WorldWideScience

Sample records for pyroxenes

  1. Preferential occupation of pyroxene sites by iron in diogenite meteorites

    International Nuclear Information System (INIS)

    Verma, H. C.; Tewari, V. C.; Paliwal, B. S.; Tripathi, R. P.

    2008-01-01

    Three diogenite meteorites ALHA77256-121, Tatahounie and Bilanga are studied using Moessbauer spectroscopy to look at the iron occupancy in the two inequivalent pyroxene sites. Though the three meteorites belong to three different conditions, one is an Antarctica find, one is 75 years old fall and one is a recent fall, the iron occupancy in pyroxene sites is very similar. Fe 2+ occupies only the less distorted site and hence a single sharp doublet is observed in the Moessbauer spectra of all these samples. In contrast eucrites show a distribution of iron ions in the two sites of pyroxenes.

  2. Pyroxene Homogenization and the Isotopic Systematics of Eucrites

    Science.gov (United States)

    Nyquist, L. E.; Bogard, D. D.

    1996-01-01

    The original Mg-Fe zoning of eucritic pyroxenes has in nearly all cases been partly homogenized, an observation that has been combined with other petrographic and compositional criteria to establish a scale of thermal "metamorphism" for eucrites. To evaluate hypotheses explaining development of conditions on the HED parent body (Vesta?) leading to pyroxene homogenization against their chronological implications, it is necessary to know whether pyroxene metamorphism was recorded in the isotopic systems. However, identifying the effects of the thermal metamorphism with specific effects in the isotopic systems has been difficult, due in part to a lack of correlated isotopic and mineralogical studies of the same eucrites. Furthermore, isotopic studies often place high demands on analytical capabilities, resulting in slow growth of the isotopic database. Additionally, some isotopic systems would not respond in a direct and sensitive way to pyroxene homogenization. Nevertheless, sufficient data exist to generalize some observations, and to identify directions of potentially fruitful investigations.

  3. 40Ar/39Ar geochronology of terrestrial pyroxene

    Science.gov (United States)

    Ware, Bryant; Jourdan, Fred

    2018-06-01

    Geochronological techniques such as U/Pb in zircon and baddeleyite and 40Ar/39Ar on a vast range of minerals, including sanidine, plagioclase, and biotite, provide means to date an array of different geologic processes. Many of these minerals, however, are not always present in a given rock, or can be altered by secondary processes (e.g. plagioclase in mafic rocks) limiting our ability to derive an isotopic age. Pyroxene is a primary rock forming mineral for both mafic and ultramafic rocks and is resistant to alteration process but attempts to date this phase with 40Ar/39Ar has been met with little success so far. In this study, we analyzed pyroxene crystals from two different Large Igneous Provinces using a multi-collector noble gas mass spectrometer (ARGUS VI) since those machines have been shown to significantly improve analytical precision compared to the previous single-collector instruments. We obtain geologically meaningful and relatively precise 40Ar/39Ar plateau ages ranging from 184.6 ± 3.9 to 182.4 ± 0.8 Ma (2σ uncertainties of ±1.8-0.4%) and 506.3 ± 3.4 Ma for Tasmanian and Kalkarindji dolerites, respectively. Those data are indistinguishable from new and/or published U-Pb and 40Ar/39Ar plagioclase ages showing that 40Ar/39Ar dating of pyroxene is a suitable geochronological tool. Scrutinizing the analytical results of the pyroxene analyses as well as comparing them to the analytical result from plagioclase of the same samples indicate pure pyroxene was dated. Numerical models of argon diffusion in plagioclase and pyroxene support these observations. However, we found that the viability of 40Ar/39Ar dating approach of pyroxene can be affected by irradiation-induced recoil redistribution between thin pyroxene exsolution lamellae and the main pyroxene crystal, hence requiring careful petrographic observations before analysis. Finally, diffusion modeling show that 40Ar/39Ar of pyroxene can be used as a powerful tool to date the formation age of mafic

  4. Pressure and graphite effects on electrical conductivity in pyroxene

    Science.gov (United States)

    Wang, D.; Liu, T.; Shen, K.; Li, B.

    2017-12-01

    The geophysical observations including magnetotelluric (MT) and geomagnetic deep sounding show the distribution of electrical conductivity in the Earth's interior. The laboratory-based conductivity measurements of minerals and rocks are usually used to interpret the geophysical observations. Pyroxene is the second most abundant components in the upper mantle, and the electrical conductivity of pyroxene is important to understanding the bulk electrical conductivity. The electrical conductivity of a mineral is affected by many factors, such as its chemical composition, temperature, pressure. Here we report the effects of pressure and graphite on the electrical conductivity of pyroxene and applied to interpretation of MT observation. The starting materials are natural of orthopyroxene and clinopyroxe crystals. A powder sample with grain size 10 um was packed in a Mo capsule and hot-pressed at high pressures and temperatures using a 1000-ton Walker-type uniaxial split-cylinder apparatus. A mixture of pyroxene and a few percent of diamond was annealed at high pressure and temperature. All the hot-pressed samples before and after electrical conductivity measurements, were characterized by scanning electron microscopy, Fourier-Transform Infrared and Raman spectroscopy. High pressure conductivity experiments were carried out in a Walker-type multi-anvil apparatus using a 14/8 assembly. We use a Solartron 1260 Impedance/Gain -phase analyzer with 1V applied voltage within a frequency range of 1M-0.1 Hz to collect data. Complex impedance data on were collected in several heating and cooling cycles The electrical conductivity of pyroxene was made at 4,7,10 GPa, and electrical conductivity of the graphite-bearing pyroxene was measured at 4GPa. The results show the electrical conductivity decrease with the increasing of pressure, which may correspond to the transform from orthopyroxene to clinopyroxene. The results can be used to explain a drop of the electrical conductivity in

  5. Pyroxene microstructure in the Northwest Africa 856 martian meteorite

    Science.gov (United States)

    Leroux, Hugues; Devouard, Bertrand; Cordier, Patrick; Guyot, François

    2004-05-01

    Transmission electron microscopy was used to examine pyroxene microstructure in the Northwest Africa (NWA) 856 martian meteorite to construct its cooling and shock histories. All pyroxenes contain strained coherent pigeonite/augite exsolution lamellae on (001). The average width and periodicity of lamellae are 80 and 400 nm, respectively, indicating a cooling rate below 0.1 °C/hr for the parent rock. Pigeonite and augite are topotactic, with strained coherent interfaces parallel to (001). The closure temperature for Ca-Fe, Mg interdiffusion, estimated from the composition at the augite pigeonite interface, is about 700 °C. Tweed texture in augite reveals that a spinodal decomposition occurred. Locally, tweed evolved toward secondary pigeonite exsolutions on (001). Due to the decreasing diffusion rate with decreasing temperature, "M-shaped" concentration profiles developed in augite lamellae. Pigeonite contains antiphase boundaries resulting from the C2/c to P21/c space group transition that occurred during cooling. The reconstructive phase transition from P21/c clinopyroxene to orthopyroxene did not occur. The deformation (shock) history of the meteorites is revealed by the presence of dislocations and mechanical twins. Dislocations are found in glide configuration, with the [001](100) glide system preferentially activated. They exhibit strong interaction with the strained augite/pigeonite interfaces and did not propagate over large distances. Twins are found to be almost all parallel to (100) and show moderate interaction with the augite/pigeonite interfaces. These twins are responsible for the plastic deformation of the pyroxene grains. Comparison with microstructure of shocked clinopyroxene (experimentally or naturally shocked) suggests that NWA 856 pyroxenes are not strongly shocked.

  6. Chemical zoning and homogenization of Pasamonte-type pyroxene and their bearing on thermal metamorphism of a howardite parent body

    Science.gov (United States)

    Miyamoto, M.; Duke, M. B.; Mckay, D. S.

    1985-01-01

    The Mg-Fe zoning of pyroxenes in Pasamonte and Juvinas eucrites is examined in order to gain a better understanding of the metamorphism in the surface layer of a eucrite/howardite parent body. Three distinct types of Ca-Mg-Fe zoning of Pasamonte pyroxenes are identified. The wide compositional range of the zoned pyroxenes suggests that Pasamonte is less metamorphosed than previously believed. It is also found that a Pasamonte-type pyroxene may yield a Juvinas-type pyroxene by thermal metamorphism. Calculations imply that the homogenization of Juvinas pyroxenes may have occurred during later reheating events rather than during initial cooling.

  7. Water in Pyroxene and Olivine from Martian Meteorites

    Science.gov (United States)

    Peslier, A. H.

    2012-01-01

    Water in the interior of terrestrial planets can be dissolved in fluids or melts and hydrous phases, but can also be locked as protons attached to structural oxygen in lattice defects in nominally anhydrous minerals (NAM) like olivine, pyroxene, or feldspar [1-3]. Although these minerals contain only tens to hundreds of ppm H2O, this water can amount to at least one ocean in mass when added at planetary scales because of the modal dominance of NAM in the mantle and crust [4]. Moreover these trace amounts of water can have drastic effects on melting temperature, rheology, electrical and heat conductivity, and seismic wave attenuation [5]. There is presently a debate on how much water is present in the martian mantle. Secondary ionization mass spectrometry (SIMS) studies of NAM [6], amphiboles and glass in melt inclusions [7-10], and apatites [11, 12] from Martian meteorites report finding as much water as in the same phases from Earth's igneous rocks. Most martian hydrous minerals, however, generally have the relevant sites filled with Cl and F instead of H [13, 14], and experiments using Cl [15] in parent melts can reproduce Martian basalt compositions as well as those with water [16]. We are in the process of analyzing Martian meteorite minerals by Fourier transform infrared spectrometry (FTIR) in order to constrain the role of water in this planet s formation and magmatic evolution

  8. Characterization of Structures and Compositions of Quadrilateral Pyroxenes by Raman Spectroscopy - Implications for Future Planetary Exploration

    Science.gov (United States)

    Wang, A.; Jolliff, Bradley L.; Haskin, Larry A.; Kuebler, K. E.

    2000-01-01

    Raman spectral data are used to distinguish the major structure types and to calculate the major compositional parameters (Mg' and Wo) of quadrilateral pyroxenes. The discrepancies between calculated and measured values are within +/-0.1 cation unit.

  9. Relation Between the Molopo Farms and Bushveld Complexes: An Analysis of Pyroxene Exsolution Lamellae

    Science.gov (United States)

    Moore, I.; Feineman, M. D.; Nyblade, A.

