WorldWideScience

Sample records for pyruvate carboxylation oxaloacetate

  1. Pyruvate carboxylase is expressed in human skeletal muscle

    DEFF Research Database (Denmark)

    Minet, Ariane D; Gaster, Michael

    2010-01-01

    Pyruvate carboxylase (PC) is a mitochondrial enzyme that catalyses the carboxylation of pyruvate to oxaloacetate thereby allowing supplementation of citric acid cycle intermediates. The presence of PC in skeletal muscle is controversial. We report here, that PC protein is easily detectable...

  2. Anaplerotic roles of pyruvate carboxylase in mammalian tissues.

    Science.gov (United States)

    Jitrapakdee, S; Vidal-Puig, A; Wallace, J C

    2006-04-01

    Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate. PC serves an anaplerotic role for the tricarboxylic acid cycle, when intermediates are removed for different biosynthetic purposes. In liver and kidney, PC provides oxaloacetate for gluconeogenesis. In adipocytes PC is involved in de novo fatty acid synthesis and glyceroneogenesis, and is regulated by the peroxisome proliferator-activated receptor-gamma, suggesting that PC is involved in the metabolic switch controlling fuel partitioning toward lipogenesis. In islets, PC is necessary for glucose-induced insulin secretion by providing oxaloacetate to form malate that participates in the 'pyruvate/malate cycle' to shuttle 3C or 4C between mitochondria and cytoplasm. Hyperglycemia and hyperlipidemia impair this cycle and affect glucose-stimulated insulin release. In astrocytes, PC is important for de novo synthesis of glutamate, an important excitatory neurotransmitter supplied to neurons. Transcriptional studies of the PC gene pinpoint some transcription factors that determine tissue-specific expression.

  3. Investigation of the biosynthesis of acetyl-CoA and oxaloacetic acid from pyruvic acid and the quantitative evaluation of incorporated 13C-labeled l-alanine in Arthrobacter hyalinus

    International Nuclear Information System (INIS)

    Katsumi Iida

    2014-01-01

    Studies on the contribution to acetyl-CoA and oxaloacetic acid from the pyruvic acid transformation from l-alanine in Arthrobacter hyalinus were conducted by means of feeding experiments with l-[1- 13 C]alanine and l-[3- 13 C]alanine, followed by an analysis of the labeling patterns of coproporphyrinogen III using 13 C NMR spectroscopy. The results demonstrated that l-alanine was transformed via pyruvic acid to both acetyl-CoA and oxaloacetic acid. Additionally, the quantitative analysis indicated that pyruvic acid was transformed to acetyl-CoA and oxaloacetic acid in the ratio of 1:0.8. (author)

  4. Interaction Between the Biotin Carboxyl Carrier Domain and the Biotin Carboxylase Domain in Pyruvate Carboxylase from Rhizobium etli†

    Science.gov (United States)

    Lietzan, Adam D.; Menefee, Ann L.; Zeczycki, Tonya N.; Kumar, Sudhanshu; Attwood, Paul V.; Wallace, John C.; Cleland, W. Wallace; Maurice, Martin St.

    2011-01-01

    Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To effect catalysis, the tethered biotin of PC must gain access to active sites in both the biotin carboxylase domain and the carboxyl transferase domain. Previous studies have demonstrated that a mutation of threonine 882 to alanine in PC from Rhizobium etli renders the carboxyl transferase domain inactive and favors the positioning of biotin in the biotin carboxylase domain. We report the 2.4 Å resolution X-ray crystal structure of the Rhizobium etli PC T882A mutant which reveals the first high-resolution description of the domain interaction between the biotin carboxyl carrier protein domain and the biotin carboxylase domain. The overall quaternary arrangement of Rhizobium etli PC remains highly asymmetrical and is independent of the presence of allosteric activator. While biotin is observed in the biotin carboxylase domain, its access to the active site is precluded by the interaction between Arg353 and Glu248, revealing a mechanism for regulating carboxybiotin access to the BC domain active site. The binding location for the biotin carboxyl carrier protein domain demonstrates that tethered biotin cannot bind in the biotin carboxylase domain active site in the same orientation as free biotin, helping to explain the difference in catalysis observed between tethered biotin and free biotin substrates in biotin carboxylase enzymes. Electron density located in the biotin carboxylase domain active site is assigned to phosphonoacetate, offering a probable location for the putative carboxyphosphate intermediate formed during biotin carboxylation. The insights gained from the T882A Rhizobium etli PC crystal structure provide a new series of catalytic snapshots in PC and offer a revised perspective on catalysis in the biotin-dependent enzyme family. PMID:21958016

  5. Serum Glutamic-Oxaloacetic Transaminase (GOT) and Glutamic-Pyruvic Transaminase (GPT) Levels in Children and Adolescents with Intellectual Disabilities

    Science.gov (United States)

    Lin, Jin-Ding; Lin, Pei-Ying; Chen, Li-Mei; Fang, Wen-Hui; Lin, Lan-Ping; Loh, Ching-Hui

    2010-01-01

    The elevated serum glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) rate among people with intellectual disabilities (ID) is unknown and have not been sufficiently studies. The present paper aims to provide the profile of GOT and GPT, and their associated relationship with other biochemical levels of children or…

  6. n-Octyl gallate as inhibitor of pyruvate carboxylation and lactate gluconeogenesis.

    Science.gov (United States)

    Eler, Gabrielle Jacklin; Santos, Israel Souza; de Moraes, Amarilis Giaretta; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar

    2015-04-01

    The alkyl gallates are found in several natural and industrial products. In the latter products, these compounds are added mainly for preventing oxidation. In the present work, the potencies of methyl gallate, n-propyl gallate, n-pentyl gallate, and n-octyl gallate as inhibitors of pyruvate carboxylation and lactate gluconeogenesis were evaluated. Experiments were done with isolated mitochondria and the isolated perfused rat liver. The potency of the gallic acid esters as inhibitors of pyruvate carboxylation in isolated mitochondria obeyed the following decreasing sequence: n-octyl gallate > n-pentyl gallate > n-propyl gallate > methyl gallate. A similar sequence of decreasing potency for lactate gluconeogenesis inhibition in the perfused liver was found in terms of the portal venous concentration. Both actions correlate with the lipophilicity of the compounds. The effects are harmful at high concentrations. At appropriate concentrations, however, octyl gallate should act therapeutically because its inhibitory action on gluconeogenesis will contribute further to its proposed antihyperglycemic effects. © 2014 Wiley Periodicals, Inc.

  7. Insights into the carboxyltransferase reaction of pyruvate carboxylase from the structures of bound product and intermediate analogues

    Science.gov (United States)

    Lietzan, Adam D.; St. Maurice, Martin

    2014-01-01

    Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP- and bicarbonate-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism. The carboxyltransferase (CT) domain of PC catalyzes the transfer of a carboxyl group from carboxybiotin to the accepting substrate, pyruvate. It has been hypothesized that the reactive enolpyruvate intermediate is stabilized through a bidentate interaction with the metal ion in the CT domain active site. Whereas bidentate ligands are commonly observed in enzymes catalyzing reactions proceeding through an enolpyruvate intermediate, no bidentate interaction has yet been observed in the CT domain of PC. Here, we report three X-ray crystal structures of the Rhizobium etli PC CT domain with the bound inhibitors oxalate, 3-hydroxypyruvate, and 3-bromopyruvate. Oxalate, a stereoelectronic mimic of the enolpyruvate intermediate, does not interact directly with the metal ion. Instead, oxalate is buried in a pocket formed by several positively charged amino acid residues and the metal ion. Furthermore, both 3-hydroxypyruvate and 3-bromopyruvate, analogs of the reaction product oxaloacetate, bind in an identical manner to oxalate suggesting that the substrate maintains its orientation in the active site throughout catalysis. Together, these structures indicate that the substrates, products and intermediates in the PC-catalyzed reaction are not oriented in the active site as previously assumed. The absence of a bidentate interaction with the active site metal appears to be a unique mechanistic feature among the small group of biotin-dependent enzymes that act on α-keto acid substrates. PMID:24157795

  8. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain.

    Science.gov (United States)

    Morken, Tora Sund; Brekke, Eva; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-01-01

    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-(13)C]glucose and were sacrificed 30 min later. Brain extracts were analysed using (1)H- and (13)C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-(13)C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-(13)C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-(13)C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.

  9. A comparative study of glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) levels in the saliva of diabetic and normal patients.

    Science.gov (United States)

    Verma, M; Metgud, R; Madhusudan, A S; Verma, N; Saxena, M; Soni, A

    2014-10-01

    Diabetes has been reported to affect salivary glands adversely in humans and experimental models. Glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT) and lactate dehydrogenase (LDH) are salivary enzymes that also are widely distributed in animal tissues. We determined GOT and GPT levels in saliva samples of 100 type 1 and 30 type 2 diabetic patients using reflectance spectrophotometry and compared them to 30 age and sex matched healthy controls. Statistically significant differences were observed in the mean values of GOT and GPT in type 1 diabetics compared to type 2 and control groups. Significantly higher GOT levels were found in the 1-20 year age group of type 1 diabetics. Our findings suggest that salivary gland damage is due to the same immunological attack that affects pancreatic β cells and results in type 1 diabetes.

  10. The moonlighting function of pyruvate carboxylase resides in the non-catalytic end of the TIM barrel.

    NARCIS (Netherlands)

    Huberts, D.H.; Venselaar, H.; Vriend, G.; Veenhuis, M.; Klei, I.J. van der

    2010-01-01

    Pyruvate carboxylase is a highly conserved enzyme that functions in replenishing the tricarboxylic acid cycle with oxaloacetate. In the yeast Hansenulapolymorpha, the pyruvate carboxylase protein is also required for import and assembly of the peroxisomal enzyme alcohol oxidase. This additional

  11. The moonlighting function of pyruvate carboxylase resides in the non-catalytic end of the TIM barrel

    NARCIS (Netherlands)

    Huberts, Daphne H. E. W.; Venselaar, Hanka; Vriend, Gert; Veenhuis, Marten; van der Klei, Ida J.

    Pyruvate carboxylase is a highly conserved enzyme that functions in replenishing the tricarboxylic acid cycle with oxaloacetate. In the yeast Hansenula polymorpha, the pyruvate carboxylase protein is also required for import and assembly of the peroxisomal enzyme alcohol oxidase. This additional

  12. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain

    OpenAIRE

    Morken, Tora Sund; Brekke, Eva Mari Førland; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-01-01

    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity duri...

  13. A novel mechanism for the pyruvate protection against zinc-induced cytotoxicity: mediation by the chelating effect of citrate and isocitrate.

    Science.gov (United States)

    Sul, Jee-Won; Kim, Tae-Youn; Yoo, Hyun Ju; Kim, Jean; Suh, Young-Ah; Hwang, Jung Jin; Koh, Jae-Young

    2016-08-01

    Intracellular accumulation of free zinc contributes to neuronal death in brain injuries such as ischemia and epilepsy. Pyruvate, a glucose metabolite, has been shown to block zinc neurotoxicity. However, it is largely unknown how pyruvate shows such a selective and remarkable protective effect. In this study, we sought to find a plausible mechanism of pyruvate protection against zinc toxicity. Pyruvate almost completely blocked cortical neuronal death induced by zinc, yet showed no protective effects against death induced by calcium (ionomycin, NMDA) or ferrous iron. Of the TCA cycle intermediates, citrate, isocitrate, and to a lesser extent oxaloacetate, protected against zinc toxicity. We then noted with LC-MS/MS assay that exposure to pyruvate, and to a lesser degree oxaloacetate, increased levels of citrate and isocitrate, which are known zinc chelators. While pyruvate added only during zinc exposure did not reduce zinc toxicity, citrate and isocitrate added only during zinc exposure, as did extracellular zinc chelator CaEDTA, completely blocked it. Furthermore, addition of pyruvate after zinc exposure substantially reduced intracellular zinc levels. Our results suggest that the remarkable protective effect of pyruvate against zinc cytotoxicity may be mediated indirectly by the accumulation of intracellular citrate and isocitrate, which act as intracellular zinc chelators.

  14. Production and Recovery of Pyruvic Acid: Recent Advances

    Science.gov (United States)

    Pal, Dharm; Keshav, Amit; Mazumdar, Bidyut; Kumar, Awanish; Uslu, Hasan

    2017-12-01

    Pyruvic acid is an important keto-carboxylic acid and can be manufactured by both chemical synthesis and biotechnological routes. In the present paper an overview of recent developments and challenges in various existing technique for the production and recovery of pyruvic acid from fermentation broth or from waste streams has been presented. The main obstacle in biotechnological production of pyruvic acid is development of suitable microorganism which can provide high yield and selectivity. On the other hand, technical limitation in recovery of pyruvic acid from fermentation broth is that, it could not be separated as other carboxylic acid in the form of salts by addition of alkali. Besides, pyruvic acid cannot be crystallized. Commercial separation by distillation is very expensive because pyruvic acid decomposes at higher temperature. It is also chemically reactive due to its peculiar molecular structure and has tendency to polymerize. Thus, at high concentration the various type of reaction leads to lower yield of the product, and hence, conventional methods are not favorable. Alternate separation technologies viable to both synthetic and biological routes are the current research areas. Latest techniques such as reactive extraction is new to the field of recovery of pyruvic acid. Recent development and future prospects in downstream processing of biochemically produced pyruvic acids has been discussed in this review article.

  15. Effects of adrenergic agents on intracellular ca(2+) homeostasis and metabolism of glucose in astrocytes with an emphasis on pyruvate carboxylation, oxidative decarboxylation and recycling

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Andersen, Karen M H; Bak, Lasse Kristoffer

    2012-01-01

    and oxidative decarboxylation in astrocytic glucose metabolism. Importantly, pyruvate carboxylation was best visualized at 10 min of incubation. The abundance and pattern of labeling in lactate and alanine indicated not only an extensive activity of malic enzyme (initial step for pyruvate recycling) but also...... a high degree of compartmentalization of the pyruvate pool. Stimulating with 1 µM NE had no effect on labeling patterns and glycogen metabolism, whereas 100 µM NE increased glutamate labeling and decreased labeling in alanine, the latter supposedly due to dilution from degradation of non-labeled glycogen....... It is suggested that further experiments uncovering the correlation between adrenergic and glutamatergic pathways should be performed in order to gain further insight into the role of astrocytes in brain function and dysfunction, the latter including excitotoxicity....

  16. Triiodothyronine increases myocardial function and pyruvate entry into the citric acid cycle after reperfusion in a model of infant cardiopulmonary bypass

    Science.gov (United States)

    Olson, Aaron K.; Bouchard, Bertrand; Ning, Xue-Han; Isern, Nancy; Rosiers, Christine Des

    2012-01-01

    Triiodothyronine (T3) supplementation improves clinical outcomes in infants after cardiac surgery using cardiopulmonary bypass by unknown mechanisms. We utilized a translational model of infant cardiopulmonary bypass to test the hypothesis that T3 modulates pyruvate entry into the citric acid cycle (CAC), thereby providing the energy support for improved cardiac function after ischemia-reperfusion (I/R). Neonatal piglets received intracoronary [2-13Carbon(13C)]pyruvate for 40 min (8 mM) during control aerobic conditions (control) or immediately after reperfusion (I/R) from global hypothermic ischemia. A third group (I/R-Tr) received T3 (1.2 μg/kg) during reperfusion. We assessed absolute CAC intermediate levels and flux parameters into the CAC through oxidative pyruvate decarboxylation (PDC) and anaplerotic carboxylation (PC) using [2-13C]pyruvate and isotopomer analysis by gas and liquid chromatography-mass spectrometry and 13C-nuclear magnetic resonance spectroscopy. When compared with I/R, T3 (group I/R-Tr) increased cardiac power and oxygen consumption after I/R while elevating flux of both PDC and PC (∼4-fold). Although neither I/R nor I/R-Tr modified absolute CAC levels, T3 inhibited I/R-induced reductions in their molar percent enrichment. Furthermore, 13C-labeling of CAC intermediates suggests that T3 may decrease entry of unlabeled carbons at the level of oxaloacetate through anaplerosis or exchange reaction with asparate. T3 markedly enhances PC and PDC fluxes, thereby providing potential substrate for elevated cardiac function after reperfusion. This T3-induced increase in pyruvate fluxes occurs with preservation of the CAC intermediate pool. Our labeling data raise the possibility that T3 reduces reliance on amino acids for anaplerosis after reperfusion. PMID:22180654

  17. Enzymological evidence for the function of a plastid-located pyruvate carboxylase in the Haptophyte alga Emiliania huxleyi: a novel pathway for the production of C4 compounds.

    Science.gov (United States)

    Tsuji, Yoshinori; Suzuki, Iwane; Shiraiwa, Yoshihiro

    2012-06-01

    Pyruvate carboxylase (PYC) catalyzes the β-carboxylation of pyruvate to yield oxaloacetate (OAA). We previously isolated a cDNA encoding a putative PYC (EhPYC1) from the haptophyte alga Emiliania huxleyi and then proposed that EhPYC1 contributes to active anaplerotic β-carboxylation during photosynthesis although PYC activity was not detected in the cell extracts. Involvement of PYC in photosynthetic carbon metabolism is unique, since PYC generally functions in non-photosynthetic organisms. In the present study, we demonstrate that EhPYC1 is highly sensitive to endogenous proteases and therefore is easily degraded in cell extracts. By avoiding proteolytic degradation, PYC activity can be detected in the cell extracts of E. huxleyi. The activity of a recombinant His-tagged EhPYC1 expressed in Streptomyces lividans was inhibited by l-malate in a mixed non-competitive manner. Immunofluorescence labeling showed that EhPYC1 is located in the plastid. This result agrees with the prediction that a bipartite plastid-targeting signal is present that functions to deliver proteins into the four-membrane plastid of haptophyte algae. This is the first finding of a plastid-located PYC. These results indicate that E. huxleyi possesses a unique pathway to produce OAA catalyzed by PYC, and the pathway may provide carbon skeletons for amino acid biosynthesis in the plastid. A database search indicates that PYC genes are widespread in green algae, diatoms and brown algae, suggesting the crucial role of PYC in various aquatic phototrophs.

  18. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites

    Science.gov (United States)

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-01-01

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a “one pot” suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using 13C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems. PMID:21825143

  19. Oxaloacetate-to-malate conversion by mineral photoelectrochemistry: implications for the viability of the reductive tricarboxylic acid cycle in prebiotic chemistry

    Science.gov (United States)

    Guzman, Marcelo I.; Martin, Scot T.

    2008-10-01

    The carboxylic acids produced by the reductive tricarboxylic acid (rTCA) cycle are possibly a biosynthetic core of initial life, although several steps such as the reductive kinetics of oxaloacetate (OAA) to malate (MA) are problematic by conventional chemical routes. In this context, we studied the kinetics of this reaction as promoted by ZnS mineral photoelectrochemistry. The quantum efficiency φMA of MA production from the photoelectrochemical reduction of OAA followed φMA=0.13 [OAA] (2.1×10-3+[OAA])-1 and was independent of temperature (5 to 50°C). To evaluate the importance of this forward rate under a prebiotic scenario, we also studied the temperature-dependent rate of the backward thermal decarboxylation of OAA to pyruvate (PA), which followed an Arrhenius behavior as log (k-2)=11.74 4956/T, where k-2 is in units of s-1. These measured rates were employed in conjunction with the indirectly estimated carboxylation rate of PA to OAA to assess the possible importance of mineral photoelectrochemistry in the conversion of OAA to MA under several scenarios of prebiotic conditions on early Earth. As an example, our analysis shows that there is 90% efficiency with a forward velocity of 3 yr/cycle for the OAA→MA step of the rTCA cycle at 280 K. Efficiency and velocity both decrease for increasing temperature. These results suggest high viability for mineral photoelectrochemistry as an enzyme-free engine to drive the rTCA cycle through the early aeons of early Earth, at least for the investigated OAA→MA step.

  20. Breast Cancer-Derived Lung Metastases Show Increased Pyruvate Carboxylase-Dependent Anaplerosis

    Directory of Open Access Journals (Sweden)

    Stefan Christen

    2016-10-01

    Full Text Available Cellular proliferation depends on refilling the tricarboxylic acid (TCA cycle to support biomass production (anaplerosis. The two major anaplerotic pathways in cells are pyruvate conversion to oxaloacetate via pyruvate carboxylase (PC and glutamine conversion to α-ketoglutarate. Cancers often show an organ-specific reliance on either pathway. However, it remains unknown whether they adapt their mode of anaplerosis when metastasizing to a distant organ. We measured PC-dependent anaplerosis in breast-cancer-derived lung metastases compared to their primary cancers using in vivo 13C tracer analysis. We discovered that lung metastases have higher PC-dependent anaplerosis compared to primary breast cancers. Based on in vitro analysis and a mathematical model for the determination of compartment-specific metabolite concentrations, we found that mitochondrial pyruvate concentrations can promote PC-dependent anaplerosis via enzyme kinetics. In conclusion, we show that breast cancer cells proliferating as lung metastases activate PC-dependent anaplerosis in response to the lung microenvironment.

  1. Direct measurement of backflux between oxaloacetate and fumarate following pyruvate carboxylation

    DEFF Research Database (Denmark)

    Brekke, Eva; Walls, Anne Byriel; Nørfeldt, Lasse

    2012-01-01

    for quantification of activity of PC lead to underestimation when backflux is not taken into account and critical errors have been made in the interpretation of results from metabolic studies. This study was conducted to establish the degree of backflux after PC in cerebellar and neocortical astrocytes. Astrocyte...... into account when calculating the magnitude of PC to allow for a more precise evaluation of cerebral metabolism....

  2. Pyruvate carboxylase deficiency: An underestimated cause of lactic acidosis

    Directory of Open Access Journals (Sweden)

    F. Habarou

    2015-03-01

    Full Text Available Pyruvate carboxylase (PC is a biotin-containing mitochondrial enzyme that catalyzes the conversion of pyruvate to oxaloacetate, thereby being involved in gluconeogenesis and in energy production through replenishment of the tricarboxylic acid (TCA cycle with oxaloacetate. PC deficiency is a very rare metabolic disorder. We report on a new patient affected by the moderate form (the American type A. Diagnosis was nearly fortuitous, resulting from the revision of an initial diagnosis of mitochondrial complex IV (C IV defect. The patient presented with severe lactic acidosis and pronounced ketonuria, associated with lethargy at age 23 months. Intellectual disability was noted at this time. Amino acids in plasma and organic acids in urine did not show patterns of interest for the diagnostic work-up. In skin fibroblasts PC showed no detectable activity whereas biotinidase activity was normal. We had previously reported another patient with the severe form of PC deficiency and we show that she also had secondary C IV deficiency in fibroblasts. Different anaplerotic treatments in vivo and in vitro were tested using fibroblasts of both patients with 2 different types of PC deficiency, type A (patient 1 and type B (patient 2. Neither clinical nor biological effects in vivo and in vitro were observed using citrate, aspartate, oxoglutarate and bezafibrate. In conclusion, this case report suggests that the moderate form of PC deficiency may be underdiagnosed and illustrates the challenges raised by energetic disorders in terms of diagnostic work-up and therapeutical strategy even in a moderate form.

  3. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation. It is unknown whether this process is effective for all carboxylates or selective to special molecule structures. In this work, the selectivity was confirmed using O3/(CuO/CeO2) and six distinct ozone-resistant probe carboxylates (i.e., acetate, citrate, malonate, oxalate, pyruvate and succinate). Among these probe compounds, pyruvate, oxalate, and citrate were readily degraded following the rate order of oxalate>citrate>pyruvate, while the degradation of acetate, malonate, and succinate was not promoted. The selectivity was independent on carboxylate group number of the probe compounds and solution pH. Competitive degradation was observed for carboxylate mixtures following the preference order of citrate, oxalate, and finally pyruvate. The competitive degradation was ascribed to competitive adsorption on the catalyst surface. It was revealed that the catalytically degradable compounds formed bidentate chelating or bridging complexes with surface copper sites of the catalyst, i.e., the active sites. The catalytically undegradable carboxylates formed monodentate complexes with surface copper sites or just electrostatically adsorbed on the catalyst surface. The selectivity, relying on the structure of surface metal-carboxylate complex, should be considered in the design of catalytic ozonation process. © 2013 Elsevier B.V.

  4. Assessing the transport rate of hyperpolarized pyruvate and lactate from the intra- to the extracellular space.

    Science.gov (United States)

    Reineri, Francesca; Daniele, Valeria; Cavallari, Eleonora; Aime, Silvio

    2016-08-01

    The use of [1-(13) C]pyruvate hyperpolarized by means of dynamic nuclear polarization provides a direct way to track the metabolic transformations of this metabolite in vivo and in cell cultures. The identification of the intra- and extracellular contributions to the (13) C NMR resonances is not straightforward. In order to obtain information about the rate of pyruvate and lactate transport through the cellular membrane, we set up a method that relies on the sudden 'quenching' of the extracellular metabolites' signal. The paramagnetic Gd-tetraazacyclododecane triacetic acid (Gd-DO3A) complex was used to dramatically decrease the longitudinal relaxation time constants of the (13) C-carboxylate resonances of both pyruvate and lactate. When Gd-DO3A was added to an MCF-7 cellular culture, which had previously received a dose of hyperpolarized [1-(13) C]pyruvate, the contributions of the extracellular pyruvate and lactate signals were deleted. From the analysis of the decay curves of the (13) C-carboxylate resonances of pyruvate and lactate it was possible to extract information about the exchange rate of the two metabolites across the cellular membrane. In particular, it was found that, in the reported experimental conditions, the lactate transport from the intra- to the extracellular space is not much lower than the rate of lactate formation. The method reported herein is non-destructive and it could be translated to in vivo studies. It opens a route for the use of hyperpolarized pyruvate to assess altered activity of carboxylate transporter proteins that may occur in pathological conditions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Wittmann Christoph

    2008-03-01

    Full Text Available Abstract Background Pyruvate kinase is an important element in flux control of the intermediate metabolism. It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In Corynebacterium glutamicum, this enzyme was regarded as promising target for improved production of lysine, one of the major amino acids in animal nutrition. In pyruvate kinase deficient strains the required equimolar ratio of the two lysine precursors oxaloacetate and pyruvate can be achieved through concerted action of the phosphotransferase system (PTS and phosphoenolpyruvate carboxylase (PEPC, whereby a reduced amount of carbon may be lost as CO2 due to reduced flux into the tricarboxylic acid (TCA cycle. In previous studies, deletion of pyruvate kinase in lysine-producing C. glutamicum, however, did not yield a clear picture and the exact metabolic consequences are not fully understood. Results In this work, deletion of the pyk gene, encoding pyruvate kinase, was carried out in the lysine-producing strain C. glutamicum lysCfbr, expressing a feedback resistant aspartokinase, to investigate the cellular response to deletion of this central glycolytic enzyme. Pyk deletion was achieved by allelic replacement, verified by PCR analysis and the lack of in vitro enzyme activity. The deletion mutant showed an overall growth behavior (specific growth rate, glucose uptake rate, biomass yield which was very similar to that of the parent strain, but differed in slightly reduced lysine formation, increased formation of the overflow metabolites dihydroxyacetone and glycerol and in metabolic fluxes around the pyruvate node. The latter involved a flux shift from pyruvate carboxylase (PC to PEPC, by which the cell maintained anaplerotic supply of the TCA cycle. This created a metabolic by-pass from PEP to pyruvate via malic enzyme demonstrating its contribution to metabolic flexibility of C. glutamicum on glucose. Conclusion The metabolic

  6. Kinetic and Thermodynamic Analysis of Acetyl-CoA Activation of Staphylococcus aureus Pyruvate Carboxylase.

    Science.gov (United States)

    Westerhold, Lauren E; Bridges, Lance C; Shaikh, Saame Raza; Zeczycki, Tonya N

    2017-07-11

    Allosteric regulation of pyruvate carboxylase (PC) activity is pivotal to maintaining metabolic homeostasis. In contrast, dysregulated PC activity contributes to the pathogenesis of numerous diseases, rendering PC a possible target for allosteric therapeutic development. Recent research efforts have focused on demarcating the role of acetyl-CoA, one of the most potent activators of PC, in coordinating catalytic events within the multifunctional enzyme. Herein, we report a kinetic and thermodynamic analysis of acetyl-CoA activation of the Staphylococcus aureus PC (SaPC)-catalyzed carboxylation of pyruvate to identify novel means by which acetyl-CoA synchronizes catalytic events within the PC tetramer. Kinetic and linked-function analysis, or thermodynamic linkage analysis, indicates that the substrates of the biotin carboxylase and carboxyl transferase domain are energetically coupled in the presence of acetyl-CoA. In contrast, both kinetic and energetic coupling between the two domains is lost in the absence of acetyl-CoA, suggesting a functional role for acetyl-CoA in facilitating the long-range transmission of substrate-induced conformational changes within the PC tetramer. Interestingly, thermodynamic activation parameters for the SaPC-catalyzed carboxylation of pyruvate are largely independent of acetyl-CoA. Our results also reveal the possibility that global conformational changes give rise to observed species-specific thermodynamic activation parameters. Taken together, our kinetic and thermodynamic results provide a possible allosteric mechanism by which acetyl-CoA coordinates catalysis within the PC tetramer.

  7. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte...... Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo...... synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle...

  8. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. © 2015 Wiley Periodicals, Inc.

  9. Characterization of Phosphoenolpyruvate Carboxykinase from Pineapple Leaves Ananas comosus (L.) Merr. 1

    Science.gov (United States)

    Daley, Laurence S.; Ray, Thomas B.; Vines, H. Max; Black, Clanton C.

    1977-01-01

    Phosphoenolpyruvate carboxykinase has been partially purified from pineapple (Ananas comosus [L.]) leaves. Specific activities obtained show it to be a major activity in this tissue. Above 15 C, the respective activation energies for decarboxylation and carboxylation are 13 and 12 kcal/mol. Below 15 C, there are discontinuities in Arrhenius plots with an associated large increase in activation energy. The adenine nucleotides are preferred to other nucleotides as substrates. The apparent Km values in the carboxylation direction are: ADP 0.13 mm, HCO3- 3.4 mm, and phosphoenolpyruvate 5 mm. In the decarboxylation direction, the apparent Km values are: ATP 0.02 mm, ADP 0.05 mm, and oxaloacetate 0.4 mm. The decarboxylation activity had an almost equal velocity with either ADP or ATP. The pH optima are between 6.8 and 7. Inhibition of the carboxylation reaction by ATP, pyruvate, and carbonic anhydrase was demonstrated. Decarboxylase specific activities are over twice carboxylation activities. The data support a model in which phosphoenolpyruvate carboxykinase is of physiological significance only during the light period and then only as a decarboxylase. PMID:16659905

  10. Characterization of Phosphoenolpyruvate Carboxykinase from Pineapple Leaves Ananas comosus (L.) Merr.

    Science.gov (United States)

    Daley, L S; Ray, T B; Vines, H M; Black, C C

    1977-04-01

    Phosphoenolpyruvate carboxykinase has been partially purified from pineapple (Ananas comosus [L.]) leaves. Specific activities obtained show it to be a major activity in this tissue. Above 15 C, the respective activation energies for decarboxylation and carboxylation are 13 and 12 kcal/mol. Below 15 C, there are discontinuities in Arrhenius plots with an associated large increase in activation energy. The adenine nucleotides are preferred to other nucleotides as substrates. The apparent Km values in the carboxylation direction are: ADP 0.13 mm, HCO(3) (-) 3.4 mm, and phosphoenolpyruvate 5 mm. In the decarboxylation direction, the apparent Km values are: ATP 0.02 mm, ADP 0.05 mm, and oxaloacetate 0.4 mm. The decarboxylation activity had an almost equal velocity with either ADP or ATP. The pH optima are between 6.8 and 7. Inhibition of the carboxylation reaction by ATP, pyruvate, and carbonic anhydrase was demonstrated. Decarboxylase specific activities are over twice carboxylation activities. The data support a model in which phosphoenolpyruvate carboxykinase is of physiological significance only during the light period and then only as a decarboxylase.

  11. Synthesis of 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives

    International Nuclear Information System (INIS)

    Elhadi, S. A.

    2004-09-01

    Quinolin derivatives are a group of compounds known to possess a wide range of biological activities. The chemistry of quinolines together with their corresponding aldehydes were dealt with in chapter one of this study. Special emphasis was given to the chemistry of benzaldehyde. Twenty five 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives together with their corresponding intermediates were prepared in this work. Basically, the synthetic design of these compounds arise from the appropriate disconnections of the target 2-phenyl and 2,3-diphenyl-quinolin-4-carboxylic acids. The retro synthesis analysis of these compounds reveals pyruvic acid, aromatic amine and benzaldehyde or phenyl pyruvic acid, aromatic amine and benzaldehyde as possible logical precursors for 2-phenyl-and 2,3-diphenyl- quinoline-4-carboxylic acids respectively. The purity and identities of the synthesized compounds were elucidated through chromatographic and spectroscopic techniques. The compounds were heavily subjected to spectroscopic analysis (UV, IR, GC/MS, 1 H-and 13 C- NMR). The appropriate disconnections and the mechanisms of the corresponding reactions were given and discussed in chapter three. The spectral data were interpreted and correlated with the target structures. The prepared 2-phenyl- and 2,3-diphenyl-quinoline-4-carboxylic acid derivatives were screened for their antibacterial activity. The compounds were tested against the standard bacterial organisms B. subtilis, S. aureus, E. coli and P. vulgaris. Some of these compounds were devoid of antibacterial activity against S. aureus and P. vulgaris, while others showed moderate activity. All of the tested compounds showed an activity against B. subtilis and E. coli. 2,3-diphenyl -6-sulphanilamide-quinolin-4-carboxylic acid showed the highest activity against the four standard tested organisms.(Author)

  12. Synthesis of 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Elhadi, S A [Department of Chemistry, Faculty of Education, University of Khartoum, Khartoum (Sudan)

    2004-09-01

    Quinolin derivatives are a group of compounds known to possess a wide range of biological activities. The chemistry of quinolines together with their corresponding aldehydes were dealt with in chapter one of this study. Special emphasis was given to the chemistry of benzaldehyde. Twenty five 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives together with their corresponding intermediates were prepared in this work. Basically, the synthetic design of these compounds arise from the appropriate disconnections of the target 2-phenyl and 2,3-diphenyl-quinolin-4-carboxylic acids. The retro synthesis analysis of these compounds reveals pyruvic acid, aromatic amine and benzaldehyde or phenyl pyruvic acid, aromatic amine and benzaldehyde as possible logical precursors for 2-phenyl-and 2,3-diphenyl- quinoline-4-carboxylic acids respectively. The purity and identities of the synthesized compounds were elucidated through chromatographic and spectroscopic techniques. The compounds were heavily subjected to spectroscopic analysis (UV, IR, GC/MS, {sup 1}H-and {sup 13}C- NMR). The appropriate disconnections and the mechanisms of the corresponding reactions were given and discussed in chapter three. The spectral data were interpreted and correlated with the target structures. The prepared 2-phenyl- and 2,3-diphenyl-quinoline-4-carboxylic acid derivatives were screened for their antibacterial activity. The compounds were tested against the standard bacterial organisms B. subtilis, S. aureus, E. coli and P. vulgaris. Some of these compounds were devoid of antibacterial activity against S. aureus and P. vulgaris, while others showed moderate activity. All of the tested compounds showed an activity against B. subtilis and E. coli. 2,3-diphenyl -6-sulphanilamide-quinolin-4-carboxylic acid showed the highest activity against the four standard tested organisms.(Author)

  13. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  14. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    Science.gov (United States)

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented.

  15. Identification of fungal oxaloacetate hydrolyase within the isocitrate lyase/PEP mutase enzyme superfamily using a sequence marker-based method

    NARCIS (Netherlands)

    Joosten, H.J.; Han, Y.; Niu, W.; Vervoort, J.J.M.; Dunaway-Mariano, D.; Schaap, P.J.

    2008-01-01

    Aspergillus niger produces oxalic acid through the hydrolysis of oxaloacetate, catalyzed by the cytoplasmic enzyme oxaloacetate acetylhydrolase (OAH). The A. niger genome encodes four additional open reading frames with strong sequence similarity to OAH yet only the oahA gene encodes OAH activity.

  16. Oxaloacetate hydrolase, the C-C bond lyase of oxalate secreting fungi

    NARCIS (Netherlands)

    Han, Y.; Joosten, H.J.; Niu, W.; Zhao, Z.; Mariano, P.S.; McCalman, M.; Kan, van J.; Schaap, P.J.; Dunaway-Mariano, D.

    2007-01-01

    Oxalate secretion by fungi is known to be associated with fungal pathogenesis. In addition, oxalate toxicity is a concern for the commercial application of fungi in the food and drug industries. Although oxalate is generated through several different biochemical pathways, oxaloacetate

  17. Loss of Mitochondrial Pyruvate Carrier 2 in Liver Leads to Defects in Gluconeogenesis and Compensation via Pyruvate-Alanine Cycling

    Science.gov (United States)

    McCommis, Kyle S.; Chen, Zhouji; Fu, Xiaorong; McDonald, William G.; Colca, Jerry R.; Kletzien, Rolf F.; Burgess, Shawn C.; Finck, Brian N.

    2015-01-01

    SUMMARY Pyruvate transport across the inner mitochondrial membrane is believed to be a prerequisite step for gluconeogenesis in hepatocytes, which is important for maintenance of normoglycemia during prolonged food deprivation, but also contributes to hyperglycemia in diabetes. To determine the requirement for mitochondrial pyruvate import in gluconeogenesis, mice with liver-specific deletion of mitochondrial pyruvate carrier 2 (LS-Mpc2−/−) were generated. Loss of MPC2 impaired, but did not completely abolish, hepatocyte pyruvate metabolism, labelled pyruvate conversion to TCA cycle intermediates and glucose, and glucose production from pyruvate. Unbiased metabolomic analyses of livers from fasted LS-Mpc2−/− mice suggested that alterations in amino acid metabolism, including pyruvate-alanine cycling, might compensate for loss of MPC2. Indeed, inhibition of pyruvate-alanine transamination further reduced mitochondrial pyruvate metabolism and glucose production by LS-Mpc2−/− hepatocytes. These data demonstrate an important role for MPC2 in controlling hepatic gluconeogenesis and illuminate a compensatory mechanism for circumventing a block in mitochondrial pyruvate import. PMID:26344101

  18. Pyruvate reduces 4-aminophenol in vitro toxicity

    International Nuclear Information System (INIS)

    Harmon, R. Christopher; Kiningham, Kinsley K.; Valentovic, Monica A.

    2006-01-01

    Pyruvate has been observed to reduce the nephrotoxicity of some agents by maintaining glutathione status and preventing lipid peroxidation. This study examined the mechanism for pyruvate protection of p-aminophenol (PAP) nephrotoxicity. Renal cortical slices from male Fischer 344 rats were incubated for 30-120 min with 0, 0.1, 0.25 or 0.5 mM PAP in oxygenated Krebs buffer containing 0 or 10 mM pyruvate or glucose (1.28 or 5.5 mM). LDH leakage was increased above control by 0.25 and 0.5 mM PAP beginning at 60 min and by 0.1 mM PAP at 120 min. Pyruvate prevented an increase in LDH leakage at 60- and 120-min exposure to 0.1 and 0.25 mM PAP. Pyruvate also prevented a decline in ATP levels. Glucose (1.28 and 5.5 mM) provided less protection than pyruvate from PAP toxicity. Total glutathione levels were diminished by 0.1 and 0.25 mM PAP within 60 and 30 min, respectively. Pyruvate prevented the decline in glutathione by 0.1 mM PAP at both time periods and at 30 min for 0.25 mM PAP. Pyruvate reduced the magnitude of glutathione depletion by 0.25 mM PAP following a 60-min incubation. Glutathione disulfide (GSSG) levels in renal slices were increased at 60 min by exposure to 0.25 mM PAP, while pyruvate prevented increased GSSG levels by PAP. Pyruvate also reduced the extent of 4-hydroxynonenal (4-HNE)-adducted proteins present after a 90-min incubation with PAP. These results indicate that pyruvate provided protection for PAP toxicity by providing an energy substrate and reducing oxidative stress

  19. Insulin-induced inhibition of gluconeogenesis genes, including glutamic pyruvic transaminase 2, is associated with reduced histone acetylation in a human liver cell line.

    Science.gov (United States)

    Honma, Kazue; Kamikubo, Michiko; Mochizuki, Kazuki; Goda, Toshinao

    2017-06-01

    Hepatic glutamic pyruvic transaminase (GPT; also known as alanine aminotransferase) is a gluconeogenesis enzyme that catalyzes conversions between alanine and pyruvic acid. It is also used as a blood biomarker for hepatic damage. In this study, we investigated whether insulin regulates GPT expression, as it does for other gluconeogenesis genes, and if this involves the epigenetic modification of histone acetylation. Human liver-derived HepG2 cells were cultured with 0.5-100nM insulin for 8h, and the mRNA expression of GPT, glutamic-oxaloacetic transaminase (GOT), γ-glutamyltransferase (GGT), PCK1, G6PC and FBP1 was measured. We also investigated the extent of histone acetylation around these genes. Insulin suppressed the mRNA expression of gluconeogenesis genes (GPT2, GOT1, GOT2, GGT1, GGT2, G6PC, and PCK1) in HepG2 cells in a dose-dependent manner. mRNA levels of GPT2, but not GPT1, were decreased by insulin. Histone acetylation was also reduced around GPT2, G6PC, and PCK1 in response to insulin. The expression of GPT2 and other gluconeogenesis genes such as G6PC and PCK1 was suppressed by insulin, in association with decreases in histone H3 and H4 acetylation surrounding these genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Cui et al., Afr J Tradit Complement Altern Med. (2016) 13(5):114-122 ...

    African Journals Online (AJOL)

    oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) in serum, .... [2, 2′-azino-bis (3-ethylbenzothiazoline)-6-sulphonic acid] diamonium salt ..... Chaenomeles sinensis fruit extract in streptozotocin-induced diabetic rats.

  1. Ethyl Pyruvate Emerges as a Safe and Fast Acting Agent against Trypanosoma brucei by Targeting Pyruvate Kinase Activity.

    Directory of Open Access Journals (Sweden)

    Netsanet Worku

    Full Text Available Human African Trypanosomiasis (HAT also called sleeping sickness is an infectious disease in humans caused by an extracellular protozoan parasite. The disease, if left untreated, results in 100% mortality. Currently available drugs are full of severe drawbacks and fail to escape the fast development of trypanosoma resistance. Due to similarities in cell metabolism between cancerous tumors and trypanosoma cells, some of the current registered drugs against HAT have also been tested in cancer chemotherapy. Here we demonstrate for the first time that the simple ester, ethyl pyruvate, comprises such properties.The current study covers the efficacy and corresponding target evaluation of ethyl pyruvate on T. brucei cell lines using a combination of biochemical techniques including cell proliferation assays, enzyme kinetics, phasecontrast microscopic video imaging and ex vivo toxicity tests. We have shown that ethyl pyruvate effectively kills trypanosomes most probably by net ATP depletion through inhibition of pyruvate kinase (Ki = 3.0±0.29 mM. The potential of ethyl pyruvate as a trypanocidal compound is also strengthened by its fast acting property, killing cells within three hours post exposure. This has been demonstrated using video imaging of live cells as well as concentration and time dependency experiments. Most importantly, ethyl pyruvate produces minimal side effects in human red cells and is known to easily cross the blood-brain-barrier. This makes it a promising candidate for effective treatment of the two clinical stages of sleeping sickness. Trypanosome drug-resistance tests indicate irreversible cell death and a low incidence of resistance development under experimental conditions.Our results present ethyl pyruvate as a safe and fast acting trypanocidal compound and show that it inhibits the enzyme pyruvate kinase. Competitive inhibition of this enzyme was found to cause ATP depletion and cell death. Due to its ability to easily cross

  2. Phosphorylation site on yeast pyruvate dehydrogenase complex

    International Nuclear Information System (INIS)

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32 P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  3. Pyruvate Dehydrogenase and Pyruvate Dehydrogenase Kinase Expression in Non Small Cell Lung Cancer and Tumor-Associated Stroma

    Directory of Open Access Journals (Sweden)

    Michael I. Koukourakis

    2005-01-01

    Full Text Available Pyruvate dehydrogenase (PDH catalyzes the conversion of pyruvate to acetyl-coenzyme A, which enters into the Krebs cycle, providing adenosine triphosphate (ATP to the cell. PDH activity is under the control of pyruvate dehydrogenase kinases (PDKs. Under hypoxic conditions, conversion of pyruvate to lactate occurs, a reaction catalyzed by lactate dehydrogenase 5 (LDH5. In cancer cells, however, pyruvate is transformed to lactate occurs, regardless of the presence of oxygen (aerobic glycolysis/Warburg effect. Although hypoxic intratumoral conditions account for HIFia stabilization and induction of anaerobic metabolism, recent data suggest that high pyruvate concentrations also result in HIFia stabilization independently of hypoxia. In the present immunohistochemical study, we provide evidence that the PDH/PDK pathway is repressed in 73% of non small cell lung carcinomas, which may be a key reason for HIFia stabilization and “aerobic glycolysis.” However, about half of PDHdeficient carcinomas are not able to switch on the HIF pathway, and patients harboring these tumors have an excellent postoperative outcome. A small subgroup of clinically aggressive tumors maintains a coherent PDH and HIF/LDH5 expression. In contrast to cancer cells, fibroblasts in the tumor-supporting stroma exhibit an intense PDH but reduced PDK1 expression favoring maximum PDH activity. This means that stroma may use lactic acid produced by tumor cells, preventing the creation of an intolerable intratumoral acidic environment at the same time.

  4. Microorganisms and methods for producing pyruvate, ethanol, and other compounds

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Jennifer L.; Zhang, Xiaolin

    2017-12-26

    Microorganisms comprising modifications for producing pyruvate, ethanol, and other compounds. The microorganisms comprise modifications that reduce or ablate activity of one or more of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, phosphate acetyltransferase, acetate kinase, pyruvate oxidase, lactate dehydrogenase, cytochrome terminal oxidase, succinate dehydrogenase, 6-phosphogluconate dehydrogenase, glutamate dehydrogenase, pyruvate formate lyase, pyruvate formate lyase activating enzyme, and isocitrate lyase. The microorganisms optionally comprise modifications that enhance expression or activity of pyruvate decarboxylase and alcohol dehydrogenase. The microorganisms are optionally evolved in defined media to enhance specific production of one or more compounds. Methods of producing compounds with the microorganisms are provided.

  5. Ethyl pyruvate protects colonic anastomosis from ischemia-reperfusion injury.

    Science.gov (United States)

    Unal, B; Karabeyoglu, M; Huner, T; Canbay, E; Eroglu, A; Yildirim, O; Dolapci, M; Bilgihan, A; Cengiz, O

    2009-03-01

    Ethyl pyruvate is a simple derivative in Ca(+2)- and K(+)-containing balanced salt solution of pyruvate to avoid the problems associated with the instability of pyruvate in solution. It has been shown to ameliorate the effects of ischemia-reperfusion (I/R) injury in many organs. It has also been shown that I/R injury delays the healing of colonic anastomosis. In this study, the effect of ethyl pyruvate on the healing of colon anastomosis and anastomotic strength after I/R injury was investigated. Anastomosis of the colon was performed in 32 adult male Wistar albino rats divided into 4 groups of 8 individuals: (1) sham-operated control group (group 1); (2) 30 minutes of intestinal I/R by superior mesenteric artery occlusion (group 2); (3) I/R+ ethyl pyruvate (group 3), ethyl pyruvate was administered as a 50-mg/kg/d single dose; and (4) I/R+ ethyl pyruvate (group 4), ethyl pyruvate administration was repeatedly (every 6 hours) at the same dose (50 mg/kg). On the fifth postoperative day, animals were killed. Perianastomotic tissue hydroxyproline contents and anastomotic bursting pressures were measured in all groups. When the anastomotic bursting pressures and tissue hydroxyproline contents were compared, it was found that they were decreased in group 2 when compared with groups 1, 3, and 4 (P .05). Ethyl pyruvate significantly prevents the delaying effect of I/R injury on anastomotic strength and healing independent from doses of administration.

  6. Crystal structure of Cryptosporidium parvum pyruvate kinase.

    Directory of Open Access Journals (Sweden)

    William J Cook

    Full Text Available Pyruvate kinase plays a critical role in cellular metabolism of glucose by serving as a major regulator of glycolysis. This tetrameric enzyme is allosterically regulated by different effector molecules, mainly phosphosugars. In response to binding of effector molecules and substrates, significant structural changes have been identified in various pyruvate kinase structures. Pyruvate kinase of Cryptosporidium parvum is exceptional among known enzymes of protozoan origin in that it exhibits no allosteric property in the presence of commonly known effector molecules. The crystal structure of pyruvate kinase from C. parvum has been solved by molecular replacement techniques and refined to 2.5 Å resolution. In the active site a glycerol molecule is located near the γ-phosphate site of ATP, and the protein structure displays a partially closed active site. However, unlike other structures where the active site is closed, the α6' helix in C. parvum pyruvate kinase unwinds and assumes an extended conformation. In the crystal structure a sulfate ion is found at a site that is occupied by a phosphate of the effector molecule in many pyruvate kinase structures. A new feature of the C. parvum pyruvate kinase structure is the presence of a disulfide bond cross-linking the two monomers in the asymmetric unit. The disulfide bond is formed between cysteine residue 26 in the short N-helix of one monomer with cysteine residue 312 in a long helix (residues 303-320 of the second monomer at the interface of these monomers. Both cysteine residues are unique to C. parvum, and the disulfide bond remained intact in a reduced environment. However, the significance of this bond, if any, remains unknown at this time.

  7. Seasonal variations of low molecular weight hydroxy-dicarboxylic acids and oxaloacetic acid in remote marine aerosols from Chichijima Island in the western North Pacific (December 2010-November 2011)

    Science.gov (United States)

    Gowda, Divyavani; Kawamura, Kimitaka

    2018-05-01

    Concentrations of homologous hydroxy-dicarboxylic acids (diacids) (hC3-hC6) and keto-diacid (oxaloacetic acid) were measured in the atmospheric aerosols collected at Chichijima Island (27.04° N, 142.13° E) in the western North Pacific from December 2010 to November 2011. The monthly averaged concentrations of hydroxy-diacids and oxaloacetic acid were significantly higher in spring followed by winter and autumn. Molecular distributions of hydroxy-diacids demonstrated that malic acid was the most abundant species in all four seasons, followed by tartronic acid in winter and spring and 3- and 2-hydroxyglutaric acids in summer and autumn. Hydroxy-diacids and keto-diacid maximized in spring and winter when air masses originated from the Asian continent with westerly winds. The concentrations of total hydroxy-diacids and oxaloacetic acid ranged from 0.1 to 27.3 ng m-3 and Asia to remote Chichijima Island followed by photochemical processing of organic aerosols. Seasonal molecular distribution of hydroxy-diacids and oxaloacetic acid was found to be dependent on the source strengths and plausible photochemical processing to form smaller diacids. Moderate to strong correlations among hydroxy-diacids, oxaloacetic acid and low molecular weight (LMW) diacids suggest that hydroxy-diacids and oxaloacetic acid are the intermediates in the photochemical oxidation of LMW diacid. Hence, photochemical formation of the most abundant LMW diacids, i.e., oxalic acid, could be produced from hydroxy- and keto-diacid as intermediates.

  8. Recombinant thermoactive phosphoenolpyruvate carboxylase (PEPC) from Thermosynechococcus elongatus and its coupling with mesophilic/thermophilic bacterial carbonic anhydrases (CAs) for the conversion of CO2 to oxaloacetate.

    Science.gov (United States)

    Del Prete, Sonia; De Luca, Viviana; Capasso, Clemente; Supuran, Claudiu T; Carginale, Vincenzo

    2016-01-15

    With the continuous increase of atmospheric CO2 in the last decades, efficient methods for carbon capture, sequestration, and utilization are urgently required. The possibility of converting CO2 into useful chemicals could be a good strategy to both decreasing the CO2 concentration and for achieving an efficient exploitation of this cheap carbon source. Recently, several single- and multi-enzyme systems for the catalytic conversion of CO2 mainly to bicarbonate have been implemented. In order to design and construct a catalytic system for the conversion of CO2 to organic molecules, we implemented an in vitro multienzyme system using mesophilic and thermophilic enzymes. The system, in fact, was constituted by a recombinant phosphoenolpyruvate carboxylase (PEPC) from the thermophilic cyanobacterium Thermosynechococcus elongatus, in combination with mesophilic/thermophilic bacterial carbonic anhydrases (CAs), for converting CO2 into oxaloacetate, a compound of potential utility in industrial processes. The catalytic procedure is in two steps: the conversion of CO2 into bicarbonate by CA, followed by the carboxylation of phosphoenolpyruvate with bicarbonate, catalyzed by PEPC, with formation of oxaloacetate (OAA). All tested CAs, belonging to α-, β-, and γ-CA classes, were able to increase OAA production compared to procedures when only PEPC was used. Interestingly, the efficiency of the CAs tested in OAA production was in good agreement with the kinetic parameters for the CO2 hydration reaction of these enzymes. This PEPC also revealed to be thermoactive and thermostable, and when coupled with the extremely thermostable CA from Sulphurhydrogenibium azorense (SazCA) the production of OAA was achieved even if the two enzymes were exposed to temperatures up to 60 °C, suggesting a possible role of the two coupled enzymes in biotechnological processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effects of aqueous extract of Basella alba leaves on haematological ...

    African Journals Online (AJOL)

    Jane

    2010-09-02

    Sep 2, 2010 ... It is high in vitamin A, vitamin C, vitamin B9 (folic acid), calcium ..... noids in serum of control and insulin dependent diabetic Spanish subjects. Clin. Chem. ... of serum glutamic oxaloacetic and glutamic pyruvic transaminases.

  10. Dynamics of pyruvate metabolism in Lactococcus lactis

    DEFF Research Database (Denmark)

    Melchiorsen, Claus Rix; Jensen, Niels B.S.; Christensen, Bjarke

    2001-01-01

    The pyruvate metabolism in the lactic acid bacterium Lactococcus lactis was studied in anaerobic cultures under transient conditions. During growth of L. lactis in continuous culture at high dilution rate, homolactic product formation was observed, i.e., lactate was produced as the major end...... product. At a lower dilution rate, the pyruvate metabolism shifted towards mixed acid-product formation where formate, acetate, and ethanol were produced in addition to lactate. The regulation of the shift in pyruvate metabolism was investigated by monitoring the dynamic behavior of L. lactis...

  11. Cerebrospinal fluid lactate and pyruvate concentrations and their ratio.

    Science.gov (United States)

    Zhang, Wan-Ming; Natowicz, Marvin R

    2013-05-01

    Determinations of cerebrospinal fluid (CSF) lactate and pyruvate concentrations and CSF lactate:pyruvate (L/P) ratios are important in several clinical settings, yet published normative data have significant limitations. We sought to determine a large dataset of stringently-defined normative data for CSF lactate and pyruvate concentrations and CSF L/P ratios. We evaluated data from 627 patients who had determinations of CSF lactate and/or CSF pyruvate from 2001 to 2011 at the Cleveland Clinic. Inclusion in the normal reference population required normal CSF cell counts, glucose and protein and routine serum chemistries and absence of progressive brain disorder, epilepsy, or seizure within 24h. Brain MRI, if done, showed no evidence of tumor, acute changes or basal ganglia abnormality. CSF cytology, CSF alanine and immunoglobulin levels, and oligoclonal band analysis were required to be normal, if done. Various inclusion/exclusion criteria were compared. 92 patients fulfilled inclusion/exclusion criteria for a reference population. The 95% central intervals (2.5%-97.5%) for CSF lactate and pyruvate levels were 1.01-2.09mM and 0.03-0.15mM, respectively, and 9.05-26.37 for CSF L/P. There were no significant gender-related differences of CSF lactate or pyruvate concentrations or of CSF L/P. Weak positive correlations between the concentration of CSF lactate or pyruvate and age were noted. Using stringent inclusion/exclusion criteria, we determined normative data for CSF lactate and pyruvate concentrations and CSF L/P ratios in a large, well-characterized reference population. Normalcy of routine CSF and blood analytes are the most important parameters in determining reference intervals for CSF lactate and pyruvate. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  12. Neuronal-glial trafficking

    International Nuclear Information System (INIS)

    Bachelard, H.S.

    2001-01-01

    , PC) or phosphoenolpyruvate (PEP carboxykinase), to produce oxaloacetate, or via malic enzyme to produce malate. Of these the glial PC is thought to be the most important, and the proportion of pyruvate entering the TCA indirectly via carboxylation to that entering directly via pyruvate dehydrogenase was calculated to be 5 - 10 % using [2- 13 C] glucose

  13. Pyruvate transport by thermogenic-tissue mitochondria.

    OpenAIRE

    Proudlove, M O; Beechey, R B; Moore, A L

    1987-01-01

    1. Mitochondria isolated from the thermogenic spadices of Arum maculatum and Sauromatum guttatum plants oxidized external NADH, succinate, citrate, malate, 2-oxoglutarate and pyruvate without the need to add exogenous cofactors. 2. Oxidation of substrates was virtually all via the alternative oxidase, the cytochrome pathway constituting only 10-20% of the total activity, depending on the stage of spadix development. 3. During later stages of spadix development, pyruvate oxidation was enhanced...

  14. Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle.

    Science.gov (United States)

    Gameiro, Paulo A; Laviolette, Laura A; Kelleher, Joanne K; Iliopoulos, Othon; Stephanopoulos, Gregory

    2013-05-03

    Cancer and proliferating cells exhibit an increased demand for glutamine-derived carbons to support anabolic processes. In addition, reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) was recently shown to be a major source of citrate synthesis from glutamine. The role of NAD(P)H/NAD(P)(+) cofactors in coordinating glucose and glutamine utilization in the tricarboxylic acid (TCA) cycle is not well understood, with the source(s) of NADPH for the reductive carboxylation reaction remaining unexplored. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial enzyme that transfers reducing equivalents from NADH to NADPH. Here, we show that knockdown of NNT inhibits the contribution of glutamine to the TCA cycle and activates glucose catabolism in SkMel5 melanoma cells. The increase in glucose oxidation partially occurred through pyruvate carboxylase and rendered NNT knockdown cells more sensitive to glucose deprivation. Importantly, knocking down NNT inhibits reductive carboxylation in SkMel5 and 786-O renal carcinoma cells. Overexpression of NNT is sufficient to stimulate glutamine oxidation and reductive carboxylation, whereas it inhibits glucose catabolism in the TCA cycle. These observations are supported by an impairment of the NAD(P)H/NAD(P)(+) ratios. Our findings underscore the role of NNT in regulating central carbon metabolism via redox balance, calling for other mechanisms that coordinate substrate preference to maintain a functional TCA cycle.

  15. The Role of Pyruvate Dehydrogenase Kinase in Diabetes and Obesity

    Directory of Open Access Journals (Sweden)

    In-Kyu Lee

    2014-06-01

    Full Text Available The pyruvate dehydrogenase complex (PDC is an emerging target for the treatment of metabolic syndrome. To maintain a steady-state concentration of adenosine triphosphate during the feed-fast cycle, cells require efficient utilization of fatty acid and glucose, which is controlled by the PDC. The PDC converts pyruvate, coenzyme A (CoA, and oxidized nicotinamide adenine dinucleotide (NAD+ into acetyl-CoA, reduced form of nicotinamide adenine dinucleotide (NADH, and carbon dioxide. The activity of the PDC is up- and down-regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase, respectively. In addition, pyruvate is a key intermediate of glucose oxidation and an important precursor for the synthesis of glucose, glycerol, fatty acids, and nonessential amino acids.

  16. Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyun; Kang, Jeong Wook [Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Lee, Dong Won [Department of Plastic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Oh, Sang Ho [Department of Dermatology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Lee, Yun-Sil [College of Pharmacy & Division of Life and Pharmaceutical Sciences, Ewah Womans University, Seoul 120-750 (Korea, Republic of); Lee, Eun-Jung [Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Cho, Jaeho, E-mail: jjhmd@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2015-05-08

    Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a high cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. - Highlights: • The effects of radiation on skin thickness in mice. • Next generation sequencing revealed that radiation inhibited pyruvate dehydrogenase kinase 2 expression. • PDK2 inhibited irradiation-induced cytokine gene expression. • Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness.

  17. Exogenous pyruvate facilitates cancer cell adaptation to hypoxia by serving as an oxygen surrogate.

    Science.gov (United States)

    Yin, Chengqian; He, Dan; Chen, Shuyang; Tan, Xiaoling; Sang, Nianli

    2016-07-26

    Molecular oxygen is the final electron acceptor in cellular metabolism but cancer cells often become adaptive to hypoxia, which promotes resistance to chemotherapy and radiation. The reduction of endogenous glycolytic pyruvate to lactate is known as an adaptive strategy for hypoxic cells. Whether exogenous pyruvate is required for hypoxic cell proliferation by either serving as an electron acceptor or a biosynthetic substrate remains unclear. By using both hypoxic and ρ0 cells defective in electron transfer chain, we show that exogenous pyruvate is required to sustain proliferation of both cancer and non-cancer cells that cannot utilize oxygen. Particularly, we show that absence of pyruvate led to glycolysis inhibition and AMPK activation along with decreased NAD+ levels in ρ0 cells; and exogenous pyruvate increases lactate yield, elevates NAD+/NADH ratio and suppresses AMPK activation. Knockdown of lactate dehydrogenase significantly inhibits the rescuing effects of exogenous pyruvate. In contrast, none of pyruvate-derived metabolites tested (including acetyl-CoA, α-ketoglutarate, succinate and alanine) can replace pyruvate in supporting ρ0 cell proliferation. Knockdown of pyruvate carboxylase, pyruvate dehydrogenase and citrate synthase do not impair exogenous pyruvate to rescue ρ0 cells. Importantly, we show that exogenous pyruvate relieves ATP insufficiency and mTOR inhibition and promotes proliferation of hypoxic cells, and that well-oxygenated cells release pyruvate, providing a potential in vivo source of pyruvate. Taken together, our data support a novel pyruvate cycle model in which oxygenated cells release pyruvate for hypoxic cells as an oxygen surrogate. The pyruvate cycle may be targeted as a new therapy of hypoxic cancers.

  18. An improved method for the assay of platelet pyruvate dehydrogenase

    International Nuclear Information System (INIS)

    Schofield, P.J.; Griffiths, L.R.; Rogers, S.H.

    1980-01-01

    An improved method for the assay of human platelet pyruvate dehydrogenase is described. By generating the substrate [1- 14 C]pyruvate in situ from [1- 14 C]lactate plus L-lactate dehydrogenase, the rate of spontaneous decarboxylation is dramatically reduced, allowing far greater sensitivity in the assay of low activities of pyruvate dehydrogenase. In addition, no special precautions are required for the storage and use of [1- 14 C]lactate, in contrast to those for [1- 14 C]pyruvate. These factors allow a 5-10-fold increase in sensitivity compared with current methods. The pyruvate dehydrogenase activity of normal subjects as determined by the [1- 14 C]lactate system was 215+-55 pmol min -1 mg -1 protein (n=18). The advantages of this assay system are discussed. (Auth.)

  19. Cofactor Balance by Nicotinamide Nucleotide Transhydrogenase (NNT) Coordinates Reductive Carboxylation and Glucose Catabolism in the Tricarboxylic Acid (TCA) Cycle*♦

    Science.gov (United States)

    Gameiro, Paulo A.; Laviolette, Laura A.; Kelleher, Joanne K.; Iliopoulos, Othon; Stephanopoulos, Gregory

    2013-01-01

    Cancer and proliferating cells exhibit an increased demand for glutamine-derived carbons to support anabolic processes. In addition, reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) was recently shown to be a major source of citrate synthesis from glutamine. The role of NAD(P)H/NAD(P)+ cofactors in coordinating glucose and glutamine utilization in the tricarboxylic acid (TCA) cycle is not well understood, with the source(s) of NADPH for the reductive carboxylation reaction remaining unexplored. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial enzyme that transfers reducing equivalents from NADH to NADPH. Here, we show that knockdown of NNT inhibits the contribution of glutamine to the TCA cycle and activates glucose catabolism in SkMel5 melanoma cells. The increase in glucose oxidation partially occurred through pyruvate carboxylase and rendered NNT knockdown cells more sensitive to glucose deprivation. Importantly, knocking down NNT inhibits reductive carboxylation in SkMel5 and 786-O renal carcinoma cells. Overexpression of NNT is sufficient to stimulate glutamine oxidation and reductive carboxylation, whereas it inhibits glucose catabolism in the TCA cycle. These observations are supported by an impairment of the NAD(P)H/NAD(P)+ ratios. Our findings underscore the role of NNT in regulating central carbon metabolism via redox balance, calling for other mechanisms that coordinate substrate preference to maintain a functional TCA cycle. PMID:23504317

  20. Pyruvate kinase blood test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003357.htm Pyruvate kinase blood test To use the sharing features on this page, ... energy when oxygen levels are low. How the Test is Performed A blood sample is needed. In the laboratory, white blood ...

  1. Effect of methanolic extract of Hibiscus sabdariffa in ethanol-induced ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate the activity of Hibiscus sabdariffa on the liver of rats following repeated administration of ethanol. Hepatotoxicity was induced on the rats using ethanol and the levels of serum enzymes such as serum glutamic pyruvic transaminase (SGPT), serum glutamic oxaloacetic transaminase ...

  2. Amperometric pyruvate sensor based on a pyruvate dehydrogenase-immobilized carbon paste electrode containing vitamin K3 as a mediator

    Energy Technology Data Exchange (ETDEWEB)

    Miki, K. [Nara National College of Technology, Nara (Japan); Kinoshita, H. [Kawassui Women`s College, Nagasaki (Japan); Yamamoto, Y. [Kyoto Municipal Junior College of Nursing, Kyoto (Japan); Taniguchi, N. [Kyoto Research Center for Hygiene, Kyoto (Japan); Ikeda, T. [Kyoto University, Kyoto (Japan). Faculty of Agriculture

    1995-12-05

    Pyruvate dehydrogenase (PDH) was immobilized on the surface of a carbon paste electrode containing vitamin K3 (2-Methyl-1,4-naphthoquinone, VK), and the electrode surface was covered with a dialysis membrane. The enzyme electrode produced an anodic current starting from -0.2 V to reach a limiting current at +0.1 V vs. Ag/AgCl due to the enzyme-catalyzed oxidation of pyruvate in a phosphate buffer solution of pH 7.0. The current response to pyruvate depended on the amounts of both the immobilized-PDH and VK mixed in the carbon paste electrode at low amount of the enzyme and VK, and became independent at above 0.15 mg PDH and 0.65% (w/w) VK. The electrode with 0.15mg PDH and 0.65% (w/w) VK could be used as a pyruvate sensor to measure in the range of 2 ,{mu}M to 3mM. The response time was about 60 sec, and the current was independent of pH in the range of 5.7 - 7.2. The presence of L-ascorbic acid didn`t interfere with this measurement. Phosphate ion could also be determined with this electrode in a citrate buffer solution. 14 refs., 6 figs., 1 tab.

  3. Changes in myocardial lactate, pyruvate and lactate-pyruvate ratio during cardiopulmonary bypass for elective adult cardiac surgery: Early indicator of morbidity

    Directory of Open Access Journals (Sweden)

    P M Kapoor

    2011-01-01

    Full Text Available Background: Myocardial lactate assays have been established as a standard method to compare various myocardial protection strategies. This study was designed to test whether coronary sinus (CS lactates, pyruvate and lactate-pyruvate (LP ratio correlates with myocardial dysfunction and predict postoperative outcomes. Materials and Methods: This prospective observational study was conducted on 40 adult patients undergoing elective cardiac surgery with the aid of cardiopulmonary bypass (CPB. CS blood sampling was done for estimation of myocardial lactate (ML, pyruvate (MP and lactate-pyruvate ratio (MLPR namely: pre-CPB (T 1 , after removal of aortic cross clamp (T 2 and 30 minutes post-CPB (T 3 . Results: Baseline myocardial LPR strongly correlated with Troponin-I at T1 (s: 0.6. Patients were sub grouped according to the median value of myocardial lactate (2.9 at baseline T1 into low myocardial lactate (LML group, mean (2.39±0.4 mmol/l, n=19 and a high myocardial lactate (HML group, mean (3.65±0.9 mmol/l, n=21. A significant increase in PL, ML, MLPR and TropI occurred in both groups as compared to baseline. Patients in HML group had significant longer period of ICU stay. Patients with higher inotrope score had significantly higher ML (T2, T3. ML with a baseline value of 2.9 mmol/l had 70.83% sensitivity and 62.5% specificity (ROC area: 0.7109 Std error: 0.09 while myocardial pyruvate with a baseline value of 0.07 mmol/l has 79.17% sensitivity and 68.75% specificity (ROC area: 0.7852, Std error: 0.0765 for predicting inotrope requirement after CPB. Conclusion: CS lactate, pyruvate and LP ratio correlate with myocardial function and can predict postoperative outcome.

