified. The fragmentation behaviors, such as the fragment ion information and the fragmentation pathways of the eight components were summarized simultaneously, and the concentration of the above components was determined by HPLC-MS method. The quantitative method was proved to be reproducible, precise and accurate. This study shed light on the standardization and quality control of the KHR98 and provided a foundation for the further research on pharmacology, follow-up clinical research and New Drug Applications.

  6. Immunoadjuvant activity, toxicity assays, and determination by UPLC/Q-TOF-MS of triterpenic saponins from Chenopodium quinoa seeds.

    Science.gov (United States)

    Verza, Simone G; Silveira, Fernando; Cibulski, Samuel; Kaiser, Samuel; Ferreira, Fernando; Gosmann, Grace; Roehe, Paulo M; Ortega, George G

    2012-03-28

    The adjuvant activity of Chenopodium quinoa (quinoa) saponins on the humoral and cellular immune responses of mice subcutaneously immunized with ovalbumin (OVA) was evaluated. Two quinoa saponin fractions were obtained, FQ70 and FQ90, and 10 saponins were determined by UPLC/Q-TOF-MS. Mice were immunized subcutaneously with OVA alone or adjuvanted with Quil A (adjuvant control), FQ70, or FQ90. FQ70 and FQ90 significantly enhanced the amount of anti-OVA-specific antibodies in serum (IgG, IgG1, and IgG2b) in immunized mice. The adjuvant effect of FQ70 was significantly greater than that of FQ90. However, delayed type hypersensitivity responses were higher in mice immunized with OVA adjuvanted with FQ90 than mice treated with FQ70. Concanavalin A (Con A)-, lipopolysaccharide-, and OVA-stimulated splenocyte proliferation were measured, and FQ90 significantly enhanced the Con A-induced splenocyte proliferation. The results suggested that the two quinoa saponin fractions enhanced significantly the production of humoral and cellular immune responses to OVA in mice.

  7. Mass spectrometry imaging: Towards a lipid microscope?

    Science.gov (United States)

    Touboul, David; Brunelle, Alain; Laprévote, Olivier

    2011-01-01

    Biological imaging techniques are the most efficient way to locally measure the variation of different parameters on tissue sections. These analyses are gaining increasing interest since 20 years and allow observing extremely complex biological phenomena at lower and lower time and resolution scale. Nevertheless, most of them only target very few compounds of interest, which are chosen a priori, due to their low resolution power and sensitivity. New chemical imaging technique has to be introduced in order to overcome these limitations, leading to more informative and sensitive analyses for biologists and physicians. Two major mass spectrometry methods can be efficiently used to generate the distribution of biological compounds over a tissue section. Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry (MALDI-MS) needs the co-crystallization of the sample with a matrix before to be irradiated by a laser, whereas the analyte is directly desorbed by a primary ion bombardment for Secondary Ion Mass Spectrometry (SIMS) experiments. In both cases, energy used for desorption/ionization is locally deposited -some tens of microns for the laser and some hundreds of nanometers for the ion beam- meaning that small areas over the surface sample can be separately analyzed. Step by step analysis allows spectrum acquisitions over the tissue sections and the data are treated by modern informatics software in order to create ion density maps, i.e., the intensity plot of one specific ion versus the (x,y) position. Main advantages of SIMS and MALDI compared to other chemical imaging techniques lie in the simultaneous acquisition of a large number of biological compounds in mixture with an excellent sensitivity obtained by Time-of-Flight (ToF) mass analyzer. Moreover, data treatment is done a posteriori, due to the fact that no compound is selectively marked, and let us access to the localization of different lipid classes in only one complete acquisition. Copyright © 2010

  8. Hydrogen/deuterium exchange in mass spectrometry.

    Science.gov (United States)

    Kostyukevich, Yury; Acter, Thamina; Zherebker, Alexander; Ahmed, Arif; Kim, Sunghwan; Nikolaev, Eugene

    2018-03-30

    The isotopic exchange approach is in use since the first observation of such reactions in 1933 by Lewis. This approach allows the investigation of the pathways of chemical and biochemical reactions, determination of structure, composition, and conformation of molecules. Mass spectrometry has now become one of the most important analytical tools for the monitoring of the isotopic exchange reactions. Investigation of conformational dynamics of proteins, quantitative measurements, obtaining chemical, and structural information about individual compounds of the complex natural mixtures are mainly based on the use of isotope exchange in combination with high resolution mass spectrometry. The most important reaction is the Hydrogen/Deuterium exchange, which is mainly performed in the solution. Recently we have developed the approach allowing performing of the Hydrogen/Deuterium reaction on-line directly in the ionization source under atmospheric pressure. Such approach simplifies the sample preparation and can accelerate the exchange reaction so that certain hydrogens that are considered as non-labile will also participate in the exchange. The use of in-ionization source H/D exchange in modern mass spectrometry for structural elucidation of molecules serves as the basic theme in this review. We will focus on the mechanisms of the isotopic exchange reactions and on the application of in-ESI, in-APCI, and in-APPI source Hydrogen/Deuterium exchange for the investigation of petroleum, natural organic matter, oligosaccharides, and proteins including protein-protein complexes. The simple scenario for adaptation of H/D exchange reactions into mass spectrometric method is also highlighted along with a couple of examples collected from previous studies. © 2018 Wiley Periodicals, Inc.

  9. Computational mass spectrometry for small molecules

    Science.gov (United States)

    2013-01-01

    The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222

  10. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging.

    Science.gov (United States)

    Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz

    2015-09-21

    Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging.

  11. Analysis of posttranslational modifications of proteins by tandem mass spectrometry

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Trelle, Morten B; Thingholm, Tine E

    2006-01-01

    -temporal distribution in cells and tissues. Most PTMs can be detected by protein and peptide analysis by mass spectrometry (MS), either as a mass increment or a mass deficit relative to the nascent unmodified protein. Tandem mass spectrometry (MS/MS) provides a series of analytical features that are highly useful...

  12. Depth resolution of secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Pustovit, A.N.

    2004-01-01

    The effect of the solid body discreteness in the direction of the normal to the sample surface on the depth resolution of the secondary ion mass spectrometry method is analyzed. It is shown that for this case the dependence of the width at the semi-height of the delta profiles of the studied elements depth distribution on the energy and angle of incidence of the initial ions should have the form of the stepwise function. This is experimentally proved by the silicon-germanium delta-layers in the silicon samples [ru

  13. Mass spectrometry investigation of magnetron sputtering discharges

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Petr; Musil, Jindřich; Lančok, Ján; Fitl, Přemysl; Novotný, Michal; Bulíř, Jiří; Vlček, Jan

    2017-01-01

    Roč. 143, č. 6 (2017), s. 438-443 ISSN 0042-207X R&D Projects: GA MŠk LO1409; GA MŠk LM2015088; GA TA ČR(CZ) TA03010490; GA ČR GA17-13427S Institutional support: RVO:68378271 Keywords : mass spectrometry * atoms * radicals and ions * RF discharge * contamination * metallic films Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.530, year: 2016

  14. Mass Determination of Entire Amyloid Fibrils by Using Mass Spectrometry.

    Science.gov (United States)

    Doussineau, Tristan; Mathevon, Carole; Altamura, Lucie; Vendrely, Charlotte; Dugourd, Philippe; Forge, Vincent; Antoine, Rodolphe

    2016-02-12

    Amyloid fibrils are self-assembled protein structures with important roles in biology (either pathogenic or physiological), and are attracting increasing interest in nanotechnology. However, because of their high aspect ratio and the presence of some polymorphism, that is, the possibility to adopt various structures, their characterization is challenging and basic information such as their mass is unknown. Here we show that charge-detection mass spectrometry, recently developed for large self-assembled systems such as viruses, provides such information in a straightforward manner. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Simultaneous mass detection for direct inlet mass spectrometry

    International Nuclear Information System (INIS)

    Gordon, R.L.

    1979-05-01

    The evolution of analytical techniques for application in trace analysis has led to interest in practical methods for real-time monitoring. Direct inlet mass spectrometry (DIMS) has been the subject of considerable activity in recent years. A DIMS instrument is described which consists of an inlet system designed to permit particles entrained in the inlet air stream to strike a hot, oxidized rhenium filament which serves as a surface ionization source. A mass analyzer and detection system then permits identification of the elemental composition of particulates which strike the filament

  16. Analysis of E. rutaecarpa Alkaloids Constituents In Vitro and In Vivo by UPLC-Q-TOF-MS Combined with Diagnostic Fragment

    Directory of Open Access Journals (Sweden)

    Shenshen Yang

    2016-01-01

    Full Text Available Evodia rutaecarpa (Juss. Benth. (Rutaceae dried ripe fruit is used for dispelling colds, soothing liver, and analgesia. Pharmacological research has proved that alkaloids are the main active ingredients of E. rutaecarpa. This study aimed to rapidly classify and identify the alkaloids constituents of E. rutaecarpa by using UPLC-Q-TOF-MS coupled with diagnostic fragments. Furthermore, the effects of the material base of E. rutaecarpa bioactive ingredients in vivo were examined such that the transitional components in the blood of rats intragastrically given E. rutaecarpa were analyzed and identified. In this study, the type of alcohol extraction of E. rutaecarpa and the corresponding blood sample were used for the analysis by UPLC-Q-TOF-MS in positive ion mode. After reviewing much of the literature and collected information on the fragments, we obtained some diagnostic fragments of the alkaloids. Combining the diagnostic fragments with the technology of UPLC-Q-TOF-MS, we identified the compounds of E. rutaecarpa and blood samples and compared the ion fragment information with that of the alkaloids in E. rutaecarpa. A total of 17 alkaloids components and 6 blood components were identified. The proposed method was rapid, accurate, and sensitive. Therefore, this technique can reliably and practically analyze the chemical constituents in traditional Chinese medicine (TCM.

  17. Surface ionization mass spectrometry of opiates

    International Nuclear Information System (INIS)

    Usmanov, D.T.

    2009-07-01

    Key words: surface ionization, adsorption, heterogeneous reactions, surface ionization mass spectrometry, thermodesorption surface ionization spectroscopy, thermoemitter, opiates, extracts of biosamples. Subjects of study. The mass - spectrometric study of thermal - ion emission: surface ionization of opiates by on the surface of oxidized refractory metals. Purpose of work is to establish the regularities of surface ionization (SI) of multi-atomic molecule opiates and their mixtures develop the scientific base of SI methods for high sensitive and selective detection and analysis of these substances in the different objects, including biosamples. Methods of study: surface ionization mass spectrometry, thermodesorption surface ionization spectroscopy. The results obtained and their novelty. For the first time, SI of molecule opiates on the oxidized tungsten surface has been studied and their SI mass-spectra and temperature dependences of ion currents have been obtained, the characteristic heterogeneous reactions of an adsorbed molecules and the channels of monomolecular decays vibrationally-excited ions on their way in mass-spectrometry have been revealed, sublimation energy has been defined, the activation energy of E act , of these decays has been estimated for given period of time. Additivity of the SI mass-spectra of opiate mixtures of has been established under conditions of joint opiate adsorption. High selectivity of SI allows the extracts of biosamples to be analyzed without their preliminary chromatographic separation. The opiates are ionized by SI with high efficiency (from 34 C/mol to 112 C/mol), which provides high sensitivity of opiate detection by SI/MS and APTDSIS methods from - 10 -11 g in the samples under analysis. Practical value. The results of these studies create the scientific base for novel SI methods of high sensitive detection and analysis of the trace amounts of opiates in complicated mixtures, including biosamples without their preliminary

  18. Boundaries of mass resolution in native mass spectrometry.

    Science.gov (United States)

    Lössl, Philip; Snijder, Joost; Heck, Albert J R

    2014-06-01

    Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)-protein interactions, to nanomachineries such as the proteasome and ribosome, to even virus assembly. In native MS, ions attain high m/z values, requiring special mass analyzers for their detection. Depending on the particular mass analyzer used, instrumental mass resolution does often decrease at higher m/z but can still be above a couple of thousand at m/z 5000. However, the mass resolving power obtained on charge states of protein complexes in this m/z region is experimentally found to remain well below the inherent instrument resolution of the mass analyzers employed. Here, we inquire into reasons for this discrepancy and ask how native MS would benefit from higher instrumental mass resolution. To answer this question, we discuss advantages and shortcomings of mass analyzers used to study intact biomolecules and biomolecular complexes in their native state, and we review which other factors determine mass resolving power in native MS analyses. Recent examples from the literature are given to illustrate the current status and limitations.

  19. Recent development in isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Platzner, I.

    1992-01-01

    Within the limited of this review the following topics will be briefly discussed: a) Accuracy, precision, internal relative standard deviation (RISD) and external relative standard deviation (RESD) of isotope ratio measurements. With advanced instrumentation and use of standard reference materials, high accuracy and RESD = 0.002% (or better) may be achieved; b) The advantages of modern automatic isotope ratio mass spectrometer are briefly described. Computer controlled operation and data acquisition, and multiple ion collection are the recent important improvement; c) The isotopic fractionation during the course of isotope ratio measurement is considered as a major source of errors in thermal ionization of metallic elements. The phenomenon in strontium, neodymium, uranium, lead and calcium and methods to correct the measured data are discussed; d) Applications of isotope ratio mass spectrometry in atomic weight determinations, the isotope dilution technique, isotope geology, and isotope effects in biological systems are described together with specific applications in various research and technology area. (author)

  20. Radiocarbon positive-ion mass spectrometry

    International Nuclear Information System (INIS)

    Freeman, Stewart P.H.T.; Shanks, Richard P.; Donzel, Xavier; Gaubert, Gabriel

    2015-01-01

    Proof-of-principle of a new mass spectrometric technique for radiocarbon measurement is demonstrated. Interfering nitrogen and hydrocarbon molecules are largely eliminated in a charge-exchange cell operating on non-metallic gas. The positive-to-negative ion conversion is the reverse of that conventionally used in accelerator mass spectrometry (AMS) and is compatible with plasma ion sources that may be significantly more efficient and capable of greater output than are AMS sputter ion sources. The Nanogan electron cyclotron resonance (ECR) ion source employed exhibited no sample memory and the >50 kyrs age range of AMS was reproduced. A bespoke prototype new instrument is now required to optimise the plasma and cell physics and to realise hypothetical performance gains over AMS.

  1. Radiocarbon positive-ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Stewart P.H.T.; Shanks, Richard P. [Scottish Universities Environmental Research Centre (SUERC), Scottish Enterprise Technology Park, East Kilbride G75 0QF (United Kingdom); Donzel, Xavier; Gaubert, Gabriel [Pantechnik S.A., 13 Rue de la Résistance, 14400 Bayeux (France)

    2015-10-15

    Proof-of-principle of a new mass spectrometric technique for radiocarbon measurement is demonstrated. Interfering nitrogen and hydrocarbon molecules are largely eliminated in a charge-exchange cell operating on non-metallic gas. The positive-to-negative ion conversion is the reverse of that conventionally used in accelerator mass spectrometry (AMS) and is compatible with plasma ion sources that may be significantly more efficient and capable of greater output than are AMS sputter ion sources. The Nanogan electron cyclotron resonance (ECR) ion source employed exhibited no sample memory and the >50 kyrs age range of AMS was reproduced. A bespoke prototype new instrument is now required to optimise the plasma and cell physics and to realise hypothetical performance gains over AMS.

  2. Mass Spectrometry on Future Mars Landers

    Science.gov (United States)

    Brinckerhoff, W. B.; Mahaffy, P. R.

    2011-01-01

    Mass spectrometry investigations on the 2011 Mars Science Laboratory (MSL) and the 2018 ExoMars missions will address core science objectives related to the potential habitability of their landing site environments and more generally the near-surface organic inventory of Mars. The analysis of complex solid samples by mass spectrometry is a well-known approach that can provide a broad and sensitive survey of organic and inorganic compounds as well as supportive data for mineralogical analysis. The science value of such compositional information is maximized when one appreciates the particular opportunities and limitations of in situ analysis with resource-constrained instrumentation in the context of a complete science payload and applied to materials found in a particular environment. The Sample Analysis at Mars (SAM) investigation on MSL and the Mars Organic Molecule Analyzer (MOMA) investigation on ExoMars will thus benefit from and inform broad-based analog field site work linked to the Mars environments where such analysis will occur.

  3. Lipid imaging by mass spectrometry - a review.

    Science.gov (United States)

    Gode, David; Volmer, Dietrich A

    2013-03-07

    Mass spectrometry imaging (MSI) has proven to be extremely useful for applications such as the spatial analysis of peptides and proteins in biological tissue, the performance assessment of drugs in vivo or the measurement of protein or metabolite expression as tissue classifiers or biomarkers from disease versus control tissue comparisons. The most popular MSI technique is MALDI mass spectrometry. First invented by Richard Caprioli in the mid-1990s, it is the highest performing MSI technique in terms of spatial resolution, sensitivity for intact biomolecules and application range today. The unique ability to identify and spatially resolve numerous compounds simultaneously, based on m/z values has inter alia been applied to untargeted and targeted chemical mapping of biological compartments, revealing changes of physiological states, disease pathologies and metabolic faith and distribution of xenobiotics. Many MSI applications focus on lipid species because of the lipids' diverse roles as structural components of cell membranes, their function in the surfactant cycle, and their involvement as second messengers in signalling cascades of tissues and cells. This article gives a comprehensive overview of lipid imaging techniques and applications using established MALDI and SIMS methods but also other promising MSI techniques such as DESI.

  4. Impact of automation on mass spectrometry.

    Science.gov (United States)

    Zhang, Yan Victoria; Rockwood, Alan

    2015-10-23

    Mass spectrometry coupled to liquid chromatography (LC-MS and LC-MS/MS) is an analytical technique that has rapidly grown in popularity in clinical practice. In contrast to traditional technology, mass spectrometry is superior in many respects including resolution, specificity, multiplex capability and has the ability to measure analytes in various matrices. Despite these advantages, LC-MS/MS remains high cost, labor intensive and has limited throughput. This specialized technology requires highly trained personnel and therefore has largely been limited to large institutions, academic organizations and reference laboratories. Advances in automation will be paramount to break through this bottleneck and increase its appeal for routine use. This article reviews these challenges, shares perspectives on essential features for LC-MS/MS total automation and proposes a step-wise and incremental approach to achieve total automation through reducing human intervention, increasing throughput and eventually integrating the LC-MS/MS system into the automated clinical laboratory operations. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. [Mass spectrometry in the clinical microbiology laboratory].

    Science.gov (United States)

    Jordana-Lluch, Elena; Martró Català, Elisa; Ausina Ruiz, Vicente

    2012-12-01

    Infectious diseases are still a cause of high mortality and morbidity rates. Current microbiological diagnostic methods are based on culture and phenotypic identification of isolated microorganisms, which can be obtained in about 24-48 h. Given that the microbiological identification is of major importance for patient management, new diagnostic methods are needed in order to detect and identify microorganisms in a timely and accurate manner. Over the last few years, several molecular techniques based on the amplification of microbial nucleic acids have been developed with the aim of reducing the time needed for the identification of the microorganisms involved in different infectious processes. On the other hand, mass spectrometry has emerged as a rapid and consistent alternative to conventional methods for microorganism identification. This review describes the most widely used mass spectrometry technologies -matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and electrospray ionization time-of-flight (ESI-TOF)-, both for protein and nucleic acid analysis, as well as the commercial platforms available. Related publications of most interest in clinical microbiology are also reviewed. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  6. UPLC-PDA-ESI-qTOF-MS profiling and potent anti-HSV-II activity of Eucalyptus sideroxylon leaves.

    Science.gov (United States)

    Okba, Mona M; El Gedaily, Rania A; Ashour, Rehab M

    2017-11-15

    Eucalyptus is one of the most important and highly exploited genus in family Myrtaceae. An UPLC/PDA/ESI-qTOF-MS method was adopted to identify Eucalyptus sideroxylon Cunn. ex Woolls leaves phytoconstituents. Cytotoxicity of E. sideroxylon leaves phloroglucinol-rich extract (PGRE) on VERO cells was determined. The antiviral effect of PGRE against hepatitis A (HAV), herpes simplex type 1 (HSV-I), herpes simplex type 2 (HSV-II), coxsackie (CoxB4), and adenoviruses was in vitro evaluated using MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide). UPLC-MS analysis allowed the identification of 70 metabolites including: 26 triterpenes, 13 phloroglucinols, 8 fatty acids, 5 flavonoids, 5 oleuropeic acid glucosides, 3 gallic acid derivatives, and 10 miscellaneous. Twenty four metabolites identified in the leaves of E. sideroxylon and four in the genus Eucalyptus are reported herein for the first time. PGRE was found to be non-cytotoxic; the concentration that reduced the cell viability by 50% (CC 50 ) was 0.808mg/mL. Maximum non-toxic concentration (MNTC) of PGRE on Vero cells was 0.312mg/mL. The best antiviral activity was observed against HSV-II. Its mechanism was through decreasing the viral replication (IC 50 189.36μg/mL, 87.65% inhibition) and attachment on Vero cells (IC 50 199.34μg/mL, 83.13% inhibition) rather than virucidal effect (IC 50 293.1μg/mL, 50.68% inhibition). This study provides a complete map for E. sideroxylon leaves composition. It also suggests the plant as a source of new antiviral agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Quantification of 2'-deoxy-2'-β-fluoro-4'-azidocytidine in rat and dog plasma using liquid chromatography-quadrupole time-of-flight and liquid chromatography-triple quadrupole mass spectrometry: Application to bioavailability and pharmacokinetic studies.

    Science.gov (United States)

    Peng, Youmei; Cheng, Tiefeng; Dong, Lihong; Zhang, Yuhai; Chen, Xiaojing; Jiang, Jinhua; Zhang, Jingmin; Guo, Xiaohe; Guo, Mintong; Chang, Junbiao; Wang, Qingduan

    2014-09-01

    2'-Deoxy-2'-β-fluoro-4'-azidocytidine (FNC) is a novel pyrimidine analog that inhibits not only the replication of the hepatitis B virus (HBV), hepatitis C virus (HCV) and HIV but also the replication of lamivudine-resistant HBV, 4'-azidocytidine or 2'-β-methylcytidine-resistant HCV, and nucleoside reverse-transcriptase inhibitor-resistant HIV variants. The present study was undertaken to evaluate the absolute oral bioavailability of FNC in rats and the pharmacokinetic properties of FNC after intragastric administration of single and multiple doses in rats and dogs. A sensitive high-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF MS) method and a reliable high-performance liquid chromatography tandem triple quadrupole mass spectrometry (HPLC/QqQ MS/MS) method were established for the determination of FNC in the rat and dog plasmas, respectively. The sample preparation involved a protein-precipitation method with methanol after the addition of lamivudine as an internal standard. FNC was analyzed by LC using a YMC-Pack Pro C18 column (150mm×4.6mm, 3μm) with methanol (containing 0.3% formic acid): 10mM ammonium acetate (containing 0.3% formic acid, pH 2.8) (35:65, v/v) as the mobile phase. Both mass spectrometers were equipped with an electrospray ionization interface in the positive-ion mode. The linear range was from 2.00 to 2000.00ngmL(-1) in rat plasma and 0.50 to 400.00ngmL(-1) in dog plasma. The intraday and interday precision were less than 10.55%, and the accuracy was in the range of -5.86 to 5.13%. The mean recoveries were greater than 82.70% and 82.97% for FNC and IS, respectively. The HPLC/Q-TOF MS and HPLC/QqQ MS/MS methods were both successfully applied in the pharmacokinetic studies of FNC in rats and dogs. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Ambient ionization mass spectrometry: A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Shiea, Jentaie, E-mail: jetea@fac.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2011-09-19

    Highlights: {yields} Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. {yields} We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. {yields} The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  9. Ambient ionization mass spectrometry: A tutorial

    International Nuclear Information System (INIS)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu; Shiea, Jentaie

    2011-01-01

    Highlights: → Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. → We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. → The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  10. Mass Spectrometry for Large Undergraduate Laboratory Sections

    Science.gov (United States)

    Illies, A.; Shevlin, P. B.; Childers, G.; Peschke, M.; Tsai, J.

    1995-08-01

    Mass spectrometry is routinely covered in undergraduate organic chemistry courses and a number of valuable laboratory experiments featuring its use have been discussed (1-7). Although such experiments work well at institutions with limited laboratory enrollments, we typically teach laboratories with enrollments of 160 or more in which it is difficult to allow each student to carry out a meaningful "hands on" mass spectrometry experiment. Since we feel that some practical experience with this technique is important, we have designed a simple gas chromatography-mass spectrometry (gc/ms) exercise that allows each student to analyze the products of a simple synthesis that they have performed. The exercise starts with the microscale SN2 synthesis of 1-bromobutane from 1-butanol as described by Williamson (8). The students complete the synthesis and place one drop of the distilled product in a screw capped vial. The vials are then sealed, labeled with the students name and taken to the mass spectrometry laboratory by a teaching assistant. Students are instructed to sign up for a 20-min block of time over the next few days in order to analyze their sample. When the student arrives at the laboratory, he or she adds 1 ml CH2Cl2 to the sample and injects 0.3 microliters of the solution into the gas chromatograph. The samples typically contain the 1-butanol starting material and the 1-bromobutane product along with traces of dibutyl ether. The figure shows a mass chromatogram along with the mass spectra of the starting material and product from an actual student run. For this analysis to be applicable to large numbers of students, the gc separation must be as rapid as possible. We have been able to analyze each sample in 6 minutes on a 30 m DB-5 capillary column with the following temperature program: 70 oC for 1 min, 70-80 oC at 10 oC/min, 86-140 oC at 67.5 oC/min, 140-210 oC at 70 oC/min, and 210 oC for 1 min. A mass range of 20-200 amu is scanned with a solvent delay of 2

  11. High-efficiency thermal ionization sources for mass spectrometry

    International Nuclear Information System (INIS)

    Olivares, Jose A.

    1996-01-01

    A version of the thermal ionization cavity (TIC) source developed specifically for use in mass spectrometry is presented. The performance of this ion source has been characterized extensively both with the use of an isotope separator and a quadrupole mass spectrometer. A detailed description of the TIC source for mass spectrometry is given along with the performance characteristics observed

  12. Cs+ ion source for secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Bentz, B.L.; Weiss, H.; Liebl, H.

    1981-12-01

    Various types of cesium ionization sources currently used in secondary ion mass spectrometry are briefly reviewed, followed by a description of the design and performance of a novel, thermal surface ionization Cs + source developed in this laboratory. The source was evaluated for secondary ion mass spectrometry applications using the COALA ion microprobe mass analyzer. (orig.)

  13. The emergence of mass spectrometry in biochemical research

    OpenAIRE

    1995-01-01

    The initial steps toward routinely applying mass spectrometry in the biochemical laboratory have been achieved. In the past, mass spectrometry was confined to the realm of small, relatively stable molecules; large or thermally labile molecules did not survive the desorption and ionization processes intact. Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry allow for the analysis of both small and large biomolecules through "mild" desorption...

  14. Mass spectrometry a versatile aid to inorganic analysis

    International Nuclear Information System (INIS)

    Stefani, Rene

    1976-01-01

    Several hundred publications have appeared in the last three years that deal with applications of Mass Spectrometry to inorganic analysis. Bulk and localized trace analysis, surface and thin film characterization and microstructure examination are currently performed by Secondary Ion Mass Spectrometry, Spark Source Mass Spectrometry and the newly developed Laser Probe Mass Spectrometry. Suitable experimental procedures allow insulators, biologic materials and microsamples to be analysed. In spite of the classification by techniques this review is essentially devoted to the most significant papers in analytical applications but instrumental and basic features are sometimes introduced to support the discussions

  15. Inductively coupled plasma source mass spectrometry

    International Nuclear Information System (INIS)

    Price Russ, G. III

    1993-01-01

    Inductively coupled plasma source mass spectrometry (ICP-MS) is a relatively new (5 y commercial availability) technique for simultaneously determining the concentration and isotopic composition of a large number of elements at trace levels. The principle advantages of ICP-MS are the ability to measure essentially all the metallic elements at concentrations as low as 1 part in 10 12 by weight, to analyse aqueous samples directly, to determine the isotopic composition of essentially all the metallic elements, and to analyse samples rapidly (minutes). The history of the development of ICP-MS and discussions of a variety of applications have been discussed in detail in Date and Gray (1988). Koppenaal (1988, 1990) has reviewed the ICP-MS literature. In that ICP-MS is a relatively new and still evolving technique, this chapter will discuss potential capability more than proven performance. (author). 24 refs

  16. Application of Nanodiamonds in Biomolecular Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ping Cheng

    2010-03-01

    Full Text Available The combination of nanodiamond (ND with biomolecular mass spectrometry (MS makes rapid, sensitive detection of biopolymers from complex biosamples feasible. Due to its chemical inertness, optical transparency and biocompatibility, the advantage of NDs in MS study is unique. Furthermore, functionalization on the surfaces of NDs expands their application in the fields of proteomics and genomics for specific requirements greatly. This review presents methods of MS analysis based on solid phase extraction and elution on NDs and different application examples including peptide, protein, DNA, glycan and others. Owing to the quick development of nanotechnology, surface chemistry, new MS methods and the intense interest in proteomics and genomics, a huge increase of their applications in biomolecular MS analysis in the near future can be predicted.

  17. [Application of mass spectrometry in mycology].

    Science.gov (United States)

    Quiles Melero, Inmaculada; Peláez, Teresa; Rezusta López, Antonio; Garcia-Rodríguez, Julio

    2016-06-01

    MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry (MS) is becoming an essential tool in most microbiology laboratories. At present, by using a characteristic fungal profile obtained from whole cells or through simple extraction protocols, MALDI-TOF MS allows the identification of pathogenic fungi with a high performance potential. This methodology decreases the laboratory turnaround time, optimizing the detection of mycoses. This article describes the state-of-the-art of the use of MALDI-TOF MS for the detection of human clinical fungal pathogens in the laboratory and discusses the future applications of this technology, which will further improve routine mycological diagnosis. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  18. Calibration samples for accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Hershberger, R.L.; Flynn, D.S.; Gabbard, F.

    1981-01-01

    Radioactive samples with precisely known numbers of atoms are useful as calibration sources for lifetime measurements using accelerator mass spectrometry. Such samples can be obtained in two ways: either by measuring the production rate as the sample is created or by measuring the decay rate after the sample has been obtained. The latter method requires that a large sample be produced and that the decay constant be accurately known. The former method is a useful and independent alternative, especially when the decay constant is not well known. The facilities at the University of Kentucky for precision measurements of total neutron production cross sections offer a source of such calibration samples. The possibilities, while quite extensive, would be limited to the proton rich side of the line of stability because of the use of (p,n) and (α,n) reactions for sample production

  19. Subattomole sensitivity in biological accelerator mass spectrometry.

    Science.gov (United States)

    Salehpour, Mehran; Possnert, Göran; Bryhni, Helge

    2008-05-15

    The Uppsala University 5 MV Pelletron tandem accelerator has been used to study (14)C-labeled biological samples utilizing accelerator mass spectrometry (AMS) technology. We have adapted a sample preparation method for small biological samples down to a few tens of micrograms of carbon, involving among others, miniaturizing of the graphitization reactor. Standard AMS requires about 1 mg of carbon with a limit of quantitation of about 10 amol. Results are presented for a range of small sample sizes with concentrations down to below 1 pM of a pharmaceutical substance in human blood. It is shown that (14)C-labeled molecular markers can be routinely measured from the femtomole range down to a few hundred zeptomole (10 (-21) mol), without the use of any additional separation methods.