    2017-12-01

    The Molopo Farms Complex (MFC) is a layered igneous intrusion in Botswana, considered to be related to the nearby South African Bushveld Complex (BC) due to their similarities. The BC has been researched in depth for its economic deposits of platinum group elements (PGEs), while the under-researched MFC has no PGEs and is under 200 m of sediment. This study aims to increase knowledge about the MFC regarding the theory that the BC and MFC come from the same parental magma body by showing similar cooling history in the exsolution of pyroxenes. Using optical microscopy and scanning electron microscopy (SEM) paired with an energy-dispersive detector (EDS), thin sections of pyroxenes with exsolution lamellae from both complexes were observed in terms of chemical composition and microtextures. MFC pyroxenes were then compared to literature data of BC pyroxenes. The pyroxenes are closely related, indicating that the MFC and the BC cooled at a similar rate and come from the same parental magma body. Further research can expand on these findings to prove that the MFC and BC are from the same magma.

  10. Electrical conductivity of pyroxene which contains trivalent cations: Laboratory measurements and the lunar temperature profile

    International Nuclear Information System (INIS)

    Huebner, J.S.; Duba, A.; Wiggins, L.B.

    1979-01-01

    Three natural orthopyroxene single crystals, measured in the laboratory over the temperature range 850 0 --1200 0 C, are more than 1/2 order of magnitude more electrically conducting than previously measured crystals. Small concentrations (1--2%) of Al 2 O 3 and Cr 2 O 3 present in these crystals may be responsible for their relatively high conductivity. Such pyroxenes, which contain trivalent elements, are more representative of pyroxenes expected to be present in the lunar mantle than those which have been measured by other investigators. The new conductivity values for pyroxene are responsible for a relatively large bulk conductivity calculated for (polymineralic) lunar mantle assemblages. The results permit a somewhat cooler lunar temperature profile than previously proposed. Such lower profiles, several hundred degrees Celsius below the solidus, are quite consistent with low seismic attenuation and deep moonquakes observed in the lunar mantle

  11. Pyroxenes in Serra de Mage - Cooling history in comparison with Moama and Moore County

    Science.gov (United States)

    Harlow, G. E.; Prinz, M.; Nehru, C. E.; Taylor, G. J.; Keil, K.

    1979-01-01

    Thin sections and single grains of pyroxenes from the Serra de Mage feldspar cumulate eucrites were studied by X-ray crystallography, electron microprobe and optical techniques. It was concluded that the pyroxene crystallized as pigeonite. On cooling augite was exsolved along (001) and inverted to hypersthene, with exsolution of (100) augite from hypersthene during continued slow cooling. The estimated original bulk composition of the pigeonite pyroxene is Wo10En51Fs39. The compositional data, textural relations, and existence of P2 sub 1 ca hypersthene suggest very low cooling (about 0.0004 deg C/year) below 800 deg. The Serra de Mage augite lamellae were found to be as thick or thicker than those of Moore County and Moama meteorites.

  12. H Diffusion in Olivine and Pyroxene from Peridotite Xenoliths and a Hawaiian Magma Speedometer

    Science.gov (United States)

    Peslier, A. H.; Bizimis, M.

    2014-01-01

    Hydrogen is present as a trace element in olivine and pyroxene and its content distribution in the mantle results from melting and metasomatic processes. Here we examine how these H contents can be disturbed during decompression. Hydrogen was analyzed by FTIR in olivine and pyroxene of spinel peridotite xenoliths from Salt Lake Crater (SLC) nephelinites which are part of the rejuvenated volcanism at Oahu (Hawaii) [1,2]. H mobility in pyroxene resulting from spinel exsolution during mantle upwelling Most pyroxenes in SLC peridotites exhibit exsolutions, characterized by spinel inclusions. Pyroxene edges where no exsolution are present have less H then their core near the spinel. Given that H does not enter spinel [3], subsolidus requilibration may have concentrated H in the pyroxene adjacent to the spinel exsolution during mantle upwelling. H diffusion in olivine during xenolith transport by its host magma and host magma ascent rates Olivines have lower water contents at the edge and near fractures compared to at their core, while the concentrations of all other chemical elements appear homogeneous. This suggests that some of the initial water has diffused out of the olivine. Water loss from the olivine is thought to occur during host-magma ascent and xenolith transport to the surface [4-6]. Diffusion modeling matches best the data when the initial water content used is that measured at the core of the olivines, implying that mantle water contents are preserved at the core of the olivines. The 3225 cm(sup -1) OH band at times varies independantly of other OH bands, suggesting uneven H distribution in olivine defects likely acquired during mantle metasomatism just prior to eruption and unequilibrated. Diffusion times (1-48 hrs) combined with depths of peridotite equilibration or of magma start of degassing allow to calculate ascent rates for the host nephelinite of 0.1 to 27 m/s.

  13. Ferric iron partitioning between pyroxene and melt during partial melting of the Earth's upper mantle

    Science.gov (United States)

    Rudra, A.; Hirschmann, M. M.

    2017-12-01

    The oxidation state of the Earth's mantle influences melt production, volatile behavior, partitioning of key trace elements and possible saturation of alloy at depth. Average Fe3+/FeT ratios in MORBs indicate oxygen fugacitiy of the source regions is close to QFM, in contrast to a 3 log unit variation of fO2 recorded by abyssal peridotites. Quantification of the relationship between basalt and source Fe3+/FeT, oxygen fugacity, and melting requires constraints on Fe3+ partitioning between melt and mantle minerals and in particular the principal Fe3+ host, pyroxene. McCanta et al. (2004) investigated valence dependent partitioning of Fe between Martian ferroan pigeonites and melt, but behavior in terrestrial pyroxene compositions relevant to MORB petrogenesis has not been investigated. We are conducting 1 atm controlled fO2 experiments over 4 log unit variation of fO2 between ΔQFM = 2.5 to -1.5 to grow pyroxenes of variable tetrahedral and octahedral cationic population from andesitic melts of varying Mg#, alumina and alkali content. Dynamic crystallization technique facilitates growth of pyroxene crystals (100-200 um) that EPMA analyses show to be compositionally homogeneous and in equilibrium with the melt. Fe3+/FeT ratio of the synthetic pyroxenes have been analyzed by XAFS spectroscopy at the APS (GSECARS) synchrotron. To quantify the x-ray anisotropy in pyroxenes, we collected Fe K-edge XAFS spectra of oriented natural single crystals for a wide range compositions whose Fe3+/FeT ratios we determined by Mossbauer spectroscopy. We have collected both XANES and EXAFS spectral regions spanning from 7020-7220 eV to explore predictive capabilities of different spectral regions about ferric iron concentration and site occupancy. Our results will document the Fe3+ compatibility in pyroxenes of different compositions under a variety of fO2 conditions, which in turn will better constrain the interrelationship between mantle redox and melting.

  14. Characterization of pyroxenes associated with the uranium mineralization of the Jazida Cachoeira (Lagoa Real Uranium Province, Bahia State, Brazil

    International Nuclear Information System (INIS)

    Goncalves, Rhaine Matos

    2005-01-01

    This work has as objective to contribute for the knowledge about the genesis of the Cachoeira uranium deposit (Lagoa Real Uranium Province, Bahia State, Brazil), characterizing pyroxenes (with emphasis in those associated with the uranium mineralization and those hosting inclusions) of the deposit and their associated inclusions. In function of the accomplished analyses, steps that should be followed to obtain and interpret data from fluid inclusions (FI), in the D09B XRF X-Ray Fluorescence Beam Line of the National Synchrotron Light Laboratory, Campinas, Brazil, have been described. The analyzed pyroxenes are augites, diopsides and aegirine-augites, and intermediate terms, for example between augite and diopside, were detected. They presented two and three phases fluid inclusions being some, possible, primary ones. The three phases FI could present a birefringent solid phase. The pyroxenes presented, also, solid inclusions. The analysis of some solid inclusions revealed that they were albites. These albites are, probably, previous to the pyroxene host mineral. The obtained results indicated that the studied pyroxenes are associated to an important phase of caleic metasomatism. These pyroxenes are not totally associated to the precipitation of the uranium. In the petrographic study of the samples, two types of plagioclase were identified, one very altered and other less altered. Synchrotron light is a powerful tool for analyze FI. It was verified that care in the preparation of the sample, such as the selection of near-surface FI, are very important to obtain reliable data. In the studies with synchrotron light only the vanadium was detected in larger amount in the area that contained FI (in pyroxene), in relation to the control area, due, mainly, to experimental factors. The presence of this element it is not easy to interpret. Additional studies, on solid and fluid inclusion in pyroxene, and in other minerals, will be important to understand the Cachoeira uranium

  15. Garnet - two pyroxene rock from the Gridino complex, Russia: a record of the early metasomatic stage

    Science.gov (United States)

    Morgunova, Alena A.; Perchuk, Alexei L.

    2010-05-01

    The Gridino complex is one of the oldest high pressure complexes on the Earth. The most spectacular exposures occur in islands and in a 10-50 m wide belt along the shore of the White Sea in the Gridino area. The exotic blocks show wide range of compositions. In addition to predominating amphibolites and eclogites, there are also peridotites, zoisitites and sapphirine-bearing rocks. The peridotites are represented by garnet - two pyroxene rocks and orthopyroxenites. It this paper we present an intriguing results of the petrological study of the garnet- two pyroxene rock. The garnet- two pyroxene rock considered occurs as elliptical body 4×6 m in size within amphibole-biotite gneiss in the island Visokii. The rock consists of mosaic of coarse-grained primary garnet, clinopyroxene and orthopyroxene. Accessories are represented by magnetite, ilmenite, pyrite and zircon. Garnet contains inclusions of clinopyroxene, Mg-calcite and chlorite. The chlorite inclusions always intergrow with dendritic mineral enriched in REE (mainly Ce) situated on the wall of vacuole which shows the tendency of negative crystal shape. Similar chlorite inclusions are hosted by clino- and orthopyroxenes. The chlorite is of diabantite composition. The inclusions are often surrounded by the two systems of cracks - radial and concentric, which is really exotic phenomenon for crystalline rock. The primary minerals experienced different degree of the retrograde alteration expressed as amphibolization and/or growth of the orthopyroxene-amphibole-garnet symplectites. The retrogression is patchy in the central part of garnet- two pyroxene body, but intensifies towards the rims where primary minerals are absent. Mineral thermobarometry reveals HP rock equilibration at 670-750 оС and 14-20 kbar followed by subisothermal decompression down to 640-740 оС and 6-14 kbar. Specific composition of the chlorite and its association with REE phase in all rock-forming minerals suggests that anhydrous HP

  16. The production of iron oxide during peridotite serpentinization: Influence of pyroxene

    Directory of Open Access Journals (Sweden)