  4. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    Science.gov (United States)

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  5. Detection of myocardial ischemia before infarction, based on accumulation of labeled pyruvate

    International Nuclear Information System (INIS)

    Goldstein, R.A.; Klein, M.S.; Sobel, B.E.

    1980-01-01

    To determine whether ischemic, but not irreversibly injured myocardium, can be differentiated from normal tissue based on accumulation of labeled pyruvate, isolated hearts were perfused with buffer containing [ 14 C]pyruvate under conditions of normal or low flow. Fifteen minutes after the hearts were exposed to labeled material, myocardial radioactivity was fourfold greater in ischemic compared to control hearts, due to accumulation of label in sequestered lactate produced from the pyruvate. Open-chest rabbits subjected to coronary occlusion exhibited a 1.73:1 ratio of radioactivity in ischemic compared with normal myocardium 15 min after systemic injection of [ 14 C]pyruvate. The results obtained suggest that zones of myocardial ischemia should be detectable in vivo by positron tomography after systemic administration of [ 11 C]pyruvate as well

  6. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Richard L. [Colorado School of Mines, Golden, CO (United States)

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate

  7. Mass spectrometric behaviour of carboxylated polyethylene glycols and carboxylated octylphenol ethoxylates.

    Science.gov (United States)

    Frańska, Magdalena; Zgoła, Agnieszka; Rychłowska, Joanna; Szymański, Andrzej; Łukaszewski, Zenon; Frański, Rafał

    2003-01-01

    Mass spectrometric behaviour of mono- and di-carboxylated polyethylene glycols (PEGCs and CPEGCs) and carboxylated octylphenol ethoxylates (OPECs) are discussed. The tendency for ionisation (deprotonation, protonation and cationisation by alkali metal cations) of carboxylated PEGs was compared with that of non-carboxylated correspondents by using both secondary ion mass spectrometry (SIMS) and electrospray ionisation (ESI). The fragmentation of the PEGCs and CPEGCs is discussed and also compared with their neutral correspondents, PEGs. The B/E mass spectra were recorded, using secondary ion mass spectrometry as a method for generation, for deprotonated and protonated molecules and molecules cationised by alkali metal cations. The fragmentation behaviour of PEGs is found to be different from that of CPEGCs, The presence of carboxylic groups may be confirmed not only by the determination of molecular weights of the ethoxylates studied, but also on the basis of the fragment ions formed. The metastable decomposition of the [OPEC-H](-) ions proceed through the cleavage of the bond between the octylphenol moiety and the ethoxylene chain leading to the octylphenoxy anions. It permits determination of the mass of the hydrophobic moiety of the studied carboxylated alkylphenol ethoxylate. ESI mass spectra recorded in the negative ion mode were found to be more suitable for the determination of the average molecular weight of carboxylated ethoxylates than SI mass spectra.

  8. Improved sake metabolic profile during fermentation due to increased mitochondrial pyruvate dissimilation.

    Science.gov (United States)

    Agrimi, Gennaro; Mena, Maria C; Izumi, Kazuki; Pisano, Isabella; Germinario, Lucrezia; Fukuzaki, Hisashi; Palmieri, Luigi; Blank, Lars M; Kitagaki, Hiroshi

    2014-03-01

    Although the decrease in pyruvate secretion by brewer's yeasts during fermentation has long been desired in the alcohol beverage industry, rather little is known about the regulation of pyruvate accumulation. In former studies, we developed a pyruvate under-secreting sake yeast by isolating a strain (TCR7) tolerant to ethyl α-transcyanocinnamate, an inhibitor of pyruvate transport into mitochondria. To obtain insights into pyruvate metabolism, in this study, we investigated the mitochondrial activity of TCR7 by oxigraphy and (13) C-metabolic flux analysis during aerobic growth. While mitochondrial pyruvate oxidation was higher, glycerol production was decreased in TCR7 compared with the reference. These results indicate that mitochondrial activity is elevated in the TCR7 strain with the consequence of decreased pyruvate accumulation. Surprisingly, mitochondrial activity is much higher in the sake yeast compared with CEN.PK 113-7D, the reference strain in metabolic engineering. When shifted from aerobic to anaerobic conditions, sake yeast retains a branched mitochondrial structure for a longer time than laboratory strains. The regulation of mitochondrial activity can become a completely novel approach to manipulate the metabolic profile during fermentation of brewer's yeasts. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Enzymatic synthesis of 11C-pyruvic acid and 11C-L-lactic acid

    International Nuclear Information System (INIS)

    Cohen, M.B.; Spolter, L.; Chang, C.C.; Cook, J.S.; Macdonald, N.S.

    1980-01-01

    L-Lactic acid is formed as the end product of glycolysis under anaerobic conditions in all cells, but this reaction is of special significance in the myocardium. L-Lactic acid is reversibly formed from and is in equilibrium with myocardial pyruvic acid, which is its sole metabolic pathway. 11 C-Pyruvic acid is synthesized from 11 C carbon dioxide using pyruvate-ferredoxin oxidoreductase and coenzymes. The 11 C-pyruvic acid is then converted to 11 -L-lactic acid by lactic acid dehydrogenase. The availability of 11 C-pyruvic acid and 11 C-L-lactic acid will permit the in vivo investigation of lactate metabolism. (author)

  10. Pyruvate dehydrogenase kinase inhibition: Reversing the Warburg effect in cancer therapy

    Directory of Open Access Journals (Sweden)

    Hayden Bell

    2016-06-01

    Full Text Available The poor efficacy of many cancer chemotherapeutics, which are often non-selective and highly toxic, is attributable to the remarkable heterogeneity and adaptability of cancer cells. The Warburg effect describes the up regulation of glycolysis as the main source of adenosine 5’-triphosphate in cancer cells, even under normoxic conditions, and is a unique metabolic phenotype of cancer cells. Mitochondrial suppression is also observed which may be implicated in apoptotic suppression and increased funneling of respiratory substrates to anabolic processes, conferring a survival advantage. The mitochondrial pyruvate dehydrogenase complex is subject to meticulous regulation, chiefly by pyruvate dehydrogenase kinase. At the interface between glycolysis and the tricarboxylic acid cycle, the pyruvate dehydrogenase complex functions as a metabolic gatekeeper in determining the fate of glucose, making pyruvate dehydrogenase kinase an attractive candidate in a bid to reverse the Warburg effect in cancer cells. The small pyruvate dehydrogenase kinase inhibitor dichloroacetate has, historically, been used in conditions associated with lactic acidosis but has since gained substantial interest as a potential cancer chemotherapeutic. This review considers the Warburg effect as a unique phenotype of cancer cells in-line with the history of and current approaches to cancer therapies based on pyruvate dehydrogenase kinase inhibition with particular reference to dichloroacetate and its derivatives.

  11. Binding of ethyl pyruvate to bovine serum albumin: Calorimetric, spectroscopic and molecular docking studies

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Mallika [Department of Chemistry, Miranda House, University of Delhi, Delhi 11007 (India); Mishra, Rashmi; Agarwala, Paban K. [Department of Radiation Genetics and Epigenetics, Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054 (India); Ojha, Himanshu, E-mail: himanshu.drdo@gmail.com [Department of Radiation Genetics and Epigenetics, Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054 (India); Singh, Bhawna [Department of Radiation Genetics and Epigenetics, Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054 (India); Singh, Anju; Kukreti, Shrikant [Nucleic Acid Research Laboratory, Department of Chemistry, University of Delhi, Delhi 11007 (India)

    2016-06-10

    Highlights: • ITC study showed binding of ethyl pyruvate with BSA with high binding affinity. • Ethyl pyruvate binding caused conformation alteration of BSA. • Fluorescence quenching mechanism is static in nature. • Electrostatic, hydrogen bonding and hydrophobic forces involved in binding. • Docking confirmed role of electrostatic, hydrogen bonding and hydrophobic forces. - Abstract: Various in vitro and in vivo studies have shown the anti-inflammatory and anticancer potential role of ethyl pyruvate. Bio-distribution of drugs is significantly influenced by the drug-serum protein binding. Therefore, the binding mechanism of the ethyl pyruvate with bovine serum albumin was investigated using UV–vis absorption, fluorescence, circular dichroism, isothermal titration calorimetry and molecular docking techniques. Absorption and fluorescence quenching studies indicated the binding of ethyl pyruvate with protein. Circular dichroism spectra of bovine serum albumin confirmed significant change in the conformation of protein upon binding. Thermodynamic data confirmed that ethyl pyruvate binds to bovine serum albumin at the two different sites with high affinity. Binding of ethyl pyruvate to bovine serum albumin involves hydrogen bonding, van der Waal and hydrophobic interactions. Further, docking studies indicated that ethyl pyruvate could bind significantly at the three binding sites. The results will definitely contribute to the development of ethyl pyruvate as drug.

  12. Pyruvate sensitizes pancreatic tumors to hypoxia-activated prodrug TH-302.

    Science.gov (United States)

    Wojtkowiak, Jonathan W; Cornnell, Heather C; Matsumoto, Shingo; Saito, Keita; Takakusagi, Yoichi; Dutta, Prasanta; Kim, Munju; Zhang, Xiaomeng; Leos, Rafael; Bailey, Kate M; Martinez, Gary; Lloyd, Mark C; Weber, Craig; Mitchell, James B; Lynch, Ronald M; Baker, Amanda F; Gatenby, Robert A; Rejniak, Katarzyna A; Hart, Charles; Krishna, Murali C; Gillies, Robert J

    2015-01-01

    Hypoxic niches in solid tumors harbor therapy-resistant cells. Hypoxia-activated prodrugs (HAPs) have been designed to overcome this resistance and, to date, have begun to show clinical efficacy. However, clinical HAPs activity could be improved. In this study, we sought to identify non-pharmacological methods to acutely exacerbate tumor hypoxia to increase TH-302 activity in pancreatic ductal adenocarcinoma (PDAC) tumor models. Three human PDAC cell lines with varying sensitivity to TH-302 (Hs766t > MiaPaCa-2 > SU.86.86) were used to establish PDAC xenograft models. PDAC cells were metabolically profiled in vitro and in vivo using the Seahorse XF system and hyperpolarized (13)C pyruvate MRI, respectively, in addition to quantitative immunohistochemistry. The effect of exogenous pyruvate on tumor oxygenation was determined using electroparamagnetic resonance (EPR) oxygen imaging. Hs766t and MiaPaCa-2 cells exhibited a glycolytic phenotype in comparison to TH-302 resistant line SU.86.86. Supporting this observation is a higher lactate/pyruvate ratio in Hs766t and MiaPaCa xenografts as observed during hyperpolarized pyruvate MRI studies in vivo. Coincidentally, response to exogenous pyruvate both in vitro (Seahorse oxygen consumption) and in vivo (EPR oxygen imaging) was greatest in Hs766t and MiaPaCa models, possibly due to a higher mitochondrial reserve capacity. Changes in oxygen consumption and in vivo hypoxic status to pyruvate were limited in the SU.86.86 model. Combination therapy of pyruvate plus TH-302 in vivo significantly decreased tumor growth and increased survival in the MiaPaCa model and improved survival in Hs766t tumors. Using metabolic profiling, functional imaging, and computational modeling, we show improved TH-302 activity by transiently increasing tumor hypoxia metabolically with exogenous pyruvate. Additionally, this work identified a set of biomarkers that may be used clinically to predict which tumors will be most responsive to

  13. Compartmented pyruvate in perfused working heart

    International Nuclear Information System (INIS)

    Buenger, R.

    1985-01-01

    Pyruvate compartmentation and lactate dehydrogenase (LDH) were studied in isolated perfused working guinea pig hearts. The mean intracellular pyruvate (Pyr) contents increased with perfusate Pyr (0-2 mM) but varied only slightly with glucose (0-10 mM) and additional insulin (0.04-5 U/l), respectively. With 5-10 mM glucose plus 5 U/l insulin, but not with Pyr or lactate (Lac) as substrates, a near equilibrium between the LDH and the glycerol-3-phosphate dehydrogenase seemed to exist. Evidence for an inhibitory effect of Pyr on the activity of the LDH system of the perfused hearts was not obtained. With [U- 14 C]glucose as sole substrate, the specific activity of coronary venous Lac was near half that of precursor glucose. 14 CO 2 production was thus in quantitative agreement with rates of pyruvate oxidation that were determined as glucose uptake minus (Pyr + Lac) release. In contrast, with 0.2 mM [1- 14 C]Pyr plus 5 mM glucose, the ratio of 14 CO 2 production to specific activity of Lac overestimated Pyr oxidation judged from myocardial substrate balances and O 2 uptake, respectively; here, at least three pools of [ 14 C]HCO-3 and [ 14 C]lac, respectively, were kinetically demonstrable during washout of trace amounts of 14 C-labeled Pyr. Evidently, the specific activity of Lac was equivalent to that of mitochondrial oxidized Pyr provided [ 14 C]glucose was the sole or major precursor of cellular pyruvate. However, exogenously applied [1- 14 C]Pyr of high specific activity seemed to induce intracellular formation of both a highly and lowly labeled Pyr; the latter Pyr compartment did not seem in ready equilibrium with the cell physiologically prevailing highly labeled Pyr pool

  14. Apparent rate constant mapping using hyperpolarized [1-(13) C]pyruvate

    DEFF Research Database (Denmark)

    Khegai, O.; Schulte, R. F.; Janich, M. A.

    2014-01-01

    Hyperpolarization of [1-13C]pyruvate in solution allows real-time measurement of uptake and metabolism using MR spectroscopic methods. After injection and perfusion, pyruvate is taken up by the cells and enzymatically metabolized into downstream metabolites such as lactate, alanine, and bicarbona...

  15. Decarboxylation of oxalacetate to pyruvate by purified avian liver phosphoenolpyruvate carboxykinase

    Energy Technology Data Exchange (ETDEWEB)

    Noce, P S; Utter, M F

    1975-01-01

    Phosphoenolpyruvate carboxykinase, which has been isolated from chicken liver mitochondria in essentially homogenous form, carries out the irreversible decarboxylation of oxalacetate to pyruvate in the presence of catalytic amounts of GDP or IDP, as well as the reversible decarboxylation of oxalacetate to phosphoenolpyruvate in the presence of substrate amounts of GTP or ITP. The pyruvate- and phosphoenolpyruvate-forming reactions are similar in their nucleoside specificity and appear to be carried out by the same protein. However, the two activities vary markedly in their response to added metal ions and sulfhydryl reagents. Phosphoenolpyruvate formation is completely dependent on the presence of a divalent metal ion, with Mn/sup 2 +/ the most effective species. This reaction is also stimulated by sulfhydryl reagents such as 2-mercaptoethanol. In contrast, the pyruvate-forming reaction is strongly inhibited by divalent metal ions, including Mn/sup 2 +/, and also by moderate concentrations of sulfhydryl reagents. These observations and the demonstration that pyruvate kinase-like activity is very low or absent make it unlikely that pyruvate formation proceeds via phosphoenolpyruvate as an intermediate. Although the pyruvate-forming reaction is inhibited by added metal ions, the reaction is also inhibited by metal-chelating agents such as 8-hydroxyquinoline and o-phenanthroline, suggesting that the reaction is dependent on the presence of a metal ion. It has not been possible, however, to demonstrate that the enzyme is a metalloprotein.

  16. Single pyruvate intake induces blood alkalization and modification of resting metabolism in humans.

    Science.gov (United States)

    Olek, Robert A; Luszczyk, Marcin; Kujach, Sylwester; Ziemann, Ewa; Pieszko, Magdalena; Pischel, Ivo; Laskowski, Radoslaw

    2015-03-01

    Three separate studies were performed with the aim to 1) determine the effect of a single sodium pyruvate intake on the blood acid-base status in males and females; 2) compare the effect of sodium and calcium pyruvate salts and establish their role in the lipolysis rate; and 3) quantify the effect of single pyruvate intake on the resting energy metabolism. In all, 48 individuals completed three separate studies. In all the studies, participants consumed a single dose of pyruvate 0.1 g/kg 60 min before commencing the measurements. The whole blood pH, bicarbonate concentration, base excess or plasma glycerol, free fatty acids, glucose concentrations, or resting energy expenditure and calculated respiratory exchange ratio were determined. The analysis of variance for repeated measurements was performed to examine the interaction between treatment and time. The single dose of sodium pyruvate induced blood alkalization, which was more marked in the male than in the female participants. Following the ingestion of sodium or calcium pyruvate, the blood acid-base parameters were higher than in the placebo trial. Furthermore, 3-h postingestion glycerol was lower in both pyruvate trials than in placebo. Resting energy expenditure did not differ between the trials; however, carbohydrate oxidation was increased after sodium pyruvate ingestion. Pyruvate intake induced mild alkalization in a sex-dependent fashion. Moreover, it accelerated carbohydrate metabolism and delayed the rate of glycerol appearance in the blood, but had no effect on the resting energy expenditure. Furthermore, sodium salt seems to have had a greater effect on the blood buffering level than calcium salt. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Characterization of glucose‐related metabolic pathways in differentiated rat oligodendrocyte lineage cells

    Science.gov (United States)

    Amaral, Ana I.; Hadera, Mussie G.; Tavares, Joana M.

    2015-01-01

    Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope‐labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2‐13C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1‐13C]lactate or [1,2‐13C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2‐13C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2‐13C]acetate and [1,2‐13C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. GLIA 2016;64:21–34 PMID:26352325

  18. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids

    DEFF Research Database (Denmark)

    Mourtzakis, Marina; Saltin, B.; Graham, T.

    2006-01-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline...... amino acid taken up during exercise and recovery. Alanine and glutamine were also associated...... with pyruvate metabolism, and they comprised 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism...

  19. Pyruvate Decarboxylase Activity Assay in situ of Different Industrial Yeast Strains

    Directory of Open Access Journals (Sweden)

    Dorota Kręgiel

    2009-01-01

    Full Text Available Cytoplasmic pyruvate decarboxylase (PDC, EC 4.1.1.1 is one of the key enzymes of yeast fermentative metabolism. PDC is the first enzyme which, under anaerobic conditions, leads to decarboxylation of pyruvate with acetaldehyde as the end product. The aim of this study is to develop a suitable method for PDC activity assay in situ for different industrial yeast strains. Saccharomyces sp. and Debaryomyces sp. yeast strains grew in fermentative medium with 12 % of glucose. Enzymatic assay was conducted in cell suspension treated with digitonin as permeabilisation agent, and with sodium pyruvate as a substrate, at temperature of 30 °C. Metabolites of PDC pathway were detected using gas chromatographic (GC technique. Various parameters like type and molar concentration of the substrate, minimal effective mass fraction of digitonin, cell concentration, reaction time and effect of pyrazole (alcohol dehydrogenase inhibitor were monitored to optimize PDC enzymatic assay in situ. In the concentration range of yeast cells from 1⋅10^7 to 1⋅10^8 per mL, linear correlation between the produced acetaldehyde and cell density was noticed. Only pyruvate was the specific substrate for pyruvate decarboxylase. In the presence of 0.05 M sodium pyruvate and 0.05 % digitonin, the enzymatic reaction was linear up to 20 min of the assay. During incubation, there was no formation of ethanol and, therefore, pyrazole was not necessary for the assay.

  20. Glutamate Oxaloacetate Transaminase (Got) Genetics in the Mouse: Polymorphism of Got-1

    Science.gov (United States)

    Chapman, Verne M.; Ruddle, Frank H.

    1972-01-01

    We have examined a polymorphism for the soluble glutamate oxaloacetate (GOT-1) isozyme system which was found in the Asian mouse Mus castaneus. Variants of GOT-1 segregate as though they are controlled by codominant alleles for a single autosomal locus which we have designated Got-1. No close linkage of genes for soluble and mitochondrial forms of the enzyme, GOT-1 and GOT-2 respectively, was observed. Furthermore, no close linkage of Got-1 and the loci c, Gpi-1, Mod-2, Mod-1, Ld-1, Gpd-1, Pgm-1 or Gpo-1 was observed. Our results demonstrate the utility of sampling Mus from diverse populations to extend the repertoire of polymorphic loci and the genetic linkage map. PMID:17248564

  1. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    Science.gov (United States)

    Naruto, Masayuki; Saito, Susumu

    2015-08-28

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources.

  2. Pyruvate incubation enhances glycogen stores and sustains neuronal function during subsequent glucose deprivation.

    Science.gov (United States)

    Shetty, Pavan K; Sadgrove, Matthew P; Galeffi, Francesca; Turner, Dennis A

    2012-01-01

    The use of energy substrates, such as lactate and pyruvate, has been shown to improve synaptic function when administered during glucose deprivation. In the present study, we investigated whether prolonged incubation with monocarboxylate (pyruvate or lactate) prior rather than during glucose deprivation can also sustain synaptic and metabolic function. Pyruvate pre-incubation(3-4h) significantly prolonged (>25 min) the tolerance of rat hippocampal slices to delayed glucose deprivation compared to control and lactate pre-incubated slices, as revealed by field excitatory post synaptic potentials (fEPSPs); pre-incubation with pyruvate also reduced the marked decrease in NAD(P)H fluorescence resulting from glucose deprivation. Moreover, pyruvate exposure led to the enhancement of glycogen stores with time, compared to glucose alone (12 μmol/g tissue at 4h vs. 3.5 μmol/g tissue). Prolonged resistance to glucose deprivation following exogenous pyruvate incubation was prevented by glycogenolysis inhibitors, suggesting that enhanced glycogen mediates the delay in synaptic activity failure. The application of an adenosine A1 receptor antagonist enhanced glycogen utilization and prolonged the time to synaptic failure, further confirming this hypothesis of the importance of glycogen. Moreover, tissue levels of ATP were also significantly maintained during glucose deprivation in pyruvate pretreated slices compared to control and lactate. In summary, these experiments indicate that pyruvate exposure prior to glucose deprivation significantly increased the energy buffering capacity of hippocampal slices, particularly by enhancing internal glycogen stores, delaying synaptic failure during glucose deprivation by maintaining ATP levels, and minimizing the decrease in the levels of NAD(P)H. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Field dependence of T1 for hyperpolarized [1-13C]pyruvate

    DEFF Research Database (Denmark)

    Chattergoon, N.; Martnez-Santiesteban, F.; Handler, W. B.

    2013-01-01

    conformation and properties of the dissolution media such as buffer composition, solution pH, temperature and magnetic field. We have measured the magnetic field dependence of the spin–lattice relaxation time of hyperpolarized [1-13C]pyruvate using field-cycled relaxometry. [1-13C]pyruvate was hyperpolarized...

  4. Mitochondrial Pyruvate Carrier 2 Hypomorphism in Mice Leads to Defects in Glucose-Stimulated Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Patrick A. Vigueira

    2014-06-01

    Full Text Available Carrier-facilitated pyruvate transport across the inner mitochondrial membrane plays an essential role in anabolic and catabolic intermediary metabolism. Mitochondrial pyruvate carrier 2 (Mpc2 is believed to be a component of the complex that facilitates mitochondrial pyruvate import. Complete MPC2 deficiency resulted in embryonic lethality in mice. However, a second mouse line expressing an N-terminal truncated MPC2 protein (Mpc2Δ16 was viable but exhibited a reduced capacity for mitochondrial pyruvate oxidation. Metabolic studies demonstrated exaggerated blood lactate concentrations after pyruvate, glucose, or insulin challenge in Mpc2Δ16 mice. Additionally, compared with wild-type controls, Mpc2Δ16 mice exhibited normal insulin sensitivity but elevated blood glucose after bolus pyruvate or glucose injection. This was attributable to reduced glucose-stimulated insulin secretion and was corrected by sulfonylurea KATP channel inhibitor administration. Collectively, these data are consistent with a role for MPC2 in mitochondrial pyruvate import and suggest that Mpc2 deficiency results in defective pancreatic β cell glucose sensing.

  5. Brain Glycogenolysis, Adrenoceptors, Pyruvate Carboxylase, Na+,K+-ATPase and Marie E. Gibbs’ Pioneering Learning Studies

    Directory of Open Access Journals (Sweden)

    Leif eHertz

    2013-04-01

    Full Text Available The involvement of glycogenolysis, occurring in astrocytes but not in neurons, in learning is undisputed (Duran et al., JCBFM, in press. According to one school of thought the role of astrocytes for learning is restricted to supply of substrate for neuronal oxidative metabolism. The present ‘perspective’ suggests a more comprehensive and complex role, made possible by lack of glycogen degradation, unless specifically induced by either i activation of astrocytic receptors, perhaps especially beta-adrenergic, or ii even small increases in extracellular K+ concentration above its normal resting level. It discusses i the known importance of glycogenolysis for glutamate formation, requiring pyruvate carboxylation; ii the established role of K+-stimulated glycogenolysis for K+ uptake in cultured astrocytes, which probably indicates that astrocytes are an integral part of cellular K+ homeostasis in the brain in vivo; and iii the plausible role of transmitter-induced glycogenolysis, stimulating Na+,K+-ATPase/NKCC1 activity and thereby contributing both to the post-excitatory undershoot in extracellular K+ concentration and the memory-enhancing effect of transmitter-mediated reduction of slow neuronal afterhyperpolarization (sAHP.

  6. Supplementation of pyruvate prevents palmitate-induced impairment of glucose uptake in C2 myotubes.

    Science.gov (United States)

    Jung, Jong Gab; Choi, Sung-E; Hwang, Yoon-Jung; Lee, Sang-A; Kim, Eun Kyoung; Lee, Min-Seok; Han, Seung Jin; Kim, Hae Jin; Kim, Dae Jung; Kang, Yup; Lee, Kwan-Woo

    2011-10-15

    Elevated fatty acid levels have been thought to contribute to insulin resistance. Repression of the glucose transporter 4 (GLUT4) gene as well as impaired GLUT4 translocation may be a mediator for fatty acid-induced insulin resistance. This study was initiated to determine whether palmitate treatment repressed GLUT4 expression, whether glucose/fatty acid metabolism influenced palmitate-induced GLUT4 gene repression (PIGR), and whether attempts to prevent PIGR restored palmitate-induced impairment of glucose uptake (PIIGU) in C2 myotubes. Not only stimulators of fatty acid oxidation, such as bezafibrate, AICAR, and TOFA, but also TCA cycle substrates, such as pyruvate, leucine/glutamine, and α-ketoisocaproate/monomethyl succinate, significantly prevented PIGR. In particular, supplementing with pyruvate through methyl pyruvate resulted in nearly complete prevention of PIIGU, whereas palmitate treatment reduced the intracellular pyruvate level. These results suggest that pyruvate depletion plays a critical role in PIGR and PIIGU; thus, pyruvate supplementation may help prevent obesity-induced insulin resistance in muscle cells. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Novel mutations associated with pyruvate kinase deficiency in Brazil

    Directory of Open Access Journals (Sweden)

    Maria Carolina Costa Melo Svidnicki

    2018-01-01

    Full Text Available Background: Pyruvate kinase deficiency is a hereditary disease that affects the glycolytic pathway of the red blood cell, causing nonspherocytic hemolytic anemia. The disease is transmitted as an autosomal recessive trait and shows a marked variability in clinical expression. This study reports on the molecular characterization of ten Brazilian pyruvate kinase-deficient patients and the genotype–phenotype correlations. Method: Sanger sequencing and in silico analysis were carried out to identify and characterize the genetic mutations. A non-affected group of Brazilian individuals were also screened for the most commonly reported variants (c.1456C>T and c.1529G>A. Results: Ten different variants were identified in the PKLR gene, of which three are reported here for the first time: p.Leu61Gln, p.Ala137Val and p.Ala428Thr. All the three missense variants involve conserved amino acids, providing a rationale for the observed enzyme deficiency. The allelic frequency of c.1456C>T was 0.1% and the 1529G>A variant was not found. Conclusion: This is the first comprehensive report on molecular characterization of pyruvate kinase deficiency from South America. The results allowed us to correlate the severity of the clinical phenotype with the identified variants. Keywords: Red cell disorder, Pyruvate kinase, Mutation, Hemolytic anemia, PKLR gene

  8. Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.

    Science.gov (United States)

    Vogel, O; Hoehn, B; Henning, U

    1972-06-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This "excess" component is bound differently than are the eight dimers in the core complex.

  9. ¹³C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation.

    Directory of Open Access Journals (Sweden)

    Dany J V Beste

    2011-07-01

    Full Text Available Mycobacterium tuberculosis requires the enzyme isocitrate lyase (ICL for growth and virulence in vivo. The demonstration that M. tuberculosis also requires ICL for survival during nutrient starvation and has a role during steady state growth in a glycerol limited chemostat indicates a function for this enzyme which extends beyond fat metabolism. As isocitrate lyase is a potential drug target elucidating the role of this enzyme is of importance; however, the role of isocitrate lyase has never been investigated at the level of in vivo fluxes. Here we show that deletion of one of the two icl genes impairs the replication of Mycobacterium bovis BCG at slow growth rate in a carbon limited chemostat. In order to further understand the role of isocitrate lyase in the central metabolism of mycobacteria the effect of growth rate on the in vivo fluxes was studied for the first time using ¹³C-metabolic flux analysis (MFA. Tracer experiments were performed with steady state chemostat cultures of BCG or M. tuberculosis supplied with ¹³C labeled glycerol or sodium bicarbonate. Through measurements of the ¹³C isotopomer labeling patterns in protein-derived amino acids and enzymatic activity assays we have identified the activity of a novel pathway for pyruvate dissimilation. We named this the GAS pathway because it utilizes the Glyoxylate shunt and Anapleurotic reactions for oxidation of pyruvate, and Succinyl CoA synthetase for the generation of succinyl CoA combined with a very low flux through the succinate--oxaloacetate segment of the tricarboxylic acid cycle. We confirm that M. tuberculosis can fix carbon from CO₂ into biomass. As the human host is abundant in CO₂ this finding requires further investigation in vivo as CO₂ fixation may provide a point of vulnerability that could be targeted with novel drugs. This study also provides a platform for further studies into the metabolism of M. tuberculosis using ¹³C-MFA.

  10. Chronic pyruvate supplementation increases exploratory activity and brain energy reserves in young and middle-aged mice

    Directory of Open Access Journals (Sweden)

    Hennariikka eKoivisto

    2016-03-01

    Full Text Available Numerous studies have reported neuroprotective effects of pyruvate when given in systemic injections. Impaired glucose uptake and metabolism are found in Alzheimer's disease (AD and in AD mouse models. We tested whether dietary pyruvate supplementation is able to provide added energy supply to brain and thereby attenuate aging- or AD-related cognitive impairment. Mice received ~ 800 mg/kg/day Na-pyruvate in their chow for 2- 6 months. In middle-aged wild-type mice and in 6.5-month-old APP/PS1 mice, pyruvate facilitated spatial learning and increased exploration of a novel odor. However, in passive avoidance task for fear memory, the treatment group was clearly impaired. Independent of age, long-term pyruvate increased explorative behavior, which likely explains the paradoxical impairment in passive avoidance. We also assessed pyruvate effects on body weight, muscle force and endurance, and found no effects. Metabolic post-mortem assays revealed increased energy compounds in nuclear magnetic resonance spectroscopy as well as increased brain glycogen storages in the pyruvate group. Pyruvate supplementation may counteract aging-related behavioral impairment but its beneficial effect seems related to increased explorative activity rather than direct memory enhancement.

  11. An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion

    OpenAIRE

    McCommis, Kyle S.; Hodges, Wesley T.; Bricker, Daniel K.; Wisidagama, Dona R.; Compan, Vincent; Remedi, Maria S.; Thummel, Carl S.; Finck, Brian N.

    2016-01-01

    Objective: Transport of pyruvate into the mitochondrial matrix by the Mitochondrial Pyruvate Carrier (MPC) is an important and rate-limiting step in its metabolism. In pancreatic β-cells, mitochondrial pyruvate metabolism is thought to be important for glucose sensing and glucose-stimulated insulin secretion. Methods: To evaluate the role that the MPC plays in maintaining systemic glucose homeostasis, we used genetically-engineered Drosophila and mice with loss of MPC activity in insulin-prod...

  12. 13C NMR study of effects of fasting and diabetes on the metabolism of pyruvate in the tricarboxylic acid cycle and of the utilization of pyruvate and ethanol in lipogenesis in perfused rat liver

    International Nuclear Information System (INIS)

    Cohen, S.M.

    1987-01-01

    13 C NMR has been used to study the competition of pyruvate dehydrogenase with pyruvate carboxylase for entry of pyruvate into the tricarboxylic acid (TCA) cycle in perfused liver from streptozotocin-diabetic and normal donor rats. The relative proportion of pyruvate entering the TCA cycle by these two routes was estimated from the 13 C enrichments at the individual carbons of glutamate when [3- 13 C]alanine was the only exogenous substrate present. In this way, the proportion of pyruvate entering by the pyruvate dehydrogenase route relative to the pyruvate carboxylase route was determined to be 1:1.2 +/- 0.1 in liver from fed controls, 1:7.7 +/- 2 in liver from 24-fasted controls, and 1:2.6 +/- 0.3 in diabetic liver. Pursuant to this observation that conversion of pyruvate to acetyl coenzyme A (acetyl-CoA) was greatest in perfused liver from fed controls, the incorporation of 13 C label into fatty acids was monitored in this liver preparation. With the exception of the repeating methylene carbons, fatty acyl carbons labeled by [1- 13 C]acetyl-CoA (from [2- 13 C]pyruvate) gave rise to resonances distinguishable on the basis of chemical shift from those observed when label was introduced by [3- 13 C]alanine plus [2- 13 C]ethanol, which are converted to [2- 13 C]acetyl-CoA. Thus, measurement of 13 C enrichment at several specific sites in the fatty acyl chains in time-resolved spectra of perfused liver offers a novel way of monitoring the kinetics of the biosynthesis of fatty acids. In addition to obtaining the rate of lipogenesis, it was possible to distinguish the contributions of chain elongation from those of the de novo synthesis pathway and to estimate the average chain length of the 13 C-labeled fatty acids produced

  13. A Patient With Pyruvate Carboxylase Deficiency and Nemaline Rods on Muscle Biopsy

    DEFF Research Database (Denmark)

    Unal, Ozlem; Orhan, Diclehan; Ostergaard, Elsebet

    2013-01-01

    Nemaline rods are the pathologic hallmark of nemaline myopathy, but they have also been described as a secondary phenomenon in a variety of other disorders. Nemaline rods have not been reported in pyruvate carboxylase deficiency before. Here we present a patient with pyruvate carboxylase deficiency...

  14. Pyruvate decarboxylases from the petite-negative yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Langkjær, Rikke Breinhold; Nielsen, Jens

    2004-01-01

    was controlled by variations in the amount of mRNA. The mRNA level and the pyruvate decarboxylase activity responded to anaerobiosis and growth on different carbon sources in essentially the same fashion as in S. cerevisiae. This indicates that the difference in ethanol formation between these two yeasts...... is not due to differences in the regulation of pyruvate decarboxylase(s), but rather to differences in the regulation of the TCA cycle and the respiratory machinery. However, the PDC genes of Saccharomyces/Kluyveromyces yeasts differ in their genetic organization and phylogenetic origin. While S. cerevisiae...

  15. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast

    NARCIS (Netherlands)

    A.J. van Maris; J.M. Geertman; A. Vermeulen; M.K. Groothuizen; A.A. Winkler; M.D. Piper; J.P. van Dijken; J.T. Pronk

    2004-01-01

    textabstractThe absence of alcoholic fermentation makes pyruvate decarboxylase-negative (Pdc(-)) strains of Saccharomyces cerevisiae an interesting platform for further metabolic engineering of central metabolism. However, Pdc(-) S. cerevisiae strains have two growth defects:

  16. Increased superoxide accumulation in pyruvate dehydrogenase complex deficient fibroblasts.

    Science.gov (United States)

    Glushakova, Lyudmyla G; Judge, Sharon; Cruz, Alex; Pourang, Deena; Mathews, Clayton E; Stacpoole, Peter W

    2011-11-01

    The pyruvate dehydrogenase complex (PDC) oxidizes pyruvate to acetyl CoA and is critically important in maintaining normal cellular energy homeostasis. Loss-of-function mutations in PDC give rise to congenital lactic acidosis and to progressive cellular energy failure. However, the subsequent biochemical consequences of PDC deficiency that may contribute to the clinical manifestations of the disorder are poorly understood. We postulated that altered flux through PDC would disrupt mitochondrial electron transport, resulting in oxidative stress. Compared to cells from 4 healthy subjects, primary cultures of skin fibroblasts from 9 patients with variable mutations in the gene encoding the alpha subunit (E1α) of pyruvate dehydrogenase (PDA1) demonstrated reduced growth and viability. Superoxide (O(2)(.-)) from the Qo site of complex III of the electron transport chain accumulated in these cells and was associated with decreased activity of manganese superoxide dismutase. The expression of uncoupling protein 2 was also decreased in patient cells, but there were no significant changes in the expression of cellular markers of protein or DNA oxidative damage. The expression of hypoxia transcription factor 1 alpha (HIF1α) also increased in PDC deficient fibroblasts. We conclude that PDC deficiency is associated with an increase in O(2)(.-) accumulation coupled to a decrease in mechanisms responsible for its removal. Increased HIF1α expression may contribute to the increase in glycolytic flux and lactate production in PDC deficiency and, by trans-activating pyruvate dehydrogenase kinase, may further suppress residual PDC activity through phosphorylation of the E1α subunit. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Molecular and Physiological Logics of the Pyruvate-Induced Response of a Novel Transporter in Bacillus subtilis.

    Science.gov (United States)

    Charbonnier, Teddy; Le Coq, Dominique; McGovern, Stephen; Calabre, Magali; Delumeau, Olivier; Aymerich, Stéphane; Jules, Matthieu

    2017-10-03

    At the heart of central carbon metabolism, pyruvate is a pivotal metabolite in all living cells. Bacillus subtilis is able to excrete pyruvate as well as to use it as the sole carbon source. We herein reveal that ysbAB (renamed pftAB ), the only operon specifically induced in pyruvate-grown B. subtilis cells, encodes a hetero-oligomeric membrane complex which operates as a facilitated transport system specific for pyruvate, thereby defining a novel class of transporter. We demonstrate that the LytST two-component system is responsible for the induction of pftAB in the presence of pyruvate by binding of the LytT response regulator to a palindromic region upstream of pftAB We show that both glucose and malate, the preferred carbon sources for B. subtilis , trigger the binding of CcpA upstream of pftAB , which results in its catabolite repression. However, an additional CcpA-independent mechanism represses pftAB in the presence of malate. Screening a genome-wide transposon mutant library, we find that an active malic enzyme replenishing the pyruvate pool is required for this repression. We next reveal that the higher the influx of pyruvate, the stronger the CcpA-independent repression of pftAB , which suggests that intracellular pyruvate retroinhibits pftAB induction via LytST. Such a retroinhibition challenges the rational design of novel nature-inspired sensors and synthetic switches but undoubtedly offers new possibilities for the development of integrated sensor/controller circuitry. Overall, we provide evidence for a complete system of sensors, feed-forward and feedback controllers that play a major role in environmental growth of B. subtilis IMPORTANCE Pyruvate is a small-molecule metabolite ubiquitous in living cells. Several species also use it as a carbon source as well as excrete it into the environment. The bacterial systems for pyruvate import/export have yet to be discovered. Here, we identified in the model bacterium Bacillus subtilis the first import

  18. Cultivation of parasitic leptospires: effect of pyruvate.

    Science.gov (United States)

    Johnson, R C; Walby, J; Henry, R A; Auran, N E

    1973-07-01

    Sodium pyruvate (100 mug/ml) is a useful addition to the Tween 80-albumin medium for the cultivation of parasitic serotypes. It is most effective in promoting growth from small inocula and growth of the nutritionally fastidious serotypes.

  19. Single Sodium Pyruvate Ingestion Modifies Blood Acid-Base Status and Post-Exercise Lactate Concentration in Humans

    Directory of Open Access Journals (Sweden)

    Robert A. Olek

    2014-05-01

    Full Text Available This study examined the effect of a single sodium pyruvate ingestion on a blood acid-base status and exercise metabolism markers. Nine active, but non-specifically trained, male subjects participated in the double-blind, placebo-controlled, crossover study. One hour prior to the exercise, subjects ingested either 0.1 g·kg−1 of body mass of a sodium pyruvate or placebo. The capillary blood samples were obtained at rest, 60 min after ingestion, and then three and 15 min after completing the workout protocol to analyze acid-base status and lactate, pyruvate, alanine, glucose concentrations. The pulmonary gas exchange, minute ventilation and the heart rate were measured during the exercise at a constant power output, corresponding to ~90% O2max. The blood pH, bicarbonate and the base excess were significantly higher after sodium pyruvate ingestion than in the placebo trial. The blood lactate concentration was not different after the ingestion, but the post-exercise was significantly higher in the pyruvate trial (12.9 ± 0.9 mM than in the placebo trial (10.6 ± 0.3 mM, p < 0.05 and remained elevated (nonsignificant after 15 min of recovery. The blood pyruvate, alanine and glucose concentrations, as well as the overall pulmonary gas exchange during the exercise were not affected by the pyruvate ingestion. In conclusion, the sodium pyruvate ingestion one hour before workout modified the blood acid-base status and the lactate production during the exercise.

  20. Short Carboxylic Acid–Carboxylate Hydrogen Bonds Can Have Fully Localized Protons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A.

    2017-01-17

    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15–0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor–acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [O–O> = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O–O distance with increasing H-bond donor pKa. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid–carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.

  1. The effect of additives on red cell 2,3 diphosphoglycerate levels in CPDA preservatives.

    Science.gov (United States)

    Vora, S; West, C; Beutler, E

    1989-01-01

    Forty-two chemical substances, chosen because they might influence red cell metabolism, were screened for effect on red cell adenosine triphosphate and 2,3 diphosphoglycerate (2,3 DPG) levels during storage in CPD or CPDA-1 at 4 degrees C. Of these substances, six appeared on initial screening to increase 2,3 DPG levels during storage; on repeated examination, four compounds, i.e., oxalate, glyoxalate, ethyl oxaloacetate, and L-phenylalanyl-L-alanine, consistently increased 2,3 DPG levels during storage. It was shown that glyoxalate was converted rapidly to oxalate in blood, presumably through the lactate dehydrogenase reaction. Ethyl oxaloacetate is known to hydrolyze, giving rise to oxalate. Thus, the effect of both glyoxalate and ethyl oxaloacetate can be explained by the formation of oxalate, a compound already known to increase 2,3 DPG levels. The effect of L-phenylalanyl-L-alanine remains to be explained, but it may be hydrolyzed to L-alanine and L-phenylalanine, both of which are thought to have the capacity to increase red cell 2,3 DPG levels by inhibiting pyruvate kinase activity.

  2. Study on the protective effect of ethyl pyruvate on mouse models of sepsis-induced lung injury

    International Nuclear Information System (INIS)

    Ti Dongdong; Deng Zihui; Xue Hui; Wang Luhuan; Lin Ji; Yan Guangtao

    2008-01-01

    Objective: To investigate the protective role of ethyl pyruvate on mouse models of lung injury from sepsis. Methods: Mouse sepsis models were established by cecal ligation-perforation. Four enzyme parameters related to synthesis of free radicals in lung homogenized fluids namely malonaldehyde (MDA), pyruvate acid, lactic acid and total anti-oxidative capacity (TAOC) were determined with spectrophotometry, and serum leptin levels were detected with radioimmunoassay at 3, 6, 9, 12h after operation in these models. Half of the models were treated with intraperitoneal injection of ethyl pyruvate (EP) (75mg/kg). Results: In the models treated with ethyl pyruvate injection, the activity of malonaldehyde, pyruvate acid, lactic acid and total anti-oxidative capacity were affected to certain extent, at some time frames but the results were not unanimously inhibitive or promotive. Serum leptin levels in EP injection models at 6h and 12h after sepsis were significantly higher than those in non-treated models. Conclusion: Ethyl pyruvate perhaps exerted its protective effect on sepsis-induced lung injury through increase of leptin levels in the models. (authors)

  3. Renal and hepatic profiles in Nigerian multidrug resistant ...

    African Journals Online (AJOL)

    ... titrage de retour, l'urée et de la créatinine ont été déterminés spectrophotométrie rn utilisant la méthode Diacétyle monoxime(DAM) et la méthode de picrate alcaline de Jaffer respectivement. Bilirubine totale et directe, glutamate oxaloacetate transférase sérique(SGOT), transférase sérique de glutamate pyruvate(SGPT), ...

  4. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity

    OpenAIRE

    Rauckhorst, Adam J.; Gray, Lawrence R.; Sheldon, Ryan D.; Fu, Xiaorong; Pewa, Alvin D.; Feddersen, Charlotte R.; Dupuy, Adam J.; Gibson-Corley, Katherine N.; Cox, James E.; Burgess, Shawn C.; Taylor, Eric B.

    2017-01-01

    Objective: Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. T...

  5. Cultivation of Parasitic Leptospires: Effect of Pyruvate

    Science.gov (United States)

    Johnson, R. C.; Walby, J.; Henry, R. A.; Auran, N. E.

    1973-01-01

    Sodium pyruvate (100 μg/ml) is a useful addition to the Tween 80-albumin medium for the cultivation of parasitic serotypes. It is most effective in promoting growth from small inocula and growth of the nutritionally fastidious serotypes. Images PMID:4580191

  6. Chronic pyruvate supplementation increases exploratory activity and brain energy reserves in young and middle-aged mice

    DEFF Research Database (Denmark)

    Koivisto, Hennariikka; Leinonen, Henri; Puurula, Mari

    2016-01-01

    to brain and thereby attenuate aging- or AD-related cognitive impairment. Mice received ~800 mg/kg/day Na-pyruvate in their chow for 2-6 months. In middle-aged wild-type mice and in 6.5-month-old APP/PS1 mice, pyruvate facilitated spatial learning and increased exploration of a novel odor. However......, in passive avoidance task for fear memory, the treatment group was clearly impaired. Independent of age, long-term pyruvate increased explorative behavior, which likely explains the paradoxical impairment in passive avoidance. We also assessed pyruvate effects on body weight, muscle force, and endurance...

  7. Pyruvate administration reduces recurrent/moderate hypoglycemia-induced cortical neuron death in diabetic rats.

    Directory of Open Access Journals (Sweden)

    Bo Young Choi

    Full Text Available Recurrent/moderate (R/M hypoglycemia is common in type 1 diabetes patients. Moderate hypoglycemia is not life-threatening, but if experienced recurrently it may present several clinical complications. Activated PARP-1 consumes cytosolic NAD, and because NAD is required for glycolysis, hypoglycemia-induced PARP-1 activation may render cells unable to use glucose even when glucose availability is restored. Pyruvate, however, can be metabolized in the absence of cytosolic NAD. We therefore hypothesized that pyruvate may be able to improve the outcome in diabetic rats subjected to insulin-induced R/M hypoglycemia by terminating hypoglycemia with glucose plus pyruvate, as compared with delivering just glucose alone. In an effort to mimic juvenile type 1 diabetes the experiments were conducted in one-month-old young rats that were rendered diabetic by streptozotocin (STZ, 50mg/kg, i.p. injection. One week after STZ injection, rats were subjected to moderate hypoglycemia by insulin injection (10 U/kg, i.p. without anesthesia for five consecutive days. Pyruvate (500 mg/kg was given by intraperitoneal injection after each R/M hypoglycemia. Three hours after last R/M hypoglycemia, zinc accumulation was evaluated. Three days after R/M hypoglycemia, neuronal death, oxidative stress, microglial activation and GSH concentrations in the cerebral cortex were analyzed. Sparse neuronal death was observed in the cortex. Zinc accumulation, oxidative injury, microglial activation and GSH loss in the cortex after R/M hypoglycemia were all reduced by pyruvate injection. These findings suggest that when delivered alongside glucose, pyruvate may significantly improve the outcome after R/M hypoglycemia by circumventing a sustained impairment in neuronal glucose utilization resulting from PARP-1 activation.

  8. A new synthesis of [3-11C]pyruvic acid using alanine racemase

    International Nuclear Information System (INIS)

    Ikemoto, M.; Okamoto, E.; Sasaki, M.; Haradahira, T.; Omura, H.; Furuya, Y.; Suzuki, K.; Watanabe, Y.

    1998-01-01

    The synthesis of [3- 11 C]pyruvic acid was attempted by two reaction systems (A: alanine racemase and D-amino acid oxidase, B: alanine racemase and L-alanine dehydrogenase) utilizing a new thermostable enzyme, alanine racemase. Conversion rates from D,L-[3- 11 C]alanine to [3- 11 C]pyruvic acid were almost 100% in both methods. Similar results were obtained with immobilized enzymes packed in a single column. Furthermore, the same column could be used repeatedly without a remarkable decrease of the [3- 11 C]pyruvic acid yield. Various matrices were tested for the immobilizing enzyme, and Aminopropyl-CPG was concluded to be the most suitable since the loss of the enzyme activity was the least in the studied matrices

  9. Molecular and Physiological Logics of the Pyruvate-Induced Response of a Novel Transporter in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Teddy Charbonnier

    2017-10-01

    Full Text Available At the heart of central carbon metabolism, pyruvate is a pivotal metabolite in all living cells. Bacillus subtilis is able to excrete pyruvate as well as to use it as the sole carbon source. We herein reveal that ysbAB (renamed pftAB, the only operon specifically induced in pyruvate-grown B. subtilis cells, encodes a hetero-oligomeric membrane complex which operates as a facilitated transport system specific for pyruvate, thereby defining a novel class of transporter. We demonstrate that the LytST two-component system is responsible for the induction of pftAB in the presence of pyruvate by binding of the LytT response regulator to a palindromic region upstream of pftAB. We show that both glucose and malate, the preferred carbon sources for B. subtilis, trigger the binding of CcpA upstream of pftAB, which results in its catabolite repression. However, an additional CcpA-independent mechanism represses pftAB in the presence of malate. Screening a genome-wide transposon mutant library, we find that an active malic enzyme replenishing the pyruvate pool is required for this repression. We next reveal that the higher the influx of pyruvate, the stronger the CcpA-independent repression of pftAB, which suggests that intracellular pyruvate retroinhibits pftAB induction via LytST. Such a retroinhibition challenges the rational design of novel nature-inspired sensors and synthetic switches but undoubtedly offers new possibilities for the development of integrated sensor/controller circuitry. Overall, we provide evidence for a complete system of sensors, feed-forward and feedback controllers that play a major role in environmental growth of B. subtilis.

  10. An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion

    Directory of Open Access Journals (Sweden)

    Kyle S. McCommis

    2016-08-01

    Full Text Available Objective: Transport of pyruvate into the mitochondrial matrix by the Mitochondrial Pyruvate Carrier (MPC is an important and rate-limiting step in its metabolism. In pancreatic β-cells, mitochondrial pyruvate metabolism is thought to be important for glucose sensing and glucose-stimulated insulin secretion. Methods: To evaluate the role that the MPC plays in maintaining systemic glucose homeostasis, we used genetically-engineered Drosophila and mice with loss of MPC activity in insulin-producing cells. Results: In both species, MPC deficiency results in elevated blood sugar concentrations and glucose intolerance accompanied by impaired glucose-stimulated insulin secretion. In mouse islets, β-cell MPC-deficiency resulted in decreased respiration with glucose, ATP-sensitive potassium (KATP channel hyperactivity, and impaired insulin release. Moreover, treatment of pancreas-specific MPC knockout mice with glibenclamide, a sulfonylurea KATP channel inhibitor, improved defects in islet insulin secretion and abnormalities in glucose homeostasis in vivo. Finally, using a recently-developed biosensor for MPC activity, we show that the MPC is rapidly stimulated by glucose treatment in INS-1 insulinoma cells suggesting that glucose sensing is coupled to mitochondrial pyruvate carrier activity. Conclusions: Altogether, these studies suggest that the MPC plays an important and ancestral role in insulin-secreting cells in mediating glucose sensing, regulating insulin secretion, and controlling systemic glycemia. Keywords: Stimulus-coupled secretion, Insulin, β-Cell, Diabetes, Pyruvate, Mitochondria, Drosophila

  11. Inactivation of pyruvate dehydrogenase kinase 2 by mitochondrial reactive oxygen species.

    Science.gov (United States)

    Hurd, Thomas R; Collins, Yvonne; Abakumova, Irina; Chouchani, Edward T; Baranowski, Bartlomiej; Fearnley, Ian M; Prime, Tracy A; Murphy, Michael P; James, Andrew M

    2012-10-12

    Reactive oxygen species are byproducts of mitochondrial respiration and thus potential regulators of mitochondrial function. Pyruvate dehydrogenase kinase 2 (PDHK2) inhibits the pyruvate dehydrogenase complex, thereby regulating entry of carbohydrates into the tricarboxylic acid (TCA) cycle. Here we show that PDHK2 activity is inhibited by low levels of hydrogen peroxide (H(2)O(2)) generated by the respiratory chain. This occurs via reversible oxidation of cysteine residues 45 and 392 on PDHK2 and results in increased pyruvate dehydrogenase complex activity. H(2)O(2) derives from superoxide (O(2)(.)), and we show that conditions that inhibit PDHK2 also inactivate the TCA cycle enzyme, aconitase. These findings suggest that under conditions of high mitochondrial O(2)(.) production, such as may occur under nutrient excess and low ATP demand, the increase in O(2)() and H(2)O(2) may provide feedback signals to modulate mitochondrial metabolism.

  12. Phenotypic and molecular genetic analysis of Pyruvate Kinase ...

    African Journals Online (AJOL)

    Phenotypic and molecular genetic analysis of Pyruvate Kinase deficiency in a Tunisian family. Jaouani Mouna, Hamdi Nadia, Chaouch Leila, Kalai Miniar, Mellouli Fethi, Darragi Imen, Boudriga Imen, Chaouachi Dorra, Bejaoui Mohamed, Abbes Salem ...

  13. Regulation of pyruvate oxidation in blowfly flight muscle mitochondria: requirement for ADP.

    Science.gov (United States)

    Bulos, B A; Thomas, B J; Shukla, S P; Sacktor, B

    1984-11-01

    Blowfly (Phormia regina) flight muscle mitochondria oxidized pyruvate ( + proline) in the presence of either ADP (coupled respiration) or carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP-uncoupled respiration). There was an absolute requirement for ADP (Km = 8.0 microM) when pyruvate oxidation was stimulated by FCCP in the presence of oligomycin. This requirement for ADP was limited to the oxidation of pyruvate; uncoupled alpha-glycerolphosphate oxidation proceeded maximally even in the absence of added ADP. Atractylate inhibited uncoupled pyruvate oxidation whether added before (greater than 99%) or after (95%) initiation of respiration with FCCP. In the presence of FCCP, oligomycin, and limiting concentrations of ADP (less than 110 microM), there was a shutoff in the uptake of oxygen. This inhibition of respiration was completely reversed by the addition of more ADP. Plots of net oxygen uptake as a function of the limiting ADP concentration were linear; the observed ADP/O ratio was 0.22 +/- 0.025. An ADP/O ratio of 0.2 was predicted if phosphorylation occurred only at the succinyl-CoA synthetase step of the tricarboxylate cycle. Experiments performed in the presence of limiting concentrations of ADP, and designed to monitor changes in the mitochondrial content of ADP and ATP, demonstrated that the shutoff in oxygen uptake was not due to the presence of a high intramitochondrial concentration of ATP. Indeed, ATP, added to the medium prior to the addition of FCCP, inhibited uncoupled pyruvate oxidation; the apparent KI was 0.8 mM. These results are consistent with the hypothesis that it is the intramitochondrial ATP/ADP ratio that is one of the controlling factors in determining the rate of flux through the tricarboxylate cycle. Changes in the mitochondrial content of citrate, isocitrate, alpha-ketoglutarate, and malate during uncoupled pyruvate oxidation in the presence of a limiting concentration of ADP were consistent with the hypothesis that the

  14. Ethyl Pyruvate Ameliorates Hepatic Ischemia-Reperfusion Injury by Inhibiting Intrinsic Pathway of Apoptosis and Autophagy

    Directory of Open Access Journals (Sweden)

    Miao Shen

    2013-01-01

    Full Text Available Background. Hepatic ischemia-reperfusion (I/R injury is a pivotal clinical problem occurring in many clinical conditions such as transplantation, trauma, and hepatic failure after hemorrhagic shock. Apoptosis and autophagy have been shown to contribute to cell death in hepatic I/R injury. Ethyl pyruvate, a stable and simple lipophilic ester, has been shown to have anti-inflammatory properties. In this study, the purpose is to explore both the effect of ethyl pyruvate on hepatic I/R injury and regulation of intrinsic pathway of apoptosis and autophagy. Methods. Three doses of ethyl pyruvate (20 mg/kg, 40 mg/kg, and 80 mg/kg were administered 1 h before a model of segmental (70% hepatic warm ischemia was established in Balb/c mice. All serum and liver tissues were obtained at three different time points (4 h, 8 h, and 16 h. Results. Alanine aminotransferase (ALT, aspartate aminotransferase (AST, and pathological features were significantly ameliorated by ethyl pyruvate (80 mg/kg. The expression of Bcl-2, Bax, Beclin-1, and LC3, which play an important role in the regulation of intrinsic pathway of apoptosis and autophagy, was also obviously decreased by ethyl pyruvate (80 mg/kg. Furthermore, ethyl pyruvate inhibited the HMGB1/TLR4/ NF-κb axis and the release of cytokines (TNF-α and IL-6. Conclusion. Our results showed that ethyl pyruvate might attenuate to hepatic I/R injury by inhibiting intrinsic pathway of apoptosis and autophagy, mediated partly through downregulation of HMGB1/TLR4/ NF-κb axis and the competitive interaction with Beclin-1 of HMGB1.

  15. Metabolic Imaging of Patients with Prostate Cancer Using Hyperpolarized [1-13C]Pyruvate

    Science.gov (United States)

    Nelson, Sarah J.; Kurhanewicz, John; Vigneron, Daniel B.; Larson, Peder E. Z.; Harzstark, Andrea L.; Ferrone, Marcus; van Criekinge, Mark; Chang, Jose W.; Bok, Robert; Park, Ilwoo; Reed, Galen; Carvajal, Lucas; Small, Eric J.; Munster, Pamela; Weinberg, Vivian K.; Ardenkjaer-Larsen, Jan Henrik; Chen, Albert P.; Hurd, Ralph E.; Odegardstuen, Liv-Ingrid; Robb, Fraser J.; Tropp, James; Murray, Jonathan A.

    2014-01-01

    This first-in-man imaging study evaluated the safety and feasibility of hyperpolarized [1-13C]pyruvate as an agent for noninvasively characterizing alterations in tumor metabolism for patients with prostate cancer. Imaging living systems with hyperpolarized agents can result in more than 10,000-fold enhancement in signal relative to conventional magnetic resonance (MR) imaging. When combined with the rapid acquisition of in vivo 13C MR data, it is possible to evaluate the distribution of agents such as [1-13C]pyruvate and its metabolic products lactate, alanine, and bicarbonate in a matter of seconds. Preclinical studies in cancer models have detected elevated levels of hyperpolarized [1-13C]lactate in tumor, with the ratio of [1-13C]lactate/[1-13C]pyruvate being increased in high-grade tumors and decreased after successful treatment. Translation of this technology into humans was achieved by modifying the instrument that generates the hyperpolarized agent, constructing specialized radio frequency coils to detect 13C nuclei, and developing new pulse sequences to efficiently capture the signal. The study population comprised patients with biopsy-proven prostate cancer, with 31 subjects being injected with hyperpolarized [1-13C]pyruvate. The median time to deliver the agent was 66 s, and uptake was observed about 20 s after injection. No dose-limiting toxicities were observed, and the highest dose (0.43 ml/kg of 230 mM agent) gave the best signal-to-noise ratio for hyperpolarized [1-13C]pyruvate. The results were extremely promising in not only confirming the safety of the agent but also showing elevated [1-13C]lactate/[1-13C]pyruvate in regions of biopsy-proven cancer. These findings will be valuable for noninvasive cancer diagnosis and treatment monitoring in future clinical trials. PMID:23946197

  16. PDK4 Inhibits Cardiac Pyruvate Oxidation in Late Pregnancy.

    Science.gov (United States)

    Liu, Laura X; Rowe, Glenn C; Yang, Steven; Li, Jian; Damilano, Federico; Chan, Mun Chun; Lu, Wenyun; Jang, Cholsoon; Wada, Shogo; Morley, Michael; Hesse, Michael; Fleischmann, Bernd K; Rabinowitz, Joshua D; Das, Saumya; Rosenzweig, Anthony; Arany, Zoltan

    2017-12-08

    Pregnancy profoundly alters maternal physiology. The heart hypertrophies during pregnancy, but its metabolic adaptations, are not well understood. To determine the mechanisms underlying cardiac substrate use during pregnancy. We use here 13 C glucose, 13 C lactate, and 13 C fatty acid tracing analyses to show that hearts in late pregnant mice increase fatty acid uptake and oxidation into the tricarboxylic acid cycle, while reducing glucose and lactate oxidation. Mitochondrial quantity, morphology, and function do not seem altered. Insulin signaling seems intact, and the abundance and localization of the major fatty acid and glucose transporters, CD36 (cluster of differentiation 36) and GLUT4 (glucose transporter type 4), are also unchanged. Rather, we find that the pregnancy hormone progesterone induces PDK4 (pyruvate dehydrogenase kinase 4) in cardiomyocytes and that elevated PDK4 levels in late pregnancy lead to inhibition of PDH (pyruvate dehydrogenase) and pyruvate flux into the tricarboxylic acid cycle. Blocking PDK4 reverses the metabolic changes seen in hearts in late pregnancy. Taken together, these data indicate that the hormonal environment of late pregnancy promotes metabolic remodeling in the heart at the level of PDH, rather than at the level of insulin signaling. © 2017 American Heart Association, Inc.

  17. Phenotypic and molecular genetic analysis of Pyruvate Kinase ...

    African Journals Online (AJOL)

    Jaouani Mouna

    2015-09-26

    Sep 26, 2015 ... to several mutations at the Pyruvate Kinase gene (PKLR) located on chromosome .... Tunisians (Fig. 2) [21]. The screening of whole PKLR gene revealed the presence of ..... newborns: the pitfalls of diagnosis. J Pediatr 2007 ...

  18. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet

    OpenAIRE

    Vanderperre, Beno?t; Herzig, S?bastien; Krznar, Petra; H?rl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-01-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic p...

  19. Effects of pyruvate dose on in vivo metabolism and quantification of hyperpolarized 13C spectra

    DEFF Research Database (Denmark)

    Janich, M. A.; Menzel, M. I.; Wiesinger, F.

    2012-01-01

    Real‐time in vivo measurements of metabolites are performed by signal enhancement of [1‐13C]pyruvate using dynamic nuclear polarization, rapid dissolution and intravenous injection, acquisition of free induction decay signals and subsequent quantification of spectra. The commonly injected dose...... uptake and metabolic conversion. The goal of this study was to examine the effects of a [1‐13C]pyruvate bolus on metabolic conversion in vivo. Spectra were quantified by three different methods: frequency‐domain fitting with LCModel, time‐domain fitting with AMARES and simple linear least‐squares fitting...... in the time domain. Since the simple linear least‐squares approach showed bleeding artifacts and LCModel produced noisier time signals. AMARES performed best in the quantification of in vivo hyperpolarized pyruvate spectra. We examined pyruvate doses of 0.1–0.4 mmol/kg (body mass) in male Wistar rats...

  20. Volumetric spiral chemical shift imaging of hyperpolarized [2-(13) c]pyruvate in a rat c6 glioma model.

    Science.gov (United States)

    Park, Jae Mo; Josan, Sonal; Jang, Taichang; Merchant, Milton; Watkins, Ron; Hurd, Ralph E; Recht, Lawrence D; Mayer, Dirk; Spielman, Daniel M

    2016-03-01

    MRS of hyperpolarized [2-(13)C]pyruvate can be used to assess multiple metabolic pathways within mitochondria as the (13)C label is not lost with the conversion of pyruvate to acetyl-CoA. This study presents the first MR spectroscopic imaging of hyperpolarized [2-(13)C]pyruvate in glioma-bearing brain. Spiral chemical shift imaging with spectrally undersampling scheme (1042 Hz) and a hard-pulse excitation was exploited to simultaneously image [2-(13)C]pyruvate, [2-(13)C]lactate, and [5-(13)C]glutamate, the metabolites known to be produced in brain after an injection of hyperpolarized [2-(13)C]pyruvate, without chemical shift displacement artifacts. A separate undersampling scheme (890 Hz) was also used to image [1-(13)C]acetyl-carnitine. Healthy and C6 glioma-implanted rat brains were imaged at baseline and after dichloroacetate administration, a drug that modulates pyruvate dehydrogenase kinase activity. The baseline metabolite maps showed higher lactate and lower glutamate in tumor as compared to normal-appearing brain. Dichloroacetate led to an increase in glutamate in both tumor and normal-appearing brain. Dichloroacetate-induced %-decrease of lactate/glutamate was comparable to the lactate/bicarbonate decrease from hyperpolarized [1-(13)C]pyruvate studies. Acetyl-carnitine was observed in the muscle/fat tissue surrounding the brain. Robust volumetric imaging with hyperpolarized [2-(13)C]pyruvate and downstream products was performed in glioma-bearing rat brains, demonstrating changes in mitochondrial metabolism with dichloroacetate. © 2015 Wiley Periodicals, Inc.

  1. 1-Azaniumylcyclobutane-1-carboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Ray J. Butcher

    2014-02-01

    Full Text Available In the title compound, C5H9NO2·H2O, the amino acid is in the usual zwitterionic form involving the α-carboxylate group. The cyclobutane backbone of the amino acid is disordered over two conformations, with occupancies of 0.882 (7 and 0.118 (7. In the crystal, N—H...O and O—H...O hydrogen bonds link the zwitterions [with the water molecule involved as both acceptor (with the NH3+ and donor (through a single carboxylate O from two different aminocyclobutane carboxylate moities], resulting in a two-dimensional layered structure lying parallel to (100.

  2. Correction: Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones.

    Science.gov (United States)

    Yin, Feng; Garifullina, Ainash; Tanaka, Fujie

    2018-04-25

    Correction for 'Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones' by Feng Yin et al., Org. Biomol. Chem., 2017, 15, 6089-6092.

  3. 13C based proteinogenic amino acid (PAA) and metabolic flux ratio analysis of Lactococcus lactis reveals changes in pentose phosphate (PP) pathway in response to agitation and temperature related stresses.