  20. Radiocarbon dating with accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Blake, W. Jr.

    1985-01-01

    Radiocarbon dating by means of accelerator mass spectrometry (AMS) has two great advantages over conventional dating: 1) much smaller samples can be handled and 2) counting time is significantly shorter. Three examples are given for Holocene-age material from east-central Ellesmere Island. The results demonstrate the potential use of this technique as a powerful research tool in studies of Quaternary chronology. Individual fragments of marine shells as small as 0.1 g have been dated successfully at the IsoTrace Laboratory, University of Toronto. In the case of an aquatic moss from a lake sediment core, an increment 0.5 cm thick could be used instead of a 5 cm-thick slice, thus allowing a much more precise estimate of the onset of organic sedimentation

  1. Analysis of barium by isotope mass spectrometry

    International Nuclear Information System (INIS)

    Long Kaiming; Jia Baoting; Liu Xuemei

    2004-01-01

    The isotopic abundance ratios for barium at sub-microgram level are analyzed by thermal surface ionization mass spectrometry (TIMS). Rhenium trips used for sample preparation are firstly treated to eliminate possible barium background interference. During the preparation of barium samples phosphoric acid is added as an emitting and stabilizing reagent. The addition of phosphoric acid increases the collection efficiency and ion current strength and stability for barium. A relative standard deviation of 0.02% for the isotopic abundance ratio of 137 Ba to 138 Ba is achieved when the 138 Ba ion current is (1-3) x 10 -12 A. The experimental results also demonstrate that the isotope fractionation effect is negligibly small in the isotopic analysis of barium

  2. Enantioselectivity of mass spectrometry: challenges and promises.

    Science.gov (United States)

    Awad, Hanan; El-Aneed, Anas

    2013-01-01

    With the fast growing market of pure enantiomer drugs and bioactive molecules, new chiral-selective analytical tools have been instigated including the use of mass spectrometry (MS). Even though MS is one of the best analytical tools that has efficiently been used in several pharmaceutical and biological applications, traditionally MS is considered as a "chiral-blind" technique. This limitation is due to the MS inability to differentiate between two enantiomers of a chiral molecule based merely on their masses. Several approaches have been explored to assess the potential role of MS in chiral analysis. The first approach depends on the use of MS-hyphenated techniques utilizing fast and sensitive chiral separation tools such as liquid chromatography (LC), gas chromatography (GC), and capillary electrophoresis (CE) coupled to MS detector. More recently, several alternative separation techniques have been evaluated such as supercritical fluid chromatography (SFC) and capillary electrochromatography (CEC); the latter being a hybrid technique that combines the efficiency of CE with the selectivity of LC. The second approach is based on using the MS instrument solely for the chiral recognition. This method depends on the behavioral differences between enantiomers towards a foreign molecule and the ability of MS to monitor such differences. These behavioral differences can be divided into three types: (i) differences in the enantiomeric affinity for association with the chiral selector, (ii) differences of the enantiomeric exchange rate with a foreign reagent, and (iii) differences in the complex MS dissociation behaviors of the enantiomers. Most recently, ion mobility spectrometry was introduced to qualitatively and quantitatively evaluate chiral compounds. This article provides an overview of MS role in chiral analysis by discussing MS based methodologies and presenting the challenges and promises associated with each approach. © 2013 Wiley Periodicals, Inc.

  3. Mass spectrometry of acoustically levitated droplets.

    Science.gov (United States)

    Westphall, Michael S; Jorabchi, Kaveh; Smith, Lloyd M

    2008-08-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air-droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-microL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing charge recombination after ion desorption.

  4. Liquid chromatography - mass spectrometry analysis of pharmaceuticals

    International Nuclear Information System (INIS)

    Macasek, F.

    2003-01-01

    The drugs represent mostly non-volatile and thermally labile solutes, often available only in small amounts like it is in case of radiopharmaceuticals. Therefor, the favourable separation techniques for such compounds are HPLC, capillary electrophoresis and also TLC 1. Liquid chromatography with mass spectrometric detector (LC/MS) is especially powerful for their microanalysis. Mass spectrometry separating the ions in high vacuum was presumably used as detector for gas chromatography effluent but the on-line coupling with liquid eluant flow 0.1-1 mL/min is far more challenging. New types of ion sources were constructed for simultaneous removal of solvent and ionisation of solutes at atmospheric pressure (API). At present, a relatively wide choice of successfully designed commercial equipment is available either for small organic molecules and larger biomolecules (Perkin-Elmer, Agilent, Jeol, Bruker Daltonics, ThermoQuest, Shimadzu). The features of the LC/MS systems are presented. LC/MS as a new quality control tool for [F-18]fluorodeoxyglucose (FDG) radiopharmaceutical, which has became the most spread radiopharmaceutical for positron emission tomography (PET), was proposed. Other applications of the LC/MS are reviewed. (author)

  5. Radiocarbon mass spectrometry for drug development

    International Nuclear Information System (INIS)

    Ulrich, Schulze-Konig Tim

    2011-01-01

    Full text: Radiocarbon has a huge potential as a tracer for metabolism studies in humans. By using Accelerator Mass Spectrometry (AMS) for its detection, a unique sensitivity is reached reducing required radiation doses to a negligible level. Until recently, a widespread use of AMS in biomedical research was impeded by the high complexity of the instrument, time-consuming sample preparation, and a limited availability of measurement capacity. Over the last few years, tremendous progress has been achieved in the reduction of size and complexity of AMS instruments. It allowed designing a compact AMS system, dubbed BioMICADAS to address the needs of biomedical users. For more than two years, this system is in successful operation at a commercial service provider for the pharmaceutical industry. A further drastic simplification of radiocarbon mass spectrometers seems possible and could establish a regular usage of this technology in drug development. However, to reach this goal a better integration of AMS into the workflow of bioanalytical laboratories will be necessary. For this purpose, CO 2 accepting ion sources may be a key, since they enable an almost automated sample preparation. The status of radiocarbon AMS in biomedical research and its perspective will be discussed

  6. Compressed sensing in imaging mass spectrometry

    International Nuclear Information System (INIS)

    Bartels, Andreas; Dülk, Patrick; Trede, Dennis; Alexandrov, Theodore; Maaß, Peter

    2013-01-01

    Imaging mass spectrometry (IMS) is a technique of analytical chemistry for spatially resolved, label-free and multipurpose analysis of biological samples that is able to detect the spatial distribution of hundreds of molecules in one experiment. The hyperspectral IMS data is typically generated by a mass spectrometer analyzing the surface of the sample. In this paper, we propose a compressed sensing approach to IMS which potentially allows for faster data acquisition by collecting only a part of the pixels in the hyperspectral image and reconstructing the full image from this data. We present an integrative approach to perform both peak-picking spectra and denoising m/z-images simultaneously, whereas the state of the art data analysis methods solve these problems separately. We provide a proof of the robustness of the recovery of both the spectra and individual channels of the hyperspectral image and propose an algorithm to solve our optimization problem which is based on proximal mappings. The paper concludes with the numerical reconstruction results for an IMS dataset of a rat brain coronal section. (paper)

  7. Probing the Composition, Assembly and Activity of Protein Molecular Machines using Native Mass Spectrometry

    NARCIS (Netherlands)

    van de Waterbeemd, M.J.

    2017-01-01

    Native mass spectrometry and mass spectrometry in general, are powerful analytical tools for studying proteins and protein complexes. Native mass spectrometry may provide accurate mass measurements of large macromolecular assemblies enabling the investigation of their composition and stoichiometry.

  8. Statistical methods for mass spectrometry-based clinical proteomics

    NARCIS (Netherlands)

    Kakourou, A.

    2018-01-01

    The work presented in this thesis focuses on methods for the construction of diagnostic rules based on clinical mass spectrometry proteomic data. Mass spectrometry has become one of the key technologies for jointly measuring the expression of thousands of proteins in biological samples.

  9. Applications of accelerator mass spectrometry to nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Guo Zhiyu; Zhang Chuan

    2002-01-01

    As an ultra high sensitive analyzing method, accelerator mass spectrometry is playing an important role in the studies of nuclear physics and astrophysics. The accelerator mass spectrometry (AMS) applications in searching for violation of Pauli exclusion principle and study on supernovae are discussed as examples

  10. Mass spectrometry for real-time quantitative breath analysis

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Španěl, Patrik; Herbig, J.; Beauchamp, J.

    2014-01-01

    Roč. 8, č. 2 (2014), 027101 ISSN 1752-7155 Institutional support: RVO:61388955 Keywords : breath analysis * proton transfer reaction mass spectrometry * selected ion flow tube mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.631, year: 2014

  11. Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Annesley, Thomas M.; Cooks, Robert G.; Herold, David A.; Hoofnagle, Andrew N.

    2016-01-04

    Each year the journal Clinical Chemistry publishes a January special issue on a topic that is relevant to the laboratory medicine community. In January 2016 the topic is mass spectrometry, and the issue is entitled “Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine”. One popular feature in our issues is a Q&A on a topic, clearly in this case mass spectrometry. The journal is assembling a panel of 5-6 experts from various areas of mass spectrometry ranging from instrument manufacturing to practicing clinical chemists. Dick Smith is one of the scientist requested to participate in this special issue Q&A on Mass Spectrometry. The Q&A Transcript is attached

  12. Chemical Profiling of Re-Du-Ning Injection by Ultra-Performance Liquid Chromatography Coupled with Electrospray Ionization Tandem Quadrupole Time-of-Flight Mass Spectrometry through the Screening of Diagnostic Ions in MSE Mode

    Science.gov (United States)

    Wang, Zhenzhong; Geng, Jianliang; Dai, Yi; Xiao, Wei; Yao, Xinsheng

    2015-01-01

    The broad applications and mechanism explorations of traditional Chinese medicine prescriptions (TCMPs) require a clear understanding of TCMP chemical constituents. In the present study, we describe an efficient and universally applicable analytical approach based on ultra-performance liquid chromatography coupled to electrospray ionization tandem quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q/TOF-MS) with the MSE (E denotes collision energy) data acquisition mode, which allowed the rapid separation and reliable determination of TCMP chemical constituents. By monitoring diagnostic ions in the high energy function of MSE, target peaks of analogous compounds in TCMPs could be rapidly screened and identified. “Re-Du-Ning” injection (RDN), a eutherapeutic traditional Chinese medicine injection (TCMI) that has been widely used to reduce fever caused by viral infections in clinical practice, was studied as an example. In total, 90 compounds, including five new iridoids and one new sesquiterpene, were identified or tentatively characterized by accurate mass measurements within 5 ppm error. This analysis was accompanied by MS fragmentation and reference standard comparison analyses. Furthermore, the herbal sources of these compounds were unambiguously confirmed by comparing the extracted ion chromatograms (EICs) of RDN and ingredient herbal extracts. Our work provides a certain foundation for further studies of RDN. Moreover, the analytical approach developed herein has proven to be generally applicable for profiling the chemical constituents in TCMPs and other complicated mixtures. PMID:25875968

  13. Hyphenation of ultra high performance supercritical fluid chromatography with atmospheric pressure chemical ionisation high resolution mass spectrometry: Part 1. Study of the coupling parameters for the analysis of natural non-polar compounds.

    Science.gov (United States)

    Duval, Johanna; Colas, Cyril; Pecher, Virginie; Poujol, Marion; Tranchant, Jean-François; Lesellier, Eric

    2017-08-04

    An analytical method based on Ultra-High-Performance Supercritical Fluid Chromatography (UHPSFC) coupled with Atmospheric Pressure Chemical Ionization - High-resolution mass spectrometry (APCI-Q-TOF-HRMS) was developed for compounds screening from oily samples. The hyphenation was made using a commercial UHPLC device coupled to a CO 2 pump in order to perform the chromatographic analysis. An adaptation of the injection system for compressible fluids was accomplished for this coupling: this modification of the injection sequence was achieved to prevent unusual variations of the injected volume related to the use of a compressible fluid. UHPSFC-HRMS hyphenation was optimized to enhance the response of the varied compounds from a seed extract (anthraquinones, free fatty acids, diacylglycerols, hydroxylated triacylglycerols and triacylglycerols). No split was used prior to the APCI ionization source, allowing introducing all the compounds in the spectrometer, ensuring a better sensitivity for minor compounds. The effects of a mechanical make-up (T-piece) added before this ionization source was discussed in terms of standard deviation of response, response intensity and fragmentation percentage. The location of the T-piece with regards to the backpressure regulator (BPR), the flow rate and the nature of the make-up solvent were studied. Results show that the effects of the studied parameters depend on the nature of the compounds, whereas the make-up addition favours the robustness of the mass response (quantitative aspect). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Secondary Ion Mass Spectrometry SIMS XI

    Science.gov (United States)

    Gillen, G.; Lareau, R.; Bennett, J.; Stevie, F.

    2003-05-01

    This volume contains 252 contributions presented as plenary, invited and contributed poster and oral presentations at the 11th International Conference on Secondary Ion Mass Spectrometry (SIMS XI) held at the Hilton Hotel, Walt Disney World Village, Orlando, Florida, 7 12 September, 1997. The book covers a diverse range of research, reflecting the rapid growth in advanced semiconductor characterization, ultra shallow depth profiling, TOF-SIMS and the new areas in which SIMS techniques are being used, for example in biological sciences and organic surface characterization. Papers are presented under the following categories: Isotopic SIMS Biological SIMS Semiconductor Characterization Techniques and Applications Ultra Shallow Depth Profiling Depth Profiling Fundamental/Modelling and Diffusion Sputter-Induced Topography Fundamentals of Molecular Desorption Organic Materials Practical TOF-SIMS Polyatomic Primary Ions Materials/Surface Analysis Postionization Instrumentation Geological SIMS Imaging Fundamentals of Sputtering Ion Formation and Cluster Formation Quantitative Analysis Environmental/Particle Characterization Related Techniques These proceedings provide an invaluable source of reference for both newcomers to the field and experienced SIMS users.

  15. New applications of accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Davis, J.C.

    1991-01-01

    Since its invention in the late 70's, and reduction to near-routine practice by the mid-80's, accelerator mass spectrometry (AMS) has become a powerful tool for archaeological and geochemical measurements in which cosmogenic isotopes such as 10 Be, 14 C, 26 Al, 36 Cl and 129 I are used as either tracers or chronometers. The utility of such measurements is demonstrated by the fact that most accelerators having AMS capabilities have significant backlogs of samples awaiting measurement. In designing and justifying a new accelerator facility in which AMS was to be a major feature, we sought to advance the field and increase the resources available for it by two steps: (1) development of new research applications in which intentionally added isotopic labels were used rather than just naturally present ones; and (2) enhancement of spectrometer throughout, making new classes of experiments possible by greatly increasing the number of samples that could be measured in individual experiments. Results of the effort to date suggest that development of a family of very small spectrometers optimized for just tritium and/or radiocarbon will be attractive in the near future

  16. Accelerator mass spectrometry for radiocarbon dating

    International Nuclear Information System (INIS)

    Bronk, C.R.

    1987-01-01

    Accelerator mass spectrometry (AMS) has been used routinely for radiocarbon measurements for several years. This thesis describes theoretical work to understand the reasons for low accuracy and range and offers practical solutions. The production and transport of the ions used in the measurements are found to be the most crucial stages in the process. The theories behind ion production by sputtering are discussed and applied to the specific case of carbon sputtered by caesium. Experimental evidence is also examined in relation to the theories. The phenomena of space charge and lens aberrations are discussed along with the interaction between ion beams and gas molecules in the vacuum. Computer programs for calculating phase space transformations are then described; these are designed to help investigations of the effects of space charge and aberrations on AMS measurements. Calculations using these programs are discussed in relation both to measured ion beam profiles in phase space and to the current dependent transmission of ions through the Oxford radiocarbon accelerator. Improvements have been made to this accelerator and these are discussed in the context of the calculations. C - ions are produced directly from carbon dioxide at the Middleton High Intensity Sputter Source. Experiments to evaluate the performance of such a source are described and detailed design criteria established. An ion source designed and built specifically for radiocarbon measurements using carbon dioxide is described. Experiments to evaluate its performance and investigate the underlying physical processes are discussed. (author)

  17. 14C Accelerator mass spectrometry in Brazil

    International Nuclear Information System (INIS)

    Macario, K.D.; Gomes, P.R.S.; Anjos, Roberto M.; Linares, R.; Queiroz, E.A.; Oliveira, F.M.; Cardozo, L.; Carvalho, C.R.A.

    2011-01-01

    Radiocarbon Accelerator Mass Spectrometry is an ultra-sensitive technique that enables the direct measurement of carbon isotopes in samples as small as a few milligrams. The possibility of dating or tracing rare or even compound specific carbon samples has application in many fields of science such as Archaeology, Geosciences and Biomedicine. Several kinds of material such as wood, charcoal, carbonate and bone can be chemically treated and converted to graphite to be measured in the accelerator system. The Physics Institute of Universidade Federal Fluminense (UFF), in Brazil will soon be able to perform the complete 14 C-AMS measurement of samples. At the Nuclear Chronology Laboratory (LACRON) samples are prepared and converted to carbon dioxide. A stainless steel vacuum system was constructed for carbon dioxide purification and graphitization is performed in sealed tubes in a muffle oven. Graphite samples will be analyzed in a 250 kV Single Stage Accelerator produced by National Electrostatic Corporation which will be installed in the beginning of 2012. With the sample preparation laboratory at LACRON and the SSAMS system, the Physics Institute of UFF will be the first 14 C-AMS facility in Latin America. (author)

  18. Accelerator mass spectrometry of small biological samples.

    Science.gov (United States)

    Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran

    2008-12-01

    Accelerator mass spectrometry (AMS) is an ultra-sensitive technique for isotopic ratio measurements. In the biomedical field, AMS can be used to measure femtomolar concentrations of labeled drugs in body fluids, with direct applications in early drug development such as Microdosing. Likewise, the regenerative properties of cells which are of fundamental significance in stem-cell research can be determined with an accuracy of a few years by AMS analysis of human DNA. However, AMS nominally requires about 1 mg of carbon per sample which is not always available when dealing with specific body substances such as localized, organ-specific DNA samples. Consequently, it is of analytical interest to develop methods for the routine analysis of small samples in the range of a few tens of microg. We have used a 5 MV Pelletron tandem accelerator to study small biological samples using AMS. Different methods are presented and compared. A (12)C-carrier sample preparation method is described which is potentially more sensitive and less susceptible to contamination than the standard procedures.

  19. Tandem mass spectrometry: analysis of complex mixtures

    International Nuclear Information System (INIS)

    Singleton, K.E.

    1985-01-01

    Applications of tandem mass spectrometry (MS/MS) for the analysis of complex mixtures results in increased specificity and selectivity by using a variety of reagent gases in both negative and positive ion modes. Natural isotopic abundance ratios were examined in both simple and complex mixtures using parent, daughter and neutral loss scans. MS/MS was also used to discover new compounds. Daughter scans were used to identify seven new alkaloids in a cactus species. Three of these alkaloids were novel compounds, and included the first simple, fully aromatic isoquinoline alkaloids reported in Cactaceae. MS/MS was used to characterize the chemical reaction products of coal in studies designed to probe its macromolecular structure. Negative ion chemical ionization was utilized to study reaction products resulting from the oxidation of coal. Possible structural units in the precursor coal were predicted based on the reaction products identified, aliphatic and aromatic acids and their anhydrides. The MS/MS method was also used to characterize reaction products resulting from coal liquefaction and/or extraction. These studies illustrate the types of problems for which MS/MS is useful. Emphasis has been placed on characterization of complex mixtures by selecting experimental parameters which enhance the information obtained. The value of using MS/MS in conjunction with other analytical techniques as well as the chemical pretreatment is demonstrated

  20. UHPLC-Q-TOF-MS-based metabolomics approach to compare the saponin compositions of Xueshuantong injection and Xuesaitong injection.

    Science.gov (United States)

    Yao, Changliang; Yang, Wenzhi; Zhang, Jingxian; Qiu, Shi; Chen, Ming; Shi, Xiaojian; Pan, Huiqin; Wu, Wanying; Guo, Dean

    2017-02-01

    Various traditional Chinese medicine preparations developed from Notoginseng total saponins, including Xueshuantong injection and Xuesaitong injection, are extensively used in China to treat cardiocerebrovascular diseases. However, the difference of their saponin compositions remains unknown. An ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry based metabolomics approach was developed to probe the saponin discrimination between Xueshuantong and Xuesaitong and the related factors by large sample analysis. A highly efficient chromatographic separation was achieved on an HSS T3 column within 20 min with the holistic metabolites information recorded in the negative MS E mode. A six-step data pretreatment procedure mainly based on Progenesis QI and mass defect filtering was established. Pattern recognition chemometrics was used to discover the potential saponin markers. The saponin composition of Wuzhou Xueshuantong showed distinct discrimination from the other products. Wuzhou Xueshuantong contains more abundant protopanaxatriol-type noto-R 1 , Rg 1 , Re, and protopanaxadiol-type Rb 1 , but less Rd and other low-polarity protopanaxadiol-type ginsenosides. These differences could not directly correlate to the use of different parts of Panax notoginseng, but possibly to the different preparation techniques employed by different manufacturers. These results are beneficial to the establishment of pharmacopoeia standards and the assessment of the efficacy and adverse drug reactions for these homologous products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Determination of ramipril in human plasma and its fragmentation by UPLC-Q-TOF-MS with positive electrospray ionization

    Directory of Open Access Journals (Sweden)

    Szpot Paweł

    2015-06-01

    Full Text Available This report presents the application of ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry with positive electrospray ionization, to determine ramipril in human plasma. First, the proteins in human plasma were precipitated using acetonitrile, then the supernatant was extracted by ethyl acetate at pH 3 and finally, the extract was analyzed using a UPLC-QTOF- MS system. The method was validated and the coefficient of determination (R2 was > 0.999, the lower limit of quantification (LLOQ was 0.5 ng mL-1. Precision, recovery and stability were determined for three different concentrations of ramipril. RSD for this method ranged from 3.3 to 8.6 %. The intra-day mean recovery was from 65.3 to 97.3 %. In addition, the fragmentation of ramipril was studied. Due to high resolution of the spectrometer, it was possible to measure fragment masses accurately and determine their molecular and chemical formulas with high accuracy.

  2. Determination and identification of hydrophilic and hydrophobic arsenic species in methanol extract of fresh cod liver by RP-HPLC with simultaneous ICP-MS and ESI-Q-TOF-MS detection.

    Science.gov (United States)

    Arroyo-Abad, Uriel; Lischka, Susanne; Piechotta, Christian; Mattusch, Jürgen; Reemtsma, Thorsten

    2013-12-01

    The present study was focused on the determination and identification of arsenic species in methanolic extracts of cod liver. Arsenic species were fractionated and the fractions analysed by RP-HPLC-ICP-MS coupled with ESI-Q-TOF-MS. The total concentration of arsenic in the fresh cod liver was analysed by ICP-MS to be 1.53±0.02 mg As kg(-1)w.w. and the extraction recovery was ca. 100% and the column recovery >93%. Besides polar inorganic and methylated arsenic species (>70%) more hydrophobic arsenic-containing fatty acids and hydrocarbons occurred. Based on the mass spectrometric data proposals for molecular structures were elaborated for 20 of the organic As species included 10 arsenic-containing fatty acids (AsFA) and an arsenic-containing hydrocarbon (AsHC) mentioned for the first time in fresh cod liver. Arsenobetaine was found as main water-soluble arsenic compound in cod liver followed by higher molecular mass arsenic-containing fatty acids and hydrocarbons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Imaging mass spectrometry in drug development and toxicology.

    Science.gov (United States)

    Karlsson, Oskar; Hanrieder, Jörg

    2017-06-01

    During the last decades, imaging mass spectrometry has gained significant relevance in biomedical research. Recent advances in imaging mass spectrometry have paved the way for in situ studies on drug development, metabolism and toxicology. In contrast to whole-body autoradiography that images the localization of radiolabeled compounds, imaging mass spectrometry provides the possibility to simultaneously determine the discrete tissue distribution of the parent compound and its metabolites. In addition, imaging mass spectrometry features high molecular specificity and allows comprehensive, multiplexed detection and localization of hundreds of proteins, peptides and lipids directly in tissues. Toxicologists traditionally screen for adverse findings by histopathological examination. However, studies of the molecular and cellular processes underpinning toxicological and pathologic findings induced by candidate drugs or toxins are important to reach a mechanistic understanding and an effective risk assessment strategy. One of IMS strengths is the ability to directly overlay the molecular information from the mass spectrometric analysis with the tissue section and allow correlative comparisons of molecular and histologic information. Imaging mass spectrometry could therefore be a powerful tool for omics profiling of pharmacological/toxicological effects of drug candidates and toxicants in discrete tissue regions. The aim of the present review is to provide an overview of imaging mass spectrometry, with particular focus on MALDI imaging mass spectrometry, and its use in drug development and toxicology in general.

  4. Correcting mass shifts: A lock mass-free recalibration procedure for mass spectrometry imaging data

    Czech Academy of Sciences Publication Activity Database

    Kulkarni, P.; Kaftan, F.; Kynast, P.; Svatoš, Aleš; Böcker, S.

    2015-01-01

    Roč. 407, č. 25 (2015), s. 7603-7613 ISSN 1618-2642 Institutional support: RVO:61388963 Keywords : mass spectrometry imaging * recalibration * mass shift correction * data processing Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 3.125, year: 2015

  5. Interpretation of Tandem Mass Spectrometry (MSMS) Spectra for Peptide Analysis

    DEFF Research Database (Denmark)

    Hjernø, Karin; Højrup, Peter

    2015-01-01

    The aim of this chapter is to give a short introduction to peptide analysis by mass spectrometry (MS) and interpretation of fragment mass spectra. Through examples and guidelines we demonstrate how to understand and validate search results and how to perform de novo sequencing based on the often...... very complex fragmentation pattern obtained by tandem mass spectrometry (also referred to as MSMS). The focus is on simple rules for interpretation of MSMS spectra of tryptic as well as non-tryptic peptides....

  6. Analysis of organic compounds by secondary neutral mass spectrometry (SNMS) and secondary ion mass spectrometry (SIMS)

    International Nuclear Information System (INIS)

    Ewinger, H.P.

    1993-05-01

    This study is about the use of secondary neutral mass spectrometry (SNMS) and secondary ion mass spectrometry (SIMS) as analytical techniques with depth resolution in determining organic components in environmental solid microparticles. The first application of plasma SNMS to organic compounds revealed the spectra to be composed mainly of signals from the atoms of all participating elements, such as C, H, O, N, S, P, and Cl. In addition, signals produced by multi-atomic clusters can be detected, such as CH, C 2 , CH 2 , C 2 H, and C 3 , as well as signals indicating the presence of organic compounds with hetero elements, such as OH, NH, and CN. Their intensity decreases very markedly with increasing numbers of atoms. Among the signals from bi-atomic clusters, those coming from elements with large mass differences are most intense. The use of plasma SNMS with organic compounds has shown that, except for spurious chemical reactions induced by ion bombardment and photodesorption by the photons of the plasma, it is possible to analyze with resolution in depth, elements of organic solids. A more detailed molecular characterization of organic compounds is possible by means of SIMS on the basis of multi-atomic fragments and by comparison with suitable signal patterns. (orig./BBR) [de

  7. A peptidomic approach for monitoring and characterising peptide cyanotoxins produced in Italian lakes by matrix-assisted laser desorption/ionisation and quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Ferranti, Pasquale; Nasi, Antonella; Bruno, Milena; Basile, Adriana; Serpe, Luigi; Gallo, Pasquale

    2011-05-15

    In recent years, the occurrence of cyanobacterial blooms in eutrophic freshwaters has been described all over the world, including most European countries. Blooms of cyanobacteria may produce mixtures of toxic secondary metabolites, called cyanotoxins. Among these, the most studied are microcystins, a group of cyclic heptapeptides, because of their potent hepatotoxicity and activity as tumour promoters. Other peptide cyanotoxins have been described whose structure and toxicity have not been thoroughly studied. Herein we present a peptidomic approach aimed to characterise and quantify the peptide cyanotoxins produced in two Italian lakes, Averno and Albano. The procedure was based on matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry mass spectrometry (MALDI-TOF-MS) analysis for rapid detection and profiling of the peptide mixture complexity, combined with liquid chromatography/electrospray ionisation quadrupole time-of- flight tandem mass spectrometry (LC/ESI-Q-TOF-MS/MS) which provided unambiguous structural identification of the main compounds, as well as accurate quantitative analysis of microcystins. In the case of Lake Averno, a novel variant of microcystin-RR and two novel anabaenopeptin variants (Anabaenopeptins B(1) and Anabaenopeptin F(1)), presenting homoarginine in place of the commonly found arginine, were detected and characterised. In Lake Albano, the peculiar peptide patterns in different years were compared, as an example of the potentiality of the peptidomic approach for fast screening analysis, prior to fine structural analysis and determination of cyanotoxins, which included six novel aeruginosin variants. This approach allows for wide range monitoring of cyanobacteria blooms, and to collect data for evaluating possible health risks to consumers, through the panel of the compounds produced along different years. Copyright © 2011 John Wiley & Sons, Ltd.

  8. [Advances in mass spectrometry-based approaches for neuropeptide analysis].

    Science.gov (United States)

    Ji, Qianyue; Ma, Min; Peng, Xin; Jia, Chenxi; Ji, Qianyue

    2017-07-25

    Neuropeptides are an important class of endogenous bioactive substances involved in the function of the nervous system, and connect the brain and other neural and peripheral organs. Mass spectrometry-based neuropeptidomics are designed to study neuropeptides in a large-scale manner and obtain important molecular information to further understand the mechanism of nervous system regulation and the pathogenesis of neurological diseases. This review summarizes the basic strategies for the study of neuropeptides using mass spectrometry, including sample preparation and processing, qualitative and quantitative methods, and mass spectrometry imagining.

  9. Mass spectrometry for characterizing plant cell wall polysaccharides

    Directory of Open Access Journals (Sweden)

    Stefan eBauer

    2012-03-01

    Full Text Available Mass spectrometry is a selective and powerful technique to obtain identification and structural information on compounds present in complex mixtures. Since it requires only small sample amount it is an excellent tool for researchers interested in detecting changes in composition of complex carbohydrates of plants. This mini-review gives an overview of common mass spectrometry techniques applied to the analysis of plant cell wall carbohydrates. It presents examples in which mass spectrometry has been used to elucidate the structure of oligosaccharides derived from hemicelluloses and pectins and illustrates how information on sequence, linkages, branching and modifications are obtained from characteristic fragmentation patterns.

  10. [Latest development in mass spectrometry for clinical application].

    Science.gov (United States)

    Takino, Masahiko

    2013-09-01

    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in special clinical chemistry laboratories. It significantly increases the analytic potential in clinical chemistry, especially in the field of low molecular weight biomarker analysis. This review summarizes the state of the art in mass spectrometry and related techniques for clinical application with a main focus on recent developments in LC-MS. Current trends in ionization techniques, automated online sample preparation techniques coupled with LC-MS, and ion mobility spectrometry are discussed. Emerging mass spectrometric approaches complementary to LC-MS are discussed as well.

  11. Proteomic Mass Spectrometry Imaging for Skin Cancer Diagnosis.

    Science.gov (United States)

    Lazova, Rossitza; Seeley, Erin H

    2017-10-01

    Mass spectrometry imaging can be successfully used for skin cancer diagnosis, particularly for the diagnosis of challenging melanocytic lesions. This method analyzes proteins within benign and malignant melanocytic tumor cells and, based on their differences, which constitute a unique molecular signature of 5 to 20 proteins, can render a diagnosis of benign nevus versus malignant melanoma. Mass spectrometry imaging may assist in the differentiation between metastases and nevi as well as between proliferative nodules in nevi and melanoma arising in a nevus. In the difficult area of atypical Spitzoid neoplasms, mass spectrometry diagnosis can predict clinical outcome better than histopathology. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Potential serum biomarkers and metabonomic profiling of serum in ischemic stroke patients using UPLC/Q-TOF MS/MS.

    Directory of Open Access Journals (Sweden)

    Hongxue Sun

    Full Text Available Stroke still has a high incidence with a tremendous public health burden and it is a leading cause of mortality and disability. However, biomarkers for early diagnosis are absent and the metabolic alterations associated with ischemic stroke are not clearly understood. The objectives of this case-control study are to identify serum biomarkers and explore the metabolic alterations of ischemic stroke.Metabonomic analysis was performed using ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry and multivariate statistical analysis was employed to study 60 patients with or without ischemic stroke (30 cases and 30 controls.Serum metabolic profiling identified a series of 12 metabolites with significant alterations, and the related metabolic pathways involved glycerophospholipid, sphingolipid, phospholipid, fat acid, acylcarnitine, heme, and purine metabolism. Subsequently, multiple logistic regression analyses of these metabolites showed uric acid, sphinganine and adrenoyl ethanolamide were potential biomarkers of ischemic stroke with an area under the receiver operating characteristic curve of 0.941.These findings provide insights into the early diagnosis and potential pathophysiology of ischemic stroke.