    Ruifang Huang

    2017-11-01

    Full Text Available Serpentinization produces molecular hydrogen (H2 that can support communities of microorganisms in hydrothermal fields; H2 results from the oxidation of ferrous iron in olivine and pyroxene into ferric iron, and consequently iron oxide (magnetite or hematite forms. However, the mechanisms that control H2 and iron oxide formation are poorly constrained. In this study, we performed serpentinization experiments at 311 °C and 3.0 kbar on olivine (with <5% pyroxene, orthopyroxene, and peridotite. The results show that serpentine and iron oxide formed when olivine and orthopyroxene individually reacted with a saline starting solution. Olivine-derived serpentine had a significantly lower FeO content (6.57 ± 1.30 wt.% than primary olivine (9.86 wt.%, whereas orthopyroxene-derived serpentine had a comparable FeO content (6.26 ± 0.58 wt.% to that of primary orthopyroxene (6.24 wt.%. In experiments on peridotite, olivine was replaced by serpentine and iron oxide. However, pyroxene transformed solely to serpentine. After 20 days, olivine-derived serpentine had a FeO content of 8.18 ± 1.56 wt.%, which was significantly higher than that of serpentine produced in olivine-only experiments. By contrast, serpentine after orthopyroxene had a slightly higher FeO content (6.53 ± 1.01 wt.% than primary orthopyroxene. Clinopyroxene-derived serpentine contained a significantly higher FeO content than its parent mineral. After 120 days, the FeO content of olivine-derived serpentine decreased significantly (5.71 ± 0.35 wt.%, whereas the FeO content of orthopyroxene-derived serpentine increased (6.85 ± 0.63 wt.% over the same period. This suggests that iron oxide preferentially formed after olivine serpentinization. Pyroxene in peridotite gained some Fe from olivine during the serpentinization process, which may have led to a decrease in iron oxide production. The correlation between FeO content and SiO2 or Al2O3 content in olivine- and

  17. Trace Element Partitioning Between low-Ca Pyroxene and Ultracalcic Liquids.

    Science.gov (United States)

    Pertermann, M.; Schmidt, M. W.; Pettke, T.

    2003-12-01

    Low-Ca pyroxene or pigeonite ( ˜0.25-0.35 Ca per formula unit, pfu) is an important residual phase during high temperature melting of refractory mantle (e.g., ankaramite formation). High-Ca cpx (>0.6-0.7 Ca pfu) may be residual to relatively low temperature melting of fertile mantle (MOR and OI), but the opx-cpx solvus narrows considerably at higher temperatures (>1330-1350° C), leading to coexisting opx and low-Ca cpx. Little is known about the trace element partitioning of such low-Ca cpx at upper mantle conditions. Our new partitioning experiments investigate the role of low-Ca cpx during melting of depleted peridotite. Nominally anhydrous experiments with graphite-lined Pt-capsules were conducted at 1.4 GPa and 1360-1370° C. The synthetic starting material is close in composition to an ultracalcic liquid saturated in opx+pigeonite+olivine+spinel. The experiments yielded assemblages of glass, low-Ca cpx, ol, and minor Cr-spinel; opx is absent. The low-Ca clinopyroxenes have 0.20 and 0.32 Ca pfu at 1370 and 1360° C, respectively, and tetrahedral Al of 0.046 and 0.067 pfu. The liquids have ˜50 wt% SiO2, ˜12.5 wt% CaO and CaO/Al2O3 of 1.44-1.54. Pyroxenes and glasses were analyzed for trace elements (La, Ce, Nd, Sm, Eu, Gd, Dy, Er Yb, Lu, Sc, Y, Sr, Zr, Hf, V, Cr, Mn, Co, Zn) by LA-ICP-MS using a 193 nm ArF excimer laser coupled to an Elan 6100 mass spectrometer. Ablation occurred in He, and ablation spot sizes were 15-30 μ m for minerals and 50 μ m for glasses. Trace element concentrations in pyroxenes were low for most 3+ and 4+ cations. This resulted in small mineral/melt partition coefficients (D-values), approximately an order of magnitude lower than those for high-Ca cpx associated with peridotite melting, thus making the low-Ca cpx partitioning behavior rather similar to the behavior of peridotitic opx. Cpx with 0.32 Ca pfu has slightly elevated D-values for 3+ cations when compared to the 0.20 Ca pfu cpx: DSc = 0.45, DY = 0.11, DSm = 0.054 and DYb

  18. Immobilization of uranium and plutonium into boro-basalt, pyroxene and andradite mineral-like compositions

    International Nuclear Information System (INIS)

    Matyunin, Y.I.; Smelova, T.V.

    2000-01-01

    The immobilization of plutonium-containing wastes with the manufacturing of stable solid compositions is one of the problems that should be solved in the disposal of radioactive wastes. The works on the choice, preparation with the use of the cold crucible induction melter (CCIM) technology, and investigation of materials that are most suitable for immobilizing plutonium-containing wastes of different origin have been carried out at the All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) and the Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences in the framework of the agreements with Lawrence Livermore National Laboratory (LLNL, USA) on the material and technical support. This paper presents the data on the synthesis of cerium-, uranium-, and plutonium-containing materials based on boro-basalt, pyroxene, and andradite compositions in the muffle furnace and by using the CCIM method. The compositions containing up to 15 - 18 wt % cerium oxide, 8 - 11 wt % uranium oxide, and 4.6 - 5.7 wt % plutonium oxide were obtained in laboratory facilities installed in glove boxes. Comparison studies of the materials synthesized in the muffle furnace and CCIM demonstrate the advantages of using the CCIM method. The distribution of components in the materials synthesized are investigated, and their certain physicochemical properties are determined. (authors)

  19. Martian Pyroxenes in the Shergottite Meteorites; Zagami, SAU005, DAG476 and EETA79001

    Science.gov (United States)

    Stephen, N.; Benedix, G. K.; Bland, P.; Hamilton, V. E.

    2010-12-01

    The geology and surface mineralogy of Mars is characterised using remote sensing techniques such as thermal emission spectroscopy (TES) from instruments on a number of spacecraft currently orbiting Mars or gathered from roving missions on the Martian surface. However, the study of Martian meteorites is also important in efforts to further understand the geological history of Mars or to interpret mission data as they are believed to be the only available samples that give us direct clues as to Martian igneous processes [1]. We have recently demonstrated that the spectra of Martian-specific minerals can be determined using micro-spectroscopy [2] and that these spectra can be reliably obtained from thin sections of Martian meteorites [3]. Accurate modal mineralogy of these meteorites is also important [4]. In this study we are using a variety of techniques to build upon previous studies of these particular samples in order to fully characterise the nature of the 2 common pyroxenes found in Martian Shergottites; pigeonite and augite [5], [6]. Previous studies have shown that the Shergottite meteorites are dominated by pyroxene (pigeonite and augite in varying quantities) [4], [5], commonly but not always olivine, plagioclase or maskelynite/glass and also hydrous minerals, which separate the Martian meteorites from other achondrites [7]. Our microprobe study of meteorites Zagami, EETA79001, SAU005 and DAG476 in thin-section at the Natural History Museum, London shows a chemical variability within both the pigeonite and augite composition across individual grains in all thin sections; variation within either Mg or Ca concentration varies from core to rim within the grains. This variation can also be seen in modal mineralogy maps using SEM-derived element maps and the Photoshop® technique previously described [4], and in new micro-spectroscopy data, particularly within the Zagami meteorite. New mineral spectra have been gathered from the Shergottite thin-sections by

  20. The local structure of CaNa pyroxenes. I. XANES study at the Na K-edge

    International Nuclear Information System (INIS)

    Mottana, Annibale; Murata, T.; Wu, Ziyu; Marcelli, Augusto; Paris, E.

    1996-07-01

    X-ray absorption Na K-edge spectra have been recorded on synthetic end member jadeite and on a series of natural Ca-Na pyroxenes compositionally straddling the Jd-Di. The disordered C2/c members of the series are systematically different from the ordered P2/n members. These differences can be interpreted and explained by comparing the experimental spectra with theoretical spectra. These have been calculated by the multiple-scattering formalism from the atomic positional parameters determined by single-crystal X-ray diffraction structure refinement on the same samples. In the full multiple scattering region of the spectrum (1075 to 1095 eV) C-pyroxenes exhibit three features which reflect the 6-2 configuration of the O back-scattering atoms around the Na absorber located at the center of the cluster (site M2 of the jadeite structure). P-pyroxenes show more complicated spectra in which at least four features can be recognized; they reflect the two types of the configuration (6-2 and 4-2-2) of the oxygens around Na in the two independent M2 and M21 eight-fold coordinated sites of the omphacite structure. A weak, sometimes poorly resolved peak at 1079 eV diagnostic and discriminates C- from P-pyroxenes. The Garnet Ridge C2/c impure jadeite exhibits a spectrum which is intermediate between those of jadeite and omphacite. The Hedin-Lundqist potential proves best for these insulating materials and allows multiple-scattering calculations agreeing well with experiments. The assessment of the local electronic properties of compositionally and structurally complex minerals such as clinopyroxenes is thus enhanced

  1. The local structure of Ca{sub N}a pyroxenes. I. XANES study at the Na K-edge

    Energy Technology Data Exchange (ETDEWEB)

    Mottana, Annibale [Rome, Univ. III (Italy). Dipt. di Scienze Geologiche; Murata, T. [Kyoto, Univ. of Education (Japan). Dept. of Physics; Wu, Ziyu; Marcelli, Augusto [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Paris, E. [Camerino, Univ. (Italy). Dipt. di Scienze della Terra

    1996-07-01

    X-ray absorption Na K-edge spectra have been recorded on synthetic end member jadeite and on a series of natural Ca-Na pyroxenes compositionally straddling the Jd-Di. The disordered C2/c members of the series are systematically different from the ordered P2/n members. These differences can be interpreted and explained by comparing the experimental spectra with theoretical spectra. These have been calculated by the multiple-scattering formalism from the atomic positional parameters determined by single-crystal X-ray diffraction structure refinement on the same samples. In the full multiple scattering region of the spectrum (1075 to 1095 eV) C-pyroxenes exhibit three features which reflect the 6-2 configuration of the O back-scattering atoms around the Na absorber located at the center of the cluster (site M2 of the jadeite structure). P-pyroxenes show more complicated spectra in which at least four features can be recognized; they reflect the two types of the configuration (6-2 and 4-2-2) of the oxygens around Na in the two independent M2 and M21 eight-fold coordinated sites of the omphacite structure. A weak, sometimes poorly resolved peak at 1079 eV diagnostic and discriminates C- from P-pyroxenes. The Garnet Ridge C2/c impure jadeite exhibits a spectrum which is intermediate between those of jadeite and omphacite. The Hedin-Lundqist potential proves best for these insulating materials and allows multiple-scattering calculations agreeing well with experiments. The assessment of the local electronic properties of compositionally and structurally complex minerals such as clinopyroxenes is thus enhanced.