    Science.gov (United States)

    Azizan, Kamalrul Azlan; Ressom, Habtom W; Mendoza, Eduardo R; Baharum, Syarul Nataqain

    2017-01-01

    Lactococcus lactis subsp. cremoris MG1363 is an important starter culture for dairy fermentation. During industrial fermentations, L. lactis is constantly exposed to stresses that affect the growth and performance of the bacterium. Although the response of L. lactis to several stresses has been described, the adaptation mechanisms at the level of in vivo fluxes have seldom been described. To gain insights into cellular metabolism, 13 C metabolic flux analysis and gas chromatography mass spectrometry (GC-MS) were used to measure the flux ratios of active pathways in the central metabolism of L. lactis when subjected to three conditions varying in temperature (30°C, 37°C) and agitation (with and without agitation at 150 rpm). Collectively, the concentrations of proteinogenic amino acids (PAAs) and free fatty acids (FAAs) were compared, and Pearson correlation analysis ( r ) was calculated to measure the pairwise relationship between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine and histidine were correlated strongly, suggesting changes in flux regulation in glycolysis, the pentose phosphate (PP) pathway, malic enzyme and anaplerotic reaction catalysed by pyruvate carboxylase (pycA). Flux ratio analysis revealed that glucose was mainly converted by glycolysis, highlighting the stability of L. lactis' central carbon metabolism despite different conditions. Higher flux ratios through oxaloacetate (OAA) from pyruvate (PYR) reaction in all conditions suggested the activation of pyruvate carboxylate (pycA) in L. lactis , in response to acid stress during exponential phase. Subsequently, more significant flux ratio differences were seen through the oxidative and non-oxidative pentose phosphate (PP) pathways, malic enzyme, and serine and C1 metabolism, suggesting NADPH requirements in response to environmental stimuli. These reactions could play an important role in optimization strategies for metabolic engineering in L. lactis . Overall, the

  4. 13C based proteinogenic amino acid (PAA and metabolic flux ratio analysis of Lactococcus lactis reveals changes in pentose phosphate (PP pathway in response to agitation and temperature related stresses

    Directory of Open Access Journals (Sweden)

    Kamalrul Azlan Azizan

    2017-07-01

    Full Text Available Lactococcus lactis subsp. cremoris MG1363 is an important starter culture for dairy fermentation. During industrial fermentations, L. lactis is constantly exposed to stresses that affect the growth and performance of the bacterium. Although the response of L. lactis to several stresses has been described, the adaptation mechanisms at the level of in vivo fluxes have seldom been described. To gain insights into cellular metabolism, 13C metabolic flux analysis and gas chromatography mass spectrometry (GC-MS were used to measure the flux ratios of active pathways in the central metabolism of L. lactis when subjected to three conditions varying in temperature (30°C, 37°C and agitation (with and without agitation at 150 rpm. Collectively, the concentrations of proteinogenic amino acids (PAAs and free fatty acids (FAAs were compared, and Pearson correlation analysis (r was calculated to measure the pairwise relationship between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine and histidine were correlated strongly, suggesting changes in flux regulation in glycolysis, the pentose phosphate (PP pathway, malic enzyme and anaplerotic reaction catalysed by pyruvate carboxylase (pycA. Flux ratio analysis revealed that glucose was mainly converted by glycolysis, highlighting the stability of L. lactis’ central carbon metabolism despite different conditions. Higher flux ratios through oxaloacetate (OAA from pyruvate (PYR reaction in all conditions suggested the activation of pyruvate carboxylate (pycA in L. lactis, in response to acid stress during exponential phase. Subsequently, more significant flux ratio differences were seen through the oxidative and non-oxidative pentose phosphate (PP pathways, malic enzyme, and serine and C1 metabolism, suggesting NADPH requirements in response to environmental stimuli. These reactions could play an important role in optimization strategies for metabolic engineering in L. lactis. Overall

  5. 13C based proteinogenic amino acid (PAA) and metabolic flux ratio analysis of Lactococcus lactis reveals changes in pentose phosphate (PP) pathway in response to agitation and temperature related stresses

    Science.gov (United States)

    2017-01-01

    Lactococcus lactis subsp. cremoris MG1363 is an important starter culture for dairy fermentation. During industrial fermentations, L. lactis is constantly exposed to stresses that affect the growth and performance of the bacterium. Although the response of L. lactis to several stresses has been described, the adaptation mechanisms at the level of in vivo fluxes have seldom been described. To gain insights into cellular metabolism, 13C metabolic flux analysis and gas chromatography mass spectrometry (GC-MS) were used to measure the flux ratios of active pathways in the central metabolism of L. lactis when subjected to three conditions varying in temperature (30°C, 37°C) and agitation (with and without agitation at 150 rpm). Collectively, the concentrations of proteinogenic amino acids (PAAs) and free fatty acids (FAAs) were compared, and Pearson correlation analysis (r) was calculated to measure the pairwise relationship between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine and histidine were correlated strongly, suggesting changes in flux regulation in glycolysis, the pentose phosphate (PP) pathway, malic enzyme and anaplerotic reaction catalysed by pyruvate carboxylase (pycA). Flux ratio analysis revealed that glucose was mainly converted by glycolysis, highlighting the stability of L. lactis’ central carbon metabolism despite different conditions. Higher flux ratios through oxaloacetate (OAA) from pyruvate (PYR) reaction in all conditions suggested the activation of pyruvate carboxylate (pycA) in L. lactis, in response to acid stress during exponential phase. Subsequently, more significant flux ratio differences were seen through the oxidative and non-oxidative pentose phosphate (PP) pathways, malic enzyme, and serine and C1 metabolism, suggesting NADPH requirements in response to environmental stimuli. These reactions could play an important role in optimization strategies for metabolic engineering in L. lactis. Overall, the

  6. Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons.

    Science.gov (United States)

    Halim, Nader D; Mcfate, Thomas; Mohyeldin, Ahmed; Okagaki, Peter; Korotchkina, Lioubov G; Patel, Mulchand S; Jeoung, Nam Ho; Harris, Robert A; Schell, Michael J; Verma, Ajay

    2010-08-01

    Glucose metabolism in nervous tissue has been proposed to occur in a compartmentalized manner with astrocytes contributing largely to glycolysis and neurons being the primary site of glucose oxidation. However, mammalian astrocytes and neurons both contain mitochondria, and it remains unclear why in culture neurons oxidize glucose, lactate, and pyruvate to a much larger extent than astrocytes. The objective of this study was to determine whether pyruvate metabolism is differentially regulated in cultured neurons versus astrocytes. Expression of all components of the pyruvate dehydrogenase complex (PDC), the rate-limiting step for pyruvate entry into the Krebs cycle, was determined in cultured astrocytes and neurons. In addition, regulation of PDC enzymatic activity in the two cell types via protein phosphorylation was examined. We show that all components of the PDC are expressed in both cell types in culture, but that PDC activity is kept strongly inhibited in astrocytes through phosphorylation of the pyruvate dehydrogenase alpha subunit (PDH alpha). In contrast, neuronal PDC operates close to maximal levels with much lower levels of phosphorylated PDH alpha. Dephosphorylation of astrocytic PDH alpha restores PDC activity and lowers lactate production. Our findings suggest that the glucose metabolism of astrocytes and neurons may be far more flexible than previously believed. (c) 2010 Wiley-Liss, Inc.

  7. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET)

    DEFF Research Database (Denmark)

    Gutte, Henrik; Hansen, Adam E.; Henriksen, Sarah T.

    2015-01-01

    named this concept hyper PET. Intravenous injection of the hyperpolarized 13C-pyruvate results in an increase of 13C-lactate, 13C-alanine and 13CCO2 (13C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use......In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized 13C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and 18F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have...... of 13C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of 13C-pyruvate to 13C-lactate. In this study, we combined it with 18F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence...

  8. CARBOXYLIC ACIDS ELECTROOXIDATION ON SHUNGITE ELECTRODE

    Directory of Open Access Journals (Sweden)

    Oleksandr Davydenko

    2017-03-01

    Full Text Available Purpose: This article discusses the electrochemical method of directional conversion of carboxylic acids, which are the most aggressive hydrocarbons oxidation products back into the corresponding hydrocarbons. Existing methods for the regeneration of waste petroleum oils have significant drawbacks, which include the formation of new hard-reclaimed waste and loss of a significant part of the oil during regeneration. Methods: Electrooxidation processes of carboxylic acid on various electrode materials: platinum, graphite and shungite anodes were studied. Results: Potentiostatic polarization curves with simultaneous measurement of near-electrode solution pH showed differences in the process on these anode materials: dimer yield for Kolbe is decreased under the transition from platinum to shungite. At potentials higher than 2.0 v, carboxylic acid has a higher adsorbability compared to water. Therefore Faraday’s side-process of water oxidation doesn’t almost occur, which contributes to high yield of expected product according to current. Electrolysis of carboxylic acids solutions under controlled potential (2.0 and 2.4 V and chromatographic analysis of the formed products showed that along with the dimeric structures formation for Kolbe reaction, the occurrence of a hydrocarbons mixture takes place, which may be the result of disproportionation of hydrocarbon radicals (alkane and alkene and hydrocarbons of isomeric structure, by further oxidation of the hydrocarbon radical to carbocation and its subsequent transformation into the corresponding saturated and unsaturated isomers. Such statement is not supported by conception of the process of one- and two-electron carboxylic acid oxidation. Discussion: General carboxylic acid oxidation scheme according to one-electron mechanism (dimerization and disproportionation of the radical and two-electron mechanism (formation and carbocation rearrangement is proposed. The formation of hydrocarbons under

  9. Multisite Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate

    Directory of Open Access Journals (Sweden)

    Pedro A. Gómez Damián

    2014-01-01

    Full Text Available Hyperpolarized 13C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1-13C]pyruvate and downstream metabolites [1-13C]alanine, [1-13C]lactate, and [13C]bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this work is the determination of parameter values through a multisite, dynamic model involving possible biochemical pathways present in MR spectroscopy. Kinetic modeling parameters were determined by fitting the multisite model to time-domain dynamic metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting small physiological differences in the target metabolism. In comparison to the two-site exchange models, the multisite model yielded metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values. Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in different tissues.

  10. Synthesis and bioactivities of Phenazine-1-carboxylic acid derivatives based on the modification of PCA carboxyl group.

    Science.gov (United States)

    Xiong, Zhipeng; Niu, Junfan; Liu, Hao; Xu, Zhihong; Li, Junkai; Wu, Qinglai

    2017-05-01

    Phenazine-1-carboxylic acid (PCA) as a natural product widely exists in microbial metabolites of Pseudomonads and Streptomycetes and has been registered for the fungicide against rice sheath blight in China. To find higher fungicidal activities compounds and study the effects on fungicidal activities after changing the carboxyl group of PCA, we synthesized a series of PCA derivatives by modifying the carboxyl group of PCA and their structures were confirmed by 1 H NMR and HRMS. Most compounds exhibited significant fungicidal activities in vitro. In particular, compound 6 exhibited inhibition effect against Rhizoctonia solani with EC 50 values of 4.35mg/L and compound 3b exhibited effect against Fusarium graminearum with EC 50 values of 8.30mg/L, compared to the positive control PCA with its EC 50 values of 7.88mg/L (Rhizoctonia solani) and 127.28mg/L (Fusarium graminearum), respectively. The results indicated that the carboxyl group of PCA could be modified to be amide group, acylhydrazine group, ester group, methyl, hydroxymethyl, chloromethyl and ether group etc. And appropriate modifications on carboxyl group of PCA were useful to extend the fungicidal scope. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Carboxyl group reactivity in actin

    Energy Technology Data Exchange (ETDEWEB)

    Elzinga, M.

    1986-01-01

    While earlier work showed that the carboxyl groups of proteins could be quantitatively coupled to amino groups at pH 4.75 in the presence of EDC and a denaturing agent, the work presented here indicates that under milder conditions the modification of sidechain carboxyls is limited and somewhat specific. Most of the incorporated glycine ethyl ester (GEE) is apparently bound to five carboxyls. The total GEE incorporated was 3 to 4 moles/mole of protein as measured by an increase in Gly upon acid hydrolysis and amino acid analysis, as well as total radioactivity. 3.55 residues were found in peptides, 2.75 bound to residues 1 to 4, and 0.8 bound to Gly-100. 9 refs., 2 figs., 2 tabs.

  12. Carboxyl group reactivity in actin

    International Nuclear Information System (INIS)

    Elzinga, M.

    1986-01-01

    While earlier work showed that the carboxyl groups of proteins could be quantitatively coupled to amino groups at pH 4.75 in the presence of EDC and a denaturing agent, the work presented here indicates that under milder conditions the modification of sidechain carboxyls is limited and somewhat specific. Most of the incorporated glycine ethyl ester (GEE) is apparently bound to five carboxyls. The total GEE incorporated was 3 to 4 moles/mole of protein as measured by an increase in Gly upon acid hydrolysis and amino acid analysis, as well as total radioactivity. 3.55 residues were found in peptides, 2.75 bound to residues 1 to 4, and 0.8 bound to Gly-100. 9 refs., 2 figs., 2 tabs

  13. Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion.

    Science.gov (United States)

    Patterson, Jessica N; Cousteils, Katelyn; Lou, Jennifer W; Manning Fox, Jocelyn E; MacDonald, Patrick E; Joseph, Jamie W

    2014-05-09

    It is well known that mitochondrial metabolism of pyruvate is critical for insulin secretion; however, we know little about how pyruvate is transported into mitochondria in β-cells. Part of the reason for this lack of knowledge is that the carrier gene was only discovered in 2012. In the current study, we assess the role of the recently identified carrier in the regulation of insulin secretion. Our studies show that β-cells express both mitochondrial pyruvate carriers (Mpc1 and Mpc2). Using both pharmacological inhibitors and siRNA-mediated knockdown of the MPCs we show that this carrier plays a key role in regulating insulin secretion in clonal 832/13 β-cells as well as rat and human islets. We also show that the MPC is an essential regulator of both the ATP-regulated potassium (KATP) channel-dependent and -independent pathways of insulin secretion. Inhibition of the MPC blocks the glucose-stimulated increase in two key signaling molecules involved in regulating insulin secretion, the ATP/ADP ratio and NADPH/NADP(+) ratio. The MPC also plays a role in in vivo glucose homeostasis as inhibition of MPC by the pharmacological inhibitor α-cyano-β-(1-phenylindol-3-yl)-acrylate (UK5099) resulted in impaired glucose tolerance. These studies clearly show that the newly identified mitochondrial pyruvate carrier sits at an important branching point in nutrient metabolism and that it is an essential regulator of insulin secretion.

  14. NH4+ triggers the release of astrocytic lactate via mitochondrial pyruvate shunting

    Science.gov (United States)

    Lerchundi, Rodrigo; Fernández-Moncada, Ignacio; Contreras-Baeza, Yasna; Sotelo-Hitschfeld, Tamara; Mächler, Philipp; Wyss, Matthias T.; Stobart, Jillian; Baeza-Lehnert, Felipe; Alegría, Karin; Weber, Bruno; Barros, L. Felipe

    2015-01-01

    Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K+ as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4+, a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4+ with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4+ and in the somatosensory cortex of anesthetized mice in response to i.v. NH4+. Unexpectedly, NH4+ had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4+ diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4+ is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4+ behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes. PMID:26286989

  15. NH4(+) triggers the release of astrocytic lactate via mitochondrial pyruvate shunting.

    Science.gov (United States)

    Lerchundi, Rodrigo; Fernández-Moncada, Ignacio; Contreras-Baeza, Yasna; Sotelo-Hitschfeld, Tamara; Mächler, Philipp; Wyss, Matthias T; Stobart, Jillian; Baeza-Lehnert, Felipe; Alegría, Karin; Weber, Bruno; Barros, L Felipe

    2015-09-01

    Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K(+) as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4(+), a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4(+) with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4(+) and in the somatosensory cortex of anesthetized mice in response to i.v. NH4(+). Unexpectedly, NH4(+) had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4(+) diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4(+) is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4(+) behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes.

  16. Inhibiting sperm pyruvate dehydrogenase complex and its E3 subunit, dihydrolipoamide dehydrogenase affects fertilization in Syrian hamsters.

    Directory of Open Access Journals (Sweden)

    Archana B Siva

    Full Text Available BACKGROUND/AIMS: The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc and its E3 subunit, dihydrolipoamide dehydrogenase (DLD in hamster in vitro fertilization (IVF via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. METHODOLOGY AND PRINCIPAL FINDINGS: Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid. Oocytes fertilized with MICA-treated (MT [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. CONCLUSIONS: This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In

  17. Production of carboxylic acid and salt co-products

    Science.gov (United States)

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  18. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria.

    Science.gov (United States)

    Su, Yu-Bin; Peng, Bo; Li, Hui; Cheng, Zhi-Xue; Zhang, Tian-Tuo; Zhu, Jia-Xin; Li, Dan; Li, Min-Yi; Ye, Jin-Zhou; Du, Chao-Chao; Zhang, Song; Zhao, Xian-Liang; Yang, Man-Jun; Peng, Xuan-Xian

    2018-02-13

    The emergence and ongoing spread of multidrug-resistant bacteria puts humans and other species at risk for potentially lethal infections. Thus, novel antibiotics or alternative approaches are needed to target drug-resistant bacteria, and metabolic modulation has been documented to improve antibiotic efficacy, but the relevant metabolic mechanisms require more studies. Here, we show that glutamate potentiates aminoglycoside antibiotics, resulting in improved elimination of antibiotic-resistant pathogens. When exploring the metabolic flux of glutamate, it was found that the enzymes that link the phosphoenolpyruvate (PEP)-pyruvate-AcCoA pathway to the TCA cycle were key players in this increased efficacy. Together, the PEP-pyruvate-AcCoA pathway and TCA cycle can be considered the pyruvate cycle (P cycle). Our results show that inhibition or gene depletion of the enzymes in the P cycle shut down the TCA cycle even in the presence of excess carbon sources, and that the P cycle operates routinely as a general mechanism for energy production and regulation in Escherichia coli and Edwardsiella tarda These findings address metabolic mechanisms of metabolite-induced potentiation and fundamental questions about bacterial biochemistry and energy metabolism.

  19. Protective effect of pyruvate against ethanol-induced apoptotic neurodegeneration in the developing rat brain.

    Science.gov (United States)

    Ullah, Najeeb; Naseer, Muhammad Imran; Ullah, Ikram; Lee, Hae Young; Koh, Phil Ok; Kim, Myeong Ok

    2011-12-01

    Exposure to alcohol during the early stages of brain development can lead to neurological disorders in the CNS. Apoptotic neurodegeneration due to ethanol exposure is a main feature of alcoholism. Exposure of developing animals to alcohol (during the growth spurt period in particular) elicits apoptotic neuronal death and causes fetal alcohol effects (FAE) or fetal alcohol syndrome (FAS). A single episode of ethanol intoxication (at 5 g/kg) in a seven-day-old developing rat can activate the apoptotic cascade, leading to widespread neuronal death in the brain. In the present study, we investigated the potential protective effect of pyruvate against ethanol-induced neuroapoptosis. After 4h, a single dose of ethanol induced upregulation of Bax, release of mitochondrial cytochrome-c into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1), all of which promote apoptosis. These effects were all reversed by co-treatment with pyruvate at a well-tolerated dosage (1000 mg/kg). Histopathology performed at 24 and 48 h with Fluoro-Jade-B and cresyl violet stains showed that pyruvate significantly reduced the number of dead cells in the cerebral cortex, hippocampus and thalamus. Immunohistochemical analysis at 24h confirmed that ethanol-induced cell death is both apoptotic and inhibited by pyruvate. These findings suggest that pyruvate treatment attenuates ethanol-induced neuronal cell loss in the developing rat brain and holds promise as a safe therapeutic and neuroprotective agent in the treatment of neurodegenerative disorders in newborns and infants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Boosting Anaplerotic Reactions by Pyruvate Kinase Gene Deletion and Phosphoenolpyruvate Carboxylase Desensitization for Glutamic Acid and Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Yokota, Atsushi; Sawada, Kazunori; Wada, Masaru

    In the 1980s, Shiio and coworkers demonstrated using random mutagenesis that the following three phenotypes were effective for boosting lysine production by Corynebacterium glutamicum: (1) low-activity-level citrate synthase (CS L ), (2) phosphoenolpyruvate carboxylase (PEPC) resistant to feedback inhibition by aspartic acid (PEPC R ), and (3) pyruvate kinase (PYK) deficiency. Here, we reevaluated these phenotypes and their interrelationship in lysine production using recombinant DNA techniques.The pyk deletion and PEPC R (D299N in ppc) independently showed marginal effects on lysine production, but both phenotypes synergistically increased lysine yield, demonstrating the importance of PEPC as an anaplerotic enzyme in lysine production. Similar effects were also found for glutamic acid production. CS L (S252C in gltA) further increased lysine yield. Thus, using molecular techniques, the combination of these three phenotypes was reconfirmed to be effective for lysine production. However, a simple CS L mutant showed instabilities in growth and lysine yield.Surprisingly, the pyk deletion was found to increase biomass production in wild-type C. glutamicum ATCC13032 under biotin-sufficient conditions. The mutant showed a 37% increase in growth (based on OD 660 ) compared with the ATCC13032 strain in a complex medium containing 100 g/L glucose. Metabolome analysis revealed the intracellular accumulation of excess precursor metabolites. Thus, their conversion into biomass was considered to relieve the metabolic distortion in the pyk-deleted mutant. Detailed physiological studies of various pyk-deleted mutants also suggested that malate:quinone oxidoreductase (MQO) is important to control both the intracellular oxaloacetic acid (OAA) level and respiration rate. These findings may facilitate the rational use of C. glutamicum in fermentation industries.

  1. Propionate Increases Hepatic Pyruvate Cycling and Anaplerosis and Alters Mitochondrial Metabolism

    DEFF Research Database (Denmark)

    Perry, Rachel J; Borders, Candace B; Cline, Gary W

    2016-01-01

    /tandem-mass spectrometry (LC-MS/MS) method to directly assess pyruvate cycling relative to mitochondrial pyruvate metabolism (VPyr-Cyc/VMito) in vivo using [3-(13)C]lactate as a tracer. Using this approach, VPyr-Cyc/VMito was only 6% in overnight fasted rats. In contrast, when propionate was infused simultaneously...... at doses previously used as a tracer, it increased VPyr-Cyc/VMito by 20-30-fold, increased hepatic TCA metabolite concentrations 2-3-fold, and increased endogenous glucose production rates by 20-100%. The physiologic stimuli, glucagon and epinephrine, both increased hepatic glucose production, but only...... tracer to assess hepatic glycolytic, gluconeogenic, and mitochondrial metabolism in vivo....

  2. Combined Hyperpolarized 13C-pyruvate MRS and 18F-FDG PET (HyperPET) Estimates of Glycolysis in Canine Cancer Patients

    DEFF Research Database (Denmark)

    Hansen, Adam E.; Gutte, Henrik; Holst, Pernille

    2018-01-01

    13C Magnetic Resonance Spectroscopy (MRS) using hyperpolarized 13C-labeled pyruvate as a substrate offers a measure of pyruvate-lactate interconversion and is thereby a marker of the elevated aerobic glycolysis (Warburg effect) generally exhibited by cancer cells. Here, we aim to compare hyperpol......13C Magnetic Resonance Spectroscopy (MRS) using hyperpolarized 13C-labeled pyruvate as a substrate offers a measure of pyruvate-lactate interconversion and is thereby a marker of the elevated aerobic glycolysis (Warburg effect) generally exhibited by cancer cells. Here, we aim to compare...

  3. Relations between fatty acid synthesis, pyruvate concentration and cell concentration of suspensions of isolated rat hepatocytes

    NARCIS (Netherlands)

    Beynen, A.C.; Geelen, M.J.H.

    1984-01-01

    1. 1. The cell concentration of suspensions of isolated rat hepatocytes affects both the rate of pyruvate accumulation in the incubation medium and the rate of fatty acid synthesis. 2. 2. At low cell concentrations pyruvate accumulation is directly related to the cell concentration but levels off

  4. Hyperpolarized [1-(13) C]pyruvate MRI for noninvasive examination of placental metabolism and nutrient transport: A feasibility study in pregnant guinea pigs.

    Science.gov (United States)

    Friesen-Waldner, Lanette J; Sinclair, Kevin J; Wade, Trevor P; Michael, Banoub; Chen, Albert P; de Vrijer, Barbra; Regnault, Timothy R H; McKenzie, Charles A

    2016-03-01

    To test the feasibility of hyperpolarized [1-(13) C]pyruvate magnetic resonance imaging (MRI) for noninvasive examination of guinea pig fetoplacental metabolism and nutrient transport. Seven pregnant guinea pigs with a total of 30 placentae and fetuses were anesthetized and scanned at 3T. T1 -weighted (1) H images were obtained from the maternal abdomen. An 80 mM solution of hyperpolarized [1-(13) C]pyruvate (hereafter referred to as pyruvate) was injected into a vein in the maternal foot. Time-resolved 3D (13) C images were acquired starting 10 seconds after the beginning of bolus injection and every 10 seconds after to 50 seconds. The pregnant guinea pigs were recovered after imaging. Regions of interest (ROIs) were drawn around the maternal heart and each placenta and fetal liver in all slices in the (1) H images. These ROIs were copied to the (13) C images and were used to calculate the sum of the pyruvate and lactate signal intensities for each organ. The signal intensities were normalized by the volume of the organ and the maximum signal in the maternal heart. No adverse events were observed in the pregnant guinea pigs and natural pupping occurred at term (∼68 days). Pyruvate signal was observed in all 30 placentae, and lactate, a by-product of pyruvate metabolism, was also observed in all placentae. The maximum pyruvate and lactate signals in placentae occurred at 20 seconds. In addition to the observation of pyruvate and lactate signals in the placentae, both pyruvate and lactate signals were observed in all fetal livers. The maximum pyruvate and lactate signals in the fetal livers occurred at 10 seconds and 20 seconds, respectively. This work demonstrates the feasibility of using hyperpolarized [1-(13) C]pyruvate MRI to noninvasively examine fetoplacental metabolism and transport of pyruvate in guinea pigs. Hyperpolarized (13) C MRI may provide a novel method for longitudinal studies of fetoplacental abnormalities. © 2015 Wiley Periodicals, Inc.

  5. Stem Cell Metabolism in Cancer and Healthy Tissues: Pyruvate in the Limelight

    Directory of Open Access Journals (Sweden)

    Cyril Corbet

    2018-01-01

    Full Text Available Normal and cancer stem cells (CSCs share the remarkable potential to self-renew and differentiate into many distinct cell types. Although most of the stem cells remain under quiescence to maintain their undifferentiated state, they can also undergo cell divisions as required to regulate tissue homeostasis. There is now a growing evidence that cell fate determination from stem cells implies a fine-tuned regulation of their energy balance and metabolic status. Stem cells can shift their metabolic substrate utilization, between glycolysis and mitochondrial oxidative metabolism, during specification and/or differentiation, as well as in order to adapt their microenvironmental niche. Pyruvate appears as a key metabolite since it is at the crossroads of cytoplasmic glycolysis and mitochondrial oxidative phosphorylation. This Review describes how metabolic reprogramming, focusing on pyruvate utilization, drives the fate of normal and CSCs by modulating their capacity for self-renewal, clonal expansion/differentiation, as well as metastatic potential and treatment resistance in cancer. This Review also explores potential therapeutic strategies to restore or manipulate stem cell function through the use of small molecules targeting the pyruvate metabolism.

  6. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity.

    Science.gov (United States)

    Rauckhorst, Adam J; Gray, Lawrence R; Sheldon, Ryan D; Fu, Xiaorong; Pewa, Alvin D; Feddersen, Charlotte R; Dupuy, Adam J; Gibson-Corley, Katherine N; Cox, James E; Burgess, Shawn C; Taylor, Eric B

    2017-11-01

    Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. The goal of this investigation was to test whether hepatocyte MPC disruption provides sustained protection from hyperglycemia during long-term HFD and the differential effects of hepatocyte MPC disruption on TCA cycle metabolism in NCD versus HFD conditions. We utilized long-term high fat feeding, serial measurements of postabsorptive blood glucose and metabolomic profiling and 13 C-lactate/ 13 C-pyruvate tracing to investigate the contribution of the MPC to hyperglycemia and altered hepatic TCA cycle metabolism during HFD-induced obesity. Hepatocyte MPC disruption resulted in long-term attenuation of hyperglycemia induced by HFD. HFD increased hepatic mitochondrial pyruvate utilization and TCA cycle capacity in an MPC-dependent manner. Furthermore, MPC disruption decreased progression of fibrosis and levels of transcript markers of inflammation. By contributing to chronic hyperglycemia, fibrosis, and TCA cycle expansion, the hepatocyte MPC is a key mediator of the pathophysiology induced in the HFD model of T2D. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  7. Effect of thiamine deficiency, pyrithiamine and oxythiamine on pyruvate metabolism in rat liver and brain in vivo

    International Nuclear Information System (INIS)

    Meghal, S.K.; O'Neal, R.M.; Koeppe, R.E.

    1977-01-01

    Rats were fed either a thiamine-deficient diet or diets containing pyrithiamine or oxythiamine. When symptoms of thiamine deficiency appeared, the animals were injected intraperitoneally with [2- 14 C] pyruvate six to twelve minutes prior to sacrifice. Free glutamic and aspartic acids were isolated from liver and brain and degraded. The results indicate that, in thiamine-deficient or oxythiamine-treated rats, pyruvate metabolism in liver and brain is similar to that in normal animals. In contrast, pyrithinamine drastically decreases the oxidative decarboxylation of pyruvate by rat liver. (auth.)

  8. Multi site Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate

    International Nuclear Information System (INIS)

    Damian, P.A.G.; Sperl, J.I.; Janich, M.A.; Wiesinger, F.; Schulte, R.F.; Menzel, M.I.; Damian, P.A.G.; Damian, P.A.G.; Haase, A.; Janich, M.A.; Schwaiger, M.; Janich, M.A.; Khegai, O.; Glaser, S.J.

    2014-01-01

    Hyperpolarized 13 C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1- 13 C]pyruvate and downstream metabolites [1- 13 C]alanine, [1- 13 C]lactate, and [ 13 C] bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this work is the determination of parameter values through a multi site, dynamic model involving possible biochemical pathways present in MR spectroscopy. Kinetic modeling parameters were determined by fitting the multi site model to time-domain dynamic metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting small physiological differences in the target metabolism. In comparison to the two-site exchange models, the multi site model yielded metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values. Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in different tissues

  9. Beneficial effect of pyruvate therapy on Leigh syndrome due to a novel mutation in PDH E1α gene.

    Science.gov (United States)

    Koga, Yasutoshi; Povalko, Nataliya; Katayama, Koujyu; Kakimoto, Noriko; Matsuishi, Toyojiro; Naito, Etsuo; Tanaka, Masashi

    2012-02-01

    Leigh syndrome (LS) is a progressive untreatable degenerating mitochondrial disorder caused by either mitochondrial or nuclear DNA mutations. A patient was a second child of unconsanguineous parents. On the third day of birth, he was transferred to neonatal intensive care units because of severe lactic acidosis. Since he was showing continuous lactic acidosis, the oral supplementation of dichloroacetate (DCA) was introduced on 31st day of birth at initial dose of 50 mg/kg, followed by maintenance dose of 25 mg/kg/every 12 h. The patient was diagnosed with LS due to a point mutation of an A-C at nucleotide 599 in exon 6 in the pyruvate dehydrogenase E1α gene, resulting in the substitution of aspartate for threonine at position 200 (N200T). Although the concentrations of lactate and pyruvate in blood were slightly decreased, his clinical conditions were deteriorating progressively. In order to overcome the mitochondrial or cytosolic energy crisis indicated by lactic acidosis as well as clinical symptoms, we terminated the DCA and administered 0.5 g/kg/day TID of sodium pyruvate orally. We analyzed the therapeutic effects of DCA or sodium pyruvate in the patient, and found that pyruvate therapy significantly decreased lactate, pyruvate and alanine levels, showed no adverse effects such as severe neuropathy seen in DCA, and had better clinical response on development and epilepsy. Though the efficacy of pyruvate on LS will be evaluated by randomized double-blind placebo-controlled study design in future, pyruvate therapy is a possible candidate for therapeutic choice for currently incurable mitochondrial disorders such as LS. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  10. Modeling of the pyruvate production with Escherichia coli: comparison of mechanistic and neural networks-based models.

    Science.gov (United States)

    Zelić, B; Bolf, N; Vasić-Racki, D

    2006-06-01

    Three different models: the unstructured mechanistic black-box model, the input-output neural network-based model and the externally recurrent neural network model were used to describe the pyruvate production process from glucose and acetate using the genetically modified Escherichia coli YYC202 ldhA::Kan strain. The experimental data were used from the recently described batch and fed-batch experiments [ Zelić B, Study of the process development for Escherichia coli-based pyruvate production. PhD Thesis, University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb, Croatia, July 2003. (In English); Zelić et al. Bioproc Biosyst Eng 26:249-258 (2004); Zelić et al. Eng Life Sci 3:299-305 (2003); Zelić et al Biotechnol Bioeng 85:638-646 (2004)]. The neural networks were built out of the experimental data obtained in the fed-batch pyruvate production experiments with the constant glucose feed rate. The model validation was performed using the experimental results obtained from the batch and fed-batch pyruvate production experiments with the constant acetate feed rate. Dynamics of the substrate and product concentration changes was estimated using two neural network-based models for biomass and pyruvate. It was shown that neural networks could be used for the modeling of complex microbial fermentation processes, even in conditions in which mechanistic unstructured models cannot be applied.

  11. Carbon-14 tracer studies in rat-liver perfusion experiments under conditions of gluconeogenesis from lactate and pyruvate

    International Nuclear Information System (INIS)

    Muellhofer, G.; Schwab, A.; Mueller, C.; Stetten, C. von; Gruber, E.

    1977-01-01

    The intracellular events in the metabolic pathway of gluconeogenesis from lactate and pyruvate in liver tissue were assumed to be understood. Nevertheless the results of several 14 C-tracer experiments gave rise to the postulation of still unknown intracellular interactions under this condition. A contribution was made to the solution of this problem by using different 14 C labelled tracers such as [1- 14 C]lactate or pyruvate and [2- 14 C]lactate or pyruvate. [ 14 C]bicarbonate and [1- 14 C]-octanoate in perfusion experiments with livers from rats under conditions of gluconeogenesis from lactate and pyruvate. The 14 C labelling patterns of intracellular metabolities such as malate, citrate, phosphoenolpyruvate, phosphoglycerate and newly synthesized glucose were analysed under different conditions. A comparison with values calculated by using metabolic models based on the generally accepted concepts of intracellular interactions showed some fundamental discrepancies which justify the postulation. (orig./MG) [de

  12. Ethyl pyruvate inhibits proliferation and induces apoptosis of hepatocellular carcinoma via regulation of the HMGB1–RAGE and AKT pathways

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ping; Dai, Weiqi; Wang, Fan; Lu, Jie; Shen, Miao; Chen, Kan; Li, Jingjing; Zhang, Yan; Wang, Chengfen; Yang, Jing; Zhu, Rong; Zhang, Huawei; Zheng, Yuanyuan; Guo, Chuan-Yong, E-mail: guochuanyong@hotmail.com; Xu, Ling, E-mail: xuling606@sina.com

    2014-01-24

    Highlights: • Ethyl pyruvate inhibits liver cancer. • Promotes apoptosis. • Decreased the expression of HMGB1, p-Akt. - Abstract: Ethyl pyruvate (EP) was recently identified as a stable lipophilic derivative of pyruvic acid with significant antineoplastic activities. The high mobility group box-B1 (HMGB1)–receptor for advanced glycation end-products (RAGE) and the protein kinase B (Akt) pathways play a crucial role in tumorigenesis and development of many malignant tumors. We tried to observe the effects of ethyl pyruvate on liver cancer growth and explored its effects in hepatocellular carcinoma model. In this study, three hepatocellular carcinoma cell lines were treated with ethyl pyruvate. An MTT colorimetric assay was used to assess the effects of EP on cell proliferation. Flow cytometry and TUNEL assays were used to analyze apoptosis. Real-time PCR, Western blotting and immunofluorescence demonstrated ethyl pyruvate reduced the HMGB1–RAGE and AKT pathways. The results of hepatoma orthotopic tumor model verified the antitumor effects of ethyl pyruvate in vivo. EP could induce apoptosis and slow the growth of liver cancer. Moreover, EP decreased the expression of HMGB1, RAGE, p-AKT and matrix metallopeptidase-9 (MMP9) and increased the Bax/Bcl-2 ratio. In conclusion, this study demonstrates that ethyl pyruvate induces apoptosis and cell-cycle arrest in G phase in hepatocellular carcinoma cells, plays a critical role in the treatment of cancer.

  13. Reprint of "How do components of real cloud water affect aqueous pyruvate oxidation?"

    Science.gov (United States)

    Boris, Alexandra J.; Desyaterik, Yury; Collett, Jeffrey L.

    2015-01-01

    Chemical oxidation of dissolved volatile or semi-volatile organic compounds within fog and cloud droplets in the atmosphere could be a major pathway for secondary organic aerosol (SOA) formation. This proposed pathway consists of: (1) dissolution of organic chemicals from the gas phase into a droplet; (2) reaction with an aqueous phase oxidant to yield low volatility products; and (3) formation of particle phase organic matter as the droplet evaporates. The common approach to simulating aqueous SOA (aqSOA) reactions is photo-oxidation of laboratory standards in pure water. Reactions leading to aqSOA formation should be studied within real cloud and fog water to determine whether additional competing processes might alter apparent rates of reaction as indicated by rates of reactant loss or product formation. To evaluate and identify the origin of any cloud water matrix effects on one example of observed aqSOA production, pyruvate oxidation experiments simulating aqSOA formation were monitored within pure water, real cloud water samples, and an aqueous solution of inorganic salts. Two analysis methods were used: online electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR-ToF-MS), and offline anion exchange chromatography (IC) with quantitative conductivity and qualitative ESI-HR-ToF-MS detection. The apparent rate of oxidation of pyruvate was slowed in cloud water matrices: overall measured degradation rates of pyruvate were lower than in pure water. This can be at least partially accounted for by the observed formation of pyruvate from reactions of other cloud water components. Organic constituents of cloud water also compete for oxidants and/or UV light, contributing to the observed slowed degradation rates of pyruvate. The oxidation of pyruvate was not significantly affected by the presence of inorganic anions (nitrate and sulfate) at cloud-relevant concentrations. Future bulk studies of aqSOA formation reactions using simplified

  14. Studies to enhance the hyperpolarization level in PHIP-SAH-produced C13-pyruvate

    Science.gov (United States)

    Cavallari, Eleonora; Carrera, Carla; Aime, Silvio; Reineri, Francesca

    2018-04-01

    The use of [1-13C]pyruvate, hyperpolarized by dissolution-Dynamic Nuclear Polarization (d-DNP), in in vivo metabolic studies has developed quickly, thanks to the imaging probe's diagnostic relevance. Nevertheless, the cost of a d-DNP polarizer is quite high and the speed of hyperpolarization process is relatively slow, meaning that its use is limited to few research laboratories. ParaHydrogen Induced Polarization Side Arm Hydrogenation (PHIP-SAH) (Reineri et al., 2015) is a cost effective and easy-to-handle method that produces 13C-MR hyperpolarization in [1-13C]pyruvate and other metabolites. This work aims to identify the main determinants of the hyperpolarization levels observed in C13-pyruvate using this method. By dissecting the various steps of the PHIP-SAH procedure, it has been possible to assess the role of several experimental parameters whose optimization must be pursued if this method is to be made suitable for future translational steps. The search for possible solutions has led to improvements in the polarization of sodium [1-13C]pyruvate from 2% to 5%. Moreover, these results suggest that observed polarization levels could be increased considerably by an automatized procedure which would reduce the time required for the work-up passages that are currently carried out manually. The results reported herein mean that the attainment of polarization levels suitable for the metabolic imaging applications of these hyperpolarized substrates show significant promise.

  15. Effects of insulin on perfused liver from streptozotocin-diabetic and untreated rats: 13C NMR assay of pyruvate kinase flux

    International Nuclear Information System (INIS)

    Cohen, S.M.

    1987-01-01

    The effects of insulin in vitro on perfused liver from streptozotocin-diabetic rats and their untreated littermates during gluconeogenesis from either [3- 13 C]alanine + ethanol or [2- 13 C]pyruvate + NH 4 Cl + ethanol were studied by 13 C NMR. A 13 C NMR determination of the rate of pyruvate kinase flux under steady-state conditions of active gluconeogenesis was developed; this assay includes a check on the reuse of recycled pyruvate. The preparations studied provided gradations of pyruvate kinase flux within the confines of the assay's requirement of active gluconeogenesis. By this determination, the rate of pyruvate kinase flux was 0.74 +/- 0.04 of the gluconeogenic rate in liver from 24-h-fasted controls; in liver from 12-h fasted controls, relative pyruvate kinase flux increased to 1.0 +/- 0.2. In diabetic liver, this flux was undetectable by the authors NMR method. Insulin's hepatic influence in vitro was greatest in the streptozotocin model of type 1 diabetes: upon treatment of diabetic liver with 7 nM insulin in vitro, a partial reversal of many of the differences noted between diabetic and control liver was demonstrated by 13 C NMR. A major effect of insulin in vitro upon diabetic liver was the induction of a large increase in the rate of pyruvate kinase flux, bringing relative and absolute fluxes up to the levels measured in 24-h-fasted controls. By way of comparison, the effects of ischemia on diabetic liver were studied by 13 C NMR to test whether changes in allosteric effectors under these conditions could also increase pyruvate kinase flux. A large increase in this activity was demonstrated in ischemic diabetic liver

  16. Rhodium-catalyzed regioselective olefination directed by a carboxylic group.

    Science.gov (United States)

    Mochida, Satoshi; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2011-05-06

    The ortho-olefination of benzoic acids can be achieved effectively through rhodium-catalyzed oxidative coupling with alkenes. The carboxylic group is readily removable to allow ortho-olefination/decarboxylation in one pot. α,β-Unsaturated carboxylic acids such as methacrylic acid also undergo the olefination at the β-position. Under the rhodium catalysis, the cine-olefination of heteroarene carboxylic acids such as thiophene-2-carboxylic acid proceeds smoothly accompanied by decarboxylation to selectively produce the corresponding vinylheteroarene derivatives. © 2011 American Chemical Society

  17. Recovery and esterification of aqueous carboxylates by using CO

    NARCIS (Netherlands)

    Cabrera-Rodríguez, Carlos I.; Paltrinieri, Laura; Smet, De Louis C.P.M.; Wielen, Van Der Luuk A.M.; Straathof, Adrie J.J.

    2017-01-01

    The recovery of carboxylic acids from fermentation broth is one of the main bottlenecks for the industrial production of bio-based esters. This paper proposes an alternative for the recovery of carboxylates produced by fermentations at pH values above the pKa of the carboxylic acid. In this

  18. [Diagnostic value of detection of blood levels of lactate, pyruvate and 2,3-diphosphoglycerate in children with diabetes mellitus].

    Science.gov (United States)

    Marchenko, L F; Baturin, A A; Terent'eva, E A

    1991-01-01

    Measurements were made of lactate, pyruvate and 2,3-diphosphoglycerate in 69 children admitted to the hospital in a state of diabetic ketoacidosis of different intensity. Depending on the intensity of metabolic abnormalities, the content of lactate and pyruvate was found to be increased, whereas that of 2,3-diphosphoglycerate to be lowered. Measurements of the content of lactate and the lactate/pyruvate ratio enables carrying out differential diagnosis between the ketoacidotic and lactacidotic varieties of diabetic coma.

  19. New trends and applications in carboxylation for isotope chemistry.

    Science.gov (United States)

    Bragg, Ryan A; Sardana, Malvika; Artelsmair, Markus; Elmore, Charles S

    2018-05-08

    Carboxylations are an important method for the incorporation of isotopically labeled 14 CO 2 into molecules. This manuscript will review labeled carboxylations since 2010 and will present a perspective on the potential of recent unlabeled methodology for labeled carboxylations. The perspective portion of the manuscript is broken into 3 major sections based on product type, arylcarboxylic acids, benzylcarboxylic acids, and alkyl carboxylic acids, and each of those sections is further subdivided by substrate. © 2018 AstraZeneca. Journal of Labelled Compounds and Radiopharmaceuticals Published by John Wiley & Sons, Ltd.

  20. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    H. F. Xie

    2012-09-01

    Full Text Available Carboxyl-modified multi-walled carbon nanotubes (MWCNT–COOHs as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA toughened with carboxyl-terminated butadiene-acrylonitrile (CTBN. The carboxyl functional carbon nanotubes were characterized by Fourier-transform infrared spectroscopy and thermogravimetric analysis. Furthermore, cure kinetics, glass transition temperature (Tg, mechanical properties, thermal stability and morphology of DGEBA/CTBN/MWCNT–COOHs nanocomposites were investigated by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, universal test machine, thermogravimetric analysis and scanning electron microscopy (SEM. DSC kinetic studies showed that the addition of MWCNT–COOHs accelerated the curing reaction of the rubber-toughened epoxy resin. DMA results revealed that Tg of rubber-toughened epoxy nanocomposites lowered with MWCNT–COOH contents. The tensile strength, elongation at break, flexural strength and flexural modulus of DGEBA/CTBN/MWCNT-COOHs nanocomposites were increased at lower MWCNT-COOH concentration. A homogenous dispersion of nanocomposites at lower MWCNT–COOH concentration was observed by SEM.

  1. Expression, purification, crystallization and preliminary X-ray diffraction analysis of dihydrodipicolinate synthase from Bacillus anthracis in the presence of pyruvate

    International Nuclear Information System (INIS)

    Voss, Jarrod E.; Scally, Stephen W.; Taylor, Nicole L.; Dogovski, Con; Alderton, Malcolm R.; Hutton, Craig A.; Gerrard, Juliet A.; Parker, Michael W.; Dobson, Renwick C. J.; Perugini, Matthew A.

    2009-01-01

    Dihydrodipicolinate synthase (DHDPS) catalyses an important step in lysine biosynthesis. Here, the expression, purification, crystallization and preliminary diffraction analysis to 2.15 Å resolution of DHDPS from B. anthracis soaked with the substrate pyruvate are reported. Dihydrodipicolinate synthase (DHDPS) catalyses the first committed step in the lysine-biosynthesis pathway in bacteria, plants and some fungi. In this study, the expression of DHDPS from Bacillus anthracis (Ba-DHDPS) and the purification of the recombinant enzyme in the absence and presence of the substrate pyruvate are described. It is shown that DHDPS from B. anthracis purified in the presence of pyruvate yields greater amounts of recombinant enzyme with more than 20-fold greater specific activity compared with the enzyme purified in the absence of substrate. It was therefore sought to crystallize Ba-DHDPS in the presence of the substrate. Pyruvate was soaked into crystals of Ba-DHDPS prepared in 0.2 M sodium fluoride, 20%(w/v) PEG 3350 and 0.1 M bis-tris propane pH 8.0. Preliminary X-ray diffraction data of the recombinant enzyme soaked with pyruvate at a resolution of 2.15 Å are presented. The pending crystal structure of the pyruvate-bound form of Ba-DHDPS will provide insight into the function and stability of this essential bacterial enzyme

  2. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Directory of Open Access Journals (Sweden)

    Yoichi Takakusagi

    Full Text Available BACKGROUND: TH-302 is a hypoxia-activated prodrug (HAP of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. METHODOLOGY/RESULTS: The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2, with minimal effect under aerobic conditions (21% O2. Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3. Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3, significantly delayed tumor growth. CONCLUSIONS/SIGNIFICANCE: Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the

  3. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Science.gov (United States)

    Takakusagi, Yoichi; Matsumoto, Shingo; Saito, Keita; Matsuo, Masayuki; Kishimoto, Shun; Wojtkowiak, Jonathan W; DeGraff, William; Kesarwala, Aparna H; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Munasinghe, Jeeva P; Gillies, Robert J; Mitchell, James B; Hart, Charles P; Krishna, Murali C

    2014-01-01

    TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR) oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2), with minimal effect under aerobic conditions (21% O2). Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3). Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3)), significantly delayed tumor growth. Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the appropriate tumor size and oxygen concentration.

  4. Physiological studies on the effect of a phosphodiesterase inhibitor on the blood obtained from hypothyroid rats

    International Nuclear Information System (INIS)

    Abdel-Ghany, I.Y.

    1997-01-01

    In the present study 300 male albino rats (100-120 g) were used. The search was planned to evaluate the biochemical effects of the therapeutic drug (pentoxifylline) in combination with thyroxine on the hypothyroid mammals. The biochemical determinations were serum: Tri-iodothyronine (T-3), thyroxine (T-4), Glucose, total protein, urea, creatinine, along with the enzymatic activities of : alkaline phosphatase (ALP), lactate dehydrogenase (LDH), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT). The study included also glycogen, lactic acid, pyruvic acid, along with the enzymatic activities of : LDH, GOT and GPT in liver tissue homogenate. The data obtained, revealed significant alterations in assayed parameters reflecting disturbance in the metabolism due to hypothyroid state. Treatment of rats with thyroxine and / or pentoxifylline revealed significant amelioration in most of the tested parameters indicating the beneficial effect of these drugs. 17 tabs.,17 figs.,123 refs

  5. Improved purification, crystallization and primary structure of pyruvate:ferredoxin oxidoreductase from Halobacterium halobium.

    Science.gov (United States)

    Plaga, W; Lottspeich, F; Oesterhelt, D

    1992-04-01

    An improved purification procedure, including nickel chelate affinity chromatography, is reported which resulted in a crystallizable pyruvate:ferredoxin oxidoreductase preparation from Halobacterium halobium. Crystals of the enzyme were obtained using potassium citrate as the precipitant. The genes coding for pyruvate:ferredoxin oxidoreductase were cloned and their nucleotide sequences determined. The genes of both subunits were adjacent to one another on the halobacterial genome. The derived amino acid sequences were confirmed by partial primary structure analysis of the purified protein. The structural motif of thiamin-diphosphate-binding enzymes was unequivocally located in the deduced amino acid sequence of the small subunit.

  6. Cancer metabolism meets systems biology: Pyruvate kinase isoform PKM2 is a metabolic master regulator

    OpenAIRE

    Fabian V Filipp

    2013-01-01

    Pyruvate kinase activity is controlled by a tightly woven regulatory network. The oncofetal isoform of pyruvate kinase (PKM2) is a master regulator of cancer metabolism. PKM2 engages in parallel, feed-forward, positive and negative feedback control contributing to cancer progression. Besides its metabolic role, non-metabolic functions of PKM2 as protein kinase and transcriptional coactivator for c-MYC and hypoxia-inducible factor 1-alpha are essential for epidermal growth factor receptor acti...

  7. Human Cells as Platform to Produce Gamma-Carboxylated Proteins.

    Science.gov (United States)

    de Sousa Bomfim, Aline; de Freitas, Marcela Cristina Corrêa; Covas, Dimas Tadeu; de Sousa Russo, Elisa Maria

    2018-01-01

    The gamma-carboxylated proteins belong to a family of proteins that depend on vitamin K for normal biosynthesis. The major representative gamma-carboxylated proteins are the coagulation system proteins, for example, factor VII, factor IX, factor X, prothrombin, and proteins C, S, and Z. These molecules have harbored posttranslational modifications, such as glycosylation and gamma-carboxylation, and for this reason they need to be produced in mammalian cell lines. Human cells lines have emerged as the most promising alternative to the production of gamma-carboxylated proteins. In this chapter, the methods to generate human cells as a platform to produce gamma-carboxylated proteins, for example the coagulation factors VII and IX, are presented. From the cell line modification up to the vitamin K adaptation of the produced cells is described in the protocols presented in this chapter.

  8. 3-Bromopyruvate antagonizes effects of lactate and pyruvate, synergizes with citrate and exerts novel anti-glioma effects.

    Science.gov (United States)

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Chung, S P; Diem, T H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-02-01

    Oxidative stress-energy depletion therapy using oxidative stress induced by D-amino acid oxidase (DAO) and energy depletion induced by 3-bromopyruvate (3BP) was reported recently (El Sayed et al., Cancer Gene Ther., 19, 1-18, 2012). Even in the presence of oxygen, cancer cells oxidize glucose preferentially to produce lactate (Warburg effect) which seems vital for cancer microenvironment and progression. 3BP is a closely related structure to lactate and pyruvate and may antagonize their effects as a novel mechanism of its action. Pyruvate exerted a potent H(2)O(2) scavenging effect to exogenous H(2)O(2), while lactate had no scavenging effect. 3BP induced H(2)O(2) production. Pyruvate protected against H(2)O(2)-induced C6 glioma cell death, 3BP-induced C6 glioma cell death but not against DAO/D-serine-induced cell death, while lactate had no protecting effect. Lactate and pyruvate protected against 3BP-induced C6 glioma cell death and energy depletion which were overcome with higher doses of 3BP. Lactate and pyruvate enhanced migratory power of C6 glioma which was blocked by 3BP. Pyruvate and lactate did not protect against C6 glioma cell death induced by other glycolytic inhibitors e.g. citrate (inhibitor of phosphofructokinase) and sodium fluoride (inhibitor of enolase). Serial doses of 3BP were synergistic with citrate in decreasing viability of C6 glioma cells and spheroids. Glycolysis subjected to double inhibition using 3BP with citrate depleted ATP, clonogenic power and migratory power of C6 glioma cells. 3BP induced a caspase-dependent cell death in C6 glioma. 3BP was powerful in decreasing viability of human glioblastoma multiforme cells (U373MG) and C6 glioma in a dose- and time-dependent manner.

  9. Novel Polymers with Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren

    2006-01-01

    Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4-hydroxybenzene......, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conducted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly(4-hydroxystyrene), poly(4...... the polymers in general exhibit [when poly(4-hydroxystyrene) is a substantial part] significant changes in the glass-transition temperature from the polar poly(4-hydroxystyrene) (120–130 °C) to the much less polar alkyne polymers (46–60 °C). A direct correlation between the nature of the pendant groups...

  10. Decarboxylative Trifluoromethylation of Aliphatic Carboxylic Acids.

    Science.gov (United States)

    Kautzky, Jacob A; Wang, Tao; Evans, Ryan W; MacMillan, David W C

    2018-05-14

    Herein we disclose an efficient method for the conversion of carboxylic acids to trifluoromethyl groups via the combination of photoredox and copper catalysis. This transformation tolerates a wide range of functionality including heterocycles, olefins, alcohols, and strained ring systems. To demonstrate the broad potential of this new methodology for late-stage functionalization, we successfully converted a diverse array of carboxylic acid-bearing natural products and medicinal agents to the corresponding trifluoromethyl analogues.

  11. Characterization of a C 4 maize pyruvate orthophosphate dikinase ...

    African Journals Online (AJOL)

    Pyruvate orthophosphate dikinase (PPDK) is a key enzyme in plants that utilize the C4 photosynthetic pathway to fix CO2. The enzymatic reaction catalyzed by PPDK is critically controlled by light and is one of the rate-limiting steps of the C4 pathway. The intact maize (Zea mays) C4-PPDK gene, containing its own promoter, ...

  12. Determination of carboxyl groups in wood fibers by headspace gas chromatography

    Science.gov (United States)

    X.-S. Chai; Q.X. Hou; J.Y. Zhu; S.-L. Chen; S.F. Wang; L. Lucia

    2003-01-01

    The phase reaction conversion (PRC) headspace gas chromatographic (HSGC) technique was employed to develop a method for the determination of the content of carboxyl groups in wood fibers. Acid treatment of the wood fibers using hydrochloric was applied to convert carboxyl groups to carboxyl acids. Bicarbonate solution is then used to react with carboxyl acids on the...

  13. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Science.gov (United States)

    2010-07-01

    ... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali...

  14. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET)

    DEFF Research Database (Denmark)

    Borgwardt, Henrik Gutte; Hansen, Adam Espe; Henriksen, Sarah T.

    2015-01-01

    have named this concept hyper PET. Intravenous injection of the hyperpolarized (13)C-pyruvate results in an increase of (13)C-lactate, (13)C-alanine and (13)C-CO2 ((13)C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization......In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized (13)C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and (18)F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We...... (DNP) and use of (13)C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of (13)C-pyruvate to (13)C-lactate. In this study, we combined it with (18)F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified...

  15. Recovery of Pyruvic Acid using Tri-n-butylamine Dissolved in Non-Toxic Diluent (Rice Bran Oil)

    Science.gov (United States)

    Pal, Dharm; Keshav, Amit

    2016-04-01

    An attempt has been made to investigate the effectiveness of the vegetable oil based biocompatible solvent for the separation of pyruvic acid from fermentation broth, by using rice bran oil as natural, non-toxic diluent. Reactive extraction of pyruvic acid (0.1-0.5 k mol/m3) from aqueous solutions has been studied using tri-n-butylamine (TBA; 10-70 %) as an extractant dissolved in non toxic rice bran oil at T = 30 ± 1 °C. Results were presented in terms of distribution coefficient (Kd), extraction efficiency (E %), loading ratio (Z), and complexation constant (\\varphi_{α β }). Extraction equilibrium was interpreted using mass action modeling approach. Based on the extent of loading (Z < 0.5) only (1:1), pyruvic acid: TBA complex was proposed. Equilibrium complexation constant was evaluated to 1.22 m3/k mol. Results obtained are useful in understanding the extraction mechanism.

  16. Creatine and creatine pyruvate reduce hypoxia-induced effects on phrenic nerve activity in the juvenile mouse respiratory system.

    Science.gov (United States)

    Scheer, Monika; Bischoff, Anna M; Kruzliak, Peter; Opatrilova, Radka; Bovell, Douglas; Büsselberg, Dietrich

    2016-08-01

    Adequate concentrations of ATP are required to preserve physiological cell functions and protect tissue from hypoxic damage. Decreased oxygen concentration results in ATP synthesis relying increasingly on the presence of phosphocreatine. The lack of ATP through hypoxic insult to neurons that generate or regulate respiratory function, would lead to the cessation of breathing (apnea). It is not clear whether creatine plays a role in maintaining respiratory phrenic nerve (PN) activity during hypoxic challenge. The aim of the study was to test the effects of exogenously applied creatine or creatine pyruvate in maintaining PN induced respiratory rhythm against the deleterious effects of severe hypoxic insult using Working Heart-Brainstem (WHB) preparations of juvenile Swiss type mice. WHB's were perfused with control perfusate or perfusate containing either creatine [100μM] or creatine pyruvate [100μM] prior to hypoxic challenge and PN activity recorded throughout. Results showed that severe hypoxic challenge resulted in an initial transient increase in PN activity, followed by a reduction in that activity leading to respiratory apnea. The results demonstrated that perfusing the WHB preparation with creatine or creatine pyruvate, significantly reduced the onset of apnea compared to control conditions, with creatine pyruvate being the more effective substance. Overall, creatine and creatine pyruvate each produced time-dependent degrees of protection against severe hypoxic-induced disturbances of PN activity. The underlying protective mechanisms are unknown and need further investigations. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Maturation of pig oocytes in vitro in a medium with pyruvate

    Directory of Open Access Journals (Sweden)

    H. Gonzales-Figueroa

    2005-06-01

    Full Text Available The aim of in vitro maturation oocyte systems is to produce oocytes of comparable quality to those derived in vivo. The present study was designed to examine the surface morphological changes of the cumulus-oocyte complex (COC and nuclear maturation in a culture system containing pyruvate. Ovaries were obtained from a slaughterhouseand transported to the laboratory within 2 h at 35-39ºC,and rinsed three times in 0.9% NaCl. The COCs were harvested from the ovaries and in vitro maturation was evaluated in San Marcos (SM medium, a chemically defined culture system containing 22.3 mM sodium pyruvate. Oocytes were cultured in SM, SM + porcine follicular fluid (pFF and in SM + pFF + gonadotropins (eCG and hCG for 20-22 h and then without hormonal supplements for an additional 20-22 h. After culture, the degree of cumulus expansion and frequency of nuclear maturation were determined. Oocytes matured in SM (40.9% and SM + pFF (42.9% showed moderate cumulus expansion, whereas oocytes matured in SM + pFF + gonadotropins (54.6% showed high cumulus expansion. The maturation rate of cultured oocytes, measured in function of the presence of the polar corpuscle, did not differ significantly between SM (40.9 ± 3.6% and SM + pFF (42.9 ± 3.7%. These results indicate that pig oocytes can be successfully matured in a chemically definedmedium and suggest a possible bifunctional role of pyruvate as an energy substrate and as an antioxidant protecting oocytes against the stress of the in vitro environment.

  18. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose.

    Directory of Open Access Journals (Sweden)

    Darren J Creek

    2015-03-01

    Full Text Available Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate.

  19. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Small, Juan E. [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Gonzalez, Guido E. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States); Clinica Alemana de Santiago, Departmento de Imagenes, Santiago (Chile); Nagao, Karina E.; Walton, David S. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Ophthalmology, Boston, MA (United States); Caruso, Paul A. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2009-10-15

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  20. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    International Nuclear Information System (INIS)

    Small, Juan E.; Gonzalez, Guido E.; Nagao, Karina E.; Walton, David S.; Caruso, Paul A.

    2009-01-01

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  1. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet

    Science.gov (United States)

    Krznar, Petra; Hörl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-01-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival. PMID:27176894

  2. Pyruvate Dehydrogenase Kinase as a Novel Therapeutic Target in Oncology

    Directory of Open Access Journals (Sweden)

    Gopinath eSutendra

    2013-03-01

    Full Text Available Current drug development in oncology is non-selective as it typically focuses on pathways essential for the survival of all dividing cells. The unique metabolic profile of cancer, which is characterized by increased glycolysis and suppressed mitochondrial glucose oxidation provides cancer cells with a proliferative advantage, conducive with apoptosis resistance and even increased angiogenesis. Recent evidence suggests that targeting the cancer-specific metabolic and mitochondrial remodeling may offer selectivity in cancer treatment. Pyruvate dehydrogenase kinase (PDK is a mitochondrial enzyme that is activated in a variety of cancers and results in the selective inhibition of pyruvate dehydrogenase (PDH, a complex of enzymes that converts cytosolic pyruvate to mitochondrial acetyl-CoA, the substrate for the Krebs’ cycle. Inhibition of PDK with either small interfering RNAs or the orphan drug dichloroacetate (DCA shifts the metabolism of cancer cells from glycolysis to glucose oxidation and reverses the suppression of mitochondria-dependent apoptosis. In addition, this therapeutic strategy increases the production of diffusible Krebs’ cycle intermediates and mitochondria-derived reactive oxygen species (mROS, activating p53 or inhibiting pro-proliferative and pro-angiogenic transcription factors like nuclear factor of activated T-cells (NFAT and hypoxia-inducible factor 1α (HIF1α. These effects result in decreased tumor growth and angiogenesis in a variety of cancers with high selectivity. In a small but mechanistic clinical trial in patients with glioblastoma, a highly aggressive and vascular form of brain cancer, DCA decreased tumor angiogenesis and tumor growth, suggesting that metabolic targeting therapies can be translated directly to patients. Therefore, reversing the mitochondrial suppression with metabolic-modulating drugs, like PDK inhibitors holds promise in the rapidly expanding field of metabolic oncology.

  3. Dissociative electron attachment and anion-induced dimerization in pyruvic acid

    Czech Academy of Sciences Publication Activity Database

    Zawadzki, Mateusz; Ranković, Miloš; Kočišek, Jaroslav; Fedor, Juraj

    2018-01-01

    Roč. 20, č. 10 (2018), s. 6838-6844 ISSN 1463-9076 R&D Projects: GA ČR GA17-04844S; GA ČR GJ16-10995Y Institutional support: RVO:61388955 Keywords : pyruvic acid * electron attachment * dimerization Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  4. Pyruvate kinase M2: a potential target for regulating inflammation

    Directory of Open Access Journals (Sweden)

    Jose Carlos eAlves-Filho

    2016-04-01

    Full Text Available Pyruvate kinase (PK is the enzyme responsible for catalyzing the last step of glycolysis. Of the four PK isoforms expressed in mammalian cells, PKM2 has generated the most interest due to its impact on changes in cellular metabolism observed in cancer as well as in activated immune cells. As our understanding of dysregulated metabolism in cancer develops, and in light of the growing field of immunometabolism, intense efforts are in place to define the mechanism by which PKM2 regulates the metabolic profile of cancer as well as of immune cells. The enzymatic activity of PKM2 is heavily regulated by endogenous allosteric effectors as well as by intracellular signalling pathways, affecting both the enzymatic activity of PKM2 as a pyruvate kinase and the regulation of the recently described non-canonical nuclear functions of PKM2. We here review the current literature on PKM2 and its regulation, and discuss the potential for PKM2 as a therapeutic target in inflammatory and metabolic disorders.

  5. Growth of Campylobacter incubated aerobically in fumarate-pyruvate media or media supplemented with dairy, meat, or soy extracts and peptones.

    Science.gov (United States)

    Hinton, Arthur

    2016-09-01

    The ability of Campylobacter to grow aerobically in media supplemented with fumarate-pyruvate or with dairy, meat, or soy extracts or peptones was examined. Optical densities (OD) of Campylobacter cultured in basal media, media supplemented with fumarate-pyruvate or with 1.0, 2.5, 5.0, or 7.5% beef extract was measured. Growth was also compared in media supplemented with other extracts or peptones. Finally, cfu/mL of Campylobacter recovered from basal media or media supplemented with fumarate-pyruvate, casamino acids, beef extract, soytone, or beef extract and soytone was determined. Results indicated that OD of cultures grown in media supplemented with fumarate-pyruvate or with 5.0 or 7.5% beef extract were higher than OD of isolates grown in basal media or media supplemented with lower concentrations of beef extract. Highest OD were produced by isolates grown in media supplemented with beef extract, peptone from meat, polypeptone, proteose peptone, or soytone. Also, more cfu/mL were recovered from media with fumarate-pyruvate, beef extract, soytone, or beef extract-soytone than from basal media or media with casamino acids. Findings indicate that media supplemented with organic acids, vitamins, and minerals and media supplemented with extracts or peptones containing these metabolites can support aerobic growth of Campylobacter. Published by Elsevier Ltd.

  6. Proteomic and metabolomic analyses of soybean root tips under flooding stress.

    Science.gov (United States)

    Komatsu, Setsuko; Nakamura, Takuji; Sugimoto, Yurie; Sakamoto, Kazunori

    2014-01-01

    Flooding is one of the serious problems for soybean plants because it inhibits growth. Proteomic and metabolomic techniques were used to determine whether proteins and metabolites are altered in the root tips of soybeans under flooding stress. Two-day-old soybean plants were flooded for 2 days, and proteins and metabolites were extracted from root tips. Flooding-responsive proteins were identified using two-dimensional- or SDS-polyacrylamide gel electrophoresis- based proteomics techniques. Using both techniques, 172 proteins increased and 105 proteins decreased in abundance in the root tips of flood-stressed soybean. The abundance of methionine synthase, heat shock cognate protein, urease, and phosphoenol pyruvate carboxylase was significantly increased by flooding stress. Furthermore, 73 flooding-responsive metabolites were identified using capillary electrophoresis-mass spectrometry. The levels of gamma-aminobutyric acid, glycine, NADH2, and phosphoenol pyruvate were increased by flooding stress. Taken together, these results suggest that synthesis of phosphoenol pyruvate by way of oxaloacetate produced in the tricarboxylic acid cycle is activated in soybean root tips in response to flooding stress, and that flooding stress also leads to modulation of the urea cycle in the root tips.

  7. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor

    International Nuclear Information System (INIS)

    Savkur, Rajesh S.; Bramlett, Kelli S.; Michael, Laura F.; Burris, Thomas P.

    2005-01-01

    The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the glucocorticoid and peroxisome proliferator-activated receptors. We demonstrate that the farnesoid X receptor (FXR; NR1H4), which regulates a variety of genes involved in lipoprotein metabolism, also regulates the expression of PDK4. Treatment of rat hepatoma cells as well as human primary hepatocytes with FXR agonists stimulates the expression of PDK4 to levels comparable to those obtained with glucocorticoids. In addition, treatment of mice with an FXR agonist significantly increased hepatic PDK4 expression, while concomitantly decreasing plasma triglyceride levels. Thus, activation of FXR may suppress glycolysis and enhance oxidation of fatty acids via inactivation of the PDC by increasing PDK4 expression

  8. Hepatoprotective potential of ethanolic extract of Ziziphus oenoplia (L.) Mill roots against antitubercular drugs induced hepatotoxicity in experimental models.

    Science.gov (United States)

    Rao, Ch V; Rawat, A K S; Singh, Anil P; Singh, Arpita; Verma, Neeraj

    2012-04-01

    To evaluate the hepatoprotective potential of ethanolic (50%) extract of Ziziphus oenoplia (L.) Mill (Z. oenoplia) root against isoniazid (INH) and rifampicin (RIF) induced liver damage in animal models. Five groups of six rats each were selected for the study. Ethanolic extract at a dose of 150 and 300 mg/kg as well as silymarin (100 mg/kg) were administered orally once daily for 21 d in INH + RIF treated groups. The serum levels of glutamic oxaloacetic transaminase (SGOT), glutamate pyruvate transaminase (SGPT), alkaline phosphatase (SALP), and bilirubin were estimated along with activities of superoxide dismutase, catalase, glutathione S-transferase, glutathione peroxidase, and hepatic melondialdehyde formation. Histopathological analysis was carried out to assess injury to the liver. The considerably elevated serum enzymatic activities of glutamic oxaloacetic transaminase, glutamate pyruvate transaminase, alkaline phosphatase and bilirubin due to INH + RIF treatment were restored towards normal in a dose dependent manner after the treatment with ethanolic extract of Z. oenoplia roots. Meanwhile, the decreased activities of superoxide dismutase, catalase, glutathione S-transferase and glutathione peroxidase were also restored towards normal dose dependently. In addition, ethanolic extract also significantly prevented the elevation of hepatic melondialdehyde formation in the liver of INH + RIF intoxicated rats in a dose dependent manner. The biochemical observations were supplemented with histopathological examination of rat liver sections. The results of this study strongly indicate that ethanolic extract of Z. oenoplia has a potent hepatoprotective action against INH + RIF induced hepatic damage in rats. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  9. Iron may induce both DNA synthesis and repair in rat hepatocytes stimulated by EGF/pyruvate

    Energy Technology Data Exchange (ETDEWEB)

    Chenoufi, N.; Loreal, O.; Cariou, S.; Hubert, N.; Lescoat, G. [Univ. Hospital Pontchaillou, Unite de Recherches Hepatologiques, INSERM U 49, Rennes (France); Drenou, B. [Univ. Hospital Pontchaillou, Lab. d`Hematologie et d`Immunologie, Rennes (France); Leroyer, P.; Brissot, P. [Univ. Hospital Pontchaillou, Clinique des Maladies du Foie, Rennes (France)

    1997-03-01

    Background/Aims: Hepatocellular carcinoma develops frequently in the course of genetic hemochromatosis, and a role of iron overload in hepatic carcinogenesis is strongly suggested. Methods: The aim of our study was to investigate the effect of iron exposure on DNA synthesis of adult rat hepatocytes maintained in primary culture stimulated or not by EGF/pyruvate and exposed to iron-citrate complex. Results: In EGF/pyruvate-stimulated cultures, the level of [{sup 3}H] methyl thymidine incorporation was strongly increased as compared to unstimulated cultures. The addition of iron to stimulated cultures increased [{sup 3}H] methyl thymidine incorporation. The mitotic index was also significantly higher at 72 h. However,the number of cells found in the cell layer was not significantly different from iron-citrate free culture. By flow cytometry, no difference in cell ploidy was found between iron-treated and untreated EGF/pyruvate-stimulated cultures. A significant increase in LDH leakage reflecting a toxic effect of iron was found in the cell medium 48 h after cell seeding. In addition, [{sup 3}H] methyl thymidine incorporation in the presence of hydroxyurea was increased in iron-treated compared to untreated cultures. Conclusions: Our results show that DNA synthesis is increased in the presence of iron in rat hepatocyte cultures stimulated by EGF/pyruvate, and they suggest that DNA synthesis is likely to be related both to cell proliferation and to DNA repair. These observations may allow better understanding of the role of iron overload in the development of hepatocellular carcinoma. (au) 61 refs.