  13. Quantitation and Identification of Intact Major Milk Proteins for High-Throughput LC-ESI-Q-TOF MS Analyses.

    Directory of Open Access Journals (Sweden)

    Delphine Vincent

    Full Text Available Cow's milk is an important source of proteins in human nutrition. On average, cow's milk contains 3.5% protein. The most abundant proteins in bovine milk are caseins and some of the whey proteins, namely beta-lactoglobulin, alpha-lactalbumin, and serum albumin. A number of allelic variants and post-translationally modified forms of these proteins have been identified. Their occurrence varies with breed, individuality, stage of lactation, and health and nutritional status of the animal. It is therefore essential to have reliable methods of detection and quantitation of these proteins. Traditionally, major milk proteins are quantified using liquid chromatography (LC and ultra violet detection method. However, as these protein variants co-elute to some degree, another dimension of separation is beneficial to accurately measure their amounts. Mass spectrometry (MS offers such a tool. In this study, we tested several RP-HPLC and MS parameters to optimise the analysis of intact bovine proteins from milk. From our tests, we developed an optimum method that includes a 20-28-40% phase B gradient with 0.02% TFA in both mobile phases, at 0.2 mL/min flow rate, using 75°C for the C8 column temperature, scanning every 3 sec over a 600-3000 m/z window. The optimisations were performed using external standards commercially purchased for which ionisation efficiency, linearity of calibration, LOD, LOQ, sensitivity, selectivity, precision, reproducibility, and mass accuracy were demonstrated. From the MS analysis, we can use extracted ion chromatograms (EICs of specific ion series of known proteins and integrate peaks at defined retention time (RT window for quantitation purposes. This optimum quantitative method was successfully applied to two bulk milk samples from different breeds, Holstein-Friesian and Jersey, to assess differences in protein variant levels.

  14. Analysis of an Adulterated Herbal Medicinal Product Using Ultra-Performance Liquid Chromatography Coupled with QTOF Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Kate Yu

    2016-11-01

    Full Text Available The reports of severe adverse effects and fatalities associated with herbal medicinal products adulterated with synthetic compounds have raised global concerns. The objective of this study is to analyze one commercial herbal medicinal product suspected to be adulterated with synthetic drugs in order to identify potential adulterants, to verify if the product contained the herbs listed as ingredients in label claim and to determine quality consistency among different batches of the product. Analyses of suspected product obtained from seven different batches were performed using ultra performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS with multiple data processing tools and multivariate analyses. In addition, 23 individual powdered herbs (12 as per label claim and 11 suspected herbs, 11 marker compounds of the labeled herbs and five suspected synthetic drugs as adulterants were also concurrently analyzed to have clear understanding of product composition. Based on our analysis, the major ingredients of studied product were found to be 5 synthetic compounds: caffeine, chlorphenamine, piroxicam, betamethasone and oxethazaine. Three of them have been found to exceed their recommended doses. From the herbal composition analysis, GanCao (Glycyrrhizae radix et rhizoma was found to be the main ingredient, which is not among the claimed 12 herbs that were supposed to be in the product. Other herbs detected as minor ingredients were MuGua (Chaenomelis fructus, DangGui (Angelicae sinensis radix, and HuangQi (Astragali radix, which are among the 12 herbs that were supposed to be in the product. Based on our results we demonstrated that UPLC-QTOF MS is an effective and versatile tool for the analysis of herbal medicinal products. It is highly desirable to have a streamlined process with automatic workflow and fit-for-purpose database to increase efficiency and productivity of sample analysis. Results of

  15. Development and validation of an ultra-performance liquid chromatography quadrupole time of flight mass spectrometry method for rapid quantification of free amino acids in human urine.

    Science.gov (United States)

    Joyce, Richard; Kuziene, Viktorija; Zou, Xin; Wang, Xueting; Pullen, Frank; Loo, Ruey Leng

    2016-01-01

    An ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-qTOF-MS) method using hydrophilic interaction liquid chromatography was developed and validated for simultaneous quantification of 18 free amino acids in urine with a total acquisition time including the column re-equilibration of less than 18 min per sample. This method involves simple sample preparation steps which consisted of 15 times dilution with acetonitrile to give a final composition of 25 % aqueous and 75 % acetonitrile without the need of any derivatization. The dynamic range for our calibration curve is approximately two orders of magnitude (120-fold from the lowest calibration curve point) with good linearity (r (2) ≥ 0.995 for all amino acids). Good separation of all amino acids as well as good intra- and inter-day accuracy (amino acids in the prepared urine samples was found to be stable for 72 h at 4 °C, after one freeze thaw cycle and for up to 4 weeks at -80 °C. We have applied this method to quantify the content of 18 free amino acids in 646 urine samples from a dietary intervention study. We were able to quantify all 18 free amino acids in these urine samples, if they were present at a level above the LOD. We found our method to be reproducible (accuracy and precision were typically <10 % for QCL, QCM and QCH) and the relatively high sample throughput nature of this method potentially makes it a suitable alternative for the analysis of urine samples in clinical setting.

  16. Identification and characterization of vilazodone metabolites in rats and microsomes by ultrahigh-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Chavan, Balasaheb B; Kalariya, Pradipbhai D; Tiwari, Shristy; Nimbalkar, Rakesh D; Garg, Prabha; Srinivas, R; Talluri, M V N Kumar

    2017-12-15

    Vilazodone is a selective serotonin reuptake inhibitor (SSRI) used for the treatment of major depressive disorder (MDD). An extensive literature search found few reports on the in vivo and in vitro metabolism of vilazodone. Therefore, we report a comprehensive in vivo and in vitro metabolic identification and structural characterization of vilazodone using ultrahigh-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF/MS/MS) and in silico toxicity study of the metabolites. To identify in vivo metabolites of vilazodone, blood, urine and faeces samples were collected at different time intervals starting from 0 h to 48 h after oral administration of vilazodone to Sprague-Dawley rats. The in vitro metabolism study was conducted with human liver microsomes (HLM) and rat liver microsomes (RLM). The samples were prepared using an optimized sample preparation approach involving protein precipitation followed by solid-phase extraction. The metabolites have been identified and characterized by using LC/ESI-MS/MS. A total of 12 metabolites (M1-M12) were identified in in vivo and in vitro matrices and characterized by LC/ESI-MS/MS. The majority of the metabolites were observed in urine, while a few metabolites were present in faeces and plasma. Two metabolites were observed in the in vitro study. A semi-quantitative study based on percentage counts shows that metabolites M11, M6 and M8 were observed in higher amounts in urine, faeces and plasma, respectively. The structures of all the 12 metabolites were elucidated by using LC/ESI-MS/MS. The study suggests that vilazodone was metabolized via hydroxylation, dihydroxylation, glucuronidation, oxidative deamination, dealkylation, dehydrogenation and dioxidation. All the metabolites were screened for toxicity using an in silico tool. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry-based metabolomics approach to study the effects of jieduquyuziyin prescription on systemic lupus erythematosus.

    Science.gov (United States)

    Ding, Xinghong; Hu, Jinbo; Wen, Chengping; Ding, Zhishan; Yao, Li; Fan, Yongsheng

    2014-01-01

    Jieduquyuziyin prescription (JP), a traditional Chinese medicine (TCM) prescription, has been widely used for the clinical treatment of systemic lupus erythematosus (SLE). However, the complex chemical constituents of JP and the multifactorial pathogenesis of SLE make research on the therapeutic mechanism of JP in SLE challenging. In this paper, a serum metabolomics approach based on rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RRLC-Q-TOF/MS) was employed to acquire the metabolic characteristics of serum samples obtained from mice in the SLE model group, JP-treated group, prednisone acetate (PA)-treated group and control group. The orthogonal partial least squares (OPLS) was applied to recognize metabolic patterns, and an obvious separation of groups was obtained. Thirteen metabolites, namely, phosphatidylethanolamine (PE 20:3), hepoxilin B3, lyso- phosphatidylethanolamine (lyso-PE 22:6), 12S-hydroxypentaenoic acid (12S-HEPE), traumatic acid, serotonin, platelet-activating factor (PAF), phosphatidylcholine (PC 20:5),eicosapentaenoic acid (EPA), 12(S)-hydroxyei- cosatetraenoic acid (12S-HETE), 14-hydroxy docosahexaenoic acid (14-HDOHE), lyso-phosphatidylcholine (lyso-PC 20:4), and indole acetaldehyde, were identified and characterized as differential metabolites involved in the pathogenesis of SLE. After treatment with JP, the relative content of 12(S)-HETE, PAF, 12(S)-HEPE, EPA, PE (20:3), Lyso-PE(22:6), and 14-HDOHE were effectively regulated, which suggested that the therapeutic effects of JP on SLE may involve regulating disturbances to the metabolism of unsaturated fatty acid, tryptophan and phospholipid. This research also demonstrated that metabolomics is a powerful tool for researching complex disease mechanisms and evaluating the mechanism of action of TCM.

  18. New developments in glow discharge optical emission and mass spectrometry

    International Nuclear Information System (INIS)

    Hoffmann, Volker; Dorka, Roland; Wilken, Ludger; Wetzig, Klaus

    2000-01-01

    This paper describes new developments in flow discharge optical emission (GD-OES) and mass spectrometry (GD-MS) at IFW and presents corresponding new applications (analysis of microelectronic multi-layer system by radio frequency glow discharge optical emission spectrometry (RF-GD-OES) and analysis of pure iron by a new Grimm-type GD-MS source)

  19. imzML: Imaging Mass Spectrometry Markup Language: A common data format for mass spectrometry imaging.

    Science.gov (United States)

    Römpp, Andreas; Schramm, Thorsten; Hester, Alfons; Klinkert, Ivo; Both, Jean-Pierre; Heeren, Ron M A; Stöckli, Markus; Spengler, Bernhard

    2011-01-01

    Imaging mass spectrometry is the method of scanning a sample of interest and generating an "image" of the intensity distribution of a specific analyte. The data sets consist of a large number of mass spectra which are usually acquired with identical settings. Existing data formats are not sufficient to describe an MS imaging experiment completely. The data format imzML was developed to allow the flexible and efficient exchange of MS imaging data between different instruments and data analysis software.For this purpose, the MS imaging data is divided in two separate files. The mass spectral data is stored in a binary file to ensure efficient storage. All metadata (e.g., instrumental parameters, sample details) are stored in an XML file which is based on the standard data format mzML developed by HUPO-PSI. The original mzML controlled vocabulary was extended to include specific parameters of imaging mass spectrometry (such as x/y position and spatial resolution). The two files (XML and binary) are connected by offset values in the XML file and are unambiguously linked by a universally unique identifier. The resulting datasets are comparable in size to the raw data and the separate metadata file allows flexible handling of large datasets.Several imaging MS software tools already support imzML. This allows choosing from a (growing) number of processing tools. One is no longer limited to proprietary software, but is able to use the processing software which is best suited for a specific question or application. On the other hand, measurements from different instruments can be compared within one software application using identical settings for data processing. All necessary information for evaluating and implementing imzML can be found at http://www.imzML.org .

  20. Short-term toxicity assessments of an antibiotic metabolite in Wistar rats and its metabonomics analysis by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Han, Hongxing; Xiao, Hailong; Lu, Zhenmei

    2016-02-15

    4-Epi-oxytetracycline (4-EOTC), one of main oxytetracycline (OTC) metabolites, can be commonly detected in food and environment. The toxicity and effects of OTC on animals have been well characterized; however, its metabolites have never been studied systemically. This study aims to investigate 15-day oral dose toxicity and urine metabonomics changes of 4-EOTC after repeated administration in Wistar rats at daily doses of 0.5, 5.0 and 50.0mg/kg bw (bodyweight). Hematology and clinical chemistry parameters, including white blood cell count, red blood cell count, total protein, globulin and albumin/globulin, were obviously altered in rats of 5.0 and 50.0mg/kg bw. Histopathology changes of kidney and liver tissues were also observed in high-dose groups. Urinary metabolites from all groups were analyzed using ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Seventeen metabolites contributing to the clusters were identified as potential biomarkers from multivariate analysis, including aminoadipic acid, 6-phosphogluconate, sebacic acid, pipecolic acid, etc. The significant changes of these biomarkers demonstrated metabonomic variations in treated rats, especially lysine and purine metabolism. For the first time in this paper, we combined the results of toxicity and metabonomics induced by 4-EOTC for the serious reconsideration of the safety and potential risks of antibiotics and its degradation metabolites. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Application of characteristic ion filtering with ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry for rapid detection and identification of chemical profiling in Eucommia ulmoides Oliv.

    Science.gov (United States)

    He, Mingzhen; Jia, Jia; Li, Junmao; Wu, Bei; Huang, Wenping; Liu, Mi; Li, Yan; Yang, Shilin; Ouyang, Hui; Feng, Yulin

    2018-06-15

    Efficient targeted identification of chemical constituents from traditional Chinese medicine is still a major challenge. In this study, we used a characteristic ion filtering strategy to characterize compounds of Eucommia ulmoides Oliv. by ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry (UHPLC-ESI-Q-TOF-MS/MS). By using the ion filtering approach, target constituents of Eucommia ulmoides Oliv. were easily tentatively identified from the enormous LC/MS data set. The strategy consisted of the following three steps: 1) To establishing a characteristic ion database by diagnostic product ions or neutral loss fragments; 2) To evaluate the structural information of the compounds by high-resolution diagnostic characteristic ion filtering; 3) To confirm the different classes by chemical profiling according to their MS/MS spectra. In this study, characteristic ions are summarized as five major groups of compounds in Eucommia ulmoides Oliv. In total, 113 compounds were tentatively identified, including 23 potentially novel compounds. The results form a foundation for the quality control and chemical basis of Eucommia ulmoides Oliv. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Analysis of Therapeutic Effect of Ilex hainanensis Merr. Extract on Nonalcoholic Fatty Liver Disease through Urine Metabolite Profiling by Ultraperformance Liquid Chromatography/Quadrupole Time of Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Jing-jing Li

    2013-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD, the most common form of chronic liver disease, is increased worldwide in parallel with the obesity epidemic. Our previous studies have showed that the extract of I. hainanensis (EIH can prevent NAFLD in rat fed with high-fat diet. In this work, we aimed to find biomarkers of NAFLD and investigate the therapeutic effects of EIH. NAFLD model was induced in male Sprague-Dawley rats by high-fat diet. The NAFLD rats were administered EIH orally (250 mg/kg for two weeks. After the experimental period, samples of 24 h urine were collected and analyzed by ultraperformance liquid chromatography/quadrupole time of flight mass spectrometry (UPLC-Q-TOF. Orthogonal partial least squares analysis (OPLSs models were built to find biomarkers of NAFLD and investigate the therapeutic effects of EIH. 22 metabolites, which are distributed in several metabolic pathways, were identified as potential biomarkers of NAFLD. Taking these biomarkers as screening indexes, EIH could reverse the pathological process of NAFLD through regulating the disturbed pathway of metabolism. The metabolomic results not only supply a systematic view of the development and progression of NAFLD but also provide a theoretical basis for the prevention or treatment of NAFLD.

  3. The Profiling and Identification of the Absorbed Constituents and Metabolites of Guizhi Decoction in Rat Plasma and Urine by Rapid Resolution Liquid Chromatography Combined with Quadrupole-Time-of-Flight Mass Spectrometry

    Science.gov (United States)

    Xiang, Hongjun; Zhang, Lishi; Song, Jiannan; Fan, Bin; Nie, Yinglan; Bai, Dong; Lei, Haimin

    2016-01-01

    Guizhi decoction (GZD), a well-known traditional Chinese medicine (TCM) prescription consisting of Ramulus Cinnamomi, Radix Paeoniae Alba, Radix Glycyrrhizae, Fructus Jujubae and Rhizoma Zingiberis Recens, is usually used for the treatment of common colds, influenza, and other pyretic conditions in the clinic. However, the absorbed ingredients and metabolic compounds of GZD have not been reported. In this paper, a method incorporating rapid resolution liquid chromatography (RRLC) with quadrupole-time-of-flight mass spectrometry (Q-TOF-MS) was used to identify ingredients after oral administration of GZD. Identification of the primary components in GZD, drug-containing serum and urine samples was carried out in order to investigate the assimilation and metabolites of the decoction in vivo. By comparing the total ion chromatograms (TICs) of GZD, a total of 71 constituents were detected or characterized. By comparing TICs of blank and dosed rat plasma, a total of 15 constituents were detected and identified as prototypes according to their retention time (tR) and MS, MS/MS data. Based on this, neutral loss scans of 80 and 176 Da in samples of rat plasma and urine helped us to identify most of the metabolites. Results showed that the predominant metabolic pathways of (epi) catechin and gallic acid were sulfation, methylation, glucuronidation and dehydroxylation; the major metabolic pathways of flavone were hydrolysis, sulfation and glucuronidation. Furthermore, degradation, oxidation and ring fission were found to often occur in the metabolism process of GZD in vivo. PMID:27626411

  4. Use of mass spectrometry for study of coordination compounds

    International Nuclear Information System (INIS)

    Gehrbehlehu, N.V.; Indrichan, K.M.

    1981-01-01

    A review on mass-spectrometry of coordination compounds including the works published up to 1979 inclusive is provided. Mainly the products of metals with bi- and tetradentate ligands are considered using the method. Mo and Be carboxylates for which molecular ions lines are found in mass-spectra are studied. The study of mass-spectra for VO chelates with thiosemicarbazone of salicyl aldehyde is carried out. Application of the mass-spectrometry method permits to establish the mass of coordination compounds, the structure of complexes, dentate structure and the way of ligand coordination, the bond strength [ru

  5. The allure of mass spectrometry: From an earlyday chemist's perspective.

    Science.gov (United States)

    Tőkés, László

    2017-07-01

    This reminiscing review article is an account of the author's fascination and involvements with mass spectrometry from the perspective of an organic chemist with an interest in natural product chemistry. It covers a period from 1961 through the mid 1990s as mass spectrometry evolved form a novelty technique to become a most widely used analytical technique. Following a brief synopsis of my pathway to mass spectrometry, my research efforts in this field are presented with a focus mainly on evolving principles and technologies which I had personal involvements with. To provide historical perspectives, discussions of these developments are accompanied by brief outlines of the relevant state-of-the-art, shedding light on the technical and conceptual challenges encountered during those early days in mass spectrometry. Examples are presented of my involvements with basic and applied research in mass spectrometry during graduate studies at Stanford University and close to three decade tenure in pharmaceutical research at Syntex Research. My basic research interests focused mainly on principles of electron ionization induced fragmentation mechanisms, with an emphasis on steroids and other model compounds. Extensive deuterium labeling evidence was used to determine the fragmentation mechanisms of the diagnostically significant ions in the spectra of numerous model compounds, uncovering examples of wide-ranging hydrogen transfers, skeletal rearrangements, methyl and phenyl migrations, stereoselective fragmentations and low and high energy fragmentation processes. Depiction of the industrial research phase of my career includes comments on the pivotal role mass spectrometry played on advancing modern pharmaceutical research. Examples are presented of involvements with instrumental developments and a few select cases of applied research, including studies of bile mechanisms in vertebrates, identification of bisphenol-A leaching from sterilized polycarbonate containers, high

  6. Microbial metabolomics with gas chromatography/mass spectrometry

    NARCIS (Netherlands)

    Koek, M.M.; Muilwijk, B.; Werf, M.J. van der; Hankemeier, T.

    2006-01-01

    An analytical method was set up suitable for the analysis of microbial metabolomes, consisting of an oximation and silylation derivatization reaction and subsequent analysis by gas chromatography coupled to mass spectrometry. Microbial matrixes contain many compounds that potentially interfere with

  7. Sampling and analyte enrichment strategies for ambient mass spectrometry.

    Science.gov (United States)

    Li, Xianjiang; Ma, Wen; Li, Hongmei; Ai, Wanpeng; Bai, Yu; Liu, Huwei

    2018-01-01

    Ambient mass spectrometry provides great convenience for fast screening, and has showed promising potential in analytical chemistry. However, its relatively low sensitivity seriously restricts its practical utility in trace compound analysis. In this review, we summarize the sampling and analyte enrichment strategies coupled with nine modes of representative ambient mass spectrometry (desorption electrospray ionization, paper vhspray ionization, wooden-tip spray ionization, probe electrospray ionization, coated blade spray ionization, direct analysis in real time, desorption corona beam ionization, dielectric barrier discharge ionization, and atmospheric-pressure solids analysis probe) that have dramatically increased the detection sensitivity. We believe that these advances will promote routine use of ambient mass spectrometry. Graphical abstract Scheme of sampling stretagies for ambient mass spectrometry.

  8. Analytical strategies in mass spectrometry-based phosphoproteomics

    DEFF Research Database (Denmark)

    Rosenqvist, Heidi; Ye, Juanying; Jensen, Ole N

    2011-01-01

    then discuss various tandem mass spectrometry approaches for phosphopeptide sequencing and quantification, and we consider aspects of phosphoproteome data analysis and interpretation. Efficient integration of these stages of phosphoproteome analysis is highly important to ensure a successful outcome of large...

  9. Biomarker discovery in high grade sarcomas by mass spectrometry imaging

    OpenAIRE

    Lou, S.

    2017-01-01

    This thesis demonstrates a detailed biomarker discovery Mass Spectrometry Imaging workflow for histologically heterogeneous high grade sarcomas. Panels of protein and metabolite signatures were discovered either distinguishing different histological subtypes or stratifying high risk patients with poor survival.

  10. A theory of stable-isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Pickup, J.F.; McPherson, C.K.

    1977-01-01

    In order to perform quantitative analysis using stable isotope dilution with mass spectrometry, an equation is derived which describes the relationship between the relative proportions of natural and labelled material and measured isotope ratios

  11. Chemical ionisation mass spectrometry: a survey of instrument technology

    International Nuclear Information System (INIS)

    Mather, R.E.; Todd, J.F.J.

    1979-01-01

    The purpose of this review is to survey the innovations and improvements which have been made in both instrumentation and methodology in chemical ionization mass spectrometry in the past ten years. (Auth.)

  12. 13th International Mass Spectrometry Conference. Book of Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    The collection contains abstracts of several hundred papers presented at the international conference on new research and development results and applications of mass spectrometry. Abstracts falling into the INIS scope were indexed separately in the INIS database. (Roboz, P.)

  13. OBT measurement of vegetation by mass spectrometry and radiometry

    International Nuclear Information System (INIS)

    Tamari, T.; Kakiuchi, H.; Momoshima, N.; Sugihara, S.; Baglan, N.; Uda, T.

    2011-01-01

    We carried out OBT (organically bound tritium) measurement by two different methods those are radiometry and mass spectrometry and compared the applicability of these methods for environmental tritium analysis. The dried grass sample was used for the experiments. To eliminate the exchangeable OBT, the sample was washed with tritium free water before analysis. Three times washing reduced the tritium activity in the labile sites below the detectable level. In radiometry the sample was combusted to convert the OBT as well as other hydrogen isotopes to. water and tritium activity in the water was measured by liquid scintillation counting (LSC). In mass spectrometry, the sample was kept in a glass container and 3 He produced by tritium decay was measured by mass spectrometry. The results were in good agreement suggesting applicability of these methods for environmental tritium analysis. The mass spectrometry is more suitable for environmental tritium research because of a lower detection limit than that of the LSC. (authors)

  14. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Winston Chen, C.H.; Taranenko, N.I.; Zhu, Y.F.; Chung, C.N.; Allman, S.L.

    1997-03-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, the authors recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Snager`s enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. The preliminary results indicate laser mass spectrometry can possibly be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, the authors applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  15. Recent applications of mass spectrometry in forensic toxicology

    Science.gov (United States)

    Foltz, Rodger L.

    1992-09-01

    This review encompasses applications of mass spectrometry reported during the years 1989, 1990 and 1991 for the analysis of cannabinoids, cocaine, opiates, amphetamines, lysergic acid diethylamide (LSD), and their metabolites in physiological specimens.

  16. Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry

    KAUST Repository

    Raji, Misjudeen; Amad, Maan H.; Emwas, Abdul-Hamid M.

    2013-01-01

    RATIONALE Pterostilbene is a member of the hydroxystilbene family of compounds commonly found in plants such as blueberry and grapes. During the analysis of this compound by electrospray ionization mass spectrometry (ESI-MS), an ion was observed

  17. 13th International Mass Spectrometry Conference. Book of Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The collection contains abstracts of several hundred papers presented at the international conference on new research and development results and applications of mass spectrometry. Abstracts falling into the INIS scope were indexed separately in the INIS database. (Roboz, P.).

  18. Gas Chromatography Mass Spectrometry of Quassia undulata Seed ...

    African Journals Online (AJOL)

    Prof. Ogunji

    The use of gas chromatography mass spectrometry (GC MS) as a sensitive and specific technique ... cold flow properties and stability of the fuel to oxidation, peroxidation and polymerization .... determinants of both the physical and chemical ...

  19. Practical aspects and trends in analytical organic mass spectrometry

    International Nuclear Information System (INIS)

    Schlunegger, U.P.

    1981-01-01

    Proceeding from the fundamentals of mass spectrometry (MS), some more recent developments of analytical organic MS are shown in comparison with conventional MS. Sections are headed: the vacuum, production of ions in the mass spectrometer, ions in the analyzer of a mass spectrometer, general considerations, practice of modern MS: selected examples

  20. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  1. Automated, parallel mass spectrometry imaging and structural identification of lipids

    DEFF Research Database (Denmark)

    Ellis, Shane R.; Paine, Martin R.L.; Eijkel, Gert B.

    2018-01-01

    We report a method that enables automated data-dependent acquisition of lipid tandem mass spectrometry data in parallel with a high-resolution mass spectrometry imaging experiment. The method does not increase the total image acquisition time and is combined with automatic structural assignments....... This lipidome-per-pixel approach automatically identified and validated 104 unique molecular lipids and their spatial locations from rat cerebellar tissue....

  2. Determination of thyroid hormones in mouse tissues by isotope-dilution microflow liquid chromatography-mass spectrometry method.

    Science.gov (United States)

    De Angelis, Meri; Giesert, Florian; Finan, Brian; Clemmensen, Christoffer; Müller, Timo D; Vogt-Weisenhorn, Daniela; Tschöp, Matthias H; Schramm, Karl-Werner

    2016-10-15

    Thyroid hormones (THs) play a critical role in the regulation of many biological processes such as growth, metabolism and development both in humans and wildlife. In general, TH levels are measured by immunoassay (IA) methods but the specificity of the antibodies used in these assays limits selectivity. In the last decade, several analytical methods using liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS) have been developed to measure THs. These new techniques proved to be more accurate than the IA analysis and they were widely used for the determination of TH level in different human and animal tissues. A large part of LC-MS/MS methods described in literature employed between 200 and 500mg of sample, however this quantity can be considered too high especially when preclinical studies are conducted using mice as test subjects. Thus an analytical method that reduces the amount of tissue is essential. In this study, we developed a procedure for the analysis of six THs; L-thyroxine (T4), 3,3',5-triiodo-l-thyronine (T3), 3,3',5'-triiodo-l-thyronine (rT3), 3,5-diiodo-l-thyronine (rT2), 3,3'-diiodo-l-thyronine (T2), 3-iodo-l-thyronine (T1) using isotope ((13)C6-T4, (13)C6-T3, (13)C6-rT3, (13)C6-T2) dilution liquid chromatography-mass spectrometry. The major difference with previously described methods lies in the utilization of a nano-UPLC (Ultra Performance Liquid Chromatography) system in micro configuration. This approach leads to a reduction compared to the published methods, of column internal diameter, flow rate, and injected volume. The result of all these improvements is a decrease in the amount of sample necessary for the analysis. The method was tested on six different mouse tissues: liver, heart, kidney, muscle, lung and brown adipose tissue (BAT). The nano-UPLC system was interfaced with a quadrupole time-of-flight mass spectrometer (Q-TOF2-MS) using the positive ion mode electrospray ionization. In our analytical method

  3. Quantification of steroid conjugates using fast atom bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Gaskell, S.J.

    1990-01-01

    Fast atom bombardment/mass spectrometry or liquid secondary ion mass spectrometry provides the capability for direct analysis of steroid conjugates (sulfates, glucuronides) without prior hydrolysis or derivatization. During the analysis of biologic extracts, limitations on the sensitivity of detection arise from the presence of co-extracted material which may suppress or obscure the analyte signal. A procedure is described for the quantitative determination of dehydroepiandrosterone sulfate in serum which achieved selective isolation of the analyte using immunoadsorption extraction and highly specific detection using tandem mass spectrometry. A stable isotope-labeled analog [( 2H2]dehydroepiandrosterone sulfate) was used as internal standard. Fast atom bombardment of dehydroepiandrosterone sulfate yielded abundant [M-H]- ions that fragmented following collisional activation to give HSO4-; m/z 97. During fast atom bombardment/tandem mass spectrometry of serum extracts, a scan of precursor ions fragmenting to give m/z 97 detected dehydroepiandrosterone sulfate and the [2H2]-labeled analog with a selectivity markedly superior to that observed using conventional mass spectrometry detection. Satisfactory agreement was observed between quantitative data obtained in this way and data obtained by gas chromatography/mass spectrometry of the heptafluorobutyrates of dehydroepiandrosterone sulfate and [2H2]dehydroepiandrosterone sulfate obtained by direct derivatization. 21 refs

  4. New approaches for metabolomics by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vertes, Akos [George Washington Univ., Washington, DC (United States)

    2017-07-10

    Small molecules constitute a large part of the world around us, including fossil and some renewable energy sources. Solar energy harvested by plants and bacteria is converted into energy rich small molecules on a massive scale. Some of the worst contaminants of the environment and compounds of interest for national security also fall in the category of small molecules. The development of large scale metabolomic analysis methods lags behind the state of the art established for genomics and proteomics. This is commonly attributed to the diversity of molecular classes included in a metabolome. Unlike nucleic acids and proteins, metabolites do not have standard building blocks, and, as a result, their molecular properties exhibit a wide spectrum. This impedes the development of dedicated separation and spectroscopic methods. Mass spectrometry (MS) is a strong contender in the quest for a quantitative analytical tool with extensive metabolite coverage. Although various MS-based techniques are emerging for metabolomics, many of these approaches include extensive sample preparation that make large scale studies resource intensive and slow. New ionization methods are redefining the range of analytical problems that can be solved using MS. This project developed new approaches for the direct analysis of small molecules in unprocessed samples, as well as pushed the limits of ultratrace analysis in volume limited complex samples. The projects resulted in techniques that enabled metabolomics investigations with enhanced molecular coverage, as well as the study of cellular response to stimuli on a single cell level. Effectively individual cells became reaction vessels, where we followed the response of a complex biological system to external perturbation. We established two new analytical platforms for the direct study of metabolic changes in cells and tissues following external perturbation. For this purpose we developed a novel technique, laser ablation electrospray

  5. Preclinical pharmacokinetic evaluation and metabolites identification of methyl salicylate-2-O-β-d-lactoside in rats using LC-MS/MS and Q-TOF-MS methods.

    Science.gov (United States)

    Zhang, Dan; Huang, Chao; Xin, Wenyu; Ma, Xiaowei; Zhang, Weiku; Zhang, Tiantai; Du, Guanhua

    2015-05-10

    Methyl salicylate-2-O-β-d-lactoside (MSL) is a natural salicylate derivative from the traditional Chinese medicine of Gaultheria yunnanensis (Franch.) Rehder (G. yunnanensis). As a non-steroidal anti-inflammatory drug (NSAID), MSL exerts a significant anti-arthritis effect but hardly has any gastrointestinal toxicity. In this paper, the pharmacokinetics, distribution, excretion and identification of MSL and its metabolites are described following rat oral and intravenous administration. The biological samples were quantified by UPLC-MS/MS and the metabolites in urine and feces were identified by using Q-TOF-MS. These results will support future investigations leading to clinical development of this drug. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. MPAI (mass probes aided ionization) method for total analysis of biomolecules by mass spectrometry.