  2. Textural and chemical evolution of pyroxene during hydration and deformation: A consequence of retrograde metamorphism

    Science.gov (United States)

    Centrella, Stephen; Putnis, Andrew; Lanari, Pierre; Austrheim, Håkon

    2018-01-01

    Centimetre-sized grains of Al-rich clinopyroxene within the granulitic anorthosites of the Bergen Arcs, W-Norway undergo deformation by faults and micro-shear zones (kinks) along which fluid has been introduced. The clinopyroxene (11 wt% Al2O3) reacts to the deformation and hydration in two different ways: reaction to garnet (Alm41Prp32Grs21) plus a less aluminous pyroxene (3 wt% Al2O3) along kinks and the replacement of the Al-rich clinopyroxene by chlorite along cleavage planes. These reactions only take place in the hydrated part of a hand specimen that is separated from dry, unreacted granulite by a sharp interface that defines the limit of hydration. We use electron probe microanalysis (EPMA) and X-Ray mapping together with electron backscatter diffraction (EBSD) mapping to investigate the spatial and possible temporal relationships between these two parageneses. Gresens' analysis (Gresens, 1967) has been used to determine the mass balance and the local volume changes associated with the two reactions. The reaction to garnet + low-Al clinopyroxene induces a loss in volume of the solid phases whereas the chlorite formation gains volume. Strain variations result in local variation in undulose extinction in the parent clinopyroxene. EBSD results suggest that the density-increasing reaction to garnet + low-Al clinopyroxene takes place where the strain is highest whereas the density-decreasing reaction to chlorite forms away from shear zones where EBSD shows no significant strain. Modelling of phase equilibria suggest that the thermodynamic pressure of the assemblage within the shear zones is > 6 kbar higher than the pressure conditions for the whole rock for the same range of temperature ( 650 °C). This result suggests that the stress redistribution within a rock may play a role in determining the reactions that take place during retrograde metamorphism.

  3. Dynamics of metamorphism processes by the fractal textures analysis of garnets, amphiboles and pyroxenes of Lapland Granulite Belt, Kola Peninsula

    Directory of Open Access Journals (Sweden)

    Miłosz A. Huber

    2012-01-01

    Full Text Available About thousand analyzes of garnet, amphibole and pyroxene crystals from selected samples of amphibolite and granulite rocks from Lapland Granulite Belt in Kandalaksha region (Kola Peninsula has been made. Indicated fractal-box dimension of studied minerals has a good correlation with tectonic zones, lead to a new insight in the dynamics of processes, which has modified the examined region. Fractal-box dimension makes the textural analysis more precise, because it consents for the mathematic and repeated review of crystals topology depending directly on processes which had created them.

  4. Temperature dependence of the quadrupole splitting of olivine and pyroxene from the Plains of Gusev Crater on Mars

    International Nuclear Information System (INIS)

    Agresti, David G.

    2012-01-01

    In the present work, we report application of simultaneous fitting procedures to Mössbauer data acquired on the Plains of Gusev Crater by the MIMOS II spectrometer on board the Mars Exploration Rover Spirit. Based on a quantitative measure of spectrum quality, the 34 best of the ∼126 spectra acquired on the Plains are grouped together for a single simultaneous fit with a common least-squares criterion. Fitted values for the quadrupole splitting (QS) of olivine (Ol) from 200 K to 260 K are shown to lie between reported trend lines for Fo50 and Fo30 olivine, with a temperature gradient of (−11.2 ± 1.2) × 10  − 4 mm/s/K, a nearly five-fold improvement in precision over the previously reported value, enabling extrapolation to QS(Ol) = (2.93 ± 0.01) mm/s at 295 K. QS of pyroxene fit as a single doublet exhibits a temperature gradient of (−7.3 ± 2.3) × 10  − 4 mm/s/K.

  5. Structural study of quasi-one-dimensional vanadium pyroxene LiVSi{sub 2}O{sub 6} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Yuto [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan); Matsushita, Yoshitaka [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Oda, Migaku; Yoshida, Hiroyuki [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan)

    2017-02-15

    Single crystals of quasi-one-dimensional vanadium pyroxene LiVSi{sub 2}O{sub 6} were synthesized and the crystal structures at 293 K and 113 K were studied using X-ray diffraction experiments. We found a structural phase transition from the room-temperature crystal structure with space group C2/c to a low-temperature structure with space group P2{sub 1}/c, resulting from a rotational displacement of SiO{sub 4} tetrahedra. The temperature dependence of magnetic susceptibility shows a broad maximum around 116 K, suggesting an opening of the Haldane gap expected for one-dimensional antiferromagnets with S=1. However, an antiferromagnetic long-range order was developed below 24 K, probably caused by a weak inter-chain magnetic coupling in the compound. - Graphical abstract: Low temperature crystal structure of LiVSi{sub 2}O{sub 6} and an orbital arrangement within the V-O zig-zag chain along the c-axis. - Highlights: • A low temperature structure of LiVSi{sub 2}O{sub 6} was determined by single crystal X-ray diffraction measurements. • The origin of the structural transition is a rotational displacement of SiO{sub 4} tetrahedra. • The uniform orbital overlap in the V-O zigzag chain makes the system a quasi one-dimensional antiferromagnet.

  6. Occurrence of low-Ca clinopyroxene and the role of deformation in the formation of pyroxene-Fe-Ti oxide symplectites

    Science.gov (United States)

    Barton, Michael; Sheets, Julia Meyer; Lee, William E.; van Gaans, Chris

    1991-07-01

    Pyroxene-Fe-Ti oxide symplectites in a norite from the leuconoritic phase of the Bjerkreim-Sokndal lopolith, SW Norway, have been studied using EMPA (electron microprobe analysis) and TEM (transmission electron microscopy) techniques. Textural and mineralchemical data indicate that the symplectites formed under subsolidus conditions at T=720 736°C and fo 2=10-17 bars. Solidus temperatures are estimated as 981 1060° C. Two models of formation are proposed: non-isochemical replacement of olivine, and growth at boundaries between exsolving grains of orthomagmatic high-Ca pyroxene and Fe-Ti oxide. TEM reveals the presence of low-Ca clinopyroxene and this formed in response to strain and/or shear stress. Comparison with published experimental data indicates that strain rates of up to 10-12 s-1 are necessary to explain the occurrence of low-Ca clinopyroxene. The transition from orthopyroxene to low-Ca clinopyroxene may be related to deformation which accompanied intrusion of the leuconoritic phase of the Bjerkreim-Sokndal lopolith or to local post-intrusive faulting and/or shearing. Selected-area diffraction shows that the Fe-Ti oxide lamellae are oriented with respect to the pyroxene such that (111)oxide/(100)pyroxene. the planes of closest oxygen packing in the constituent phases are thus adjacent to one another which leads to minimal misfit between the structures and to low interfacial strain energy. The same topotactic relationship exists in both lamellar and vermicular parts of symplectites (but is not continuous along the total length of the interface), indicating that the form of the intergrowths is a primary growth feature that to some extent can be explained in terms of growth models for duplex cells. Deformation during growth is probably necessary to account for the lattice distortion observed in the symplectites. Supercooling is necessary for nucleation and growth of the symplectites. A period of cooling under static, fluid-absent conditions allows

  7. Effect of NaCrSi2O6 component on Lindsley's pyroxene thermometer: An evaluation based on strongly metamorphosed LL chondrites

    Science.gov (United States)

    Nakamuta, Y.; Urata, K.; Shibata, Y.; Kuwahara, Y.

    2017-03-01

    In Lindsley's thermometry, a revised sequence of calculation of components is proposed for clinopyroxene, in which kosmochlor component is added. Temperatures obtained for the components calculated by the revised method are about 50 °C lower than those obtained for the components calculated by the Lindsley's original method and agree well with temperatures obtained from orthopyroxenes. Ca-partitioning between clino- and orthopyroxenes is then thought to be equilibrated in types 5 to 7 ordinary chondrites. The temperatures for Tuxtuac (LL5), Dhurmsala (LL6), NWA 2092 (LL6/7), and Dho 011 (LL7) are 767-793°, 818-835°, 872-892°, and 917-936°C, respectively, suggesting that chondrites of higher petrographic types show higher equilibrium temperatures of pyroxenes. The regression equations which relate temperature and Wo and Fs contents in the temperature-contoured pyroxene quadrilateral of 1 atm of Lindsley (1983) are also determined by the least squares method. It is possible to reproduce temperatures with an error less than 20 °C (2SE) using the regression equations.

  8. The formation of FeO-rich pyroxene and enstatite in unequilibrated enstatite chondrites: A petrologic-trace element (SIMS) study

    Science.gov (United States)

    Weisberg, M. K.; Prinz, M.; Fogel, R. A.; Shimizu, N.

    1993-01-01

    Enstatite (En) chondrites record the most reducing conditions known in the early solar system. Their oxidation state may be the result of condensation in a nebular region having an enhanced C/O ratio, reduction of more oxidized materials in a reducing nebula, reduction during metamorphic reheating in a parent body, or a combination of these events. The presence of more oxidized Fe-rich silicates, two types of En (distinguished by red and blue CL), and the juxtaposition of FeO-rich pyroxenes (Fe-pyx) surrounded by blue En (enstatite) in the UEC's (unequilibrated enstatite chondrites) is intriguing and led to the examination of the question of enstatite chondrite formation. Previously, data was presented on the petrologic-geochemical characteristics of the Fe-pyx and coexisting red and blue En. Here minor and trace element abundances (determined by ion probe-SIMS) on these three types of pyroxenes are reported on in the following meteorites: Kota Kota and LEW87223 (EH3), MAC88136 (EL3), St. Marks (EH4), and Hvittis (EL6). More data are currently being collected.

  9. Fixed-bed column studies of total organic carbon removal from industrial wastewater by use of diatomite decorated with polyethylenimine-functionalized pyroxene nanoparticles.