  10. Persistent changes in the initial rate of pyruvate transport by isolated rat liver mitochondria after preincubation with adenine nucleotides and calcium ions

    OpenAIRE

    Vaartjes, W.J.; Breejen, J.N. den; Geelen, M.J.H.; Bergh, S.G. van den

    1980-01-01

    1. Preincubation of isolated rat-liver mitochondria in the presence of adenine nucleotides or Ca2+ results in definite and persistent changes in the initial rate of pyruvate transport. 2. These changes in the rate of pyruvate transport are accompanied by equally persistent changes in the opposite direction of the activity of pyruvate dehydrogenase (EC. 1.2.4.1). 3. Changes of the transmembrane pH gradient and of the membrane potential, brought about by the pretreatments of the mitochondria, c...

  11. Effect of hexoses on the levels of pyruvate decarboxylase in Mucor rouxii.

    OpenAIRE

    Barrera, C R; Corral, J

    1980-01-01

    Pyruvate decarboxylase activity in the dimorphic fungus Mucor rouxii increased 25- to 35-fold in yeastlike and mycelial cells grown in the presence of glucose as compared to the activity observed in mycelial cultures grown in the absence of glucose.

  12. Synthesis and characterization of carboxylic acid functionalized silicon nanoparticles

    Science.gov (United States)

    Shaner, Ted V.

    Silicon nanoparticles are of great interest in a great number of fields. Silicon nanoparticles show great promise particularly in the field of bioimaging. Carboxylic acid functionalized silicon nanoparticles have the ability to covalently bond to biomolecules through the conjugation of the carboxylic acid to an amine functionalized biomolecule. This thesis explores the synthesis of silicon nanoparticles functionalized by both carboxylic acids and alkenes and their carboxylic acid functionality. Also discussed is the characterization of the silicon nanoparticles by the use of x-ray spectroscopy. Finally, the nature of the Si-H bond that is observed on the surface of the silicon nanoparticles will be investigated using photoassisted exciton mediated hydrosilation reactions. The silicon nanoparticles are synthesized from both carboxylic acids and alkenes. However, the lack of solubility of diacids is a significant barrier to carboxylic acid functionalization by a mixture of monoacids and diacids. A synthesis route to overcome this obstacle is to synthesize silicon nanoparticles with terminal vinyl group. This terminal vinyl group is distal to the surface of the silicon nanoparticle. The conversion of the vinyl group to a carboxylic acid is accomplished by oxidative cleavage using ozonolysis. The carboxylic acid functionalized silicon nanoparticles were then successfully conjugated to amine functionalized DNA strand through an n-hydroxy succinimide ester activation step, which promotes the formation of the amide bond. Conjugation was characterized by TEM and polyacrylamide gel electrophoresis (PAGE). The PAGE results show that the silicon nanoparticle conjugates move slower through the polyacrylamide gel, resulting in a significant separation from the nonconjugated DNA. The silicon nanoparticles were then characterized by the use of x-ray absorption near edge spectroscopy (Xanes) and x-ray photoelectron spectroscopy (XPS) to investigate the bonding and chemical

  13. Pattern of some risk factors of cardiovascular diseases and liver enzymes among Iranian seafarers

    DEFF Research Database (Denmark)

    Baygi, Fereshteh; Jensen, Olaf Chresten; Qorbani, Mostafa

    2017-01-01

    Background: Little information is available on the trend in cardiovascular risk factors and hepatic enzymes in Iranian seafarers. Thepresent study aimed at assessing the pattern of obesity, hypertension, diabetes, elevated serum glutamic oxaloacetate transaminase(SGOT), and serum glutamate pyruvate...... of antihypertensive drug use. Diabetes (DM) was defined as fasting blood sugar(FBS) > 110 mg/dl, or having a history of oral hypoglycemic agents; and elevated SGOT and SGPT were defined as SGOT > 40 U/Land SGPT > 40 U/L, respectively.Results: The BMI mean±SD values of Iranian seafarers were 24.81±3.07 kg/m2, 25...

  14. Adsorption of UO2+2 by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group

    International Nuclear Information System (INIS)

    Choi, Seong-Ho; Nho, Young Chang

    2000-01-01

    The polyethylene (PE) adsorbents were prepared by a radiation-induced grafting of acrylonitrile (AN), acrylic acid (AA), and the mixture of AN/AA onto PE film, and by subsequent amidoximation of cyano groups of poly-AN graft chains. With an increase of AA composition in AN/AA monomer mixture, the water uptake of the grafted polyethylene film increased. In AN/AA mixture, the maximum adsorption of UO 2+ 2 was observed in the adsorbent with a ratio of AN/AA (50/50, mol%) in copolymer. The amidoxime, carboxyl, and amidoxime/carboxyl groups onto PE acted as a chelating site for the selected UO 2+ 2 . The complex structure of polyethylene with three functional groups and UO 2+ 2 was confirmed by Fourier Transform Infrared (FTIR) spectroscopy. (author)

  15. Structure-function relations in oxaloacetate decarboxylase complex. Fluorescence and infrared approaches to monitor oxomalonate and Na(+ binding effect.

    Directory of Open Access Journals (Sweden)

    Thierry Granjon

    Full Text Available BACKGROUND: Oxaloacetate decarboxylase (OAD is a member of the Na(+ transport decarboxylase enzyme family found exclusively in anaerobic bacteria. OAD of Vibrio cholerae catalyses a key step in citrate fermentation, converting the chemical energy of the decarboxylation reaction into an electrochemical gradient of Na(+ ions across the membrane, which drives endergonic membrane reactions such as ATP synthesis, transport and motility. OAD is a membrane-bound enzyme composed of alpha, beta and gamma subunits. The alpha subunit contains the carboxyltransferase catalytic site. METHODOLOGY/PRINCIPAL FINDINGS: In this report, spectroscopic techniques were used to probe oxomalonate (a competitive inhibitor of OAD with respect to oxaloacetate and Na(+ effects on the enzyme tryptophan environment and on the secondary structure of the OAD complex, as well as the importance of each subunit in the catalytic mechanism. An intrinsic fluorescence approach, Red Edge Excitation Shift (REES, indicated that solvent molecule mobility in the vicinity of OAD tryptophans was more restricted in the presence of oxomalonate. It also demonstrated that, although the structure of OAD is sensitive to the presence of NaCl, oxomalonate was able to bind to the enzyme even in the absence of Na(+. REES changes due to oxomalonate binding were also observed with the alphagamma and alpha subunits. Infrared spectra showed that OAD, alphagamma and alpha subunits have a main component band centered between 1655 and 1650 cm(-1 characteristic of a high content of alpha helix structures. Addition of oxomalonate induced a shift of the amide-I band of OAD toward higher wavenumbers, interpreted as a slight decrease of beta sheet structures and a concomitant increase of alpha helix structures. Oxomalonate binding to alphagamma and alpha subunits also provoked secondary structure variations, but these effects were negligible compared to OAD complex. CONCLUSION: Oxomalonate binding affects the

  16. Uranium (IV) carboxylates - I

    Energy Technology Data Exchange (ETDEWEB)

    Satpathy, K C; Patnaik, A K [Sambalpur Univ. (India). Dept. of Chemistry

    1975-11-01

    A few uranium(IV) carboxylates with monochloro and trichloro acetic acid, glycine, malic, citric, adipic, o-toluic, anthranilic and salicylic acids have been prepared by photolytic methods. The I.R. spectra of these compounds are recorded and basing on the spectral data, structure of the compounds have been suggested.

  17. Ru(II)-Catalyzed Oxidative Heck-Type Olefination of Aromatic Carboxylic Acids with Styrenes through Carboxylate-Assisted C-H Bond Activation.

    Science.gov (United States)

    Dana, Suman; Mandal, Anup; Sahoo, Harekrishna; Mallik, Sumitava; Grandhi, Gowri Sankar; Baidya, Mahiuddin

    2018-02-02

    A straightforward synthesis of 2-styrylbenzoic acids from aryl carboxylic acids is disclosed through a carboxylate-assisted coupling under Ru(II) catalysis. This protocol is simple and exhibits broad scope with high tolerance of common organic functional groups, providing good to excellent yields of diverse olefinated products. The efficacy of this protocol has been showcased through sequential syntheses of isochromanone, isocoumarin, and formal synthesis of anacardic acid derivative in good yields.

  18. Pd(II)/Bipyridine-Catalyzed Conjugate Addition of Arylboronic Acids to α,β-Unsaturated Carboxylic Acids. Synthesis of β-Quaternary Carbons Substituted Carboxylic Acids.

    Science.gov (United States)

    Liu, Rui; Yang, Zhenyu; Ni, Yuxin; Song, Kaixuan; Shen, Kai; Lin, Shaohui; Pan, Qinmin

    2017-08-04

    Pd(II)/bipyridine-catalyzed conjugate addition of arylboronic acids to α,β-unsaturated carboxylic acids (including β,β-disubstituted acrylic acids) was developed and optimized, which provided a mild and convenient method for the highly challenging synthesis of β-quaternary carbons substituted carboxylic acids.

  19. Photodecarboxylative Cyclizations of ω-Phthalimido-para-phenoxy Carboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ae Rhan; Lee, Younsik; Yoo, Dong Jin [Chonbuk National Univ., Jeonju (Korea, Republic of); Cho, Hyunseung [Seonam Univ., Namwon (Korea, Republic of)

    2012-10-15

    The chemistry of electronically-excited phthalimides is dictated by electron and/or hydrogen transfer reactions. The photochemistry of phthalimides has been intensively studied, and numerous synthetically useful transformations with high chemical and quantum yields have been developed. 3 Among the synthetic applications, intra- and intermolecular photodecarboxylation (PDC) of ω-phthalimidoalkyl carboxylates has been developed by Griesbeck and coworkers as a versatile pathway to medium- and large-ring heterocycles. Model reactions were further realized on macro- and micro-scales. We recently described PDC cyclizations of ω-phthalimidoalkynoates to produce macrocyclic alkynes with ring-sizes up to 17. In recent study, we expanded the portfolio of this reaction and investigated the photochemistry of related aryl-linked phthalimides in Scheme 1. Based on these approaches, we demonstrated that ω-phthalimido-ortho/meta-phenoxy carboxylates undergo efficient PDC cyclizations. While the yields of ω-phthalimido-ortho-phenoxy carboxylates steadily decreased with increasing chain-length and the maximum yield of the 6-membered product was obtained in 75%, the yields of meta-phenoxy carboxylates steadily increased with increasing chain-length and the extended 16-membered product was subsequently obtained in 48% yield.

  20. Characterization of cDNAs encoding human pyruvate dehydrogenase α subunit

    International Nuclear Information System (INIS)

    Ho, Lap; Wexler, I.D.; Liu, Techung; Thekkumkara, T.J.; Patel, M.S.

    1989-01-01

    A cDNA clone (1,423 base pairs) comprising the entire coding region of the precursor form of the α subunit of pyruvate dehydrogenase (E 1 α) has been isolated from a human liver cDNA library in phage λgt11. The first 29 amino acids deduced from the open reading frame correspond to a typical mitochondrial targeting leader sequence. The remaining 361 amino acids, starting at the N terminus with phenylalanine, represent the mature mitochondrial E 1 α peptide. The cDNA has 43 base pairs in the 5' untranslated region and 210 base pairs in the 3' untranslated region, including a polyadenylylation signal and a short poly(A) tract. The nucleotide sequence of human liver E 1 α cDNA was confirmed by the nucleotide sequences of three overlapping fragments generated from human liver and fibroblast RNA by reverse transcription and DNA amplification by the polymerase chain reaction. This consensus nucleotide sequence of human liver E 1 α cDNA resolves existing discrepancies among three previously reported human E 1 α cDNAs and provides the unambiguous reference sequence needed for the characterization of genetic mutations in pyruvate dehydrogenase-deficient patients

  1. Disease: H01400 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available cts [DS:H00525]; Glutaric acidemia [DS:H00178]; Lysinuric protein intolerance [DS:H00899]; Pyruvate carboxyl...aired by substrate deficiencies assumed cause in various disorders including lysinuric protein intolerance,

  2. Scanning mutagenesis of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Directory of Open Access Journals (Sweden)

    Nagib eAhsan

    2012-07-01

    Full Text Available The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1α subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated Ser-residue and the sequences of the flanking amino acids are highly conserved. We have used the synthetic peptide-based kinase client assay plus recombinant pyruvate dehydrogenase E1α and E1α-kinase to perform scanning mutagenesis of the residues flanking the site of phosphorylation. Consistent with the results from phylogenetic analysis of the flanking sequences, the direct peptide-based kinase assays tolerated very few changes. Even conservative changes such as Leu, Ile, or Val for Met, or Glu for Asp, gave very marked reductions in phosphorylation. Overall the results indicate that regulation of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation is an extreme example of multiple, interdependent instances of co-evolution.

  3. MPC1-like Is a Placental Mammal-specific Mitochondrial Pyruvate Carrier Subunit Expressed in Postmeiotic Male Germ Cells

    OpenAIRE

    Vanderperre, Benoît; Cermakova, Kristina; Escoffier Breancon, Jessica; Kaba, Mayis; Bender, Tom; Nef, Serge; Martinou, Jean-Claude

    2016-01-01

    Selective transport of pyruvate across the inner mitochondrial membrane by the mitochondrial pyruvate carrier (MPC) is a fundamental step that couples cytosolic and mitochondrial metabolism. The recent molecular identification of the MPC complex has revealed two interacting subunits, MPC1 and MPC2. Although in yeast, an additional subunit, MPC3, can functionally replace MPC2, no alternative MPC subunits have been described in higher eukaryotes. Here, we report for the first time the existence...

  4. Increased production of pyruvic acid by Escherichia coli RNase G mutants in combination with cra mutations.

    Science.gov (United States)

    Sakai, Taro; Nakamura, Naoko; Umitsuki, Genryou; Nagai, Kazuo; Wachi, Masaaki

    2007-08-01

    The Escherichia coli RNase G is known as an endoribonuclease responsible for the 5'-end maturation of 16S rRNA and degradation of several specific mRNAs such as adhE and eno mRNAs. In this study, we found that an RNase G mutant derived from the MC1061 strain did not grow on a glucose minimal medium. Genetic analysis revealed that simultaneous defects of cra and ilvIH, encoding a transcriptional regulator of glycolysis/gluconeogenesis and one of isozymes of acetohydroxy acid synthase, respectively, were required for this phenomenon to occur. The results of additional experiments presented here indicate that the RNase G mutation, in combination with cra mutation, caused the increased production of pyruvic acid from glucose, which was then preferentially converted to valine due to the ilvIH mutation, resulting in depletion of isoleucine. In fact, the rng cra double mutant produced increased amount of pyruvate in the medium. These results suggest that the RNase G mutation could be applied in the breeding of producer strains of pyruvate and its derivatives such as valine.

  5. Differences between magnesium-activated and manganese-activated pyruvate kinase from the muscle of Concholepas concholepas.

    Science.gov (United States)

    González, R; Carvajal, N; Morán, A

    1984-01-01

    In contrast to the Mg2+-activated enzyme, in the presence of Mn2+ pyruvate kinase exhibits hyperbolic kinetics with respect to the substrate phosphoenolpyruvate and is insensitive to fructose 1,6-biphosphate, phenylalanine and alanine. However, with both metal activated species inhibition by excess ADP is observed. In contrast with Mg2+, which affords significant protection against inactivation caused by 5,5'-dithiobis (2-nitrobenzoic acid), the rate of inactivation by this reagent is increased in the presence of Mn2+. Differences in conformational changes induced by combination of pyruvate kinase with Mg2+ or Mn2+ were indicated by u.v. difference spectra.

  6. Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues

    Science.gov (United States)

    Griko, Y. V.; Yan, Xiaoli

    2016-01-01

    Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing

  7. Establishment of mitochondrial pyruvate carrier 1 (MPC1) gene knockout mice with preliminary gene function analyses

    Science.gov (United States)

    Li, Xiaoli; Li, Yaqing; Han, Gaoyang; Li, Xiaoran; Ji, Yasai; Fan, Zhirui; Zhong, Yali; Cao, Jing; Zhao, Jing; Mariusz, Goscinski; Zhang, Mingzhi; Wen, Jianguo; Nesland, Jahn M.; Suo, Zhenhe

    2016-01-01

    Pyruvate plays a critical role in the mitochondrial tricarboxylic acid (TCA) cycle, and it is the center product for the synthesis of amino acids, carbohydrates and fatty acids. Pyruvate transported across the inner mitochondrial membrane appears to be essential in anabolic and catabolic intermediary metabolism. The mitochondrial pyruvate carrier (MPC) mounted in the inner membrane of mitochondria serves as the channel to facilitate pyruvate permeating. In mammals, the MPC is formed by two paralogous subunits, MPC1 and MPC2. It is known that complete ablation of MPC2 in mice causes death on the 11th or 12th day of the embryonic period. However, MPC1 deletion and the knowledge of gene function in vivo are lacking. Using the new technology of gene manipulation known as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) systems, we gained stable MPC1 gene heterozygous mutation mice models, and the heterozygous mutations could be stably maintained in their offsprings. Only one line with homozygous 27 bases deletion in the first exon was established, but no offsprings could be obtained after four months of mating experiments, indicating infertility of the mice with such homozygous deletion. The other line of MPC1 knockout (KO) mice was only heterozygous, which mutated in the first exon with a terminator shortly afterwards. These two lines of MPC1 KO mice showed lower fertility and significantly higher bodyweight in the females. We concluded that heterozygous MPC1 KO weakens fertility and influences the metabolism of glucose and fatty acid and bodyweight in mice. PMID:27835892

  8. Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Uznanski, Pawel, E-mail: puznansk@cbmm.lodz.pl; Zakrzewska, Joanna [Centre of Molecular and Macromolecular Studies, PAS (Poland); Favier, Frederic, E-mail: fredf@univ-montp2.fr [Université Montpellier II, ICGM - UMR5253- Equipe AIME (France); Kazmierski, Slawomir; Bryszewska, Ewa [Centre of Molecular and Macromolecular Studies, PAS (Poland)

    2017-03-15

    A comparative study of amine and silver carboxylate adducts [R{sub 1}COOAg-2(R{sub 2}NH{sub 2})] (R{sub 1} = 1, 7, 11; R{sub 2} = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, {sup 13}C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies ({sup 1}H and {sup 13}C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism.

  9. MCA Vmean and the arterial lactate-to-pyruvate ratio correlate during rhythmic handgrip

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Plomgaard, Peter; Krogh-Madsen, Rikke

    2006-01-01

    /P ratio at two plasma lactate levels. MCA Vmean was determined by ultrasound Doppler sonography at rest, during 10 min of rhythmic handgrip exercise at approximately 65% of maximal voluntary contraction force, and during 20 min of recovery in seven healthy male volunteers during control...... and a approximately 15 mmol/l hyperglycemic clamp. Cerebral arteriovenous differences for metabolites were obtained by brachial artery and retrograde jugular venous catheterization. Control resting arterial lactate was 0.78 +/- 0.09 mmol/l (mean +/- SE) and pyruvate 55.7 +/- 12.0 micromol/l (L/P ratio 16.4 +/- 1......Regulation of cerebral blood flow during physiological activation including exercise remains unknown but may be related to the arterial lactate-to-pyruvate (L/P) ratio. We evaluated whether an exercise-induced increase in middle cerebral artery mean velocity (MCA Vmean) relates to the arterial L...

  10. High-level production of C-11-carboxyl-labeled amino acids

    International Nuclear Information System (INIS)

    Washburn, L.C.; Sun, T.T.; Byrd, B.L.; Hayes, R.L.; Butler, T.A.; Callahan, A.P.

    1979-01-01

    Carbon-11-labeled amino acids have significant potential as agents for positron tomographic functional imaging. We have developed a rapid, high-temperature, high-pressure modification of the Buecherer--Strecker amino acid synthesis and found it to be quite general for the production of C-11-carboxyl-labeled neutral amino acids. Production of C-11-carboxyl-labeled DL-tryptophan requires certain modifications in the procedure. Twelve different amino acids have been produced to date by this technique. Synthesis and chromatographic purification require approximately 40 min, and C-11-carboxyl-labeled amino acids have been produced in yields of up to 425 mCi. Two C-11-carboxyl-labeled amino acids are being investigated clinically for tumor scanning and two others for pancreatic imaging. Over 120 batches of the various agents have been produced for clinical use over a three-year period

  11. Persistent changes in the initial rate of pyruvate transport by isolated rat liver mitochondria after preincubation with adenine nucleotides and calcium ions

    NARCIS (Netherlands)

    Vaartjes, W.J.; Breejen, J.N. den; Geelen, M.J.H.; Bergh, S.G. van den

    1980-01-01

    1. Preincubation of isolated rat-liver mitochondria in the presence of adenine nucleotides or Ca2+ results in definite and persistent changes in the initial rate of pyruvate transport. 2. These changes in the rate of pyruvate transport are accompanied by equally persistent changes in the opposite

  12. Sodium Pyruvate Reduced Hypoxic-Ischemic Injury to Neonatal Rat Brain

    OpenAIRE

    Pan, Rui; Rong, Zhihui; She, Yun; Cao, Yuan; Chang, Li-Wen; Lee, Wei-Hua

    2012-01-01

    Background Neonatal hypoxia-ischemia (HI) remains a major cause of severe brain damage and is often associated with high mortality and lifelong disability. Immature brains are extremely sensitive to hypoxia-ischemia, shown as prolonged mitochondrial neuronal death. Sodium pyruvate (SP), a substrate of the tricarboxylic acid cycle and an extracellular antioxidant, has been considered as a potential treatment for hypoxic-ischemic encephalopathy (HIE), but its effects have not been evaluated in ...

  13. Effect of alkali metal ions on the pyrrole and pyridine π-electron systems in pyrrole-2-carboxylate and pyridine-2-carboxylate molecules: FT-IR, FT-Raman, NMR and theoretical studies

    Science.gov (United States)

    Świderski, G.; Wojtulewski, S.; Kalinowska, M.; Świsłocka, R.; Lewandowski, W.

    2011-05-01

    The FT-IR, FT-Raman and 1H and 13C NMR spectra of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium, rubidium and caesium pyrrole-2-carboxylates were recorded, assigned and compared in the Li → Na → K → Rb → Cs salt series. The effect of alkali metal ions on the electronic system of ligands was discussed. The obtained results were compared with previously reported ones for pyridine-2-carboxylic acid and alkali metal pyridine-2-carboxylates. Calculations for pyrrole-2-carboxylic acid and Li, Na, K pyrrole-2-carboxylates in B3LYP/6-311++G ** level and Møller-Plesset method in MP2/6-311++G ** level were made. Bond lengths, angles and dipole moments as well as aromaticity indices (HOMA, EN, GEO, I 6) for the optimized structures of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium pyrrole-2-carboxylates were also calculated. The degree of perturbation of the aromatic system of ligand under the influence of metals in the Li → Cs series was investigated with the use of statistical methods (linear correlation), calculated aromaticity indices and Mulliken, NBO and ChelpG population analysis method. Additionally, the Bader theory (AIM) was applied to setting the characteristic of the bond critical points what confirmed the influence of alkali metals on the pyrrole ring.

  14. Carboxylic acid exchangers in analytical chemistry

    International Nuclear Information System (INIS)

    Venkateswarlu, Ch.

    1976-01-01

    The literature on the use of carboxylic acid exchangers in inorganic analytical chemistry is reviewed. It is classified under two heads, based on the ionic form in which the exchanger is employed, viz., the salt form and the acid form. In the salt form, the separations reported in the beginning are mostly carried out in alkaline medium, employing ammonia and its derivatives as complexing agents to hold cations in solution. This was followed by the use of ammonium ion as an eluent from heavy weakly or neutral solutions. There are a few separations reported making use of EDTA as eluent. It appears that separation of some anions from cations can be achieved with greater ease with these exchangers than with sulphonic acid type. Contary to the general belief, carboxylic acid exchangers are used in H + form to achieve some analytical separations of cations of interest. These exchangers exhibit better sorption of some cations in presence of complexing agents containing basic nitrogen as a donor. In fact, a careful study of these exchangers with different matrices might yield really selective exchangers, than the chelating ones known commercially. From the separation cited, carboxylic acid exchangers appear to have greater potentialities in their applications, than what is normally expected. (author)

  15. Monitoring Mitochondrial Pyruvate Carrier Activity in Real Time Using a BRET-Based Biosensor: Investigation of the Warburg Effect

    OpenAIRE

    Compan V; Pierredon S; Vanderperre B; Krznar P; Marchiq I; Zamboni N; Pouyssegur J; Martinou JC

    2015-01-01

    The transport of pyruvate into mitochondria requires a specific carrier the mitochondrial pyruvate carrier (MPC). The MPC represents a central node of carbon metabolism and its activity is likely to play a key role in bioenergetics. Until now investigation of the MPC activity has been limited. However the recent molecular identification of the components of the carrier has allowed us to engineer a genetically encoded biosensor and to monitor the activity of the MPC in real time in a cell popu...

  16. Inhibition of the pentose phosphate shunt by 2,3-diphosphoglycerate in erythrocyte pyruvate kinase deficiency.

    Science.gov (United States)

    Tomoda, A; Lachant, N A; Noble, N A; Tanaka, K R

    1983-07-01

    Pentose phosphate shunt activity was studied by the release of 14CO2 from 14C-1-glucose and 14C-2-glucose in the red cells of five patients with pyruvate kinase deficiency and found to be significantly decreased after new methylene blue stimulation when compared to high reticulocyte controls. Incubated Heinz body formation was increased and the ascorbate cyanide test was positive in blood from these patients. The activity of glucose-6-phosphate dehydrogenase (G6PD) as well as that of 6-phosphogluconate dehydrogenase (6PGD) was inhibited to 20% of baseline in normal red cell haemolysate by 4 mM 2,3-diphosphoglycerate at pH 7.1. 2,3-Diphosphoglycerate was a competitive inhibitor with 6-phosphogluconate (Ki=1.05 mM) and a noncompetitive inhibitor with NADP (Ki=3.3 mM) for 6PGD. Since the intracellular concentrations of glucose-6-phosphate, 6-phosphogluconate and NADP are below their Kms for G6PD and 6PGD, the kinetic data suggest that increased concentrations of 2,3-diphosphoglycerate in pyruvate kinase deficient red cells are sufficiently high to suppress pentose phosphate shunt activity. This suppression may be an additional factor contributing to the haemolytic anaemia of pyruvate kinase deficiency, particularly during periods of infection or metabolic stress.

  17. Simultaneous Hyperpolarized 13C-Pyruvate MRI and 18F-FDG PET (HyperPET) in 10 Dogs with Cancer

    DEFF Research Database (Denmark)

    Gutte, Henrik; Hansen, Adam E; Larsen, Majbrit M E

    2015-01-01

    with biopsy-verified spontaneous malignant tumors were included for imaging. All dogs underwent a protocol of simultaneous (18)F-FDG PET, anatomic MR, and hyperpolarized dynamic nuclear polarization with (13)C-pyruvate imaging. The data were acquired using a combined clinical PET/MR imaging scanner. We found...... that combined (18)F-FDG PET and (13)C-pyruvate MRS imaging was possible in a single session of approximately 2 h. A continuous workflow was obtained with the injection of (18)F-FDG when the dogs was placed in the PET/MR scanner. (13)C-MRS dynamic acquisition demonstrated in an axial slab increased (13)C......With the introduction of combined PET/MR spectroscopic (MRS) imaging, it is now possible to directly and indirectly image the Warburg effect with hyperpolarized (13)C-pyruvate and (18)F-FDG PET imaging, respectively, via a technique we have named hyperPET. The main purpose of this present study...

  18. Growth hormone-induced insulin resistance in human subjects involves reduced pyruvate dehydrogenase activity

    DEFF Research Database (Denmark)

    Nellemann, B.; Vendelbo, M.H.; Nielsen, Thomas Svava

    2014-01-01

    Insulin resistance induced by growth hormone (GH) is linked to promotion of lipolysis by unknown mechanisms. We hypothesized that suppression of the activity of pyruvate dehydrogenase in the active form (PDHa) underlies GH-induced insulin resistance similar to what is observed during fasting....

  19. Hepatic Mitochondrial Pyruvate Carrier 1 Is Required for Efficient Regulation of Gluconeogenesis and Whole-Body Glucose Homeostasis.

    Science.gov (United States)

    Gray, Lawrence R; Sultana, Mst Rasheda; Rauckhorst, Adam J; Oonthonpan, Lalita; Tompkins, Sean C; Sharma, Arpit; Fu, Xiaorong; Miao, Ren; Pewa, Alvin D; Brown, Kathryn S; Lane, Erin E; Dohlman, Ashley; Zepeda-Orozco, Diana; Xie, Jianxin; Rutter, Jared; Norris, Andrew W; Cox, James E; Burgess, Shawn C; Potthoff, Matthew J; Taylor, Eric B

    2015-10-06

    Gluconeogenesis is critical for maintenance of euglycemia during fasting. Elevated gluconeogenesis during type 2 diabetes (T2D) contributes to chronic hyperglycemia. Pyruvate is a major gluconeogenic substrate and requires import into the mitochondrial matrix for channeling into gluconeogenesis. Here, we demonstrate that the mitochondrial pyruvate carrier (MPC) comprising the Mpc1 and Mpc2 proteins is required for efficient regulation of hepatic gluconeogenesis. Liver-specific deletion of Mpc1 abolished hepatic MPC activity and markedly decreased pyruvate-driven gluconeogenesis and TCA cycle flux. Loss of MPC activity induced adaptive utilization of glutamine and increased urea cycle activity. Diet-induced obesity increased hepatic MPC expression and activity. Constitutive Mpc1 deletion attenuated the development of hyperglycemia induced by a high-fat diet. Acute, virally mediated Mpc1 deletion after diet-induced obesity decreased hyperglycemia and improved glucose tolerance. We conclude that the MPC is required for efficient regulation of gluconeogenesis and that the MPC contributes to the elevated gluconeogenesis and hyperglycemia in T2D. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A Comparison between Radiolabeled Fluorodeoxyglucose Uptake and Hyperpolarized 13C-Labeled Pyruvate Utilization as Methods for Detecting Tumor Response to Treatment

    Directory of Open Access Journals (Sweden)

    Timothy H. Witney

    2009-06-01

    Full Text Available Detection of early tumor responses to treatment can give an indication of clinical outcome. Positron emission tomography measurements of the uptake of the glucose analog, [18F] 2-fluoro-2-deoxy-d-glucose (FDG, have demonstrated their potential for detecting early treatment response in the clinic. We have shown recently that 13C magnetic resonance spectroscopy and spectroscopic imaging measurements of the uptake and conversion of hyperpolarized [1-13C]pyruvate into [1-13C]lactate can be used to detect treatment response in a murine lymphoma model. The present study compares these magnetic resonance measurements with changes in FDG uptake after chemotherapy. A decrease in FDG uptake was found to precede the decrease in flux of hyperpolarized 13C label between pyruvate and lactate, both in tumor cells in vitro and in tumors in vivo. However, the magnitude of the decrease in FDG uptake and the decrease in pyruvate to lactate flux was comparable at 24 hours after drug treatment. In cells, the decrease in FDG uptake was shown to correlate with changes in plasma membrane expression of the facilitative glucose transporters, whereas the decrease in pyruvate to lactate flux could be explained by an increase in poly(ADP-ribose polymerase activity and subsequent depletion of the NAD(H pool. These results show that measurement of flux between pyruvate and lactate may be an alternative to FDG-positron emission tomography for imaging tumor treatment response in the clinic.

  1. Properties of the Carboxylate ion exchange resins

    International Nuclear Information System (INIS)

    Allard, Bert; Dario, Maarten; Boren, Hans; Torstenfelt, Boerje; Puigdomenech, Ignasi; Johansson, Claes

    2002-09-01

    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  2. MCT1 Modulates Cancer Cell Pyruvate Export and Growth of Tumors that Co-express MCT1 and MCT4

    OpenAIRE

    Hong, Candice Sun; Graham, Nicholas A.; Gu, Wen; Espindola Camacho, Carolina; Mah, Vei; Maresh, Erin L.; Alavi, Mohammed; Bagryanova, Lora; Krotee, Pascal A.L.; Gardner, Brian K.; Behbahan, Iman Saramipoor; Horvath, Steve; Chia, David; Mellinghoff, Ingo K.; Hurvitz, Sara A.

    2016-01-01

    Monocarboxylate Transporter 1 (MCT1) inhibition is thought to block tumor growth through disruption of lactate transport and glycolysis. Here we show MCT1 inhibition impairs proliferation of glycolytic breast cancer cells co-expressing MCT1 and MCT4 via disruption of pyruvate rather than lactate export. MCT1 expression is elevated in glycolytic breast tumors, and high MCT1 expression predicts poor prognosis in breast and lung cancer patients. Acute MCT1 inhibition reduces pyruvate export but ...

  3. Kinetics study of thermal decomposition of calcium carboxylate salts

    International Nuclear Information System (INIS)

    Landoll, Michael P.; Holtzapple, Mark T.

    2013-01-01

    The MixAlco™ process ferments lignocellulosic biomass to carboxylate salts that are thermally decomposed into ketones, which are then chemically converted to a wide variety of chemicals and fuels. To perform these decompositions, suitable reaction models are necessary to properly design, scale, and optimize commercial reactors. For three salt types (calcium acetate, and two types of mixed calcium carboxylate salts), activation energy was determined using three isoconversional methods that employed TGA curves at different heating rates. For all three salt types, activation energy varied significantly with conversion. The average activation energy for calcium acetate was 556.75 kJ mol −1 , and the activation energies for the two mixed calcium carboxylate salts were 232.87, and 176.55 kJ mol −1 . In addition, three functions of conversion were employed to see which one best modeled the experimental data. The Sestak–Berggren model provides the best universal fit for all three salt types. -- Highlights: •Calcium carboxylate salts from fermentation broth thermally decompose to ketones. •Activation energy varies with conversion for all three salt types. •Sestak–Berggren model provides best fit overall for all three salt types

  4. Kinetics study of thermal decomposition of sodium carboxylate salts

    International Nuclear Information System (INIS)

    Landoll, Michael P.; Holtzapple, Mark T.

    2012-01-01

    The MixAlco™ process ferments lignocellulosic biomass to carboxylate salts that are thermally decomposed into ketones, which are then chemically converted to a wide variety of chemicals and fuels. To perform these decompositions, suitable reaction models are necessary to properly design, scale, and optimize commercial reactors. For three salt types (sodium acetate, and two types of mixed sodium carboxylate salts), activation energy was determined using three isoconversional methods that employed TGA curves at different heating rates. For all three salt types, activation energy varied significantly with conversion. The average activation energy for sodium acetate was 226.65 kJ/mol, and the activation energies for the two mixed sodium carboxylate salts were 195.61, and 218.18 kJ/mol. In addition, three functions of conversion were employed to see which one best modeled the experimental data. The Sestak-Berggren model fits all three salt types best. -- Highlights: ► Sodium carboxylate salts from fermentation broth thermally decompose to ketones. ► Activation energy varies with conversion for all three salt types. ► Sestak-Berggren model provides best fit for all three salt types.

  5. Preparation of C-II labeled pyruvic acid for use in assessment of hypoxia in tumors. Project 4

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Of the three methods of synthesis of C-II-labeled pyruvic acid that we had proposed to investigate in order to determine the best and most appropriate synthesis of C-II-labeled pyruvate, the cold chemistry of Method A, via an isocyanide intermediate, has been verified. Similarly, the cold chemistry of Method B, via the 1,3-dithiane derivative, has been verified up to the deprotection and last step of the synthesis. The difficulties which have been encountered with the biochemistry of Method C from ribulose 1,5-diphosphate, have yet to be resolved. 12 refs., 6 figs

  6. Enhancing the [13C]bicarbonate signal in cardiac hyperpolarized [1‐13C]pyruvate MRS studies by infusion of glucose, insulin and potassium

    DEFF Research Database (Denmark)

    Lauritzen, Mette Hauge; Laustsen, Christoffer; Butt, Sadia Asghar

    2013-01-01

    A change in myocardial metabolism is a known effect of several diseases. MRS with hyperpolarized 13C‐labelled pyruvate is a technique capable of detecting changes in myocardial pyruvate metabolism, and has proven to be useful for the evaluation of myocardial ischaemia in vivo. However, during fas...

  7. Crystal structure and thermochemical properties of a novel coordination compound sodium pyruvate C3H3O3Na(s)

    International Nuclear Information System (INIS)

    Gao, Zhen-Fei; Di, You-Ying; Liu, Su-Zhou; Lu, Dong-Fei; Dou, Jian-Min

    2014-01-01

    Graphical abstract: A novel coordination compound sodium pyruvate C 3 H 3 O 3 Na(s) is synthesised. Elemental analysis and X-ray crystallography are used to characterise the composition and crystal structure of the compound. The lattice potential energy and ionic volume of the anion are obtained from crystallographic data. The standard molar enthalpy of formation of the compound is calculated by an isoperibol solution-reaction calorimeter. Molar enthalpies of dissolution of the compound at various molalities are measured at T = 298.15 K. According to Pitzer’s theory, molar enthalpy of dissolution of the title compound at infinite dilution is calculated. The values of relative apparent molar enthalpies and relative partial molar enthalpies of the solvent and the compound at different concentrations m/(mol · kg −1 ) are derived. - Highlights: • The sodium pyruvate was synthesised and crystal structure was determined. • The enthalpy change of the synthesis reaction was obtained. • Standard molar enthalpy of formation was obtained. • Molar enthalpy of dissolution at infinite dilution was calculated. - Abstract: A novel coordination compound sodium pyruvate C 3 H 3 O 3 Na(s) is synthesised by a liquid phase reaction. The compound has an obvious bioactivity and can be used as the biological carbon source and the chemical identification of primary and secondary alcohols. It can be also used to determinate transaminase. Elemental analysis and X-ray crystallography are used to characterise the composition and crystal structure of the compound. Single crystal X-ray analysis reveals that the compound is formed by one CH 3 COCOO − anion and one Na + cation. An obvious feature of the crystal structure is the formation of the five-membered chelate ring by the coordination of O1 of carboxylate and O3 of keto form with Na + cation, and it is good for the stability of the compound in structure. The lattice potential energy and ionic volume of the anion are obtained

  8. Determination of gluconeogenesis in vivo with 14C-labeled substrates

    International Nuclear Information System (INIS)

    Katz, J.

    1985-01-01

    A mitochondrial model of gluconeogenesis and the tricarboxylic acid cycle, where pyruvate is metabolized via pyruvate carboxylase and pyruvate dehydrogenase, and pyruvate kinase is examined. The effect of the rate of tricarboxylic acid flux and the rates of the three reactions of pyruvate metabolism on the labeling patterns from [ 14 C]pyruvate and [ 14 C]acetate are analyzed. Expressions describing the specific radioactivities and 14 C distribution in glucose as a function of these rates are derived. Specific radioactivities and isotopic patterns depend markedly on the ratio of the rates of pyruvate carboxylation and decarboxylation to the rate of citrate synthesis, but the effect of phosphoenolpyruvate hydrolysis is minor. The effects of these rates on 1) specific radioactivity of phosphoenolpyruvate, 2) labeling pattern in glucose, and 3) contribution of pyruvate, acetyl-coenzyme A, and CO 2 to glucose carbon are illustrated. To determine the contribution of lactate or alanine to gluconeogenesis, experiments with two compounds labeled in different carbons are required. Methods in current use to correct for the dilution of 14 C in gluconeogenesis from [ 14 C]pyruvate are shown to be erroneous. The experimental design and techniques to determine gluconeogenesis from 14 C-labeled precursors are presented and illustrated with numerical examples

  9. Transition metal-catalyzed carboxylation reactions with carbon dioxide.

    Science.gov (United States)

    Martin, Ruben; Tortajada, Andreu; Juliá-Hernández, Francisco; Borjesson, Marino; Moragas, Toni

    2018-05-03

    Driven by the inherent synthetic potential of CO2 as an abundant, inexpensive and renewable C1 chemical feedstock, the recent years have witnessed renewed interest in devising catalytic CO2 fixations into organic matter. Although the formation of C-C bonds via catalytic CO2 fixation remained rather limited for a long period of time, a close look into the recent literature data indicates that catalytic carboxylation reactions have entered a new era of exponential growth, evolving into a mature discipline that allows for streamlining the synthesis of carboxylic acids, building blocks of utmost relevance in industrial endeavours. These strategies have generally proven broadly applicability and convenient to perform. However, substantial challenges still need to be addressed reinforcing the need to cover metal-catalyzed carboxylation arena in a conceptual and concise manner, delineating the underlying new principles that are slowly emerging in this vibrant area of expertise. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Pyruvate decarboxylase provides growing pollen tubes with a competitive advantage in petunia.

    Science.gov (United States)

    Gass, Nathalie; Glagotskaia, Tatiana; Mellema, Stefan; Stuurman, Jeroen; Barone, Mario; Mandel, Therese; Roessner-Tunali, Ute; Kuhlemeier, Cris

    2005-08-01

    Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen-specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild-type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen-specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen-pistil interaction.

  11. Pyruvate Oxidase Influences the Sugar Utilization Pattern and Capsule Production in Streptococcus pneumoniae

    NARCIS (Netherlands)

    Carvalho, Sandra M.; Farshchi Andisi, Vahid; Gradstedt, Henrik; Neef, Jolanda; Kuipers, Oscar P.; Neves, Ana R.; Bijlsma, Jetta J. E.

    2013-01-01

    Pyruvate oxidase is a key function in the metabolism and lifestyle of many lactic acid bacteria and its activity depends on the presence of environmental oxygen. In Streptococcus pneumoniae the protein has been suggested to play a major role in metabolism and has been implicated in virulence,

  12. Carboxylated Polyurethanes Containing Hyperbranched Polyester Soft Segments

    Directory of Open Access Journals (Sweden)

    Žigon, M.

    2006-09-01

    Full Text Available hyperbranched polyester soft segments (HB PU with functional carboxylic groups in order to enable the preparation of stable HB PU dispersions. Carboxylated hyperbranched polyurethanes were synthesized using a hyperbranched polyester based on 2,2-bis(methylolpropionic acid of the fourth pseudo-generation (Boltorn H40 and hexamethylene (HDI or isophorone diisocyanate (IPDI. The reactivity of hyperbranched polyester with HDI was lower than expected, possibly due to the presence of less reactive hydroxyl groups in the linear repeat units. A gel was formed at mole ratios rNCO/OH = 1:2 or 1:4. The synthesis of HB PU was performed with partly esterified hyperbranched polyester with lowered hydroxyl functionality. The carboxyl groups were incorporated in the HB PU backbone by reaction of residual hydroxyl groups with cis-1,2-cyclohexanedicarboxylic anhydride. HB PU aqueous dispersions were stable at least for two months, although their films were brittle. The tensile strength and Young's modulus of blends of linear and HB PU decreased with increasing content of HB PU whereas elongation at break remained nearly constant, which was explained in terms of looser chain packing due to more open tree-like hyperbranched structures.

  13. Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose.

    Science.gov (United States)

    Ishchuk, Olena P; Voronovsky, Andriy Y; Stasyk, Oleh V; Gayda, Galina Z; Gonchar, Mykhailo V; Abbas, Charles A; Sibirny, Andriy A

    2008-11-01

    Improvement of xylose fermentation is of great importance to the fuel ethanol industry. The nonconventional thermotolerant yeast Hansenula polymorpha naturally ferments xylose to ethanol at high temperatures (48-50 degrees C). Introduction of a mutation that impairs ethanol reutilization in H. polymorpha led to an increase in ethanol yield from xylose. The native and heterologous (Kluyveromyces lactis) PDC1 genes coding for pyruvate decarboxylase were expressed at high levels in H. polymorpha under the control of the strong constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). This resulted in increased pyruvate decarboxylase activity and improved ethanol production from xylose. The introduction of multiple copies of the H. polymorpha PDC1 gene driven by the strong constitutive promoter led to a 20-fold increase in pyruvate decarboxylase activity and up to a threefold elevation of ethanol production.

  14. Adsorption Equilibrium Equation of Carboxylic Acids on Anion-Exchange Resins in Water.

    Science.gov (United States)

    Kanazawa, Nobuhiro; Urano, Kohei; Kokado, Naohiro; Urushigawa, Yoshikuni

    2001-06-01

    The adsorption of propionic acid and benzoic acid on anion-exchange resins was analyzed, and an adsorption equilibrium equation of carboxylic acids was proposed. The adsorption of carboxylic acids on the anion-exchange resins was considered to be the sum of the physical adsorption of the molecule and the ion-exchange adsorption of the ion, which were independent of each other. For the physical adsorption of carboxylic acids, it was conformed to the Freundlich equation. For the ion-exchange adsorption of carboxylate ions, the equilibrium equation corresponded well with the experimental results for wide ranges of concentration and pH. The equation contains a selectivity coefficient S(A)(Cl) for the chloride ion versus the carboxylate ion, which was considered essentially a constant. The influent of the bicarbonate ion from carbon dioxide in air could also be expressed by the additional equilibrium equation with the selectivity coefficient S(HCO(3))(Cl) for the chloride ion versus the bicarbonate ion. Consequently, an adsorption equilibrium equation can estimate the equilibrium adsorption amounts. Even the effect of a coexisting bicarbonate ion is inconsequential when the parameters of the Freundlich isotherm equation and the selectivity coefficients of the carboxylate ion and the bicarbonate ion in each resin are determined in advance. Copyright 2001 Academic Press.

  15. The pkI gene encoding pyruvate kinase I links to the luxZ gene which enhances bioluminescence of the lux operon from Photobacterium leiognathi.

    Science.gov (United States)

    Lin, J W; Lu, H C; Chen, H Y; Weng, S F

    1997-10-09

    Partial 3'-end nucleotide sequence of the pkI gene (GenBank accession No. AF019143) from Photobacterium leiognathi ATCC 25521 has been determined, and the encoded pyruvate kinase I is deduced. Pyruvate kinase I is the key enzyme of glycolysis, which converts phosphoenol pyruvate to pyruvate. Alignment and comparison of pyruvate kinase Is from P. leiognathi, E. coli and Salmonella typhimurium show that they are homologous. Nucleotide sequence reveals that the pkI gene is linked to the luxZ gene that enhances bioluminescence of the lux operon from P. leiognathi. The gene order of the pkI and luxZ genes is-pk1-ter-->-R&R"-luxZ-ter"-->, whereas ter is transcriptional terminator for the pkI and related genes, and R&R" is the regulatory region and ter" is transcriptional terminator for the luxZ gene. It clearly elicits that the pkI gene and luxZ gene are divided to two operons. Functional analysis confirms that the potential hairpin loop omega T is the transcriptional terminator for the pkI and related genes. It infers that the pkI and related genes are simply linked to the luxZ gene in P. leiognathi genome.

  16. Role of pyruvate dehydrogenase inhibition in the development of hypertrophy in the hyperthyroid rat heart: a combined magnetic resonance imaging and hyperpolarized magnetic resonance spectroscopy study.

    Science.gov (United States)

    Atherton, Helen J; Dodd, Michael S; Heather, Lisa C; Schroeder, Marie A; Griffin, Julian L; Radda, George K; Clarke, Kieran; Tyler, Damian J

    2011-06-07

    Hyperthyroidism increases heart rate, contractility, cardiac output, and metabolic rate. It is also accompanied by alterations in the regulation of cardiac substrate use. Specifically, hyperthyroidism increases the ex vivo activity of pyruvate dehydrogenase kinase, thereby inhibiting glucose oxidation via pyruvate dehydrogenase. Cardiac hypertrophy is another effect of hyperthyroidism, with an increase in the abundance of mitochondria. Although the hypertrophy is initially beneficial, it can eventually lead to heart failure. The aim of this study was to use hyperpolarized magnetic resonance spectroscopy to investigate the rate and regulation of in vivo pyruvate dehydrogenase flux in the hyperthyroid heart and to establish whether modulation of flux through pyruvate dehydrogenase would alter cardiac hypertrophy. Hyperthyroidism was induced in 18 male Wistar rats with 7 daily intraperitoneal injections of freshly prepared triiodothyronine (0.2 mg x kg(-1) x d(-1)). In vivo pyruvate dehydrogenase flux, assessed with hyperpolarized magnetic resonance spectroscopy, was reduced by 59% in hyperthyroid animals (0.0022 ± 0.0002 versus 0.0055 ± 0.0005 second(-1); P=0.0003), and this reduction was completely reversed by both short- and long-term delivery of dichloroacetic acid, a pyruvate dehydrogenase kinase inhibitor. Hyperpolarized [2-(13)C]pyruvate was also used to evaluate Krebs cycle metabolism and demonstrated a unique marker of anaplerosis, the level of which was significantly increased in the hyperthyroid heart. Cine magnetic resonance imaging showed that long-term dichloroacetic acid treatment significantly reduced the hypertrophy observed in hyperthyroid animals (100 ± 20 versus 200 ± 30 mg; P=0.04) despite no change in the increase observed in cardiac output. This work has demonstrated that inhibition of glucose oxidation in the hyperthyroid heart in vivo is mediated by pyruvate dehydrogenase kinase. Relieving this inhibition can increase the metabolic

  17. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained by solubil...... by solubilization of the lamellae in phenol/acetic acid/8 M urea. Feeding barley seedlings with [14C]-biotin revealed that the vitamin is not degraded into respiratory substrates by the plant, but is specifically incorporated into biotin carboxyl carrier protein....

  18. Plastic scintillators with high loading of one or more metal carboxylates

    Science.gov (United States)

    Cherepy, Nerine; Sanner, Robert Dean

    2016-01-12

    In one embodiment, a material includes at least one metal compound incorporated into a polymeric matrix, where the metal compound includes a metal and one or more carboxylate ligands, where at least one of the one or more carboxylate ligands includes a tertiary butyl group, and where the material is optically transparent. In another embodiment, a method includes: processing pulse traces corresponding to light pulses from a scintillator material; and outputting a result of the processing, where the scintillator material comprises at least one metal compound incorporated into a polymeric matrix, the at least one metal compound including a metal and one or more carboxylate ligands, where at least one of the one or more carboxylate ligands has a tertiary butyl group, and where the scintillator material is optically transparent and has an energy resolution at 662 keV of less than about 20%.

  19. Pyruvate Kinase Triggers a Metabolic Feedback Loop that Controls Redox Metabolism in Respiring Cells

    NARCIS (Netherlands)

    Grüning, N.M.; Rinnerthaler, M.; Bluemlein, K.; Mulleder, M.; Wamelink, M.M.C.; Lehrach, H.; Jakobs, C.A.J.M.; Breitenbach, M.; Ralser, M.

    2011-01-01

    In proliferating cells, a transition from aerobic to anaerobic metabolism is known as the Warburg effect, whose reversal inhibits cancer cell proliferation. Studying its regulator pyruvate kinase (PYK) in yeast, we discovered that central metabolism is self-adapting to synchronize redox metabolism

  20. Anaerobic survival of Pseudomonas aeruginosa by pyruvate fermentation requires an Usp-type stress protein

    DEFF Research Database (Denmark)

    Schreiber, K; Boes, N; Escbach, M

    2006-01-01

    the induced synthesis of three enzymes involved in arginine fermentation, ArcA, ArcB, and ArcC, and the outer membrane protein OprL. Moreover, formation of two proteins of unknown function, PA3309 and PA4352, increased by factors of 72- and 22-fold, respectively. Both belong to the group of universal stress...... proteins (Usp). Long-term survival of a PA3309 knockout mutant by pyruvate fermentation was found drastically reduced. The oxygen-sensing regulator Anr controls expression of the PPA3309-lacZ reporter gene fusion after a shift to anaerobic conditions and further pyruvate fermentation. PA3309 expression...... was also found induced during the anaerobic and aerobic stationary phases. This aerobic stationary-phase induction is independent of the regulatory proteins Anr, RpoS, RelA, GacA, RhlR, and LasR, indicating a currently unknown mechanism of stationary-phase-dependent gene activation. PA3309 promoter...

  1. Chiral metal-organic frameworks bearing free carboxylic acids for organocatalyst encapsulation.

    Science.gov (United States)

    Liu, Yan; Xi, Xiaobing; Ye, Chengcheng; Gong, Tengfei; Yang, Zhiwei; Cui, Yong

    2014-12-08

    Two chiral carboxylic acid functionalized micro- and mesoporous metal-organic frameworks (MOFs) are constructed by the stepwise assembly of triple-stranded heptametallic helicates with six carboxylic acid groups. The mesoporous MOF with permanent porosity functions as a host for encapsulation of an enantiopure organic amine catalyst by combining carboxylic acids and chiral amines in situ through acid-base interactions. The organocatalyst-loaded framework is shown to be an efficient and recyclable heterogeneous catalyst for the asymmetric direct aldol reactions with significantly enhanced stereoselectivity in relative to the homogeneous organocatalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Catalytic-site mapping of pyruvate formate lyase. Hypophosphite reaction on the acetyl-enzyme intermediate affords carbon-phosphorus bond synthesis (1-hydroxyethylphosphonate).

    Science.gov (United States)

    Plaga, W; Frank, R; Knappe, J

    1988-12-15

    Pyruvate formate-lyase of Escherichia coli cells, a homodimeric protein of 2 x 85 kDa, is distinguished by the property of containing a stable organic free radical (g = 2.0037) in its resting state. The enzyme (E-SH) achieves pyruvate conversion to acetyl-CoA via two distinct half-reactions (E-SH + pyruvate in equilibrium E-S-acetyl + formate; E-S-acetyl + CoA in equilibrium E-SH + acetyl-CoA), the first of which has been proposed to involve reversible homolytic carbon-carbon bond cleavage [J. Knappe et al. (1984) Proc. Natl Acad. Sci. USA 81, 1332-1335]. Present studies identified Cys-419 as the covalent-catalytic cysteinyl residue via CNBr fragmentation of E-S-[14C]acetyl and radio-sequencing of the isolated peptide CB-Ac (amino acid residues 406-423). Reaction of the formate analogue hypophosphite with E-S-acetyl was investigated and found to produce 1-hydroxyethylphosphonate with a thioester linkage to the adjacent Cys-418. The structure was determined from the chymotryptic peptide CH-P (amino acid residues 415-425), using 31P-NMR spectroscopy (delta = 44 ppm) and by chemical characterisation through degradation into 1-hydroxyethylphosphonate with phosphodiesterase or bromine. This novel P-C-bond synthesis involves the enzyme-based free radical and is proposed to resemble the physiological C-C-bond synthesis (pyruvate production) from formate and E-S-acetyl. These findings are interpreted as proof of a radical mechanism for the action of pyruvate formate-lyase. The central Cys-418/Cys-419 pair of the active site shows a distinctive thiolate property even in the inactive (nonradical) form of the enzyme, as determined using an iodoacetate probe.

  3. Thermodynamic properties of alkyl 1H-indole carboxylate derivatives: A combined experimental and computational study

    International Nuclear Information System (INIS)

    Carvalho, Tânia M.T.; Amaral, Luísa M.P.F.; Morais, Victor M.F.; Ribeiro da Silva, Maria D.M.C.

    2016-01-01

    Highlights: • Combustion of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate by static bomb calorimetry. • The Knudsen mass-loss effusion technique was used to measure the vapour pressures of compounds at different temperatures. • Enthalpies of sublimation of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate. • Gas-phase enthalpies of formation of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate have been derived. • Gas-phase enthalpies of formation estimated from G3(MP2) calculations. - Abstract: The standard (p"o = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate, at T = 298.15 K, were derived from measurements of the standard massic energies of combustion using a static bomb combustion calorimeter. The Knudsen effusion technique was used to measure the vapour pressures as a function of the temperature, which allowed determining the standard molar enthalpies of sublimation of these compounds. The standard (p"o = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, were calculated by combining, for each compound, the standard molar enthalpy of formation, in the crystalline phase, and the standard molar enthalpy of sublimation, yielding −(207.6 ± 3.6) kJ·mol"−"1 and −(234.4 ± 2.4) kJ·mol"−"1, for methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate, respectively. Quantum chemical studies were also conducted, in order to complement the experimental study. The gas-phase enthalpies of formation were estimated from high level ab initio molecular orbital calculations, at the G3(MP2) level, for the compounds studied experimentally, extending the study to the methyl 1H-indole-2-carboxylate and ethyl 1H-indole-3-carboxylate. The results obtained were compared with the experimental data and were also analysed in terms of structural enthalpic group contributions.

  4. Hyperpolarized 1-13C Pyruvate Imaging of Porcine Cardiac Metabolism shift by GIK Intervention

    DEFF Research Database (Denmark)

    Søvsø Szocska Hansen, Esben; Tougaard, Rasmus Stilling; Mikkelsen, Emmeli

    to evaluate the general feasibility to detect an imposed shift in metabolic substrate utilization during metabolic modulation with glucose, insulin and potassium (GIK) infusion. This study demonstrates that hyperpolarized 13C-pyruvate, in a large animal, is a feasible method for cardiac studies, and...

  5. A thiamin-bound, pre-decarboxylation reaction intermediate analogue in the pyruvate dehydrogenase E1 subunit induces large scale disorder-to-order transformations in the enzyme and reveals novel structural features in the covalently bound adduct.

    Science.gov (United States)

    Arjunan, Palaniappa; Sax, Martin; Brunskill, Andrew; Chandrasekhar, Krishnamoorthy; Nemeria, Natalia; Zhang, Sheng; Jordan, Frank; Furey, William

    2006-06-02

    The crystal structure of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined with phosphonolactylthiamin diphosphate (PLThDP) in its active site. PLThDP serves as a structural and electrostatic analogue of the natural intermediate alpha-lactylthiamin diphosphate (LThDP), in which the carboxylate from the natural substrate pyruvate is replaced by a phosphonate group. This represents the first example of an experimentally determined, three-dimensional structure of a thiamin diphosphate (ThDP)-dependent enzyme containing a covalently bound, pre-decarboxylation reaction intermediate analogue and should serve as a model for the corresponding intermediates in other ThDP-dependent decarboxylases. Regarding the PDHc-specific reaction, the presence of PLThDP induces large scale conformational changes in the enzyme. In conjunction with the E1-PLThDP and E1-ThDP structures, analysis of a H407A E1-PLThDP variant structure shows that an interaction between His-407 and PLThDP is essential for stabilization of two loop regions in the active site that are otherwise disordered in the absence of intermediate analogue. This ordering completes formation of the active site and creates a new ordered surface likely involved in interactions with the lipoyl domains of E2s within the PDHc complex. The tetrahedral intermediate analogue is tightly held in the active site through direct hydrogen bonds to residues His-407, Tyr-599, and His-640 and reveals a new, enzyme-induced, strain-related feature that appears to aid in the decarboxylation process. This feature is almost certainly present in all ThDP-dependent decarboxylases; thus its inclusion in our understanding of general thiamin catalysis is important.

  6. Measuring the concentration of carboxylic acid groups in torrefied spruce wood.

    Science.gov (United States)

    Khazraie Shoulaifar, Tooran; Demartini, Nikolai; Ivaska, Ari; Fardim, Pedro; Hupa, Mikko

    2012-11-01

    Torrefaction is moderate thermal treatment (∼200-300°C) to improve the energy density, handling and storage properties of biomass fuels. In biomass, carboxylic sites are partially responsible for its hygroscopic. These sites are degraded to varying extents during torrefaction. In this paper, we apply methylene blue sorption and potentiometric titration to measure the concentration of carboxylic acid groups in spruce wood torrefied for 30min at temperatures between 180 and 300°C. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic acid sites. Thus both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction which provides new information to the chemical changes occurring during torrefaction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Identification of Key Residues for Enzymatic Carboxylate Reduction

    Directory of Open Access Journals (Sweden)

    Holly Stolterfoht

    2018-02-01

    Full Text Available Carboxylate reductases (CARs, E.C. 1.2.1.30 generate aldehydes from their corresponding carboxylic acid with high selectivity. Little is known about the structure of CARs and their catalytically important amino acid residues. The identification of key residues for carboxylate reduction provides a starting point to gain deeper understanding of enzymatic carboxylate reduction. A multiple sequence alignment of CARs with confirmed activity recently identified in our lab and from the literature revealed a fingerprint of conserved amino acids. We studied the function of conserved residues by multiple sequence alignments and mutational replacements of these residues. In this study, single-site alanine variants of Neurospora crassa CAR were investigated to determine the contribution of conserved residues to the function, expressability or stability of the enzyme. The effect of amino acid replacements was investigated by analyzing enzymatic activity of the variants in vivo and in vitro. Supported by molecular modeling, we interpreted that five of these residues are essential for catalytic activity, or substrate and co-substrate binding. We identified amino acid residues having significant impact on CAR activity. Replacement of His 237, Glu 433, Ser 595, Tyr 844, and Lys 848 by Ala abolish CAR activity, indicating their key role in acid reduction. These results may assist in the functional annotation of CAR coding genes in genomic databases. While some other conserved residues decreased activity or had no significant impact, four residues increased the specific activity of NcCAR variants when replaced by alanine. Finally, we showed that NcCAR wild-type and mutants efficiently reduce aliphatic acids.

  8. A pyruvate-buffered dialysis fluid induces less peritoneal angiogenesis and fibrosis than a conventional solution

    NARCIS (Netherlands)

    van Westrhenen, Roos; Zweers, Machteld M.; Kunne, Cindy; de Waart, Dirk R.; van der Wal, Allard C.; Krediet, Raymond T.

    2008-01-01

    BACKGROUND: Conventional lactate-buffered peritoneal dialysis (PD) fluids containing glucose and glucose degradation products are believed to contribute to the development of fibrosis and angiogenesis in the dialyzed peritoneum. To reduce potential negative effects of lactate, pyruvate was

  9. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related

    International Nuclear Information System (INIS)

    Berk, P.D.; Potter, B.J.; Sorrentino, D.; Zhou, S.L.; Isola, L.M.; Stump, D.; Kiang, C.L.; Thung, S.; Wada, H.; Horio, Y.

    1990-01-01

    The hepatic plasma membrane fatty acid-binding protein (h-FABP PM ) and the mitochondrial isoenzyme of glutamic-oxaloacetic transaminase (mGOT) of rat liver have similar amino acid compositions and identical amino acid sequences for residues 3-24. Both proteins migrate with an apparent molecular mass of 43 kDa on SDS/polyacrylamide gel electrophoresis, have a similar pattern of basic charge isomers on isoelectric focusing, are eluted similarly from four different high-performance liquid chromatographic columns, have absorption maxima at 435 nm under acid conditions and 354 nm at pH 8.3, and bind oleate. Sinusoidally enriched liver plasma membranes and purified h-FABP PM have GOT enzymatic activity. Monospecific rabbit antiserum against h-FABP PM reacts on Western blotting with mGOT, and vice versa. Antisera against both proteins produce plasma membrane immunofluorescence in rat hepatocytes and selectively inhibit the hepatocellular uptake of [ 3 H]oleate but not that of [ 35 S]sulfobromophthalein or [ 14 C]taurocholate. The inhibition of oleate uptake produced by anti-h-FABP PM can be eliminated by preincubation of the antiserum with mGOT; similarly, the plasma membrane immunofluorescence produced by either antiserum can be eliminated by preincubation with the other antigen. These data suggest that h-FABP PM and mGOT are closely related

  10. Ovalbumin with Glycated Carboxyl Groups Shows Membrane-Damaging Activity

    Directory of Open Access Journals (Sweden)

    Ching-Chia Tang

    2017-02-01

    Full Text Available The aim of the present study was to investigate whether glycated ovalbumin (OVA showed novel activity at the lipid-water interface. Mannosylated OVA (Man-OVA was prepared by modification of the carboxyl groups with p-aminophenyl α-dextro (d-mannopyranoside. An increase in the number of modified carboxyl groups increased the membrane-damaging activity of Man-OVA on cell membrane-mimicking vesicles, whereas OVA did not induce membrane permeability in the tested phospholipid vesicles. The glycation of carboxyl groups caused a notable change in the gross conformation of OVA. Moreover, owing to their spatial positions, the Trp residues in Man-OVA were more exposed, unlike those in OVA. Fluorescence quenching studies suggested that the Trp residues in Man-OVA were located on the interface binds with the lipid vesicles, and their microenvironment was abundant in positively charged residues. Although OVA and Man-OVA showed a similar binding affinity for lipid vesicles, the lipid-interacting feature of Man-OVA was distinct from that of OVA. Chemical modification studies revealed that Lys and Arg residues, but not Trp residues, played a crucial role in the membrane-damaging activity of Man-OVA. Taken together, our data suggest that glycation of carboxyl groups causes changes in the structural properties and membrane-interacting features of OVA, generating OVA with membrane-perturbing activities at the lipid-water interface.

  11. Li-Carboxylate Anode Structure-Property Relationships from Molecular Modeling

    KAUST Repository

    Burkhardt, Stephen E.

    2013-01-22

    The full realization of a renewable energy strategy hinges upon electrical energy storage (EES). EES devices play a key role in storing energy from renewable sources (which are inherently intermittent), to efficient transmission (e.g., grid load-leveling), and finally into the electrification of transportation. Organic materials represent a promising class of electrode active materials for Li-ion and post-Li-ion batteries. Organics consist of low-cost, lightweight, widely available materials, and their properties can be rationally tuned using the well-established principles of organic chemistry. Within the class of organic EES materials, carboxylates distinguish themselves for Li-ion anode materials based on their observed thermal stability, rate capability, and high cyclability. Further, many of the carboxylates studied to date can be synthesized from renewable or waste feedstocks. This report begins with a preliminary molecular density-functional theory (DFT) study, in which the calculated molecular properties of a set of 12 known Li-ion electrode materials based on carboxylate and carbonyl redox couples are compared to literature data. Based on the agreement between theoretical and experimental data, an expanded study was undertaken to identify promising materials and establish design principles for anodes based on Li-carboxylate salts. Predictive computational studies represent an important step forward for the identification of organic anode materials. © 2012 American Chemical Society.

  12. Effect of gamma radiation on the concentration of pyruvate and lactate in erythrocytes of healthy men after submaximal physical exercise

    International Nuclear Information System (INIS)

    Zagorski, T.; Dudek, I.; Berkan, L.; Chmielewski, H.; Kedziora, J.