    Science.gov (United States)

    Honda, Aki; Hayashi, Shinichiro; Hifumi, Hiroki; Honma, Yuya; Tanji, Noriyuki; Iwasawa, Naoko; Suzuki, Yoshio; Suzuki, Koji

    2007-01-01

    We have designed and synthesized various mass probes, which enable us to effectively ionize various molecules to be detected with mass spectrometry. We call the ionization method using mass probes the "MPAI (mass probes aided ionization)" method. We aim at the sensitive detection of various biological molecules, and also the detection of bio-molecules by a single mass spectrometry serially without changing the mechanical settings. Here, we review mass probes for small molecules with various functional groups and mass probes for proteins. Further, we introduce newly developed mass probes for proteins for highly sensitive detection.

  7. Screening and Identification for Immunological Active Components from Andrographis Herba Using Macrophage Biospecific Extraction Coupled with UPLC/Q-TOF-MS

    Directory of Open Access Journals (Sweden)

    Yaqi Wang

    2018-04-01

    Full Text Available The method of cell biospecific extraction coupled with UPLC/Q-TOF-MS has been developed as a tool for the screening and identification of potential immunological active components from Andrographis Herba (AH. In our study, a macrophage cell line (RAW264.7 was used to extract cell-combining compounds from the ethanol extract of AH. The cell binding system was then analyzed and identified by UPLC/Q-TOF-MS analysis. Finally, nine compounds, which could combine with macrophages, in an ethanol extract of AH were detected by comparing basic peak intensity (BPI profiles of macrophages before and after treatment with AH. Then they were identified as Andrographidine E (1, Andrographidine D (2, Neoandrographolide (3, Dehydroandrographolide (4, 5, 7, 2′, 3′-tetramethoxyflavone (5, β-sitosterol (7, 5-hydroxy-7, 2′, 3′-trimethoxyflavone (8 and 5-hydroxy-7, 8, 2′, 3′-tetramethoxyflavone (9, which could classified into five flavonoids, three diterpene lactones, and one sterol. Their structures were recognized by their characteristic fragment ions and fragmentations pattern of diterpene lactones and flavonoids. Additionally, the activity of compounds 3, 4, and 7 was tested in vitro. Results showed that these three compounds could decrease the release of NO (p < 0.01 in macrophages remarkably. Moreover, 3, 4, and 7 showed satisfactory dose-effect relationships and their IC50 values were 9.03, 18.18, and 13.76 μg/mL, respectively. This study is the first reported work on the screening of immunological active components from AH. The potential immunological activity of flavonoids from AH has not been reported previously.

  8. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 2: Peptide Identification via Molecular Mass Determination

    Science.gov (United States)

    Arnquist, Isaac J.; Beussman, Douglas J.

    2009-01-01

    Mass spectrometry has become a routine analytical tool in the undergraduate curriculum in the form of GC-MS. While relatively few undergraduate programs have incorporated biological mass spectrometry into their programs, the importance of these techniques, as demonstrated by their recognition with the 2002 Nobel Prize, will hopefully lead to…

  9. Data recording and processing in mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McKown, H. [International Atomic Energy Agency, Vienna (Austria)

    1978-12-15

    When a mass spectrometer is going to be obtained, it must be specified to do a particular task. It follows that the data recording system must be designed to work satisfactorily with hardware that produces the ion current or currents. The author describes two systems: the AVCO mass spectrometer and the tandem mass spectrometer.

  10. Towards airborne nanoparticle mass spectrometry with nanomechanical string resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Kurek, Maksymilian; Boisen, Anja

    2013-01-01

    airborne nanoparticle sensors. Recently, nanomechanical mass spectrometry was established. One of the biggest challenges of nanomechanical sensors is the low efficiency of diffusion-based sampling. We developed an inertial-based sampling method that enables the efficient sampling of airborne nanoparticles...... mode. Mass spectrometry of airborne nanoparticles requires the simultaneous operation in the first and second mode, which can be implemented in the transduction scheme of the resonator. The presented results lay the cornerstone for the realization of a portable airborne nanoparticle mass spectrometer....

  11. AM1 and electron impact mass spectrometry study of the ...

    African Journals Online (AJOL)

    Recently, in electron impact mass spectrometry (EIMS), it has been found a good correlation between the fragmentation processes of coumarins and the electronic charges of the atoms of their skeleton. In this paper, the same analytical method has been applied to 4-acyl isochroman-1,3-diones, whose mass spectra had ...

  12. A Review of the Emerging Field of Underwater Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Emily Chua

    2016-11-01

    Full Text Available Mass spectrometers are versatile sensor systems, owing to their high sensitivity and ability to simultaneously measure multiple chemical species. Over the last two decades, traditional laboratory-based membrane inlet mass spectrometers have been adapted for underwater use. Underwater mass spectrometry has drastically improved our capability to monitor a broad suite of gaseous compounds (e.g., dissolved atmospheric gases, light hydrocarbons, and volatile organic compounds in the aquatic environment. Here we provide an overview of the progress made in the field of underwater mass spectrometry since its inception in the 1990s to the present. In particular, we discuss the approaches undertaken by various research groups in developing in situ mass spectrometers. We also provide examples to illustrate how underwater mass spectrometers have been used in the field. Finally, we present future trends in the field of in situ mass spectrometry. Most of these efforts are aimed at improving the quality and spatial and temporal scales of chemical measurements in the ocean. By providing up-to-date information on underwater mass spectrometry, this review offers guidance for researchers interested in adapting this technology as well as goals for future progress in the field.

  13. Plutonium determination in urine by techniques of mass spectrometry

    International Nuclear Information System (INIS)

    Hernandez M, H.; Yllera de Ll, A.

    2013-10-01

    The objective of this study was to develop an analytic method for quantification and plutonium reappraisal in plane tables of alpha spectrometry be means of the mass spectrometry technique of high resolution with plasma source inductively coupled and desolvator Aridus (Aridus-Hr-Icp-Ms) and mass spectrometry with accelerator (AMS). The obtained results were, the recovery percentage of Pu in the plane table was of ∼ 90% and activity minimum detectable obtained with Aridus-Hr-Icp-Ms and AMS was of ∼ 3 and ∼ 0.4 f g of 239 Pu, respectively. Conclusion, the results demonstrate the aptitude of the Aridus-Hr-Icp-Ms and AMS techniques in the Pu reappraisal in plane tables with bigger speed and precision, improving the values notably of the activity minimum detectable that can be obtained with the alpha spectrometry (∼ 50 f g of 239 Pu). (author)

  14. Knudsen effusion mass spectrometry. Chapter 20

    International Nuclear Information System (INIS)

    Sai Baba, M.

    1997-01-01

    The Knudsen effusion mass spectrometric method for the determination of vapour pressures and thermodynamic properties is described. The aim of the article is to give a general introduction to the method rather than to give a critical review of the technique. The latest developments in this area of research are reviewed by the peers in the field during the triennial international mass spectrometric conferences. The Knudsen effusion mass spectrometric method is being applied for thermodynamic measurements. In recent times, laser vaporisation mass spectrometric methods have emerged as a source of determination of vapour pressures at very high temperatures and beyond the pressure regime far exceeding Knudsen effusion range

  15. Development and Application of an MSALL-Based Approach for the Quantitative Analysis of Linear Polyethylene Glycols in Rat Plasma by Liquid Chromatography Triple-Quadrupole/Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Zhou, Xiaotong; Meng, Xiangjun; Cheng, Longmei; Su, Chong; Sun, Yantong; Sun, Lingxia; Tang, Zhaohui; Fawcett, John Paul; Yang, Yan; Gu, Jingkai

    2017-05-16

    Polyethylene glycols (PEGs) are synthetic polymers composed of repeating ethylene oxide subunits. They display excellent biocompatibility and are widely used as pharmaceutical excipients. To fully understand the biological fate of PEGs requires accurate and sensitive analytical methods for their quantitation. Application of conventional liquid chromatography-tandem mass spectrometry (LC-MS/MS) is difficult because PEGs have polydisperse molecular weights (MWs) and tend to produce multicharged ions in-source resulting in innumerable precursor ions. As a result, multiple reaction monitoring (MRM) fails to scan all ion pairs so that information on the fate of unselected ions is missed. This Article addresses this problem by application of liquid chromatography-triple-quadrupole/time-of-flight mass spectrometry (LC-Q-TOF MS) based on the MS ALL technique. This technique performs information-independent acquisition by allowing all PEG precursor ions to enter the collision cell (Q2). In-quadrupole collision-induced dissociation (CID) in Q2 then effectively generates several fragments from all PEGs due to the high collision energy (CE). A particular PEG product ion (m/z 133.08592) was found to be common to all linear PEGs and allowed their total quantitation in rat plasma with high sensitivity, excellent linearity and reproducibility. Assay validation showed the method was linear for all linear PEGs over the concentration range 0.05-5.0 μg/mL. The assay was successfully applied to the pharmacokinetic study in rat involving intravenous administration of linear PEG 600, PEG 4000, and PEG 20000. It is anticipated the method will have wide ranging applications and stimulate the development of assays for other pharmaceutical polymers in the future.

  16. Evaluation of Hypolipidemic and Antioxidant Effects in Phenolrich Fraction of Crataegus pinnatifida Fruit in Hyperlipidemia Rats and Identification of Chemical Composition by Ultra-performance Liquid Chromatography Coupled with Quadropole Time-of-flight Mass Spectrometry

    Science.gov (United States)

    Shao, Feng; Gu, Lifei; Chen, Huijuan; Liu, Ronghua; Huang, Huilian; Chen, Lanying; Yang, Ming

    2017-01-01

    Background: Hawthorn (Crataegus pinnatifida) fruit has enjoyed a great popularity as a pleasant-tasting food associated with hypolipidemic and antioxidant effects. Objective: Our aim was to screen the effective fraction of hawthorn fruit in the treatment of hyperlipidemia rats. Materials and Methods: In this study, ethanol extract of hawthorn fruit (Fr.1) and four fractionated extracts (Fr.2, Fr.3, Fr.4, and Fr.5) were compared to total phenol content evaluated using Folin–Ciocalteu method, and hypolipidemic and antioxidant effects were assessed in hyperlipidemic rats. Results: Total phenol content of Fr.4 was higher than other fractions by at least 2 fold. Furthermore, this fraction possessed the strongest hypolipidemic and antioxidant effects in hyperlipidemic rats. On this basis, 15 phenolic compounds and four organic acids in Fr.4 were positively or tentatively identified using ultra-performance liquid chromatography coupled with quadropole time-of-flight mass spectrometry. In addition, 5-O-caffeoyl quinic acid butyl ester was first reported in hawthorn fruit. Conclusion: Phenol-rich fraction in hawthorn fruit exhibited satisfactory hypolipidemic and antioxidant effects, and this could be exploited for further promotion of functional foods. SUMMARY Phenol-rich fraction in hawthorn fruit possesses most potent hypolipidemic and antioxidant effects in hyperlidemia rats. Abbreviations used: UPLC-Q-TOF-MS/MS: Ultra performance liquid chromatography coupled with quadropole time-of-flight mass spectrometry; TC: Total cholesterol; TG: Triglyceride; LDL-C: Low-density lipoprotein-cholesterol; HDL-C: High-density lipoprotein-cholesterol; GSH-Px: Glutathione peroxidase; SOD: Superoxide dismutase; MDA: Malondialdehyde; CAT: Catalase; NO: Nitric oxide; NOS: Nitric oxide synthase; ROS: Reactive oxygen species; •OOH: Superoxide anions, •OH: Hydroxyl radicals. PMID:29200740

  17. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Perdian, David C. [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  18. Atmospheric pressure gas chromatography coupled to quadrupole-time of flight mass spectrometry as a powerful tool for identification of non intentionally added substances in acrylic adhesives used in food packaging materials.

    Science.gov (United States)

    Canellas, E; Vera, P; Domeño, C; Alfaro, P; Nerín, C

    2012-04-27

    Acrylic adhesives are used to manufacture multilayer laminates that are used in food packaging to form the geometric shape of the package as well as to stick labels on the packages. Once applied on the packaging adhesives can supply potential migrants that could endanger the packaged food. Adhesives are complex matrices where intentionally and non intentionally added substances are present, but the identification of the migrants is required by law. In this study atmospheric pressure gas chromatography coupled to a quadrupole hyphenated to a time of flight mass spectrometer (APGC-MS/Q-TOF) has been explored for identification of unknowns coming from three different acrylic adhesives. The results are compared to those obtained by conventional GC-MS-Q (quadrupole). Sixteen compounds were identified by GC-MS/Q and five of them were confirmed by APGC-MS/Q-TOF as their molecular ions were found. Moreover, additional three new compounds were identified and their structure was elucidated working with the spectra obtained by APGC-MS/Q-TOF. This finding was very relevant as these compounds were biocides suspected to be allergenic and cytotoxic in humans. Migration studies were carried out using Tenax as solid food simulant and the results showed that the three acrylic adhesives tested in this work were safe for being used in food packaging materials since the migration of compounds previously identified was below the limit established in the current legislation. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Development of stereotactic mass spectrometry for brain tumor surgery.

    Science.gov (United States)

    Agar, Nathalie Y R; Golby, Alexandra J; Ligon, Keith L; Norton, Isaiah; Mohan, Vandana; Wiseman, Justin M; Tannenbaum, Allen; Jolesz, Ferenc A

    2011-02-01

    Surgery remains the first and most important treatment modality for the majority of solid tumors. Across a range of brain tumor types and grades, postoperative residual tumor has a great impact on prognosis. The principal challenge and objective of neurosurgical intervention is therefore to maximize tumor resection while minimizing the potential for neurological deficit by preserving critical tissue. To introduce the integration of desorption electrospray ionization mass spectrometry into surgery for in vivo molecular tissue characterization and intraoperative definition of tumor boundaries without systemic injection of contrast agents. Using a frameless stereotactic sampling approach and by integrating a 3-dimensional navigation system with an ultrasonic surgical probe, we obtained image-registered surgical specimens. The samples were analyzed with ambient desorption/ionization mass spectrometry and validated against standard histopathology. This new approach will enable neurosurgeons to detect tumor infiltration of the normal brain intraoperatively with mass spectrometry and to obtain spatially resolved molecular tissue characterization without any exogenous agent and with high sensitivity and specificity. Proof of concept is presented in using mass spectrometry intraoperatively for real-time measurement of molecular structure and using that tissue characterization method to detect tumor boundaries. Multiple sampling sites within the tumor mass were defined for a patient with a recurrent left frontal oligodendroglioma, World Health Organization grade II with chromosome 1p/19q codeletion, and mass spectrometry data indicated a correlation between lipid constitution and tumor cell prevalence. The mass spectrometry measurements reflect a complex molecular structure and are integrated with frameless stereotaxy and imaging, providing 3-dimensional molecular imaging without systemic injection of any agents, which can be implemented for surgical margins delineation of

  20. Emerging mass spectrometry techniques for the direct analysis of microbial colonies

    OpenAIRE

    Fang, Jinshu; Dorrestein, Pieter C.

    2014-01-01

    One of the emerging areas in microbiology is detecting specialized metabolites produced by microbial colonies and communities with mass spectrometry. In this review/perspective, we illustrate the emerging mass spectrometry methodologies that enable the interrogation of specialized metabolites directly from microbial colonies. Mass spectrometry techniques such as imaging mass spectrometry and real-time mass spectrometry allow two and three dimensional visualization of the distri...

  1. Mass Spectrometry Imaging of Drugs of Abuse in Hair.

    Science.gov (United States)

    Flinders, Bryn; Cuypers, Eva; Porta, Tiffany; Varesio, Emmanuel; Hopfgartner, Gérard; Heeren, Ron M A

    2017-01-01

    Hair testing is a powerful tool routinely used for the detection of drugs of abuse. The analysis of hair is highly advantageous as it can provide prolonged drug detectability versus that in biological fluids and chronological information about drug intake based on the average growth of hair. However, current methodology requires large amounts of hair samples and involves complex time-consuming sample preparation followed by gas or liquid chromatography coupled with mass spectrometry. Mass spectrometry imaging is increasingly being used for the analysis of single hair samples, as it provides more accurate and visual chronological information in single hair samples.Here, two methods for the preparation of single hair samples for mass spectrometry imaging are presented.The first uses an in-house built cutting apparatus to prepare longitudinal sections, the second is a method for embedding and cryo-sectioning hair samples in order to prepare cross-sections all along the hair sample.

  2. Proceedings of twelfth ISMAS symposium cum workshop on mass spectrometry

    International Nuclear Information System (INIS)

    Alamelu, D.; Jaison, P.G.; Aggarwal, S.K.

    2007-03-01

    Mass Spectrometry is an important analytical tool and has encompassed almost all branches of science and technology including Agricultural, biology, Chemistry, Earth sciences, environment, Forensic Science, Medical Sciences, Hydrology, Nuclear Technology, Oceanography, Physics etc. Recent advancements in the instrumentation of Mass Spectrometry have further strengthened its role for various applications. It is indeed a matter of great pleasure to present this special Issue of ISMAS Bulletin which is brought out on the occasion of the 12th ISMAS Symposium cum Workshop on Mass spectrometry (12th ISMAS-WS 2007) being held at Cidade-de-Goa, Dona Paula, Goa from March 25 to 30, 2007 in association with National Institute of Oceanography, Goa. This Symposium cum Workshop is co-sponsored by Scientific Departments of Government of India. Papers relevant to INIS are indexed separately

  3. Paradigms in isotope dilution mass spectrometry for elemental speciation analysis

    International Nuclear Information System (INIS)

    Meija, Juris; Mester, Zoltan

    2008-01-01

    Isotope dilution mass spectrometry currently stands out as the method providing results with unchallenged precision and accuracy in elemental speciation. However, recent history of isotope dilution mass spectrometry has shown that the extent to which this primary ratio measurement method can deliver accurate results is still subject of active research. In this review, we will summarize the fundamental prerequisites behind isotope dilution mass spectrometry and discuss their practical limits of validity and effects on the accuracy of the obtained results. This review is not to be viewed as a critique of isotope dilution; rather its purpose is to highlight the lesser studied aspects that will ensure and elevate current supremacy of the results obtained from this method

  4. High efficiency nebulization for helium inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Jorabchi, Kaveh; McCormick, Ryan; Levine, Jonathan A.; Liu Huiying; Nam, S.-H.; Montaser, Akbar

    2006-01-01

    A pneumatically-driven, high efficiency nebulizer is explored for helium inductively coupled plasma mass spectrometry. The aerosol characteristics and analyte transport efficiencies of the high efficiency nebulizer for nebulization with helium are measured and compared to the results obtained with argon. Analytical performance indices of the helium inductively coupled plasma mass spectrometry are evaluated in terms of detection limits and precision. The helium inductively coupled plasma mass spectrometry detection limits obtained with the high efficiency nebulizer at 200 μL/min are higher than those achieved with the ultrasonic nebulizer consuming 2 mL/min solution, however, precision is generally better with high efficiency nebulizer (1-4% vs. 3-8% with ultrasonic nebulizer). Detection limits with the high efficiency nebulizer at 200 μL/min solution uptake rate approach those using ultrasonic nebulizer upon efficient desolvation with a heated spray chamber followed by a Peltier-cooled multipass condenser

  5. Laser desorption mass spectrometry for biomolecule detection and its applications

    Science.gov (United States)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  6. Laser desorption mass spectrometry for biomolecule detection and its applications

    International Nuclear Information System (INIS)

    Winston Chen, C.H.; Allman, S.L.; Sammartano, L.J.; Isola, N.R.

    2001-01-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications

  7. Accelerator mass spectrometry-current status in techniques and applications

    International Nuclear Information System (INIS)

    Imamura, Mineo; Nagai, Hisao; Kobayashi, Koichi.

    1991-01-01

    Accelerator mass spectrometry (AMS) is the mass spectrometry by incorporating an accelerator. After samples are ionized, they are accelerated to a certain energy, and mass, energy, nuclear charge (atomic number) are distinguished, and ion counting is made one by one with a heavy ion detector. For the measurement of long half-life radioisotopes, mass spectrometry has been used because of the high sensitivity, but in low energy mass spectrometry, there are the difficulties due to the mixing of the molecular ions having nearly same mass and the existence of isobars. One of the methods solving these difficulties is an accelerator which enables background-free measurement. The progress of AMS is briefly described, and at present, it is carried out in about 30 facilities in the world. In AMS, the analysis is carried out in the order of the ionization of samples, the acceleration of beam, the electron stripping with a thin film, the sorting of the momentum and energy of beam and the identification of particles. The efficiency, sensitivity and accuracy of detection and the application are reported. (K.I.)

  8. Structural analyses of sucrose laurate regioisomers by mass spectrometry techniques

    DEFF Research Database (Denmark)

    Lie, Aleksander; Stensballe, Allan; Pedersen, Lars Haastrup

    2015-01-01

    6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore the physic......6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore.......8, respectively, and Orbitrap HRMS confirmed the mass of [M+Na]+ (m/z 547.2712). ESI-MS/MS on the precursor ion [M+Na]+ resulted in product ion mass spectra showing two high-intensity signals for each sample. 6-O-Lauroyl sucrose produced signals located at m/z 547.27 and m/z 385.21, corresponding to the 6-O...

  9. Effect of heating strategies on whey protein denaturation--Revisited by liquid chromatography quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Akkerman, M; Rauh, V M; Christensen, M; Johansen, L B; Hammershøj, M; Larsen, L B

    2016-01-01

    Previous standards in the area of effect of heat treatment processes on milk protein denaturation were based primarily on laboratory-scale analysis and determination of denaturation degrees by, for example, electrophoresis. In this study, whey protein denaturation was revisited by pilot-scale heating strategies and liquid chromatography quadrupole time-of-flight mass spectrometer (LC/MC Q-TOF) analysis. Skim milk was heat treated by the use of 3 heating strategies, namely plate heat exchanger (PHE), tubular heat exchanger (THE), and direct steam injection (DSI), under various heating temperatures (T) and holding times. The effect of heating strategy on the degree of denaturation of β-lactoglobulin and α-lactalbumin was determined using LC/MC Q-TOF of pH 4.5-soluble whey proteins. Furthermore, effect of heating strategy on the rennet-induced coagulation properties was studied by oscillatory rheometry. In addition, rennet-induced coagulation of heat-treated micellar casein concentrate subjected to PHE was studied. For skim milk, the whey protein denaturation increased significantly as T and holding time increased, regardless of heating method. High denaturation degrees were obtained for T >100°C using PHE and THE, whereas DSI resulted in significantly lower denaturation degrees, compared with PHE and THE. Rennet coagulation properties were impaired by increased T and holding time regardless of heating method, although DSI resulted in less impairment compared with PHE and THE. No significant difference was found between THE and PHE for effect on rennet coagulation time, whereas the curd firming rate was significantly larger for THE compared with PHE. Micellar casein concentrate possessed improved rennet coagulation properties compared with skim milk receiving equal heat treatment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Radiogas chromatography mass spectrometry in the selected ion monitoring mode

    International Nuclear Information System (INIS)

    Doerfler, D.L.; Rosenblum, E.R.; Malloy, J.M.; Naworal, J.D.; McManus, I.R.; Campbell, I.M.

    1980-01-01

    The value of selected ion monitoring in analyzing biological radio isotope incorporation experiments by radiogas chromatography mass spectrometry is illustrated with reference to the biosynthesis of the mycotoxin mycophenolic acid in Penicillium brevicompactum and the mode of action of the anticholesterolemic drug 20,25-diazacholesterol. Both examples used 1-[ 14 C]acetate precursors. It is shown that the increased sensitivity and specificity of the selected ion monitoring mode detector permits straightforward detection and identification of the relatively small cellular pools associated with metabolic intermediates. The computer program RADSIM is described. Problems that still exist in using radiogas gas chromatography mass spectrometry technology to analyse isotope incorporation experiments are discussed. (author)

  11. Analysis of chirality by femtosecond laser ionization mass spectrometry.

    Science.gov (United States)

    Horsch, Philipp; Urbasch, Gunter; Weitzel, Karl-Michael

    2012-09-01

    Recent progress in the field of chirality analysis employing laser ionization mass spectrometry is reviewed. Emphasis is given to femtosecond (fs) laser ionization work from the author's group. We begin by reviewing fundamental aspects of determining circular dichroism (CD) in fs-laser ionization mass spectrometry (fs-LIMS) discussing an example from the literature (resonant fs-LIMS of 3-methylcyclopentanone). Second, we present new data indicating CD in non-resonant fs-LIMS of propylene oxide. Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company.

  12. Issues and opportunities in accelerator mass spectrometry for stable isotopes.

    Science.gov (United States)

    Matteson, Sam

    2008-01-01

    Accelerator mass spectrometry (AMS) has developed in the last 30 years many notable applications to the spectrometry of radioisotopes, particularly in radiocarbon dating. The instrumentation science of trace element AMS (TEAMS) that analyzes stable isotopes, also called Accelerator SIMS or MegaSIMS, while unique in many features, has also shared in many of these significant advances and has pushed TEAMS sensitivity to concentration levels surpassing many competing mass spectroscopic technologies. This review examines recent instrumentation developments, the capabilities of the new instrumentation and discernable trends for future development. Copyright 2008 Wiley Periodicals, Inc.

  13. Native Mass Spectrometry in Fragment-Based Drug Discovery.

    Science.gov (United States)

    Pedro, Liliana; Quinn, Ronald J

    2016-07-28

    The advent of native mass spectrometry (MS) in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein-ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD). Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.

  14. Quantitating subcellular metabolism with multi-isotope imaging mass spectrometry

    OpenAIRE

    Steinhauser, Matthew L.; Bailey, Andrew; Senyo, Samuel E.; Guillermier, Christelle; Perlstein, Todd S.; Gould, Alex P.; Lee, Richard T.; Lechene, Claude P.

    2012-01-01

    Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter 1,2 but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with sub-micron resolution 3,4 . Here we apply MIMS to diverse organisms, including Drosophila, mice, and humans. We test the “immortal strand hypothesis,” which predicts that during asymmetric stem cell division ch...

  15. Major roles for minor bacterial lipids identified by mass spectrometry.

    Science.gov (United States)

    Garrett, Teresa A

    2017-11-01

    Mass spectrometry of lipids, especially those isolated from bacteria, has ballooned over the past two decades, affirming in the process the complexity of the lipidome. With this has come the identification of new and interesting lipid structures. Here is an overview of several novel lipids, from both Gram-negative and Gram-positive bacteria with roles in health and disease, whose structural identification was facilitated using mass spectrometry. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Identifying modifications in RNA by MALDI mass spectrometry

    DEFF Research Database (Denmark)

    Douthwaite, Stephen; Kirpekar, Finn

    2007-01-01

    as RNA modifications added in cell-free in vitro systems. MALDI-MS is particularly useful in cases in which other techniques such as those involving primer extension or chromatographic analyses are not practicable. To date, MALDI-MS has been used to localize rRNA modifications that are involved......Posttranscriptional modifications on the base or sugar of ribonucleosides generally result in mass increases that can be measured by mass spectrometry. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a direct and accurate means of determining the masses of RNAs. Mass...... spectra produced by MALDI are relatively straightforward to interpret, because they are dominated by singly charged ions, making it possible to analyze complex mixtures of RNA oligonucleotides ranging from trinucleotides up to 20-mers. Analysis of modifications within much longer RNAs, such as ribosomal...

  17. Mass Spectrometry Imaging, an Emerging Technology in Neuropsychopharmacology

    Science.gov (United States)

    Shariatgorji, Mohammadreza; Svenningsson, Per; Andrén, Per E

    2014-01-01

    Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience. PMID:23966069

  18. Mass spectrometry imaging, an emerging technology in neuropsychopharmacology.

    Science.gov (United States)

    Shariatgorji, Mohammadreza; Svenningsson, Per; Andrén, Per E

    2014-01-01

    Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience.

  19. Elucidating rhizosphere processes by mass spectrometry – A review

    Energy Technology Data Exchange (ETDEWEB)

    Rugova, Ariana [Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences-BOKU, Vienna (Austria); Puschenreiter, Markus [Department of Forest and Soil Sciences, Rhizosphere Ecology and Biogeochemistry Group, University of Natural Resources and Life Sciences-BOKU, Vienna (Austria); Koellensperger, Gunda [Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna (Austria); Hann, Stephan, E-mail: stephan.hann@boku.ac.at [Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences-BOKU, Vienna (Austria)

    2017-03-01

    The presented review discusses state-of-the-art mass spectrometric methods, which have been developed and applied for investigation of chemical processes in the soil-root interface, the so-called rhizosphere. Rhizosphere soil's physical and chemical characteristics are to a great extent influenced by a complex mixture of compounds released from plant roots, i.e. root exudates, which have a high impact on nutrient and trace element dynamics in the soil-root interface as well as on microbial activities or soil physico-chemical characteristics. Chemical characterization as well as accurate quantification of the compounds present in the rhizosphere is a major prerequisite for a better understanding of rhizosphere processes and requires the development and application of advanced sampling procedures in combination with highly selective and sensitive analytical techniques. During the last years, targeted and non-targeted mass spectrometry-based methods have emerged and their combination with specific separation methods for various elements and compounds of a wide polarity range have been successfully applied in several studies. With this review we critically discuss the work that has been conducted within the last decade in the context of rhizosphere research and elemental or molecular mass spectrometry emphasizing different separation techniques as GC, LC and CE. Moreover, selected applications such as metal detoxification or nutrient acquisition will be discussed regarding the mass spectrometric techniques applied in studies of root exudates in plant-bacteria interactions. Additionally, a more recent isotope probing technique as novel mass spectrometry based application is highlighted. - Highlights: • State-of-the-art mass spectrometry methods developed and applied in rhizosphere research are reviewed. • Elemental and molecular mass spectrometry emphasizing different separation techniques (GC, LC or CE) are discussed. • Case studies on metal detoxification

  20. Elucidating rhizosphere processes by mass spectrometry – A review

    International Nuclear Information System (INIS)

    Rugova, Ariana; Puschenreiter, Markus; Koellensperger, Gunda; Hann, Stephan

    2017-01-01

    The presented review discusses state-of-the-art mass spectrometric methods, which have been developed and applied for investigation of chemical processes in the soil-root interface, the so-called rhizosphere. Rhizosphere soil's physical and chemical characteristics are to a great extent influenced by a complex mixture of compounds released from plant roots, i.e. root exudates, which have a high impact on nutrient and trace element dynamics in the soil-root interface as well as on microbial activities or soil physico-chemical characteristics. Chemical characterization as well as accurate quantification of the compounds present in the rhizosphere is a major prerequisite for a better understanding of rhizosphere processes and requires the development and application of advanced sampling procedures in combination with highly selective and sensitive analytical techniques. During the last years, targeted and non-targeted mass spectrometry-based methods have emerged and their combination with specific separation methods for various elements and compounds of a wide polarity range have been successfully applied in several studies. With this review we critically discuss the work that has been conducted within the last decade in the context of rhizosphere research and elemental or molecular mass spectrometry emphasizing different separation techniques as GC, LC and CE. Moreover, selected applications such as metal detoxification or nutrient acquisition will be discussed regarding the mass spectrometric techniques applied in studies of root exudates in plant-bacteria interactions. Additionally, a more recent isotope probing technique as novel mass spectrometry based application is highlighted. - Highlights: • State-of-the-art mass spectrometry methods developed and applied in rhizosphere research are reviewed. • Elemental and molecular mass spectrometry emphasizing different separation techniques (GC, LC or CE) are discussed. • Case studies on metal detoxification and

  1. Quantitative Multiclass Pesticide Residue Analysis in Apple, Pear, and Grape by Modified QuEChERS and Liquid Chromatography Coupled to High-Resolution Mass Spectrometry.