    Science.gov (United States)

    Hethnawi, Afif; Manasrah, Abdallah D; Vitale, Gerardo; Nassar, Nashaat N

    2018-03-01

    In this study, a fixed-bed column adsorption process was employed to remove organic pollutants from a real industrial wastewater effluent using polyethylenimine-functionalized pyroxene nanoparticles (PEI-PY) embedded into Diatomite at very low mass percentage. Various dynamic parameters (e.g., inlet concentration, inlet flow rate, bed height, and PEI-nanoparticle concentration in Diatomite, (%nps)) were investigated to determine the breakthrough behavior. The obtained breakthrough curves were fit with a convection-dispersion model to determine the characteristic parameters based on mass transfer phenomena. The axial dispersion coefficient (D L ) and group of dimensionless numbers; including Renold number (Re), Schmidt number (Sc), and Sherwood number (Sh) were all determined and correlated by Wilson-Geankoplis correlation that was used to estimate the external film diffusion coefficients (Kc) at 0.0015 < Re<55. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Petrology of skarns in the north and the southwest of Qazan (South Qamsar with emphasis on the mineral chemistry of garnet and pyroxene

    Directory of Open Access Journals (Sweden)

    Maria Chavideh

    2018-03-01

    Full Text Available The Oligo-Miocene Qazan granitoid body caused contact metamorphic of surrounding rocks and skarn formation in the wall limestone. The main intrusive rocks are essentially granite to diorite in composition. Two different types of skarn, exo and endoskarn have been developed. On the base of microprobe data, the northern skarn are characterized by zoning and the amounts of andradite and grossular changes oscillatory. While garnets from the southwestern skarn is predominantly andradite in composition. Using Fe/Ti vs. Al/ (Al+Fe+Mn diagram that were calculated based on the mole percent of the used elements, it is estimated that about less than 50 percent hydrothermal waters were involved for the northern skarn whereas it was over this amount for the southwestern skarn. This leds to difference in garnet composition. The composition of clinopyroxene in both skarns is the same (diopside. As a result, hydrothermal fluids have not had much influence on pyroxene genesis. With regards to the occurrence of mineral assemblage and the presence of wollastonite in the skarns under study, these rocks have evolved in temperature above 500 ° C and O2 fugacity in the range of 10-17 to 10-15.

  11. Petrogenesis and zircon U-Pb dating of skarnified pyroxene-bearing dioritic rocks in Bisheh area, south of Birjand, eastern Iran

    Directory of Open Access Journals (Sweden)

    Malihe Nakhaei

    2014-10-01

    Full Text Available Introduction The study area is located 196 km south of Birjand in eastern border of the Lut block Berberian and King, 1981 in eastern Iran between 59°05′35" and 59°09′12" E longitude and 31°42′29" and 31°44′13" N latitude. The magmatic activity in the Lut block began in the middle Jurassic such as Kalateh Ahani, Shah Kuh and Surkh Kuh granitoids that are among the oldest rocks exposed within the Lut block (Esmaeily et al., 2005; Tarkian et al., 1983; Moradi Noghondar et al., 2011-2012. Eastern Iran, and particularly the Lut block, has great potential for different types of mineralization as skarnification in Bisheh area which has been studied in this paper. The goal of this study is to highlight the geochronology, geochemistry of major and trace elements, Rb-Sr, Sm-Nd isotopes for skarnified pyroxene-bearing diorites. Materials and methods Major element compositions of thirteen samples were determined by wavelength-dispersive X-ray fluorescence (XRF spectrometry, using fused discs and the Phillips PW 1410 XRF spectrometer at Ferdowsi University, Mashhad, Iran. These samples were analysed for trace elements using inductively coupled plasma-mass spectrometry (ICP-MS in the Acme Analytical Laboratories, Vancouver, British Columbia, Canada. Zircon grains were separated from pyroxene diorite porphyrys using heavy liquid and magnetic techniques at the Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan. Zircon U-Pb dating was performed by laser ablation-inductively-coupled plasma-mass spectrometry (LA-ICP-MS, using an Agilent 7500 s machine and a New Wave UP213 laser ablation system, equipped at the Dr Shen-Su Sun memorial laboratory in the Department of Geosciences, National Taiwan University, Taiwan. Strontium and Nd isotopic analyses were performed on a six-collector Finnigan MAT 261 thermal-ionization mass spectrometer at the University of Colorado, Boulder, Colorado, United States. 87Sr/86Sr ratios were determined using four

  12. Subsurface Connections and Magma Mixing as revealed by Olivine- and Pyroxene-Hosted Melt Inclusions from Cerro Negro Volcano and the Las Pilas-El Hoyo Complex, Nicaragua.

    Science.gov (United States)

    Venugopal, S.; Moune, S.; Williams-Jones, G.

    2015-12-01

    Cerro Negro, the youngest volcano in the Central American Volcanic Belt, is a polygenetic cinder cone with relatively frequent explosive basaltic eruptions. Las Pilas, on the other hand, is a much larger and older complex with milder and less frequent eruptions. Based on historical data, these two closely spaced volcanoes have shown concurrent eruptive behavior, suggesting a subsurface connection. To further investigate this link, melt inclusions, which are blebs of melt trapped in growing crystals, were the obvious choice for optimal comparison of sources and determination of pre-eruptive volatile contents and magmatic conditions. Olivine-hosted inclusions were chosen for both volcanoes and pyroxene-hosted inclusions were also sampled from Las Pilas to represent the evolved melt. Major, volatile and trace elements reveal a distinct geochemical continuum with Cerro Negro defining the primitive end member and Las Pilas representing the evolved end member. Volatile contents are high for Cerro Negro (up to 1260 ppm CO2, 4.27 wt% H2O and 1700 ppm S) suggesting that volatile exsolution is likely the trigger for Cerro Negro's explosive eruptions. Las Pilas volatile contents are lower but consistent with degassing and evolutionary trends shown by major oxides. Trace element contents are rather unique and suggest Cerro Negro magmas fractionally crystallize while Las Pilas magmas are the products of mixing. Magmatic conditions were estimated with major and volatile contents: at least 2.4 kbar and 1170 °C for Cerro Negro melts and 1.3 kbar and 1130 °C for Las Pilas melts with an overall oxygen fugacity at the NNO buffer. In combination with available literature data, this study suggests an interconnected subsurface plumbing system and thus Cerro Negro should be considered as the newest vent within the Las Pilas-El Hoyo Complex.

  13. Crystallization of pyroxene phases and physico-chemical properties of glass-ceramics based on Li{sub 2}O–Cr{sub 2}O{sub 3}–SiO{sub 2} eutectic glass system

    Energy Technology Data Exchange (ETDEWEB)

    Salman, S.M.; Salama, S.N.; Abo-Mosallam, H.A., E-mail: abomosallam@yahoo.com.au

    2015-01-15

    The crystallization characteristics, crystalline phase assemblages and solid solution phases developed due to thermally crystallized glasses based on the Li{sub 2}SiO{sub 3}–Li{sub 2}Si{sub 2}O{sub 5}–LiCrSi{sub 2}O{sub 6} (1028 ± 3 °C) eutectic glass system by replacing some trivalent oxides instead of Cr{sub 2}O{sub 3} were investigated. The microhardness and chemical durability of the glass-ceramics were also determined. Lithium meta and disilicate (Li{sub 2}SiO{sub 3} and Li{sub 2}Si{sub 2}O{sub 5}), lithium gallium silicate (LiGaSiO{sub 4}), and varieties of pyroxene phases, including Cr-pyroxene phase, i.e. lithium-kosmochlor (LiCrSi{sub 2}O{sub 6}), lithium aluminum silicate (LiAlSi{sub 2}O{sub 6}), lithium indium silicate (LiInSi{sub 2}O{sub 6}) and pyroxene solid solution of Li-aegerine type [Li (Fe{sub 0.5}, Cr{sub 0.5}) Si{sub 2}O{sub 6}] were the main crystalline phases formed in the crystallized glasses. There is no evidence for the formation of solid solution or liquid immiscibility gaps between LiAlSi{sub 2}O{sub 6} or LiInSi{sub 2}O{sub 6} phases and LiCrSi{sub 2}O{sub 6} phase. However, LiCrSi{sub 2}O{sub 6} and LiFeSi{sub 2}O{sub 6} components were accommodated in the pyroxene structure under favorable conditions of crystallization to form monomineralic pyroxene solid solution phase of the probably formula [Li (Fe{sub 0.5}, Cr{sub 0.5}) Si{sub 2}O{sub 6}]. The type and compatibility of the crystallized phases are discussed in relation to the compositional variation of the glasses and heat-treatment applied. The microhardness values of the crystalline materials ranged between 5282 and 6419 MPa while, the results showed that the chemical stability of the glass-ceramics was better in alkaline than in acidic media. - Highlights: • Glass ceramics based on Li{sub 2}O–Cr{sub 2}O{sub 3}–SiO{sub 2} eutectic (1028 ± 3 °C) glass were prepared. • LiCrSi{sub 2}O{sub 6} and LiFeSi{sub 2}O{sub 6} phases form monomineralic pyroxene solid

  14. Mid-crust fluid and water-rock interaction kinetic experiments and their geophysical significance: 1. Basalt and pyroxene in water at high temperatures up to 450°C

    Science.gov (United States)

    Zhang, R.; Zhang, X.; Hu, S.

    2013-12-01

    The water-basaltic rock interaction (or pyroxene-water ) kinetic experiments are carried out using flow through a packed bed reactor (PBR) and a mixed flow reactor(MFR) in the temperature range(T) from 20 to 450°C and at 23-34MPa. The experimental apparatus consisted of a titanium vessel, a liquid pump, a backpressure regulator, an electrical conductivity detector and a computer for data acquisition and monitoring. The basaltic rock and pyroxene were collected from natural volcanic area, Anhui Province, China. Rock or mineral sample was crushed and sieved to 20-40 mesh and cleaned. The surface area of representative basalt samples is 9.978 m2/g, for pyroxene it is 1.987 m2 /g (BET method). As using PBR system, rock samples (10. 2526g) were placed in the vessel. De-ionized and degassed (DDW) water was passed through the rock, or mineral grains at flow rates of 0.5-8 ml/min. As using MFR system mineral and rock sample of 5 grams was put in the vessel. Here, the measured release rates for each metal of the rock are the sum of release rates of the metal in various minerals of the rock. Steady-state kinetics is defined as conditions where dissolution rates are time independent. For water-basalt interaction, the dissolution rates (dis.r.) of Ca, Mg, Fe, Al, Na, K and Si vary with T from 25 to 435°C(or to 550°C). The dis.r. of Si, rSi increase with T from 25°C to 300°C, and then decrease from 300°C to 435°C (to 550°C). Maximum dis.r. for Si, rSi, Mx is reached at 300°C(or 300 to 400°C, using MFR). The maximum dis.r. for various metals occurred at different T, e.g. rAl, Mx and rNa, Mx are nearly at 350°C, rK, Mx is at 300°C, rCa, Mx is at 100°C and rMg, Mx is at 20°C. As T increase above 400°C, dis.r. of Ca, Mg and Fe decrease to very small. The experiments for pyroxene (diopside, hedenbergite)in water indicated that the dis.r. of Ca, Mg, Fe, Al, K and Si also vary with T. The rSi increase with T from 25 to 300°C, and then decrease with T from 300 to 400

  15. The spectral effects of subsolidus reduction of olivine and pyroxene

    Science.gov (United States)

    Britt, D. T.