    1993-01-01

    The aim of this work was to study the effect of gamma radiation and submaximal physical exercise on the concentration of final products of anaerobic glycolytic pathway in erythrocytes of healthy men. Twenty one men aged 20-22 were examined. They underwent physical exercise at doses of 2 w/kg body weight for 15 min. Erythrocytes were taken in the rest and after physical exercise and were exposed to gamma radiation (500 Gy doses) from 60 Co source. The concentration of pyruvate was estimated by Fermognost tests and the concentration of lactate by Boehringer Mannheim tests. The submaximal physical exercise was found to cause a significantly increased concentration of pyruvate and lactate in the non-radiated and irradiated erythrocytes. Gamma radiation at 500 Gy dose was found to increase concentration of pyruvate in erythrocytes (in the rest and after physical exercise) with simultaneous decrease of lactate concentration. (author). 17 refs, 1 tab

  13. A comparison of quantitative methods for clinical imaging with hyperpolarized (13)C-pyruvate.

    Science.gov (United States)

    Daniels, Charlie J; McLean, Mary A; Schulte, Rolf F; Robb, Fraser J; Gill, Andrew B; McGlashan, Nicholas; Graves, Martin J; Schwaiger, Markus; Lomas, David J; Brindle, Kevin M; Gallagher, Ferdia A

    2016-04-01

    Dissolution dynamic nuclear polarization (DNP) enables the metabolism of hyperpolarized (13)C-labelled molecules, such as the conversion of [1-(13)C]pyruvate to [1-(13)C]lactate, to be dynamically and non-invasively imaged in tissue. Imaging of this exchange reaction in animal models has been shown to detect early treatment response and correlate with tumour grade. The first human DNP study has recently been completed, and, for widespread clinical translation, simple and reliable methods are necessary to accurately probe the reaction in patients. However, there is currently no consensus on the most appropriate method to quantify this exchange reaction. In this study, an in vitro system was used to compare several kinetic models, as well as simple model-free methods. Experiments were performed using a clinical hyperpolarizer, a human 3 T MR system, and spectroscopic imaging sequences. The quantitative methods were compared in vivo by using subcutaneous breast tumours in rats to examine the effect of pyruvate inflow. The two-way kinetic model was the most accurate method for characterizing the exchange reaction in vitro, and the incorporation of a Heaviside step inflow profile was best able to describe the in vivo data. The lactate time-to-peak and the lactate-to-pyruvate area under the curve ratio were simple model-free approaches that accurately represented the full reaction, with the time-to-peak method performing indistinguishably from the best kinetic model. Finally, extracting data from a single pixel was a robust and reliable surrogate of the whole region of interest. This work has identified appropriate quantitative methods for future work in the analysis of human hyperpolarized (13)C data. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  14. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-¹³C]pyruvate

    DEFF Research Database (Denmark)

    Nelson, Sarah J; Kurhanewicz, John; Vigneron, Daniel B

    2013-01-01

    This first-in-man imaging study evaluated the safety and feasibility of hyperpolarized [1-¹³C]pyruvate as an agent for noninvasively characterizing alterations in tumor metabolism for patients with prostate cancer. Imaging living systems with hyperpolarized agents can result in more than 10,000-f...

  15. Exercise-induced pyruvate dehydrogenase activation is not affected by 7 days of bed rest

    DEFF Research Database (Denmark)

    Kiilerich, Kristian; Jørgensen, Stine Ringholm; Biensø, Rasmus Sjørup

    2011-01-01

    To test the hypothesis that physical inactivity impairs the exercise-induced modulation of pyruvate dehydrogenase (PDH), 6 healthy normally physically active male subjects completed 7 days of bed rest. Before and immediately after the bed rest, the subjects completed an OGTT and a one-legged knee...

  16. Pyruvate remediation of cell stress and genotoxicity induced by haloacetic acid drinking water disinfection by-products.

    Science.gov (United States)

    Dad, Azra; Jeong, Clara H; Pals, Justin A; Wagner, Elizabeth D; Plewa, Michael J

    2013-10-01

    Monohaloacetic acids (monoHAAs) are a major class of drinking water disinfection by-products (DBPs) and are cytotoxic, genotoxic, mutagenic, and teratogenic. We propose a model of toxic action based on monoHAA-mediated inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a target cytosolic enzyme. This model predicts that GAPDH inhibition by the monoHAAs will lead to a severe reduction of cellular ATP levels and repress the generation of pyruvate. A loss of pyruvate will lead to mitochondrial stress and genomic DNA damage. We found a concentration-dependent reduction of ATP in Chinese hamster ovary cells after monoHAA treatment. ATP reduction per pmol monoHAA followed the pattern of iodoacetic acid (IAA) > bromoacetic acid (BAA) > chloroacetic acid (CAA), which is the pattern of potency observed with many toxicological endpoints. Exogenous supplementation with pyruvate enhanced ATP levels and attenuated monoHAA-induced genomic DNA damage as measured with single cell gel electrophoresis. These data were highly correlated with the SN 2 alkylating potentials of the monoHAAs and with the induction of toxicity. The results from this study strongly support the hypothesis that GAPDH inhibition and the possible subsequent generation of reactive oxygen species is linked with the cytotoxicity, genotoxicity, teratogenicity, and neurotoxicity of these DBPs. Copyright © 2013 Wiley Periodicals, Inc.

  17. Methylobacterium sp. isolated from a Finnish paper machine produces highly pyruvated galactan exopolysaccharide.

    Science.gov (United States)

    Verhoef, René; de Waard, Pieter; Schols, Henk A; Siika-aho, Matti; Voragen, Alphons G J

    2003-09-01

    The slime-forming bacterium Methylobacterium sp. was isolated from a Finnish paper machine and its exopolysaccharide (EPS) was produced on laboratory scale. Sugar compositional analysis revealed a 100% galactan (EPS). However, FT-IR showed a very strong peak at 1611 cm(-1) showing the presence of pyruvate. Analysis of the pyruvate content revealed that, based on the sugar composition, the EPS consists of a trisaccharide repeating unit consisting of D-galactopyranose and [4,6-O-(1-carboxyethylidene)]-D-galactopyranose with a molar ratio of 1:2, respectively. Both linkage analysis and 2D homo- and heteronuclear 1H and 13C NMR spectroscopy revealed the following repeating unit: -->3)-[4,6-O-(1-carboxyethylidene)]-alpha-D-Galp-(1-->3)[4,6-O-(1-carboxyethylidene)]-alpha-D-Galp-(1-->3)-alpha-D-Galp-(1-->. By enrichment cultures from various ground and compost heap samples a polysaccharide-degrading culture was obtained that produced an endo acting enzyme able to degrade the EPS described. The enzyme hydrolysed the EPS to a large extent, releasing oligomers that mainly consisted out of two repeating units.

  18. MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4

    Science.gov (United States)

    Hong, Candice Sun; Graham, Nicholas A.; Gu, Wen; Camacho, Carolina Espindola; Mah, Vei; Maresh, Erin L.; Alavi, Mohammed; Bagryanova, Lora; Krotee, Pascal A. L.; Gardner, Brian K.; Behbahan, Iman Saramipoor; Horvath, Steve; Chia, David; Mellinghoff, Ingo K.; Hurvitz, Sara A.; Dubinett, Steven M.; Critchlow, Susan E.; Kurdistani, Siavash K.; Goodglick, Lee; Braas, Daniel; Graeber, Thomas G.; Christofk, Heather R.

    2016-01-01

    SUMMARY Monocarboxylate Transporter 1 (MCT1) inhibition is thought to block tumor growth through disruption of lactate transport and glycolysis. Here we show MCT1 inhibition impairs proliferation of glycolytic breast cancer cells co-expressing MCT1 and MCT4 via disruption of pyruvate rather than lactate export. MCT1 expression is elevated in glycolytic breast tumors, and high MCT1 expression predicts poor prognosis in breast and lung cancer patients. Acute MCT1 inhibition reduces pyruvate export but does not consistently alter lactate transport or glycolytic flux in breast cancer cells that co-express MCT1 and MCT4. Despite the lack of glycolysis impairment, MCT1 loss-of-function decreases breast cancer cell proliferation and blocks growth of mammary fat pad xenograft tumors. Our data suggest MCT1 expression is elevated in glycolytic cancers to promote pyruvate export, which when inhibited enhances oxidative metabolism and reduces proliferation. This study presents an alternative molecular consequence of MCT1 inhibitors further supporting their use as anti-cancer therapeutics. PMID:26876179

  19. Phosphate-Catalyzed Hydrogen Peroxide Formation from Agar, Gellan, and κ-Carrageenan and Recovery of Microbial Cultivability via Catalase and Pyruvate.

    Science.gov (United States)

    Kawasaki, Kosei; Kamagata, Yoichi

    2017-11-01

    Previously, we reported that when agar is autoclaved with phosphate buffer, hydrogen peroxide (H 2 O 2 ) is formed in the resulting medium (PT medium), and the colony count on the medium inoculated with environmental samples becomes much lower than that on a medium in which agar and phosphate are autoclaved separately (PS medium) (T. Tanaka et al., Appl Environ Microbiol 80:7659-7666, 2014, https://doi.org/10.1128/AEM.02741-14). However, the physicochemical mechanisms underlying this observation remain largely unknown. Here, we determined the factors affecting H 2 O 2 formation in agar. The H 2 O 2 formation was pH dependent: H 2 O 2 was formed at high concentrations in an alkaline or neutral phosphate buffer but not in an acidic buffer. Ammonium ions enhanced H 2 O 2 formation, implying the involvement of the Maillard reaction catalyzed by phosphate. We found that other gelling agents (e.g., gellan and κ-carrageenan) also produced H 2 O 2 after being autoclaved with phosphate. We then examined the cultivability of microorganisms from a fresh-water sample to test whether catalase and pyruvate, known as H 2 O 2 scavengers, are effective in yielding high colony counts. The colony count on PT medium was only 5.7% of that on PS medium. Catalase treatment effectively restored the colony count of PT medium (to 106% of that on PS medium). In contrast, pyruvate was not as effective as catalase: the colony count on sodium pyruvate-supplemented PT medium was 58% of that on PS medium. Given that both catalase and pyruvate can remove H 2 O 2 from PT medium, these observations indicate that although H 2 O 2 is the main cause of reduced colony count on PT medium, other unknown growth-inhibiting substances that cannot be removed by pyruvate (but can be by catalase) may also be involved. IMPORTANCE The majority of bacteria in natural environments are recalcitrant to laboratory culture techniques. Previously, we demonstrated that one reason for this is the formation of high H 2 O

  20. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Yu, Kyung Ok; Jung, Ju; Ramzi, Ahmad Bazli; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2012-02-01

    The conversion of low-priced glycerol to higher value products has been proposed as a way to improve the economic viability of the biofuels industry. In a previous study, the conversion of glycerol to ethanol in a metabolically engineered strain of Saccharomyces cerevisiae was accomplished by minimizing the synthesis of glycerol, the main by-product in ethanol fermentation processing. To further improve ethanol production, overexpression of the native genes involved in conversion of pyruvate to ethanol in S. cerevisiae was successfully accomplished. The overexpression of an alcohol dehydrogenase (adh1) and a pyruvate decarboxylase (pdc1) caused an increase in growth rate and glycerol consumption under fermentative conditions, which led to a slight increase of the final ethanol yield. The overall expression of the adh1 and pdc1 genes in the modified strains, combined with the lack of the fps1 and gpd2 genes, resulted in a 1.4-fold increase (about 5.4 g/L ethanol produced) in fps1Δgpd2Δ (pGcyaDak, pGupCas) (about 4.0 g/L ethanol produced). In summary, it is possible to improve the ethanol yield by overexpression of the genes involved in the conversion of pyruvate to ethanol in engineered S. cerevisiae using glycerol as substrate.

  1. Carboxylic acids in crystallization of macromolecules: learning from successful crystallization experiments.

    Science.gov (United States)

    Offermann, Lesa R; He, John Z; Mank, Nicholas J; Booth, William T; Chruszcz, Maksymilian

    2014-03-01

    The production of macromolecular crystals suitable for structural analysis is one of the most important and limiting steps in the structure determination process. Often, preliminary crystallization trials are performed using hundreds of empirically selected conditions. Carboxylic acids and/or their salts are one of the most popular components of these empirically derived crystallization conditions. Our findings indicate that almost 40 % of entries deposited to the Protein Data Bank (PDB) reporting crystallization conditions contain at least one carboxylic acid. In order to analyze the role of carboxylic acids in macromolecular crystallization, a large-scale analysis of the successful crystallization experiments reported to the PDB was performed. The PDB is currently the largest source of crystallization data, however it is not easily searchable. These complications are due to a combination of a free text format, which is used to capture information on the crystallization experiments, and the inconsistent naming of chemicals used in crystallization experiments. Despite these difficulties, our approach allows for the extraction of over 47,000 crystallization conditions from the PDB. Initially, the selected conditions were investigated to determine which carboxylic acids or their salts are most often present in crystallization solutions. From this group, selected sets of crystallization conditions were analyzed in detail, assessing parameters such as concentration, pH, and precipitant used. Our findings will lead to the design of new crystallization screens focused around carboxylic acids.

  2. Synthesis and fluorescence study of phenylcoumarin/cyanophenylbenzocoumarin-3-carboxylates

    Directory of Open Access Journals (Sweden)

    Hosanagara N. Harishkumar

    2012-01-01

    Full Text Available The absorption and fluorescence spectra of phenylcoumarin and cyanophenylbenzocoumarin-3-carboxylates 6a-f and 9a-e have been investigated in chloroform, acetonitrile and ethanol. The substituting groups with varying electron donating ability such as N,N-diethyl amine and morpholine at 7-position, in phenylcoumarin-3-carboxylate 6a-f exhibits fluorescence at a longer wavelength i.e. 420-460 nm in chloroform and 460-504 nm in acetonitrile. However the morpholine derivatives 6f-j did not show fluorescence in chloroform. In another series of cyanophenylbenzocoumarin-3-carboxylates 9a-e, the compound 9c exhibits fluorescence at 546 nm in ethanol and 256 nm in acetonitrile, and lower emission wavelength i.e. 356 nm in chloroform. Further the compounds 6e , 9b, 9d and 9e exhibited high quantum yield in ethanol i.e., Φ F = 0.79, 0.70, 0.80 and 0.74 respectively compare to Rhodamine B ( Φ F = 0.24 in ethanol.

  3. Identification of the protein responsible for pyruvate transport into rat liver and heart mitochondria by specific labelling with [3H]N-phenylmaleimide.

    OpenAIRE

    Thomas, A P; Halestrap, A P

    1981-01-01

    1. N-Phenylmaleimide irreversibly inhibits pyruvate transport into rat heart and liver mitochondria to a much greater extent than does N-ethylmaleimide, iodoacetate or bromopyruvate. alpha-Cyanocinnamate protects the pyruvate transporter from attack by this thiol-blocking reagent. 2. In both heart and liver mitochondria alpha-cyanocinnamate diminishes labelling by [3H]N-phenylmaleimide of a membrane protein of subunit mol.wt. 15000 on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis...

  4. Highly visible-light luminescence properties of the carboxyl-functionalized short and ultrashort MWNTs

    International Nuclear Information System (INIS)

    Luo Yongsong; Xia Xiaohong; Liang Ying; Zhang Yonggang; Ren Qinfeng; Li Jialin; Jia Zhijie; Tang Yiwen

    2007-01-01

    Luminescence of the short multiwalled carbon nanotubes (MWNTs) conjugated with carboxylic acid groups has been studied. The results show that the carboxyl-functionalized short MWNTs could emit luminescence and the emission peak appears at 500 nm with a corresponding optimal excitation wavelength centering at 310 nm. When the short MWNTs are filtered through 0.15 μm polytetrafluoroethylene (PTFE) membrane, the ultrashort MWNTs are obtained from the filtrate. An interesting feature for the ultrashort MWNTs is that the emission intensity is strengthened and the peak is slightly blue shifted to 460 nm. This result indicates that the luminescence properties of MWNTs are strongly affected by the tube length. After chemical oxidization cutting, defects and carboxylic acid groups at the tube end and/or sidewall can be produced; the more shorten of MWNTs, the better dispersion and carboxylic passivation of the nanotubes, and the more intense luminescence emissions. The broad emissions are logically attributed to the trapping of excitation energy by defect sites in the carboxyl-functionalized nanotube structure. - Graphical abstract: Luminescence of the short and ultrashort multiwalled carbon nanotubes (MWNTs) conjugated with carboxylic acid groups, which is logically attributed to the trapping of excitation energy by defect sites, has been studied

  5. Nitrile rubber and carboxylated nitrile rubber resistance to soybean biodiesel

    Directory of Open Access Journals (Sweden)

    Felipe Nunes Linhares

    2018-03-01

    Full Text Available Abstract Biodiesel has been considered a suitable substitute for petroleum diesel, but their chemical composition differs greatly. For this reason, biodiesel interacts differently than petroleum diesel with various materials, including rubbers. Therefore, the resistance of some elastomers should be thoroughly evaluated, specifically those which are commonly used in automotive industry. Nitrile rubber (NBR is widely used to produce vehicular parts that are constantly in contact with fuels. This paper aimed to assess the resistance of carboxylated nitrile rubber (XNBR with 28% of acrylonitrile content to soybean biodiesel in comparison with non-carboxylated nitrile rubber samples, with high and medium acrylonitrile content (33 and 45%. NBR with medium acrylonitrile content showed little resistance to biodiesel. However, carboxylated nitrile rubber even with low acrylonitrile content had similar performance to NBR with high acrylonitrile content.

  6. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane.

    Science.gov (United States)

    Kind, Stefanie; Jeong, Weol Kyu; Schröder, Hartwig; Wittmann, Christoph

    2010-07-01

    In the present work the Gram-positive bacterium Corynebacterium glutamicum was engineered into an efficient, tailor-made production strain for diaminopentane (cadaverine), a highly attractive building block for bio-based polyamides. The engineering comprised expression of lysine decarboxylase (ldcC) from Escherichia coli, catalyzing the conversion of lysine into diaminopentane, and systems-wide metabolic engineering of central supporting pathways. Substantially re-designing the metabolism yielded superior strains with desirable properties such as (i) the release from unwanted feedback regulation at the level of aspartokinase and pyruvate carboxylase by introducing the point mutations lysC311 and pycA458, (ii) an optimized supply of the key precursor oxaloacetate by amplifying the anaplerotic enzyme, pyruvate carboxylase, and deleting phosphoenolpyruvate carboxykinase which otherwise removes oxaloacetate, (iii) enhanced biosynthetic flux via combined amplification of aspartokinase, dihydrodipicolinate reductase, diaminopimelate dehydrogenase and diaminopimelate decarboxylase, and (iv) attenuated flux into the threonine pathway competing with production by the leaky mutation hom59 in the homoserine dehydrogenase gene. Lysine decarboxylase proved to be a bottleneck for efficient production, since its in vitro activity and in vivo flux were closely correlated. To achieve an optimal strain having only stable genomic modifications, the combination of the strong constitutive C. glutamicum tuf promoter and optimized codon usage allowed efficient genome-based ldcC expression and resulted in a high diaminopentane yield of 200 mmol mol(-1). By supplementing the medium with 1 mgL(-1) pyridoxal, the cofactor of lysine decarboxylase, the yield was increased to 300 mmol mol(-1). In the production strain obtained, lysine secretion was almost completely abolished. Metabolic analysis, however, revealed substantial formation of an as yet unknown by-product. It was identified as an

  7. Biosynthesis of quinoxaline antibiotics: Purification and characterization of the quinoxaline-2-carboxylic acid activating enzyme from Streptomyces triostinicus

    International Nuclear Information System (INIS)

    Glund, K.; Schlumbohm, W.; Bapat, M.; Keller, U.

    1990-01-01

    A quinoxaline-2-carboxylic acid activating enzyme was purified to homogeneity from triostin-producing Streptomyces triostinicus. It could also be purified from quinomycin-producing Streptomyces echinatus. Triostins and quinomycins are peptide lactones that contain quinoxaline-2-carboxylic acid as chromophoric moiety. The enzyme catalyzes the ATP-pyrophosphate exchange reaction dependent on quinoxaline-2-carboxylic acid and the formation of the corresponding adenylate. Besides quinoxaline-2-carboxylic acid, the enzyme also catalyzes the formation of adenylates from quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid. No adenylates were seen from quinoline-3-carboxylic acid, quinoline-4-carboxylic acid, pyridine-2-carboxylic acid, and 2-pyrazinecarboxylic acid. Previous work revealed that quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid became efficiently incorporated into the corresponding quinoxaline antibiotic analogues in vivo. Together with the data described here, this suggests that the enzyme is part of the quinoxaline antibiotics synthesizing enzyme system. The enzyme displays a native molecular weight of 42,000, whereas in its denatured form it is a polypeptide of Mr 52,000-53,000. It resembles in its behavior actinomycin synthetase I, the chromophore activating enzyme involved in actinomycin biosynthesis

  8. Performance during a strenuous swimming session is associated with high blood lactate: pyruvate ratio and hypoglycemia in fasted rats.

    Science.gov (United States)

    Travassos, P B; Godoy, G; De Souza, H M; Curi, R; Bazotte, R B

    2018-03-26

    The aim of this study was to investigate the effect of lactatemia elevation and glycemia reduction on strenuous swimming performance in fasted rats. Three rats were placed in a swimming tank at the same time. The first rat was removed immediately (control group) and the remaining ones were submitted to a strenuous swimming session. After the second rat was exhausted (Exh group), the third one was immediately removed from the water (Exe group). According to the period of time required for exhaustion, the rats were divided into four groups: low performance (3-7 min), low-intermediary performance (8-12 min), high-intermediary performance (13-17 min), and high performance (18-22 min). All rats were removed from the swimming tanks and immediately killed by decapitation for blood collection or anesthetized for liver perfusion experiments. Blood glucose, lactate, and pyruvate concentrations, blood lactate/pyruvate ratio, and liver lactate uptake and its conversion to glucose were evaluated. Exhaustion in low and low-intermediary performance were better associated with higher lactate/pyruvate ratio. On the other hand, exhaustion in high-intermediary and high performance was better associated with hypoglycemia. Lactate uptake and glucose production from lactate in livers from the Exe and Exh groups were maintained. We concluded that there is a time sequence in the participation of lactate/pyruvate ratio and hypoglycemia in performance during an acute strenuous swimming section in fasted rats. The liver had an important participation in preventing hyperlactatemia and hypoglycemia during swimming through lactate uptake and its conversion to glucose.

  9. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Baklanov, Viktor; Ponkratov, Yuriy [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Abdullin, Khabibulla [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan); Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Skakov, Mazhyn [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan)

    2017-04-15

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  10. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    International Nuclear Information System (INIS)

    Tazhibayeva, Irina; Baklanov, Viktor; Ponkratov, Yuriy; Abdullin, Khabibulla; Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna; Lyublinski, Igor; Vertkov, Alexey; Skakov, Mazhyn

    2017-01-01

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  11. Substituted Amides of Pyrazine-2-carboxylic acids: Synthesis and Biological Activity

    Directory of Open Access Journals (Sweden)

    Katarina Kralova

    2002-03-01

    Full Text Available Condensation of 6-chloro-, 5-tert-butyl- or 6-chloro-5-tert-butylpyrazine-2-carboxylic acid chloride with ring substituted anilines yielded a series of amides, which were tested for their in vitro antimycobacterial, antifungal and photosynthesis-inhibiting activities. The highest antituberculotic activity (72% inhibition against Mycobacterium tuberculosis and the highest lipophilicity (log P = 6.85 were shown by the 3,5-bistrifluoromethylphenyl amide of 5-tert-butyl-6-chloropyrazine-2-carboxylic acid (2o. The 3-methylphenyl amides of 6-chloro- and 5-tert-butyl-6-chloro-pyrazine-2-carboxylic acid (2d and 2f exhibited only a poor in vitro antifungal effect (MIC = 31.25-500 μmol·dm-3 against all strains tested, although the latter was the most active antialgal compound (IC50 = 0.063 mmol·dm-3. The most active inhibitor of oxygen evolution rate in spinach chloroplasts was the (3,5-bis-trifluoromethylphenylamide of 6-chloropyrazine-2-carboxylic acid (2m, IC50 = 0.026 mmol·dm-3.

  12. The progression from a lower to a higher invasive stage of bladder cancer is associated with severe alterations in glucose and pyruvate metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Vanessa R. [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Oliveira, Pedro F. [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences, University of Porto – UMIB/ICBAS/UP (Portugal); Nunes, Ana R.; Rocha, Cátia S. [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Ramalhosa, Elsa; Pereira, José A. [Mountain Research Centre (CIMO), School of Agriculture, Polytechnic Institute of Bragança (Portugal); Alves, Marco G., E-mail: alvesmarc@gmail.com [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Silva, Branca M., E-mail: bmcms@ubi.pt [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal)

    2015-07-01

    Cancer cells present a particular metabolic behavior. We hypothesized that the progression of bladder cancer could be accompanied by changes in cells glycolytic profile. We studied two human bladder cancer cells, RT4 and TCCSUP, in which the latter represents a more invasive stage. The levels of glucose, pyruvate, alanine and lactate in the extracellular media were measured by Proton Nuclear Magnetic Resonance. The protein expression levels of glucose transporters 1 (GLUT1) and 3 (GLUT3), monocarboxylate transporter 4 (MCT4), phosphofructokinase-1 (PFK1), glutamic-pyruvate transaminase (GPT) and lactate dehydrogenase (LDH) were determined. Our data showed that glucose consumption and GLUT3 levels were similar in both cell lines, but TCCSUP cells displayed lower levels of GLUT1 and PFK expression. An increase in pyruvate consumption, concordant with the higher levels of lactate and alanine production, was also detected in TCCSUP cells. Moreover, TCCSUP cells presented lower protein expression levels of GPT and LDH. These results illustrate that bladder cancer progression is associated with alterations in cells glycolytic profile, namely the switch from glucose to pyruvate consumption in the more aggressive stage. This may be useful to develop new therapies and to identify biomarkers for cancer progression. - Highlights: • Metabolic phenotype of less and high invasive bladder cancer cells was studied. • Bladder cancer progression involves alterations in cells glycolytic profile. • More invasive bladder cancer cells switch from glucose to pyruvate consumption. • Our results may help to identify metabolic biomarkers of bladder cancer progression.

  13. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    Energy Technology Data Exchange (ETDEWEB)

    Poole, Loree Joanne [Univ. of California, Berkeley, CA (United States); King, C. Judson [Univ. of California, Berkeley, CA (United States)

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO2 and H2S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The

  14. Enhancement of carboxylic acid degradation with sulfate radical generated by persulfate activation.

    Science.gov (United States)

    Criquet, J; Nebout, P; Karpel Vel Leitner, N

    2010-01-01

    The aim of this work was to investigate the generation of sulfate radical for the removal of two carboxylic acids in aqueous solution: acetic and citric acids. From photochemical and radiolytic processes, kinetics of the degradation of these two carboxylic acids was studied as a function of the pH of the solution. It was shown that the maximum of acetic acid degradation occurred at pH 5. Above this pH, competitive reactions with the carbon mineralized inhibit the reaction of with the solute. In the case of citric acid, pH has only a little effect on the kinetic of citric acid degradation. The determination of mineralization yields shows several differences depending on carboxylic acids and pH. The degradation of both carboxylic acids was also studied in the radiolysis process whether with or without persulfate addition. A comparison of the processes of sulfate radical production is presented.

  15. Enrichment of Nanodiamond Surfaces with Carboxyl Groups for Doxorubicin Loading and Release

    Science.gov (United States)

    Astuti, Y.; Saputra, F. D.; Wuning, S.; Arnelli; Bhaduri, G.

    2017-02-01

    In their pristine state, nanodiamond crystals produced via detonation techniques containing several functional groups present on the surface including amine, amide, alcohol, carbonyl, and carboxyl. These functional groups facilitate nanodiamond to interact drugs so as to nanodiamond is potential for medical application such as drug delivery. Even though research on t he use of nanodiamond for this application has been conducted widely, research on the effect of enrichment of nanodiamond surface with carboxyl functional groups for drug loading and release has not been explored extensively. Therefore, in this paper, the effect of carboxyl-terminated nanodiamond (ND-COOH) on drug loading and release will be presented. The enrichment of nanodiamond with carboxyl groups was undertaken by treating nanodiamond with sulphuric acid and nitric acid. The results show that the doxorubicin (DOX) loading and release efficiencies of ND pristine are higher than that of ND-COOH.

  16. Expression of Aeromonas caviae ST pyruvate dehydrogenase complex components mediate tellurite resistance in Escherichia coli

    International Nuclear Information System (INIS)

    Castro, Miguel E.; Molina, Roberto C.; Diaz, Waldo A.; Pradenas, Gonzalo A.; Vasquez, Claudio C.

    2009-01-01

    Potassium tellurite (K 2 TeO 3 ) is harmful to most organisms and specific mechanisms explaining its toxicity are not well known to date. We previously reported that the lpdA gene product of the tellurite-resistant environmental isolate Aeromonas caviae ST is involved in the reduction of tellurite to elemental tellurium. In this work, we show that expression of A. caviae ST aceE, aceF, and lpdA genes, encoding pyruvate dehydrogenase, dihydrolipoamide transacetylase, and dihydrolipoamide dehydrogenase, respectively, results in tellurite resistance and decreased levels of tellurite-induced superoxide in Escherichia coli. In addition to oxidative damage resulting from tellurite exposure, a metabolic disorder would be simultaneously established in which the pyruvate dehydrogenase complex would represent an intracellular tellurite target. These results allow us to widen our vision regarding the molecular mechanisms involved in bacterial tellurite resistance by correlating tellurite toxicity and key enzymes of aerobic metabolism.

  17. Comparative kinetic studies of Mn2+-activated and fructose-1,6-P-modified Mg2+-activated pyruvate kinase from Concholepas concholepas.

    Science.gov (United States)

    Carvajal, N; González, R; Morán, A; Oyarce, A M

    1985-01-01

    Initial velocity and product inhibition studies of Mn2+-activated and FDP-modified Mg2+-activated pyruvate kinase from Concholepas concholepas, were performed. Evidence is presented to show that the Mn2+-enzyme catalyzes an ordered sequential mechanism, with ADP being the first substrate and pyruvate the last product. The results presented are consistent with a random combination of reactants with the FDP-modified Mg2+-activated enzyme and the formation of the dead-end complexes enzyme ADP-ATP and enzyme-PEP-ATP.

  18. Synthesis and study of dioxouranium (6) carboxylate complexes with ammonia

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Mazo, G.N.; Dunaev, K.M.; Santalova, N.A.

    1980-01-01

    Heterophase synthesis of a series of ammonia complexes of dioxouranium (6) carboxylates namely, UO 2 (HCOO) 2 x2NH 3 , UO 2 (CH 3 COO) 2 x2NH 3 , UO 2 (CH 3 CH 2 OO) 2 x2NH 3 is presented and their properties and structure are studied. Comparison of infrared spectra of dioxouranium (6) carboxylates and their ammonia complexes has shown that NH 3 molecule introduction changes in principle the coordination of azidoligand turning out bridge carboxylate groups into island ones and weakening their bonds with central cations. In spectra of all diammiacates the shift of bands of deformational and valent oscillations of N-H bond in comparison with spectrum of pure ammonia tells about NH 3 coordination with metal. Complexes thermolysis has been studied under iso- and polythermal conditions. General diagram of thermal decay is presented [ru

  19. Analytical study of zirconium and hafnium α-hydroxy carboxylates

    International Nuclear Information System (INIS)

    Terra, V.R.

    1991-01-01

    The analytical study of zirconium and hafnium α-hydroxy carboxylates was described. For this purpose dl-mandelic, dl-p-bromo mandelic, dl-2-naphthyl glycolic, and benzilic acids were prepared. These were used in conjunction with glycolic, dl-lactic, dl-2-hydroxy isovaleric, dl-2-hydroxy hexanoic, and dl-2-hydroxy dodecanoic acids in order to synthesize the zirconium(IV) and hafnium(IV) tetrakis(α-hydroxy carboxylates). The compounds were characterized by melting point determination, infrared spectroscopy, thermogravimetric analysis, calcination to oxides and X-ray diffractometry by the powder method. (C.G.C)

  20. Flux control analysis of mitochondrial oxidative phosphorylation in rat skeletal muscle: pyruvate and palmitoyl-carnitine as substrates give different control patterns

    DEFF Research Database (Denmark)

    Fritzen, Anette J; Grunnet, Niels; Quistorff, Bjørn

    2007-01-01

    was associated with the ADP-generating system, i.e., 0.58 +/- 0.05 with pyruvate, but significantly lower, 0.40 +/- 0.05, with palmitoyl-carnitine as substrate. The flux control coefficients of complex I, III and IV, the ATP synthase, the ATP/ADP carrier and the P(i) carrier were 0.070 +/- 0.03, 0.083 +/- 0.......04, 0.054 +/- 0.01, 0.11 +/- 0.03, 0.090 +/- 0.03 and 0.026 +/- 0.01, respectively, with pyruvate as substrate. With palmitoyl-carnitine all control coefficients were significantly different, except for the P(i) carrier (i.e., 0.024 +/- 0.001, 0.036 +/- 0.01, 0.052 +/- 0.02, 0.020 +/- 0.002, 0.034 +/- 0.......02 and 0.012 +/- 0.002, respectively), probably caused by the shift from NADH to FADH(2) oxidation. The sum of flux control coefficients was not significantly different from unity with pyruvate, while only 0.58 with palmitoyl-carnitine, indicating significant control contributions from the enzymes involved...

  1. Generation of a High Number of Healthy Erythroid Cells from Gene-Edited Pyruvate Kinase Deficiency Patient-Specific Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Zita Garate

    2015-12-01

    Full Text Available Pyruvate kinase deficiency (PKD is a rare erythroid metabolic disease caused by mutations in the PKLR gene. Erythrocytes from PKD patients show an energetic imbalance causing chronic non-spherocytic hemolytic anemia, as pyruvate kinase defects impair ATP production in erythrocytes. We generated PKD induced pluripotent stem cells (PKDiPSCs from peripheral blood mononuclear cells (PB-MNCs of PKD patients by non-integrative Sendai viral vectors. PKDiPSCs were gene edited to integrate a partial codon-optimized R-type pyruvate kinase cDNA in the second intron of the PKLR gene by TALEN-mediated homologous recombination (HR. Notably, we found allele specificity of HR led by the presence of a single-nucleotide polymorphism. High numbers of erythroid cells derived from gene-edited PKDiPSCs showed correction of the energetic imbalance, providing an approach to correct metabolic erythroid diseases and demonstrating the practicality of this approach to generate the large cell numbers required for comprehensive biochemical and metabolic erythroid analyses.

  2. Thermal stability of carboxylic acid functionality in coal; Sekitanchu ni sonzaisuru karubokishiruki no netsubunkai kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Y.; Aida, T. [Kinki University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    Carboxyl in coal was focused in discussing its pyrolytic behavior while tracking change of its absolute amount relative to the heating temperatures. A total of four kinds of coals, consisting of two kinds brown coals, sub-bituminous coal and bituminous coal were used. Change in the absolute amount of carboxyl due to heating varies with coalification degree. Decomposition starts in the bituminous coal from around 300{degree}C, and is rapidly accelerated when 400{degree}C is exceeded. Carboxyls in brown coals exist two to three times as much as those in bituminous and sub-bituminous coals, of which 40% is decomposed at a temperature as low as about 300{degree}C. Their pyrolytic behavior at temperatures higher than 400{degree}C resembles that of the bituminous coal. Carboxyls consist of those easy to decompose and difficult to decompose. Aromatic and aliphatic carboxylic acids with simple structure are stable at temperatures lower than 300{degree}C, and decompose abruptly from about 400{degree}C, hence their behavior resembles that of carboxyls in bituminous and sub-bituminous coals. Structure of low-temperature decomposing carboxyls in brown coals is not known, but it is assumed that humic acid originated from natural materials remains in the structure. 4 refs., 3 figs., 1 tab.

  3. Investigating tumor perfusion and metabolism using multiple hyperpolarized 13C compounds: HP001, pyruvate and urea

    DEFF Research Database (Denmark)

    von Morze, Cornelius; Larson, Peder E.Z.; Hu, Simon

    2012-01-01

    The metabolically inactive hyperpolarized agents HP001 (bis-1,1-(hydroxymethyl)-[1-13C]cyclopropane-d8) and urea enable a new type of perfusion magnetic resonance imaging based on a direct signal source that is background-free. The addition of perfusion information to metabolic information obtained...... (T1=95 s ex vivo, 32 s in vivo at 3 T) using a pulse sequence with balanced steady-state free precession and ramped flip angle over time for efficient utilization of the hyperpolarized magnetization and three-dimensional echo-planar spectroscopic imaging of urea copolarized with [1-13C...... of separate dynamic HP001 imaging and copolarized pyruvate/urea imaging were compared. A strong and significant correlation (R=0.73, P=.02) detected between the urea and HP001 data confirmed the value of copolarizing urea with pyruvate for simultaneous assessment of perfusion and metabolism....

  4. Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain

    DEFF Research Database (Denmark)

    Zhang, Yiming; Liu, Guodong; Engqvist, Martin K. M.

    2015-01-01

    Background: A Saccharomyces cerevisiae strain carrying deletions in all three pyruvate decarboxylase (PDC) genes (also called Pdc negative yeast) represents a non-ethanol producing platform strain for the production of pyruvate derived biochemicals. However, it cannot grow on glucose as the sole...... DNA sequencing. Among these genetic changes, 4 genes were found to carry point mutations in at least two of the evolved strains: MTH1 encoding a negative regulator of the glucose-sensing signal transduction pathway, HXT2 encoding a hexose transporter, CIT1 encoding a mitochondrial citrate synthase...... further increased the maximum specific growth rate to 0.069 h-1. Conclusions: In this study, possible evolving mechanisms of Pdc negative strains on glucose were investigated by genome sequencing and reverse engineering. The non-synonymous mutations in MTH1 alleviated the glucose repression by repressing...

  5. First principles study of edge carboxylated graphene quantum dots

    Science.gov (United States)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-05-01

    The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.

  6. A case of pyruvate dehydrogenase deficiency with low density areas in white matter noticed by CT scan

    International Nuclear Information System (INIS)

    Kimura, Akiko; Kyoya, Seizo; Matsushima, Akihiro; Irimichi, Hideki; Koike, Yoshiko.

    1985-01-01

    The patient was a 4-month-old boy, the first child of healthy, non-consanguineous patient. He was mildly asphyxiated at birth and developed severe convulsions at two days of age. At 4 months of age, he was referred to us because of infantile spasms and motor retardation. The EEG showed hypsarhythmia, ACTH and anticonvulsants were started, but his seizures were not controlled completely. At 8 months of age, the CT scan demonstrated a cerebral atrophy with enlarged ventricles and a diffuse low density of cerebral white matter, and lactic acidosis was first noticed. The glucose, glucagon, fructose, and alanine tolerance tests revealed almost normal responses in blood glucose levels and elevation of lactate levels above the initial value. Enzyme studies revealed a severe deficiency of pyruvate dehydrogenase complex and pyruvate dehydrogenase (E 1 ), and a normal activity of pyruvate carboxylase in liver obtained by biopsy. In biopsied muscle, mitochondria appeared normal. Treatment with thiamine, lipoic acid and anticonvulsants was not effective. The clinical picture of PDC deficiency has been correlated with the amount of the residual activity, and this case confirmed to the ''severe'' category. Several pathologic entities may be associated with PDHC deficiency, and CT findings in our case demonstrated the demyelinating condition. The precise relationship between the defect and the pathogenesis remains to be elucidated. (author)

  7. Crystallization and preliminary X-ray analysis of dihydrodipicolinate synthase from Clostridium botulinum in the presence of its substrate pyruvate

    International Nuclear Information System (INIS)

    Atkinson, Sarah C.; Dobson, Renwick C. J.; Newman, Janet M.; Gorman, Michael A.; Dogovski, Con; Parker, Michael W.; Perugini, Matthew A.

    2009-01-01

    Dihydrodipicolinate synthase (DHDPS) catalyzes an important step in lysine biosynthesis. Here, the crystallization and preliminary diffraction analysis to 1.2 Å resolution of DHDPS from C. botulinum in the presence of its substrate pyruvate is reported. In this paper, the crystallization and preliminary X-ray diffraction analysis to near-atomic resolution of DHDPS from Clostridium botulinum crystallized in the presence of its substrate pyruvate are presented. The enzyme crystallized in a number of forms using a variety of PEG precipitants, with the best crystal diffracting to 1.2 Å resolution and belonging to space group C2, in contrast to the unbound form, which had trigonal symmetry. The unit-cell parameters were a = 143.4, b = 54.8, c = 94.3 Å, β = 126.3°. The crystal volume per protein weight (V M ) was 2.3 Å 3 Da −1 (based on the presence of two monomers in the asymmetric unit), with an estimated solvent content of 46%. The high-resolution structure of the pyruvate-bound form of C. botulinum DHDPS will provide insight into the function and stability of this essential bacterial enzyme

  8. Probing early tumor response to radiation therapy using hyperpolarized [1-¹³C]pyruvate in MDA-MB-231 xenografts.

    Directory of Open Access Journals (Sweden)

    Albert P Chen

    Full Text Available Following radiation therapy (RT, tumor morphology may remain unchanged for days and sometimes weeks, rendering anatomical imaging methods inadequate for early detection of therapeutic response. Changes in the hyperpolarized [1-¹³C]lactate signals observed in vivo following injection of pre-polarized [1-¹³C]pyruvate has recently been shown to be a marker for tumor progression or early treatment response. In this study, the feasibility of using ¹³C metabolic imaging with [1-¹³C]pyruvate to detect early radiation treatment response in a breast cancer xenograft model was demonstrated in vivo and in vitro. Significant decreases in hyperpolarized [1-¹³C]lactate relative to [1-¹³C]pyruvate were observed in MDA-MB-231 tumors 96 hrs following a single dose of ionizing radiation. Histopathologic data from the treated tumors showed higher cellular apoptosis and senescence; and changes in the expression of membrane monocarboxylate transporters and lactate dehydrogenase B were also observed. Hyperpolarized ¹³C metabolic imaging may be a promising new tool to develop novel and adaptive therapeutic regimens for patients undergoing RT.

  9. Magnetic resonance and fluorescence studies on pyruvate dehydrogenase complexes and their small molecular weight constituents

    NARCIS (Netherlands)

    Grande, H.J.

    1976-01-01

    The articles presented in this thesis do not describe at first glance one well-defined subject. They are, however, in fact connected by one central theme: the study of large enzyme aggregates by molecular physical methods. Chosen was the pyruvate dehydrogenase complex (PDC) because of its

  10. Enzyme mechanisms for pyruvate-to-lactate flux attenuation: a study of Sherpas, Quechuas, and hummingbirds.

    Science.gov (United States)

    Hochachka, P W; Stanley, C; McKenzie, D C; Villena, A; Monge, C

    1992-10-01

    During incremental exercise to fatigue under hypobaric hypoxia, Andean Quechua natives form and accumulate less plasma lactate than do lowlanders under similar conditions. This phenomenon of low lactate accumulation despite hypobaric hypoxia, first discovered some half century ago, is known in Quechuas to be largely unaffected by acute exposure to hypoxia or by acclimatization to sea level conditions. Earlier Nuclear Magnetic Resonance (NMR) spectroscopy and metabolic biochemistry studies suggest that closer coupling of energy demand and energy supply in Quechuas allows given changes in work rate with relatively modest changes in muscle adenylate and phosphagen concentrations, thus tempering the activation of glycolytic flux to pyruvate--a coarse control mechanism operating at the level of overall pathway flux. Later studies of enzyme activities in skeletal muscles of Quechuas and of Sherpas have identified a finely-tuned control mechanism which by adaptive modifications of a few key enzymes apparently serves to specifically attenuate pyruvate flux to lactate.

  11. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related

    Energy Technology Data Exchange (ETDEWEB)

    Berk, P.D.; Potter, B.J.; Sorrentino, D.; Zhou, S.L.; Isola, L.M.; Stump, D.; Kiang, C.L.; Thung, S. (Mount Sinai School of Medicine, New York, NY (USA)); Wada, H.; Horio, Y. (Univ. of Osaka (Japan))

    1990-05-01

    The hepatic plasma membrane fatty acid-binding protein (h-FABP{sub PM}) and the mitochondrial isoenzyme of glutamic-oxaloacetic transaminase (mGOT) of rat liver have similar amino acid compositions and identical amino acid sequences for residues 3-24. Both proteins migrate with an apparent molecular mass of 43 kDa on SDS/polyacrylamide gel electrophoresis, have a similar pattern of basic charge isomers on isoelectric focusing, are eluted similarly from four different high-performance liquid chromatographic columns, have absorption maxima at 435 nm under acid conditions and 354 nm at pH 8.3, and bind oleate. Sinusoidally enriched liver plasma membranes and purified h-FABP{sub PM} have GOT enzymatic activity. Monospecific rabbit antiserum against h-FABP{sub PM} reacts on Western blotting with mGOT, and vice versa. Antisera against both proteins produce plasma membrane immunofluorescence in rat hepatocytes and selectively inhibit the hepatocellular uptake of ({sup 3}H)oleate but not that of ({sup 35}S)sulfobromophthalein or ({sup 14}C)taurocholate. The inhibition of oleate uptake produced by anti-h-FABP{sub PM} can be eliminated by preincubation of the antiserum with mGOT; similarly, the plasma membrane immunofluorescence produced by either antiserum can be eliminated by preincubation with the other antigen. These data suggest that h-FABP{sub PM} and mGOT are closely related.

  12. The Crystal Structure of Toxoplasma gondii Pyruvate Kinase 1

    Energy Technology Data Exchange (ETDEWEB)

    Bakszt, R.; Wernimont, A; Allali-Hassani, A; Mok, M; Hills, T; Hui, R; Pizarro, J

    2010-01-01

    Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population. We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers. We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two {alpha}-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  13. The crystal structure of Toxoplasma gondii pyruvate kinase 1.

    Directory of Open Access Journals (Sweden)

    Rebecca Bakszt

    2010-09-01

    Full Text Available Pyruvate kinase (PK, which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population.We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers.We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two α-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  14. The crystal structure of Toxoplasma gondii pyruvate kinase 1.

    Science.gov (United States)

    Bakszt, Rebecca; Wernimont, Amy; Allali-Hassani, Abdellah; Mok, Man Wai; Hills, Tanya; Hui, Raymond; Pizarro, Juan C

    2010-09-14

    Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population. We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers. We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two α-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  15. Properties of the Carboxylate ion exchange resins; Karboxylatjonbytarmassans egenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Bert; Dario, Maarten [Oerebro Univ. (Sweden); Boren, Hans [Linkoepings Univ. (Sweden); Torstenfelt, Boerje [Swedpower, Stockholm (Sweden); Puigdomenech, Ignasi; Johansson, Claes [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2002-09-01

    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  16. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells

    Science.gov (United States)

    Cheng, Tzuling; Sudderth, Jessica; Yang, Chendong; Mullen, Andrew R.; Jin, Eunsook S.; Matés, José M.; DeBerardinis, Ralph J.

    2011-01-01

    Tumor cells require a constant supply of macromolecular precursors, and interrupting this supply has been proposed as a therapeutic strategy in cancer. Precursors for lipids, nucleic acids, and proteins are generated in the tricarboxylic acid (TCA) cycle and removed from the mitochondria to participate in biosynthetic reactions. Refilling the pool of precursor molecules (anaplerosis) is therefore crucial to maintain cell growth. Many tumor cells use glutamine to feed anaplerosis. Here we studied how “glutamine-addicted” cells react to interruptions of glutamine metabolism. Silencing of glutaminase (GLS), which catalyzes the first step in glutamine-dependent anaplerosis, suppressed but did not eliminate the growth of glioblastoma cells in culture and in vivo. Profiling metabolic fluxes in GLS-suppressed cells revealed induction of a compensatory anaplerotic mechanism catalyzed by pyruvate carboxylase (PC), allowing the cells to use glucose-derived pyruvate rather than glutamine for anaplerosis. Although PC was dispensable when glutamine was available, forcing cells to adapt to low-glutamine conditions rendered them absolutely dependent on PC for growth. Furthermore, in other cell lines, measuring PC activity in nutrient-replete conditions predicted dependence on specific anaplerotic enzymes. Cells with high PC activity were resistant to GLS silencing and did not require glutamine for survival or growth, but displayed suppressed growth when PC was silenced. Thus, PC-mediated, glucose-dependent anaplerosis allows cells to achieve glutamine independence. Induction of PC during chronic suppression of glutamine metabolism may prove to be a mechanism of resistance to therapies targeting glutaminolysis. PMID:21555572

  17. Microbial synthesis of a branched-chain ester platform from organic waste carboxylates

    Directory of Open Access Journals (Sweden)

    Donovan S. Layton

    2016-12-01

    Full Text Available Processing of lignocellulosic biomass or organic wastes produces a plethora of chemicals such as short, linear carboxylic acids, known as carboxylates, derived from anaerobic digestion. While these carboxylates have low values and are inhibitory to microbes during fermentation, they can be biologically upgraded to high-value products. In this study, we expanded our general framework for biological upgrading of carboxylates to branched-chain esters by using three highly active alcohol acyltransferases (AATs for alcohol and acyl CoA condensation and modulating the alcohol moiety from ethanol to isobutanol in the modular chassis cell. With this framework, we demonstrated the production of an ester library comprised of 16 out of all 18 potential esters, including acetate, propionate, butanoate, pentanoate, and hexanoate esters, from the 5 linear, saturated C2-C6 carboxylic acids. Among these esters, 5 new branched-chain esters, including isobutyl acetate, isobutyl propionate, isobutyl butyrate, isobutyl pentanoate, and isobutyl hexanoate were synthesized in vivo. During 24 h in situ fermentation and extraction, one of the engineered strains, EcDL208 harnessing the SAAT of Fragaria ananassa produced ~63 mg/L of a mixture of butyl and isobutyl butyrates from glucose and butyrate co-fermentation and ~127 mg/L of a mixture of isobutyl and pentyl pentanoates from glucose and pentanoate co-fermentation, with high specificity. These butyrate and pentanoate esters are potential drop-in liquid fuels. This study provides better understanding of functional roles of AATs for microbial biosynthesis of branched-chain esters and expands the potential use of these esters as drop-in biofuels beyond their conventional flavor, fragrance, and solvent applications. Keywords: Carboxylate platform, Ester platform, Branched-chain ester, Modular cell, Biological upgrading, Organic waste, Lignocellulosic biomass, Isobutyl esters

  18. Application of mitochondrial pyruvate carrier blocker UK5099 creates metabolic reprogram and greater stem-like properties in LnCap prostate cancer cells in vitro

    OpenAIRE

    Zhong, Yali; Li, Xiaoran; Yu, Dandan; Li, Xiaoli; Li, Yaqing; Long, Yuan; Yuan, Yuan; Ji, Zhenyu; Zhang, Mingzhi; Wen, Jian-Guo; Nesland, Jahn M.; Suo, Zhenhe

    2015-01-01

    Aerobic glycolysis is one of the important hallmarks of cancer cells and eukaryotic cells. In this study, we have investigated the relationship between blocking mitochondrial pyruvate carrier (MPC) with UK5099 and the metabolic alteration as well as stemness phenotype of prostatic cancer cells. It was found that blocking pyruvate transportation into mitochondrial attenuated mitochondrial oxidative phosphorylation (OXPHOS) and increased glycolysis. The UK5099 treated cells showed significantly...

  19. Preparations and applications in UV curing coatings of epoxy acrylates containing carboxyl

    International Nuclear Information System (INIS)

    Wu Yu Min

    1999-01-01

    This paper introduces preparations of epoxy acrylates containing carboxyl through the reactions of epoxy acrylates with butanedioic anhydride, pentanedioic anhydride, cis-butenedioic anhydride, phthalic anhydride, tetrabromophthalic anhydride and -tetrahydrophthalic anhydride. These epoxy acrylates containing carboxyl have been applied to UV-curing coatings and their effects on properties of UV-curing coatings have been studied

  20. Comparison the effectiveness of pyruvic acid 50% and salicylic acid 30% in the treatment of acne.

    Science.gov (United States)

    Jaffary, Fariba; Faghihi, Gita; Saraeian, Sara; Hosseini, Sayed Mohsen

    2016-01-01

    Acne vulgaris is a chronic inflammatory disease of the pilosebaceous follicles and one of the most common skin diseases. The peeling method has been recently found to be effective for acne treatment. This study aimed to compare the efficacy of pyruvic acid 50% and salicylic acid 30% peeling in the treatment of mild to moderate acne. In a prospective single-blinded clinical trial, 86 patients with acne were randomly assigned into two groups. In both groups, the routine treatment of acne (topical solution of erythromycin 4%, triclorocarban soap, and sunscreen) were used twice a day for 8 weeks. In addition, salicylic acid 30% for the control group and pyruvic acid 50% for the case group were used. In both groups, acne severity index (ASI) was calculated before and at week 2, 4, 6, and 8 of the treatment. Patient satisfaction was assessed at the end of the treatment. Side effects were recorded using a checklist. In both groups, the reduction in the number of comedones, papules, and ASI were statistically significant ( P < 0.001) in the course of treatment. However, it was not significant regarding the number of pustules ( P = 0.09). None of the number of comedone, papules, pustules, and ASI was statistically different between study groups. Both treatment groups had similar side effects except for scaling in the fifth session, which was significantly lower in salicylic acid - treated patients ( P = 0.015). Both pyruvic acid 50% and salicylic acid 30% are effective in the improvement of mild to moderate acne with no significant difference in efficacy and side effects.

  1. Chemical protection against radiation effects on Serum transaminase and the levels of glutamic and pyruvic acids following gamma irradiation of rats

    International Nuclear Information System (INIS)

    Mahdy, A.M.; EL-Kashef, H.S.

    1988-01-01

    The present study been carried out to evaluate the radioprotective efficiency of urea and vitamin E for protecting certain enzymatic systems from deleterious radiation effects. The activities of serum transaminase; aspartate aminotransferase (A S T) and alanine aminotransferase (A L T); as well as their relative substrates; glutamic and pyruvic acid levels; were selected for this study. The results indicated that whole body gamma irradiation at the dose of 7 Gy caused an evident elevation in the activities of both A S T and A L T and in the level of pyruvic acid at the experiment period (first,third,seventh and tenth days post irradiation). On the other hand the free glutamic acid level decreased at all post irradiation days. The variation in both enzymatic activities, pyruvic and glutamic acid levels became less pronounced in rats treated with either urea or vitamin E as chemical radioprotectors before whole body gamma irradiation. The results showed that the two agents are good radioprotectors, with respect to these parameters under investigation

  2. Toxicity of Select Organic Acids to the Slightly Thermophilic Acidophile Acidithiobaccillus Caldus

    Energy Technology Data Exchange (ETDEWEB)

    John E Aston; William A Apel; Brady D Lee; Brent M Peyton

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 µM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 µM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.

  3. Vitamin K-dependent carboxylation of pulmonary surfactant-associated proteins

    International Nuclear Information System (INIS)

    Rannels, S.R.; Gallaher, K.J.; Wallin, R.; Rannels, D.E.

    1987-01-01

    Rat type II pneumocytes expressed vitamin K-dependent carboxylase activity that incorporated 14 CO 2 into microsomal protein precursors of molecular weights similar to those of surfactant-associated proteins (SAP). Compared to carboxylated precursor proteins present in the liver, these molecules appeared to be unique to the lung. Antibodies raised against purified rat surfactant reacted with SAP resolved by NaDodSO 4 /PAGE and with surfactant-containing lamellar bodies in type II pneumocyte cytoplasm. NaDodSO 4 /PAGE of microsomal proteins, after carboxylase-catalyzed incorporation of 14 CO 2 , demonstrated radiolabeled, immunoreactive products identical to SAP. The presence of γ-carboxyglutamic acid in these proteins was confirmed by HPLC analysis of SAP hydrolysates. Furthermore, lung carboxylase activity and SAP matured over similar time courses during fetal lung development. These results show that SAP are carboxylated by type II cells via a vitamin K-dependent pathway analogous to that for hepatic carboxylation of clotting factors. Further analogy to the clotting system suggest that γ-carboxyglutamic acid residues in SAP polypeptides play a role in Ca 2+ binding and thus in the known requirements for both cation and SAP in the physiological function of pulmonary surfactant

  4. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    International Nuclear Information System (INIS)

    Bahrami, Zohreh; Badiei, Alireza; Ziarani, Ghodsi Mohammadi

    2015-01-01

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N 2 adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples

  5. omega-Amino acid:pyruvate transaminase from Alcaligenes denitrificans Y2k-2: a new catalyst for kinetic resolution of beta-amino acids and amines.

    Science.gov (United States)

    Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee

    2004-04-01

    Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed omega-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic beta-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for L-beta-amino-n-butyric acid (L-beta-ABA). The enzyme converts various beta-amino acids and amines to the corresponding beta-keto acids and ketones by using pyruvate as an amine acceptor. The apparent K(m) and V(max) for L-beta-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM L-beta-ABA, the apparent K(m) and V(max) for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM D,L-beta-ABA, producing optically pure D-beta-ABA (99% enantiomeric excess) with 53% conversion.

  6. ω-Amino Acid:Pyruvate Transaminase from Alcaligenes denitrificans Y2k-2: a New Catalyst for Kinetic Resolution of β-Amino Acids and Amines

    Science.gov (United States)

    Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee

    2004-01-01

    Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed ω-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic β-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for l-β-amino-n-butyric acid (l-β-ABA). The enzyme converts various β-amino acids and amines to the corresponding β-keto acids and ketones by using pyruvate as an amine acceptor. The apparent Km and Vmax for l-β-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM l-β-ABA, the apparent Km and Vmax for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM d,l-β-ABA, producing optically pure d-β-ABA (99% enantiomeric excess) with 53% conversion. PMID:15066855

  7. The E1 beta-subunit of pyruvate dehydrogenase is surface-expressed in Lactobacillus plantarum and binds fibronectin.

    Science.gov (United States)

    Vastano, Valeria; Salzillo, Marzia; Siciliano, Rosa A; Muscariello, Lidia; Sacco, Margherita; Marasco, Rosangela

    2014-01-01

    Lactobacillus plantarum is among the species with a probiotic activity. Adhesion of probiotic bacteria to host tissues is an important principle for strain selection, because it represents a crucial step in the colonization process of either pathogens or commensals. Most bacterial adhesins are proteins, and a major target for them is fibronectin, an extracellular matrix glycoprotein. In this study we demonstrate that PDHB, a component of the pyruvate dehydrogenase complex, is a factor contributing to fibronectin-binding in L. plantarum LM3. By means of fibronectin overlay immunoblotting assay, we identified a L. plantarum LM3 surface protein with apparent molecular mass of 35 kDa. Mass spectrometric analysis shows that this protein is the pyruvate dehydrogenase E1 beta-subunit (PDHB). The corresponding pdhB gene is located in a 4-gene cluster encoding pyruvate dehydrogenase. In LM3-B1, carrying a null mutation in pdhB, the 35 kDa adhesin was not anymore detectable by immunoblotting assay. Nevertheless, the pdhB null mutation did not abolish pdhA, pdhC, and pdhD transcription in LM3-B1. By adhesion assays, we show that LM3-B1 cells bind to immobilized fibronectin less efficiently than wild type cells. Moreover, we show that pdhB expression is negatively regulated by the CcpA protein and is induced by bile. Copyright © 2013. Published by Elsevier GmbH.

  8. Coordination of manganous ion at the active site of pyruvate, phosphate dikinase: the complex of oxalate with the phosphorylated enzyme

    International Nuclear Information System (INIS)

    Kofron, J.L.; Ash, D.E.; Reed, G.H.

    1988-01-01

    Electron paramagnetic resonance spectroscopy has been used to investigate the structure of the complex of manganous ion with the phosphorylated form of pyruvate, phosphate dikinase (E/sub p/) and the inhibitor oxalate. Oxalate, an analogue of the enolate of pyruvate, is competitive with respect to pyruvate in binding to the phosphorylated form of the enzyme. Superhyperfine coupling between the unpaired electrons of Mn(I) and ligands specifically labeled with 17 O has been used to identify oxygen ligands to Mn(II) in the complex with oxalate and the phosphorylated form of the enzyme. Oxalate binds at the active site as a bidentate chelate with Mn(II). An oxygen from the 3'-N-phosphohistidyl residue of the protein is in the coordination sphere of Mn(II), and at least two water molecules are also bound to Mn(II) in the complex. Oxalate also binds directly to Mn(II) in a complex with nonphosphorylated enzyme. The structure for the E/sub p/-Mn(II)-oxalate complex implies that simultaneous coordination of a phospho group and of the attacking nucleophile to the divalent cation is likely an important factor in catalysis of this phospho-transfer reaction

  9. Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform.

    Science.gov (United States)

    Agler, Matthew T; Wrenn, Brian A; Zinder, Stephen H; Angenent, Largus T

    2011-02-01

    Our societies generate increasing volumes of organic wastes. Considering that we also need alternatives to oil, an opportunity exists to extract liquid fuels or even industrial solvents from these abundant wastes. Anaerobic undefined mixed cultures can handle the complexity and variability of organic wastes, which produces carboxylates that can be efficiently converted to useful bioproducts. However, to date, barriers, such as inefficient liquid product separation and persistence of methanogens, have prevented the production of bioproducts other than methane. Here, we discuss combinations of biological and chemical pathways that comprise the 'carboxylate platform', which is used to convert waste to bioproducts. To develop the carboxylate platform into an important system within biorefineries, we must understand the kinetic and thermodynamic possibilities of anaerobic pathways, understand the ecological principles underlying pathway alternatives, and develop superior separation technologies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Optimized methods to measure acetoacetate, 3-hydroxybutyrate, glycerol, alanine, pyruvate, lactate and glucose in human blood using a centrifugal analyser with a fluorimetric attachment

    OpenAIRE

    Stappenbeck, R.; Hodson, A. W.; Skillen, A. W.; Agius, L.; Alberti, K. G. M. M.

    1990-01-01

    Optimized methods are described for the analysis of glucose, lactate, pyruvate, alanine, glycerol, D-3-hydroxybutyrate and acetoacetate in perchloric acid extracts of human blood using the Cobas Bio centrifugal analyser. Glucose and lactate are measured using the photometric mode and other metabolites using the fluorimetric mode. The intra-assay coefficients of variation ranged from 0.7 to 4.1%, except with very low levels of pyruvate and acetoacetate where the coefficients of variation were ...

  11. Intraperitoneal lactate/pyruvate ratio and the level of glucose and glycerol concentration differ between patients surgically treated for upper and lower perforations of the gastrointestinal tract

    DEFF Research Database (Denmark)

    Sabroe, Jonas E; Axelsen, Anne R; Ellebæk, Mark B

    2017-01-01

    collected every 4th hour for up to 7 postoperative days. Samples were analysed for concentrations of glucose, lactate, pyruvate and glycerol. RESULTS: Microdialysis results showed that patients with upper gastrointestinal tract lesions had significantly higher levels of postoperative intraperitoneal glucose...... and glycerol concentrations, as well as lower lactate/pyruvate ratios and lactate/glucose ratios. In the group with perforation of the lower gastrointestinal tract, those patients with a complicated course showed lower levels of postoperative intraperitoneal glucose concentration and glycerol concentration...... and higher lactate/pyruvate ratios and lactate/glucose ratios than those patients with an uncomplicated course. CONCLUSION: Patients with upper and lower gastrointestinal tract lesions showed differences in postoperative biomarker levels. A difference was also seen between patients with complicated...

  12. Modeling non-linear kinetics of hyperpolarized [1-(13)C] pyruvate in the crystalloid-perfused rat heart

    NARCIS (Netherlands)

    Mariotti, E.; Orton, M. R.; Eerbeek, O.; Ashruf, J. F.; Zuurbier, C. J.; Southworth, R.; Eykyn, T. R.

    2016-01-01

    Hyperpolarized (13)C MR measurements have the potential to display non-linear kinetics. We have developed an approach to describe possible non-first-order kinetics of hyperpolarized [1-(13)C] pyruvate employing a system of differential equations that agrees with the principle of conservation of mass

  13. Carboxylic acid effects on the size and catalytic activity of magnetite nanoparticles.

    Science.gov (United States)

    Hosseini-Monfared, Hassan; Parchegani, Fatemeh; Alavi, Sohaila

    2015-01-01

    Magnetite nanoparticles (Fe3O4-NPs) were successfully synthesized in diethylene glycol in the presence of carboxylic acids. They were characterized using XRD, SEM and FTIR. Carboxylic acid plays a critical role in determining the morphology, particle size and size distribution of the resulting particles. The results show that as-prepared magnetite nanoparticles are monodisperse and highly crystalline. The nanoparticles can be easily dispersed in aqueous media and other polar solvents due to coated by a layer of hydrophilic polyol and carboxylic acid ligands in situ. Easily prepared Fe3O4-NPs have been shown to be an active, recyclable, and highly selective catalyst for the epoxidation of cyclic olefins with aqueous 30% H2O2. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Facile synthesis of α-hydroxy carboxylic acids from the corresponding α-amino acids

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Padrah, Shahrokh; Strømgaard, Kristian

    2014-01-01

    An effective and improved procedure is developed for the synthesis of α-hydroxy carboxylic acids by treatment of the corresponding protonated α-amino acid with tert-butyl nitrite in 1,4-dioxane-water. The amino moiety must be protonated and located α to a carboxylic acid function in order...

  15. In vitro cytotoxicity of the ternary PAMAM G3–pyridoxal–biotin bioconjugate

    Directory of Open Access Journals (Sweden)

    Uram Ł

    2013-12-01

    Full Text Available Łukasz Uram, Magdalena Szuster, Krzysztof Gargasz, Aleksandra Filipowicz, Elżbieta Wałajtys-Rode, Stanisław Wołowiec Cosmetology Department, University of Information Technology and Management in Rzeszów, Rzeszów, Poland Abstract: A third-generation polyamidoamine dendrimer (PAMAM G3 was used as a macromolecular carrier for pyridoxal and biotin. The binary covalent bioconjugate of G3, with nine molecules of biotin per one molecule of G3 (G39B, and the ternary covalent bioconjugate of G3, with nine biotin and ten pyridoxal molecules (G39B10P, were synthesized. The biotin and pyridoxal residues of the bioconjugate were available for carboxylase and transaminase enzymes, as demonstrated in the conversion of pyruvate to oxaloacetate and alanine to pyruvate, respectively, by in vitro monitoring of the reactions, using 1H nuclear magnetic resonance spectroscopy. The toxicity of the ternary bioconjugate (BC-PAMAM was studied in vitro on BJ human normal skin fibroblasts and human squamous cell carcinoma (SCC-15 cell cultures in comparison with PAMAM G3, using three cytotoxicity assays (XTT, neutral red, and crystal violet and an estimation of apoptosis by confocal microscopy detection. The tests have shown that BC-PAMAM has significantly lower cytotoxicity compared with PAMAM. Nonconjugated PAMAM was not cytotoxic at concentrations up to 5 µM (NR and 10 µM (XTT, and BC-PAMAM was not cytotoxic up to 50 µM (both assays for both cell lines. It has been also found that normal fibroblasts were more sensitive than SCC to both PAMAM and BC-PAMAM. The effect of PAMAM and BC-PAMAM on the initiation of apoptosis (PAMAM in fibroblasts at 5 µM and BC-PAMAM at 10 µM in both cell lines corresponded with cytotoxicity assays for both cell lines. We concluded that normal fibroblasts are more sensitive to the cytotoxic effects of the PAMAM G3 dendrimer and that modification of its surface cationic groups by substitution with biologically active molecules

  16. Modification of polysulfone with pendant carboxylic acid functionality ...

    Indian Academy of Sciences (India)

    polysulfone (PSF) by in situ generated chloromethyl radical in presence of stannic chloride in tetrachloroethane and .... vert the nitrile group to carboxylic acid was reported (Reddy ..... PEG molecular weight vs rejection at 35 psi pressure.

  17. Fatty acid synthesis by spinach chloroplasts, 2. The path from PGA to fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Mitsuhiro; Nakamura, Yasunori [Tokyo Univ. (Japan). Coll. of General Education

    1975-02-01

    By incorporation of /sup 3/H/sub 2/O into the fatty acid chain in the presence of unlabelled precursor, we showed that fatty acids are synthesized from PGA, PEP and pyruvate by intact spinach chloroplasts in the light. /sup 13/C-tracer experiments confirmed that 1-C of pyruvate is decarboxylated and 2-C is incorporated into fatty acids by the chloroplasts. The patterns of fatty acids synthesized from PGA and pyruvate were the same as that from acetate. The highest rate of fatty acid synthesis was reached at the physiological concentration of PGA (3 mM) and pyruvate (1 mM). These results indicate the operation of the following path in the chloroplasts in light: PGA..-->..PEP..-->..pyruvate..-->..acetylCoA..-->..fatty acids. Since citrate and OAA were much less active and malate and glyoxylate were inert as precursors for fatty acid synthesis, PEP or pyruvate carboxylation, citrate lyase reaction and malate synthetase reaction are not involved in the formation of acetylCoA and fatty acids. Since pyruvate was much more effective as a substrate for fatty acid synthesis than lactate, acetaldehyde or acetate, direct decarboxylation path is considered to be the primary path from pyruvate to acetylCoA. The insignificant effect of chloroplast-washing on fatty acid synthesis from PGA and pyruvate indicates that the glycolytic path from PGA to pyruvate is associated with the chloroplasts. Since pyruvate was more effectively incorporated into fatty acids than acetylCoA, it is unlikely that pyruvate decarboxylation to acetylCoA is due to mitochondria contaminating the chloroplast preparation. On the basis of measurements of /sup 3/H/sub 2/O incorporation in the light and dark, the activity of fatty acid synthesis in spincah leaves appears to be shared by the activities in chloroplasts (87%) and other organelles (13%).