    Science.gov (United States)

    Munaretto, Juliana S; Viera, Mariela de S; Martins, Manoel L; Adaime, Martha B; Zanella, Renato

    2016-11-01

    Most of the analytical methods currently applied in food control laboratories are focused on the determination of target compounds using LC coupled to tandem MS, which is an effective technique, but low-resolution MS is limited. Thus, a method for determination of pesticide multiresidues in fruits (pear, apple, and grape) using a modified quick, easy, cheap, effective, rugged, and safe method and LC coupled to quadrupole time-of-flight (Q-TOF) MS was developed and validated. The proposed method showed good linearity (r2 > 0.99) from 1 to 100 μg/L. Recoveries for blank samples spiked at 0.01, 0.04, and 0.10 mg/kg were between 66 and 122%, with RSDs apple, pear, and grape matrixes were 0.01 mg/kg for 112, 120, and 118 compounds, and 0.04 mg/kg for 22, 12, and 17 compounds, and average mass accuracy error was 3.2 ppm. LC with Q-TOF MS detection using protonated molecular ion and/or adducts and mass accuracy provided reliability for the method. The proposed method is effective for pesticide residue determination in apple, pear, and grape samples, proving that high-resolution MS using full scan mode can be a powerful and reliable technique for quantification purposes, being adequate for application in the surveillance of maximum residue limits set by different legislations.

  2. Principles of isotopic analysis by mass spectrometry

    International Nuclear Information System (INIS)

    Herrmann, M.

    1980-01-01

    The use of magnetic sector field mass spectrometers in isotopic analysis, especially for nitrogen gas, is outlined. Two measuring methods are pointed out: the scanning mode for significantly enriched samples and the double collector method for samples near the natural abundance of 15 N. The calculation formulas are derived and advice is given for corrections. (author)

  3. A New Accelerator-Based Mass Spectrometry.

    Science.gov (United States)

    Gove, H. E.

    1983-01-01

    Tandem electrostatic accelerators produce beams of positive ions which are used to penetrate atomic nuclei in a target, inducing nuclear reactions whose study elucidates varied properties of the nucleus. Uses of the system, which acts like a mass spectrometer, are discussed. These include radiocarbon dating measurements. (JN)

  4. Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging

    Energy Technology Data Exchange (ETDEWEB)

    Burnum-Johnson, Kristin E.; Baker, Erin S.; Metz, Thomas O.

    2017-12-01

    Successful pregnancy is dependent upon discrete biological events, which include embryo implantation, decidualization, and placentation. Problems associated with each of these events can cause infertility or conditions such as preeclampsia. A greater understanding of the molecular changes associated with these complex processes is necessary to aid in identifying treatments for each condition. Previous nuclear magnetic resonance spectroscopy and mass spectrometry studies have been used to identify metabolites and lipids associated with pregnancy-related complications. However, due to limitations associated with conventional implementations of both techniques, novel technology developments are needed to more fully understand the initiation and development of pregnancy related problems at the molecular level. In this perspective, we describe current analytical techniques for metabolomic and lipidomic characterization of pregnancy complications and discuss the potential for new technologies such as ion mobility spectrometry-mass spectrometry and mass spectrometry imaging to contribute to a better understanding of the molecular changes that affect the placenta and pregnancy outcomes.

  5. Laser Mass Spectrometry in Planetary Science

    International Nuclear Information System (INIS)

    Wurz, P.; Whitby, J. A.; Managadze, G. G.

    2009-01-01

    Knowing the chemical, elemental, and isotopic composition of planetary objects allows the study of their origin and evolution within the context of our solar system. Exploration plans in planetary research of several space agencies consider landing spacecraft for future missions. Although there have been successful landers in the past, more landers are foreseen for Mars and its moons, Venus, the jovian moons, and asteroids. Furthermore, a mass spectrometer on a landed spacecraft can assist in the sample selection in a sample-return mission and provide mineralogical context, or identify possible toxic soils on Mars for manned Mars exploration. Given the resources available on landed spacecraft mass spectrometers, as well as any other instrument, have to be highly miniaturised.

  6. Trace amount analysis using spark mass spectrometry

    International Nuclear Information System (INIS)

    Stefani, Rene

    1975-01-01

    Characteristics of spark mass spectrometers (ion source, properties of the ion beam, ion optics, and performance) and their use in qualitative and quantitative analysis are described. This technique is very interesting for the semi-quantitative analysis of trace amounts, down to 10 -8 atoms. Examples of applications such as the analysis of high purity materials and non-conducting mineral samples, and determination of carbon and gas trace amounts are presented. (50 references) [fr

  7. Hydrogen isotope analysis by quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Ellefson, R.E.; Moddeman, W.E.; Dylla, H.F.

    1981-03-01

    The analysis of isotopes of hydrogen (H, D, T) and helium ( 3 He, 4 He) and selected impurities using a quadrupole mass spectrometer (QMS) has been investigated as a method of measuring the purity of tritium gas for injection into the Tokamak Fusion Test Reactor (TFTR). A QMS was used at low resolution, m/Δm 3 He, and 4 He in HT/D 2

  8. Total evaporation in thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Callis, E.L.; Cappis, J.H.

    1996-01-01

    Experiments were conducted to assess the effects of impurities on the total evaporation method for mass spectrometric measurement of the isotope ratio of uranium. Standard samples were spiked with Na, Ca, Fe, Zr and Ba. The results indicated that only Fe, and possible Na, displayed any interference, and then only at high concentrations. One problem limiting the accuracy of the method is the determination of the relative efficiency of the collectors in the multicollector system. 3 refs., 1 tab

  9. Inorganic trace analysis by laser ionization mass spectrometry

    International Nuclear Information System (INIS)

    Becker, S.; Dietze, H.J.

    1991-01-01

    Among the different spectrometric techniques for trace analysis Laser Ionization Mass Spectrometry (LIMS) is well established as a trace analytic method with a wide coverage. In the LIMS the sample material is evaporated and ionized by means of a focused pulsed laser beam in a laser microplasma, which is formed in the spot area of the irradiated sample. All chemical elements in the sample materials are evaporated and ionized in the laser plasma. The formed ions are separated according to mass and energy by a time-of-flight, quadrupole or double focusing mass spectrometer. In this review the characteristics and analytical features, some recent developments, and applications of laser ionization mass spectrometry in inorganic trace analysis are described. (orig.)

  10. Laser ionization mass spectrometry in inorganic trace analysis

    International Nuclear Information System (INIS)

    Becker, J.S.; Dietze, H.J.

    1992-01-01

    Among the different spectrometric techniques for trace analysis Laser Ionization Mass Spectrometry (LIMS) is well established as a trace analytical method. With the LIMS technique the sample material is evaporated and ionized by means of a focused pulsed laser in a laser microplasma, which is formed in the spot area of the irradiated sample. All chemical elements in the sample materials are evaporated and ionized in the laser plasma. The ions formed are separated according to their mass and energy by a time-of-flight, quadrupole or double focusing mass spectrometer. In this review the characteristics and analytical features, some recent developments and applications of laser ionization mass spectrometry in inorganic trace analysis are described. (orig.)

  11. Calcium Isotope Analysis by Mass Spectrometry

    Science.gov (United States)

    Boulyga, S.; Richter, S.

    2010-12-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. This presentation discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. Additionally, the availability of Ca isotope reference materials will be discussed.

  12. Statistical design of mass spectrometry calibration procedures

    International Nuclear Information System (INIS)

    Bayne, C.K.

    1996-11-01

    The main objective of this task was to agree on calibration procedures to estimate the system parameters (i.e., dead-time correction, ion-counting conversion efficiency, and detector efficiency factors) for SAL's new Finnigan MAT-262 mass spectrometer. SAL will use this mass spectrometer in a clean-laboratory which was opened in December 1995 to measure uranium and plutonium isotopes on environmental samples. The Finnigan MAT-262 mass spectrometer has a multi-detector system with seven Faraday cup detectors and one ion- counter for the measurement of very small signals (e.g. 10 -17 Ampere range). ORNL has made preliminary estimates of the system parameters based on SAL's experimental data measured in late 1994 when the Finnigan instrument was relatively new. SAL generated additional data in 1995 to verify the calibration procedures for estimating the dead-time correction factor, the ion-counting conversion factor and the Faraday cup detector efficiency factors. The system parameters estimated on the present data will have to be reestablished when the Finnigan MAT-262 is moved-to the new clean- laboratory. Different methods will be used to analyzed environmental samples than the current measurement methods being used. For example, the environmental samples will be electroplated on a single filament rather than using the current two filament system. An outline of the calibration standard operating procedure (SOP) is included

  13. High-accuracy mass spectrometry for fundamental studies.

    Science.gov (United States)

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  14. Absorption Mode FT-ICR Mass Spectrometry Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco; O' Connor, Peter B.; Heeren, Ronald M.

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  15. The combined measurement of uranium by alpha spectrometry and secondary ion mass spectrometry (SIMS)

    International Nuclear Information System (INIS)

    Harvan, D.

    2009-01-01

    The aim of thesis was to found the dependence between radiometric method - alpha spectrometry and surface sensitive method - Secondary Ion Mass Spectrometry (SIMS). Uranium or naturally occurring uranium isotopes were studied. Samples (high polished stainless steel discs) with uranium isotopes were prepared by electrodeposition. Samples were measured by alpha spectrometry after electrodeposition and treatment. It gives surface activities. Weights, as well as surface's weights of uranium isotopes were calculated from their activities, After alpha spectrometry samples were analyzed by TOF-SIMS IV instrument in International Laser Centre in Bratislava. By the SIMS analysis intensities of uranium-238 were obtained. The interpretation of SIMS intensities vs. surface activity, or surface's weights of uranium isotopes indicates the possibility to use SIMS in quantitative analysis of surface contamination by uranium isotopes, especially 238 U. (author)

  16. Specialized Gas Chromatography--Mass Spectrometry Systems for Clinical Chemistry.

    Science.gov (United States)

    Gochman, Nathan; And Others

    1979-01-01

    A discussion of the basic design and characteristics of gas chromatography-mass spectrometry systems used in clinical chemistry. A comparison of three specific systems: the Vitek Olfax IIA, Hewlett-Packard HP5992, and Du Pont DP-102 are included. (BB)

  17. Role of mass spectrometry in nuclear forensic science

    International Nuclear Information System (INIS)

    Joseph, M.; Sivaraman, N.

    2016-01-01

    The present talk will focus on the role of mass spectrometry in NFS in general; besides that, the various chromatographic methods developed towards separation of actinides and lanthanide fission products and characterization of dissolver solutions of nuclear reactor fuels using TIMS and some applications of using ICP-MS as well

  18. Identification of Secreted Candida Proteins Using Mass Spectrometry

    NARCIS (Netherlands)

    Gómez-Molero, E.; Dekker, H.L.; de Boer, A.D.; de Groot, P.W.; Calderone, R.; Cihlar, R.

    2016-01-01

    Analysis of fungal secretomes using mass spectrometry is a useful technique in cell biology. Knowledge of the secretome of a human fungal pathogen may yield important information of host-pathogen interactions and may be useful for identifying vaccines candidates or diagnostic markers for antifungal

  19. On-Line Synthesis and Analysis by Mass Spectrometry

    Science.gov (United States)

    Bain, Ryan M.; Pulliam, Christopher J.; Raab, Shannon A.; Cooks, R. Graham

    2015-01-01

    In this laboratory experiment, students learn how to use ESI to accelerate chemical synthesis and to couple it with on-line mass spectrometry for structural analysis. The Hantzsch synthesis of symmetric 1,4-dihydropyridines is a classic example of a one-pot reaction in which multiple intermediates can serve to indicate the progress of the reaction…

  20. Biomedical applications of mass spectrometry. Clinical uses of stable isotopes

    International Nuclear Information System (INIS)

    Krahmer, U.I.; McCloskey, J.A.

    1978-01-01

    The review covers typical or important examples of stable isotope usage in clinical fields during the period since the last triennial mass spectrometry conference in 1973. Items are included which involve uses of stable isotopes in human or clinically oriented studies, including measurements carried out on materials of human origin. 163 references. (U.K.)

  1. Recent research and progress of laser mass spectrometry

    International Nuclear Information System (INIS)

    Li Jinying; Wang Fan; Zhao Yonggang; Xiao Guoping; Guo Dongfa; Cui Haiping

    2012-01-01

    The progress of laser mass spectrometry (LMS) was introduced. Its history and principle characteristics were reviewed. The research and applications of LMS in geology, mining, organics, biochemistry, environment and nuclear industry were given. The trend of LMS in the future was outlined, and the main issue and the available solutions were discussed. (authors)

  2. Advances in characterizing ubiquitylation sites by mass spectrometry

    DEFF Research Database (Denmark)

    Sylvestersen, K.B.; Young, C.; Nielsen, M.L.

    2013-01-01

    of ubiquitylation is a two-fold challenge that involves the mapping of ubiquitylation sites and the determination of ubiquitin chain topology. This review focuses on the technical advances in the mass spectrometry-based characterization of ubiquitylation sites, which have recently involved the large...

  3. The use of mass spectrometry in peptide chemistry

    NARCIS (Netherlands)

    Leclercq, P.A.; White, P.A.; Hägele, K.; Desiderio, D.M.; Meienhofer, J.

    1972-01-01

    A review with 16 refs. Methods are detailed for derivatizing peptides (mg quantities) in order to provide sufficient volatility for mass spectrometry (at least 10-5 mm vapor pressure at 300 Deg is required). Three steps are used in producing the desired derivs.: (a) arginine side chains are

  4. Gas chromatography mass spectrometry : key technology in metabolomics

    NARCIS (Netherlands)

    Koek, Maud Marijtje

    2009-01-01

    Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues. Gas chromatography coupled to mass spectrometry (GC-MS) is very suitable for metabolomics analysis, as it combines high separation power with

  5. Fusion of mass spectrometry-based metabolomics data

    NARCIS (Netherlands)

    Smilde, Age K.; van der Werf, Mariët J.; Bijlsma, Sabina; van der Werff-van der Vat, Bianca J. C.; Jellema, Renger H.

    2005-01-01

    A general method is presented for combining mass spectrometry-based metabolomics data. Such data are becoming more and more abundant, and proper tools for fusing these types of data sets are needed. Fusion of metabolomics data leads to a comprehensive view on the metabolome of an organism or

  6. Discovery based and targeted Mass Spectrometry in farm animal proteomics

    DEFF Research Database (Denmark)

    Bendixen, Emøke

    2013-01-01

    for investigating farm animal biology. SRM is particularly important for validation biomarker candidates This talk will introduce the use of different mass spectrometry approaches through examples related to food quality and animal welfare, including studies of gut health in pigs, host pathogen interactions...

  7. Thermal ionisation mass spectrometry: recent developments and future prospects

    International Nuclear Information System (INIS)

    Aggarwal, S.K.

    1996-01-01

    This paper presents the current state of art of thermal ionization mass spectrometry (TIMS) instrumentation and highlights some of the recent applications of TIMS in geological, biological and nuclear sciences with special emphasis on some of the recent work undertaken in the area of nuclear science and technology. A few examples from the published literature are also discussed here

  8. Yeast expression proteomics by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Walther, Tobias C; Olsen, Jesper Velgaard; Mann, Matthias

    2010-01-01

    -translational controls contribute majorly to regulation of protein abundance, for example in heat shock stress response. The development of new sample preparation methods, high-resolution mass spectrometry and novel bioinfomatic tools close this gap and allow the global quantitation of the yeast proteome under different...

  9. High-Performance Liquid Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Vestal, Marvin L.

    1984-01-01

    Reviews techniques for online coupling of high-performance liquid chromatography with mass spectrometry, emphasizing those suitable for application to nonvolatile samples. Also summarizes the present status, strengths, and weaknesses of various techniques and discusses potential applications of recently developed techniques for combined liquid…

  10. Mass Spectrometry Imaging for the Classification of Tumor Tissue

    NARCIS (Netherlands)

    Mascini, N.E.

    2016-01-01

    Mass spectrometry imaging (MSI) can detect and identify many different molecules without the need for labeling. In addition, it can provide their spatial distributions as ‘molecular maps’. These features make MSI well suited for studying the molecular makeup of tumor tissue. Currently, there is an

  11. Applications of accelerator mass spectrometry: advances and innovation

    International Nuclear Information System (INIS)

    Fifield, L.K.

    2004-01-01

    Emerging trends in the applications of accelerator mass spectrometry (AMS) are identified and illustrated with specific examples. Areas of application covered include rapid landscape evolution, calibration of the radiocarbon time scale, compound-specific radiocarbon studies, tracing of nuclear discharges, and searches for extraterrestrial isotopes

  12. Biomedical mass spectrometry in today's and tomorrow's clinical microbiology laboratories

    NARCIS (Netherlands)

    A.F. van Belkum (Alex); M. Welker (Martin); M. Erhard (Marcel); S. Chatellier (Sonia)

    2012-01-01

    textabstractClinical microbiology is a conservative laboratory exercise where base technologies introduced in the 19th century remained essentially unaltered. High-tech mass spectrometry (MS) has changed that. Within a few years following its adaptation to microbiological diagnostics, MS has been

  13. Capillary filling of miniaturized sources for electrospray mass spectrometry

    International Nuclear Information System (INIS)

    Arscott, Steve; Gaudet, Matthieu; Brinkmann, Martin; Ashcroft, Alison E; Blossey, Ralf

    2006-01-01

    Capillary slot-based emitter tips are a novel tool for use in electrospray ionization-mass spectrometry of large biomolecules. We have performed a combined theoretical and experimental study of capillary filling in micron-sized slots with the aim of developing a rational design procedure for miniaturized electrospray sources, ultimately enabling the integration of ESI into laboratory-on-a-chip devices

  14. Mass spectrometry. Environment, biology, oenology, medicine, geology, chemistry, archaeology, mechanisms

    International Nuclear Information System (INIS)

    1999-01-01

    This document provides the papers (communications and posters) presented at the 16. French days of mass spectrometry, held September 6-9, 1999 in Nancy, France. 5 papers are interesting for the INIS database and are analyzed separately. (O.M.)

  15. Automatic Compound Annotation from Mass Spectrometry Data Using MAGMa.

    NARCIS (Netherlands)

    Ridder, L.O.; Hooft, van der J.J.J.; Verhoeven, S.

    2014-01-01

    The MAGMa software for automatic annotation of mass spectrometry based fragmentation data was applied to 16 MS/MS datasets of the CASMI 2013 contest. Eight solutions were submitted in category 1 (molecular formula assignments) and twelve in category 2 (molecular structure assignment). The MS/MS

  16. Fast atom bombardment mass spectrometry of condensed tannin sulfonate derivatives

    Science.gov (United States)

    J.J. Karchesy; L.Y. Foo; Richard W. Hemingway; E. Barofsky; D.F. Barofsky

    1989-01-01

    Condensed tannin sulfonate derivatives were studied by fast atom bombardment mass spectrometry (FAB-MS) to assess the feasibility of using this technique for determining molecular weight and structural information about these compounds. Both positive- and negative-ion spectra provided useful data with regard to molecular weight, cation species present, and presence of...

  17. Molecular mass spectrometry imaging in biomedical and life science research

    Czech Academy of Sciences Publication Activity Database

    Pól, Jaroslav; Strohalm, Martin; Havlíček, Vladimír; Volný, Michael

    2010-01-01

    Roč. 134, č. 5 (2010), s. 423-443 ISSN 0948-6143 R&D Projects: GA MŠk LC545; GA ČR GPP206/10/P018 Institutional research plan: CEZ:AV0Z50200510 Keywords : Mass spectrometry * Chemical imaging * Molecular imaging Subject RIV: EE - Microbiology, Virology Impact factor: 4.727, year: 2010

  18. 14 C dating by using mass spectrometry with particle accelerator

    International Nuclear Information System (INIS)

    Santos, G.M.; Gomes, P.R.S.; Yokoyama, Y.; Tada, M.L. di; Cresswell, R.G.; Fifield, L.K.

    1999-01-01

    The different aspects concerning the 14 C dating are described, including the cosmogenic origin of 14 C, its production and absorption by matter, the procedures to be followed for the age determination and the associated errors, particularly by the Accelerator Mass Spectrometry (AMS) technique, and the different steps of the sample preparation process. (author)

  19. Dynamic Secondary Ion Mass Spectrometry | Materials Science | NREL

    Science.gov (United States)

    Ion Mass Spectrometry (SIMS) uses a continuous, focused beam of primary ions to remove material from the surface of a sample by sputtering. The fraction of sputtered material that is ionized is extracted Identifies all elements or isotopes present in a material, from hydrogen to uranium. Different primary-ion

  20. Traveling-wave ion mobility mass spectrometry of protein complexes

    DEFF Research Database (Denmark)

    Salbo, Rune; Bush, Matthew F; Naver, Helle

    2012-01-01

    The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization ...

  1. Mass spectrometry with ionization induced by 252Cf fission fragments

    International Nuclear Information System (INIS)

    Sysoev, A.A.; Artaev, V.B.

    1991-01-01

    The review deals with mass-spectrometry with ionization induced by 252 Cf fission fragments. Equipment and technique of the analysis, analytic possibilities of the method are considered. The method permits to determine molecular masses of large nonvolatile biological molecules. The method is practically nondestructive, it possesses a high resolution over the depth and surface, which permits to use it for the analysis of surface of semiconductors, dielectrics, catalysts, for the study of formation kinetics of complex unstable molecules on the surface

  2. Mass spectrometry of submicrogram quantities of lead and cadmium

    International Nuclear Information System (INIS)

    Moraes, Noemia M.P. de; Kakazu, M.H.; Iyer, S.S.

    1980-01-01

    Isotope analyses of submicrogram quantities of lead and cadmium are carried out by single filament solid source mass spectrometry. Thermionic emission of Pb and Cd is enhanced using silica gel as an emitter. Details of the chemical and mass spectrometric techniques are described. The low blank levels are maintained by extra purification of the reagents. The applications of isotope ratios of Pb and Cd in environmental sciences and geochemistry are discussed. (Author) [pt

  3. High Resolution Mass Spectrometry of Polyfluorinated Polyether-Based Formulation

    DEFF Research Database (Denmark)

    Dimzon, Ian Ken; Trier, Xenia; Frömel, Tobias

    2016-01-01

    High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid o......-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health. Graphical Abstract ᅟ....

  4. Focusing procedures in time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Ioanoviciu, D.

    2002-01-01

    Time-of-flight mass spectrometry is a fast growing field due to its ability to handle very fast processes and due to its theoretically unlimited mass range. The performances of the time-of-flight mass analysers are heavily dependent on the progress in ion optics, a periodically reviewed field. In this presentation the various focusing procedures in time-of-flight mass spectrometry are reviewed. For ions of the same charge and mass flight time differences result from different potentials at the location of formation and from the initial velocity spread. There is no simultaneous space and velocity focusing in time-of-flight mass spectrometry. Space focusing of first and second order can be reached in time-of-flight mass analysers having two homogeneous electric field ion sources followed by a field free space in front of the detector. Single and double stage homogeneous electric field mirrors can focus in time ions of different energies. These different energies result when ions leaving different initial sites and arriving simultaneously to an intermediate space focus. Convenient mass dispersion can be obtained by including a mirror. Initial velocity focusing is obtained by the delayed extraction procedure in drift space and mirror time-of-flight mass analysers. Post source pulse focusing aims at the same purpose. Ion source electrodes of hyperbolic shape, operated by high voltage pulses can bring major improvements of the resolution, especially at high masses. For each focusing procedure the geometric and/or electric conditions are given as well as the aberrations allowing the mass resolution determination. The various focusing procedures are compared and a prediction of their future performances was tempted. (author)

  5. Mass spectrometry of fluorocarbon-labeled glycosphingolipids

    DEFF Research Database (Denmark)

    Li, Yunsen; Arigi, Emma; Eichert, Heather

    2010-01-01

    ceramide N-deacylase (SCDase) is used to remove the fatty acid from the ceramide moiety, after which a fluorocarbon-rich substituent (F-Tag) is incorporated at the free amine of the sphingoid. In initial trials, a neutral GSL, globotriaosylceramide (Gb(3)Cer), three purified bovine brain gangliosides...... with subsequent per-N,O-methylation was established for the F-tagged Gb(3) Cer and purified gangliosides, and extensive mass spectra (MS(1) and MS(2)) consistent with all of the expected products were acquired. The potential use of F-tagged derivatives for a comprehensive MS based profiling application...

  6. Automated Intelligent Assistant for mass spectrometry operation

    International Nuclear Information System (INIS)

    Filby, E.E.; Rankin, R.A.; Yoshida, D.E.

    1991-01-01

    The Automated Intelligent Assistant is designed to insure that our mass spectrometers produce timely, high-quality measurement data. The design combines instrument interfacing and expert system technology to automate an adaptable set-point damage prevention strategy. When shutdowns occur, the Assistant can help guide troubleshooting efforts. Stored real-time data will help our development program upgrade and improve the system, and also make it possible to re-run previously-observed instrument problems as ''live'' training exercises for the instrument operators. Initial work has focused on implementing the Assistant for the instrument ultra-high vacuum components. 14 refs., 5 figs

  7. Mass spectrometry applied to high temperature chemistry, (2)

    International Nuclear Information System (INIS)

    Asano, Mitsuru; Kato, Eiichi; Sata, Toshiyuki.

    1980-01-01

    The application of mass spectrometry to high temperature chemistry is reviewed. As a blanket material for fusion reactors, the behavior of lithium has been investigated by using mass analysers. The enthalpies of the chemical reactions of metallic lithium were obtained. The enthalpies of isomolecular exchange reactions and the derived atomization energies of LiD, Li 2 D and Li 2 D 2 were also obtained by mass spectrometry. The thermomechanical character of lithium oxide was studied. The vaporization behaviors of LiCrO 2 and Li 5 FeO 4 were studied with a quadrupole mass analyser. The vaporization of cobalt from nickel alloy was studied. The evaporated ions were analysed with a mass analyser. The measurement of the vaporized molecules of metals and fused silicate was made by mass spectrometry. The activities of Fe-V system were determined by measuring the ion current ratio. The activities of Fe-V-Cr system were also obtained. The vapor pressure of phosphor from Fe-P alloys can be measured. The activity coefficients and interaction parameters for the dilute solutions of elements, such as Mn, Al, Cu, Cr, Co, Ni, Si, Ti, V, B, Zr, Mo, C, S, and P, dissolved in liquid iron are shown in a table. The activities of NaCl-KCl system were derived by measuring the ion current ratio and by monomer-dimer method. (Kato, T.)

  8. Application of Laser Mass Spectrometry to Art and Archaeology

    Science.gov (United States)

    Gulian, Lase Lisa E.; Callahan, Michael P.; Muliadi, Sarah; Owens, Shawn; McGovern, Patrick E.; Schmidt, Catherine M.; Trentelman, Karen A.; deVries, Mattanjah S.

    2011-01-01

    REMPI laser mass spectrometry is a combination of resonance enhanced multiphoton ionization spectroscopy and time of flight mass spectrometry, This technique enables the collection of mass specific optical spectra as well as of optically selected mass spectra. Analytes are jet-cooled by entrainment in a molecular beam, and this low temperature gas phase analysis has the benefit of excellent vibronic resolution. Utilizing this method, mass spectrometric analysis of historically relevant samples can be simplified and improved; Optical selection of targets eliminates the need for chromatography while knowledge of a target's gas phase spectroscopy allows for facile differentiation of molecules that are in the aqueous phase considered spectroscopically indistinguishable. These two factors allow smaller sample sizes than commercial MS instruments, which in turn will require less damage to objects of antiquity. We have explored methods to optimize REMPI laser mass spectrometry as an analytical tool to archaeology using theobromine and caffeine as molecular markers in Mesoamerican pottery, and are expanding this approach to the field of art to examine laccaic acid in shellacs.

  9. Use of quadrupole time-of-flight mass spectrometry to determine proposed structures of transformation products of the herbicide bromacil after water chlorination.

    Science.gov (United States)

    Ibáñez, María; Sancho, Juan V; Pozo, Oscar J; Hernández, Félix

    2011-10-30

    The herbicide bromacil has been extensively used in the Spanish Mediterranean region, and although plant protection products containing bromacil have been withdrawn by the European Union, this compound is still frequently detected in surface and ground water of this area. However, the fast and complete disappearance of this compound has been observed in water intended for human consumption, after it has been subjected to chlorination. There is a concern about the possible degradation products formed, since they might be present in drinking water and might be hazardous. In this work, the sensitive full-spectrum acquisition, high resolution and exact mass capabilities of hybrid quadrupole time-of-flight (QTOF) mass spectrometry have allowed the discovery and proposal of structures of transformation products (TPs) of bromacil in water subjected to chlorination. Different ground water samples spiked at 0.5 µg/mL were subjected to the conventional chlorination procedure applied to drinking waters, sampling 2-mL aliquots at different time intervals (1, 10 and 30 min). The corresponding non-spiked water was used as control sample in each experiment. Afterwards, 50 μL of the water was directly injected into an ultra-high-pressure liquid chromatography (UHPLC)/electrospray ionization (ESI)-(Q)TOF system. The QTOF instrument enabled the simultaneous recording of two acquisition functions at different collision energies (MS(E) approach): the low-energy (LE) function, fixed at 4 eV, and the high-energy (HE) function, with a collision energy ramp from 15 to 40 eV. This approach enables the simultaneous acquisition of both parent (deprotonated and protonated molecules) and fragment ions in a single injection. The low mass errors observed for the deprotonated and protonated molecules (detected in LE function) allowed the assignment of a highly probable molecular formula. Fragment ions and neutral losses were investigated in both LE and HE spectra to elucidate the

  10. Liquid chromatography-mass spectrometry in forensic toxicology.

    Science.gov (United States)

    Van Bocxlaer, J F; Clauwaert, K M; Lambert, W E; Deforce, D L; Van den Eeckhout, E G; De Leenheer, A P

    2000-01-01

    Liquid chromatography-mass spectrometry has evolved from a topic of mainly research interest into a routinely usable tool in various application fields. With the advent of new ionization approaches, especially atmospheric pressure, the technique has established itself firmly in many areas of research. Although many applications prove that LC-MS is a valuable complementary analytical tool to GC-MS and has the potential to largely extend the application field of mass spectrometry to hitherto "MS-phobic" molecules, we must recognize that the use of LC-MS in forensic toxicology remains relatively rare. This rarity is all the more surprising because forensic toxicologists find themselves often confronted with the daunting task of actually searching for evidence materials on a scientific basis without any indication of the direction in which to search. Through the years, mass spectrometry, mainly in the GC-MS form, has gained a leading role in the way such quandaries are tackled. The advent of robust, bioanalytically compatible combinations of liquid chromatographic separation with mass spectrometric detection really opens new perspectives in terms of mass spectrometric identification of difficult molecules (e.g., polar metabolites) or biopolymers with toxicological relevance, high throughput, and versatility. Of course, analytical toxicologists are generally mass spectrometry users rather than mass spectrometrists, and this difference certainly explains the slow start of LC-MS in this field. Nevertheless, some valuable applications have been published, and it seems that the introduction of the more universal atmospheric pressure ionization interfaces really has boosted interests. This review presents an overview of what has been realized in forensic toxicological LC-MS. After a short introduction into LC-MS interfacing operational characteristics (or limitations), it covers applications that range from illicit drugs to often abused prescription medicines and some

  11. Strategy for signaling molecule detection by using an integrated microfluidic device coupled with mass spectrometry to study cell-to-cell communication.

    Science.gov (United States)

    Mao, Sifeng; Zhang, Jie; Li, Haifang; Lin, Jin-Ming

    2013-01-15

    Cell-to-cell communication is a very important physiological behavior in life entity, and most of human behaviors are related to it. Although cell-to-cell communications are attracting much attention and financial support, rare methods have been successfully developed for in vitro cell-to-cell communication study. In this work, we developed a novel method for cell-to-cell communication study on an integrated microdevice, and signaling molecule and metabolites were online-detected by an electrospray ionization-quadrupole-time-of-flight-mass spectrometer (ESI-Q-TOF-MS) after on-chip solid-phase extraction. Moreover, we presented a "Surface Tension Plug" on a microchip to control cell-to-cell communication. The microdevice consists of three functional sections: cell coculture channel, targets pretreatment, and targets detection sections. To verify the feasibility of cell-to-cell communications on the integrated microdevice, we studied the communication between the 293 and the L-02 cells. Epinephrine and glucose were successfully detected using an ESI-Q-TOF-MS with short analysis time (communication study.

  12. Photoionization mass spectrometry of UF6

    International Nuclear Information System (INIS)

    Berkowitz, J.