    1993-01-01

    The surfaces of atmosphereless bodies are subjected to a variety of chemical, thermal, accretionary, and shock processes related to their regolith environment. These processes are responsible for a number of alterations that occur in regoliths. Alterations include particle size commutation, implantation of solar wind gases, formation of agglutinates, spectral darkening, and, in the lunar case, the development of the very strong red continuum slope in the visible and near infrared spectra. A great deal of work has pointed to the role of agglutinates as the principal agent for darkening and reddening the lunar soil. The measures of regolith maturity are strongly linked to the accumulation of agglutinates. Recent work has suggested that the finest fractions of agglutinitic glass are major source of the spectral red slope. In particular, the red slope is most strongly associated with the agglutinitic glasses that are rich in blebs of sub-micron sized metal particles. It is thought that these metal particles, because of their size and scattering efficiently relative to the wavelength of light, are responsible for the red continuum slope. This fine fraction of metal particles is produced primarily by reduction of Fe(+2) from silicates. One mechanism for the reduction process is the reaction of solar implanted wind protons with the regolith soil during impact events. In this case the presence of hydrogen creates a reducing environment and the thermal pulse from the impact greatly speeds the reaction kinetics. To explore other reducing and thermal environments a series of experiments were done using samples in evacuated capsules buffered by Tantalum and heated to subsolidus temperatures.

  16. Exsolution lamellae in volcanic pyroxene; Single phenocryst thermometry for long-lived magmatic reservoir

    Science.gov (United States)

    I Made, R.; Herrin, J. S.; Tay, Y. Y.; Costa Rodriguez, F.

    2017-12-01

    Comprehensive understanding of the relevant timescales of thermal and chemical evolution of magma below the active volcanoes can help us to better anticipate volcanic eruptions and their likely precursor signals. In recent years, several lines of thermochronological inquiry have converged on a realization that, within many volcanic systems, magmas experience prolonged periods of relatively low-temperature storage prior to eruption during short duration transient events. This prolonged storage at low magmatic temperatures can result in series of solid state phase transformations within minerals, producing a petrologic record of their thermal history. In this example, we observed pigeonite exsolution lamellae in augite phenocrysts from the 2011 eruption of Cordon Caulle volcano, Chile. The small size of these features ( 70nm width and bear exsolution textures and apply this knowledge to understanding the thermal conditions of magma storage in long-lived volcanic reservoirs.

  17. Water in Earth's mantle: Hydrogen analysis of mantle olivine, pyroxenes and garnet using the SIMS

    Science.gov (United States)

    Kurosawa, Masanori; Yurimoto, Hisayoshi; Sueno, Shigeho

    1993-01-01

    Hydrogen (or water) in the Earth's interior plays a key role in the evolution and dynamics of the planet. However, the abundance and the existence form of the hydrogen have scarcely been clear in practice. Hydrogen in the mantle was incorporated in the interior during the formation of the Earth. The incorporated hydrogen was hardly possible to concentrate locally inside the Earth considering its high mobility and high reactivity. The hydrogen, preferably, could be distributed homogeneously over the mantle and the core by the subsequent physical and chemical processes. Therefore, hydrogen in the mantle could be present in the form of trace hydrogen in nominally anhydrous mantle minerals. The hydrogen and the other trace elements in mantle olivines, orthopyroxenes, clinopyroxenes, and garnets were determined using secondary ion mass spectrometry (SIMS) for elucidating (1) the exact hydrogen contents, (2) the correlation between the hydrogen and the other trace elements, (3) the dependence of the hydrogen contents on the depth, and (4) the dependence of the whole rock water contents on the depth.

  18. The U-Pb System in Schorlomite from Calcite-Amphobole-Pyroxene Pegmatite of the Afrikanda Complex (Kola Peninsula)

    Science.gov (United States)

    Salnikova, E. B.; Stifeeva, M. V.; Chakhmouradian, A. R.; Glebovitsky, V. A.; Reguir, E. P.

    2018-02-01

    The geochronological U-Pb study of shorlomite from igneous rocks of the alkali-ultramafic Afrikanda massif (Kola Peninsula) was performed. The results demonstrate the reliability of calcium garnet as a mineral for the U-Pb geochronology of a wide range of igneous rocks, i.e., carbonatite, syenite, foidolite, foidite, melilitolite, melilitite, lamprophyres, micaceous kimberlites, etc., and associated rare earth and trace elements (REE, Nb, Zr) mineralization.

  19. The local structure of Ca-Na pyroxenes. 2-Xanes studies at the Mg and A1 K edges

    International Nuclear Information System (INIS)

    Mottana, A.; Cibin, G.; Paris, E.; Giuli, G.; Florence Univ., Florence

    1999-01-01

    X-ray absorption spectra at the Mg and A1 K edges have been recorded on synthetic endmember diopside (Di) and jadeite (Jd) and on a series of natural Fe-poor Ca-Na clinopyroxenes compositionally straddling the Jd-Di join. The spectra of C2/c members of the series (C-omphacites) are different from having P2/n symmetry (P-omphacites). Differences can be explained by theoretical spectra calculated via the multiple-scattering formalism on atomic clusters with at least 89 atoms, extending to a. 0.62 nm away from the Mg viz. A1 absorber: Xanes detects in these systems medium- rather than short-range order-disorder relationships. Near-edge features of C-omphacites reflect the single-type of octahedral arrangement of the back scattering nearest-neighbours (six O atoms) around the absorber (Mg resp. A1) at the centre of the cluster (site M1). Others arise again from medium-range order. P-omphacites show more complicated spectra than C-omphacites. Their additional features reflect the increased local disorder around the probed atom (Mg resp. A1) induced by the two alternative M1, M11 configurations of the six O atoms forming the first co-ordination spheres. Mg and A1 are confirmed to be preferentially partitioned in the M1 resp. M11 site of the P-omphacite crystal structure, however never exclusively, but in a ratio close to 85:15 (plus or minus 10%) that implies a certain degree of local disorder. Changes in the relative heights of some prominent features are more evident in the A1 than in the Mg K-edge spectra. They are diagnostic to qualitatively distinguish C-from P-omphacites

  20. The local structure of Ca-Na pyroxenes. 2-Xanes studies at the Mg and A1 K edges

    Energy Technology Data Exchange (ETDEWEB)

    Mottana, A. [Rome Univ. Roma Tre, Rome (Italy). Dipt. di Scienze Geologiche; Murata, T. [Kyoto University of Education, Kyoto (Japan). Dept. of Physics; Marcelli, A. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Wu, Z.Y. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati]|[Laboratoire Piere Suee, Gif-sur Yvette Cedex, (France); Cibin, G. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Paris, E. [Camerino Univ., Camerino, MC (Italy). Dipt. di Scienze della Terra; Giuli, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Scienze della Terra]|[Florence Univ., Florence (Italy). Dipt. di Scienze della Terra

    1999-07-01

    X-ray absorption spectra at the Mg and A1 K edges have been recorded on synthetic end member diopside (Di) and jadeite (Jd) and on a series of natural Fe-poor Ca-Na clinopyroxenes compositionally straddling the Jd-Di join. The spectra of C2/c members of the series (C-omphacites) are different from having P2/n symmetry (P-omphacites). Differences can be explained by theoretical spectra calculated via the multiple-scattering formalism on atomic clusters with at least 89 atoms, extending to a. 0.62 nm away from the Mg viz. A1 absorber: Xanes detects in these systems medium- rather than short-range order-disorder relationships. Near-edge features of C-omphacites reflect the single-type of octahedral arrangement of the back scattering nearest-neighbours (six O atoms) around the absorber (Mg resp. A1) at the centre of the cluster (site M1). Others arise again from medium-range order. P-omphacites show more complicated spectra than C-omphacites. Their additional features reflect the increased local disorder around the probed atom (Mg resp. A1) induced by the two alternative M1, M11 configurations of the six O atoms forming the first co-ordination spheres. Mg and A1 are confirmed to be preferentially partitioned in the M1 resp. M11 site of the P-omphacite crystal structure, however never exclusively, but in a ratio close to 85:15 (plus or minus 10%) that implies a certain degree of local disorder. Changes in the relative heights of some prominent features are more evident in the A1 than in the Mg K-edge spectra. They are diagnostic to qualitatively distinguish C-from P-omphacites.

  1. Experimental Determination of Spinel/Melt, Olivine/Melt, and Pyroxene/Melt Partition Coefficients for Re, Ru, Pd, Au, and Pt

    Science.gov (United States)

    Righter, K.; Campbell, A. J.; Humayun, M.

    2003-01-01

    Experimental studies have identified spinels as important hosts phases for many of the highly siderophile elements (HSE). Yet experimental studies involving chromite or Cr-rich spinel have been lacking. Experimental studies of partitioning of HSEs between silicate, oxides and silicate melt are plagued by low solubilities and the presence of small metallic nuggets at oxygen fugacities relevant to magmas, which interfere with analysis of the phases of interest. We have circumvented these problems in two ways: 1) performing experiments at oxidized conditions, which are still relevant to natural systems but in which nuggets are not observed, and 2) analysis of run products with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), allowing a combination of high sensitivity and good spatial resolution.

  2. Complex zoning of clinopyroxenes in the lavas of vulsini, latium, Italy: Evidence for magma mixing

    NARCIS (Netherlands)

    Barton, M.; Varekamp, J.C.

    1982-01-01

    Microprobe analyses of pyroxene phenocrysts occurring in two tephritic leucitites, two leucite phonolites and one trachyte from Vulsini are reported. Three compositionally distinct types of pyroxene occur in the tephritic leucitites: (a) salite, forming resorbed cores in pyroxene phenocrysts; (b)

  3. Thermal Properties of Soils

    Science.gov (United States)

    1981-12-01

    plagio - clase feldspar and pyroxene. The tine fraction may Surface area and its effects contain the clay "sheet" minerals (i.e. kaolinite. illite...Pyroxene, Kaoliniwe Unified By By Ortho. Plagio . amphibole, Basic clay min. Hematite Soil Soil soil petrogr. X.ray clase clase and Igneous and clay and no

  4. Mylonitic volcanics near Puging, Upper Siang district, Arunachal ...

    Indian Academy of Sciences (India)

    the minor presence of tiny plagioclase indicate that the alkali feldspars might have replaced the plagio- clase grains. However, in the mylonitic volcanics, the alkali feldspars, pyroxenes, actinolites and chlo- ritoids appear as porphyroclasts in a matrix dom- inated by feldspar, pyroxene in a calcareous and cherty matrix.