  18. Phosphorescent emissions of phosphine copper(I) complexes bearing 8-hydroxyquinoline carboxylic acid analogue ligands

    Energy Technology Data Exchange (ETDEWEB)

    Małecki, Jan G., E-mail: gmalecki@us.edu.pl [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Łakomska, Iwona, E-mail: iwolak@chem.umk.pl [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Maroń, Anna [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Szala, Marcin [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland); Fandzloch, Marzena [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Nycz, Jacek E., E-mail: jacek.nycz@us.edu.pl [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland)

    2015-05-15

    The pseudotetrahedral complexes of [Cu(PPh{sub 3}){sub 2}(L)], where L=8-hydroxy-2-methylquinoline-7-carboxylic acid (1), 8-hydroxy-2,5-dimethylquinoline-7-carboxylic acid (2) or 5-chloro-8-hydroxy-2-methylquinoline-7-carboxylic acid (3) have been synthesized and structurally characterized by X-ray crystallography. Their properties have been examined through combinations of IR, NMR, electronic absorption spectroscopy and cyclic voltammetry. The complexes exhibit extraordinary photophysical properties. Complex (1) in solid state exhibits an emission quantum yield of 4.67% and an excited life time of 1.88 ms (frozen DCM solution up to 6.7 ms). When dissolved in a coordinating solvent (acetonitrile) the charge transfer emission was quenched on a microsecond scale. - Highlights: • Synthesis of copper(I) complexes with 8-hydroxyquinoline carboxylic acid ligands. • Very long lived phosphorescent copper(I) complexes. • [Cu(PPh{sub 3}){sub 2}(L)] where L=8-hydroxy-2-methylquinoline-7-carboxylic acid luminesce in the solid state exhibits extremely long lifetime on millisecond scale (1.9 ms). • In frozen MeOH:EtOH solution lifetime increases to 7 ms. • Quantum efficiency equal to 4.7%.

  19. Heavy-atom isotope effects on binding of reactants to lactate dehydrogenase and pyruvate kinase

    International Nuclear Information System (INIS)

    Gawlita, E.

    1993-04-01

    18 O and 13 C kinetic isotope effects have been measured on the reaction of pyruvate kinase with phospho-enol-pyruvate and ADP using a remote label technique. The magnitude of both investigated isotope effects showed a dependence on the concentration of ADP. However, while the carbon effect was simply 'washed out' to unity at high ATP concentration, the oxygen effect becomes inverse and reached 0.9928 at the highest used concentration of ADP. Such a result testifies that the assumption of the negligible effect of isotopic substitution on enzyme-substrate associations remains correct only for carbon effects. An equilibrium 18 O isotope effect on association of oxalate with lactate dehydrogenase in the presence of NADHP has been evaluated by both experimental and theoretical means. Experimental methods, which involved equilibrium dialysis and gas chromatographic/mass spectrometric measurement of isotopic ration, yielded an inverse value of 0.9840. Semiempirical methods involved vibrational analysis of oxalate in two different environments. The comparison of calculated values with the experimentally determined isotope effect indicated that the AM 1 Hamiltonian proved superior to its PM 3 counterpart in this modelling. 160 refs, 8 figs, 18 tabs

  20. 40 CFR 721.2088 - Carboxylic acids, (C6-C9) branched and linear.

    Science.gov (United States)

    2010-07-01

    ... linear. 721.2088 Section 721.2088 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.2088 Carboxylic acids, (C6-C9) branched and linear. (a) Chemical... as carboxylic acids, (C6-C9) branched and linear (PMNs P-93-313, 314, 315, and 316) are subject to...

  1. Floral Benzenoid Carboxyl Methyltransferases: From in Vitro to in Planta Function

    Energy Technology Data Exchange (ETDEWEB)

    Effmert,U.; Saschenbrecker, S.; Ross, J.; Negre, F.; Fraser, C.; Noel, J.; Dudareva, N.; Piechulla, B.

    2005-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT's three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in plants depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses

  2. Effects of carboxylic acids on nC60 aggregate formation

    International Nuclear Information System (INIS)

    Chang Xiaojun; Vikesland, Peter J.

    2009-01-01

    The discovery that negatively charged aggregates of C 60 fullerene (nC 60 ) are stable in water has raised concerns regarding the potential environmental and health effects of these aggregates. In this work, we show that nC 60 aggregates produced by extended mixing in the presence of environmentally relevant carboxylic acids (acetic acid, tartaric acid, citric acid) have surface charge and morphologic properties that differ from those produced by extended mixing in water alone. In general, aggregates formed in the presence of these acids have a more negative surface charge and are more homogeneous than those produced in water alone. Carboxylic acid identity, solution pH, and sodium ion concentration, which are all intricately coupled, play an important role in setting the measured surface charge. Comparisons between particle sizes determined by analysis of TEM images and those obtained by dynamic light scattering (DLS) indicate that DLS results require careful evaluation when used to describe nC 60 aggregates. - The effects of carboxylic acids on the formation of nC 60 aggregates are discussed

  3. Photosynthetic carbon fixation characteristics of fruiting structures of Brassica campestris L

    International Nuclear Information System (INIS)

    Singal, H.R.; Sheoran, I.S.; Singh, R.

    1987-01-01

    Activities of key enzymes of the Calvin cycle and C 4 metabolism, rates of CO 2 fixation, and the initial products of photosynthetic 14 CO 2 fixation were determined in the podwall, seed coat (fruiting structures), and the subtending leaf (leaf below a receme) of Brassica campestris L. cv Toria. Compared to activities of ribulose-1,5-bisphosphate carboxylase and other Calvin cycle enzymes, e.g. NADP-glyceraldehyde-3-phosphate-dehydrogenase and ribulose-5-phosphate kinase, the activities of phosphoenol pyruvate carboxylase and other enzymes of C 4 metabolism, viz. NADP-malate dehydrogenase, NADP-malic enzyme, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, were generally much higher in seed than in podwall and leaf. Podwall and leaf were comparable to each other. Pulse-chase experiments showed that in seed the major product of 14 CO 2 assimilation was malate (in short time), whereas in podwall and leaf, the label initially appeared in 3-PGA. With time, the label moved to sucrose. In contrast to legumes, Brassica pods were able to fix net CO 2 during light. However, respiratory losses were very high during the dark period

  4. Complexation of carboxylate on smectite surfaces.

    Science.gov (United States)

    Liu, Xiandong; Lu, Xiancai; Zhang, Yingchun; Zhang, Chi; Wang, Rucheng

    2017-07-19

    We report a first principles molecular dynamics (FPMD) study of carboxylate complexation on clay surfaces. By taking acetate as a model carboxylate, we investigate its inner-sphere complexes adsorbed on clay edges (including (010) and (110) surfaces) and in interlayer space. Simulations show that acetate forms stable monodentate complexes on edge surfaces and a bidentate complex with Ca 2+ in the interlayer region. The free energy calculations indicate that the complexation on edge surfaces is slightly more stable than in interlayer space. By integrating pK a s and desorption free energies of Al coordinated water calculated previously (X. Liu, X. Lu, E. J. Meijer, R. Wang and H. Zhou, Geochim. Cosmochim. Acta, 2012, 81, 56-68; X. Liu, J. Cheng, M. Sprik, X. Lu and R. Wang, Geochim. Cosmochim. Acta, 2014, 140, 410-417), the pH dependence of acetate complexation has been revealed. It shows that acetate forms inner-sphere complexes on (110) in a very limited mildly acidic pH range while it can complex on (010) in the whole common pH range. The results presented in this study form a physical basis for understanding the geochemical processes involving clay-organics interactions.

  5. In vitro bioconversion of chitin to pyruvate with thermophilic enzymes.

    Science.gov (United States)

    Honda, Kohsuke; Kimura, Keisuke; Ninh, Pham Huynh; Taniguchi, Hironori; Okano, Kenji; Ohtake, Hisao

    2017-09-01

    Chitin is the second most abundant organic compound on the planet and thus has been regarded as an alternative resource to petroleum feedstocks. One of the key challenges in the biological conversion of biomass-derived polysaccharides, such as cellulose and chitin, is to close the gap between optimum temperatures for enzymatic saccharification and microbial fermentation and to implement them in a single bioreactor. To address this issue, in the present study, we aimed to perform an in vitro, one-pot bioconversion of chitin to pyruvate, which is a precursor of a wide range of useful metabolites. Twelve thermophilic enzymes, including that for NAD + regeneration, were heterologously produced in Escherichia coli and semi-purified by heat treatment of the crude extract of recombinant cells. When the experimentally decided concentrations of enzymes were incubated with 0.5 mg mL -1 colloidal chitin (equivalent to 2.5 mM N-acetylglucosamine unit) and an adequate set of cofactors at 70°C, 0.62 mM pyruvate was produced in 5 h. Despite the use of a cofactor-balanced pathway, determination of the pool sizes of cofactors showed a rapid decrease in ATP concentration, most probably due to the thermally stable ATP-degrading enzyme(s) derived from the host cell. Integration of an additional enzyme set of thermophilic adenylate kinase and polyphosphate kinase led to the deceleration of ATP degradation, and the final product titer was improved to 2.1 mM. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Degradation of phenol via phenylphosphate and carboxylation to 4-hydroxybenzoate by a newly isolated strain of the sulfate-reducing bacterium Desulfobacterium anilini.

    Science.gov (United States)

    Ahn, Young-Beom; Chae, Jong-Chan; Zylstra, Gerben J; Häggblom, Max M

    2009-07-01

    A sulfate-reducing phenol-degrading bacterium, strain AK1, was isolated from a 2-bromophenol-utilizing sulfidogenic estuarine sediment enrichment culture. On the basis of phylogenetic analysis of the 16S rRNA gene and DNA homology, strain AK1 is most closely related to Desulfobacterium anilini strain Ani1 (= DSM 4660(T)). In addition to phenol, this organism degrades a variety of other aromatic compounds, including benzoate, 2-hydroxybenzoate, 4-hydroxybenzoate, 4-hydroxyphenylacetate, 2-aminobenzoate, 2-fluorophenol, and 2-fluorobenzoate, but it does not degrade aniline, 3-hydroxybenzoate, 4-cyanophenol, 2,4-dihydroxybenzoate, monohalogenated phenols, or monohalogenated benzoates. Growth with sulfate as an electron acceptor occurred with acetate and pyruvate but not with citrate, propionate, butyrate, lactate, glucose, or succinate. Strain AK1 is able to use sulfate, sulfite, and thiosulfate as electron acceptors. A putative phenylphosphate synthase gene responsible for anaerobic phenol degradation was identified in strain AK1. In phenol-grown cultures inducible expression of the ppsA gene was verified by reverse transcriptase PCR, and 4-hydroxybenzoate was detected as an intermediate. These results suggest that the pathway for anaerobic degradation of phenol in D. anilini strain AK1 proceeds via phosphorylation of phenol to phenylphosphate, followed by carboxylation to 4-hydroxybenzoate. The details concerning such reaction pathways in sulfidogenic bacteria have not been characterized previously.

  7. Comparison the effectiveness of pyruvic acid 50% and salicylic acid 30% in the treatment of acne

    Directory of Open Access Journals (Sweden)

    Fariba Jaffary

    2016-01-01

    Full Text Available Background: Acne vulgaris is a chronic inflammatory disease of the pilosebaceous follicles and one of the most common skin diseases. The peeling method has been recently found to be effective for acne treatment. This study aimed to compare the efficacy of pyruvic acid 50% and salicylic acid 30% peeling in the treatment of mild to moderate acne. Materials and Methods: In a prospective single-blinded clinical trial, 86 patients with acne were randomly assigned into two groups. In both groups, the routine treatment of acne (topical solution of erythromycin 4%, triclorocarban soap, and sunscreen were used twice a day for 8 weeks. In addition, salicylic acid 30% for the control group and pyruvic acid 50% for the case group were used. In both groups, acne severity index (ASI was calculated before and at week 2, 4, 6, and 8 of the treatment. Patient satisfaction was assessed at the end of the treatment. Side effects were recorded using a checklist. Results: In both groups, the reduction in the number of comedones, papules, and ASI were statistically significant (P < 0.001 in the course of treatment. However, it was not significant regarding the number of pustules (P = 0.09. None of the number of comedone, papules, pustules, and ASI was statistically different between study groups. Both treatment groups had similar side effects except for scaling in the fifth session, which was significantly lower in salicylic acid - treated patients (P = 0.015. Conclusion: Both pyruvic acid 50% and salicylic acid 30% are effective in the improvement of mild to moderate acne with no significant difference in efficacy and side effects.

  8. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    Science.gov (United States)

    Nicholson, John W.; Wilson, Alan

    2004-09-01

    This article describes the history of the reaction converting carboxylic acids to ketones. The reaction has been rediscovered several times, yet has actually been known for centuries. The best known version of the process is the Dakin West reaction (1928), which applies to α-amino acids and also involves the simultaneous conversion of the amine group to amido functionality. Unlike other examples, this particular reaction has attracted a reasonable amount of attention and it appears to be better known than the conversion of simple carboxylic acids to ketones. However, this reaction was described as long ago as 1612, when Beguin published an account of it in his book, Tyrocinium Chymicum . Since then, many chemists have rediscovered the reaction, apparently independently. One of the earliest modern accounts was by W. H. Perkin, Sr., in 1886, who made various simple ketones by refluxing the appropriate carboxylic acids with base. However, this work has been largely ignored, including by his son, W. H. Perkin, Jr., who used a more complicated base-catalyzed ketonization to prepare small ring compounds in the early years of the 20th century. Other articles detailing the application of ketonization to organic acids are discussed, including our own work, which employed the process to crosslink carboxylated polymers for possible technical application in coatings. Despite its relative obscurity, the reaction was used by Woodward et al. in the total synthesis of strychnine, reported in 1963, and this is discussed in detail at the end of the article. See Featured Molecules .

  9. Technique development of 3D dynamic CS-EPSI for hyperpolarized 13 C pyruvate MR molecular imaging of human prostate cancer.

    Science.gov (United States)

    Chen, Hsin-Yu; Larson, Peder E Z; Gordon, Jeremy W; Bok, Robert A; Ferrone, Marcus; van Criekinge, Mark; Carvajal, Lucas; Cao, Peng; Pauly, John M; Kerr, Adam B; Park, Ilwoo; Slater, James B; Nelson, Sarah J; Munster, Pamela N; Aggarwal, Rahul; Kurhanewicz, John; Vigneron, Daniel B

    2018-03-25

    The purpose of this study was to develop a new 3D dynamic carbon-13 compressed sensing echoplanar spectroscopic imaging (EPSI) MR sequence and test it in phantoms, animal models, and then in prostate cancer patients to image the metabolic conversion of hyperpolarized [1- 13 C]pyruvate to [1- 13 C]lactate with whole gland coverage at high spatial and temporal resolution. A 3D dynamic compressed sensing (CS)-EPSI sequence with spectral-spatial excitation was designed to meet the required spatial coverage, time and spatial resolution, and RF limitations of the 3T MR scanner for its clinical translation for prostate cancer patient imaging. After phantom testing, animal studies were performed in rats and transgenic mice with prostate cancers. For patient studies, a GE SPINlab polarizer (GE Healthcare, Waukesha, WI) was used to produce hyperpolarized sterile GMP [1- 13 C]pyruvate. 3D dynamic 13 C CS-EPSI data were acquired starting 5 s after injection throughout the gland with a spatial resolution of 0.5 cm 3 , 18 time frames, 2-s temporal resolution, and 36 s total acquisition time. Through preclinical testing, the 3D CS-EPSI sequence developed in this project was shown to provide the desired spectral, temporal, and spatial 5D HP 13 C MR data. In human studies, the 3D dynamic HP CS-EPSI approach provided first-ever simultaneously volumetric and dynamic images of the LDH-catalyzed conversion of [1- 13 C]pyruvate to [1- 13 C]lactate in a biopsy-proven prostate cancer patient with full gland coverage. The results demonstrate the feasibility to characterize prostate cancer metabolism in animals, and now patients using this new 3D dynamic HP MR technique to measure k PL , the kinetic rate constant of [1- 13 C]pyruvate to [1- 13 C]lactate conversion. © 2018 International Society for Magnetic Resonance in Medicine.

  10. Hanford waste vitrification plant hydrogen generation study: Preliminary evaluation of alternatives to formic acid

    International Nuclear Information System (INIS)

    King, R.B.; Bhattacharyya, N.K.; Kumar, V.

    1996-02-01

    Oxalic, glyoxylic, glycolic, malonic, pyruvic, lactic, levulinic, and citric acids as well as glycine have been evaluated as possible substitutes for formic acid in the preparation of feed for the Hanford waste vitrification plant using a non-radioactive feed stimulant UGA-12M1 containing substantial amounts of aluminum and iron oxides as well as nitrate and nitrite at 90C in the presence of hydrated rhodium trichloride. Unlike formic acid none of these carboxylic acids liberate hydrogen under these conditions and only malonic and citric acids form ammonia. Glyoxylic, glycolic, malonic, pyruvic, lactic, levulinic, and citric acids all appear to have significant reducing properties under the reaction conditions of interest as indicated by the observation of appreciable amounts of N 2 O as a reduction product of,nitrite or, less likely, nitrate at 90C. Glyoxylic, pyruvic, and malonic acids all appear to be unstable towards decarboxylation at 90C in the presence of Al(OH) 3 . Among the carboxylic acids investigated in this study the α-hydroxycarboxylic acids glycolic and lactic acids appear to be the most interesting potential substitutes for formic acid in the feed preparation for the vitrification plant because of their failure to produce hydrogen or ammonia or to undergo decarboxylation under the reaction conditions although they exhibit some reducing properties in feed stimulant experiments

  11. Coordinate cis-[Cr(C2O4(pm(OH22]+ Cation as Molecular Biosensor of Pyruvate’s Protective Activity Against Hydrogen Peroxide Mediated Cytotoxity

    Directory of Open Access Journals (Sweden)

    Lech Chmurzyński

    2008-08-01

    Full Text Available In this paper instrumental methods of carbon dioxide (CO2 detection in biological material were compared. Using cis-[Cr(C2O4(pm(OH22]+ cation as a specific molecular biosensor and the stopped-flow technique the concentrations of CO2 released from the cell culture medium as one of final products of pyruvate decomposition caused by hydrogen peroxide were determined. To prove the usefulness of our method of CO2 assessment in the case of biological samples we investigated protective properties of exogenous pyruvate in cultured osteosarcoma 143B cells exposed to 1 mM hydrogen peroxide (H2O2 added directly to culture medium. Pyruvic acid is well known scavenger of H2O2 and, moreover, a molecule which is recognized as one of the major mediator of oxidative stress detected in many diseases and pathological situations like ischemiareperfusion states. The pyruvate's antioxidant activity is described as its rapid reaction with H2O2,which causes nonenzymatic decarboxylation of pyruvate and releases of CO2, water and acetate as final products. In this work for the first time we have correlated the concentration of CO2 dissolved in culture medium with pyruvate's oxidant-scavenging abilities. Moreover, the kinetics of the reaction between aqueous solution of CO2 and coordinate ion, cis-[Cr(C2O4(pm(OH22]+ was analysed. The results obtained enabled determination of the number of steps of the reaction studied. Based on the kinetic equations, rate constants were determined for each step.

  12. Precipitation stripping of neodymium from carboxylate extractant with aqueous oxalic acid solutions

    International Nuclear Information System (INIS)

    Konishi, Yasuhiro; Asai, Satoru; Murai, Tetuya

    1993-01-01

    This paper describes a precipitation stripping method in which neodymium ions are stripped from carboxylate extractant in organic solvent and simultaneously precipitated with aqueous oxalic acid solution. For the single-stage process, a quantitative criterion for precipitating oxalate powders was derived theoretically, and stripping experiments were done under the precipitation conditions. The resultant precipitates were neodymium oxalate, which is completely free from contamination by the carboxylate extractant and the organic solvent. The overall rate of stripping was controlled by the transfer of neodymium carboxylate in the organic solution, indicating that the presence of oxalic acid in the aqueous phase has no effect on the stripping rate. These findings demonstrate the feasibility of combining the conventional stripping and precipitation stages in a solvent extraction process for separation and purification of rare earths

  13. Silver-Catalyzed Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols

    DEFF Research Database (Denmark)

    Ghalehshahi, Hajar Golshadi; Madsen, Robert

    2017-01-01

    A simple silver-catalyzed protocol has been developed for the acceptorless dehydrogenation of primary alcohols into carboxylic acids and hydrogen gas. The procedure uses 2.5 % Ag2 CO3 and 2.5-3 equiv of KOH in refluxing mesitylene to afford the potassium carboxylate which is then converted...... into the acid with HCl. The reaction can be applied to a variety of benzylic and aliphatic primary alcohols with alkyl and ether substituents, and in some cases halide, olefin, and ester functionalities are also compatible with the reaction conditions. The dehydrogenation is believed to be catalyzed by silver...

  14. Cyclodextrin derivatives with cyanohydrin and carboxylate groups as artificial glycosidases

    DEFF Research Database (Denmark)

    Bols, Mikael; Ortega-Caballero, Fernando

    2006-01-01

    Two cyclodextrin derivatives (1 and 2) were prepared in an attempt to create glycosidase mimics with a general acid catalyst and a nucleophilic carboxylate group. The catalysts 1 and 2 were found to catalyse the hydrolysis of 4-nitrophenyl beta-D-glucopyranoside at pH 8.0, but rapidly underwent...... decomposition with loss of hydrogen cyanide to convert the cyanohydrin to the corresponding aldehyde. The initial rate of the catalysis shows that the cyanohydrin group in these molecules functions as a good catalyst, but that the carboxylate has no positive effect. The decomposition product aldehydes display...

  15. Gluconeogenesis is associated with high rates of tricarboxylic acid and pyruvate cycling in fasting northern elephant seals.

    Science.gov (United States)

    Champagne, Cory D; Houser, Dorian S; Fowler, Melinda A; Costa, Daniel P; Crocker, Daniel E

    2012-08-01

    Animals that endure prolonged periods of food deprivation preserve vital organ function by sparing protein from catabolism. Much of this protein sparing is achieved by reducing metabolic rate and suppressing gluconeogenesis while fasting. Northern elephant seals (Mirounga angustirostris) endure prolonged fasts of up to 3 mo at multiple life stages. During these fasts, elephant seals maintain high levels of activity and energy expenditure associated with breeding, reproduction, lactation, and development while maintaining rates of glucose production typical of a postabsorptive mammal. Therefore, we investigated how fasting elephant seals meet the requirements of glucose-dependent tissues while suppressing protein catabolism by measuring the contribution of glycogenolysis, glycerol, and phosphoenolpyruvate (PEP) to endogenous glucose production (EGP) during their natural 2-mo postweaning fast. Additionally, pathway flux rates associated with the tricarboxylic acid (TCA) cycle were measured specifically, flux through phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate cycling. The rate of glucose production decreased during the fast (F(1,13) = 5.7, P = 0.04) but remained similar to that of postabsorptive mammals. The fractional contributions of glycogen, glycerol, and PEP did not change with fasting; PEP was the primary gluconeogenic precursor and accounted for ∼95% of EGP. This large contribution of PEP to glucose production occurred without substantial protein loss. Fluxes through the TCA cycle, PEPCK, and pyruvate cycling were higher than reported in other species and were the most energetically costly component of hepatic carbohydrate metabolism. The active pyruvate recycling fluxes detected in elephant seals may serve to rectify gluconeogeneic PEP production during restricted anaplerotic inflow in these fasting-adapted animals.

  16. Effects of hypoxia and pyruvate infusion on myocardial fatty acid oxidation measured with 123I heptadecanoic acid

    International Nuclear Information System (INIS)

    Comans, E.F.I.; Visser, F.C.; Elzinga, Gijs

    1993-01-01

    Radio-iodinated fatty acids like 123 I heptadecanoic acid (HDA) can be used for the non-invasive delineation of myocardial non-esterified fatty acid (FA) metabolism. In this study the quantitative value of HDA was assessed for the measurement of myocardial FA oxidation. In an isolated saline perfused rat heart preparation myocardial time-activity curves were made during control perfusion and after inhibition of FA oxidation by hypoxia and infusion of 10.0 mM pyruvate, respectively. Control experiments were performed using 1- 14 C palmitate as the 'golden standard' for myocardial FA oxidation. Myocardial HDA oxidation was calculated from the amplitude of the third exponential term of the time-activity curve. During control perfusion no differences were observed between the calculated oxygen equivalents (from HDA oxidation) and the measured (A-V oxygen content difference) and the estimated ( 14 CO 2 production) values. Inhibition of palmitate oxidation with pyruvate was accurately detected with HDA. During hypoxic perfusion, an overestimation of palmitate oxidation was calculated on the basic of HDA oxidation. Infusion of pyruvate did not influence the time constants of the time-activity curves, whereas during hypoxic perfusion an increase of the time constant of the third exponential term was observed, probably caused by the presence of back-diffusion of non-metabolized HDA. We conclude that HDA can be used as a quantitative tool for the measurement of myocardial FA oxidation under various metabolic conditions. During periods of a decreased oxygen availability back-diffusion of FA needs to be taken into account for the interpretation of the myocardial time-activity curves. (author)

  17. Extraction characteristics of trivalent lanthanides and actinides in mixtures of dinonylnaphthalenesulfonic acid and carboxylic acids

    International Nuclear Information System (INIS)

    West, M.H.

    1983-03-01

    Dinonylnaphthalenesulfonic acid (HDNNS) has been shown to be an effective liquid cation exchanger for the extraction of metal ions. This extractant has proven to be successful in the extraction of trivalent lanthanides and actinides in the pH range of 2.0 to 3.0, although it shows little selectivity for individual ions because of its strong acid character. In an effort to improve the selectivity of HDNNS between trivalent lanthanides and actinides, carboxylic acids were added to the organic phase and the effects on the extraction characteristics of HDNNS were investigated. Three carboxylic acids - nonanoic, cyclohexanecarboxylic, and cyclohexanebutyric - were studied with the following metals: Am(III), Cm(III), Ce(III), Eu(III), and Tm(III). The distributions of the metal ions were studied holding the HDNNS concentration constant while varying the carboxylic acid concentrations over a range of 1.0 x 10 -5 M to 1.0 M. Results indicated that the greatest enhancement of the extraction occurred at a carboxylic acid concentration of 1.0 x 10 -2 M with negative effects occurring at 0.5 M and 1.0 M. The effects on the extraction of the trivalent lanthanides and actinides were interpreted in terms of the structural differences of the carboxylic acids, the effect of the carboxylic acids on the HDNNS extraction mechanism, and the ionic properties of the metals studied

  18. One-step hydrothermal synthesis of carboxyl-functionalized upconversion phosphors for bioapplications.

    Science.gov (United States)

    Yang, Jianping; Shen, Dengke; Li, Xiaomin; Li, Wei; Fang, Yin; Wei, Yong; Yao, Chi; Tu, Bo; Zhang, Fan; Zhao, Dongyuan

    2012-10-22

    In this paper, we report a facile one-step hydrothermal method to synthesize phase-, size-, and shape-controlled carboxyl-functionalized rare-earth fluorescence upconversion phosphors by using a small-molecule binary acid, such as malonic acid, oxalic acid, succinic acid, or tartaric acid as capping agent. The crystals, from nano- to microstructures with diverse shapes that include nanospheres, microrods, hexagonal prisms, microtubes, microdisks, polygonal columns, and hexagonal tablets, can be obtained with different reaction times, reaction temperatures, molar ratios of capping agent to sodium hydroxide, and by varying the binary acids. Fourier transform infrared, thermogravimetric analysis, and upconversion luminescence spectra measurements indicate that the synthesized NaYF(4):Yb/Er products with hydrophilic carboxyl-functionalized surface offer efficient upconversion luminescent performance. Furthermore, the antibody/secondary antibody conjugation can be realized by the carboxyl-functionalized surfaces of the upconversion phosphors, thus indicating the potential bioapplications of these kinds of materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. catalysed ortho-carboxylation of acetanilide with CO

    Indian Academy of Sciences (India)

    Abstract. The mechanism of palladium(II)-catalysed carboxylation of acetanilide with CO has been investi- gated using density functional theory calculation done at the B3LYP/6-31G(d, p)(SDD for Pd) level of theory. Solvent effects on these reactions have been explored by calculation that included a polarizable continuum.

  20. Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes.

    Science.gov (United States)

    Sofou, Kalliopi; Dahlin, Maria; Hallböök, Tove; Lindefeldt, Marie; Viggedal, Gerd; Darin, Niklas

    2017-03-01

    Our aime was to study the short- and long-term effects of ketogenic diet on the disease course and disease-related outcomes in patients with pyruvate dehydrogenase complex deficiency, the metabolic factors implicated in treatment outcomes, and potential safety and compliance issues. Pediatric patients diagnosed with pyruvate dehydrogenase complex deficiency in Sweden and treated with ketogenic diet were evaluated. Study assessments at specific time points included developmental and neurocognitive testing, patient log books, and investigator and parental questionnaires. A systematic literature review was also performed. Nineteen patients were assessed, the majority having prenatal disease onset. Patients were treated with ketogenic diet for a median of 2.9 years. All patients alive at the time of data registration at a median age of 6 years. The treatment had a positive effect mainly in the areas of epilepsy, ataxia, sleep disturbance, speech/language development, social functioning, and frequency of hospitalizations. It was also safe-except in one patient who discontinued because of acute pancreatitis. The median plasma concentration of ketone bodies (3-hydroxybutyric acid) was 3.3 mmol/l. Poor dietary compliance was associated with relapsing ataxia and stagnation of motor and neurocognitive development. Results of neurocognitive testing are reported for 12 of 19 patients. Ketogenic diet was an effective and safe treatment for the majority of patients. Treatment effect was mainly determined by disease phenotype and attainment and maintenance of ketosis.

  1. Fatty acid synthesis by spinach chloroplasts, 2

    International Nuclear Information System (INIS)

    Yamada, Mitsuhiro; Nakamura, Yasunori

    1975-01-01

    By incorporation of 3 H 2 O into the fatty acid chain in the presence of unlabelled precursor, we showed that fatty acids are synthesized from PGA, PEP and pyruvate by intact spinach chloroplasts in the light. 13 C-tracer experiments confirmed that 1-C of pyruvate is decarboxylated and 2-C is incorporated into fatty acids by the chloroplasts. The patterns of fatty acids synthesized from PGA and pyruvate were the same as that from acetate. The highest rate of fatty acid synthesis was reached at the physiological concentration of PGA (3 mM) and pyruvate (1 mM). These results indicate the operation of the following path in the chloroplasts in light: PGA→PEP→pyruvate→acetylCoA→fatty acids. Since citrate and OAA were much less active and malate and glyoxylate were inert as precursors for fatty acid synthesis, PEP or pyruvate carboxylation, citrate lyase reaction and malate synthetase reaction are not involved in the formation of acetylCoA and fatty acids. Since pyruvate was much more effective as a substrate for fatty acid synthesis than lactate, acetaldehyde or acetate, direct decarboxylation path is considered to be the primary path from pyruvate to acetylCoA. The insignificant effect of chloroplast-washing on fatty acid synthesis from PGA and pyruvate indicates that the glycolytic path from PGA to pyruvate is associated with the chloroplasts. Since pyruvate was more effectively incorporated into fatty acids than acetylCoA, it is unlikely that pyruvate decarboxylation to acetylCoA is due to mitochondria contaminating the chloroplast preparation. On the basis of measurements of 3 H 2 O incorporation in the light and dark, the activity of fatty acid synthesis in spincah leaves appears to be shared by the activities in chloroplasts (87%) and other organelles (13%). (author)

  2. Novel binding motif and new flexibility revealed by structural analyses of a pyruvate dehydrogenase-dihydrolipoyl acetyltransferase subcomplex from the Escherichia coli pyruvate dehydrogenase multienzyme complex.

    Science.gov (United States)

    Arjunan, Palaniappa; Wang, Junjie; Nemeria, Natalia S; Reynolds, Shelley; Brown, Ian; Chandrasekhar, Krishnamoorthy; Calero, Guillermo; Jordan, Frank; Furey, William

    2014-10-24

    The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Novel Binding Motif and New Flexibility Revealed by Structural Analyses of a Pyruvate Dehydrogenase-Dihydrolipoyl Acetyltransferase Subcomplex from the Escherichia coli Pyruvate Dehydrogenase Multienzyme Complex*

    Science.gov (United States)

    Arjunan, Palaniappa; Wang, Junjie; Nemeria, Natalia S.; Reynolds, Shelley; Brown, Ian; Chandrasekhar, Krishnamoorthy; Calero, Guillermo; Jordan, Frank; Furey, William

    2014-01-01

    The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly. PMID:25210042

  4. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Oud, B.; Flores, C.L.; Gancedo, C.; Zhang, X.; Trueheart, J.; Daran, J.M.; Pronk, J.T.; Van Maris, A.J.A.

    2012-01-01

    Background Pyruvate-decarboxylase negative (Pdc-) strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc-S. cerevisiae an interesting platform for efficient conversion of glucose towards

  5. Cooperation of phosphates and carboxylates controls calcium oxalate crystallization in ultrafiltered urine.

    Science.gov (United States)

    Grohe, Bernd; Chan, Brian P H; Sørensen, Esben S; Lajoie, Gilles; Goldberg, Harvey A; Hunter, Graeme K

    2011-10-01

    Osteopontin (OPN) is one of a group of proteins found in urine that are believed to limit the formation of kidney stones. In the present study, we investigate the roles of phosphate and carboxylate groups in the OPN-mediated modulation of calcium oxalate (CaOx), the principal mineral phase found in kidney stones. To this end, crystallization was induced by addition of CaOx solution to ultrafiltered human urine containing either human kidney OPN (kOPN; 7 consecutive carboxylates, 8 phosphates) or synthesized peptides corresponding to residues 65-80 (pSHDHMDDDDDDDDDGD; pOPAR) or 220-235 (pSHEpSTEQSDAIDpSAEK; P3) of rat bone OPN. Sequence 65-80 was also synthesized without the phosphate group (OPAR). Effects on calcium oxalate monohydrate (COM) and dihydrate (COD) formation were studied by scanning electron microscopy. We found that controls form large, partly intergrown COM platelets; COD was never observed. Adding any of the polyelectrolytes was sufficient to prevent intergrowth of COM platelets entirely, inhibiting formation of these platelets strongly, and inducing formation of the COD phase. Strongest effects on COM formation were found for pOPAR and OPAR followed by kOPN and then P3, showing that acidity and hydrophilicity are crucial in polyelectrolyte-affected COM crystallization. At higher concentrations, OPAR also inhibited COD formation, while P3, kOPN and, in particular, pOPAR promoted COD, a difference explainable by the variations of carboxylate and phosphate groups present in the molecules. Thus, we conclude that carboxylate groups play a primary role in inhibiting COM formation, but phosphate and carboxylate groups are both important in initiating and promoting COD formation.

  6. Vitamin K-Dependent Carboxylation of Matrix Gla Protein Influences the Risk of Calciphylaxis.

    Science.gov (United States)

    Nigwekar, Sagar U; Bloch, Donald B; Nazarian, Rosalynn M; Vermeer, Cees; Booth, Sarah L; Xu, Dihua; Thadhani, Ravi I; Malhotra, Rajeev

    2017-06-01

    Matrix Gla protein (MGP) is a potent inhibitor of vascular calcification. The ability of MGP to inhibit calcification requires the activity of a vitamin K-dependent enzyme, which mediates MGP carboxylation. We investigated how MGP carboxylation influences the risk of calciphylaxis in adult patients receiving dialysis and examined the effects of vitamin K deficiency on MGP carboxylation. Our study included 20 patients receiving hemodialysis with calciphylaxis (cases) and 20 patients receiving hemodialysis without calciphylaxis (controls) matched for age, sex, race, and warfarin use. Cases had higher plasma levels of uncarboxylated MGP (ucMGP) and carboxylated MGP (cMGP) than controls. However, the fraction of total MGP that was carboxylated (relative cMGP concentration = cMGP/[cMGP + uncarboxylated MGP]) was lower in cases than in controls (0.58±0.02 versus 0.69±0.03, respectively; P =0.003). In patients not taking warfarin, cases had a similarly lower relative cMGP concentration. Each 0.1 unit reduction in relative cMGP concentration associated with a more than two-fold increase in calciphylaxis risk. Vitamin K deficiency associated with lower relative cMGP concentration in multivariable adjusted analyses ( β =-8.99; P =0.04). In conclusion, vitamin K deficiency-mediated reduction in relative cMGP concentration may have a role in the pathogenesis of calciphylaxis. Whether vitamin K supplementation can prevent and/or treat calciphylaxis requires further study. Copyright © 2017 by the American Society of Nephrology.

  7. Structure of the oxalate-ATP complex with pyruvate kinase: ATP as a bridging ligand for the two divalent cations

    International Nuclear Information System (INIS)

    Lodato, D.T.; Reed, G.H.

    1987-01-01

    The 2 equiv of divalent cation that are required cofactors for pyruvate kinase reside in sites of different affinities for different species of cation. The intrinsic selectivity of the protein-based site for Mn(II) and of the nucleotide-based site for Mg(II) has been exploited in electron paramagnetic resonance (EOR) investigations of ligands for Mn(II) at the protein-based site. Oxalate, a structural analogue of the enolate of pyruvate, has been used as a surrogate for the reactive form of pyruvate in complexes with enzyme, Mn(II), Mg(II), and ATP. Superhyperfine coupling between the unpaired electron spin of Mn(II) and the nuclear spin of 17 O, specifically incorporated into oxalate, shows that oxalate is bound at the active site as a bidentate chelate with Mn(II). Coordination of the γ-phosphate of ATP to this same Mn(II) center is revealed by observation of superhyperfine coupling from 17 O regiospecifically incorporated into the γ-phosphate group of ATP. By contrast, 17 O in the α-phosphate or in the β-phosphate groups of ATP does not influence the spectrum. Experiments in 17 O-enriched water show that there is also a single water ligand bound to the Mn(II). These data indicate that ATP bridges Mn(II) and Mg(II) at the active site. A close spacing of the two divalent cations is also evident from the occurrence of magnetic interactions for complexes in which 2 equiv of Mn(II) are present at the active site. The structure for the enzyme-Mn(II)-oxalate-Mg(II)-ATP complex suggests a scheme for the normal reverse reaction of pyruvate kinase in which the divalent cation at the protein-based site activates the keto acid substrate through chelation and promotes phospho transfer by simultaneous coordination to the enolate oxygen and to a pendant oxygen from the γ-phosphate of ATP

  8. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, Julien [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)], E-mail: julien.dron@up.univ-mrs.fr; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)

    2007-12-12

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF{sub 3}/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L{sup -1}. Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  9. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry

    International Nuclear Information System (INIS)

    Dron, Julien; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri

    2007-01-01

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF 3 /methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L -1 . Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices

  10. 2-Isopropyl-5-methylcyclohexyl quinoline-2-carboxylate

    Directory of Open Access Journals (Sweden)

    E. Fazal

    2014-01-01

    Full Text Available In the title compound, C20H25NO2, the cyclohexyl ring adopts a slightly disordered chair conformation. The dihedral angle between the mean planes of the quinoline ring and the carboxylate group is 22.2 (6°. In the crystal, weak C—H...N interactions make chains along [010].

  11. Methyl 3-(Quinolin-2-ylindolizine-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Roumaissa Belguedj

    2015-12-01

    Full Text Available A novel compound, methyl 3-(quinolin-2-ylindolizine-1-carboxylate (2 has been synthesized by cycloaddition reaction of 1-(quinolin-2-ylmethylpyridinium ylide (1 with methyl propiolate in presence of sodium hydride in THF. The structure of this compound was established by IR, 1H-NMR, 13C-NMR and MS data

  12. Formation and utilization of acetoin, an unusual product of pyruvate metabolism by Ehrlich and AS30-D tumor mitochondria.

    Science.gov (United States)

    Baggetto, L G; Lehninger, A L

    1987-07-15

    [14C]Pyruvate was rapidly non-oxidatively decarboxylated by Ehrlich tumor mitochondria at a rate of 40 nmol/min/mg of protein in the presence or absence of ADP. A search for decarboxylation products led to significant amounts of acetoin formed when Ehrlich tumor mitochondria were incubated with 1 mM [14C] pyruvate in the presence of ATP. Added acetoin to aerobic tumor mitochondria was rapidly utilized in the presence of ATP at a rate of 65 nmol/min/mg of protein. Citrate has been found as a product of acetoin utilization and was exported from the tumor mitochondria. Acetoin has been found in the ascitic liquid of Ehrlich and AS30-D tumor-bearing animals. These unusual reactions were not observed in control rat liver mitochondria.

  13. Modulation of Malaria Phenotypes by Pyruvate Kinase (PKLR Variants in a Thai Population.

    Directory of Open Access Journals (Sweden)

    Rebekah van Bruggen

    Full Text Available Pyruvate kinase (PKLR is a critical erythrocyte enzyme that is required for glycolysis and production of ATP. We have shown that Pklr deficiency in mice reduces the severity (reduced parasitemia, increased survival of blood stage malaria induced by infection with Plasmodium chabaudi AS. Likewise, studies in human erythrocytes infected ex vivo with P. falciparum show that presence of host PK-deficiency alleles reduces infection phenotypes. We have characterized the genetic diversity of the PKLR gene, including haplotype structure and presence of rare coding variants in two populations from malaria endemic areas of Thailand and Senegal. We investigated the effect of PKLR genotypes on rich longitudinal datasets including haematological and malaria-associated phenotypes. A coding and possibly damaging variant (R41Q was identified in the Thai population with a minor allele frequency of ~4.7%. Arginine 41 (R41 is highly conserved in the pyruvate kinase family and its substitution to Glutamine (R41Q affects protein stability. Heterozygosity for R41Q is shown to be associated with a significant reduction in the number of attacks with Plasmodium falciparum, while correlating with an increased number of Plasmodium vivax infections. These results strongly suggest that PKLR protein variants may affect the frequency, and the intensity of malaria episodes induced by different Plasmodium parasites in humans living in areas of endemic malaria.

  14. Pyruvate oxidase influences the sugar utilization pattern and capsule production in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Sandra M Carvalho

    Full Text Available Pyruvate oxidase is a key function in the metabolism and lifestyle of many lactic acid bacteria and its activity depends on the presence of environmental oxygen. In Streptococcus pneumoniae the protein has been suggested to play a major role in metabolism and has been implicated in virulence, oxidative stress survival and death in stationary phase. Under semi-aerobic conditions, transcriptomic and metabolite profiling analysis of a spxB mutant grown on glucose showed minor changes compared to the wild type, apart from the significant induction of two operons involved in carbohydrate uptake and processing. This induction leads to a change in the sugar utilization capabilities of the bacterium, as indicated by the analysis of the growth profiles of the D39 parent and spxB mutant on alternative carbohydrates. Metabolic analysis and growth experiments showed that inactivation of SpxB has no effect on the glucose fermentation pattern, except under aerobic conditions. More importantly, we show that mutation of spxB results in the production of increased amounts of capsule, the major virulence factor of S. pneumoniae. Part of this increase can be attributed to induction of capsule operon (cps transcription. Therefore, we propose that S. pneumoniae utilizes pyruvate oxidase as an indirect sensor of the oxygenation of the environment, resulting in the adaption of its nutritional capability and the amount of capsule to survive in the host.

  15. Pyruvate oxidase influences the sugar utilization pattern and capsule production in Streptococcus pneumoniae.

    Science.gov (United States)

    Carvalho, Sandra M; Farshchi Andisi, Vahid; Gradstedt, Henrik; Neef, Jolanda; Kuipers, Oscar P; Neves, Ana R; Bijlsma, Jetta J E

    2013-01-01

    Pyruvate oxidase is a key function in the metabolism and lifestyle of many lactic acid bacteria and its activity depends on the presence of environmental oxygen. In Streptococcus pneumoniae the protein has been suggested to play a major role in metabolism and has been implicated in virulence, oxidative stress survival and death in stationary phase. Under semi-aerobic conditions, transcriptomic and metabolite profiling analysis of a spxB mutant grown on glucose showed minor changes compared to the wild type, apart from the significant induction of two operons involved in carbohydrate uptake and processing. This induction leads to a change in the sugar utilization capabilities of the bacterium, as indicated by the analysis of the growth profiles of the D39 parent and spxB mutant on alternative carbohydrates. Metabolic analysis and growth experiments showed that inactivation of SpxB has no effect on the glucose fermentation pattern, except under aerobic conditions. More importantly, we show that mutation of spxB results in the production of increased amounts of capsule, the major virulence factor of S. pneumoniae. Part of this increase can be attributed to induction of capsule operon (cps) transcription. Therefore, we propose that S. pneumoniae utilizes pyruvate oxidase as an indirect sensor of the oxygenation of the environment, resulting in the adaption of its nutritional capability and the amount of capsule to survive in the host.

  16. Giant regular polyhedra from calixarene carboxylates and uranyl

    Science.gov (United States)

    Pasquale, Sara; Sattin, Sara; Escudero-Adán, Eduardo C.; Martínez-Belmonte, Marta; de Mendoza, Javier

    2012-01-01

    Self-assembly of large multi-component systems is a common strategy for the bottom-up construction of discrete, well-defined, nanoscopic-sized cages. Icosahedral or pseudospherical viral capsids, built up from hundreds of identical proteins, constitute typical examples of the complexity attained by biological self-assembly. Chemical versions of the so-called 5 Platonic regular or 13 Archimedean semi-regular polyhedra are usually assembled combining molecular platforms with metals with commensurate coordination spheres. Here we report novel, self-assembled cages, using the conical-shaped carboxylic acid derivatives of calix[4]arene and calix[5]arene as ligands, and the uranyl cation UO22+ as a metallic counterpart, which coordinates with three carboxylates at the equatorial plane, giving rise to hexagonal bipyramidal architectures. As a result, octahedral and icosahedral anionic metallocages of nanoscopic dimensions are formed with an unusually small number of components. PMID:22510690

  17. Carboxylated dithiafulvenes and tetrathiafulvalene vinylogues: synthesis, electronic properties, and complexation with zinc ions

    Directory of Open Access Journals (Sweden)

    Yunfei Wang

    2015-06-01

    Full Text Available A class of carboxyl and carboxylate ester-substituted dithiafulvene (DTF derivatives and tetrathiafulvalene vinylogues (TTFVs has been synthesized and their electronic and electrochemical redox properties were characterized by UV–vis spectroscopic and cyclic voltammetric analyses. The carboxyl-TTFV was applied as a redox-active ligand to complex with Zn(II ions, forming a stable Zn-TTFV coordination polymer. The structural, electrochemical, and thermal properties of the coordination polymer were investigated by infrared spectroscopy, cyclic voltammetry, powder X-ray diffraction, and differential scanning calorimetric analyses. Furthermore, the microscopic porosity and surface area of the Zn-TTFV coordination polymer were measured by nitrogen gas adsorption analysis, showing a BET surface of 148.2 m2 g−1 and an average pore diameter of 10.2 nm.

  18. Synthesis, spectroscopic characterization, biological screenings, DNA binding study and POM analyses of transition metal carboxylates

    Science.gov (United States)

    Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman

    2015-04-01

    This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  19. Chemical rescue of the post-translationally carboxylated lysine mutant of allantoinase and dihydroorotase by metal ions and short-chain carboxylic acids.

    Science.gov (United States)

    Ho, Ya-Yeh; Huang, Yen-Hua; Huang, Cheng-Yang

    2013-04-01

    Bacterial allantoinase (ALLase) and dihydroorotase (DHOase) are members of the cyclic amidohydrolase family. ALLase and DHOase possess similar binuclear metal centers in the active site in which two metals are bridged by a post-translationally carboxylated lysine. In this study, we determined the effects of carboxylated lysine and metal binding on the activities of ALLase and DHOase. Although DHOase is a metalloenzyme, purified DHOase showed high activity without additional metal supplementation in a reaction mixture or bacterial culture. However, unlike DHOase, ALLase had no activity unless some specific metal ions were added to the reaction mixture or culture. Substituting the metal binding sites H59, H61, K146, H186, H242, or D315 with alanine completely abolished the activity of ALLase. However, the K146C, K146D and K146E mutants of ALLase were still active with about 1-6% activity of the wild-type enzyme. These ALLase K146 mutants were found to have 1.4-1.7 mol metal per mole enzyme subunit, which may indicate that they still contained the binuclear metal center in the active site. The activity of the K146A mutant of the ALLase and the K103A mutant of DHOase can be chemically rescued by short-chain carboxylic acids, such as acetic, propionic, and butyric acids, but not by ethanol, propan-1-ol, and imidazole, in the presence of Co2+ or Mn2+ ions. However, the activity was still ~10-fold less than that of wild-type ALLase. Overall, these results indicated that the 20 natural basic amino acid residues were not sufficiently able to play the role of lysine. Accordingly, we proposed that during evolution, the post-translational modification of carboxylated lysine in the cyclic amidohydrolase family was selected for promoting binuclear metal center self-assembly and increasing the nucleophilicity of the hydroxide at the active site for enzyme catalysis. This kind of chemical rescue combined with site-directed mutagenesis may also be used to identify a binuclear metal

  20. Lactate and Pyruvate Are Major Sources of Energy for Stallion Sperm with Dose Effects on Mitochondrial Function, Motility, and ROS Production.

    Science.gov (United States)

    Darr, Christa R; Varner, Dickson D; Teague, Sheila; Cortopassi, Gino A; Datta, Sandipan; Meyers, Stuart A

    2016-08-01

    Stallion sperm rely primarily on oxidative phosphorylation for production of ATP used in sperm motility and metabolism. The objective of the study was to identify which substrates included in Biggers, Whitten, and Whittingham (BWW) media are key to optimal mitochondrial function through measurements of sperm motility parameters, mitochondrial oxygen consumption, and cellular reactive oxygen species (ROS) production. It was expected that mitochondrial substrates, pyruvate and lactate, would support sperm motility and mitochondrial function better than the glycolytic substrate, glucose, due to direct utilization within the mitochondria. Measurements were performed after incubation in modified BWW media with varying concentrations of lactate, pyruvate, and glucose. The effects of media and duration of incubation on sperm motility, ROS production, and oxygen consumption were determined using a linear mixed-effects model. Duplicate ejaculates from four stallions were used in three separate experiments to determine the effects of substrate availability and concentration on sperm motility and mitochondrial function and the relationship of oxygen consumption with cellular ROS production. The present results indicate that lactate and pyruvate are the most important sources of energy for stallion sperm motility and velocity, and elicit a dose-dependent response. Additionally, lactate and pyruvate are ideal for maximal mitochondrial function, as sperm in these media operate at a very high level of their bioenergetic capability due to the high rate of energy metabolism. Moreover, we found that addition of glucose to the media is not necessary for short-term storage of equine sperm, and may even result in reduction of mitochondrial function. Finally, we have confirmed that ROS production can be the result of mitochondrial dysfunction as well as intense mitochondrial activity. © 2016 by the Society for the Study of Reproduction, Inc.

  1. Blood glucose, lactate, pyruvate, glycerol, 3-hydroxybutyrate and acetoacetate measurements in man using a centrifugal analyser with a fluorimetric attachment.

    Science.gov (United States)

    Harrison, J; Hodson, A W; Skillen, A W; Stappenbeck, R; Agius, L; Alberti, K G

    1988-03-01

    Methods are described for the analysis of glucose, lactate, pyruvate, alanine, glycerol, 3-hydroxybutyrate and acetoacetate in perchloric acid extracts of human blood, using the Cobas Bio centrifugal analyser fitted with a fluorimetric attachment. Intra-assay and inter-assay coefficients of variation ranged from 1.9 to 7.9% and from 1.0 to 7.2% respectively. Correlation coefficients ranged from 0.96 to 0.99 against established continuous-flow and manual spectrophotometric methods. All seven metabolites can be measured using a single perchloric acid extract of 20 microliter of blood. The versatility of the assays is such that as little as 100 pmol pyruvate, 3-hydroxybutyrate or as much as 15 nmol glucose can be measured in the same 20 microliter extract.

  2. Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast.

    Directory of Open Access Journals (Sweden)

    Alba Timón-Gómez

    Full Text Available Mpc proteins are highly conserved from yeast to humans and are necessary for the uptake of pyruvate at the inner mitochondrial membrane, which is used for leucine and valine biosynthesis and as a fuel for respiration. Our analysis of the yeast MPC gene family suggests that amino acid biosynthesis, respiration rate and oxidative stress tolerance are regulated by changes in the Mpc protein composition of the mitochondria. Mpc2 and Mpc3 are highly similar but functionally different: Mpc2 is most abundant under fermentative non stress conditions and important for amino acid biosynthesis, while Mpc3 is the most abundant family member upon salt stress or when high respiration rates are required. Accordingly, expression of the MPC3 gene is highly activated upon NaCl stress or during the transition from fermentation to respiration, both types of regulation depend on the Hog1 MAP kinase. Overexpression experiments show that gain of Mpc2 function leads to a severe respiration defect and ROS accumulation, while Mpc3 stimulates respiration and enhances tolerance to oxidative stress. Our results identify the regulated mitochondrial pyruvate uptake as an important determinant of respiration rate and stress resistance.

  3. Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast.

    Science.gov (United States)

    Timón-Gómez, Alba; Proft, Markus; Pascual-Ahuir, Amparo

    2013-01-01

    Mpc proteins are highly conserved from yeast to humans and are necessary for the uptake of pyruvate at the inner mitochondrial membrane, which is used for leucine and valine biosynthesis and as a fuel for respiration. Our analysis of the yeast MPC gene family suggests that amino acid biosynthesis, respiration rate and oxidative stress tolerance are regulated by changes in the Mpc protein composition of the mitochondria. Mpc2 and Mpc3 are highly similar but functionally different: Mpc2 is most abundant under fermentative non stress conditions and important for amino acid biosynthesis, while Mpc3 is the most abundant family member upon salt stress or when high respiration rates are required. Accordingly, expression of the MPC3 gene is highly activated upon NaCl stress or during the transition from fermentation to respiration, both types of regulation depend on the Hog1 MAP kinase. Overexpression experiments show that gain of Mpc2 function leads to a severe respiration defect and ROS accumulation, while Mpc3 stimulates respiration and enhances tolerance to oxidative stress. Our results identify the regulated mitochondrial pyruvate uptake as an important determinant of respiration rate and stress resistance.

  4. Rational design of carboxyl groups perpendicularly attached to a graphene sheet: a platform for enhanced biosensing applications.

    Science.gov (United States)

    Bonanni, Alessandra; Chua, Chun Kiang; Pumera, Martin

    2014-01-03

    Graphene oxide (GO)-based materials offer great potential for biofunctionalization with applications ranging from biosensing to drug delivery. Such biofunctionalization utilizes specific functional groups, typically a carboxyl moiety, as anchoring points for biomolecule. However, due to the fact that the exact chemical structure of GO is still largely unknown and poorly defined (it was postulated to consist of various oxygen-containing groups, such as epoxy, hydroxyl, carboxyl, carbonyl, and peroxy in varying ratios), it is challenging to fabricate highly biofunctionalized GO surfaces. The predominant anchoring sites (i.e., carboxyl groups) are mainly present as terminal groups on the edges of GO sheets and thus account for only a fraction of the oxygen-containing groups on GO. Herein, we suggest a direct solution to the long-standing problem of limited abundance of carboxyl groups on GO; GO was first reduced to graphene and consequently modified with only carboxyl groups grafted perpendicularly to its surface by a rational synthesis using free-radical addition of isobutyronitrile with subsequent hydrolysis. Such grafted graphene oxide can contain a high amount of carboxyl groups for consequent biofunctionalization, at which the extent of grafting is limited only by the number of carbon atoms in the graphene plane; in contrast, the abundance of carboxyl groups on "classical" GO is limited by the amount of terminal carbon atoms. Such a graphene platform embedded with perpendicularly grafted carboxyl groups was characterized in detail by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy, and its application was exemplified with single-nucleotide polymorphism detection. It was found that the removal of oxygen functionalities after the chemical reduction enhanced the electron-transfer rate of the graphene. More importantly, the introduction of carboxyl groups promoted a more efficient immobilization of DNA probes on the

  5. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    radiation balance.4,5 Major water-soluble inorganic ions are associated with atmospheric ... molecular weight carboxylic acids in aerosol samples collected from a rural ... include biomass burning, agriculture, livestock and soil dust. Tropical ...

  6. SYNTHESIS OF FLAVANONE-6-CARBOXYLIC ACID DERIVATIVES FROM SALICYLIC ACID DERIVATIVE

    Directory of Open Access Journals (Sweden)

    Muhammad Idham Darussalam Mardjan

    2012-02-01

    Full Text Available Synthesis of flavanone-6-carboxylic acid derivatives had been conducted via the route of chalcone. The synthesis was carried out from salicylic acid derivative, i.e. 4-hydroxybenzoic acid, via esterification, Fries rearrangement, Claisen-Schmidt condensation and 1,4-nucleophilic addition reactions. Structure elucidation of products was performed using FT-IR, 1H-NMR, GC-MS and UV-Vis spectrometers. Reaction of 4-hydroxybenzoic acid with methanol catalyzed with sulfuric acid produced methyl 4-hydroxybenzoate in 87% yield. The acid-catalyzed-acetylation of the product using acetic anhydride gave methyl 4-acetoxybenzoate in 75% yield. Furthermore, solvent-free Fries rearrangement of methyl 4-acetoxybenzoate in the presence of AlCl3 produced 3-acetyl-4-hydroxybenzoic acid as the acetophenone derivatives in 67% yield. Then, Claisen-Schmidt condensation of the acetophenone and benzaldehyde derivatives of p-anisaldehyde and veratraldehyde in basic condition gave 2'-hydroxychalcone-5'-carboxylic acid derivatives  in 81 and 71 % yield, respectively. Finally, the ring closure reaction of the chalcone yielded the corresponding flavanone-6-carboxylic acids in 67 and 59% yield, respectively.

  7. Highly Carboxylated Cellulose Nanofibers via Succinic Anhydride Esterification of Wheat Fibers and Facile Mechanical Disintegration.

    Science.gov (United States)

    Sehaqui, H; Kulasinski, K; Pfenninger, N; Zimmermann, T; Tingaut, P

    2017-01-09

    We report herein the preparation of 4-6 nm wide carboxyl-functionalized cellulose nanofibers (CNF) via the esterification of wheat fibers with cyclic anhydrides (maleic, phtalic, and succinic) followed by an energy-efficient mechanical disintegration process. Remarkable results were achieved via succinic anhydride esterification that enabled CNF isolation by a single pass through the microfluidizer yielding a transparent and thick gel. These CNF carry the highest content of carboxyl groups ever reported for native cellulose nanofibers (3.8 mmol g -1 ). Compared to conventional carboxylated cellulose nanofibers prepared via Tempo-mediated oxidation of wheat fibers, the present esterified CNF display a higher molar-mass and a better thermal stability. Moreover, highly carboxylated CNF from succinic anhydride esterification were effectively integrated into paper filters for the removal of lead from aqueous solution and are potentially of interest as carrier of active molecules or as transparent films for packaging, biomedical or electronic applications.

  8. Domain interaction in rabbit muscle pyruvate kinase. II. Small angle neutron scattering and computer simulation.

    Science.gov (United States)

    Consler, T G; Uberbacher, E C; Bunick, G J; Liebman, M N; Lee, J C

    1988-02-25

    The effects of ligands on the structure of rabbit muscle pyruvate kinase were studied by small angle neutron scattering. The radius of gyration, RG, decreases by about 1 A in the presence of the substrate phosphoenolpyruvate, but increases by about the same magnitude in the presence of the allosteric inhibitor phenylalanine. With increasing pH or in the absence of Mg2+ and K+, the RG of pyruvate kinase increases. Hence, there is a 2-A difference in RG between two alternative conformations. Length distribution analysis indicates that, under all experimental conditions which increase the radius of gyration, there is a pronounced increase observed in the probability for interatomic distance between 80 and 110 A. These small angle neutron scattering results indicate a "contraction" and "expansion" of the enzyme when it transforms between its active and inactive forms. Using the alpha-carbon coordinates of crystalline cat muscle pyruvate kinase, a length distribution profile was calculated, and it matches the scattering profile of the inactive form. These observations are expected since the crystals were grown in the absence of divalent cations (Stuart, D. I., Levine, M., Muirhead, H., and Stammers, D. K. (1979) J. Mol. Biol. 134, 109-142). Hence, results from neutron scattering, x-ray crystallographic, and sedimentation studies (Oberfelder, R. W., Lee, L. L.-Y., and Lee, J.C. (1984) Biochemistry 23, 3813-3821) are totally consistent with each other. With the aid of computer modeling, the crystal structure has been manipulated in order to effect changes that are consistent with the conformational change described by the solution scattering data. The structural manipulation involves the rotation of the B domain relative to the A domain, leading to the closure of the cleft between these domains. These manipulations resulted in the generation of new sets of atomic (C-alpha) coordinates, which were utilized in calculations, the result of which compared favorably with the

  9. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT--relationship to newly identified mitochondrial pyruvate carrier proteins.

    Directory of Open Access Journals (Sweden)

    Jerry R Colca

    Full Text Available Thiazolidinedione (TZD insulin sensitizers have the potential to effectively treat a number of human diseases, however the currently available agents have dose-limiting side effects that are mediated via activation of the transcription factor PPARγ. We have recently shown PPARγ-independent actions of TZD insulin sensitizers, but the molecular target of these molecules remained to be identified. Here we use a photo-catalyzable drug analog probe and mass spectrometry-based proteomics to identify a previously uncharacterized mitochondrial complex that specifically recognizes TZDs. These studies identify two well-conserved proteins previously known as brain protein 44 (BRP44 and BRP44 Like (BRP44L, which recently have been renamed Mpc2 and Mpc1 to signify their function as a mitochondrial pyruvate carrier complex. Knockdown of Mpc1 or Mpc2 in Drosophila melanogaster or pre-incubation with UK5099, an inhibitor of pyruvate transport, blocks the crosslinking of mitochondrial membranes by the TZD probe. Knockdown of these proteins in Drosophila also led to increased hemolymph glucose and blocked drug action. In isolated brown adipose tissue (BAT cells, MSDC-0602, a PPARγ-sparing TZD, altered the incorporation of (13C-labeled carbon from glucose into acetyl CoA. These results identify Mpc1 and Mpc2 as components of the mitochondrial target of TZDs (mTOT and suggest that understanding the modulation of this complex, which appears to regulate pyruvate entry into the mitochondria, may provide a viable target for insulin sensitizing pharmacology.

  10. “Scanning mutagenesis” of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Science.gov (United States)

    The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1alpha subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated...

  11. On the one pot syntheses of chromeno[4,3-b]pyridine-3-carboxylate and chromeno[3,4-c]pyridine-3-carboxylate and dihydropyridines

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete-Encina, Patricio A.; Vega-Retter, Christian, E-mail: pnavarre@vtr.ne [Universidad de Chile, Santiago (Chile). Facultad de Ciencias Quimicas y Farmaceuticas. Lab. de Sintesis Organica y Fisicoquimica; Salazar, Ricardo; Perez, Karina; Squella, Juan A.; Nunez-Vergara, Luis J. [Universidad de Chile, Santiago (Chile). Fac. de Ciencias Quimicas y Farmaceuticas. Lab. de Bioelectroquimica

    2010-07-01

    Substituted chromenos, dihydropyridines and pyridines have been important in the syntheses of compounds having interesting pharmacological properties. Therefore, we found of interest to synthesize chromenopyridines and chromeno dihydropyridines (i.e., fused chromeno and dihydropyridine or pyridine rings) to further study their biological activity. Here, we propose one-pot syntheses for substituted ethyl-2,4-dimethyl-5-oxo-5H-chromeno[4,3-b]pyridine-3-carboxylates, ethyl-2,4-dimethyl-5-oxo-5H-chromeno[3,4-c]pyridine-3-carboxylates and their respective 1,4-dihydropyridines based on a modified Hantzsch pyridine synthesis using 2-hydroxyaryl aldehydes, with electron withdrawing and electron donating groups on the phenyl ring, as starting reactants. Sixteen compounds were synthesized by the described method and fully characterized. An average yield of 37% was obtained for the different derivatives. (author)

  12. On the one pot syntheses of chromeno[4,3-b]pyridine-3-carboxylate and chromeno[3,4-c]pyridine-3-carboxylate and dihydropyridines

    International Nuclear Information System (INIS)

    Navarrete-Encina, Patricio A.; Vega-Retter, Christian; Salazar, Ricardo; Perez, Karina; Squella, Juan A.; Nunez-Vergara, Luis J.

    2010-01-01

    Substituted chromenos, dihydropyridines and pyridines have been important in the syntheses of compounds having interesting pharmacological properties. Therefore, we found of interest to synthesize chromenopyridines and chromeno dihydropyridines (i.e., fused chromeno and dihydropyridine or pyridine rings) to further study their biological activity. Here, we propose one-pot syntheses for substituted ethyl-2,4-dimethyl-5-oxo-5H-chromeno[4,3-b]pyridine-3-carboxylates, ethyl-2,4-dimethyl-5-oxo-5H-chromeno[3,4-c]pyridine-3-carboxylates and their respective 1,4-dihydropyridines based on a modified Hantzsch pyridine synthesis using 2-hydroxyaryl aldehydes, with electron withdrawing and electron donating groups on the phenyl ring, as starting reactants. Sixteen compounds were synthesized by the described method and fully characterized. An average yield of 37% was obtained for the different derivatives. (author)

  13. Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Zargarian, S. Sh.; Haddadi-Asl, V., E-mail: haddadi@aut.ac.ir; Hematpour, H. [Amirkabir University of Technology, Department of Polymer Engineering and Color Technology (Iran, Islamic Republic of)

    2015-05-15

    Halloysite nanotubes (HNT) (cylindrical shape with external diameter and length in the range of 30–80 nm and 0.2–1 µm, respectively) were functionalized with 3-aminopropyltriethoxysilane (APTES) from hydroxyl groups by a coupling reaction. Subsequently, maleic anhydride was attached to the APTES moieties to yield carboxylic acid-functionalized HNT. Loading and subsequent release of a model drug molecule diphenhydramine hydrochloride (DPH) on modified and unmodified nanotubes were investigated. Morphology of HNT was studied by electron microscopy. Successful attachment of APTES and carboxylic acid groups to halloysite and drug loading were evaluated by Fourier transform infrared spectroscopy. The amount of surface modification and drug adsorption capacity were calculated via thermogravimetric analysis. The ordered crystal structure of loaded drug was evaluated by X-ray diffraction. UV–Visible spectrophotometer was used to study drug release from modified and unmodified samples. Carboxylated halloysite exhibits higher loading capacity and prolonged release of DPH as compared to that of the natural halloysite.

  14. Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride

    International Nuclear Information System (INIS)

    Zargarian, S. Sh.; Haddadi-Asl, V.; Hematpour, H.

    2015-01-01

    Halloysite nanotubes (HNT) (cylindrical shape with external diameter and length in the range of 30–80 nm and 0.2–1 µm, respectively) were functionalized with 3-aminopropyltriethoxysilane (APTES) from hydroxyl groups by a coupling reaction. Subsequently, maleic anhydride was attached to the APTES moieties to yield carboxylic acid-functionalized HNT. Loading and subsequent release of a model drug molecule diphenhydramine hydrochloride (DPH) on modified and unmodified nanotubes were investigated. Morphology of HNT was studied by electron microscopy. Successful attachment of APTES and carboxylic acid groups to halloysite and drug loading were evaluated by Fourier transform infrared spectroscopy. The amount of surface modification and drug adsorption capacity were calculated via thermogravimetric analysis. The ordered crystal structure of loaded drug was evaluated by X-ray diffraction. UV–Visible spectrophotometer was used to study drug release from modified and unmodified samples. Carboxylated halloysite exhibits higher loading capacity and prolonged release of DPH as compared to that of the natural halloysite

  15. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E.

    NARCIS (Netherlands)

    Boxma, B.; Voncken, F.L.M.; Jannink, S.A.; Alen, T.A. van; Akhmanova, A.S.; Weelden, S.W. van; Hellemond, J.J. van; Ricard, G.N.S.; Huynen, M.A.; Tielens, A.G.; Hackstein, J.H.P.

    2004-01-01

    Anaerobic chytridiomycete fungi possess hydrogenosomes, which generate hydrogen and ATP, but also acetate and formate as end-products of a prokaryotic-type mixed-acid fermentation. Notably, the anaerobic chytrids Piromyces and Neocallimastix use pyruvate:formate lyase (PFL) for the catabolism of

  16. Gluconeogenesis from labeled carbon: estimating isotope dilution

    International Nuclear Information System (INIS)

    Kelleher, J.K.