    1979-01-01

    The photoionization mass spectrum of 238 UF 6 was obtained. At 600 A = 20.66 eV, the relative ionic abundances were as follows: UF 6 + , 1.4; UF 5 + , 100; UF + , 17; UF 3 + , approx. 0.7; UF 2 + , very weak; UF + , very weak; U + , essentially zero. The adiabatic ionization potential for UF 6 was 13.897 +- 0.005 eV. The production of UF 5 + begins at approx. 887 A = 13.98 eV, at which energy the UF 6 + partial cross section abruptly declines and then levels off. This behavior suggests the vague possibility of an isotope effect. The UF 4 + signal begins at approx. 725 A = 17.10 eV, at which energy the UF 5 + signal reaches a plateau value. The UF 5 + photoionization yield curve displays some autoionization structure from its threshold to approx. 750 A

  13. Complete Hexose Isomer Identification with Mass Spectrometry

    Science.gov (United States)

    Nagy, Gabe; Pohl, Nicola L. B.

    2015-04-01

    The first analytical method is presented for the identification and absolute configuration determination of all 24 aldohexose and 2-ketohexose isomers, including the D and L enantiomers for allose, altrose, galactose, glucose, gulose, idose, mannose, talose, fructose, psicose, sorbose, and tagatose. Two unique fixed ligand kinetic method combinations were discovered to create significant enough energetic differences to achieve chiral discrimination among all 24 hexoses. Each of these 24 hexoses yields unique ratios of a specific pair of fragment ions that allows for simultaneous determination of identification and absolute configuration. This mass spectrometric-based methodology can be readily employed for accurate identification of any isolated monosaccharide from an unknown biological source. This work provides a key step towards the goal of complete de novo carbohydrate analysis.

  14. Intact glycopeptide characterization using mass spectrometry.

    Science.gov (United States)

    Cao, Li; Qu, Yi; Zhang, Zhaorui; Wang, Zhe; Prytkova, Iya; Wu, Si

    2016-05-01

    Glycosylation is one of the most prominent and extensively studied protein post-translational modifications. However, traditional proteomic studies at the peptide level (bottom-up) rarely characterize intact glycopeptides (glycosylated peptides without removing glycans), so no glycoprotein heterogeneity information is retained. Intact glycopeptide characterization, on the other hand, provides opportunities to simultaneously elucidate the glycan structure and the glycosylation site needed to reveal the actual biological function of protein glycosylation. Recently, significant improvements have been made in the characterization of intact glycopeptides, ranging from enrichment and separation, mass spectroscopy (MS) detection, to bioinformatics analysis. In this review, we recapitulated currently available intact glycopeptide characterization methods with respect to their advantages and limitations as well as their potential applications.

  15. Precise atomic mass measurements by deflection mass spectrometry

    CERN Document Server

    Barber, R C

    2003-01-01

    Since its inception nearly 90 years ago by J.J. Thomson, the precise determination of atomic masses by the classical technique of deflecting charged particles in electric and magnetic fields has provided a large body of data on naturally occurring nuclides. Currently, such measurements on stable nuclides have frequently achieved a precision of better than two parts in 10 sup 9 of the mass. A review of the technique, together with a brief summary of the important historical developments in the field of precise atomic mass measurements, will be given. The more recent contributions to this field by the deflection mass spectrometer at the University of Manitoba will be provided as illustrations of the culmination of the techniques used and the applications that have been studied. A brief comparison between this and newer techniques using Penning traps will be presented.

  16. Hands-on Electrospray Ionization-Mass Spectrometry for Upper-Level Undergraduate and Graduate Students

    Science.gov (United States)

    Stock, Naomi L.; March, Raymond E.

    2014-01-01

    Electrospray ionization-mass spectrometry (ESI-MS) is a powerful technique for the detection, identification, and quantification of organic compounds. As mass spectrometers have become more user-friendly and affordable, many students--often with little experience in mass spectrometry--find themselves needing to incorporate mass spectrometry into…

  17. Meet interesting abbreviations in clinical mass spectrometry: from compound classification by REIMS to multimodal and mass spectrometry imaging (MSI)

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Dominika; Pluháček, Tomáš; Palyzová, Andrea; Přichystal, Jakub; Balogh, J.; Lemr, Karel; Juránek, I.; Havlíček, Vladimír

    2017-01-01

    Roč. 61, č. 3 (2017), s. 353-360 ISSN 0001-723X R&D Projects: GA MŠk(CZ) LO1509; GA ČR(CZ) GA16-20229S Institutional support: RVO:61388971 Keywords : REIMS * multimodal * mass spectrometry imaging Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 0.673, year: 2016

  18. T cells recognizing a peptide contaminant undetectable by mass spectrometry

    DEFF Research Database (Denmark)

    Brezar, Vedran; Culina, Slobodan; Østerbye, Thomas

    2011-01-01

    Synthetic peptides are widely used in immunological research as epitopes to stimulate their cognate T cells. These preparations are never completely pure, but trace contaminants are commonly revealed by mass spectrometry quality controls. In an effort to characterize novel major histocompatibility...... complex (MHC) Class I-restricted ß-cell epitopes in non-obese diabetic (NOD) mice, we identified islet-infiltrating CD8+ T cells recognizing a contaminating peptide. The amount of this contaminant was so small to be undetectable by direct mass spectrometry. Only after concentration by liquid...... chromatography, we observed a mass peak corresponding to an immunodominant islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)(206-214) epitope described in the literature. Generation of CD8+ T-cell clones recognizing IGRP(206-214) using a novel method confirmed the identity...

  19. Analytical applications of resonance ionization mass spectrometry (RIMS)

    International Nuclear Information System (INIS)

    Fassett, J.D.; Travis, J.C.

    1988-01-01

    A perspective on the role of resonance ionization mass spectrometry (RIMS) in the field of analytical chemistry is presented. RIMS provides new, powerful, and complementary capabilities relative to traditional methods of inorganic mass spectrometry. Much of the initial work in RIMS has been to illustrate these capabilities and define the potential of RIMS in the generalized field of chemical analysis. Three areas of application are reviewed here: (1) noble gas measurements; (2) materials analysis using isotope dilution (IDMS); and, (3) solids analysis using direct sampling. The role of RIMS is discussed relative to the more traditional mass spectrometric methods of analysis in these areas. The applications are meant to illustrate the present state-of-the-art as well as point to the future state-of-the-art of RIMS in chemical analysis. (author)

  20. Determination of {sup 135}Cs by accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, C.M.; Charles, C.R.J. [Andre. E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Earth Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Zhao, X.-L.; Kieser, W.E. [Andre. E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Cornett, R.J. [Andre. E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Earth Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Litherland, A.E. [IsoTrace Laboratory, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7 (Canada)

    2015-10-15

    The ratio of anthropogenic {sup 135}Cs and {sup 137}Cs isotopes is characteristic of a uranium fission source. This research evaluates the technique of isotope dilution (yield tracing) for the purpose of quantifying {sup 135}Cs by accelerator mass spectrometry with on-line isobar separation. Interferences from Ba, Zn{sub 2}, and isotopes of equal mass to charge ratios were successfully suppressed. However, some sample crosstalk from source contamination remains. The transmission and di-fluoride ionization efficiencies of Cs isotopes were found to be 8 × 10{sup −3} and 1.7 × 10{sup −7} respectively. This quantification of {sup 135}Cs using yield tracing by accelerator mass spectrometry shows promise for future environmental sample analysis once the issues of sample crosstalk and low efficiency can be resolved.

  1. LILBID-mass spectrometry of the mitochondrial preprotein translocase TOM

    International Nuclear Information System (INIS)

    Mager, Frauke; Lintzel, Julia; Nussberger, Stephan; Sokolova, Lucie; Brutschy, Bernhard

    2010-01-01

    In the present work we applied a novel mass spectrometry method termed laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS) to the outer mitochondrial membrane protein translocon TOM to analyze its subunit composition and stoichiometry. With TOM core complex, purified at high pH, we demonstrate that a TOM core complex of Neurospora crassa is composed of at least two Tom40 and Tom22 molecules, respectively, and more than five small Tom subunits between 5.5 and 6.4 kDa. We show that the multiprotein complex has a total molecular mass higher than 170 depending on the number of Tom5, Tom6 and Tom7 molecules bound.

  2. LILBID-mass spectrometry of the mitochondrial preprotein translocase TOM

    Science.gov (United States)

    Mager, Frauke; Sokolova, Lucie; Lintzel, Julia; Brutschy, Bernhard; Nussberger, Stephan

    2010-11-01

    In the present work we applied a novel mass spectrometry method termed laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS) to the outer mitochondrial membrane protein translocon TOM to analyze its subunit composition and stoichiometry. With TOM core complex, purified at high pH, we demonstrate that a TOM core complex of Neurospora crassa is composed of at least two Tom40 and Tom22 molecules, respectively, and more than five small Tom subunits between 5.5 and 6.4 kDa. We show that the multiprotein complex has a total molecular mass higher than 170 depending on the number of Tom5, Tom6 and Tom7 molecules bound.

  3. Resonance ionization mass spectrometry system for measurement of environmental samples

    International Nuclear Information System (INIS)

    Pibida, L.; McMahon, C.A.; Noertershaeuser, W.; Bushaw, B.A.

    2002-01-01

    A resonance ionization mass spectrometry (RIMS) system has been developed at the National Institute of Standards and Technology (NIST) for sensitive and selective determination of radio-cesium in the environment. The overall efficiency was determined to be 4x10-7 with a combined (laser and mass spectrometer) selectivity of 108 for both 135Cs and 137Cs with respect to 133Cs. RIMS isotopic ratio measurements of 135Cs/ 137Cs were performed on a nuclear fuel burn-up sample and compared to measurements on a similar system at Pacific Northwest National Laboratory (PNNL) and to conventional thermal ionization mass spectrometry (TIMS). Results of preliminary RIMS investigations on a freshwater lake sediment sample are also discussed

  4. Phytochemical, antioxidant and antidiabetic evaluation of eight Bauhinia L. species from Egypt using UHPLC-PDA-qTOF-MS and chemometrics.

    Science.gov (United States)

    Farag, Mohamed A; Sakna, Sarah T; El-Fiky, Nabaweya M; Shabana, Marawan M; Wessjohann, Ludger A

    2015-11-01

    Bauhinia L. (Fabaceae) comprises ca. 300-350 plant species, many of which are traditionally used in folk medicine for their antidiabetic, antioxidant and anti-inflammatory effects. Bauhinia s.l. recently has been subdivided into 9 genera based on phylogenetic data: Bauhinia s.str., Barklya, Brenierea, Gigasiphon, Lysiphyllum, Phanera, Piliostigma, Schnella (American Phanera) and Tylosema. The aerial parts of 8 species corresponding to 5 genera were analyzed: Bauhinia forficata, Bauhinia variegata, B. variegata var. candida, Bauhinia galpinii, Schnella glabra, Piliostigma racemosa, Phanera vahlii and Lysiphyllum hookeri. Leaves and shoots were subjected to metabolite profiling via UHPLC-PDA-qTOF-MS coupled to multivariate data analyzes to identify compound compositional differences. A total of 90 metabolites were identified including polyphenols and fatty acids; flavonoid conjugates accounted for most of the metabolite variation observed. This study provides a comprehensive map of polyphenol composition in Bauhinia and phytochemical species aggregations are consistent with recent Bauhinia genus taxonomic relationship derived from phylogenetic studies. DPPH radical scavenging and α-glucosidase inhibitory assays were also performed to assess selected aspects of the antioxidant and antidiabetic potential for the examined species with respect to metabolite profiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Optimization of Ultrasound-Assisted Extraction, HPLC and UHPLC-ESI-Q-TOF-MS/MS Analysis of Main Macamides and Macaenes from Maca (Cultivars of Lepidium meyenii Walp

    Directory of Open Access Journals (Sweden)

    Shu-Xiao Chen

    2017-12-01

    Full Text Available Ultrasound-assisted extraction (UAE, using petroleum ether as the solvent, was systematically applied to extract main macamides and macaenes from Maca hypocotyls. Extraction yield was related with four variables, including ratio of solution to solid, extraction temperature, extraction time, and extraction power. On the basis of response surface methodology (RSM, the optimal conditions were determined to be the ratio of solution to solid as 10:1 (mL/g, the extraction temperature of 40 °C, the extraction time of 30 min, and the extraction power of 200 W. Based on the optimal extraction method of UAE, the total contents of ten main macamides and two main macaenes of Maca cultivated in twenty different areas of Tibet were analyzed by HPLC and UHPLC-ESI-Q-TOF-MS/MS. This study indicated that UAE was able to effectively extract macamides alkaloids from Maca hypocotyls. Quantitative analysis showed that geographical origins, not ecotypes, played a more important role on the accumulation of active macamides in Maca.

  6. Optimization of Ultrasound-Assisted Extraction, HPLC and UHPLC-ESI-Q-TOF-MS/MS Analysis of Main Macamides and Macaenes from Maca (Cultivars of Lepidium meyenii Walp).

    Science.gov (United States)

    Chen, Shu-Xiao; Li, Ke-Ke; Pubu, Duoji; Jiang, Si-Ping; Chen, Bin; Chen, Li-Rong; Yang, Zhen; Ma, Chao; Gong, Xiao-Jie

    2017-12-10

    Ultrasound-assisted extraction (UAE), using petroleum ether as the solvent, was systematically applied to extract main macamides and macaenes from Maca hypocotyls. Extraction yield was related with four variables, including ratio of solution to solid, extraction temperature, extraction time, and extraction power. On the basis of response surface methodology (RSM), the optimal conditions were determined to be the ratio of solution to solid as 10:1 (mL/g), the extraction temperature of 40 °C, the extraction time of 30 min, and the extraction power of 200 W. Based on the optimal extraction method of UAE, the total contents of ten main macamides and two main macaenes of Maca cultivated in twenty different areas of Tibet were analyzed by HPLC and UHPLC-ESI-Q-TOF-MS/MS. This study indicated that UAE was able to effectively extract macamides alkaloids from Maca hypocotyls. Quantitative analysis showed that geographical origins, not ecotypes, played a more important role on the accumulation of active macamides in Maca.

  7. UPLC-Q-TOF/MS-based urine and plasma metabonomics study on the ameliorative effects of aspirin eugenol ester in hyperlipidemia rats.

    Science.gov (United States)

    Ma, Ning; Karam, Isam; Liu, Xi-Wang; Kong, Xiao-Jun; Qin, Zhe; Li, Shi-Hong; Jiao, Zeng-Hua; Dong, Peng-Cheng; Yang, Ya-Jun; Li, Jian-Yong

    2017-10-01

    The main objective of this study was to investigate the ameliorative effects of aspirin eugenol ester (AEE) in hyperlipidemic rat. After five-week oral administration of AEE in high fat diet (HFD)-induced hyperlipidemic rats, the impact of AEE on plasma and urine metabonomics was investigated to explore the underlying mechanism by UPLC-Q-TOF/MS analysis. Blood lipid levels and histopathological changes of liver, stomach and duodenum were also evaluated after AEE treatment. Without obvious gastrointestinal (GI) side effects, AEE significantly relieved fatty degeneration of liver and reduced triglyceride (TG), low density lipoprotein (LDL) and total cholesterol (TCH) (P<0.01). Clear separations of metabolic profiles were observed among control, model and AEE groups by using principal component analysis (PCA) and orthogonal partial least-squares-discriminate analysis (OPLS-DA). 16 endogenous metabolites in plasma and 18 endogenous metabolites in urine involved in glycerophospholipid metabolism, fatty acid metabolism, fatty acid beta-oxidation, amino acid metabolism, TCA cycle, sphingolipid metabolism, gut microflora and pyrimidine metabolism were considered as potential biomarkers of hyperlipidemia and be regulated by AEE administration. It might be concluded that AEE was a promising drug candidate for hyperlipidemia treatment. These findings could contribute to the understanding of action mechanisms of AEE and provide evidence for further studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The Elevation of LC-ESI-Q-TOF-MS Response in the Analysis of Isoquinoline Alkaloids from Some Papaveraceae and Berberidaceae Representatives.

    Science.gov (United States)

    Kukula-Koch, Wirginia

    2017-01-01

    Twenty-five methanol extracts obtained from various representatives of Papaveraceae and Berberidaceae botanical families (genera: Papaver , Argemone , Eschscholzia , Chelidonium , Glaucium , and Berberis ) were screened for their alkaloid content in an optimized method suitable for the LC-ESI-Q-TOF-MS analysis. Twelve pharmacologically important isoquinoline alkaloids from four groups, aporphines, benzylisoquinolines, protoberberines, and benzophenanthridines, present in these traditionally used plant species were quantitatively determined in each studied sample, providing their alkaloid profile. A Zorbax Stable Bond RP-18 column and a mobile phase composed of 0.1% formic acid and 0.1% formic acid in acetonitrile (v/v) were used at the flow rate of 0.2 mL/min. A profound study on the optimization of MS response to four groups of isoquinoline alkaloids (validation of capillary voltage, gas flows, nebulizer pressure, skimmer, and fragmentor voltages), repeatability of results, and stability and linearity of measurements were described, showing, among others, 3000 V of capillary voltage, 350°C of gas temperature, 12 L/min of gas flows, nebulizer pressure of 35 psig, 65 V for skimmer voltage, and 30 V for collision energy as the most advantageous operation parameters.

  9. The Elevation of LC-ESI-Q-TOF-MS Response in the Analysis of Isoquinoline Alkaloids from Some Papaveraceae and Berberidaceae Representatives

    Directory of Open Access Journals (Sweden)

    Wirginia Kukula-Koch

    2017-01-01

    Full Text Available Twenty-five methanol extracts obtained from various representatives of Papaveraceae and Berberidaceae botanical families (genera: Papaver, Argemone, Eschscholzia, Chelidonium, Glaucium, and Berberis were screened for their alkaloid content in an optimized method suitable for the LC-ESI-Q-TOF-MS analysis. Twelve pharmacologically important isoquinoline alkaloids from four groups, aporphines, benzylisoquinolines, protoberberines, and benzophenanthridines, present in these traditionally used plant species were quantitatively determined in each studied sample, providing their alkaloid profile. A Zorbax Stable Bond RP-18 column and a mobile phase composed of 0.1% formic acid and 0.1% formic acid in acetonitrile (v/v were used at the flow rate of 0.2 mL/min. A profound study on the optimization of MS response to four groups of isoquinoline alkaloids (validation of capillary voltage, gas flows, nebulizer pressure, skimmer, and fragmentor voltages, repeatability of results, and stability and linearity of measurements were described, showing, among others, 3000 V of capillary voltage, 350°C of gas temperature, 12 L/min of gas flows, nebulizer pressure of 35 psig, 65 V for skimmer voltage, and 30 V for collision energy as the most advantageous operation parameters.

  10. Mass spectrometry of selective androgen receptor modulators.

    Science.gov (United States)

    Thevis, Mario; Schänzer, Wilhelm

    2008-07-01

    Nonsteroidal selective androgen receptor modulators (SARMs) are an emerging class of drugs for treatment of various diseases including osteoporosis and muscle wasting as well as the correction of age-related functional decline such as muscle strength and power. Several SARMs, which have advanced to preclinical and clinical trials, are composed of diverse chemical structures including arylpropionamide-, bicyclic hydantoin-, quinoline-, and tetrahydroquinoline-derived nuclei. Since January 2008, SARMs have been categorized as anabolic agents and prohibited by the World Anti-Doping Agency (WADA). Suitable detection methods for these low-molecular weight drugs were based on mass spectrometric approaches, which necessitated the elucidation of dissociation pathways in order to characterize and identify the target analytes in doping control samples as well as potential metabolic products and synthetic analogs. Fragmentation patterns of representatives of each category of SARMs after electrospray ionization (ESI) and collision-induced dissociation (CID) as well as electron ionization (EI) are summarized. The complexity and structural heterogeneity of these drugs is a daunting challenge for detection methods. Copyright 2008 John Wiley & Sons, Ltd.

  11. Analytical capabilities of laser-probe mass spectrometry

    International Nuclear Information System (INIS)

    Kovalev, I.D.; Madsimov, G.A.; Suchkov, A.I.; Larin, N.V.

    1978-01-01

    The physical bases and quantitative analytical procedures of laser-probe mass spectrometry are considered in this review. A comparison is made of the capabilities of static and dynamic mass spectrometers. Techniques are studied for improving the analytical characteristics of laser-probe mass spectrometers. The advantages, for quantitative analysis, of the Q-switched mode over the normal pulse mode for lasers are: (a) the possibility of analysing metals, semiconductors and insulators without the use of standards; and (b) the possibility of layer-by-layer and local analysis. (Auth.)

  12. Computer automation of an accelerator mass spectrometry system

    International Nuclear Information System (INIS)

    Gressett, J.D.; Maxson, D.L.; Matteson, S.; McDaniel, F.D.; Duggan, J.L.; Mackey, H.J.; North Texas State Univ., Denton, TX; Anthony, J.M.

    1989-01-01

    The determination of trace impurities in electronic materials using accelerator mass spectrometry (AMS) requires efficient automation of the beam transport and mass discrimination hardware. The ability to choose between a variety of charge states, isotopes and injected molecules is necessary to provide survey capabilities similar to that available on conventional mass spectrometers. This paper will discuss automation hardware and software for flexible, high-sensitivity trace analysis of electronic materials, e.g. Si, GaAs and HgCdTe. Details regarding settling times will be presented, along with proof-of-principle experimental data. Potential and present applications will also be discussed. (orig.)

  13. Chemically assisted laser ablation ICP mass spectrometry.

    Science.gov (United States)

    Hirata, Takafumi

    2003-01-15

    A new laser ablation technique combined with a chemical evaporation reaction has been developed for elemental ratio analysis of solid samples using an inductively coupled plasma mass spectrometer (ICPMS). Using a chemically assisted laser ablation (CIA) technique developed in this study, analytical repeatability of the elemental ratio measurement was successively improved. To evaluate the reliability of the CLA-ICPMS technique, Pb/U isotopic ratios were determined for zircon samples that have previously been analyzed by other techniques. Conventional laser ablation for Pb/U shows a serious elemental fractionation during ablation mainly due to the large difference in elemental volatility between Pb and U. In the case of Pb/U ratio measurement, a Freon R-134a gas (1,1,1,2-tetrafluoroethane) was introduced into the laser cell as a fluorination reactant. The Freon gas introduced into the laser cell reacts with the ablated sample U, and refractory U compounds are converted to a volatile U fluoride compound (UF6) under the high-temperature condition at the ablation site. This avoids the redeposition of U around the ablation pits. Although not all the U is reacted with Freon, formation of volatile UF compounds improves the transmission efficiency of U. Typical precision of the 206Pb/238U ratio measurement is 3-5% (2sigma) for NIST SRM 610 and Nancy 91500 zircon standard, and the U-Pb age data obtained here show good agreement within analytical uncertainties with the previously reported values. Since the observed Pb/U ratio for solid samples is relatively insensitive to laser power and ablation time, optimization of ablation conditions or acquisition parameters no longer needs to be performed on a sample-to-sample basis.

  14. Determination of eight nitrosamines in water at the ng L-1 levels by liquid chromatography coupled to atmospheric pressure chemical ionization tandem mass spectrometry

    International Nuclear Information System (INIS)

    Ripolles, Cristina; Pitarch, Elena; Sancho, Juan V.; Lopez, Francisco J.; Hernandez, Felix

    2011-01-01

    Highlights: · Eight N-nitrosamines in water by LC(APCI)MS/MS QqQ analysis. · Validation at two levels: 10 ng L -1 (LOQ) and 100 ng L -1 in drinking water. · Developed method applied to different types of water samples. · NDMA was the analyte more frequently detected and at the highest concentration levels. - Abstract: In this work, we have developed a sensitive method for detection and quantification of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMor), N-nitrosomethylethylamine (NMEA), N-nitrosopirrolidine (NPyr), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPip), N-nitroso-n-dipropylamine (NDPA) and N-nitrosodi-n-butylamine (NDBA) in drinking water. The method is based on liquid chromatography coupled to tandem mass spectrometry, using atmospheric pressure chemical ionization (APCI) in positive mode with a triple quadrupole analyzer (QqQ). The simultaneous acquisition of two MS/MS transitions in selected reaction monitoring mode (SRM) for each compound, together with the evaluation of their relative intensity, allowed the simultaneous quantification and reliable identification in water at ppt levels. Empirical formula of the product ions selected was confirmed by UHPLC-(Q)TOF MS accurate mass measurements from reference standards. Prior to LC-MS/MS QqQ analysis, a preconcentration step by off-line SPE using coconut charcoal EPA 521 cartridges (by passing 500 mL of water sample) was necessary to improve the sensitivity and to meet regulation requirements. For accurate quantification, two isotope labelled nitrosamines (NDMA-d 6 and NDPA-d 14 ) were added as surrogate internal standards to the samples. The optimized method was validated at two concentration levels (10 and 100 ng L -1 ) in drinking water samples, obtaining satisfactory recoveries (between 90 and 120%) and precision (RSD -1 . The described methodology has been applied to different types of water samples: chlorinated from drinking water and wastewater treatment

  15. Determination of eight nitrosamines in water at the ng L{sup -1} levels by liquid chromatography coupled to atmospheric pressure chemical ionization tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ripolles, Cristina; Pitarch, Elena; Sancho, Juan V; Lopez, Francisco J [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellon (Spain); Hernandez, Felix [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellon (Spain)

    2011-09-19

    Highlights: {center_dot} Eight N-nitrosamines in water by LC(APCI)MS/MS QqQ analysis. {center_dot} Validation at two levels: 10 ng L{sup -1} (LOQ) and 100 ng L{sup -1} in drinking water. {center_dot} Developed method applied to different types of water samples. {center_dot} NDMA was the analyte more frequently detected and at the highest concentration levels. - Abstract: In this work, we have developed a sensitive method for detection and quantification of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMor), N-nitrosomethylethylamine (NMEA), N-nitrosopirrolidine (NPyr), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPip), N-nitroso-n-dipropylamine (NDPA) and N-nitrosodi-n-butylamine (NDBA) in drinking water. The method is based on liquid chromatography coupled to tandem mass spectrometry, using atmospheric pressure chemical ionization (APCI) in positive mode with a triple quadrupole analyzer (QqQ). The simultaneous acquisition of two MS/MS transitions in selected reaction monitoring mode (SRM) for each compound, together with the evaluation of their relative intensity, allowed the simultaneous quantification and reliable identification in water at ppt levels. Empirical formula of the product ions selected was confirmed by UHPLC-(Q)TOF MS accurate mass measurements from reference standards. Prior to LC-MS/MS QqQ analysis, a preconcentration step by off-line SPE using coconut charcoal EPA 521 cartridges (by passing 500 mL of water sample) was necessary to improve the sensitivity and to meet regulation requirements. For accurate quantification, two isotope labelled nitrosamines (NDMA-d{sub 6} and NDPA-d{sub 14}) were added as surrogate internal standards to the samples. The optimized method was validated at two concentration levels (10 and 100 ng L{sup -1}) in drinking water samples, obtaining satisfactory recoveries (between 90 and 120%) and precision (RSD < 20%). Limits of detection were found to be in the range of 1-8 ng L{sup -1

  16. Effects of perfluorononanoic acid (PFNA) on the metabolic profiling of rat serum by UHPLC-ESI-Q-TOF MSMS

    DEFF Research Database (Denmark)

    Skov, Kasper; Hadrup, Niels; Vestergaard, Anne Marie

    Endocrine disrupting chemicals are compounds which interfere with normal hormone homeostasis. So far the main concern has been the effect on the reproduction and development. This study has been conducted to find the effect of EDC on the human metabolome, using LC high resolution mass spectrometr...... and chemical separation of plasma metabolites it is possible to find the difference in the plasma metabolome affected by EDC. The study was conducted given a group of rats an EDC and another group a combination of EDC’s and CYP inhibitors....

  17. Cortisol production rates measured by liquid chromatography/mass spectrometry

    International Nuclear Information System (INIS)

    Esteban, N.V.; Yergey, A.L.

    1990-01-01

    Cortisol production rates (FPRs) in physiologic and pathologic states in humans have been investigated over the past 30 years. However, there has been conflicting evidence concerning the validity of the currently accepted value of FPRs in humans (12 to 15 mg/m2/d) as determined by radiotracer methodology. The present study reviews previous methods proposed for the measurement of FPRs in humans and discusses the applications of the first method for the direct determination of 24-hour plasma FPRs during continuous administration of a stable isotope, using a thermospray high-pressure liquid chromatography-mass spectrometry technique. The technique is fast, sensitive, and, unlike gas chromatography-mass spectrometry methods, does not require derivatization, allowing on-line detection and quantification of plasma cortisol after a simple extraction procedure. The results of determination of plasma FPRs by stable tracer/mass spectrometry are directly in units of mass/time and, unlike radiotracer methods, are independent of any determination of volume of distribution or cortisol concentration. Our methodology offers distinct advantages over radiotracer techniques in simplicity and reliability since only single measurements of isotope ratios are required. The technique was validated in adrenalectomized patients. Circadian variations in daily FRPs were observed in normal volunteers, and, to date, results suggest a lower FRP in normal children and adults than previously believed. 88 references

  18. Advances in 193 nm excimer lasers for mass spectrometry applications

    Science.gov (United States)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  19. Atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry--a method to differentiate isomers by mass spectrometry.

    Science.gov (United States)

    Ahmed, Arif; Kim, Sunghwan

    2013-12-01

    In this report, a method for in-source hydrogen/deuterium (H/D) exchange at atmospheric pressure is reported. The method was named atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry (APPI HDX MS). H/D exchange was performed by mixing samples dissolved in toluene with CH3OD solvent and analyzing the mixture using atmospheric pressure photo ionization mass spectrometry (APPI-MS). The APPI HDX spectra obtained with contact times between the analyte solution and methanol-OD (CH3OD) of atmospheric pressure. H/D exchange can be performed in any laboratory with a mass spectrometer and a commercial APPI source. Using this method, multiple H/D exchanges of aromatic hydrogen and/or H/D exchange of active hydrogen were observed. These results demonstrated that H/D exchange can be used to distinguish between isomers containing primary, secondary, and tertiary amines, as well as pyridine and pyrrole functional groups.

  20. Study by Auger spectrometry and mass spectrometry of the chemisorption of carbon monoxide on polycrystalline molybdenum

    International Nuclear Information System (INIS)

    Gillet, E.; Chiarena, J.C.; Gillet, M.

    1976-01-01

    A combination of Auger spectrometry and mass spectrometry was employed to study CO chemisorption on polycrystalline Mo surfaces at room temperature. Five adsorption states were observed and the binding parameters (E,n 0 ,tau 0 ) were calculated for the three important states. The results obtained by the two methods are in accord but the occurence of electronic desorption in Auger experiments was pointed out. Contamination effects by C atoms in such studies were investigated by repeated cycles of adsorption-desorption and a characteristic evolution of flash desorption was observed. The results are discussed in this point of view enhancing the importance of a control of the adsorption surface cleanness by a method of great sensibility like Auger spectrometry. (Auth.)

  1. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    Science.gov (United States)

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  2. Establishing Drug Resistance in Microorganisms by Mass Spectrometry

    Science.gov (United States)

    Demirev, Plamen A.; Hagan, Nathan S.; Antoine, Miquel D.; Lin, Jeffrey S.; Feldman, Andrew B.

    2013-08-01

    A rapid method to determine drug resistance in bacteria based on mass spectrometry is presented. In it, a mass spectrum of an intact microorganism grown in drug-containing stable isotope-labeled media is compared with a mass spectrum of the intact microorganism grown in non-labeled media without the drug present. Drug resistance is determined by predicting characteristic mass shifts of one or more microorganism biomarkers using bioinformatics algorithms. Observing such characteristic mass shifts indicates that the microorganism is viable even in the presence of the drug, thus incorporating the isotopic label into characteristic biomarker molecules. The performance of the method is illustrated on the example of intact E. coli, grown in control (unlabeled) and 13C-labeled media, and analyzed by MALDI TOF MS. Algorithms for data analysis are presented as well.