  5. Moessbauer studies on the paramagnetic porton of alkidirat meteorite

    International Nuclear Information System (INIS)

    Kamal, Huda Mohamed

    1995-11-01

    This work was performed on a sample from alkidirat meteorite which fell west of Sudan by means of Moessbauer effect spectrometer. results showed the absence of transition temperature from the paramagnetic state to the magnetic state in the temperature range from 300K down to 16K. Also, it was found that olivine and ortho pyroxene exist together in site M 1 , while clinothyroxene exists alone in site M 2 . Formula for the composition of ortho pyroxene in the sample were also obtained and they were in good agreement with previous studies. The disorder parameter was also calculated and it showed that the pyroxene present in the sample is well-ordered.(Author)

  6. Chondrule-like object from the Indian Ocean cosmic spherules

    Digital Repository Service at National Institute of Oceanography (India)

    Reshma, K.; Rudraswami, N.G.; ShyamPrasad, M.

    of the chondrule-like object is 72μm. The chondrule-like object contains bars of ∼1–2μm (figure 2b) composed of Ca-poor pyrox- ene (En 89.9%, Fe 10.01 and Wo 0.05). The clasts surrounding chondrule have pyroxene nor- mative mineralogy; contain pyroxene (∼8–15μm... in micrometeorites, examples are: Kurat et al. (1996) found the fragment of radial pyroxene chondrule with a diameter of 120μm in Antarc- tic micrometeorites. Genge et al. (2004) discov- ered chondritic igneous objects and matrix which constitute 1...

  7. Rare earth elements in minerals of the ALHA77005 shergottite and implications for its parent magma and crystallization history

    Science.gov (United States)

    Lundberg, Laura L.; Crozaz, Ghislaine; Mcsween, Harry Y., Jr.

    1990-01-01

    Analyses of mineral REE and selected minor and trace elements were carried out on individual grains of pyroxenes, whitlockite, maskelynite, and olivine of the Antarctic shergottite ALHA77005, and the results are used to interpret its parent magma and crystallization history. The results of mineral compositions and textural observations suggest that ALHA77005 is a cumulate with about half cumulus material (olivine + chromite) and half postcumulus phases. Most of the REEs in ALHA77005 reside in whitlockite whose modal concentration is about 1 percent. Mineral REE data support previous suggestions that plagioclase and whitlockite crystallized late, and that low-Ca pyroxene initiated crystallization before high-Ca pyroxene. The REE patterns for the intercumulus liquid, calculated from distribution coefficients for ALHA77005 pyroxene, plagioclase, and whitlockite, are in very good agreement and are similar to that of Shergotty.

  8. Fulltext PDF

    Indian Academy of Sciences (India)

    In this paper we combine field ..... Box-work type intergrowth textural ... while the non-Quad pyroxenes largely cluster in ...... Huggins F E, Virgo D and Huckenholz H G 1977 Titanium ... Hills, Assam, India; Exploration and Research of Atomic.

  9. Origin of howardites, diogenites and eucrites - A mass balance constraint

    Science.gov (United States)

    Warren, P. H.

    1985-01-01

    Two petrogenetic models for the noncumulate-basaltic parts of howardite meteorites are discussed. A mass balance constraint is developed which indicates that more than half of the basaltic components in howardites formed as residual liquids from fractional crystallization of melts that had earlier produced diogentelike pyroxene cumulate components. Other model constriants involving scandium trends, clustering near olivine-pyroxene-plagioclase peritectic, and MgO/(MgO + FeO) ratios are discussed.

  10. K-Ar age data and geochemistry of the Kiwitahi Volcanics, western Hauraki Rift, North Island, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Black, P M [Department of Geology, Auckland University, Auckland (New Zealand); Briggs, R M [Department of Earth Sciences, Waikato University, Hamilton (New Zealand); Itaya, T [Hiruzen Research Institute, Okayama University of Science, Okayama (Japan); Dewes, E R [Department of Earth Sciences, Waikato University, Hamilton (New Zealand); Dunbar, H M [Department of Earth Sciences, Waikato University, Hamilton (New Zealand); Kawasaki, K [Hiruzen Research Institute, Okayama University of Science, Okayama (Japan); Kuschel, E [Department of Geology, Auckland University, Auckland (New Zealand); Smith, I E.M. [Department of Geology, Auckland University, Auckland (New Zealand)

    1992-07-01

    The Kiwitahi Volcanics of late Miocene age crop out in a number of localities situated along the western side of the Hauraki Rift in northern North Island, New Zealand. They extend from Waiheke Island in the north to Te Tapui in the south. From 19 new K-Ar ages presented here and geochemical data from volcanics at each locality, it is suggested that the Kiwitahi Volcanics should be informally subdivided into five groups: (1) an oldest group of agglomerates and volcanic breccias at northeastern Waiheke, containing pyroxene and hornblende andesites with an age range of 14.4-16.02 Ma; (2) a volcanic centre at Stony Batter (6.85-8.34 Ma) comprised of olivine basaltic andesites which should be assigned to the geochemically and temporally similar Ti Point Volcanics; (3) a group including the andesitic breccias at Ness Valley and the volcanic centres of Miranda (pyroxene basaltic andesite, pyroxene and hornblende andesite, hornblende dacite) and Pukekamaka (hornblende andesites), all within the age range 10.22-12.96 Ma; (4) a separate group at Tahuna (6.36-6.80 Ma) consisting of pyroxene basaltic andesites and pyroxene andesites; and (5) a southern group of Maungatapu, Ruru, Maungakawa, and Te Tapui (5.52-6.23 Ma), forming eroded cones of olivine basaltic andesites, pyroxene basaltic andesites, and pyroxene andesites. The Kiwitahi Volcanics of late Miocene age crop out in a number of localities situated along the western side of the Hauraki Rift in northern North Island, New Zealand. They extend from Waiheke Island in the north to Te Tapui in the south. From 19 new K-Ar ages presented here and geochemical data from volcanics at each locality, it is suggested that the Kiwitahi Volcanics should be informally subdivided into five groups: (1) an oldest group of agglomerates and volcanic breccias at northeastern Waiheke, containing pyroxene and hornblende andesites with an age range of 14.4-16.02 Ma; (2) a volcanic centre at Stony Batter (6.85-8.34 Ma) comprised of olivine

  11. K-Ar age data and geochemistry of the Kiwitahi Volcanics, western Hauraki Rift, North Island, New Zealand

    International Nuclear Information System (INIS)

    Black, P.M.; Briggs, R.M.; Itaya, T.; Dewes, E.R.; Dunbar, H.M.; Kawasaki, K.; Kuschel, E.; Smith, I.E.M.

    1992-01-01

    The Kiwitahi Volcanics of late Miocene age crop out in a number of localities situated along the western side of the Hauraki Rift in northern North Island, New Zealand. They extend from Waiheke Island in the north to Te Tapui in the south. From 19 new K-Ar ages presented here and geochemical data from volcanics at each locality, it is suggested that the Kiwitahi Volcanics should be informally subdivided into five groups: (1) an oldest group of agglomerates and volcanic breccias at northeastern Waiheke, containing pyroxene and hornblende andesites with an age range of 14.4-16.02 Ma; (2) a volcanic centre at Stony Batter (6.85-8.34 Ma) comprised of olivine basaltic andesites which should be assigned to the geochemically and temporally similar Ti Point Volcanics; (3) a group including the andesitic breccias at Ness Valley and the volcanic centres of Miranda (pyroxene basaltic andesite, pyroxene and hornblende andesite, hornblende dacite) and Pukekamaka (hornblende andesites), all within the age range 10.22-12.96 Ma; (4) a separate group at Tahuna (6.36-6.80 Ma) consisting of pyroxene basaltic andesites and pyroxene andesites; and (5) a southern group of Maungatapu, Ruru, Maungakawa, and Te Tapui (5.52-6.23 Ma), forming eroded cones of olivine basaltic andesites, pyroxene basaltic andesites, and pyroxene andesites. The Kiwitahi Volcanics of late Miocene age crop out in a number of localities situated along the western side of the Hauraki Rift in northern North Island, New Zealand. They extend from Waiheke Island in the north to Te Tapui in the south. From 19 new K-Ar ages presented here and geochemical data from volcanics at each locality, it is suggested that the Kiwitahi Volcanics should be informally subdivided into five groups: (1) an oldest group of agglomerates and volcanic breccias at northeastern Waiheke, containing pyroxene and hornblende andesites with an age range of 14.4-16.02 Ma; (2) a volcanic centre at Stony Batter (6.85-8.34 Ma) comprised of olivine

  12. Experimental Constraints on a Vesta Magma Ocean

    Science.gov (United States)

    Hoff, C.; Jones, J. H.; Le, L.

    2014-01-01

    A magma ocean model was devised to relate eucrites (basalts) and diogenites (orthopyroxenites), which are found mixed together as clasts in a suite of polymict breccias known as howardites. The intimate association of eucritic and diogenitic clasts in howardites argues strongly that these three classes of achondritic meteorites all originated from the same planetoid. Reflectance spectral evidence (including that from the DAWN mission) has long suggested that Vesta is indeed the Eucrite Parent Body. Specifically, the magma ocean model was generated as follows: (i) the bulk Vesta composition was taken to be 0.3 CV chondrite + 0.7 L chondrite but using only 10% of the Na2O from this mixture; (ii) this composition is allowed to crystallize at 500 bar until approx. 80% of the system is solid olivine + low-Ca pyroxene; (iii) the remaining 20% liquid crystallizes at one bar from 1250C to 1110C, a temperature slightly above the eucrite solidus. All crystallization calculations were performed using MELTS. In this model, diogenites are produced by cocrystallization of olivine and pyroxene in the >1250C temperature regime, with Main Group eucrite liquids being generated in the 1300-1250C temperature interval. Low-Ca pyroxene reappears at 1210C in the one-bar calculations and fractionates the residual liquid to produce evolved eucrite compositions (Stannern Trend). We have attempted to experimentally reproduce the magma ocean. In the MELTS calculation, the change from 500 bar to one bar results in a shift of the olivine:low-Ca pyroxene boundary so that the 1250C liquid is now in the olivine field and, consequently, olivine should be the first-crystallizing phase, followed by low-Ca pyroxene at 1210C, and plagioclase at 1170C. Because at one bar the olivine:low-Ca pyroxene boundary is a peritectic, fractional crystallization of the 1210C liquid proceeds with only pyroxene crystallization until plagioclase appears. Thus, the predictions of the MELTS calculation are clear and

  13. Shock compression of a recrystallized anorthositic rock from Apollo 15

    Science.gov (United States)

    Ahrens, T. J.; Gibbons, R. V.; O'Keefe, J. D.

    1973-01-01

    Hugoniot measurements on 15,418, a recrystallized and brecciated gabbroic anorthosite, yield a value of the Hugoniot elastic limit (HEL) varying from 45 to 70 kbar as the final shock pressure is varied from 70 to 280 kbar. Above the HEL and to 150 kbar, the pressure-density Hugoniot is closely described by a hydrostatic equation of state constructed from ultrasonic data for single-crystal plagioclase and pyroxene. Above 150 kbar, the Hugoniot states indicate that a series of one or more shock-induced phase changes are occurring in the plagioclase and pyroxene. From Hugoniot data for both the single-crystal minerals and the Frederick diabase, we infer that the shock-induced high-pressure phases in 15,418 probably consists of a 3.71 g/cu cm density, high-pressure structure for plagioclase and a 4.70 g/cu cm perovskite-type structure for pyroxene.