    1986-01-01

    To estimate the rate of gluconeogenesis from steady-state incorporation of labeled 3-carbon precursors into glucose, isotope dilution must be considered so that the rate of labeling of glucose can be quantitatively converted to the rate of gluconeogenesis. An expression for the value of this isotope dilution can be derived using mathematical techniques and a model of the tricarboxylic acid (TCA) cycle. The present investigation employs a more complex model than that used in previous studies. This model includes the following pathways that may affect the correction for isotope dilution: 1) flux of 3-carbon precursor to the oxaloacetate pool via acetyl-CoA and the TCA cycle; 2) flux of 4- or 5-carbon compounds into the TCA cycle; 3) reversible flux between oxaloacetate (OAA) and pyruvate and between OAA and fumarate; 4) incomplete equilibrium between OAA pools; and 5) isotope dilution of 3-carbon tracers between the experimentally measured pool and the precursor for the TCA-cycle OAA pool. Experimental tests are outlined which investigators can use to determine whether these pathways are significant in a specific steady-state system. The study indicated that flux through these five pathways can significantly affect the correction for isotope dilution. To correct for the effects of these pathways an alternative method for calculating isotope dilution is proposed using citrate to relate the specific activities of acetyl-CoA and OAA

  17. Leigh syndrome associated with a deficiency of the pyruvate dehydrogenase complex: results of treatment with a ketogenic diet

    NARCIS (Netherlands)

    Wijburg, F. A.; Barth, P. G.; Bindoff, L. A.; Birch-Machin, M. A.; van der Blij, J. F.; Ruitenbeek, W.; TURNBULL, D. M.; Schutgens, R. B.

    1992-01-01

    A one-year-old boy suffering from intermittent lactic acidosis, muscular hypotonia, horizontal gaze paralysis and spasticity in both legs had low activity of the pyruvate dehydrogenase complex associated with low amounts of immunoreactive E 1 alpha and E 1 beta. Leigh syndrome was diagnosed on the

  18. Protective effect of indole-3-pyruvate against ultraviolet b-induced damage to cultured HaCaT keratinocytes and the skin of hairless mice.

    Directory of Open Access Journals (Sweden)

    Reiji Aoki

    Full Text Available Previous investigations demonstrated that pyruvate protects human keratinocytes against cell damage stemming from exposure to ultraviolet B (UVB radiation. This study endeavoured to elucidate the protective capacity of aromatic pyruvates (e.g., phenylpyruvate (PPyr, 4-hydroxyphenylpyruvate (HPPyr, and indole-3-pyruvate (IPyr against UVB-induced injury to skin cells, both in vitro and in vivo. Cultured human HaCaT keratinocytes were irradiated with UVB light (60 mJ/cm2 and maintained with or without test compounds (1-25 mM.In addition, the dorsal skin of hairless mice (HR-1 was treated with test compounds (10 μmol and exposed to UVB light (1 J/cm2 twice [corrected]. The ability of the test compounds to ameliorate UVB-induced cytotoxicity and inflammation was then assessed. Aromatic pyruvates reduced cytotoxicity in UVB-irradiated HaCaT keratinocytes, and also diminished the expression of interleukin 1β (IL-1β and interleukin 6 (IL-6. IPyr was more efficacious than either PPyr or HPPyr. Furthermore, only IPyr inhibited cyclooxygenase-2 (Cox-2 expression at both the mRNA and the protein level in UVB-treated keratinocytes. Topical application of IPyr to the dorsal skin of hairless mice reduced the severity of UVB-induced skin lesions, the augmentation of dermal thickness, and transepithelial water loss. Overproduction of IL-1β and IL-6 in response to UVB radiation was also suppressed in vivo by the topical administration of IPyr. These data strongly suggest that IPyr might find utility as a UVB-blocking reagent in therapeutic strategies to lessen UVB-induced inflammatory skin damage.

  19. Metabolic fate of glucose in rats with traumatic brain injury and pyruvate or glucose treatments: A NMR spectroscopy study.

    Science.gov (United States)

    Shijo, Katsunori; Sutton, Richard L; Ghavim, Sima S; Harris, Neil G; Bartnik-Olson, Brenda L

    2017-01-01

    Administration of sodium pyruvate (SP; 9.08 μmol/kg, i.p.), ethyl pyruvate (EP; 0.34 μmol/kg, i.p.) or glucose (GLC; 11.1 μmol/kg, i.p.) to rats after unilateral controlled cortical impact (CCI) injury has been reported to reduce neuronal loss and improve cerebral metabolism. In the present study these doses of each fuel or 8% saline (SAL; 5.47 nmoles/kg) were administered immediately and at 1, 3, 6 and 23 h post-CCI. At 24 h all CCI groups and non-treated Sham injury controls were infused with [1,2 13 C] glucose for 68 min 13 C nuclear magnetic resonance (NMR) spectra were obtained from cortex + hippocampus tissues from left (injured) and right (contralateral) hemispheres. All three fuels increased lactate labeling to a similar degree in the injured hemisphere. The amount of lactate labeled via the pentose phosphate and pyruvate recycling (PPP + PR) pathway increased in CCI-SAL and was not improved by SP, EP, and GLC treatments. Oxidative metabolism, as assessed by glutamate labeling, was reduced in CCI-SAL animals. The greatest improvement in oxidative metabolism was observed in animals treated with SP and fewer improvements after EP or GLC treatments. Compared to SAL, all three fuels restored glutamate and glutamine labeling via pyruvate carboxylase (PC), suggesting improved astrocyte metabolism following fuel treatment. Only SP treatments restored the amount of [4 13 C] glutamate labeled by the PPP + PR pathway to sham levels. Milder injury effects in the contralateral hemisphere appear normalized by either SP or EP treatments, as increases in the total pool of 13 C lactate and labeling of lactate in glycolysis, or decreases in the ratio of PC/PDH labeling of glutamine, were found only for CCI-SAL and CCI-GLC groups compared to Sham. The doses of SP, EP and GLC examined in this study all enhanced lactate labeling and restored astrocyte-specific PC activity but differentially affected neuronal metabolism after CCI injury. The restoration of

  20. miR-378 Activates the Pyruvate-PEP Futile Cycle and Enhances Lipolysis to Ameliorate Obesity in Mice

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2016-03-01

    Full Text Available Obesity has been linked to many health problems, such as diabetes. However, there is no drug that effectively treats obesity. Here, we reveal that miR-378 transgenic mice display reduced fat mass, enhanced lipolysis, and increased energy expenditure. Notably, administering AgomiR-378 prevents and ameliorates obesity in mice. We also found that the energy deficiency seen in miR-378 transgenic mice was due to impaired glucose metabolism. This impairment was caused by an activated pyruvate-PEP futile cycle via the miR-378-Akt1-FoxO1-PEPCK pathway in skeletal muscle and enhanced lipolysis in adipose tissues mediated by miR-378-SCD1. Our findings demonstrate that activating the pyruvate-PEP futile cycle in skeletal muscle is the primary cause of elevated lipolysis in adipose tissues of miR-378 transgenic mice, and it helps orchestrate the crosstalk between muscle and fat to control energy homeostasis in mice. Thus, miR-378 may serve as a promising agent for preventing and treating obesity in humans.

  1. Supramolecular Coordination Assemblies Constructed From Multifunctional Azole-Containing Carboxylic Acids

    Directory of Open Access Journals (Sweden)

    Yuheng Deng

    2010-05-01

    Full Text Available This paper provides a brief review of recent progress in the field of metal coordination polymers assembled from azole-containing carboxylic acids and gives a diagrammatic summary of the diversity of topological structures in the resulting infinite metal-organic coordination networks (MOCNs. Azole-containing carboxylic acids are a favorable kind of multifunctional ligand to construct various metal complexes with isolated complexes and one, two and three dimensional structures, whose isolated complexes are not the focus of this review. An insight into the topology patterns of the infinite coordination polymers is provided. Analyzed topologies are compared with documented topologies and catalogued by the nature of nodes and connectivity pattern. New topologies which are not available from current topology databases are described and demonstrated graphically.

  2. Increased expression of pyruvate carboxylase and biotin protein ligase increases lysine production in a biotin prototrophic Corynebacterium glutamicum strain

    DEFF Research Database (Denmark)

    Wang, Zhihao; Moslehi-Jenabian, Soloomeh; Solem, Christian

    2015-01-01

    , and achieved biotin prototrophy. We found that AHP-3, containing pBIO, was able to produce lysine in a medium lacking biotin and that the lysine yield on glucose was similar to what is obtained when using a medium containing biotin. However, there was a decrease in specific growth rate of 20% when the strain...... pimeloyl-Acyl Carrier Protein [ACP]) formation. Pyruvate carboxylase (pycA), a biotin-dependent enzyme needed for lysine biosynthesis and biotin ligase (birA), which is responsible for attaching biotin to pyruvate carboxylase, were overexpressed by replacing the native promoters with the strong superoxide...... dismutase (sod) promoter, to see whether growth could be restored. Neither pycA nor birA overexpression, whether alone or in combination, had an effect on specific growth rate, but they did have a positive effect on lysine yield, which increased by 55% in the strain overexpressing both enzymes....

  3. Exploration of swapping enzymatic function between two proteins: A simulation study of chorismate mutase and isochorismate pyruvate lyase

    Science.gov (United States)

    Choutko, Alexandra; Eichenberger, Andreas P; Gunsteren, Wilfred F; Dolenc, Jožica

    2013-01-01

    The enzyme chorismate mutase EcCM from Escherichia coli catalyzes one of the few pericyclic reactions in biology, the transformation of chorismate to prephenate. The isochorismate pyruvate lyase PchB from Pseudomonas aeroginosa catalyzes another pericyclic reaction, the isochorismate to salicylate transformation. Interestingly, PchB possesses weak chorismate mutase activity as well thus being able to catalyze two distinct pericyclic reactions in a single active site. EcCM and PchB possess very similar folds, despite their low sequence identity. Using molecular dynamics simulations of four combinations of the two enzymes (EcCM and PchB) with the two substrates (chorismate and isochorismate) we show that the electrostatic field due to EcCM at atoms of chorismate favors the chorismate to prephenate transition and that, analogously, the electrostatic field due to PchB at atoms of isochorismate favors the isochorismate to salicylate transition. The largest differences between EcCM and PchB in electrostatic field strengths at atoms of the substrates are found to be due to residue side chains at distances between 0.6 and 0.8 nm from particular substrate atoms. Both enzymes tend to bring their non-native substrate in the same conformation as their native substrate. EcCM and to a lower extent PchB fail in influencing the forces on and conformations of the substrate such as to favor the other chemical reaction (isochorismate pyruvate lyase activity for EcCM and chorismate mutase activity for PchB). These observations might explain the difficulty of engineering isochorismate pyruvate lyase activity in EcCM by solely mutating active site residues. PMID:23595942

  4. Exploration of swapping enzymatic function between two proteins: a simulation study of chorismate mutase and isochorismate pyruvate lyase.

    Science.gov (United States)

    Choutko, Alexandra; Eichenberger, Andreas P; van Gunsteren, Wilfred F; Dolenc, Jožica

    2013-06-01

    The enzyme chorismate mutase EcCM from Escherichia coli catalyzes one of the few pericyclic reactions in biology, the transformation of chorismate to prephenate. The isochorismate pyruvate lyase PchB from Pseudomonas aeroginosa catalyzes another pericyclic reaction, the isochorismate to salicylate transformation. Interestingly, PchB possesses weak chorismate mutase activity as well thus being able to catalyze two distinct pericyclic reactions in a single active site. EcCM and PchB possess very similar folds, despite their low sequence identity. Using molecular dynamics simulations of four combinations of the two enzymes (EcCM and PchB) with the two substrates (chorismate and isochorismate) we show that the electrostatic field due to EcCM at atoms of chorismate favors the chorismate to prephenate transition and that, analogously, the electrostatic field due to PchB at atoms of isochorismate favors the isochorismate to salicylate transition. The largest differences between EcCM and PchB in electrostatic field strengths at atoms of the substrates are found to be due to residue side chains at distances between 0.6 and 0.8 nm from particular substrate atoms. Both enzymes tend to bring their non-native substrate in the same conformation as their native substrate. EcCM and to a lower extent PchB fail in influencing the forces on and conformations of the substrate such as to favor the other chemical reaction (isochorismate pyruvate lyase activity for EcCM and chorismate mutase activity for PchB). These observations might explain the difficulty of engineering isochorismate pyruvate lyase activity in EcCM by solely mutating active site residues. © 2013 The Protein Society.

  5. Cloning of affecting pyruvate decarboxylase gene in the production bioethanol of agricultural waste in the E.coli bacteria

    Directory of Open Access Journals (Sweden)

    Masome Zeinali

    2016-09-01

    Full Text Available Introduction: Ethanol made by a biomass is one of the useful strategies in terms of economic and environmental and as a clean and safe energy to replace fossil fuels considered and examined. Materials and methods: In this study, key enzyme in the production of ethanol (Pyruvate decarboxylase from Zymomonas mobilis bacteria was isolated and cloned at E. coli bacteria by freeze and thaw method. For gene cloning, we used specific primers of pdc and PCR reaction and then pdc gene isolated and pET 28a plasmid double digested with (Sal I and Xho I enzymes. Digestion Products were ligated by T4 DNA ligase in 16 °C for 16 hours. Results: Results of bacteria culture showed that a few colonies containing pET 28a plasmid could grow. Result of colony pcr of pdc gene with specific primers revealed 1700 bp bands in 1% agarose gel electrophoresis. The results of PCR with T7 promotor forward primer and pdc revers primer have proved the accurate direction of integration of pdc gene into plasmid and revealed 1885 bp band. Double digestion of recombinant plasmid with SalI and XhoI enzymes revealed same bands. Finally, RT showed the expected band of 1700 bp that implies the desired gene expression in the samples. Discussion and conclusion: Due to the increased production of ethanol via pyruvate decarboxylase gene cloning in expression plasmids with a strong promoter upstream of the cloning site can conclude that, pyruvate decarboxylase cloning as a key gene would be useful and according to beneficial properties of E. coli bacteria, transfering the gene to bacteria appears to be reasonable.

  6. Hydrated electron: a destroyer of perfluorinated carboxylates?

    International Nuclear Information System (INIS)

    Huang Li; Dong Wenbo; Hou Huiqi

    2006-01-01

    As a class, perfluorinated carboxylate (PFCA) was ranked among the most prominent organohalogen contaminants in environment with respect to thermal, chemical and biological inertness. Hydrated electron (e aq - ), a highly reactive and strongly reductive species, has been reported to readily decompose perfluoroaromatic compounds via intermolecular electron transfer process in aqueous solution. Question then arose: what would happen if perfluorinated carboxylates encountered with hydrated electron? Original laboratory trial on the interaction between F(CF 2 ) n COO - (n=1, 3, 7) and hydrated electron was attempted by using laser flash photolysis technique in this research work. Abundant hydrated electron (e aq - ) could be produced by photolysis of 1.25 x 10 -4 M K 4 Fe(CN) 6 in nitrogen saturated water. In the presence of F(CF 2 ) n COO - (n=1, 3, 7), the decay of e aq - was observed to enhance dramatically, indicating e aq - was able to attack PFCAs. On addition of perfluorinated carboxylates, the loss of e aq - was mainly due to the following channels. By mixing the solution of K 4 Fe(CN) 6 with excess K 3 Fe(CN) 6 and PFCAs, e aq - turned to decayed corresponding to mixed first- and second-order kinetics. Rate constants for the reactions of e aq - with PFCAs could be then easily determined by monitoring the decay of e aq - absorption at 690 nm. Since perfluorinated carboxylates were salts, the influence of ionic strength on k 3 was examined systematically by carrying out experiments of varying ionic strength ranging from 0.009 up to 0.102 M by adding NaClO 4 . In this manner, the second order rate constants for e-aq with CF 3 COO - , C 3 F 7 COO - , C 7 F 15 COO - were derived to be (1.9±0.2) x 10 6 M -1 S -1 (μ=0), (7.1±0.2) x 10 6 M -1 S -1 (μ=0) and (1.7±0.5) x10 7 M -1 S -1 (μ=0.009 M) respectively. Apparently, the length of F(CF 2 ) n group exerted substantial influence on the rate constant. Further study on byproducts analysis by ion chromatography

  7. Preparation and reactivity of carboxylic acid-terminated boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Niedziolka-Joensson, Joanna; Boland, Susan; Leech, Donal; Boukherroub, Rabah; Szunerits, Sabine

    2010-01-01

    The paper reports on the formation of carboxy-terminated boron-doped diamond (BDD) electrodes. The carboxylic acid termination was prepared in a controlled way by reacting photochemically oxidized BDD with succinic anhydride. The resulting interface was readily employed for the linking of an amine-terminated ligand such as an osmium complex bearing an amine terminal group. The interfaces were characterized using X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). Contact angle measurements were used to follow the changes in surface wetting properties due to surface functionalization. The chemical reactivity of the carboxyl-terminated BDD was investigated by covalent coupling of the acid groups to an amine-terminated osmium complex.

  8. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Rana; Emami, Shahriar Hojjati, E-mail: semami@aut.ac.ir [Amirkabir University of Technology, Department of Biomedical Engineering (Iran, Islamic Republic of); Faghihi, Shahab, E-mail: shahabeddin.faghihi@mail.mcgill.ca, E-mail: sfaghihi@nigeb.ac.ir [National Institute of Genetic Engineering and Biotechnology, Tissue Engineering and Biomaterials Division (Iran, Islamic Republic of)

    2015-02-15

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV–Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets’ surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50–100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high

  9. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    Science.gov (United States)

    Imani, Rana; Emami, Shahriar Hojjati; Faghihi, Shahab

    2015-02-01

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV-Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets' surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50-100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high surface

  10. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    International Nuclear Information System (INIS)

    Imani, Rana; Emami, Shahriar Hojjati; Faghihi, Shahab

    2015-01-01

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV–Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets’ surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50–100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high

  11. Solid state structure of thorium(IV) complexes with common aminopoly-carboxylate ligands

    International Nuclear Information System (INIS)

    Thuery, Pierre

    2011-01-01

    The crystal structures of the complexes formed by reaction of thorium(IV) nitrate with iminodiacetic acid (H 2 IDA), nitrilotriacetic acid (H 3 NTA), and ethylenediaminetetraacetic acid (H 4 EDTA) under hydrothermal conditions are reported. In [Th(HIDA) 2 (C 2 O 4 )].H 2 O (1), the metal atom is chelated by two carboxylate groups from two HIDA - anions and by two oxalate ligands formed in situ; two additional oxygen atoms from two more HIDA - anions complete the ten-coordinate environment of bi-capped square anti-prismatic geometry. The uncoordinated nitrogen atom is protonated and involved in hydrogen bonding. Two different ligands are present in [Th(NTA)(H 2 NTA)(H 2 O)].H 2 O (2), one of them being a O 3 ,N-chelating tri-anion which acts also as a bridge toward two neighboring metal ions, and the other being a bis-monodentate bridging species with an uncoordinated carboxylic arm and a central ammonium group. An aqua ligand completes the nine-coordinated, capped square anti-prismatic metal environment. The EDTA 4- anion in [Th(EDTA)(H 2 O)].2H 2 O (3) is chelating through one oxygen atom from each carboxylate group and the two nitrogen atoms, as in a previously reported molecular complex. Two carboxylate groups are bridging, which, with the addition of an aqua ligand, gives a capped square anti-prismatic coordination polyhedron. Aminopoly-carboxylate ligands have been much investigated in relation with actinide decorporation and nuclear wastes management studies, and the present results add to the structural information available on their complexes with thorium(IV), which has mainly been obtained up to now by extended X-ray absorption fine structure (EXAFS) spectroscopy. In particular, the bridging (non-chelating) coordination mode of H 2 NTA - is a novel feature in this context. All three complexes crystallize as two-dimensional assemblies and are thus novel examples of thorium-organic coordination polymers. (author)

  12. Silver(I) and copper(II)-imidazolium carboxylates: Efficient catalysts ...

    Indian Academy of Sciences (India)

    GANESAN PRABUSANKAR

    the reaction between corresponding carboxylic acid ligands and metal salts. These new metal .... g), DMF (2 mL) and water (1 mL) was added; then, the sus- pension was ..... ence of five mol% potassium hydroxide as base in 1 and. Scheme 3.

  13. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of 'Honeycrisp' apple (Malus domestica Borkh) with excessive accumulation of carbohydrates.

    Science.gov (United States)

    Wang, Huicong; Ma, Fangfang; Cheng, Lailiang

    2010-07-01

    Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of 'Honeycrisp' apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO(2) assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to "consume" the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.

  14. Methyl (Sp-2-(diphenylphosphinoferrocene-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Petr Štěpnička

    2009-10-01

    Full Text Available The title compound, [Fe(C5H5(C19H16O2P], obtained serendipitously during recrystallization of 1-hydroxybenzotriazolyl (Sp-2-(diphenylphosphinoferrocene-1-carboxylate from methanol, crystallizes in the chiral space group P212121. Its crystal structure not only confirms the anticipated absolute configuration but also establishes a rather regular geometry for the ferrocene unit, devoid of any significant deformation due to the attached substituents. In the crystal, symmetry-related molecules are linked via weak C—H...O interactions.

  15. Carbon dioxide utilization via carbonate-promoted C-H carboxylation.

    Science.gov (United States)

    Banerjee, Aanindeeta; Dick, Graham R; Yoshino, Tatsuhiko; Kanan, Matthew W

    2016-03-10

    Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming carbon-carbon (C-C) bonds efficiently: although CO2 reacts readily with carbon-centred nucleophiles, generating these intermediates requires high-energy reagents (such as highly reducing metals or strong organic bases), carbon-heteroatom bonds or relatively acidic carbon-hydrogen (C-H) bonds. These requirements negate the environmental benefit of using CO2 as a substrate and limit the chemistry to low-volume targets. Here we show that intermediate-temperature (200 to 350 degrees Celsius) molten salts containing caesium or potassium cations enable carbonate ions (CO3(2-)) to deprotonate very weakly acidic C-H bonds (pKa > 40), generating carbon-centred nucleophiles that react with CO2 to form carboxylates. To illustrate a potential application, we use C-H carboxylation followed by protonation to convert 2-furoic acid into furan-2,5-dicarboxylic acid (FDCA)--a highly desirable bio-based feedstock with numerous applications, including the synthesis of polyethylene furandicarboxylate (PEF), which is a potential large-scale substitute for petroleum-derived polyethylene terephthalate (PET). Since 2-furoic acid can readily be made from lignocellulose, CO3(2-)-promoted C-H carboxylation thus reveals a way to transform inedible biomass and CO2 into a valuable feedstock chemical. Our results provide a new strategy for using CO2 in the synthesis of multi-carbon compounds.

  16. Biotransformation of fluorophenyl pyridine carboxylic acids by the model fungus Cunninghamella elegans.

    Science.gov (United States)

    Palmer-Brown, William; Dunne, Brian; Ortin, Yannick; Fox, Mark A; Sandford, Graham; Murphy, Cormac D

    2017-09-01

    1. Fluorine plays a key role in the design of new drugs and recent FDA approvals included two fluorinated drugs, tedizolid phosphate and vorapaxar, both of which contain the fluorophenyl pyridyl moiety. 2. To investigate the likely phase-I (oxidative) metabolic fate of this group, various fluorinated phenyl pyridine carboxylic acids were incubated with the fungus Cunninghamella elegans, which is an established model of mammalian drug metabolism. 3.  19 F NMR spectroscopy established the degree of biotransformation, which varied depending on the position of fluorine substitution, and gas chromatography-mass spectrometry (GC-MS) identified alcohols and hydroxylated carboxylic acids as metabolites. The hydroxylated metabolites were further structurally characterised by nuclear magnetic resonance spectroscopy (NMR), which demonstrated that hydroxylation occurred on the 4' position; fluorine in that position blocked the hydroxylation. 4. The fluorophenyl pyridine carboxylic acids were not biotransformed by rat liver microsomes and this was a consequence of inhibitory action, and thus, the fungal model was crucial in obtaining metabolites to establish the mechanism of catabolism.

  17. CARBOXYLIC ACIDS OF HERB OF THYMUS CRETACEUS KLOK. ET SCHOST

    Directory of Open Access Journals (Sweden)

    V. N. Bubenchikova

    2014-01-01

    Full Text Available We have studied carboxylic acids of the herb of Thymus cretaceus Klok. et Schost which is widespread on a territory of some regions (Belgorod, Voronezh. The study was carried out using gas-liquid chromatography at Agilent Technologies 6890 chromatographer with massspectrometric detector 5973 N. Acids concentration was calculated by means of inner standard.We have established that carboxylic acids of Thymus cretaceus are represented by 34 compounds. Palmitic (1779.02 mg/kg, behenic (1084.15 mg/kg, levulinic (986.24 mg/kg and linoleic acids (678.82 mg/kg predominate among fatty acids; citric (9835.14 mg/kg, malonic (447.91 mg/kg and oxalic acids (388.32 mg/kg predominate among organic acids; andferulic acid predominate amongphenolcarbonic acids.

  18. A comparison of properties between carboxylated acrylic rubbers prepared by γ-ray irradiation and chemical method

    International Nuclear Information System (INIS)

    Wang Weiwei; Chang Zhenqi; Wang Mozhen; Zhang Zhicheng; Lv Pin

    2006-01-01

    Acrylic rubbers (ACM) carboxylated by acrylic acid or itaconic acid were prepared by 60 Co γ-ray or chemical-initiator (K 2 S 2 O 8 ) induced emulsion copolymerization. The polymers were characterized by Fourier transform infrared spectroscopy (FT-IR). Acid value, molecular weight and polydispersity index (PDI) of the polymers were determined by non-aqueous titration method and gel permeation chromatography (GPC), respectively. Vulcanization and mechanical properties of the filled ACM were studied by rheometric measurement, gel fraction analysis, mechanical property tests and dynamic mechanical thermal analysis (DMTA). The results show that the ACMs prepared by γ-ray irradiation have lower acid value, higher molecular weight and narrower PDI than chemically prepared ACMs of the same compositions. The itaconic acid carboxylated ACM has better cure characteristics and mechanical properties than the acrylic acid carboxylated ACM. The itaconic acid carboxylated ACM prepared by γ-ray irradiation has higher gel fraction and better cure characteristics as well as mechanical properties than that prepared by chemical method. (authors)

  19. Cloning of phenazine carboxylic acid genes of Fusarium fujikuroi ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-08

    Mar 8, 2010 ... genetic modification can improve the efficacy of biological control agents (Van Loon, 1998). Bacterial secondary ... WCS358r was modified to produce the antifungal com- pound phenazine-1-carboxylic acid (PCA) ( ..... control of Rhizoctonia solani in tomato. J. Biotechnol. 6: 115-127. Raaijmakers JM ...

  20. Dimerization of Carboxylic Acids: An Equation of State Approach

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Panayiotou, Costas

    2017-01-01

    The association term of the nonrandom hydrogen bonding theory, which is an equation of state model, is extended to describe the dimerization of carboxylic acids in binary mixtures with inert solvents and in systems of two different acids. Subsequently, the model is applied to describe the excess...

  1. Erythrocyte pyruvate kinase deficiency in the Ohio Amish: origin and characterization of the mutant enzyme.

    OpenAIRE

    Muir, W A; Beutler, E; Wasson, C

    1984-01-01

    We have identified eight individuals in an Amish population in Geauga County, Ohio, who have a congenital hemolytic anemia and red cell pyruvate kinase (PK) deficiency. The mutant enzyme is a low Km phosphoenolpyruvate (PEP) variant associated with a slower (77.5% of normal) electrophoretic mobility in starch gel. Because of the high consanguinity in this population, we assume the affected individuals are homozygous for the mutant gene. Genealogical records allow us to trace all eight cases b...

  2. Confinement effect of protonation/deprotonation of carboxylic group modified in nanochannel

    International Nuclear Information System (INIS)

    Gao, Hong-Li; Zhang, Hui; Li, Cheng-Yong; Xia, Xing-Hua

    2013-01-01

    Protonation and deprotonation processes are the key step of acid–base reaction and occur in many biological processes. Study on the deprotonation process of molecules and/or functional groups in confined conditions would help us understand the acid–base theory and confinement effect of biomolecules. In this paper, we use a recently established approach to the study of protonation and deprotonation processes of functional groups in porous anodic alumina array nanochannels by measuring the flux of electrochemical active probes (ferricyanide ions) using an Au film electrochemical detector sputtered at the end of nanochannels. The protonation and deprotonation processes of surface functional groups in nanochannels will change the surface charges and in turn modulate the transportation of charged electroactive probes through nanochannels. The titration curve for the deprotonation of carboxylic groups in nanochannel confined conditions is obtained by measuring the current signal of ferricyanide probe flowing through an carboxylic-anchored PAA nanochannels array at different solution pH. Results show that the deprotonation of carboxylic group in nanochannel occurs in one step with a pK 1/2 = 6.2. The present method provides an effective tool to study the deprotonation processes of various functional groups and biomolecules under confined conditions

  3. Analysis of carboxylate coordination function of the isomeric lanthanide pyridinedicarboxylates by means of vibration spectroscopy

    International Nuclear Information System (INIS)

    Puntus, L.; Zolin, V.; Kudryashova, V.

    2004-01-01

    The investigation of IR spectra of salts of six isomers of pyridinedicarboxylic acid (PDA): 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-pyridinedicarboxylic acids, have demonstrated that properties of these salts are dependent on the bonding manner of carboxylate groups and on coordination of heterocyclic nitrogen atom. The most prominent differences in properties and spectra of 2,6- and 3,4-PDA salts are conditioned correspondingly by monodentate and bidentate coordination functions of the carboxylate groups in these compounds. The correlation of the breathing vibration frequency, reflecting the rigidity of the heterocyclic ring, with position of the carboxylate substituents, conditioning intramolecular charge transfer (CT), was postulated and proved by shifts of the breathing vibration frequency dependent on the structure of isomeric ligand

  4. Water-soluble Manganese and Iron Mesotetrakis(carboxyl)porphyrin: DNA Binding, Oxidative Cleavage, and Cytotoxic Activities.

    Science.gov (United States)

    Shi, Lei; Jiang, Yi-Yu; Jiang, Tao; Yin, Wei; Yang, Jian-Ping; Cao, Man-Li; Fang, Yu-Qi; Liu, Hai-Yang

    2017-06-29

    Two new water-soluble metal carboxyl porphyrins, manganese (III) meso -tetrakis (carboxyl) porphyrin and iron (III) meso -tetrakis (carboxyl) porphyrin, were synthesized and characterized. Their interactions with ct-DNA were investigated by UV-Vis titration, fluorescence spectra, viscosity measurement and CD spectra. The results showed they can strongly bind to ct-DNA via outside binding mode. Electrophoresis experiments revealed that both complexes can cleave pBR322 DNA efficiently in the presence of hydrogen peroxide, albeit 2-Mn exhibited a little higher efficiency. The inhibitor tests suggest the oxidative DNA cleavage by these two complexes may involve hydroxyl radical active intermediates. Notably, 2-Mn exhibited considerable photocytotoxicity against Hep G2 cell via triggering a significant generation of ROS and causing disruption of MMP after irradiation.

  5. Rapid and selective derivatizatin method for the nitrogen-sensitive detection of carboxylic acids in biological fluids prior to gas chromatographic analysis

    NARCIS (Netherlands)

    Lingeman, H.; Haan, H.B.P.; Hulshoff, A.

    1984-01-01

    A rapid and selective derivatization procedure is described for the pre-column labelling of carboxylic acids with a nitrogen-containing label. The carboxylic acid function is activated with 2-bromo-1-methylpyridinium iodide and the activated carboxylic acid function reacts with a primary or a

  6. Gluconeogenesis in Leishmania mexicana: contribution of glycerol kinase, phosphoenolpyruvate carboxykinase, and pyruvate phosphate dikinase.

    Science.gov (United States)

    Rodriguez-Contreras, Dayana; Hamilton, Nicklas

    2014-11-21

    Gluconeogenesis is an active pathway in Leishmania amastigotes and is essential for their survival within the mammalian cells. However, our knowledge about this pathway in trypanosomatids is very limited. We investigated the role of glycerol kinase (GK), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate phosphate dikinase (PPDK) in gluconeogenesis by generating the respective Leishmania mexicana Δgk, Δpepck, and Δppdk null mutants. Our results demonstrated that indeed GK, PEPCK, and PPDK are key players in the gluconeogenesis pathway in Leishmania, although stage-specific differences in their contribution to this pathway were found. GK participates in the entry of glycerol in promastigotes and amastigotes; PEPCK participates in the entry of aspartate in promastigotes, and PPDK is involved in the entry of alanine in amastigotes. Furthermore, the majority of alanine enters into the pathway via decarboxylation of pyruvate in promastigotes, whereas pathway redundancy is suggested for the entry of aspartate in amastigotes. Interestingly, we also found that l-lactate, an abundant glucogenic precursor in mammals, was used by Leishmania amastigotes to synthesize mannogen, entering the pathway through PPDK. On the basis of these new results, we propose a revision in the current model of gluconeogenesis in Leishmania, emphasizing the differences between amastigotes and promastigotes. This work underlines the importance of studying the trypanosomatid intracellular life cycle stages to gain a better understanding of the pathologies caused in humans. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Direct enantioselective conjugate addition of carboxylic acids with chiral lithium amides as traceless auxiliaries.

    Science.gov (United States)

    Lu, Ping; Jackson, Jeffrey J; Eickhoff, John A; Zakarian, Armen

    2015-01-21

    Michael addition is a premier synthetic method for carbon-carbon and carbon-heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B.

  8. Pyruvate dehydrogenase complexes from the equine nematode, Parascaris equorum, and the canine cestode, Dipylidium caninum, helminths exhibiting anaerobic mitochondrial metabolism.

    Science.gov (United States)

    Diaz, F; Komuniecki, R W

    1994-10-01

    The pyruvate dehydrogenase complex (PDC) has been purified to apparent homogeneity from 2 parasitic helminths exhibiting anaerobic mitochondrial metabolism, the equine nematode, Parascaris equorum, and the canine cestode, Dipylidium caninum. The P. equorum PDC yielded 7 major bands when separated by SDS-PAGE. The bands of 72, 55-53.5, 41 and 36 kDa corresponded to E2, E3, E1 alpha and E1 beta, respectively. The complex also contained additional unidentified proteins of 43 and 45 kDa. Incubation of the complex with [2-14C]pyruvate resulted in the acetylation of only E2. These results suggest that the P. equorum PDC lacks protein X and exhibits an altered subunit composition, as has been described previously for the PDC of the related nematode, Ascaris suum. In contrast, the D. caninum PDC yielded only four major bands after SDS-PAGE of 59, 58, 39 and 34 kDa, which corresponded to E3, E2, E1 alpha and E1 beta, respectively. Incubation of the D. caninum complex with [2-14C]pyruvate resulted in the acetylation of E2 and a second protein which comigrated with E3, suggesting that the D. caninum complex contained protein X and had a subunit composition similar to PDCs from other eukaryotic organisms. Both helminth complexes appeared less sensitive to inhibition by elevated NADH/NAD+ ratios than complexes isolated from aerobic organisms, as would be predicted for PDCs from organisms exploiting microaerobic habitats. These results suggest that although these helminths have similar anaerobic mitochondrial pathways, they contain significantly different PDCs.

  9. Synthesis and characterization of carboxylic cation exchange bio-resin for heavy metal remediation.

    Science.gov (United States)

    Kulkarni, Vihangraj V; Golder, Animes Kumar; Ghosh, Pranab Kumar

    2018-01-05

    A new carboxylic bio-resin was synthesized from raw arecanut husk through mercerization and ethylenediaminetetraacetic dianhydride (EDTAD) carboxylation. The synthesized bio-resin was characterized using thermogravimetric analysis, field emission scanning electron microscopy, proximate & ultimate analyses, mass percent gain/loss, potentiometric titrations, and Fourier transform infrared spectroscopy. Mercerization extracted lignin from the vesicles on the husk and EDTAD was ridged in to, through an acylation reaction in dimethylformamide media. The reaction induced carboxylic groups as high as 0.735mM/g and a cation exchange capacity of 2.01meq/g functionalized mercerized husk (FMH). Potentiometric titration data were fitted to a newly developed single-site proton adsorption model (PAM) that gave pKa of 3.29 and carboxylic groups concentration of 0.741mM/g. FMH showed 99% efficiency in Pb(II) removal from synthetic wastewater (initial concentration 0.157mM), for which the Pb(II) binding constant was 1.73×10 3 L/mol as estimated from modified PAM. The exhaustion capacity was estimated to be 18.7mg/g of FMH. Desorption efficiency of Pb(II) from exhausted FMH was found to be about 97% with 0.1N HCl. The FMH simultaneously removed lead and cadmium below detection limit from a real lead acid battery wastewater along with the removal of Fe, Mg, Ni, and Co. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Increased Interstitial Concentrations of Glutamate and Pyruvate in Vastus Lateralis of Women with Fibromyalgia Syndrome Are Normalized after an Exercise Intervention - A Case-Control Study.

    Directory of Open Access Journals (Sweden)

    Björn Gerdle

    Full Text Available Fibromyalgia syndrome (FMS is associated with central alterations, but controversies exist regarding the presence and role of peripheral factors. Microdialysis (MD can be used in vivo to study muscle alterations in FMS. Furthermore for chronic pain conditions such as FMS, the mechanisms for the positive effects of exercise are unclear. This study investigates the interstitial concentrations of algesics and metabolites in the vastus lateralis muscle of 29 women with FMS and 28 healthy women before and after an exercise intervention.All the participants went through a clinical examination and completed a questionnaire. In addition, their pressure pain thresholds (PPTs in their upper and lower extremities were determined. For both groups, MD was conducted in the vastus lateralis muscle before and after a 15-week exercise intervention of mainly resistance training of the lower limbs. Muscle blood flow and interstitial muscle concentrations of lactate, pyruvate, glutamate, glucose, and glycerol were determined.FMS was associated with significantly increased interstitial concentrations of glutamate, pyruvate, and lactate. After the exercise intervention, the FMS group exhibited significant decreases in pain intensity and in mean interstitial concentrations of glutamate, pyruvate, and glucose. The decrease in pain intensity in FMS correlated significantly with the decreases in pyruvate and glucose. In addition, the FMS group increased their strength and endurance.This study supports the suggestion that peripheral metabolic and algesic muscle alterations are present in FMS patients and that these alterations contribute to pain. After an exercise intervention, alterations normalized, pain intensity decreased (but not abolished, and strength and endurance improved, all findings that suggest the effects of exercise are partially peripheral.

  11. Data regarding the growth of Lactobacillus acidophilus NCFM on different carbohydrates and recombinant production of elongation factor G and pyruvate kinase

    DEFF Research Database (Denmark)

    Celebioglu, Hasan Ufuk; Olesen, Sita Vaag; Prehn, Kennie

    2017-01-01

    The present study describes the growth of the very well-known probiotic bacterium Lactobacillus acidophilus NCFM on different carbohydrates. Furthermore, recombinant production of putative moonlighting proteins elongation factor G and pyruvate kinase from this bacterium is described. For further...

  12. Functional pyruvate formate lyase pathway expressed with two different electron donors in Saccharomyces cerevisiae at aerobic growth

    DEFF Research Database (Denmark)

    Zhang, Yiming; Dai, Zongjie; Krivoruchko, Anastasia

    2015-01-01

    pyruvate decarboxylase and having a reduced glucose uptake rate due to a mutation in the transcriptional regulator Mth1, IMI076 (Pdc-MTH1-ΔT ura3-52). PFL was expressed with two different electron donors, reduced ferredoxin or reduced flavodoxin, respectively, and it was found that the coexpression...

  13. Preparation of conjugated poly(ethyl acetylene carboxylate) as optical limiter of laser radiation

    International Nuclear Information System (INIS)

    Allaf, A. W.; Al-Zier, A.; Al-Naima, D.

    2009-03-01

    The optical limiting action of poly (ethylacetylene carboxylate) dissolved in dichloroethane were investigated under irradiation with 8 ns laser pulses at 532 nm. The optical limiting measurements were performed at a series of concentrations. The threshold limiting fluence was observed for high concentrations at 5 J/cm 2 with a transmission of about 20 %. No optical limiting action was observed at very low concentration of the prepared polymer in the dichloroethane solvent. The observed data show that poly (ethylacetylene carboxylate) has the potential for the use as optical limiting material for future applications. (author)

  14. Carboxylic Terminated Thermo-Responsive Copolymer Hydrogel and Improvement in Peptide Release Profile

    Directory of Open Access Journals (Sweden)

    Zi-Kun Rao

    2018-02-01

    Full Text Available To improve the release profile of peptide drugs, thermos-responsive triblock copolymer poly (ε-caprolactone-co-p-dioxanone-b-poly (ethylene glycol-b-poly (ε-caprolactone-co-p-dioxanone (PECP was prepared and end capped by succinic anhydride to give its carboxylic terminated derivative. Both PCEP block copolymer and its end group modified derivative showed temperature-dependent reversible sol-gel transition in water. The carboxylic end group could significantly decrease the sol-gel transition temperature by nearly 10 °C and strengthen the gel due to enhanced intermolecular force among triblock copolymer chains. Furthermore, compared with the original PECP triblock copolymer, HOOC–PECP–COOH copolymer displayed a retarded and sustained release profile for leuprorelin acetate over one month while effectively avoiding the initial burst. The controlled release was believed to be related to the formation of conjugated copolymer-peptide pair by ionic interaction and enhanced solubility of drug molecules into the hydrophobic domains of the hydrogel. Therefore, carboxyl terminated HOOC–PECP–COOH hydrogel was a promising and well-exhibited sustained release carrier for peptide drugs with the advantage of being able to develop injectable formulation by simple mixing.

  15. Direct Enantioselective Conjugate Addition of Carboxylic Acids with Chiral Lithium Amides as Traceless Auxiliaries

    Science.gov (United States)

    2016-01-01

    Michael addition is a premier synthetic method for carbon–carbon and carbon–heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B. PMID:25562717

  16. Thermodynamics of formation of cadmium dicarboxylate and carboxylate mixed complexes with benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonov, G V; Bolotov, V M; Kharitonova, R I [Voronezhskij Tekhnologicheskij Inst. (USSR)

    1980-01-01

    Thermodynamic parameters of the mixed complexing of cadmium propionate, butyrate, valerate, succinate, maleinate and malate with benzimidazole in 20 % aqUeous-ethanol solution of 0.1 M KNO/sub 3/ are studied using polarographic method. It is shown that stability of mixed complexes of cadmium carboxylates with benzimidazole is connected with the process enthalpy and is determined by covalency of the metal-carboxylate bond. Increasing length of hydrocarbon chain of acyl group of monobasic acids hampers amine coordination with central complexing agent (..delta..S<0). The presence of dicarboxylate-ion in the inner coordination sphere decreases the enthalpy and increases the entropy of the process (..delta..S>0).

  17. The MDM2-p53-pyruvate carboxylase signalling axis couples mitochondrial metabolism to glucose-stimulated insulin secretion in pancreatic β-cells

    DEFF Research Database (Denmark)

    Li, Xiaomu; Cheng, Kenneth K. Y.; Liu, Zhuohao

    2016-01-01

    deletion or pharmacological inhibition of its negative regulator MDM2, impairs GSIS, leading to glucose intolerance in mice. Mechanistically, p53 activation represses the expression of the mitochondrial enzyme pyruvate carboxylase (PC), resulting in diminished production of the TCA cycle intermediates...

  18. Low-molecular-weight poly-carboxylate as crystal growth modifier in ...

    Indian Academy of Sciences (India)

    Biomineralization; growth modifier; amino acid; low-molecular-weight chiral poly- carboxylate; calcium ... They are also used as gravity sensors, for metal storage and .... The pH of the solutions was maintained at ~10⋅0 for different periods of ...

  19. Light dependence of carboxylation capacity for C3 photosynthesis models

    Science.gov (United States)

    Photosynthesis at high light is often modelled by assuming limitation by the maximum capacity of Rubisco carboxylation at low carbon dioxide concentrations, by electron transport capacity at higher concentrations, and sometimes by triose-phosphate utilization rate at the highest concentrations. Pho...

  20. Metal-Catalyzed Intra- and Intermolecular Addition of Carboxylic Acids to Alkynes in Aqueous Media: A Review

    Directory of Open Access Journals (Sweden)

    Javier Francos

    2017-11-01

    Full Text Available The metal-catalyzed addition of carboxylic acids to alkynes is a very effective tool for the synthesis of carboxylate-functionalized olefinic compounds in an atom-economical manner. Thus, a large variety of synthetically useful lactones and enol-esters can be accessed through the intra- or intermolecular versions of this process. In order to reduce the environmental impact of these reactions, considerable efforts have been devoted in recent years to the development of catalytic systems able to operate in aqueous media, which represent a real challenge taking into account the tendency of alkynes to undergo hydration in the presence of transition metals. Despite this, different Pd, Pt, Au, Cu and Ru catalysts capable of promoting the intra- and intermolecular addition of carboxylic acids to alkynes in a selective manner in aqueous environments have appeared in the literature. In this review article, an overview of this chemistry is provided. The synthesis of β-oxo esters by catalytic addition of carboxylic acids to terminal propargylic alcohols in water is also discussed.

  1. Engineering Copper Carboxylate Functionalities on Water Stable Metal–Organic Frameworks for Enhancement of Ammonia Removal Capacities

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Jayraj N.; Garcia-Gutierrez, Erika Y.; Moran, Colton M.; Deneff, Jacob I.; Walton, Krista S.

    2017-02-02

    Functionalization of copper carboxylate groups on a series of UiO-66 metal organic framework (MOF) analogues and their corresponding impact on humid and dry ammonia adsorption behavior were studied. Relative locations of possible carboxylic acid binding sites for copper on the MOF analogues were varied on ligand and missing linker defect sites. Materials after copper incorporation exhibited increased water vapor and ammonia affinity during isothermal adsorption and breakthrough experiments, respectively. The introduction of copper markedly increased ammonia adsorption capacities for all adsorbents possessing carboxyl binding sites. In particular, the new MOF UiO-66-(COOCu)2 displayed the highest ammonia breakthrough capacities of 6.38 and 6.84 mmol g–1 under dry and humid conditions, respectively, while retaining crystallinity and porosity. Relative carboxylic acid site locations were also found to impact sorbent stability, as missing linker defect functionalized materials degraded under humid conditions after copper incorporation. Postsynthetic metal insertion provides a method for adding sites that are analogous to open metal sites while maintaining good structural stability.

  2. Metabolomics of Clostridial Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D [Princeton Univ., NJ (United States); Aristilde, Ludmilla [Cornell Univ., Ithaca, NY (United States); Amador-Noguez, Daniel [Univ. of Wisconsin, Madison, WI (United States)

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars

  3. Kinetic analysis of the reactivity of aliphatic cyclic alcohols and carboxylic acids in the T-for-H exchange reaction

    International Nuclear Information System (INIS)

    Tamura, Kiyoshi; Imaizumi, Hiroshi; Kano, Naoki

    2007-01-01

    In order to quantitatively evaluate the influence of tritium ( 3 He or T) on various functional groups in environment, the hydrogen isotope exchange reaction (T-for-H exchange reaction) between tritium-labeled poly-(vinyl alcohol) and each aliphatic cyclic alcohol (or carboxylic acid) has been dynamically observed in the range of 50 to 90degC. Consequently, the activities of the aliphatic cyclic alcohol and carboxylic acid increased with increasing reaction time. Applying in A''-McKay plot method to the observed data, the rate constants (k) for these materials were obtained. Using the k, the relation between the number of carbon atoms in the ring in each alcohol and the reactivity of the alcohol was quantitatively compared. Then, to clarify the effect of relative atomic charge of O atom (connected with the H atom in the hydroxy (or carboxy) group in the material) on the reactivity of the material, the MOPAC method was used. From both the above-mentioned and the obtained previously, the following nine items were found as to aliphatic cyclic alcohols (and carboxylic acids) in the T-for-H exchange reaction. (1) The reactivity of aliphatic cyclic alcohols (and carboxylic acids) depends on the temperature. (2) The reactivity of the cyclic materials decreases with increasing number of carbon atoms in the ring. (3) The reactivity of the aliphatic cyclic carboxylic acid seems to be smaller than that of aliphatic cyclic alcohol, and be larger than that of aliphatic cyclic amine. (4) For aliphatic cyclic alcohols, correlation exists between k and relative atomic charges of O atom obtained by the MOPAC method, but the tendency for aliphatic cyclic carboxylic acid is not clear. (5) As to having the same number of carbon atoms in each ring, the reactivity of the aliphatic cyclic carboxylic acid including the side chain is smaller than of the aliphatic cyclic carboxylic acid including no side chain. (6) The reactivity of aliphatic cyclic carboxylic acid is larger than that of

  4. Quantification of in vivo metabolic kinetics of hyperpolarized pyruvate in rat kidneys using dynamic 13C MRSI.

    Science.gov (United States)

    Xu, Tao; Mayer, Dirk; Gu, Meng; Yen, Yi-Fen; Josan, Sonal; Tropp, James; Pfefferbaum, Adolf; Hurd, Ralph; Spielman, Daniel

    2011-10-01

    With signal-to-noise ratio enhancements on the order of 10,000-fold, hyperpolarized MRSI of metabolically active substrates allows the study of both the injected substrate and downstream metabolic products in vivo. Although hyperpolarized [1-(13)C]pyruvate, in particular, has been used to demonstrate metabolic activities in various animal models, robust quantification and metabolic modeling remain important areas of investigation. Enzyme saturation effects are routinely seen with commonly used doses of hyperpolarized [1-(13)C]pyruvate; however, most metrics proposed to date, including metabolite ratios, time-to-peak of metabolic products and single exchange rate constants, fail to capture these saturation effects. In addition, the widely used small-flip-angle excitation approach does not correctly model the inflow of fresh downstream metabolites generated proximal to the target slice, which is often a significant factor in vivo. In this work, we developed an efficient quantification framework employing a spiral-based dynamic spectroscopic imaging approach. The approach overcomes the aforementioned limitations and demonstrates that the in vivo (13)C labeling of lactate and alanine after a bolus injection of [1-(13)C]pyruvate is well approximated by saturatable kinetics, which can be mathematically modeled using a Michaelis-Menten-like formulation, with the resulting estimated apparent maximal reaction velocity V(max) and apparent Michaelis constant K(M) being unbiased with respect to critical experimental parameters, including the substrate dose, bolus shape and duration. Although the proposed saturatable model has a similar mathematical formulation to the original Michaelis-Menten kinetics, it is conceptually different. In this study, we focus on the (13)C labeling of lactate and alanine and do not differentiate the labeling mechanism (net flux or isotopic exchange) or the respective contribution of various factors (organ perfusion rate, substrate transport

  5. Experimental and Theoretical Studies on Corrosion Inhibition of Niobium and Tantalum Surfaces by Carboxylated Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Valbonë Mehmeti

    2018-05-01

    Full Text Available The corrosion of two different metals, niobium and tantalum, in aqueous sulfuric acid solution has been studied in the presence and absence of carboxylated graphene oxide. Potentiodynamic measurements indicate that this nanomaterial inhibits corrosion due to its adsorption on the metal surfaces. The adsorbed layer of carboxylated graphene hinders two electrochemical reactions: the oxidation of the metal and the transport of metal ions from the metal to the solution but also hydrogen evolution reaction by acting as a protective barrier. The adsorption behavior at the molecular level of the carboxylated graphene oxide with respect to Nb, NbO, Ta, and TaO (111 surfaces is also investigated using Molecular Dynamic and Monte Carlo calculations.

  6. Interaction between the thyroid hormone receptor and co-factors on the promoter of the gene encoding phospho enol pyruvate carboxykinase

    NARCIS (Netherlands)

    Schmidt, E. D.; van Beeren, M.; Glass, C. K.; Wiersinga, W. M.; Lamers, W. H.

    1993-01-01

    Using transient transfection studies we localized a thyroid hormone-responsive element on the promoter of the rat phospho-enol pyruvate carboxykinase gene between 355 and 174 bp upstream of the transcription start site. DNAse 1 footprinting analysis within this region showed that a 28 bp fragment at

  7. Effect of carboxyl anchoring groups in asymmetric zinc phthalocyanine with large steric hindrance on the dye-sensitized solar cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wenye; Peng, Bosi; Lin, Li; Li, Renjie; Zhang, Jing, E-mail: jzhang03@whu.edu.cn; Peng, Tianyou, E-mail: typeng@whu.edu.cn

    2015-08-01

    Asymmetric zinc phthalocyanines containing tribenzonaphtho-condensed porphyrazine with six bulky diphenylphenoxy and one or two carboxyl groups are used as sensitizers for dye-sensitized solar cells (DSSCs). It is found that Zn-tri-PcNc-4 having two carboxyl groups shows a slight redshift in the Q-band absorption but a significantly decreased absorbance as compared with Zn-tri-PcNc-8 having one carboxyl group, and Zn-tri-PcNc-4 can be more stably and perpendicularly grafted onto the TiO{sub 2} surface than Zn-tri-PcNc-8, which further leads to the differences in the interfacial charge transfer dynamics and dye-loaded amount. Zn-tri-PcNc-4 with two carboxyl groups grafted onto the TiO{sub 2} electrode surface of DSSC results in a photovoltaic conversion efficiency of 3.22%, higher than that (3.01%) of the analog with one carboxyl group (Zn-tri-PcNc-8), which exhibits a lower short-circuit current but much higher open-circuit voltage. The additional carboxyl group in Zn-tri-PcNc-4 leads to the enhanced dye-loaded amount and the molecular orbital energy level shift toward positive direction, causing more efficient electron injection and higher short-circuit current than Zn-tri-PcNc-8; while the two carboxyl groups of Zn-tri-PcNc-4 would cause more protonation of TiO{sub 2} surface, which possibly leads to the downward shift of TiO{sub 2} conduction band edge, and then to the decreased open-circuit voltage. The present results demonstrate the molecular engineering aspect of ZnPc dyes in which the fine tuning of the energy levels and molecular structures is crucial for high conversion efficiency of DSSCs. - Highlights: • ZnPcs with six diphenylphenoxy and one/two carboxyl groups are used as dyes for DSSCs. • Effect of carboxyl group number on the ZnPc-sensitized cell property are scrutinized. • Grafting two carboxyl groups on ZnPc leads to the enhanced photocurrent and efficiency. • ZnPc with one COOH has a higher open-circuit voltage than its analog with two

  8. Two types of essential carboxyl groups in Rhodospirillum rubrum proton ATPase

    International Nuclear Information System (INIS)

    Ceccarelli, E.; Vallejos, R.H.

    1983-01-01

    Two different types of essential carboxyl groups were detected in the extrinsic component of the proton ATPase of Rhodospirillum rubrum. Chemical modification of R. rubrum chromatophores or its solubilized ATPase by Woodward's reagent K resulted in inactivation of photophosphorylating and ATPase activities. The apparent order of reaction was nearly 1 with respect to reagent concentration and similar K1 were obtained for the soluble and membrane-bound ATPases suggesting that inactivation was associated with modification of one essential carboxyl group located in the soluble component of the proton ATPase. Inactivation was prevented by adenine nucleotides but not by divalent cations. Dicyclohexylcarbodiimide completely inhibited the solubilized ATPase with a K1 of 5.2 mM and a K2 of 0.81 min-1. Mg2+ afforded nearly complete protection with a Kd of 2.8 mM. Two moles of [14C]dicyclohexylcarbodiimide were incorporated per mole of enzyme for complete inactivation but in the presence of 30 mM MgCl2 only one mole was incorporated and there was no inhibition. The labeling was recovered mostly from the beta subunit. The incorporation of the labeled reagent into the ATPase was not prevented by previous modification with Woodward's reagent K. It is concluded that both reagents modified two different essential carboxyl groups in the soluble ATPase from R. rubrum

  9. Chemo-spectroscopic sensor for carboxyl terminus overexpressed in carcinoma cell membrane.

    Science.gov (United States)

    Stanca, Sarmiza E; Matthäus, Christian; Neugebauer, Ute; Nietzsche, Sandor; Fritzsche, Wolfgang; Dellith, Jan; Heintzmann, Rainer; Weber, Karina; Deckert, Volker; Krafft, Christoph; Popp, Jürgen

    2015-10-01

    Certain carboxyl groups of the plasma membrane are involved in tumorgenesis processes. A gold core-hydroxyapatite shell (AuHA) nanocomposite is introduced as chemo-spectroscopic sensor to monitor these carboxyl groups of the cell membrane. Hydroxyapatite (HA) plays the role both of a chemical detector and of a biocompatible Raman marker. The principle of detection is based on chemical interaction between the hydroxyl groups of the HA and the carboxyl terminus of the proteins. The AuHA exhibits a surface enhanced Raman scattering (SERS) signal at 954 cm(-1) which can be used for its localization. The bio-sensing capacity of AuHA towards human skin epidermoid carcinoma (A431) and Chinese hamster ovary (CHO) cell lines is investigated using Raman microspectroscopic imaging. The localization of AuHA on cells is correlated with scanning electron microscopy, transmission electron microscopy and structured illumination fluorescence microscopy. This qualitative approach is a step towards a quantitative study of the proteins terminus. This method would enable further studies on the molecular profiling of the plasma membrane, in an attempt to provide accurate cell identification. Using a gold core-hydroxyapatite shell (AuHA) nanocomposite, the authors in this paper showed the feasibility of detecting and differentiating cell surface molecules by surface enhanced Raman scattering. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Heterocycles [h]-Fused Onto 4-Oxoquinoline-3-Carboxylic Acid, Part VIII [1]. Convenient Synthesis and Antimicrobial Properties of Substituted Hexahydro[1,4]diazepino[2,3-h]quinoline-9-carboxylic acid and Its Tetrahydroquino[7,8-b]benzodiazepine Analog

    Directory of Open Access Journals (Sweden)

    Yusuf M. Al-Hiari

    2008-11-01

    Full Text Available [1,4]Diazepino[2,3-h]quinolone carboxylic acid 3 and its benzo-homolog tetrahydroquino[7,8-b]benzodiazepine-3-carboxylic acid 5 were prepared via PPAcatalyzed thermal lactamization of the respective 8-amino-7-substituted-1,4-dihydroquinoline-3-carboxylic acid derivatives 8, 10. The latter compounds were obtained by reduction of their 8-nitro-7-substituted-1,4-dihydroquinoline-3-carboxylic acid precursors 7, 9 which, in turn, were prepared by reaction of 7-chloro-1-cyclopropyl-6-fluoro-8-nitro-1,4-dihydroquinoline-3-carboxylic acid (6 with each of β-alanine and anthranilic acid. All intermediates and target compounds were characterized using elemental analysis, NMR, IR and MS spectral data. The prepared targets and the intermediates have shown interesting antibacterial activity mainly against Gram positive strains. In particular, compound 8 showed good activity against S. aureus (MIC = 0.39 μg/mL and B. subtilis (MIC = 0.78 μg/mL. Compounds 5a and 9 have also displayed good antifungal activity against C. albicans (MIC = 1.56 μg/mL and 0.78 μg/mL, respectively. None of the compounds tested showed any anticancer activity against solid breast cancer cell line MCF-7 cells or a human breast adenocarcinoma cell line.

  11. Synthesis, crystal structures, and luminescent properties of two series' of new lanthanide (III) amino-carboxylate-phosphonates.

    Science.gov (United States)

    Zhou, Tian-Hua; Yi, Fei-Yan; Li, Pei-Xin; Mao, Jiang-Gao

    2010-02-01

    Hydrothermal reactions of lanthanide(III) chlorides with 4-HOOC-C(6)H(4)-CH(2)NHCH(2)PO(3)H(2) (H(3)L) at different ligand-to-metal (L/M) ratios afforded nine new lanthanide(III) carboxylate-phosphonates with two types of 3D network structures, namely, LnCl(HL)(H(2)O)(2) (Ln = Sm, 1; Eu, 2; Gd, 3; Tb, 4; Dy, 5; Er, 6) and [Ln(2)(HL)(H(2)L)(L)(H(2)O)(2)].4H(2)O (Ln = Nd, 7; Sm, 8; Eu, 9). Compounds 1-6 are isostructural and feature a 3D network in which the LnO(7)Cl polyhedra are interconnected by bridging CPO(3) tetrahedra into 2D inorganic layers parallel to the bc plane. These layers are further cross-linked by organic groups of the carboxylate-phosphonate ligands via the coordination of the carboxylate groups into a pillared-layered architecture. Compounds 7-9 are also isostructural and feature a 3D open-framework composed of 1D lanthanide(III) phosphonate inorganic slabs which are further bridged by organic groups of the carboxylate-phosphonate liagnds via the coordination of the carboxylate groups, forming large 1D tunnels along the b-axis which are filled by lattice water molecules. Luminescent measurements indicate that compounds 2, 4, and 5 show strong emission bands in red, green, and yellow light region, respectively. Magnetic properties of 2, 3, 5, and 7 have also been studied.

  12. A Concise Synthesis and the Antibacterial Activity of 5,6-Dimethoxynaphthalene-2-carboxylic Acid

    OpenAIRE

    GÖKSU, Süleyman; UĞUZ, Metin Tansu

    2014-01-01

    5,6-Dimethoxynaphthalene-2-carboxylic acid was synthesized in 7 steps and with an overall yield of 46%. Bromination of 2-naphthol, and methylation with dimethyl sulfate followed by Friedel-Crafts acylation with AcCl gave 2-acetyl-5-bromo-6-methoxynaphthalene. 2-Acetyl-5-bromo-6-methoxynaphthalene was converted to 5-bromo-6- methoxynaphthalene-2-carboxylic acid by a haloform reaction. The esterification of the acid with methanol, methoxylation with NaOCH3 in the presence of CuI and s...

  13. Carboxylated fullerene at the oil/water interface

    OpenAIRE

    Li, R; Chai, Y; Jiang, Y; Ashby, PD; Toor, A; Russell, TP

    2017-01-01

    © 2017 American Chemical Society. The self-assembly of carboxylated fullerene with poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) with different molecular weights, poly-2-vinylpyridine, and amine-terminated polystyrene, at the interface between toluene and water was investigated. For all values of the pH, the functionalized fullerene interacted with the polymers at the water/toluene interface, forming a nanoparticle network, reducing the interfacial tension. At pH values of 4.84 and 7.8, robust,...

  14. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    Science.gov (United States)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-08-01

    The objective of this work was to compare experimentally the contribution of photochemistry vs. microbial activity to the degradation of carboxylic acids present in cloud water. For this, we selected 17 strains representative of the microflora existing in real clouds and worked on two distinct artificial cloud media that reproduce marine and continental cloud chemical composition. Photodegradation experiments with hydrogen peroxide (H2O2) as a source of hydroxyl radicals were performed under the same microcosm conditions using two irradiation systems. Biodegradation and photodegradation rates of acetate, formate, oxalate and succinate were measured on both media at 5 °C and 17 °C and were shown to be on the same order of magnitude (around 10-10-10-11 M s-1). The chemical composition (marine or continental origin) had little influence on photodegradation and biodegradation rates while the temperature shift from 17 °C to 5 °C decreased biodegradation rates of a factor 2 to 5. In order to test other photochemical scenarios, theoretical photodegradation rates were calculated considering hydroxyl (OH) radical concentration values in cloud water estimated by cloud chemistry modelling studies and available reaction rate constants of carboxylic compounds with both hydroxyl and nitrate radicals. Considering high OH concentration ([OH] = 1 × 10-12 M) led to no significant contribution of microbial activity in the destruction of carboxylic acids. On the contrary, for lower OH concentration (at noon, [OH] = 1 × 10-14 M), microorganisms could efficiently compete with photochemistry and in similar contributions than the ones estimated by our experimental approach. Combining these two approaches (experimental and theoretical), our results led to the following conclusions: oxalate was only photodegraded; the photodegradation of formate was usually more efficient than its biodegradation; the biodegradation of acetate and succinate seemed to exceed their photodegradation.

  15. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao; Croue, Jean-Philippe

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation

  16. Effects of pentylenetetrazole and glutamate on metabolism of [U-(13)C]glucose in cultured cerebellar granule neurons.

    Science.gov (United States)

    Eloqayli, Haytham; Qu, Hong; Unsgård, Geirmund; Sletvold, Olav; Hadidi, Hakam; Sonnewald, Ursula

    2002-02-01

    This study was performed to analyze the effects of glutamate and the epileptogenic agent pentylenetetrazole (PTZ) on neuronal glucose metabolism. Cerebellar granule neurons were incubated for 2 h in medium containing 3 mM [U-(13)C]glucose, with and without 0.25 mM glutamate and/or 10 mM PTZ. In the presence of PTZ, decreased glucose consumption with unchanged lactate release was observed, indicating decreased glucose oxidation. PTZ also slowed down tricarboxylic acid (TCA) cycle activity as evidenced by the decreased amounts of labeled aspartate and [1,2-(13)C]glutamate. When glutamate was present, glucose consumption was also decreased. However, the amount of glutamate, derived from [U-(13)C]glucose via the first turn of the TCA cycle, was increased. The decreased amount of [1,2-(13)C]glutamate, derived from the second turn in the TCA cycle, and increased amount of aspartate indicated the dilution of label due to the entrance of unlabeled glutamate into TCA cycle. In the presence of glutamate plus PTZ, the effect of PTZ was enhanced by glutamate. Labeled alanine was detected only in the presence of glutamate plus PTZ, which indicated that oxaloacetate was a better amino acid acceptor than pyruvate. Furthermore, there was also evidence for intracellular compartmentation of oxaloacetate metabolism. Glutamate and PTZ caused similar metabolic changes, however, via different mechanisms. Glutamate substituted for glucose as energy substrate in the TCA cycle, whereas, PTZ appeared to decrease mitochondrial activity.

  17. The investigation of the reactions of some pyrazole-3-carboxylic acids with various diamines and diols

    Directory of Open Access Journals (Sweden)

    Rahmi Kasımoğulları

    2012-06-01

    Full Text Available In this study, some new derivatives were synthesized of 4-benzoyl-1-(3-nitrophenyl-5-phenyl-1H-pyrazole-3-carboxylic acid (1 and 4-(ethoxycarbonyl-1-(3-nitrophenyl-5-phenyl-1H-pyrazole-3-carboxylic acid (2 that they were pyrazole carboxylic acid derivatives. Firstly, 1 and 2 reacted with SOCl2 to transform them into acyl chlorides (3, 4. Then various bis-carboxamide derivatives (5–8 were obtained from the reaction of 3 and 4 with various diamines and also a ;#946;-hydroxy ester (9 derivative was obtained from the reaction of 3 with ethylene glycol. The structures of synthesized compounds were elucidated with using FT-IR, 1H NMR, 13C NMR and elemental analysis methods.

  18. Hydrothermal syntheses, characterizations and crystal structures of a new lead(II) carboxylate-phosphonate with a double layer structure and a new nickel(II) carboxylate-phosphonate containing a hydrogen-bonded 2D layer with intercalation of ethylenediamines

    International Nuclear Information System (INIS)

    Song, J.-L.; Mao, J.-G.; Sun, Y.-Q.; Zeng, H.-Y.; Kremer, R.K.; Clearfield, Abraham

    2004-01-01

    Hydrothermal reactions of N,N-bis(phosphonomethyl)aminoacetic acid (HO 2 CCH 2 N(CH 2 PO 3 H 2 ) 2 ) with metal(II) salts afforded two new metal carboxylate-phosphonates, namely, Pb 2 [O 2 CCH 2 N(CH 2 PO 3 )(CH 2 PO 3 H)]·H 2 O (1) and {NH 3 CH 2 CH 2 NH 3 }{Ni[O 2 CCH 2 N(CH 2 PO 3 H) 2 ](H 2 O) 2 } 2 (2). Among two unique lead(II) ions in the asymmetric unit of complex 1, one is five coordinated by five phosphonate oxygen atoms from 5 ligands, whereas the other one is five-coordinated by a tridentate chelating ligand (1 N and 2 phosphonate O atoms) and two phosphonate oxygen atoms from two other ligands. The carboxylate group of the ligand remains non-coordinated. The bridging of above two types of lead(II) ions through phosphonate groups resulted in a double layer with the carboxylate group of the ligand as a pendant group. These double layers are further interlinked via hydrogen bonds between the carboxylate groups into a 3D network. The nickel(II) ion in complex 2 is octahedrally coordinated by a tetradentate chelating ligand (two phosphonate oxygen atoms, one nitrogen and one carboxylate oxygen atoms) and two aqua ligands. These {Ni[O 2 CCH 2 N(CH 2 PO 3 H) 2 ][H 2 O] 2 } - anions are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form a hydrogen bonded 2D layer. The 2H-protonated ethylenediamine cations are intercalated between two layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Results of magnetic measurements for complex 2 indicate that there is weak Curie-Weiss behavior with θ=-4.4 K indicating predominant antiferromagnetic interaction between the Ni(II) ions. Indication for magnetic low-dimension magnetism could not be detected

  19. Studies on the formation of lactate and pyruvate from glucose in cultured skin fibroblasts: implications for detection of respiratory chain defects

    NARCIS (Netherlands)

    Wijburg, F. A.; Feller, N.; Scholte, H. R.; Przyrembel, H.; Wanders, R. J.