  3. Fourier Transform Mass Spectrometry: The Transformation of Modern Environmental Analyses

    Science.gov (United States)

    Lim, Lucy; Yan, Fangzhi; Bach, Stephen; Pihakari, Katianna; Klein, David

    2016-01-01

    Unknown compounds in environmental samples are difficult to identify using standard mass spectrometric methods. Fourier transform mass spectrometry (FTMS) has revolutionized how environmental analyses are performed. With its unsurpassed mass accuracy, high resolution and sensitivity, researchers now have a tool for difficult and complex environmental analyses. Two features of FTMS are responsible for changing the face of how complex analyses are accomplished. First is the ability to quickly and with high mass accuracy determine the presence of unknown chemical residues in samples. For years, the field has been limited by mass spectrometric methods that were based on knowing what compounds of interest were. Secondly, by utilizing the high resolution capabilities coupled with the low detection limits of FTMS, analysts also could dilute the sample sufficiently to minimize the ionization changes from varied matrices. PMID:26784175

  4. Fourier Transform Mass Spectrometry: The Transformation of Modern Environmental Analyses

    Directory of Open Access Journals (Sweden)

    Lucy Lim

    2016-01-01

    Full Text Available Unknown compounds in environmental samples are difficult to identify using standard mass spectrometric methods. Fourier transform mass spectrometry (FTMS has revolutionized how environmental analyses are performed. With its unsurpassed mass accuracy, high resolution and sensitivity, researchers now have a tool for difficult and complex environmental analyses. Two features of FTMS are responsible for changing the face of how complex analyses are accomplished. First is the ability to quickly and with high mass accuracy determine the presence of unknown chemical residues in samples. For years, the field has been limited by mass spectrometric methods that were based on knowing what compounds of interest were. Secondly, by utilizing the high resolution capabilities coupled with the low detection limits of FTMS, analysts also could dilute the sample sufficiently to minimize the ionization changes from varied matrices.

  5. Native Mass Spectrometry in Fragment-Based Drug Discovery

    Directory of Open Access Journals (Sweden)

    Liliana Pedro

    2016-07-01

    Full Text Available The advent of native mass spectrometry (MS in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein–ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD. Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.

  6. Mass Spectrometry-Based N-Glycomics of Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Manveen K. Sethi

    2015-12-01

    Full Text Available Colorectal cancer (CRC is one of the most prevalent cancers worldwide. An increased molecular understanding of the CRC pathology is warranted to gain insights into the underlying molecular and cellular mechanisms of the disease. Altered protein glycosylation patterns are associated with most diseases including malignant transformation. Recent advances in mass spectrometry and bioinformatics have accelerated glycomics research and present a new paradigm for cancer biomarker discovery. Mass spectrometry (MS-based glycoproteomics and glycomics, therefore, hold considerable promise to improve the discovery of novel biomarkers with utility in disease diagnosis and therapy. This review focuses on the emerging field of glycomics to present a comprehensive review of advances in technologies and their application in studies aimed at discovering novel glycan-based biomarkers. We will also discuss some of the challenges associated with using glycans as biomarkers.

  7. Statistical methods for quantitative mass spectrometry proteomic experiments with labeling

    Directory of Open Access Journals (Sweden)

    Oberg Ann L

    2012-11-01

    Full Text Available Abstract Mass Spectrometry utilizing labeling allows multiple specimens to be subjected to mass spectrometry simultaneously. As a result, between-experiment variability is reduced. Here we describe use of fundamental concepts of statistical experimental design in the labeling framework in order to minimize variability and avoid biases. We demonstrate how to export data in the format that is most efficient for statistical analysis. We demonstrate how to assess the need for normalization, perform normalization, and check whether it worked. We describe how to build a model explaining the observed values and test for differential protein abundance along with descriptive statistics and measures of reliability of the findings. Concepts are illustrated through the use of three case studies utilizing the iTRAQ 4-plex labeling protocol.

  8. Statistical methods for quantitative mass spectrometry proteomic experiments with labeling.

    Science.gov (United States)

    Oberg, Ann L; Mahoney, Douglas W

    2012-01-01

    Mass Spectrometry utilizing labeling allows multiple specimens to be subjected to mass spectrometry simultaneously. As a result, between-experiment variability is reduced. Here we describe use of fundamental concepts of statistical experimental design in the labeling framework in order to minimize variability and avoid biases. We demonstrate how to export data in the format that is most efficient for statistical analysis. We demonstrate how to assess the need for normalization, perform normalization, and check whether it worked. We describe how to build a model explaining the observed values and test for differential protein abundance along with descriptive statistics and measures of reliability of the findings. Concepts are illustrated through the use of three case studies utilizing the iTRAQ 4-plex labeling protocol.

  9. Centrosome isolation and analysis by mass spectrometry-based proteomics

    DEFF Research Database (Denmark)

    Jakobsen, Lis; Schrøder, Jacob Morville; Larsen, Katja M

    2013-01-01

    Centrioles are microtubule-based scaffolds that are essential for the formation of centrosomes, cilia, and flagella with important functions throughout the cell cycle, in physiology and during development. The ability to purify centriole-containing organelles on a large scale, combined with advan...... to isolate centrosomes from human cells and strategies to selectively identify and study the properties of the associated proteins using quantitative mass spectrometry-based proteomics.......Centrioles are microtubule-based scaffolds that are essential for the formation of centrosomes, cilia, and flagella with important functions throughout the cell cycle, in physiology and during development. The ability to purify centriole-containing organelles on a large scale, combined...... with advances in protein identification using mass spectrometry-based proteomics, have revealed multiple centriole-associated proteins that are conserved during evolution in eukaryotes. Despite these advances, the molecular basis for the plethora of processes coordinated by cilia and centrosomes is not fully...

  10. Challenges ahead for mass spectrometry and proteomics applications in epigenetics.

    Science.gov (United States)

    Kessler, Benedikt M

    2010-02-01

    Inheritance of biological information to future generations depends on the replication of DNA and the Mendelian principle of distribution of genes. In addition, external and environmental factors can influence traits that can be propagated to offspring, but the molecular details of this are only beginning to be understood. The discoveries of DNA methylation and post-translational modifications on chromatin and histones provided entry points for regulating gene expression, an area now defined as epigenetics and epigenomics. Mass spectrometry turned out to be instrumental in uncovering molecular details involved in these processes. The central role of histone post-translational modifications in epigenetics related biological processes has revitalized mass spectrometry based investigations. In this special report, current approaches and future challenges that lay ahead due to the enormous complexity are discussed.

  11. Desorption and ionization processes in laser mass spectrometry

    International Nuclear Information System (INIS)

    Peyl, G.J.Q. van der.

    1984-01-01

    In this thesis results are reported from a study on the desorption- and ionization process initiated by infra-red laser irradiation (LDMS) or ion bombardment (SIMS) of thin organic sample layers. The study is especially focused on the formation of quasimolecular ions under these conditions. Results of these investigations can be used for a better optimization of the LDMS and SIMS techniques in organic mass spectrometry. First, an overview is given of laser desorption mass spectrometry. Next, the coupling of the laser energy into the organic sample layer is investigated. It is concluded that the laser energy is primarily absorbed by the substrate material and not by the organic overlayer. The formation of quasi-molecular ions, either in the gas phase or in the substrate surface is investigated. The final section reports kinetic energy distributions for ions sputtered from organic solids and liquids. (Auth.)

  12. Sharing and community curation of mass spectrometry data with GNPS

    Science.gov (United States)

    Nguyen, Don Duy; Watrous, Jeramie; Kapono, Clifford A; Luzzatto-Knaan, Tal; Porto, Carla; Bouslimani, Amina; Melnik, Alexey V; Meehan, Michael J; Liu, Wei-Ting; Crüsemann, Max; Boudreau, Paul D; Esquenazi, Eduardo; Sandoval-Calderón, Mario; Kersten, Roland D; Pace, Laura A; Quinn, Robert A; Duncan, Katherine R; Hsu, Cheng-Chih; Floros, Dimitrios J; Gavilan, Ronnie G; Kleigrewe, Karin; Northen, Trent; Dutton, Rachel J; Parrot, Delphine; Carlson, Erin E; Aigle, Bertrand; Michelsen, Charlotte F; Jelsbak, Lars; Sohlenkamp, Christian; Pevzner, Pavel; Edlund, Anna; McLean, Jeffrey; Piel, Jörn; Murphy, Brian T; Gerwick, Lena; Liaw, Chih-Chuang; Yang, Yu-Liang; Humpf, Hans-Ulrich; Maansson, Maria; Keyzers, Robert A; Sims, Amy C; Johnson, Andrew R.; Sidebottom, Ashley M; Sedio, Brian E; Klitgaard, Andreas; Larson, Charles B; P., Cristopher A Boya; Torres-Mendoza, Daniel; Gonzalez, David J; Silva, Denise B; Marques, Lucas M; Demarque, Daniel P; Pociute, Egle; O'Neill, Ellis C; Briand, Enora; Helfrich, Eric J. N.; Granatosky, Eve A; Glukhov, Evgenia; Ryffel, Florian; Houson, Hailey; Mohimani, Hosein; Kharbush, Jenan J; Zeng, Yi; Vorholt, Julia A; Kurita, Kenji L; Charusanti, Pep; McPhail, Kerry L; Nielsen, Kristian Fog; Vuong, Lisa; Elfeki, Maryam; Traxler, Matthew F; Engene, Niclas; Koyama, Nobuhiro; Vining, Oliver B; Baric, Ralph; Silva, Ricardo R; Mascuch, Samantha J; Tomasi, Sophie; Jenkins, Stefan; Macherla, Venkat; Hoffman, Thomas; Agarwal, Vinayak; Williams, Philip G; Dai, Jingqui; Neupane, Ram; Gurr, Joshua; Rodríguez, Andrés M. C.; Lamsa, Anne; Zhang, Chen; Dorrestein, Kathleen; Duggan, Brendan M; Almaliti, Jehad; Allard, Pierre-Marie; Phapale, Prasad; Nothias, Louis-Felix; Alexandrov, Theodore; Litaudon, Marc; Wolfender, Jean-Luc; Kyle, Jennifer E; Metz, Thomas O; Peryea, Tyler; Nguyen, Dac-Trung; VanLeer, Danielle; Shinn, Paul; Jadhav, Ajit; Müller, Rolf; Waters, Katrina M; Shi, Wenyuan; Liu, Xueting; Zhang, Lixin; Knight, Rob; Jensen, Paul R; Palsson, Bernhard O; Pogliano, Kit; Linington, Roger G; Gutiérrez, Marcelino; Lopes, Norberto P; Gerwick, William H; Moore, Bradley S; Dorrestein, Pieter C; Bandeira, Nuno

    2017-01-01

    The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry techniques are well-suited to high-throughput characterization of natural products, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social molecular networking (GNPS, http://gnps.ucsd.edu), an open-access knowledge base for community wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of ‘living data’ through continuous reanalysis of deposited data. PMID:27504778

  13. Investigating quantitation of phosphorylation using MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Parker, Laurie; Engel-Hall, Aaron; Drew, Kevin; Steinhardt, George; Helseth, Donald L; Jabon, David; McMurry, Timothy; Angulo, David S; Kron, Stephen J

    2008-04-01

    Despite advances in methods and instrumentation for analysis of phosphopeptides using mass spectrometry, it is still difficult to quantify the extent of phosphorylation of a substrate because of physiochemical differences between unphosphorylated and phosphorylated peptides. Here we report experiments to investigate those differences using MALDI-TOF mass spectrometry for a set of synthetic peptides by creating calibration curves of known input ratios of peptides/phosphopeptides and analyzing their resulting signal intensity ratios. These calibration curves reveal subtleties in sequence-dependent differences for relative desorption/ionization efficiencies that cannot be seen from single-point calibrations. We found that the behaviors were reproducible with a variability of 5-10% for observed phosphopeptide signal. Although these data allow us to begin addressing the issues related to modeling these properties and predicting relative signal strengths for other peptide sequences, it is clear that this behavior is highly complex and needs to be further explored. John Wiley & Sons, Ltd

  14. Membrane introduction proton-transfer-reaction mass spectrometry

    International Nuclear Information System (INIS)

    Alexander, M.; Boscaini, E.; Maerk, T.; Lindinger, W.

    2002-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) is a rapidly expanding field with multiple applications in ion physics, atmospheric chemistry, food chemistry, volatile organic compounds monitoring and biology. Initial studies that combine PTR-MS and membrane introduction mass spectrometry (MIMS) were researched and outlined. First using PTR-MS, certain fundamental physical properties of a poly-dimethylsiloxane (PDMS) membrane including solubilities and diffusion coefficients were measured. Second, it was shown how the chemical selectivity of the (PDMS) can be used to extend the capabilities of the PTR-MS instrument by eliminating certain isobaric interferences and excluding water from volatile organic compounds (VOCs). Experiments with mixtures of several VOCs (toluene, benzene, acetone, propanal, methanol) are presented. (nevyjel)

  15. Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers.

    Science.gov (United States)

    Nasioudis, Andreas; Heeren, Ron M A; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers. © American Society for Mass Spectrometry, 2011

  16. Secondary neutral mass spectrometry depth profile analysis of silicides

    International Nuclear Information System (INIS)

    Beckmann, P.; Kopnarski, M.; Oechsner, H.

    1985-01-01

    The Direct Bombardment Mode (DBM) of Secondary Neutral Mass Spectrometry (SNMS) has been applied for depth profile analysis of two different multilayer systems containing metal silicides. Due to the extremely high depth resolution obtained with low energy SNMS structural details down to only a few atomic distances are detected. Stoichiometric information on internal oxides and implanted material is supplied by the high quantificability of SNMS. (Author)

  17. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    Science.gov (United States)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  18. Report of the consultants' meeting on accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    Accelerator Mass Spectrometry (AMS) has developed into a major analytical tool for the measurement of ultra-low-level long-lived radionuclides. Its use within the IAEA is recommended by the consultants in this meeting. The IAEA programs in which the technology would be useful and beneficial are: safeguards, physical and chemical sciences, human health, food and agriculture, radioactive waste management, radiation safety, industry and earth sciences.

  19. Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry

    Science.gov (United States)

    2007-05-30

    Intercontinental circulation of human influenza A( H1N2 ) reassortant viruses during the 2001–2002 influenza season. J Infect Dis 186: 1490–1493. 6. Taubenberger...Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry Rangarajan Sampath1*, Kevin L. Russell2, Christian Massire1, Mark W...Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America Background. Effective influenza surveillance requires

  20. Report of the consultants' meeting on accelerator mass spectrometry

    International Nuclear Information System (INIS)

    1995-01-01

    Accelerator Mass Spectrometry (AMS) has developed into a major analytical tool for the measurement of ultra-low-level long-lived radionuclides. Its use within the IAEA is recommended by the consultants in this meeting. The IAEA programs in which the technology would be useful and beneficial are: safeguards, physical and chemical sciences, human health, food and agriculture, radioactive waste management, radiation safety, industry and earth sciences

  1. Accelerator mass spectrometry at the Rossendorf 5 MV tandem accelerator

    International Nuclear Information System (INIS)

    Friedrich, M.; Buerger, W.; Curian, H.; Hartmann, B.; Hentschel, E.; Matthes, H.; Probst, W.; Seidel, M.; Turuc, S.; Hebert, D.; Rothe, T.; Stolz, W.

    1992-01-01

    The Rossendorf electrostatic accelerators (5 MV tandem accelerator and single ended 2 MV van de Graaff accelerator) are already used for ion beam analysis. The existing methods (RBS, PIXE, ERDA, NRA, nuclear microprobe and external beam) will be completed by introduction of Accelerator Mass Spectrometry (AMS). A short description of the Rossendorf AMS system is given and first experimental results are presented. (R.P.) 4 refs.; 6 figs

  2. Optimizing the identification of citrullinated peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Bennike, Tue; Lauridsen, Kasper B.; Olesen, Michael Kruse

    2013-01-01

    Citrullinated proteins have been associated with several diseases and citrullination can most likely function as a target for novel diagnostic agents and unravel disease etiologies. The correct identification of citrullinated proteins is therefore of most importance. Mass spectrometry (MS) driven...... of trypsin, digestion was performed on synthetic peptide sets containing either arginine or citrulline. The peptide sequences originated from disease-associated in vivo citrullinated proteins; some reported as being C-terminal tryptic citrullinated peptides. Furthermore, the proteolytic activity was verified...

  3. Myofiber metabolic type determination by mass spectrometry imaging

    OpenAIRE

    Théron, Laetitia; Vénien, Annie; Pujos-Guillot, Estelle; Astruc, Thierry; Chambon, Christophe

    2017-01-01

    In muscle imaging, myofiber type determination is of great importance to better understand biological mechanisms related to skeletal muscle changes associated with pathologies. However, reference methods (histo-enzymology and immunohistochemistry) require serial-cross sections, and several days from the sampling to the results of image analysis. In this work, a strategy based on MALDI-Mass Spectrometry Imaging was developed as an alternative to the classical methods for myofiber metabolic typ...

  4. High temperature mass spectrometry for thermodynamic study of radioactive materials

    International Nuclear Information System (INIS)

    Pattoret, Andre; Philippot, Joseph; Pesme, Olivier.

    1983-01-01

    Thermodynamic properties and evaporation kinetics are essential data to evaluate the nuclear fuel behaviour under accidental conditions. High temperature mass spectrometry appears as a valuable method to set up a such assessment. However, because of size, complexity and radioactivity of the irradiated samples, important improvements of the classical method are required. The device built in CEN/FAR to overcome these problems is described; performances and possible applications out of the nuclear safety field are presented [fr

  5. Diagrams of ion stability in radio-frequency mass spectrometry

    International Nuclear Information System (INIS)

    Sudakov, M.Yu.

    1994-01-01

    For solving radio-frequency mass spectrometry problems and dynamic ion containment are studied and systematized different ways for constructing the ion stability diagrams. A new universal set of parameters is proposed for diagram construction-angular variables, which are the phase raid of ion oscillational motion during positive and negative values of the supplying voltage. An effective analytical method is proposed for optimization of the parameters of the pulsed supplying voltage, in particular its repetition rate

  6. Analysis of Ketones by Selected Ion Flow Tube Mass Spectrometry

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Wang, T.; Španěl, Patrik

    2003-01-01

    Roč. 17, - (2003), s. 2655-2660 ISSN 0951-4198 R&D Projects: GA ČR GA202/03/0827; GA ČR GA203/02/0737 Institutional research plan: CEZ:AV0Z4040901 Keywords : mass spectrometry * selected ion flow tube * ketones Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.789, year: 2003

  7. Practical aspects of trapped ion mass spectrometry, 5 applications of ion trapping devices

    CERN Document Server

    March, Raymond E

    2009-01-01

    Examines ion/neutral and ion/ion reactions, ion spectroscopy, and the structural characterization of proteins and peptides using quadropole ion trap mass spectrometry, Fourier transform - ion cyclotron resonance (FT-ICR) mass spectrometry, and traveling wave ion mobility mass spectrometry.

  8. Mass spectrometry-based analysis of whole-grain phytochemicals.

    Science.gov (United States)

    Koistinen, Ville Mikael; Hanhineva, Kati

    2017-05-24

    Whole grains are a rich source of several classes of phytochemicals, such as alkylresorcinols, benzoxazinoids, flavonoids, lignans, and phytosterols. A high intake of whole grains has been linked to a reduced risk of some major noncommunicable diseases, and it has been postulated that a complex mixture of phytochemicals works in synergy to generate beneficial health effects. Mass spectrometry, especially when coupled with liquid chromatography, is a widely used method for the analysis of phytochemicals owing to its high sensitivity and dynamic range. In this review, the current knowledge of the mass spectral properties of the most important classes of phytochemicals found in cereals of common wheat, barley, oats, and rye is discussed.

  9. Temperature-programmed desorption for membrane inlet mass spectrometry

    DEFF Research Database (Denmark)

    Ketola, R.A.; Grøn, C.; Lauritsen, F.R.

    1998-01-01

    We present a novel technique for analyzing volatile organic compounds in air samples using a solid adsorbent together with temperature-programmed desorption and subsequent detection by membrane inlet mass spectrometry (TPD-MIMS). The new system has the advantage of a fast separation of compounds...... to diffuse through the membrane into the mass spectrometer in a few seconds. In this fashion we could completely separate many similar volatile compounds, for example toluene from xylene and trichloroethene from tetrachloroethene. Typical detection limits were at low or sub-nanogram levels, the dynamic range...

  10. Characterization of individual particles in gaseous media by mass spectrometry

    Science.gov (United States)

    Sinha, M. P.

    1990-01-01

    An introduction is given to a system for particle analysis by mass spectrometry (PAMS) which employs particle-beam techniques to measure mass spectra on a continuous real-time basis. The system is applied to particles of both organic and inorganic compounds, and the measurements give the chemical characteristics of particles in mixtures and indicate source apportionment. The PAMS system can be used for process control and studying heterogeneous/catalytic reactions in particles, and can be fitted to study the real-time attributes of PAMS.

  11. Metabolites profile of Gualou Xiebai Baijiu decoction (a classical traditional Chinese medicine prescription) in rats by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Lin, Pei; Qin, Zifei; Yao, Zhihong; Wang, Li; Zhang, Weiyang; Yu, Yang; Dai, Yi; Zhou, Hua; Yao, Xinsheng

    2018-05-15

    Gualou Xiebai Baijiu decoction (GLXB), a well-known classic traditional Chinese medicine prescription, has been widely used to treat coronary heart diseases for thousands of years in Eastern Asian countries due to its remarkable clinical effect. However, due to lack of in vivo metabolism research, the chemical components responsible for the therapeutic effects still remain unclear. In this work, a reliable "representative structure based homologous xenobiotics identification" (RSBHXI) strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS) were applied to investigate the chemical components in GLXB extracts. As a result, 133 chemical components were characterized based on summarized fragmentation patterns, of which 41 components were confirmed unambiguously with authentic standards. Furthermore, a total of 138 GLXB-related xenobiotics were identified or tentatively characterized after oral administration of GLXB extracts. Moreover, to better understand the metabolic pathways of characteristic components in GLXB, metabolites profiles of five steroidal saponins and two flavonoids were performed, respectively. Since the metabolic pathways of five representative saponins had been finished in our previous study, we focused on the in vivo metabolism of two flavonoids. A total of 36 and 20 metabolites were detected in rat biological samples after oral administration of luteolin-7-O-β-D-glucopyranoside and rutin, respectively. The results indicated that dehydration, hydrolysis, hydroxylation, methylation, glucuronidation and sulfation were the main metabolic reactions, following the metabolic soft spots of GLXB-related flavonoids. Taken altogether, this study would be helpful for the further pharmacokinetics, pharmacological evaluation and quality control of GLXB. Copyright © 2018. Published by Elsevier B.V.

  12. Short-term toxicity assessments of an antibiotic metabolite in Wistar rats and its metabonomics analysis by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Han, Hongxing; Xiao, Hailong; Lu, Zhenmei

    2016-01-01

    4-Epi-oxytetracycline (4-EOTC), one of main oxytetracycline (OTC) metabolites, can be commonly detected in food and environment. The toxicity and effects of OTC on animals have been well characterized; however, its metabolites have never been studied systemically. This study aims to investigate 15-day oral dose toxicity and urine metabonomics changes of 4-EOTC after repeated administration in Wistar rats at daily doses of 0.5, 5.0 and 50.0 mg/kg bw (bodyweight). Hematology and clinical chemistry parameters, including white blood cell count, red blood cell count, total protein, globulin and albumin/globulin, were obviously altered in rats of 5.0 and 50.0 mg/kg bw. Histopathology changes of kidney and liver tissues were also observed in high-dose groups. Urinary metabolites from all groups were analyzed using ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Seventeen metabolites contributing to the clusters were identified as potential biomarkers from multivariate analysis, including aminoadipic acid, 6-phosphogluconate, sebacic acid, pipecolic acid, etc. The significant changes of these biomarkers demonstrated metabonomic variations in treated rats, especially lysine and purine metabolism. For the first time in this paper, we combined the results of toxicity and metabonomics induced by 4-EOTC for the serious reconsideration of the safety and potential risks of antibiotics and its degradation metabolites. - Highlights: • 4-Epioxytetracycline (4-EOTC) induced damages in liver and kidney. • Metabonomics changes especially amino acid and purine metabolism were observed. • Security of OTC metabolite 4-EOTC should be taken into serious reconsideration.

  13. Screening for in vitro metabolites of kakkalide and irisolidone in human and rat intestinal bacteria by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhang, Guozhe; Gong, Tianxing; Kano, Yoshihiro; Yuan, Dan

    2014-02-01

    Kakkalide and irisolidone, the main isoflavones of Flos Puerariae, exhibit a wide spectrum of bioactivities. Intestinal bacteria biotransformation plays an important role in the metabolic pathways of flavones, and is directly related to the bioactivities of the prodrugs after oral administration. To the best of our knowledge, the metabolic pathways of kakkalide and irisolidone in vitro have not been comprehensively studied yet. This paper describes the strategy using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF MS) for the rapid analysis of the metabolic profiles of kakkalide and irisolidone after incubated with human and rat intestinal bacteria. Bacteria incubated samples were prepared and analyzed after incubated under anaerobic conditions for 48 h. A total of 17 metabolites, including parent compounds, were detected in human and rat intestinal bacteria incubated samples. The results obtained indicate that hydrolysis, dehydroxylation, demethoxylation, demethylation, hydroxylation, decarbonylation, and reduction were the detected metabolic pathways of kakkalide and irisolidone in vitro. The conversion rate of irisolidone in human and rat bacteria was 8.57% and 6.51%, respectively. Biochanin A was the relatively main metabolite of irisolidone, and the content of biochanin A in human and rat bacteria was 3.68% and 4.25%, respectively. The conversion rate of kakkalide in human and rat bacteria was 99.92% and 98.58%, respectively. Irisolidone was the main metabolite of kakkalide, and the content of irisolidone in human and rat bacteria was 89.58% and 89.38%, respectively. This work not only provides the evidence of kakkalide and irisolidone metabolites in vivo, but also demonstrates a simple, fast, sensitive, and inexpensive method for identification of metabolites of other compounds transformed by intestinal bacteria. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Short-term toxicity assessments of an antibiotic metabolite in Wistar rats and its metabonomics analysis by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hongxing [College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058 (China); Xiao, Hailong [Hangzhou Institute for Food and Drug Control, Hangzhou 310004 (China); Lu, Zhenmei, E-mail: lzhenmei@zju.edu.cn [College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058 (China)

    2016-02-15

    4-Epi-oxytetracycline (4-EOTC), one of main oxytetracycline (OTC) metabolites, can be commonly detected in food and environment. The toxicity and effects of OTC on animals have been well characterized; however, its metabolites have never been studied systemically. This study aims to investigate 15-day oral dose toxicity and urine metabonomics changes of 4-EOTC after repeated administration in Wistar rats at daily doses of 0.5, 5.0 and 50.0 mg/kg bw (bodyweight). Hematology and clinical chemistry parameters, including white blood cell count, red blood cell count, total protein, globulin and albumin/globulin, were obviously altered in rats of 5.0 and 50.0 mg/kg bw. Histopathology changes of kidney and liver tissues were also observed in high-dose groups. Urinary metabolites from all groups were analyzed using ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Seventeen metabolites contributing to the clusters were identified as potential biomarkers from multivariate analysis, including aminoadipic acid, 6-phosphogluconate, sebacic acid, pipecolic acid, etc. The significant changes of these biomarkers demonstrated metabonomic variations in treated rats, especially lysine and purine metabolism. For the first time in this paper, we combined the results of toxicity and metabonomics induced by 4-EOTC for the serious reconsideration of the safety and potential risks of antibiotics and its degradation metabolites. - Highlights: • 4-Epioxytetracycline (4-EOTC) induced damages in liver and kidney. • Metabonomics changes especially amino acid and purine metabolism were observed. • Security of OTC metabolite 4-EOTC should be taken into serious reconsideration.

  15. Atmospheric pressure solid analysis probe coupled to quadrupole-time of flight mass spectrometry as a tool for screening and semi-quantitative approach of polycyclic aromatic hydrocarbons, nitro-polycyclic aromatic hydrocarbons and oxo-polycyclic aromatic hydrocarbons in complex matrices.

    Science.gov (United States)

    Carrizo, Daniel; Domeño, Celia; Nerín, Isabel; Alfaro, Pilar; Nerín, Cristina

    2015-01-01

    A new screening and semi-quantitative approach has been developed for direct analysis of polycyclic aromatic hydrocarbons (PAHs) and their nitro and oxo derivatives in environmental and biological matrices using atmospheric pressure solid analysis probe (ASAP) quadrupole-time of flight mass spectrometry (Q-TOF-MS). The instrumental parameters were optimized for the analysis of all these compounds, without previous sample treatment, in soil, motor oil, atmospheric particles (ashes) and biological samples such as urine and saliva of smokers and non-smokers. Ion source parameters in the MS were found to be the key parameters, with little variation within PAHs families. The optimized corona current was 4 µA, sample cone voltage 80 V for PAHs, nitro-PAHs and oxo-PAHs, while the desolvation temperatures varied from 300°C to 500°C. The analytical method performance was checked using a certified reference material. Two deuterated compounds were used as internal standards for semi-quantitative purposes together with the pure individual standard for each compound and the corresponding calibration plot. The compounds nitro PAH 9-nitroanthracene and oxo-PAH 1,4-naphthalenedione, were found in saliva and urine in a range below 1 µg/g while the range of PAHs in these samples was below 2 µg/g. Environmental samples provided higher concentration of all pollutants than urine and saliva. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Surface-MALDI mass spectrometry in biomaterials research

    DEFF Research Database (Denmark)

    Griesser, H.J.; Kingshott, P.; McArthur, S.L.

    2004-01-01

    Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) has been used for over a decade for the determination of purity and accurate molecular masses of macromolecular analytes, such as proteins, in solution. In the last few years the technique has been adapted to become a new...... surfaces and detecting their molecular ions with high mass resolution and at levels much below monolayer coverage. Thus, Surface-MALDI-MS offers unique means of addressing biomaterial surface analysis needs, such as identification of the proteins and lipids that adsorb from multicomponent biological...... solutions in vitro and in vivo, the study of interactions between biomaterial surfaces and biomolecules, and identification of surface-enriched additives and contaminants. Surface-MALDI-MS is rapid, experimentally convenient, overcomes limitations in mass resolution and sensitivity of established...

  17. Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Farnsworth, Paul B.; Spencer, Ross L.

    2017-08-01

    Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.

  18. Elucidating rhizosphere processes by mass spectrometry - A review.

    Science.gov (United States)

    Rugova, Ariana; Puschenreiter, Markus; Koellensperger, Gunda; Hann, Stephan

    2017-03-01

    The presented review discusses state-of-the-art mass spectrometric methods, which have been developed and applied for investigation of chemical processes in the soil-root interface, the so-called rhizosphere. Rhizosphere soil's physical and chemical characteristics are to a great extent influenced by a complex mixture of compounds released from plant roots, i.e. root exudates, which have a high impact on nutrient and trace element dynamics in the soil-root interface as well as on microbial activities or soil physico-chemical characteristics. Chemical characterization as well as accurate quantification of the compounds present in the rhizosphere is a major prerequisite for a better understanding of rhizosphere processes and requires the development and application of advanced sampling procedures in combination with highly selective and sensitive analytical techniques. During the last years, targeted and non-targeted mass spectrometry-based methods have emerged and their combination with specific separation methods for various elements and compounds of a wide polarity range have been successfully applied in several studies. With this review we critically discuss the work that has been conducted within the last decade in the context of rhizosphere research and elemental or molecular mass spectrometry emphasizing different separation techniques as GC, LC and CE. Moreover, selected applications such as metal detoxification or nutrient acquisition will be discussed regarding the mass spectrometric techniques applied in studies of root exudates in plant-bacteria interactions. Additionally, a more recent isotope probing technique as novel mass spectrometry based application is highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Quantitative mass spectrometry of unconventional human biological matrices

    Science.gov (United States)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  20. Identification of inorganic anions by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Sakayanagi, Masataka; Yamada, Yaeko; Sakabe, Chikako; Watanabe, Kunio; Harigaya, Yoshihiro

    2006-03-10

    Inorganic anions were identified by using gas chromatography/mass spectrometry (GC/MS). Derivatization of the anions was achieved with pentafluorobenzyl p-toluenesulphonate (PFB-Tos) as the reaction reagent and a crown ether as a phase transfer catalyst. When PFB-Br was used as the reaction reagent, the retention time of it was close to those of the derivatized inorganic anions and interfered with the analysis. In contrast, the retention time of PFB-Tos differed greatly from the PFB derivatives of the inorganic anions and the compounds of interest could be detected without interference. Although the PFB derivatives of SO4, S2O3, CO3, ClO4, and ClO3 could not be detected, the derivatives of F, Cl, Br, I, CN, OCN, SCN, N3, NO3, and NO2 were detected using PFB-Tos as the derivatizing reagent. The inorganic anions were detectable within 30 ng approximately, which is of sufficient sensitivity for use in forensic chemistry. Accurate mass number was measured for each PFB derivative by high-resolution mass spectrometry (HRMS) within a measurement error of 2 millimass units (mmu), which allowed determination of the compositional formula from the mass number. In addition, actual analysis was performed successively by our method using trial samples of matrix.