    1989-01-01

    We investigated the time course of the formation of lactate and pyruvate from glucose in cultured skin fibroblasts from controls, from a patient with a cytochrome c oxidase deficiency and from controls treated with inhibitors of the individual respiratory chain complexes. Fibroblasts from the

  20. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    Atmospheric aerosol samples of PM2.5 and PM10 were collected in April–May 2011 from a rural site in Tanzania and analyzed for water-soluble inorganic ions and low molecular weight carboxylic acids using ion chromatography. PM2.5 and PM10 low-volume samplers with quartz fibre filters were deployed and aerosol ...

  1. Metal extraction by amides of carboxylic acids

    International Nuclear Information System (INIS)

    Skorovarov, D.I.; Chumakova, G.M.; Rusin, L.I.; Ul'anov, V.S.; Sviridova, R.A.; Sviridov, A.L.

    1988-01-01

    Extraction ability of various amides was studied. Data on extraction of rare earths, vanadium, molybdenum, rhenium, uranium, niobium, tantalum by N,N-dibutyl-amides of acetic, nonanic acids and fatly synthetic acids of C 7 -C 9 fractions are presented. Effect of salting-out agents, inorganic acid concentrations on extraction process was studied. Potential ability of using amides of carboxylic acids for extractional concentration of rare earths as well as for recovery and separation of iron, rhenium, vanadium, molybdenum, uranium, niobium, and tantalum was shown

  2. Substrate specificity within a family of outer membrane carboxylate channels.

    Directory of Open Access Journals (Sweden)

    Elif Eren

    2012-01-01

    Full Text Available Many Gram-negative bacteria, including human pathogens such as Pseudomonas aeruginosa, do not have large-channel porins. This results in an outer membrane (OM that is highly impermeable to small polar molecules, making the bacteria intrinsically resistant towards many antibiotics. In such microorganisms, the majority of small molecules are taken up by members of the OprD outer membrane protein family. Here we show that OprD channels require a carboxyl group in the substrate for efficient transport, and based on this we have renamed the family Occ, for outer membrane carboxylate channels. We further show that Occ channels can be divided into two subfamilies, based on their very different substrate specificities. Our results rationalize how certain bacteria can efficiently take up a variety of substrates under nutrient-poor conditions without compromising membrane permeability. In addition, they explain how channel inactivation in response to antibiotics can cause resistance but does not lead to decreased fitness.

  3. Versatile Multicomponent Reaction Macrocycle Synthesis Using α-Isocyano-ω-carboxylic Acids

    NARCIS (Netherlands)

    Liao, George P; Abdelraheem, Eman M M; Neochoritis, Constantinos G; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; McGowan, David C; Dömling, Alexander

    2015-01-01

    The direct macrocycle synthesis of α-isocyano-ω-carboxylic acids via an Ugi multicomponent reaction is introduced. This multicomponent reaction (MCR) protocol differs by being especially short, convergent, and versatile, giving access to 12-22 membered rings.

  4. Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications.

    Science.gov (United States)

    Kohara, Kaori; Yamamoto, Shinpei; Seinberg, Liis; Murakami, Tatsuya; Tsujimoto, Masahiko; Ogawa, Tetsuya; Kurata, Hiroki; Kageyama, Hiroshi; Takano, Mikio

    2013-03-28

    Carboxylated SiO2-coated α-Fe nanoparticles have been successfully prepared via CaH2-mediated reduction of SiO2-coated Fe3O4 nanoparticles followed by surface carboxylation. These α-Fe-based nanoparticles, which are characterized by ease of coating with additional functional groups, a large magnetization of 154 emu per g-Fe, enhanced corrosion resistivity, excellent aqueous dispersibility, and low cytotoxicity, have potential to be a versatile platform in biomedical applications.

  5. Influence of carboxyl group formation on ammonia adsorption of NiO-templated nanoporous carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Long-Yue [Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon 402-751 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2012-11-15

    The scope of this work was to control the surface functional groups of nanoporous carbons (NPs) by oxidizing agents (nitric acid and hydrogen peroxide) treatments and to investigate the relation between carboxyl group and ammonia removal efficiency. The NPs were directly prepared from a cation exchange resin by the carbonization of a mixture with Ni acetate at 900 Degree-Sign C. N{sub 2}/-196 Degree-Sign C adsorption, Boehm's titrations, and X-ray photoelectron spectroscopy (XPS) analyzes were employed to confirm the physicochemical properties of NPs. The ammonia removal efficiency was confirmed by temperature programmed desorption (TPD) technique. In the result, the oxygen content of NPs increased after various treatments and the highest content of carboxyl group formation appeared at a 2:3 volume ratio of HNO{sub 3}/H{sub 2}O{sub 2}. It was also found that the oxidation treatment led to an increase in ammonia removal efficiency of NPs, mainly due to an increase of acid oxygen functional groups (such as carboxyl) on NPs surfaces. -- Graphical abstract: The nanoporous carbons were prepared from an exchange resin by the carbonization of a mixture with Ni acetate for ammonia adsorption. Highlights: Black-Right-Pointing-Pointer The carbons were prepared from an exchange resin by the carbonization of a mixture with Ni acetate. Black-Right-Pointing-Pointer The carbon surfaces were modified with HNO{sub 3}/H{sub 2}O{sub 2} solution at different volume radio. Black-Right-Pointing-Pointer The highest content of carboxyl group formation appeared at a 2:3 volume ratio of HNO{sub 3}/H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer The acid oxygen functional groups (such as carboxyl) on carbon surfaces led to an increase in ammonia adsorption.

  6. Synthesis of first row transition metal carboxylate complexes by ring ...

    Indian Academy of Sciences (India)

    tion of pyromellitic dianhydride with methanol and ring opening of pyromellitic dianhydride takes place. The corresponding carboxylate complex formed dur- ing the process can be crystallised by adding biden- tate nitrogen donor ligands such as 1,10-phenanthroline or 2,2 - bipyridine.20 From the reaction with 1,10-.

  7. Guest-host chemistry with dendrimers—binding of carboxylates in aqueous solution

    DEFF Research Database (Denmark)

    Ficker, Mario; Petersen, Johannes Fabritius; Hansen, Jon Stefan

    2015-01-01

    Recognition and binding of anions in water is difficult due to the ability of water molecules to form strong hydrogen bonds and to solvate the anions. The complexation of two different carboxylates with 1-(4-carbomethoxypyrrolidone)-terminated PAMAM dendrimers was studied in aqueous solution using...... the carboxylate-dendrimer interaction selectively. The binding stoichiometry for 3-hydroxy-2-naphthoate was found to be two strongly bound guest molecules per dendrimer and an additional 40 molecules with weak binding affinity. The NOESY NMR showed a clear binding correlation of sodium 3-hydroxy-2-naphthoate...... with the lyophilic dendrimer core, possibly with the two high affinity guest molecules. In comparison, sodium 2-naphthoate showed a weaker binding strength and had a stoichiometry of two guests per dendrimer with no additional weakly bound guests. This stronger dendrimer interaction with sodium 3-hydroxy-2...

  8. Mechanistic photodecarboxylation of pyruvic acid: Excited-state proton transfer and three-state intersection

    Science.gov (United States)

    Chang, Xue-Ping; Fang, Qiu; Cui, Ganglong

    2014-10-01

    Photodissociation dynamics of pyruvic acid experimentally differs from that of commonly known ketones. We have employed the complete active space self-consistent field and its multi-state second-order perturbation methods to study its photodissociation mechanism in the S0, T1, and S1 states. We have uncovered four nonadiabatic photodecarboxylation paths. (i) The S1 system relaxes via an excited-state intramolecular proton transfer (ESIPT) to a hydrogen-transferred tautomer, near which an S1/S0 conical intersection funnels the S1 to S0 state. Then, some trajectories continue completing the decarboxylation reaction in the S0 state; the remaining trajectories via a reverse hydrogen transfer return to the S0 minimum, from which a thermal decarboxylation reaction occurs. (ii) Due to a small S1 -T1 energy gap and a large S1/T1 spin-orbit coupling, an efficient S1 → T1 intersystem crossing process happens again near this S1/S0 conical intersection. When decaying to T1 state, a direct photodecarboxylation proceeds. (iii) Prior to ESIPT, the S1 system first decays to the T1 state via an S1 → T1 intersystem crossing; then, the T1 system evolves to a hydrogen-transferred tautomer. Therefrom, an adiabatic T1 decarboxylation takes place due to a small barrier of 7.7 kcal/mol. (iv) Besides the aforementioned T1 ESIPT process, there also exists a comparable Norrish type I reaction in the T1 state, which forms the ground-state products of CH3CO and COOH. Finally, we have found that ESIPT plays an important role. It closes the S1-T1 and S1-S0 energy gaps, effecting an S1/T1/S0 three-state intersection region, and mediating nonadiabatic photodecarboxylation reactions of pyruvic acid.

  9. Corrosion and Heat Transfer Characteristics of Water Dispersed with Carboxylate Additives and Multi Walled Carbon Nano Tubes

    Science.gov (United States)

    Moorthy, Chellapilla V. K. N. S. N.; Srinivas, Vadapalli

    2016-10-01

    This paper summarizes a recent work on anti-corrosive properties and enhanced heat transfer properties of carboxylated water based nanofluids. Water mixed with sebacic acid as carboxylate additive found to be resistant to corrosion and suitable for automotive environment. The carboxylated water is dispersed with very low mass concentration of carbon nano tubes at 0.025, 0.05 and 0.1 %. The stability of nanofluids in terms of zeta potential is found to be good with carboxylated water compared to normal water. The heat transfer performance of nanofluids is carried out on an air cooled heat exchanger similar to an automotive radiator with incoming air velocities across radiator at 5, 10 and 15 m/s. The flow Reynolds number of water is in the range of 2500-6000 indicating developing flow regime. The corrosion resistance of nanofluids is found to be good indicating its suitability to automotive environment. There is a slight increase in viscosity and marginal decrease in the specific heat of nanofluids with addition of carboxylate as well as CNTs. Significant improvement is observed in the thermal conductivity of nanofluids dispersed with CNTs. During heat transfer experimentation, the inside heat transfer coefficient and overall heat transfer coefficient has also improved markedly. It is also found that the velocity of air and flow rate of coolant plays an important role in enhancement of the heat transfer coefficient and overall heat transfer coefficient.

  10. GABAergic transmission and chloride equilibrium potential are not modulated by pyruvate in the developing optic tectum of Xenopus laevis tadpoles.

    Directory of Open Access Journals (Sweden)

    Arseny S Khakhalin

    Full Text Available In the developing mammalian brain, gamma-aminobutyric acid (GABA is thought to play an excitatory rather than an inhibitory role due to high levels of intracellular Cl(- in immature neurons. This idea, however, has been questioned by recent studies which suggest that glucose-based artificial cerebrospinal fluid (ACSF may be inadequate for experiments on immature and developing brains. These studies suggest that immature neurons may require alternative energy sources, such as lactate or pyruvate. Lack of these other energy sources is thought to result in artificially high intracellular Cl(- concentrations, and therefore a more depolarized GABA receptor (GABAR reversal potential. Since glucose metabolism can vary widely among different species, it is important to test the effects of these alternative energy sources on different experimental preparations. We tested whether pyruvate affects GABAergic transmission in isolated brains of developing wild type Xenopus tadpoles in vitro by recording the responsiveness of tectal neurons to optic nerve stimulation, and by measuring currents evoked by local GABA application in a gramicidin perforated patch configuration. We found that, in contrast with previously reported results, the reversal potential for GABAR-mediated currents does not change significantly between developmental stages 45 and 49. Partial substitution of glucose by pyruvate had only minor effects on both the GABA reversal potential, and the responsiveness of tectal neurons at stages 45 and 49. Total depletion of energy sources from the ACSF did not affect neural responsiveness. We also report a strong spatial gradient in GABA reversal potential, with immature cells adjacent to the lateral and caudal proliferative zones having more positive reversal potentials. We conclude that in this experimental preparation standard glucose-based ACSF is an appropriate extracellular media for in vitro experiments.

  11. Synthesis and protonation behavior of carboxylate-functionalized poly(propylene imine) dendrimers

    NARCIS (Netherlands)

    Duijvenbode, van R.C.; Rajanayagam, A.; Koper, G.J.M.; Baars, M.W.P.L.; Waal, de B.F.M.; Meijer, E.W.; Borkovec, M.

    2000-01-01

    Five generations of carboxylate-functionalized poly(propyleneimine) dendrimers have been synthesized starting from a double Michael addition of amine-functionalized poly(propyleneimine) dendrimers to methyl acrylate followed by basic hydrolysis using LiOH in a water/methanol mixture. The dendritic

  12. (Liquid + liquid) equilibria measurements for ternary systems (sulfolane + a carboxylic acid + n-heptane) at T = 303.15 K and at 0.1 MPa

    International Nuclear Information System (INIS)

    Cele, N.P.; Bahadur, I.; Redhi, G.G.; Ebenso, E.E.

    2016-01-01

    Highlights: • The (liquid + liquid) equilibrium for (sulfolane + a carboxylic acid + heptane) was measured. • Selectivity values for solvent separation efficiency were calculated. • Separation of carboxylic acids from heptane is feasible by extraction. • Three parameter equations have been fitted to the binodal curve data. • The NRTL and UNIQUAC models were used to correlate the experimental data. - Abstract: In the present work, new (liquid + liquid) equilibrium (LLE) values are reported for ternary systems {sulfolane(1) + acetic acid, or propanoic acid, or butanoic acid, or 2-methylpropanoic acid, or pentanoic acid, or 3-methylbutanoic acid (2) + n-heptane (3)} at T = 303.15 K and at p = 0.1 MPa. The mutual solubility of carboxylic acid in sulfolane is dependent on the length and structure of the alkyl chain of the carboxylic acid; it progressively increases with an increase in the alkyl chain of the carboxylic acid. The single phase homogenous region increases as the alkyl chain of the carboxylic acid increases. The n-heptane is most soluble in the carboxylic acid mixtures with long alkyl chain, that is, (3-methylbutanoic acid + sulfolane) and (pentanoic acid + sulfolane) systems and least soluble in the carboxylic acid with short alkyl chain (acetic acid + sulfolane) system. Carboxylic acid together with many other oxygenates and hydrocarbons are produced by SASOL Company in South Africa using the Fischer–Tropsch process. The details about this process are given in introduction section. The NRTL and UNIQUAC models were used to correlate the experimental tie-lines and to calculate the phase compositions of the ternary systems. It was found that the NRTL model fits the experimental values significantly better than the UNIQUAC model.

  13. REPEATED ACUTE STRESS INDUCED ALTERATIONS IN CARBOHYDRATE METABOLISM IN RAT

    Directory of Open Access Journals (Sweden)

    Nirupama R.

    2010-09-01

    Full Text Available Acute stress induced alterations in the activity levels of rate limiting enzymes and concentration of intermediates of different pathways of carbohydrate metabolism have been studied. Adult male Wistar rats were restrained (RS for 1 h and after an interval of 4 h they were subjected to forced swimming (FS exercise and appropriate controls were maintained. Five rats were killed before the commencement of the experiment (initial controls, 5 control and equal number of stressed rats were killed 2 h after RS and remaining 5 rats in each group were killed 4 h after FS. There was a significant increase in the adrenal 3β- hydroxy steroid dehydrogenase activity following RS, which showed further increase after FS compared to controls and thereby indicated stress response of rats. There was a significant increase in the blood glucose levels following RS which showed further increase and reached hyperglycemic condition after FS. The hyperglycemic condition due to stress was accompanied by significant increases in the activities of glutamate- pyruvate transaminase, glutamate- oxaloacetate transaminase, glucose -6- phosphatase and lactate dehydrogenase and significant decrease in the glucose -6- phosphate dehydrogenase and pyruvate dehydrogenase activities, whereas pyruvate kinase activity did not show any alteration compared to controls. Further, the glycogen and total protein contents of the liver were decreased whereas those of pyruvate and lactate showed significant increase compared to controls after RS as well as FS.The results put together indicate that acute stress induced hyperglycemia results due to increased gluconeogenesis and glycogenolysis without alteration in glycolysis. The study first time reveals that after first acute stress exposure, the subsequent stressful experience augments metabolic stress response leading to hyperglycemia. The results have relevance to human health as human beings are exposed to several stressors in a day and

  14. A closer look on the polyhydroxybutyrate- (PHB-) negative phenotype of Ralstonia eutropha PHB-4.

    Science.gov (United States)

    Raberg, Matthias; Voigt, Birgit; Hecker, Michael; Steinbüchel, Alexander

    2014-01-01

    The undefined poly(3-hydroxybutyrate)- (PHB-) negative mutant R. eutropha PHB-4 was generated in 1970 by 1-nitroso-3-nitro-1-methylguanidine (NMG) treatment. Although being scientific relevant, its genotype remained unknown since its isolation except a recent first investigation. In this study, the mutation causing the PHA-negative phenotype of R. eutropha PHB-4 was confirmed independently: sequence analysis of the phaCAB operon identified a G320A mutation in phaC yielding a stop codon, leading to a massively truncated PhaC protein of 106 amino acids (AS) in R. eutropha PHB-4 instead of 589 AS in the wild type. No other mutations were observed within the phaCAB operon. As further mutations probably occurred in the genome of mutant PHB-4 potentially causing secondary effects on the cells' metabolism, the main focus of the study was to perform a 2D PAGE-based proteome analysis in order to identify differences in the proteomes of the wild type and mutant PHB-4. A total of 20 differentially expressed proteins were identified which provide valuable insights in the metabolomic changes of mutant PHB-4. Besides excretion of pyruvate, mutant PHB-4 encounters the accumulation of intermediates such as pyruvate and acetyl-CoA by enhanced expression of the observed protein species: (i) ThiJ supports biosynthesis of cofactor TPP and thereby reinforces the 2-oxoacid dehydrogenase complexes as PDHC, ADHC and OGDHC in order to convert pyruvate at a higher rate and the (ii) 3-isopropylmalate dehydrogenase LeuB3 apparently directs pyruvate to synthesis of several amino acids. Different (iii) acylCoA-transferases enable transfer reactions between organic acid intermediates, and (iv) citrate lyase CitE4 regenerates oxaloacetate from citrate for conversion with acetyl-CoA in the TCC in an anaplerotic reaction. Substantial amounts of reduction equivalents generated in the TCC are countered by (v) synthesis of more ubiquinones due to enhanced synthesis of MenG2 and MenG3, thereby

  15. Optimized methods to measure acetoacetate, 3-hydroxybutyrate, glycerol, alanine, pyruvate, lactate and glucose in human blood using a centrifugal analyser with a fluorimetric attachment.

    Science.gov (United States)

    Stappenbeck, R; Hodson, A W; Skillen, A W; Agius, L; Alberti, K G

    1990-01-01

    Optimized methods are described for the analysis of glucose, lactate, pyruvate, alanine, glycerol, D-3-hydroxybutyrate and acetoacetate in perchloric acid extracts of human blood using the Cobas Bio centrifugal analyser. Glucose and lactate are measured using the photometric mode and other metabolites using the fluorimetric mode. The intra-assay coefficients of variation ranged from 0.7 to 4.1%, except with very low levels of pyruvate and acetoacetate where the coefficients of variation were 7.1 and 12% respectively. All seven metabolites can be measured in a perchloric acid extract of 20 mul of blood. The methods have been optimized with regard to variation in the perchloric acid content of the samples. These variations arise from the method of sample preparation used to minimize changes occurring in metabolite concentration after venepuncture.

  16. Protective effect of ethyl pyruvate on mice sperm parameters in phenylhydrazine induced hemolytic anemia.

    Science.gov (United States)

    Mozafari, Ali Akbar; Shahrooz, Rasoul; Ahmadi, Abbas; Malekinjad, Hassan; Mardani, Karim

    2016-01-01

    The aim of the present study was to assess the protective effect of ethyl pyruvate (EP) on sperm quality parameters, testosterone level and malondialdehyde (MDA) in phenylhydrazine (PHZ) treated mice. For this purpose, 32 NMRI mice with the age range of 8 to 10 weeks, weight average 26.0 ± 2.0 g, were randomly divided into four equal groups. The control group (1) received normal saline (0. 1 mL per day) by intraperitoneal injection (IP). Group 2 (PHZ group) was treated with initial dose of PHZ (8 mg 100 g(-1), IP) followed by 6 mg 100 g(-1) , IP every 48 hr. Group 3, (Group PHZ+EP) received PHZ (according to the previous prescription) with EP (40 mg kg(-1), daily, IP). Ethyl pyruvate group (4) received only EP (40 mg kg(-1), daily, IP). Treatment period was 35 days. After euthanasia, sperms from caudal region of epididymis were collected and the total mean sperm count, sperm viability, motility and morphology were determined. Testis tissue MDA and serum testosterone levels of all experimental groups were also evaluated. A considerable reduction in mean percentage of number, natural morphology of sperm, sperm motility and viability and serum testosterone concentration besides DNA injury increment among mice treating with PHZ in comparison with control group were observed. However, in PHZ+EP group the above mentioned parameters were improved. This study showed that PHZ caused induction of toxicity on sperm parameters and reduction of testosterone as well as the increment of MDA level and EP as an antioxidant could reduce destructive effects of PHZ on sperm parameters, testosterone level and lipid peroxidation.

  17. Density functional theory prediction of pKa for carboxylated single-wall carbon nanotubes and graphene

    Science.gov (United States)

    Li, Hao; Fu, Aiping; Xue, Xuyan; Guo, Fengna; Huai, Wenbo; Chu, Tianshu; Wang, Zonghua

    2017-06-01

    Density functional calculations have been performed to investigate the acidities for the carboxylated single-wall carbon nanotubes and graphene. The pKa values for different COOH-functionalized models with varying lengths, diameters and chirality of nanotubes and with different edges of graphene were predicted using the SMD/M05-2X/6-31G* method combined with two universal thermodynamic cycles. The effects of following factors, such as, the functionalized position of carboxyl group, the Stone-Wales and single vacancy defects, on the acidity of the functionalized nanotube and graphene have also been evaluated. The deprotonated species have undergone decarboxylation when the hybridization mode of the carbon atom at the functionalization site changed from sp2 to sp3 both for the tube and graphene. The knowledge of the pKa values of the carboxylated nanotube and graphene could be of great help for the understanding of the nanocarbon materials in many diverse areas, including environmental protection, catalysis, electrochemistry and biochemistry.

  18. Kinetic studies on the carboxylation of 6-amino-penicillanic acid to 8-hydroxy-penillic acid

    DEFF Research Database (Denmark)

    Henriksen, Claus Maxel; Holm, SS; Schipper, D.

    1997-01-01

    The carboxylation in aqueous solution of 6-amino-penicillanic acid (6-APA) to 8-hydroxy-penillic acid (8-HPA) was studied at 25 degrees C and pH 6.5. During sparging with either a citrate buffer or a chemically defined cultivation medium containing 6-APA with mixtures of carbon dioxide and air (2.......7-41% (v/v) CO2), the kinetics for conversion of 6-APA was followed by HPLC. In the citrate buffer 6-APA was converted by two competitive reactions each following first order kinetics with respect to the concentration of 6-APA: 1. carboxylation into 8-HPA; and 2. slow conversion into an unknown compound....... Formation of the unknown compound was not observed in the cultivation medium. The carboxylation of 6-APA was also found to be first order with respect to the concentration of dissolved carbon dioxide. The rate constant for formation of 8-HPA did not differ significantly in the cultivation medium compared...

  19. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2016-07-01

    Full Text Available Supported iron oxide nanoparticles on mesoporous materials (FeNP@SBA-15 have been successfully utilized in the esterification of a variety carboxylic acids including aromatic, aliphatic, and long-chain carboxylic acids under convenient reaction conditions. The supported catalyst could be easily recovered after reaction completion and reused several times without any loss in activity after up to 10 runs.

  20. Synthesis of aminocarbonyl N-acylhydrazones by a three-component reaction of isocyanides, hydrazonoyl chlorides, and carboxylic acids.

    Science.gov (United States)

    Giustiniano, Mariateresa; Meneghetti, Fiorella; Mercalli, Valentina; Varese, Monica; Giustiniano, Francesco; Novellino, Ettore; Tron, Gian Cesare

    2014-10-17

    A novel one-pot multicomponent synthesis of α-aminocarbonyl N-acylhydrazones starting from readily available hydrazonoyl chlorides, isocyanides, and carboxylic acids is reported. The strategy exploits the ability of the carboxylic acid as a third component to suppress all competing reactions between nitrile imines and isocyanides, channeling the course of the reaction toward the formation of this novel class of compounds.

  1. A facile and novel approach towards carboxylic acid functionalization of multiwalled carbon nanotubes and efficient water dispersion

    KAUST Repository

    Rehman, Ata Ur

    2013-10-01

    A convenient, cheap and mild covalent functionalization route for multiwalled carbon nanotubes (MWCNTs) have been developed for the first time. The MWCNTs were treated with wet chemical oxidants (NaNO2/HCl, HNO3/H2O2) in order to modify MWCNTs with carboxyl groups. Surface functionality groups and morphology of MWCNTs were analyzed by FTIR, TGA, SEM and TEM. The results consistently confirmed the formation of carboxyl functionalities on MWCNTs, while the structure of MWCNTs has remained relatively intact. Functionalized MWCNTs showed good dispersion in aqueous media than untreated MWCNTs. Results show that NaNO2/HCl treatment is best suited for the chemical functionalization, giving optimum surface carboxyl groups and minimum length shortening of MWCNTs. © 2013 Elsevier B.V.

  2. A facile and novel approach towards carboxylic acid functionalization of multiwalled carbon nanotubes and efficient water dispersion

    KAUST Repository

    Rehman, Ata Ur; Abbas, Syed Mustansar; Ammad, Hafiz Muhammad; Badshah, Amin; Ali, Zulfiqar; Anjum, Dalaver H.

    2013-01-01

    A convenient, cheap and mild covalent functionalization route for multiwalled carbon nanotubes (MWCNTs) have been developed for the first time. The MWCNTs were treated with wet chemical oxidants (NaNO2/HCl, HNO3/H2O2) in order to modify MWCNTs with carboxyl groups. Surface functionality groups and morphology of MWCNTs were analyzed by FTIR, TGA, SEM and TEM. The results consistently confirmed the formation of carboxyl functionalities on MWCNTs, while the structure of MWCNTs has remained relatively intact. Functionalized MWCNTs showed good dispersion in aqueous media than untreated MWCNTs. Results show that NaNO2/HCl treatment is best suited for the chemical functionalization, giving optimum surface carboxyl groups and minimum length shortening of MWCNTs. © 2013 Elsevier B.V.

  3. Elevated levels of 14-3-3 proteins, serotonin, gamma enolase and pyruvate kinase identified in clinical samples from patients diagnosed with colorectal cancer

    Czech Academy of Sciences Publication Activity Database

    Dowling, P.; Hughes, D. J.; Larkin, A.M.; Meiller, J.; Henry, M.; Meleady, P.; Lynch, V.; Pardini, B.; Naccarati, A.; Levý, M.; Vodička, Pavel; Neary, P.; Clynes, M.

    2015-01-01

    Roč. 441, feb. (2015), s. 133-141 ISSN 0009-8981 Institutional support: RVO:68378041 Keywords : biomarkers * colorectal cancer * proteomics * mass spectrometry * 14-3-3 proteins * pyruvate kinase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.799, year: 2015

  4. 1-Allyl-3-amino-1H-pyrazole-4-carboxylic acid

    Directory of Open Access Journals (Sweden)

    Feng-Ling Yang

    2008-12-01

    Full Text Available The title compound, C7H9N3O2, was prepared by alkaline hydrolysis of ethyl 1-allyl-3-amino-1H-pyrazole-4-carboxylate. The crystal structure is stabilized by three types of intermolecular hydrogen bond (N—H...O, N—H...N and O—H...N.

  5. [14C]-radiolabeling of {[trans-(8β)]-6-methyl-1-(1-methylethyl) ergoline-8-carboxylic acid, 4-methoxycyclohexyl ester (Z)-2-buteneidioate (1:1)}

    International Nuclear Information System (INIS)

    Marzoni, G.; Wheeler, W.J.; Garbrecht, W.L.

    1988-01-01

    The 5HT 2 -receptor antagonist, [ 14 C]-labeled brace[trans-(8β)]-6-methyl-1-(1-methylethyl)ergoline-8-carboxylic acid, 4-methoxycyclohexyl ester (Z)-2-butenedioate (1:1)brace (LY281067) was synthesized from unlabeled 6-methyl-1-(1-methylethyl)ergoline-8-carboxylic acid. The [ 14 C] label was introduced into the carboxyl group attached to the 8 position of the ergoline nucleus. This site is stable to metabolism. The synthesis involves removal of an unlabeled carboxyl group and subsequent reinsertion of a [ 14 C]-labeled carboxyl group into the same position. The radiolabel is not introduced until near the end of the synthesis which allows for ease of handling and scale-up of intermediates. (author)

  6. Energy and protein relations in the broiler chicken. 4. Role of sex, line and substrate on in vitro lipogenesis

    International Nuclear Information System (INIS)

    Rosebrough, R.W.; Steele, N.C.; McMurtry, J.P.; Richards, M.P.; Mitchell, A.D.; Calvert, C.C.

    1986-01-01

    Experiments were conducted with dwarf (dw) and normal lines of chickens to determine the effect of sex, diet and line on lipogenesis in the 28-day-old chick. The chicks were fed diets containing 12, 18, 23 and 30% protein. In the first experiment, in vitro lipogenesis (incorporation of [2- 14 C] sodium acetate into hepatic fatty acids) as well as growth from 7 to 28 days of age were determined in males and females of both lines. In the second experiment, only males and females of the dwarf line were fed to determine the relative contribution of acetate and pyruvate to in vitro lipogenesis (incorporation of either [2- 14 C] sodium acetate or [2- 14 C) pyruvate into hepatic fatty acids). Chicks of the dwarf line were smaller than were those of the normal line. Females of both lines were smaller than males. In vitro lipogenesis was lower in the dwarf line; however the rate for both sexes within a given line was equal. An increase in the dietary protein decreased in vitro lipogenesis in both lines. The use of pyruvate as an in vitro precursor indicated that the regulation of lipid and carbohydrate metabolism may be an integrated process involving pyruvate carboxylation and subsequent flux of pyruvate carbon into either glucose or fatty acids. Based on the data presented, there is no evidence to assume, that the dwarf gene per se influences lipogenesis

  7. Escherichia coli pyruvate dehydrogenase complex: particle masses of the complex and component enzymes measured by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    CaJacob, C.A.; Frey, P.A.; Hainfeld, J.F.; Wall, J.S.; Yang, H.

    1985-01-01

    Particle masses of the Escherichia coli pyruvate dehydrogenase (PDH) complex and its component enzymes have been measured by scanning transmission electron microscopy (STEM). The particle mass of PDH complex measured by STEM is 5.28 X 10(6) with a standard deviation of 0.40 X 10(6). The masses of the component enzymes are 2.06 X 10(5) for the dimeric pyruvate dehydrogenase (E1), 1.15 X 10(5) for dimeric dihydrolipoyl dehydrogenase (E3), and 2.20 X 10(6) for dihydrolipoyl transacetylase (E2), the 24-subunit core enzyme. STEM measurements on PDH complex incubated with excess E3 or E1 failed to detect any additional binding of E3 but showed that the complex would bind additional E1 under forcing conditions. The additional E1 subunits were bound too weakly to represent binding sites in an isolated or isolable complex. The mass measurements by STEM are consistent with the subunit composition 24:24:12 when interpreted in the light of the flavin content of the complex and assuming 24 subunits in the core enzyme (E2)

  8. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    Directory of Open Access Journals (Sweden)

    M. Vaïtilingom

    2011-08-01

    Full Text Available The objective of this work was to compare experimentally the contribution of photochemistry vs. microbial activity to the degradation of carboxylic acids present in cloud water. For this, we selected 17 strains representative of the microflora existing in real clouds and worked on two distinct artificial cloud media that reproduce marine and continental cloud chemical composition. Photodegradation experiments with hydrogen peroxide (H2O2 as a source of hydroxyl radicals were performed under the same microcosm conditions using two irradiation systems. Biodegradation and photodegradation rates of acetate, formate, oxalate and succinate were measured on both media at 5 °C and 17 °C and were shown to be on the same order of magnitude (around 10−10–10−11 M s−1. The chemical composition (marine or continental origin had little influence on photodegradation and biodegradation rates while the temperature shift from 17 °C to 5 °C decreased biodegradation rates of a factor 2 to 5.

    In order to test other photochemical scenarios, theoretical photodegradation rates were calculated considering hydroxyl (OH radical concentration values in cloud water estimated by cloud chemistry modelling studies and available reaction rate constants of carboxylic compounds with both hydroxyl and nitrate radicals. Considering high OH concentration ([OH] = 1 × 10−12 M led to no significant contribution of microbial activity in the destruction of carboxylic acids. On the contrary, for lower OH concentration (at noon, [OH] = 1 × 10−14 M, microorganisms could efficiently compete with photochemistry and in similar contributions than the ones estimated by our experimental approach.

    Combining these two approaches (experimental and theoretical, our results led to the following conclusions: oxalate was only photodegraded; the photodegradation of formate was usually more

  9. Ion exchange properties of carboxylate bagasse

    International Nuclear Information System (INIS)

    Nada, A.M.A.; Hassan, M.L.

    2005-01-01

    Bagasse fibers were chemically modified using three different reactions: esterification using monochloro acetic acid, esterification using succinic anhydride, and oxidation using sodium periodate and sodium chlorite to prepare cation exchanger bearing carboxylic groups. Bagasse was crosslinked using epichlorohydrin before chemical modification to avoid loss of its constituents during the chemical modification. The structure of the prepared derivatives was proved using Fourier transform infrared (FTIR) and chemical methods. The ability of the prepared bagasse cation exchangers to adsorb heavy metal ions (Cu +2 , Ni +2 , Cr +3 , Fe +3 ), on a separate basis or in a mixture of them, at different metal ion concentration was tested. Thermal stability of the different bagasse derivative was studied using thermogravimetric analysis (TGA)

  10. Carboxyl-Functionalized Polymeric Microspheres Prepared by One-Stage Photoinitiated RAFT Dispersion Polymerization

    Directory of Open Access Journals (Sweden)

    Jianbo Tan

    2017-12-01

    Full Text Available Herein, we report a photoinitiated reversible addition-fragmentation chain transfer (RAFT dispersion copolymerization of methyl methacrylate (MMA and methyl methacrylic (MAA for the preparation of highly monodisperse carboxyl-functionalized polymeric microspheres. High rates of polymerization were observed, with more than 90% particle yields being achieved within 3 h of UV irradiation. Effects of reaction parameters (e.g., MAA concentration, RAFT agent concentration, photoinitiator concentration, and solvent composition were studied in detail, and highly monodisperse polymeric microspheres were obtained in most cases. Finally, silver (Ag composite microspheres were prepared by in situ reduction of AgNO3 using the carboxyl-functionalized polymeric microspheres as the template. The obtained Ag composite microspheres were able to catalyze the reduction of methylene blue (MB with NaBH4 as a reductant.

  11. Selectivity in stripping of alkali-metal cations from crown ether carboxylate complexes

    International Nuclear Information System (INIS)

    Bartsch, R.A.; Walkowiak, W.; Robison, T.W.

    1992-01-01

    To probe the effect of structural variations within the ionophore upon the efficiency and selectivity of solvent extraction, a variety of crown ether carboxylic acids and phosphonic acid monoesters have been synthesized. In other studies the influence of the organic diluent upon extraction efficiency and selectivity has been probed for such proton-ionizable crown ethers. In the present investigation, attention is focused upon selectivity in the stripping step. Although the efficiency of metal ion stripping is often examined in solvent extraction studies, the selectivity of competitive metal ion release under different conditions is much less frequently considered. In this study, competitive stripping of metal ions from chloroform solutions of five-alkali-metal crown ether carboxylates by varying concentrations of aqueous hydrochloric acid is examined. Alkali metals used were Li, Na, K, Rb, and Cs

  12. Basicity of carboxylic acids: resonance in the cation and substituent effects

    Czech Academy of Sciences Publication Activity Database

    Böhm, S.; Exner, Otto

    2005-01-01

    Roč. 29, - (2005), s. 336-342 ISSN 1144-0546 R&D Projects: GA MŠk(CZ) LN00A032 Institutional research plan: CEZ:AV0Z4055905 Keywords : basicity * carboxylic acids Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.574, year: 2005

  13. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide

    International Nuclear Information System (INIS)

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian

    2016-01-01

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL"−"1, which is 32 times lower than that of graphene oxide-based biosensor. - Highlights: • A sensitive and versatile SPR biosensor was constructed for detection of pig IgG. • Biofunctional gold nanostars were used to amplify the response signals. • The strategy employed carboxyl-functionalized graphene oxide as biosensing substrate. • The detection limit of the proposed biosensor is 32 times lower than that of graphene oxide-based biosensor.

  14. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian, E-mail: songdq@jlu.edu.cn

    2016-03-24

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL{sup −1}, which is 32 times lower than that of graphene oxide-based biosensor. - Highlights: • A sensitive and versatile SPR biosensor was constructed for detection of pig IgG. • Biofunctional gold nanostars were used to amplify the response signals. • The strategy employed carboxyl-functionalized graphene oxide as biosensing substrate. • The detection limit of the proposed biosensor is 32 times lower than that of graphene oxide-based biosensor.

  15. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    International Nuclear Information System (INIS)

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li; Tian, Ai-Xiang; Wang, Xiu-Li

    2013-01-01

    Three new metal-organic coordination polymers [Co(4-bbc) 2 (bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H 2 O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H 2 pdc=3,5-pyridinedicarboxylic acid, 1,4-H 2 ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co II ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3 2 ·4·5·6 2 ·7 4 ) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphical abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated

  16. Pyruvic Oxime Nitrification and Copper and Nickel Resistance by a Cupriavidus pauculus, an Active Heterotrophic Nitrifier-Denitrifier

    OpenAIRE

    Ramirez, Miguel; Obrzydowski, Jennifer; Ayers, Mary; Virparia, Sonia; Wang, Meijing; Stefan, Kurtis; Linchangco, Richard; Castignetti, Domenic

    2014-01-01

    Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2) and nitrous oxide (N2O) while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH)–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a g...

  17. Controlled surface functionalization of silica-coated magnetic nanoparticles with terminal amino and carboxyl groups

    International Nuclear Information System (INIS)

    Kralj, Slavko; Drofenik, Miha; Makovec, Darko

    2011-01-01

    General and versatile methods for the functionalization of superparamagnetic, silica-coated, maghemite nanoparticles by surface amino and/or carboxyl groups have been established. The nanoparticles were synthesized using co-precipitation from aqueous solutions and coated with a thin layer of silica using the hydrolysis and condensation of tetraethoxysilane (TEOS). For the amino functionalization, 3-(2-aminoethylamino)propylmethyldimethoxysilane (APMS) was grafted onto the nanoparticle surfaces in their aqueous suspensions. The grafting process was followed by measurements of the ζ-potential and a determination of the concentration of the surface amino groups with conductometric titrations. The surface concentration of the amino groups could be varied by increasing the amount of APMS in the grafting process up to approximately 2.3 –NH 2 groups per nm 2 . The carboxyl functionalization was obtained in two ways: (i) by a ring-opening linker elongation reaction of the surface amines at the functionalized nanoparticles with succinic anhydride (SA) in non-aqueous medium, and (ii) by reacting the APMS and SA first, followed by grafting of the carboxyl-terminated reagent onto the nanoparticle surfaces. Using the first method, the SA only reacted with the terminal primary amino groups (–NH 2 ) of the surface-grafted APMS molecules. Infra-red spectroscopy (ATR FTIR) and mass spectrometry (HRMS) showed that the second method enables the bonding of up to two SA molecules per one APMS molecule, since the SA reacted with both the primary (–NH 2 ) and secondary amino (–NH–) groups of the APMS molecule. When using both methods, the ratio between the surface amino and carboxyl groups can be controlled.

  18. Aminolysis of resin-bound N-nosylaziridine-2-carboxylic acids

    DEFF Research Database (Denmark)

    Olsen, Christian A; Christensen, Caspar; Nielsen, Birgitte

    2006-01-01

    [Structure: see text] Solid-phase synthesis is a rapidly developing area of organic chemistry, of particular importance for medicinal chemistry and chemical biology. Aziridines have previously only rarely been applied in solid-phase synthesis. In the present work, aminolysis of resin-bound, sprin......-loaded N-nitrobenzenesulfonyl-activated aziridine-2-carboxylic acids has been optimized and employed in the synthesis of a number of open-chain and heterocyclic scaffolds, including enantiopure products....

  19. Suppression of the Escherichia coli dnaA46 mutation by changes in the activities of the pyruvate-acetate node links DNA replication regulation to central carbon metabolism.

    Science.gov (United States)

    Tymecka-Mulik, Joanna; Boss, Lidia; Maciąg-Dorszyńska, Monika; Matias Rodrigues, João F; Gaffke, Lidia; Wosinski, Anna; Cech, Grzegorz M; Szalewska-Pałasz, Agnieszka; Węgrzyn, Grzegorz; Glinkowska, Monika

    2017-01-01

    To ensure faithful transmission of genetic material to progeny cells, DNA replication is tightly regulated, mainly at the initiation step. Escherichia coli cells regulate the frequency of initiation according to growth conditions. Results of the classical, as well as the latest studies, suggest that the DNA replication in E. coli starts at a predefined, constant cell volume per chromosome but the mechanisms coordinating DNA replication with cell growth are still not fully understood. Results of recent investigations have revealed a role of metabolic pathway proteins in the control of cell division and a direct link between metabolism and DNA replication has also been suggested both in Bacillus subtilis and E. coli cells. In this work we show that defects in the acetate overflow pathway suppress the temperature-sensitivity of a defective replication initiator-DnaA under acetogenic growth conditions. Transcriptomic and metabolic analyses imply that this suppression is correlated with pyruvate accumulation, resulting from alterations in the pyruvate dehydrogenase (PDH) activity. Consequently, deletion of genes encoding the pyruvate dehydrogenase subunits likewise resulted in suppression of the thermal-sensitive growth of the dnaA46 strain. We propose that the suppressor effect may be directly related to the PDH complex activity, providing a link between an enzyme of the central carbon metabolism and DNA replication.

  20. Optimization of polycrystalline platinum catalytic activity opposite to carboxylic acids oxidation

    International Nuclear Information System (INIS)

    Le Naour, C.; Moisy, P.; Blanc, P.; Madic, C.

    1994-01-01

    In electro nuclear industry, in the aim to reduce the quantity of wastes coming from the spent fuels reprocessing, the use of reagents as some carboxylic acids is considered: after use, these reagents are completely decomposed in gaseous products, which can be filtered and released in environment

  1. Interaction of 1-iodochlordecone, as radioactive tracer, with the carboxylate group on activated carbon

    International Nuclear Information System (INIS)

    Gamboa-Carballo, Juan José; Melchor-Rodríguez, Kenia; Hernández-Valdés, Daniel; Jáuregui-Haza, Ulises Javier

    2016-01-01

    Chlordecone is a synthetic organo chlorinated compound that has been used as pesticide. It has been identified and listed as persistent organic pollutant by the Stockholm Convention. The use of activated carbon filters is one of the most widely popular solutions for water decontamination. The chlordecone labeled with radioactive iodine (1-iodochordecone) is a potential radioactive tracer for studying adsorption, environmental availability and bio-distribution of chlordecone. The selection of the best suited activation carbon for this type of contaminants is mainly an empiric process, increasing the costs of research. A simplified activation carbon model, consisting of a seven ring graphene sheet with a functional group (carboxylate) was used to assess the interaction of chlordecone and 1-iodochlordecone with this surface group under neutral pH conditions over the adsorption process. The Multiple Minima Hypersurface methodology with the semiempirical Hamiltonian PM7 was used. The results indicate that for carboxylate, in neutral conditions, significant associations appear which suggest chemisorption in activated carbon. No significant differences were observed for the interactions of chlordecone and 1 iodochlordecone with carboxylate, making 1-iodochlordecone a good candidate as a radioactive tracer in medical research. (author)

  2. Biosynthetic origin of the isoprene units in chromenes of Piper aduncum (Piperaceae)

    International Nuclear Information System (INIS)

    Leite, Ana C.; Lopes, Adriana A.; Bolzani, Vanderlan da S.; Furlan, Maysa; Kato, Massuo J.

    2007-01-01

    Metabolic studies involving the incorporation of [1- 13 C]-D-glucose into intact leaves of Piper aduncum (Piperaceae) have indicated that both the mevalonate (MVA) and the pyruvate-triose (MEP) non-mevalonate pathways are implicated in the biosynthesis of isoprene moieties present in methyl 2,2-dimethyl-2H-1-chromene-6-carboxylate (1) and methyl 2,2-dimethyl-8-(3'-methyl- 2'-butenyl)-2H-1-chromene-6-carboxylate (2). The pattern of incorporation of label from [1- 13 C]-D-glucose into these chromenes was determined by quantitative 13 C NMR spectroscopy. The results confirmed that biosynthetic compartment of 1 and 2 could either be the plastid and/ or the cytosol or, possibly, an additional compartment such as the plastid inter-membrane space. (author)

  3. LIQUID-CHROMATOGRAPHIC ANALYSIS OF CARBOXYLIC-ACIDS USING N-(4-AMINOBUTYL)-N-ETHYLISOLUMINOL AS CHEMILUMINESCENT LABEL - DETERMINATION OF IBUPROFEN IN SALIVA

    NARCIS (Netherlands)

    STEIJGER, OM; LINGEMAN, H; BRINKMAN, UAT; HOLTHUIS, JJM; SMILDE, AK; DOORNBOS, DA

    1993-01-01

    N-(4-Aminobutyl)-N-ethylisoluminol was used for labelling of carboxylic acids. The derivatization reaction was carried out with 1-hydroxybenzotriazole as pre-activator of the carboxylic acid function and N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide as the coupling reagent. Optimum conditions for

  4. Liquid chromatographic analysis of carboxylic acids using N-(4-aminobutyl)-N-ethylisoluminol as chemiluminescent label: determination of ibuprofen in saliva

    NARCIS (Netherlands)

    Steijger, O. M.; Lingeman, H.; Brinkman, U. A.; Holthuis, J. J.; Smilde, A. K.; Doornbos, D. A.

    1993-01-01

    N-(4-Aminobutyl)-N-ethylisoluminol was used for labelling of carboxylic acids. The derivatization reaction was carried out with 1-hydroxybenzotriazole as pre-activator of the carboxylic acid function and N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide as the coupling reagent. Optimum conditions for

  5. Multifunctional PEG-carboxylate copolymer coated superparamagnetic iron oxide nanoparticles for biomedical application

    Science.gov (United States)

    Illés, Erzsébet; Szekeres, Márta; Tóth, Ildikó Y.; Szabó, Ákos; Iván, Béla; Turcu, Rodica; Vékás, Ladislau; Zupkó, István; Jaics, György; Tombácz, Etelka

    2018-04-01

    Biocompatible magnetite nanoparticles (MNPs) were prepared by post-coating the magnetic nanocores with a synthetic polymer designed specifically to shield the particles from non-specific interaction with cells. Poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomers and acrylic acid (AA) small molecular monomers were chemically coupled by quasi-living atom transfer radical polymerization (ATRP) to a comb-like copolymer, P(PEGMA-co-AA) designated here as P(PEGMA-AA). The polymer contains pendant carboxylate moieties near the backbone and PEG side chains. It is able to bind spontaneously to MNPs; stabilize the particles electrostatically via the carboxylate moieties and sterically via the PEG moieties; provide high protein repellency via the structured PEG layer; and anchor bioactive proteins via peptide bond formation with the free carboxylate groups. The presence of the P(PEGMA-AA) coating was verified in XPS experiments. The electrosteric (i.e., combined electrostatic and steric) stabilization is efficient down to pH 4 (at 10 mM ionic strength). Static magnetization and AC susceptibility measurements showed that the P(PEGMA-AA)@MNPs are superparamagnetic with a saturation magnetization value of 55 emu/g and that both single core nanoparticles and multicore structures are present in the samples. The multicore components make our product well suited for magnetic hyperthermia applications (SAR values up to 17.44 W/g). In vitro biocompatibility, cell internalization, and magnetic hyperthermia studies demonstrate the excellent theranostic potential of our product.

  6. Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres

    Science.gov (United States)

    Liu, Huiyu; Chen, Dong; Tang, Fangqiong; Du, Gangjun; Li, Linlin; Meng, Xianwei; Liang, Wei; Zhang, Yangde; Teng, Xu; Li, Yi

    2008-11-01

    A new approach towards the design of gold nanoshells on carboxylated polystyrene spheres (GNCPSs) is reported here. Gold nanoshells were self-assembled on the surface of carboxylated polystyrene spheres by a seed growth method. Chitosan (CHI) was used as a functional agent of carboxylated polystyrene spheres for attaching gold seeds. The surface plasmon resonance (SPR) peak of GNCPSs can be tuned, greatly redshifted, over a broad spectral range including the near-infrared (NIR) wavelength region, which provides maximal penetration of light through tissue. Irradiation of GNCPSs at their peak extinction coefficient results in the conversion of light to heat energy that produces a local rise in temperature. Our study revealed that the Lewis lung carcinoma (LLC) in mice treated with GNCPSs exposed to a low dose of NIR light (808 nm, 4 W cm-2) induced irreversible tissue damage. The tumor volumes of the treatment group by GNCPSs were significantly lower than those of control groups, with an average inhibition rate over 55% (P<0.005). This study proves that GNCPSs are promising in plasmonic photothermal tumor therapy.

  7. Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres

    International Nuclear Information System (INIS)

    Liu Huiyu; Chen Dong; Tang Fangqiong; Li Linlin; Meng Xianwei; Li Yi; Du Gangjun; Liang Wei; Zhang Yangde; Teng Xu

    2008-01-01

    A new approach towards the design of gold nanoshells on carboxylated polystyrene spheres (GNCPSs) is reported here. Gold nanoshells were self-assembled on the surface of carboxylated polystyrene spheres by a seed growth method. Chitosan (CHI) was used as a functional agent of carboxylated polystyrene spheres for attaching gold seeds. The surface plasmon resonance (SPR) peak of GNCPSs can be tuned, greatly redshifted, over a broad spectral range including the near-infrared (NIR) wavelength region, which provides maximal penetration of light through tissue. Irradiation of GNCPSs at their peak extinction coefficient results in the conversion of light to heat energy that produces a local rise in temperature. Our study revealed that the Lewis lung carcinoma (LLC) in mice treated with GNCPSs exposed to a low dose of NIR light (808 nm, 4 W cm -2 ) induced irreversible tissue damage. The tumor volumes of the treatment group by GNCPSs were significantly lower than those of control groups, with an average inhibition rate over 55% (P<0.005). This study proves that GNCPSs are promising in plasmonic photothermal tumor therapy.

  8. Proton-conducting membranes based on benzimidazole-containing sulfonated poly(ether ether ketone) compared with their carboxyl acid form

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Wu, Jing; Zhao, Chengji; Zhang, Gang; Zhang, Yang; Shao, Ke; Xu, Dan; Lin, Haidan; Han, Miaomiao; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China)

    2009-10-15

    A series of sulfonated poly(ether ether ketone) containing pendant carboxyl (C-SPEEKs) have been synthesized using a nucleophilic polycondesation reaction. A condensation reaction between 1,2-diaminobenzene and carboxyl resulted in a new series of copolymers containing benzimidazole groups (SPEEK-BIms). The expected structures of the sulfonated copolymers are confirmed by {sup 1}H NMR. The dependence of ion exchange capacity, water uptake, proton conductivity and methanol diffusion coefficient of SPEEK-BIm membranes has been studied and compared with their carboxyl acid form. The results suggest that the introduction of benzimidazole groups may be responsible for many excellent properties of the membranes for fuel cell. It is noticeable that the markedly improved oxidative stability is benefit for the application of membrane. (author)

  9. Additional Nucleophile-Free FeCl3-Catalyzed Green Deprotection of 2,4-Dimethoxyphenylmethyl-Protected Alcohols and Carboxylic Acids.

    Science.gov (United States)

    Sawama, Yoshinari; Masuda, Masahiro; Honda, Akie; Yokoyama, Hiroki; Park, Kwihwan; Yasukawa, Naoki; Monguchi, Yasunari; Sajiki, Hironao

    2016-01-01

    The deprotection of the methoxyphenylmethyl (MPM) ether and ester derivatives can be generally achieved by the combinatorial use of a catalytic Lewis acid and stoichiometric nucleophile. The deprotections of 2,4-dimethoxyphenylmethyl (DMPM)-protected alcohols and carboxylic acids were found to be effectively catalyzed by iron(III) chloride without any additional nucleophile to form the deprotected mother alcohols and carboxylic acids in excellent yields. Since the present deprotection proceeds via the self-assembling mechanism of the 2,4-DMPM protective group itself to give the hardly-soluble resorcinarene derivative as a precipitate, the rigorous purification process by silica-gel column chromatography was unnecessary and the sufficiently-pure alcohols and carboxylic acids were easily obtained in satisfactory yields after simple filtration.

  10. Modeling Donnan Dialysis Separation for Carboxylic Anion Recovery

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Møllerhøj, Martin; Jørgensen, Sten Bay

    2010-01-01

    layers and membranes. Donnan equilibrium, flux continuity of the transported ions, the electroneutrality condition and Faraday's law are employed to describe the electrical potential and concentration discontinuities at the interfaces. The Nernst-Planck equation is used to model the ion transport though...... boundary layers and membranes. The model consists of a system of partial differential equations that are solved numerically. The aim of this paper is to corroborate this general model for several monoprotic carboxylic acids reported in the literature. The model reproduces satisfactorily experimental fluxes...

  11. Low-Dose Daily Intake of Vitamin K(2) (Menaquinone-7) Improves Osteocalcin γ-Carboxylation: A Double-Blind, Randomized Controlled Trials.

    Science.gov (United States)

    Inaba, Naoko; Sato, Toshiro; Yamashita, Takatoshi

    2015-01-01

    Vitamin K is essential for bone health, but the effects of low-dose vitamin K intake in Japanese subjects remain unclear. We investigated the effective minimum daily menaquinone-7 dose for improving osteocalcin γ-carboxylation. Study 1 was a double-blind, randomized controlled dose-finding trial; 60 postmenopausal women aged 50-69 y were allocated to one of four dosage group and consumed 0, 50, 100, or 200 μg menaquinone-7 daily for 4 wk, respectively, with a controlled diet in accordance with recommended daily intakes for 2010 in Japan. Study 2 was a double-blind, randomized placebo-controlled trial based on the results of Study 1; 120 subjects aged 20-69 y were allocated to the placebo or MK-7 group and consumed 0 or 100 μg menaquinone-7 daily for 12 wk, respectively. In both studies, circulating carboxylated osteocalcin and undercarboxylated osteocalcin were measured. The carboxylated osteocalcin/undercarboxylated osteocalcin ratio decreased significantly from baseline in the 0 μg menaquinone-7 group, in which subjects consumed the recommended daily intake of vitamin K with vitamin K1 and menaquinone-4 (Study 1). Menaquinone-7 increased the carboxylated osteocalcin/undercarboxylated osteocalcin ratio dose dependently, and significant effects were observed in both the 100 and 200 μg groups compared with the 0 μg group. Undercarboxylated osteocalcin concentrations decreased significantly, and the carboxylated osteocalcin/undercarboxylated osteocalcin ratio increased significantly in the 100 μg menaquinone-7 group compared with the placebo group (Study 2). Daily menaquinone-7 intake ≥100 μg was suggested to improve osteocalcin γ-carboxylation.

  12. Formation and High-order Carboxylic Acids (RCOOH) in Interstellar Analogous Ices of Carbon Dioxide (CO2) and Methane(CH4)

    Science.gov (United States)

    Zhu, Cheng; Turner, Andrew M.; Abplanalp, Matthew J.; Kaiser, Ralf I.

    2018-01-01

    This laboratory study simulated the abiotic formation of carboxylic acids (RCOOH) in interstellar analogous ices of carbon dioxide (CO2) and methane (CH4) at 10 K upon exposure to energetic electrons. The chemical processing of the ices and the subsequent warm-up phase were monitored online and in situ, exploiting Fourier Transform Infrared Spectrometry and quadrupole mass spectrometry. Characteristic absorptions of functional groups of carboxylic acids (RCOOH) were observed in the infrared spectra of the irradiated ice. Two proposed reaction mechanisms replicated the kinetic profiles of the carboxylic acids along with the decay profile of the precursors during the irradiation via hydrocarbon formation, followed by carboxylation and/or through acetic acid along with mass growth processes of the alkyl chain. Mass spectra recorded during the warm-up phase demonstrated that these acids are distributed from acetic acid (CH3COOH) up to decanoic acid (C9H19COOH). High-dose irradiation studies (91 ± 14 eV) converted low-molecular-weight acids such as acetic acid (CH3COOH) and propionic acid (C2H5COOH) to higher-molecular-weight carboxylic acids, compared to low-dose irradiation studies (18 ± 3 eV). The traces of the {{{H}}}2{{C}}= {{C}}({OH}{)}2+ (m/z = 60) fragment—a link to linear carboxylic acids—implied that higher-order acids (C n H2n+1COOH, n ≥ 5) are likely branched, which correlates with the recent analysis of the structures of the monocarboxylic acids in the Murchison meteorite.

  13. Biocompatibility studies of polyacrylonitrile membranes modified with carboxylated polyetherimide

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, S.; Rajesh, S.; Jayalakshmi, A.; Mohan, D., E-mail: mohantarun@gmail.com

    2013-10-15

    Poly (ether-imide) (PEI) was carboxylated and used as the hydrophilic modification agent for the preparation of polyacrylonitrile (PAN) membranes. Membranes were prepared with different blend compositions of PAN and CPEI by diffusion induced precipitation. The modified membranes were characterized by thermo gravimetric analysis (TGA), mechanical analysis, scanning electron microscopy (SEM) and contact angle measurement to understand the influence of CPEI on the properties of the membranes. The biocompatibility studies exhibited reduced plasma protein adsorption, platelet adhesion and thrombus formation on the modified membrane surface. The complete blood count (CBC) results of CPEI incorporated membranes showed stable CBC values and significant decrease in the complement activation were also observed. In addition to good cytocompatibility, monocytes cultured on these modified membranes exhibited improved functional profiles in 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Thus it could be concluded that PAN/CPEI membranes with excellent biocompatibility can be useful for hemodialysis. Highlights: • Carboxylated PEI was prepared and utilized as hydrophilic modification agent. • CPEI incorporated into PAN to improved biocompatibility and cyto compatibility • Biocompatibility of membranes was correlated with morphology and hydrophilicity. • Antifouling studies of the PAN/CPEI membranes was studied by BSA as model foulant.

  14. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Oud Bart

    2012-09-01

    Full Text Available Abstract Background Pyruvate-decarboxylase negative (Pdc- strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc-S. cerevisiae an interesting platform for efficient conversion of glucose towards pyruvate-derived products without formation of ethanol as a by-product. However, Pdc- strains cannot grow on high glucose concentrations and require C2-compounds (ethanol or acetate for growth under conditions with low glucose concentrations, which hitherto has limited application in industry. Results Genetic analysis of a Pdc- strain previously evolved to overcome these deficiencies revealed a 225bp in-frame internal deletion in MTH1, encoding a transcriptional regulator involved in glucose sensing. This internal deletion contains a phosphorylation site required for degradation, thereby hypothetically resulting in increased stability of the protein. Reverse engineering of this alternative MTH1 allele into a non-evolved Pdc- strain enabled growth on 20 g l-1 glucose and 0.3% (v/v ethanol at a maximum specific growth rate (0.24 h-1 similar to that of the evolved Pdc- strain (0.23 h-1. Furthermore, the reverse engineered Pdc- strain grew on glucose as sole carbon source, albeit at a lower specific growth rate (0.10 h-1 than the evolved strain (0.20 h-1. The observation that overexpression of the wild-type MTH1 allele also restored growth of Pdc-S. cerevisiae on glucose is consistent with the hypothesis that the internal deletion results in decreased degradation of Mth1. Reduced degradation of Mth1 has been shown to result in deregulation of hexose transport. In Pdc- strains, reduced glucose uptake may prevent intracellular accumulation of pyruvate and/or redox problems, while release of glucose repression due to the MTH1 internal deletion may contribute to alleviation of the C2-compound auxotrophy. Conclusions In this study we have discovered and

  15. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae.

    Science.gov (United States)

    Oud, Bart; Flores, Carmen-Lisset; Gancedo, Carlos; Zhang, Xiuying; Trueheart, Joshua; Daran, Jean-Marc; Pronk, Jack T; van Maris, Antonius J A

    2012-09-15

    Pyruvate-decarboxylase negative (Pdc⁻) strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc⁻S. cerevisiae an interesting platform for efficient conversion of glucose towards pyruvate-derived products without formation of ethanol as a by-product. However, Pdc⁻ strains cannot grow on high glucose concentrations and require C₂-compounds (ethanol or acetate) for growth under conditions with low glucose concentrations, which hitherto has limited application in industry. Genetic analysis of a Pdc⁻ strain previously evolved to overcome these deficiencies revealed a 225 p in-frame internal deletion in MTH1, encoding a transcriptional regulator involved in glucose sensing. This internal deletion contains a phosphorylation site required for degradation, thereby hypothetically resulting in increased stability of the protein. Reverse engineering of this alternative MTH1 allele into a non-evolved Pdc⁻ strain enabled growth on 20 g l⁻¹ glucose and 0.3% (v/v) ethanol at a maximum specific growth rate (0.24 h⁻¹) similar to that of the evolved Pdc⁻ strain (0.23 h⁻¹). Furthermore, the reverse engineered Pdc⁻ strain grew on glucose as sole carbon source, albeit at a lower specific growth rate (0.10 h⁻¹) than the evolved strain (0.20 h⁻¹). The observation that overexpression of the wild-type MTH1 allele also restored growth of Pdc⁻S. cerevisiae on glucose is consistent with the hypothesis that the internal deletion results in decreased degradation of Mth1. Reduced degradation of Mth1 has been shown to result in deregulation of hexose transport. In Pdc⁻ strains, reduced glucose uptake may prevent intracellular accumulation of pyruvate and/or redox problems, while release of glucose repression due to the MTH1 internal deletion may contribute to alleviation of the C₂-compound auxotrophy. In this study we have discovered and characterised a

  16. Ultrasonic-assisted preparation of graphene oxide carboxylic acid polyvinyl alcohol polymer film and studies of thermal stability and surface resistivity.

    Science.gov (United States)

    Li, Yongshen; Li, Jihui; Li, Yuehai; Li, Yali; Song, Yunan; Niu, Shuai; Li, Ning

    2018-01-01

    In this paper, flake graphite, nitric acid and acetic anhydride are used to prepare graphene oxide carboxylic acid (GO-COOH) via an ultrasonic-assisted method, and GO-COOH and polyvinyl alcohol polymer (PVA) are used to synthesize graphene oxide carboxylic acid polyvinyl alcohol polymer (GO-COOPVA) via the ultrasonic-assisted method, and GO-COOPVA is used to manufacture graphene oxide carboxylic acid polyvinyl alcohol polymer film (GO-COOPVA film) via a solidification method, and the structure and morphology of GO-COOH, GO-COOPVA and GO-COOPVA film are characterized, and the thermal stability and surface resistivity are measured in the case of the different amount of GO-COOH. Based on the characterization and measurement, it has been successively confirmed and attested that carboxyl groups implant on 2D lattice of GO to form GO-COOH, and GO-COOH and PVA have the esterification reaction to produce GO-COOPVA, and GO-COOPVA consists of 2D lattice of GO-COOH and the chain of PVA connected in the form of carboxylic ester, and GO-COOPVA film is composed of GO-COOPVA, and the thermal stability of GO-COOPVA film obviously improves in comparison with PVA film, and the surface resistivity of GO-COOPVA film clearly decreases. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Molecular identification and characterization of the pyruvate decarboxylase gene family associated with latex regeneration and stress response in rubber tree.

    Science.gov (United States)

    Long, Xiangyu; He, Bin; Wang, Chuang; Fang, Yongjun; Qi, Jiyan; Tang, Chaorong

    2015-02-01

    In plants, ethanolic fermentation occurs not only under anaerobic conditions but also under aerobic conditions, and involves carbohydrate and energy metabolism. Pyruvate decarboxylase (PDC) is the first and the key enzyme of ethanolic fermentation, which branches off the main glycolytic pathway at pyruvate. Here, four PDC genes were isolated and identified in a rubber tree, and the protein sequences they encode are very similar. The expression patterns of HbPDC4 correlated well with tapping-simulated rubber productivity in virgin rubber trees, indicating it plays an important role in regulating glycometabolism during latex regeneration. HbPDC1, HbPDC2 and HbPDC3 had striking expressional responses in leaves and bark to drought, low temperature and high temperature stresses, indicating that the HbPDC genes are involve in self-protection and defense in response to various abiotic and biotic stresses during rubber tree growth and development. To understand ethanolic fermentation in rubber trees, it will be necessary to perform an in-depth study of the regulatory pathways controlling the HbPDCs in the future. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Mitochondrial pyruvate carrier function is negatively linked to Warburg phenotype in vitro and malignant features in esophageal squamous cell carcinomas

    Science.gov (United States)

    Li, Yaqing; Li, Xiaoran; Kan, Quancheng; Zhang, Mingzhi; Li, Xiaoli; Xu, Ruiping; Wang, Junsheng; Yu, Dandan; Goscinski, Mariusz Adam; Wen, Jian-Guo; Nesland, Jahn M.; Suo, Zhenhe

    2017-01-01

    Aerobic glycolysis is one of the emerging hallmarks of cancer cells. In this study, we investigated the relationship between blocking mitochondrial pyruvate carrier (MPC) with MPC blocker UK5099 and the metabolic alteration as well as aggressive features of esophageal squamous carcinoma. It was found that blocking pyruvate transportation into mitochondria attenuated mitochondrial oxidative phosphorylation (OXPHOS) and triggered aerobic glycolysis, a feature of Warburg effect. In addition, the HIF-1α expression and ROS production were also activated upon UK5099 application. It was further revealed that the UK5099-treated cells became significantly more resistant to chemotherapy and radiotherapy, and the UK5099-treated tumor cells also exhibited stronger invasive capacity compared to the parental cells. In contrast to esophageal squamous epithelium cells, decreased MPC protein expression was observed in a series of 157 human squamous cell carcinomas, and low/negative MPC1 expression predicted an unfavorable clinical outcome. All these results together revealed the potential connection of altered MPC expression/activity with the Warburg metabolic reprogramming and tumor aggressiveness in cell lines and clinical samples. Collectively, our findings highlighted a therapeutic strategy targeting Warburg reprogramming of human esophageal squamous cell carcinomas. PMID:27911865

  19. Growth kinetics of racemic heptahelicene-2-carboxylic acid nanowires on calcite (104)

    Czech Academy of Sciences Publication Activity Database

    Einax, M.; Richter, T.; Nimmrich, M.; Rahe, P.; Stará, Irena G.; Starý, Ivo; Kühnle, A.; Maass, P.

    2016-01-01

    Roč. 145, č. 13 (2016), č. článku 134702. ISSN 0021-9606 Institutional support: RVO:61388963 Keywords : heptahelicene-2-carboxylic acid nanowires * nc-AFM * calcite * growth kinetics Subject RIV: CC - Organic Chemistry Impact factor: 2.965, year: 2016

  20. 2-Oxo-1,2-dihydroquinoline-4-carboxylic acid monohydrate

    Directory of Open Access Journals (Sweden)

    Yassir Filali Baba

    2016-06-01

    Full Text Available In the title compound, C10H7NO3·H2O, O—H...O hydrogen bonds involving the carboxyl groups, the keto groups and the lattice water molecules form stepped sheets approximately parallel to {010} which are tied together by pairwise N—H...O interactions. The asymmetric unit contains two independent quinolone derivatives and two water molecules, one of which is disordered over two positions, of equal occupancy.