  1. Surface Ionization and Soft Landing Techniques in Mass Spectrometry

    International Nuclear Information System (INIS)

    Futrell, Jean H.; Laskin, Julia

    2010-01-01

    The advent of soft ionization techniques, notably electrospray and laser desorption ionization methods, has extended mass spectrometric methods to large molecules and molecular complexes. This both greatly expands applications of mass spectrometry and makes the activation and dissociation of complex ions an integral part of large molecule mass spectrometry. A corollary of the much greater number of internal degrees of freedom and high density of states associated with molecular complexity is that internal energies much higher than the dissociation energies for competing fragmentation processes are required for observable fragmentation in time scales sampled by mass spectrometers. This article describes the kinetics of surface-induced dissociation (SID), a particularly efficient activation method for complex ions. Two very important characteristics of SID are very rapid, sub-picosecond activation and precise control of ion internal energy by varying ion collision energy. The nature of the surface plays an important role in SID, determining both efficiency and mechanism of ion activation. Surface composition and morphology strongly influence the relative importance of competing reactions of SID, ion capture (soft-landing), surface reaction and neutralization. The important features of SID and ion soft-landing are described briefly in this review and more fully in the recommended reading list.

  2. Linking high resolution mass spectrometry data with exposure ...

    Science.gov (United States)

    There is a growing need in the field of exposure science for monitoring methods that rapidly screen environmental media for suspect contaminants. Measurement and analysis platforms, based on high resolution mass spectrometry (HRMS), now exist to meet this need. Here we describe results of a study that links HRMS data with exposure predictions from the U.S. EPA's ExpoCast™ program and in vitro bioassay data from the U.S. interagency Tox21 consortium. Vacuum dust samples were collected from 56 households across the U.S. as part of the American Healthy Homes Survey (AHHS). Sample extracts were analyzed using liquid chromatography time-of-flight mass spectrometry (LC–TOF/MS) with electrospray ionization. On average, approximately 2000 molecular features were identified per sample (based on accurate mass) in negative ion mode, and 3000 in positive ion mode. Exact mass, isotope distribution, and isotope spacing were used to match molecular features with a unique listing of chemical formulas extracted from EPA's Distributed Structure-Searchable Toxicity (DSSTox) database. A total of 978 DSSTox formulas were consistent with the dust LC–TOF/molecular feature data (match score ≥ 90); these formulas mapped to 3228 possible chemicals in the database. Correct assignment of a unique chemical to a given formula required additional validation steps. Each suspect chemical was prioritized for follow-up confirmation using abundance and detection frequency results, along wi

  3. Lipidomic mass spectrometry and its application in neuroscience

    Institute of Scientific and Technical Information of China (English)

    Mabel; Enriquez-Algeciras; Sanjoy; K; Bhattacharya

    2013-01-01

    Central and peripheral nervous systems are lipid rich tissues. Lipids, in the context of lipid-protein complexes, surround neurons and provide electrical insulation for transmission of signals allowing neurons to remain embedded within a conducting environment. Lipids play a key role in vesicle formation and fusion in synapses. They provide means of rapid signaling, cell motility and migration for astrocytes and other cell types that surround and play supporting roles neurons. Unlike many other signaling molecules, lipids are capable of multiple signaling events based on the different fragments generated from a single precursor during each event. Lipidomics, until recently suffered from two major disadvantages:(1) level of expertise required an overwhelming amount of chemical detail to correctly identify a vast number of different lipids which could be close in their chemical reactivity; and(2) high amount of purified compounds needed by analytical techniques to determine their structures. Advances in mass spectrometry have enabled overcoming these two limitations. Mass spectrometry offers a great degree of simplicity in identification and quantification of lipids directly extracted from complex biological mixtures. Mass spectrometers can be regarded to as mass analyzers. There are those that separate and analyze the product ion fragments in space(spatial) and those which separate product ions in time in the same space(temporal). Databases and standardized instrument parameters have further aided the capabilities of the spatial instruments while recent advances in bioinformatics have made the identification and quantification possible using temporal instruments.

  4. Electronic sputtering of biomolecules and its application in mass spectrometry

    International Nuclear Information System (INIS)

    Haakansson, P.; Sundqvist, B.U.R.

    1989-01-01

    In 1974 Macfarlane discovered that fast heavy ions from a 252-Cf source can desorb and ionize molecules from a solid surface. The mass of the molecules was determined by time-of-flight technique. It has been shown that the desorption mechanism is associated with the electron part of the stopping power of the primary ion and the name 'electron sputtering' has been adopted for the phenomenon to distinguish it from the well-known sputtering process with ions of KeV energy. A review of electronic sputtering of biomolecules will be given as well as recent measurements on Langmuir-Blodgett films. One important application of electronic sputtering is in the field of mass spectrometry. With this technique large and nonvolatile molecules can be studied. Particularly adsorption of biomolecules to a nitrocellulose backing has proven to be very useful. Examples will be given of mass spectra from peptides with a molecular weight above 20,000 u. (author)

  5. Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments.

    Science.gov (United States)

    Fazal, Zeeshan; Southey, Bruce R; Sweedler, Jonathan V; Rodriguez-Zas, Sandra L

    2013-01-29

    In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments.

  6. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, Tanja C. W.; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J.; Boschker, Henricus T. S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  7. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  8. Characterisation of the volatile profiles of infant formulas by proton transfer reaction-mass spectrometry and gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Ruth, van S.M.; Floris, V.; Fayoux, S.

    2006-01-01

    The volatile profiles of 13 infant formulas were evaluated by proton transfer reaction-mass spectrometry (PTR-MS) and gas chromatography¿mass spectrometry (GC¿MS). The infant formulas varied in brand (Aptamil, Cow & Gate, SMA), type (for different infant target groups) and physical form

  9. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of d13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  10. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    Rationale: We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence,

  11. Analysis of [U-13C6]glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry compared with two other mass spectrometry techniques

    NARCIS (Netherlands)

    Schierbeek, H.; Moerdijk-Poortvliet, T.C.W.; van den Akker, C.H.P.; te Braake, F.W.J.; Boschker, H.T.S.; van Goudoever, J.B.

    2009-01-01

    The use of stable isotope labelled glucose provides insight into glucose metabolism. The 13C-isotopic enrichment of glucose is usually measured by gas chromatography/mass spectrometry (GC/MS) or gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). However, in both techniques

  12. Accelerator mass spectrometry for measurement of long-lived radioisotopes.

    Science.gov (United States)

    Elmore, D; Phillips, F M

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes (10)Be, (14)C,(26)A1, 36Cl, and (129)1 can now be measured in small natural samples having isotopic abundances in the range 10(-12) to 10(- 5) and as few as 10(5) atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of halflives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  13. Mass Spectrometry Based Lipidomics: An Overview of Technological Platforms

    Science.gov (United States)

    Köfeler, Harald C.; Fauland, Alexander; Rechberger, Gerald N.; Trötzmüller, Martin

    2012-01-01

    One decade after the genomic and the proteomic life science revolution, new ‘omics’ fields are emerging. The metabolome encompasses the entity of small molecules—Most often end products of a catalytic process regulated by genes and proteins—with the lipidome being its fat soluble subdivision. Within recent years, lipids are more and more regarded not only as energy storage compounds but also as interactive players in various cellular regulation cycles and thus attain rising interest in the bio-medical community. The field of lipidomics is, on one hand, fuelled by analytical technology advances, particularly mass spectrometry and chromatography, but on the other hand new biological questions also drive analytical technology developments. Compared to fairly standardized genomic or proteomic high-throughput protocols, the high degree of molecular heterogeneity adds a special analytical challenge to lipidomic analysis. In this review, we will take a closer look at various mass spectrometric platforms for lipidomic analysis. We will focus on the advantages and limitations of various experimental setups like ‘shotgun lipidomics’, liquid chromatography—Mass spectrometry (LC-MS) and matrix assisted laser desorption ionization-time of flight (MALDI-TOF) based approaches. We will also examine available software packages for data analysis, which nowadays is in fact the rate limiting step for most ‘omics’ workflows. PMID:24957366

  14. Deep learning for tumor classification in imaging mass spectrometry.

    Science.gov (United States)

    Behrmann, Jens; Etmann, Christian; Boskamp, Tobias; Casadonte, Rita; Kriegsmann, Jörg; Maaß, Peter

    2018-04-01

    Tumor classification using imaging mass spectrometry (IMS) data has a high potential for future applications in pathology. Due to the complexity and size of the data, automated feature extraction and classification steps are required to fully process the data. Since mass spectra exhibit certain structural similarities to image data, deep learning may offer a promising strategy for classification of IMS data as it has been successfully applied to image classification. Methodologically, we propose an adapted architecture based on deep convolutional networks to handle the characteristics of mass spectrometry data, as well as a strategy to interpret the learned model in the spectral domain based on a sensitivity analysis. The proposed methods are evaluated on two algorithmically challenging tumor classification tasks and compared to a baseline approach. Competitiveness of the proposed methods is shown on both tasks by studying the performance via cross-validation. Moreover, the learned models are analyzed by the proposed sensitivity analysis revealing biologically plausible effects as well as confounding factors of the considered tasks. Thus, this study may serve as a starting point for further development of deep learning approaches in IMS classification tasks. https://gitlab.informatik.uni-bremen.de/digipath/Deep_Learning_for_Tumor_Classification_in_IMS. jbehrmann@uni-bremen.de or christianetmann@uni-bremen.de. Supplementary data are available at Bioinformatics online.

  15. Mass Spectrometry Based Lipidomics: An Overview of Technological Platforms

    Directory of Open Access Journals (Sweden)

    Harald C. Köfeler

    2012-01-01

    Full Text Available One decade after the genomic and the proteomic life science revolution, new ‘omics’ fields are emerging. The metabolome encompasses the entity of small molecules—Most often end products of a catalytic process regulated by genes and proteins—with the lipidome being its fat soluble subdivision. Within recent years, lipids are more and more regarded not only as energy storage compounds but also as interactive players in various cellular regulation cycles and thus attain rising interest in the bio-medical community. The field of lipidomics is, on one hand, fuelled by analytical technology advances, particularly mass spectrometry and chromatography, but on the other hand new biological questions also drive analytical technology developments. Compared to fairly standardized genomic or proteomic high-throughput protocols, the high degree of molecular heterogeneity adds a special analytical challenge to lipidomic analysis. In this review, we will take a closer look at various mass spectrometric platforms for lipidomic analysis. We will focus on the advantages and limitations of various experimental setups like ‘shotgun lipidomics’, liquid chromatography—Mass spectrometry (LC-MS and matrix assisted laser desorption ionization-time of flight (MALDI-TOF based approaches. We will also examine available software packages for data analysis, which nowadays is in fact the rate limiting step for most ‘omics’ workflows.

  16. Laser desorption mass spectrometry for point mutation detection

    Energy Technology Data Exchange (ETDEWEB)

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments generated by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  17. Laser desorption mass spectrometry for point mutation detection

    Energy Technology Data Exchange (ETDEWEB)

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F. [Oak Ridge National Lab., TN (United States)] [and others

    1996-12-31

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  18. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.; Monroe, Matthew E.; Ibrahim, Yehia M.; Moore, Ronald J.; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S.; Wagoner, Jessica; Polyak, Steve; Metz, Thomas O.; Dey, Sudhansu K.; Smith, Richard D.; Burnum-Johnson, Kristin E.; Baker, Erin Shammel

    2016-01-01

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Liquid chromatography and mass spectrometry (LC-MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids’ biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are unresolvable using present LC-MS approaches. Here we show that combining structurally-based ion mobility spectrometry (IMS) with LC-MS measurements distinguishes lipid isomers and allows insight into biological and disease processes.

  19. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.

    Science.gov (United States)

    Swearingen, Kristian E; Moritz, Robert L

    2012-10-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve the detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, the authors review recent developments in LC-FAIMS-MS and its application to MS-based proteomics.

  20. High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) for Mass Spectrometry-Based Proteomics

    Science.gov (United States)

    Swearingen, Kristian E.; Moritz, Robert L.

    2013-01-01

    SUMMARY High field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, we review recent developments in LC-FAIMS-MS and its application to MS-based proteomics. PMID:23194268

  1. Guidelines for reporting quantitative mass spectrometry based experiments in proteomics.

    Science.gov (United States)

    Martínez-Bartolomé, Salvador; Deutsch, Eric W; Binz, Pierre-Alain; Jones, Andrew R; Eisenacher, Martin; Mayer, Gerhard; Campos, Alex; Canals, Francesc; Bech-Serra, Joan-Josep; Carrascal, Montserrat; Gay, Marina; Paradela, Alberto; Navajas, Rosana; Marcilla, Miguel; Hernáez, María Luisa; Gutiérrez-Blázquez, María Dolores; Velarde, Luis Felipe Clemente; Aloria, Kerman; Beaskoetxea, Jabier; Medina-Aunon, J Alberto; Albar, Juan P

    2013-12-16

    Mass spectrometry is already a well-established protein identification tool and recent methodological and technological developments have also made possible the extraction of quantitative data of protein abundance in large-scale studies. Several strategies for absolute and relative quantitative proteomics and the statistical assessment of quantifications are possible, each having specific measurements and therefore, different data analysis workflows. The guidelines for Mass Spectrometry Quantification allow the description of a wide range of quantitative approaches, including labeled and label-free techniques and also targeted approaches such as Selected Reaction Monitoring (SRM). The HUPO Proteomics Standards Initiative (HUPO-PSI) has invested considerable efforts to improve the standardization of proteomics data handling, representation and sharing through the development of data standards, reporting guidelines, controlled vocabularies and tooling. In this manuscript, we describe a key output from the HUPO-PSI-namely the MIAPE Quant guidelines, which have developed in parallel with the corresponding data exchange format mzQuantML [1]. The MIAPE Quant guidelines describe the HUPO-PSI proposal concerning the minimum information to be reported when a quantitative data set, derived from mass spectrometry (MS), is submitted to a database or as supplementary information to a journal. The guidelines have been developed with input from a broad spectrum of stakeholders in the proteomics field to represent a true consensus view of the most important data types and metadata, required for a quantitative experiment to be analyzed critically or a data analysis pipeline to be reproduced. It is anticipated that they will influence or be directly adopted as part of journal guidelines for publication and by public proteomics databases and thus may have an impact on proteomics laboratories across the world. This article is part of a Special Issue entitled: Standardization and

  2. Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry

    KAUST Repository

    Raji, Misjudeen

    2013-04-30

    RATIONALE Pterostilbene is a member of the hydroxystilbene family of compounds commonly found in plants such as blueberry and grapes. During the analysis of this compound by electrospray ionization mass spectrometry (ESI-MS), an ion was observed that corresponds to the dehydrodimer of pterostilbene in mass-to-charge ratio. Since such unexpected dimerization may lead to decreased monomer signal during quantitative analysis, it was of interest to identify the origin and structure of the observed pterostilbene dimer and examine the experimental conditions that influence its formation. METHODS Liquid Chromatography/Mass Spectrometry (LC/MS), Nuclear Magnetic Resonance (NMR), and High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) were used to examine the origin of the dimerization products. The structure of the formed pterostilbene dimer was examined by performing MSn analysis on the dimer ion. Effects of solvent composition, analyte concentration, radical scavenger, and other experimental conditions on the dimerization were also studied. RESULTS LC/MS and NMR analyses clearly showed that the starting solution did not contain the pterostilbene dimer. Solvent type and radical scavenger concentration were found to have pronounced effects on the dimer formation. Particularly, presence of acetonitrile or ammonium acetate had favorable effects on the extent of dimerization during ESI-MS analysis whereas hydroquinone and butylated hydroquinone had negative effects. Dimer formation decreased at high flow rates and when fused-silica capillary was used as the spray needle. CONCLUSIONS The data indicate that this dimerization occurs as a result of solution-phase electrochemical reactions taking place during the electrospray process. A possible structure for this dimer was proposed based on the MSn analysis and was similar to that of the enzymatically derived pterostilbene dehydrodimer already reported in the literature. Copyright © 2013 John Wiley & Sons, Ltd

  3. Applications of ambient mass spectrometry in high-throughput screening.

    Science.gov (United States)

    Li, Li-Ping; Feng, Bao-Sheng; Yang, Jian-Wang; Chang, Cui-Lan; Bai, Yu; Liu, Hu-Wei

    2013-06-07

    The development of rapid screening and identification techniques is of great importance for drug discovery, doping control, forensic identification, food safety and quality control. Ambient mass spectrometry (AMS) allows rapid and direct analysis of various samples in open air with little sample preparation. Recently, its applications in high-throughput screening have been in rapid progress. During the past decade, various ambient ionization techniques have been developed and applied in high-throughput screening. This review discusses typical applications of AMS, including DESI (desorption electrospray ionization), DART (direct analysis in real time), EESI (extractive electrospray ionization), etc., in high-throughput screening (HTS).

  4. Multielement ultratrace analysis in tungsten using secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Wilhartitz, P.; Virag, A.; Friedbacher, G.; Grasserbauer, M.

    1987-01-01

    The ever increasing demands on properties of materials create a trend also towards ultrapure products. Characterization of these materials is only possible with modern, highly sophisticated analytical techniques such as activation analysis and mass spectrometry, particularly SSMS, SIMS and GDMS. Analytical strategies were developed for the determination of about 40 elements in a tungsten matrix with high-performance SIMS. Difficulties like the elimination of interferences had to be overcome. Extrapolated detection limits were established in the range of pg/g (alkali metals, halides) to ng/g (e.g. Ta, Th). Depth profiling and ion imaging gave additional information about the lateral and the depth distribution of the elements. (orig.)

  5. Electrospray mass spectrometry for actinides and lanthanide speciation

    International Nuclear Information System (INIS)

    Moulin, C.; Amekraz, B.; Colette, S.; Doizi, D.; Jacopin, C.; Lamouroux, C.; Plancque, G.

    2006-01-01

    Electrospray mass spectrometry (ES-MS) is a new speciation technique that has the great interest to be able to probe the element, the ligand and the complex in order to reach the speciation. This paper will focus on the use of ES-MS for the speciation of actinides/lanthanides on several systems of interest in various fields such as the interaction between DTPA (decorporant) and europium, HEBP and uranium, BTP (new extracting agent) and lanthanides with comparison with known chemistry as well as whenever possible with other speciation techniques

  6. Multinozzle emitter arrays for ultrahigh-throughput nanoelectrospray mass spectrometry

    Science.gov (United States)

    Wang, Daojing; Mao, Pan; Wang, Hung-Ta; Yang, Peidong

    2017-10-17

    The present invention provides for a structure comprising a plurality of emitters, wherein a first nozzle of a first emitter and a second nozzle of a second emitter emit in two directions that are not or essentially not in the same direction; wherein the walls of the nozzles and the emitters form a monolithic whole. The present invention also provides for a structure comprising an emitter with a sharpened end from which the emitter emits; wherein the emitters forms a monolithic whole. The present invention also provides for a fully integrated separation of proteins and small molecules on a silicon chip before the electrospray mass spectrometry analysis.

  7. Vaporization Studies of Olivine via Knudsen Effusion Mass Spectrometry

    Science.gov (United States)

    Costa, G. C. C.; Jacobson, N. S.

    2014-01-01

    Olivine is the major mineral in the Earth's upper mantle occurring predominantly in igneous rocks and has been identified in meteorites, asteroids, the Moon and Mars. Among many other important applications in planetary and materials sciences, the thermodynamic properties of vapor species from olivine are crucial as input parameters in computational modelling of the atmospheres of hot, rocky exoplanets (lava planets). There are several weight loss studies of olivine vaporization in the literature and one Knudsen Effusion Mass Spectrometry (KEMS) study. In this study, we examine a forsterite-rich olivine (93% forsterite and 7% fayalite, Fo93Fa7) with KEMS to further understand its vaporization and thermodynamic properties.

  8. Accurate isotope ratio mass spectrometry. Some problems and possibilities

    International Nuclear Information System (INIS)

    Bievre, P. de

    1978-01-01

    The review includes reference to 190 papers, mainly published during the last 10 years. It covers the following: important factors in accurate isotope ratio measurements (precision and accuracy of isotope ratio measurements -exemplified by determinations of 235 U/ 238 U and of other elements including 239 Pu/ 240 Pu; isotope fractionation -exemplified by curves for Rb, U); applications (atomic weights); the Oklo natural nuclear reactor (discovered by UF 6 mass spectrometry at Pierrelatte); nuclear and other constants; isotope ratio measurements in nuclear geology and isotope cosmology - accurate age determination; isotope ratio measurements on very small samples - archaeometry; isotope dilution; miscellaneous applications; and future prospects. (U.K.)

  9. Application of accelerator mass spectrometry in aluminum metabolism studies

    International Nuclear Information System (INIS)

    Meirav, O.; Vetterli, D.; Johnson, R.R.; Sutton, R.A.L.; Walker, V.R.; Halabe, A.; Fink, D.; Middleton, R.; Klein, J.

    1990-06-01

    The recent recognition that aluminum causes toxicity in uremic patients and may be associated with Alzheimer's disease has stimulated many studies of its biochemical effects. However, such studies were hampered by the lack of a suitable tracer. In a novel experiment, we have applied the new technique of accelerator mass spectrometry to investigate aluminum kinetics in rats, using as a marker the long-lived isotope 26 Al. We present the first aluminum kinetic model for a biological system. The results clearly demonstrate the advantage this technique holds for isotope tracer studies in animals as well as humans. (Author) (24 refs., 3 figs.)

  10. Diesel characterization by high-resolution mass spectrometry - gas chromatography

    International Nuclear Information System (INIS)

    Baldrich, C.A

    1998-01-01

    High-resolution mass spectrometry-gas chromatography is combined with the HC22 method in order to obtain detailed information about the chemical composition of diesel and the distribution of different compound types in terms of its final boiling temperature from a single analysis. The total time elapsed from sample injection and signal processing to obtain final results is 90 minutes. This fact makes this methodology a new and very important tool for the decision making process concerning the most suitable final boiling temperature and the type of treatment of the product in order to obtain diesel that fulfills the international standards. The consistency and repeatability of the experimental results are demonstrated

  11. Application of accelerator mass spectrometry in aluminum metabolism studies

    Energy Technology Data Exchange (ETDEWEB)

    Meirav, O; Vetterli, D; Johnson, R R [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics; Sutton, R A.L.; Walker, V R; Halabe, A [British Columbia U.iv., Vancouver, BC (Canada). Dept. of Medicine; Fink, D; Middleton, R; Klein, J [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Physics

    1990-06-01

    The recent recognition that aluminum causes toxicity in uremic patients and may be associated with Alzheimer`s disease has stimulated many studies of its biochemical effects. However, such studies were hampered by the lack of a suitable tracer. In a novel experiment, we have applied the new technique of accelerator mass spectrometry to investigate aluminum kinetics in rats, using as a marker the long-lived isotope {sup 26}Al. We present the first aluminum kinetic model for a biological system. The results clearly demonstrate the advantage this technique holds for isotope tracer studies in animals as well as humans. (Author) (24 refs., 3 figs.).

  12. A novel ion imager for secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Matsumoto, Kazuya; Miyata, Kenji; Nakamura, Tsutomu

    1993-01-01

    This paper describes a new area detector for secondary ion mass spectrometry (SIMS) ion microscope, and its performance. The operational principle is based on detecting the change in potential of a floating photodiode caused by the ion-induced secondary-electron emission and the incoming ion itself. The experiments demonstrated that 10 1 -10 5 aluminum ions per pixel can be detected with good linear response. Moreover, relative ion sensitivities from hydrogen to lead were constant within a factor of 2. The performance of this area detector provides the potential for detection of kiloelectronvolt ion images with current ion microscopy

  13. Imaging mass spectrometry tackles interfacial challenges in electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Ying

    2017-12-01

    Electrochemistry has played a significant role in many research fields. Owing to its sensitivity and selectivity, in situ electroanalysis has been widely used as a fast and economical means for achieving outstanding results. Although many spectroscopic techniques have been used in electrochemistry, the challenges to capture short-lived intermediate species as a result of electron transfer in the buried solid electrode and electrolyte solution interface remains a grand challenge. In situ imaging mass spectrometry (IMS) recently has been extended to capture transient species in electrochemistry. This review intends to summarize newest development of IMS and its applications in advancing fundamental electrochemistry.

  14. Two possible improvements for mass spectrometry analysis of intact biomolecules.

    Science.gov (United States)

    Raznikov, Valeriy V; Zelenov, Vladislav V; Aparina, Elena V; Pikhtelev, Alexander R; Sulimenkov, Ilia V; Raznikova, Marina O

    2017-08-01

    The goals of our study were to investigate abilities of two approaches to eliminate possible errors in electrospray mass spectrometry measurements of biomolecules. Passing of a relatively dense supersonic gas jet through ionization region followed by its hitting the spray of the analyzed solution in low vacuum may be effective to keep an initial biomolecule structure in solution. Provided that retention of charge carriers for some sites in the biomolecule cannot be changed noticeably in electrospray ion source, decomposition and separation of charge-state distributions of electrosprayed ions may give additional information about native structure of biomolecules in solution.

  15. Uncertainty of relative sensitivity factors in glow discharge mass spectrometry

    Science.gov (United States)

    Meija, Juris; Methven, Brad; Sturgeon, Ralph E.

    2017-10-01

    The concept of the relative sensitivity factors required for the correction of the measured ion beam ratios in pin-cell glow discharge mass spectrometry is examined in detail. We propose a data-driven model for predicting the relative response factors, which relies on a non-linear least squares adjustment and analyte/matrix interchangeability phenomena. The model provides a self-consistent set of response factors for any analyte/matrix combination of any element that appears as either an analyte or matrix in at least one known response factor.

  16. Monitoring of wine aging process by electrospray ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    Alexandra Christine Helena Frankland Sawaya

    2011-09-01

    Full Text Available The characterization of wine samples by direct insertion electrospray ionization mass spectrometry (ESI-MS, without pre-treatment or chromatographic separation, in a process denominated fingerprinting, has been applied to several samples of wine produced with grapes of the Pinot noir, Merlot and Cabernet Sauvignon varieties from the state o Rio Grande do Sul, in Brazil. The ESI-MS fingerprints of the samples detected changes which occurred during the aging process in the three grape varieties. Principal Component Analysis (PCA of the negative ion mode fingerprints was used to group the samples, pinpoint the main changes in their composition, and indicate marker ions for each group of samples.

  17. Indigenous instrumentation for mass spectrometry. PD-5-1

    International Nuclear Information System (INIS)

    Handu, V.K.

    2007-01-01

    Mass Spectrometry is a powerful analytical technique due to its high sensitivity, specificity, selectivity, and wide field of applications in elemental analysis, especially in the determination of trace and ultra trace elements, precise and accurate isotopic ratio measurements. Due to these excellent features, it is a crucial analytical tool for number of Department of Atomic Energy's (DAE) programs. BARC, over the years, has developed several mass spectrometers suitable for needs of a number of programs in DAE and, in this process, technologies have been developed in HV/UHV systems, precision mechanical engineering and fabrication, design and fabrication of electromagnets, ion optics, ultra stable analog and digital electronics, data systems etc. A large number of these mass spectrometers are being used regularly in various units of DAE. Since users are demanding TIMS mass spectrometer with better specifications, efforts are being made in house to develop TIMS with improved specifications. Efforts are also under way to develop a multi collector, plasma source mass spectrometer (MC-ICP-MS) with magnetic sector mass analyzer, since such instrument is increasingly being used to measure isotopic ratios with high precision

  18. Tandem mass spectrometry data quality assessment by self-convolution

    Directory of Open Access Journals (Sweden)

    Tham Wai

    2007-09-01

    Full Text Available Abstract Background Many algorithms have been developed for deciphering the tandem mass spectrometry (MS data sets. They can be essentially clustered into two classes. The first performs searches on theoretical mass spectrum database, while the second based itself on de novo sequencing from raw mass spectrometry data. It was noted that the quality of mass spectra affects significantly the protein identification processes in both instances. This prompted the authors to explore ways to measure the quality of MS data sets before subjecting them to the protein identification algorithms, thus allowing for more meaningful searches and increased confidence level of proteins identified. Results The proposed method measures the qualities of MS data sets based on the symmetric property of b- and y-ion peaks present in a MS spectrum. Self-convolution on MS data and its time-reversal copy was employed. Due to the symmetric nature of b-ions and y-ions peaks, the self-convolution result of a good spectrum would produce a highest mid point intensity peak. To reduce processing time, self-convolution was achieved using Fast Fourier Transform and its inverse transform, followed by the removal of the "DC" (Direct Current component and the normalisation of the data set. The quality score was defined as the ratio of the intensity at the mid point to the remaining peaks of the convolution result. The method was validated using both theoretical mass spectra, with various permutations, and several real MS data sets. The results were encouraging, revealing a high percentage of positive prediction rates for spectra with good quality scores. Conclusion We have demonstrated in this work a method for determining the quality of tandem MS data set. By pre-determining the quality of tandem MS data before subjecting them to protein identification algorithms, spurious protein predictions due to poor tandem MS data are avoided, giving scientists greater confidence in the

  19. Tandem mass spectrometry data quality assessment by self-convolution.

    Science.gov (United States)

    Choo, Keng Wah; Tham, Wai Mun

    2007-09-20

    Many algorithms have been developed for deciphering the tandem mass spectrometry (MS) data sets. They can be essentially clustered into two classes. The first performs searches on theoretical mass spectrum database, while the second based itself on de novo sequencing from raw mass spectrometry data. It was noted that the quality of mass spectra affects significantly the protein identification processes in both instances. This prompted the authors to explore ways to measure the quality of MS data sets before subjecting them to the protein identification algorithms, thus allowing for more meaningful searches and increased confidence level of proteins identified. The proposed method measures the qualities of MS data sets based on the symmetric property of b- and y-ion peaks present in a MS spectrum. Self-convolution on MS data and its time-reversal copy was employed. Due to the symmetric nature of b-ions and y-ions peaks, the self-convolution result of a good spectrum would produce a highest mid point intensity peak. To reduce processing time, self-convolution was achieved using Fast Fourier Transform and its inverse transform, followed by the removal of the "DC" (Direct Current) component and the normalisation of the data set. The quality score was defined as the ratio of the intensity at the mid point to the remaining peaks of the convolution result. The method was validated using both theoretical mass spectra, with various permutations, and several real MS data sets. The results were encouraging, revealing a high percentage of positive prediction rates for spectra with good quality scores. We have demonstrated in this work a method for determining the quality of tandem MS data set. By pre-determining the quality of tandem MS data before subjecting them to protein identification algorithms, spurious protein predictions due to poor tandem MS data are avoided, giving scientists greater confidence in the predicted results. We conclude that the algorithm performs well

  20. Characterization of a Distributed Plasma Ionization Source (DPIS) for Ion Mobility Spectrometry and Mass Spectrometry

    International Nuclear Information System (INIS)

    Waltman, Melanie J.; Dwivedi, Prabha; Hill, Herbert; Blanchard, William C.; Ewing, Robert G.

    2008-01-01

    A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry and ion mobility spectrometry. The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions depending on the polarity of the applied potential. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H2O)nH+ with (H2O)2H+ as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO3-, NO3-, NO2-, O3- and O2- of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and environmental pollutants were selected to evaluate the new ionization source. The source was operated continuously for several months and although deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions. The results indicated that the DPIS may have a longer operating life than a conventional corona discharge.