  14. Moessbauer studies on the paramagnetic porton of alkidirat meteorite

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, Huda Mohamed [Department of Physics, Faculty of Science, University of Khartoum, Khartoum (Sudan)

    1995-11-01

    This work was performed on a sample from alkidirat meteorite which fell west of Sudan by means of Moessbauer effect spectrometer. results showed the absence of transition temperature from the paramagnetic state to the magnetic state in the temperature range from 300K down to 16K. Also, it was found that olivine and ortho pyroxene exist together in site M{sup 1}, while clinothyroxene exists alone in site M{sup 2}. Formula for the composition of ortho pyroxene in the sample were also obtained and they were in good agreement with previous studies. The disorder parameter was also calculated and it showed that the pyroxene present in the sample is well-ordered.(Author) 37 refs. , 2 tabs. , 19 figs.

  15. Mineralogy and geothermometry of high-temperature rhyolites from the central and western Snake River Plain

    Science.gov (United States)

    Honjo, N.; Bonnichsen, B.; Leeman, W.P.; Stormer, J.C.

    1992-01-01

    Voluminous mid-Miocene rhyolitic ash-flow tuffs and lava flows are exposed along the northern and southern margins of the central and western Snake River Plain. These rhyolites are essentially anhydrous with the general mineral assemblage of plagioclase ??sanidine ?? quartz + augite + pigeonite ?? hypersthene ?? fayalitic olivine + Fe-Ti oxides + apatite + zircon which provides an opportunity to compare feldspar, pyroxene, and Fe-Ti oxide equilibration temperatures for the same rocks. Estimated pyroxene equilibration temperatures (based on the geothermometers of Lindsley and coworkers) range from 850 to 1000??C, and these are well correlated with whole-rock compositions. With the exception of one sample, agreement between the two-pyroxene thermometers tested is well within 50??C. Fe-Ti oxide geothermometers applied to fresh magnetite and ilmenite generally yield temperatures about 50 to 100??C lower than the pyroxene temperatures, and erratic results are obtained if these minerals exhibit effects of subsolidus oxidation and exsolution. Results of feldspar thermometry are more complicated, and reflect uncertainties in the thermometer calibrations as well as in the degree of attainment of equilibrium between plagioclase and sanidine. In general, temperatures obtained using the Ghiorso (1984) and Green and Usdansky (1986) feldspar thermometers agree with the pyroxene temperatures within the respective uncertainties. However, uncertainties in the feldspar temperatures are the larger of the two (and exceed ??60??C for many samples). The feldspar thermometer of Fuhrman and Lindsley (1988) produces systematically lower temperatures for many of the samples studied. The estimated pyroxene temperatures are considered most representative of actual magmatic temperatures for these rhyolites. This range of temperatures is significantly higher than those for rhyolites from many other suites, and is consistent with the hypothesis that the Snake River Plain rhyolitic magmas formed

  16. New component of the Mezo-Madaras breccia - a microchondrule- and carbon-bearing L-related chondrite

    International Nuclear Information System (INIS)

    Michel-Levy, M.C.

    1988-01-01

    Microchondrules with apparent diameters 2-150 microns are found in a black carbon-bearing inclusion in Mazo-Madaras. Some are homogeneous (glassy or microcrystalline); others show two phases (mainly silica and pyroxene-rich glass). The bulk chemical composition of the inclusion is related to the host chondrite, in which silica-pyroxene chondrules are ubiquitous. Small black lumps of the same kind are dispersed in bulk Mezo-madaras. This L-related carbon-bearing material may represent a new specimen of C-rich ordinary chondrite. 13 references

  17. Fluid inclusions in minerals associated to uranium mineralization in Jazida do Engenho (anomaly 09), Lagoa Real uranium province - Bahia, Brazil; Inclusoes fluidas nos minerais associados a mineralizacao uranifera da Jazida do Engenho (Anomalia 09), provincia uranifera de Lagoa Real, BA

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Aurelio da Silva de

    2009-07-01

    The Engenho deposit (anomaly 09) is south-eastern from Cachoeira Mine (anomaly 13), in the northern part of the Province. The uranium mineralization is associated to 'albitites' (over 70% of albite/oligoclase). Epidosites with uranium may also occur. The 'albitite' main minerals are pyroxene, gamet, albite/oligoclase feldspar, amphibole and biotite. Pyroxene, gamet, plagioclase, titanite and epidote are the minerals associated to the uranium mineralization. The fluids related to pyroxene, gamet and epidote are aqueous-saline, primary and with no carbonic phases and are constant, with small variations. They all present medium to high salinity (14 to 18wt% NaCl eq.), the higher values being related to pyroxene and the lower ones related to gamet and epidote. The fluids associated to albite/oligoclase, although aqua-saline and with no carbonic phases, show salinities much lower than in pyroxene, gamet and epidote, suggesting a intense dilution process indicating dilution toward the later minerals phases. The data suggest the pyroxene formation process occurring under a 3,5 kbar pressure condition which corresponds to approximately 10km depth. The dispersion on Th in albites, due probably to the overheating and non elastic increase in volume, precluded a reliable pressure calculation. The IF's microscopy m plagioclase gneiss (albitites host-rocks) suggests the probability of primary carbonic fluids associated to these minerals. The fluids with CO{sub 2} showed in the gneiss maybe also be present in the albitites, probably as late or intergranular fluids. This assumption is based on the fact that signs of carbonic gases were shown during crushing tests. These tendencies suggest the occurrence of two albitization phases in this Lagoa Real area: one associated to a fluid composed by H{sub 2}O + CO{sub 2} + salts (in the gneiss host) and another (in the albitite) formed by an aqueous-saline phase. The data indicate the Brasiliano event as a thermal

  18. The parent magma of xenoliths in shergottite EETA79001: Bulk and trace element composition inferred from magmatic inclusions

    Science.gov (United States)

    Treiman, Allan H.; Lindstrom, David J.; Martinez, Rene R.

    1994-01-01

    The SNC meteorites are samples of the Martian crust, so inferences about their origins and parent magmas are of wide planetologic significance. The EETA79001 shergottite, a basalt, contains xenoliths of pyroxene-olivine cumulate rocks which are possibly related to the ALHA77005 and LEW88516 SNC lherzolites. Olivines in the xenoliths contain magmatic inclusions, relics of magma trapped within the growing crystals. The magmatic inclusions allow a parent magma composition to be retrieved; it is similar to the composition reconstructed from xenolith pyroxenes by element distribution coefficients. The xenolith parent magma is similar but not identical to parent magmas for the shergottite lherzolites.

  19. Fluid inclusions in minerals associated to uranium mineralization in Jazida do Engenho (anomaly 09), Lagoa Real uranium province - Bahia, Brazil

    International Nuclear Information System (INIS)

    Souza, Aurelio da Silva de

    2009-01-01

    The Engenho deposit (anomaly 09) is south-eastern from Cachoeira Mine (anomaly 13), in the northern part of the Province. The uranium mineralization is associated to 'albitites' (over 70% of albite/oligoclase). Epidosites with uranium may also occur. The 'albitite' main minerals are pyroxene, gamet, albite/oligoclase feldspar, amphibole and biotite. Pyroxene, gamet, plagioclase, titanite and epidote are the minerals associated to the uranium mineralization. The fluids related to pyroxene, gamet and epidote are aqueous-saline, primary and with no carbonic phases and are constant, with small variations. They all present medium to high salinity (14 to 18wt% NaCl eq.), the higher values being related to pyroxene and the lower ones related to gamet and epidote. The fluids associated to albite/oligoclase, although aqua-saline and with no carbonic phases, show salinities much lower than in pyroxene, gamet and epidote, suggesting a intense dilution process indicating dilution toward the later minerals phases. The data suggest the pyroxene formation process occurring under a 3,5 kbar pressure condition which corresponds to approximately 10km depth. The dispersion on Th in albites, due probably to the overheating and non elastic increase in volume, precluded a reliable pressure calculation. The IF's microscopy m plagioclase gneiss (albitites host-rocks) suggests the probability of primary carbonic fluids associated to these minerals. The fluids with CO 2 showed in the gneiss maybe also be present in the albitites, probably as late or intergranular fluids. This assumption is based on the fact that signs of carbonic gases were shown during crushing tests. These tendencies suggest the occurrence of two albitization phases in this Lagoa Real area: one associated to a fluid composed by H 2 O + CO 2 + salts (in the gneiss host) and another (in the albitite) formed by an aqueous-saline phase. The data indicate the Brasiliano event as a thermal event without a predominant fluid

  20. Geochemical evidence of present-day serpentinization.

    Science.gov (United States)

    Barnes, I; Lamarche, V C; Himmelberg, G

    1967-05-12

    Ultrabasic (pH > 11) water issues from some fresh ultramafic bodies. The properties of the ultrabasic solutions are believed to be due to current reactions yielding serpentine from primary olivines and pyroxenes. The low concentrations of divalent airon. divalent magnesium, and dissolved silica from the serpentinization require an increase in rock volume.

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Serpentinites exhibit talc veins and major serpentine derived from serpentinization with relict olivine granuloblasts. Olivine grains in serpentinites display exsolution lamellae, indicating the occurrence of talc reduction or decompression during seawater–rock interaction. Pyroxene shows clear cleavage in two directions, with ...

  2. Origin of Manipur Ophiolite Complex, Indo-Myanmar Range ...

    Indian Academy of Sciences (India)

    r b

    2017-11-20

    Nov 20, 2017 ... The Manipur. Ophiolite. Complex: Varying degree of serpentinization and relict pyroxenes. 11/20/2017. 13. Page 14. Serpentinization process preserves the protolith elemental signatures. 11/20/2017. 14 ... The range of Nd isotope ratios in the serpentinized peridotites. 11/20/2017. 17. Kingson et al.

  3. Present day serpentinization in New Caledonia, Oman and Yugoslavia

    Science.gov (United States)

    Barnes, I.; O'Neil, J.R.; Trescases, J.J.

    1978-01-01

    Geochemical evidence for modern low-temperature serpentinization has been found in three new localities. Apparently the low-temperature reactions are a common mode of formation of the lizardite-chrysotile and brucite assemblage. Possibly the 18O content of serpentine formed at low temperatures is in part inherited from the pyroxene and olivine. ?? 1978.

  4. Studies on New Halfa Meteorite

    International Nuclear Information System (INIS)

    Abdu, Y.A.M.

    1996-01-01

    Mossbauer spectroscopy in the temperature range (295 deg K - 4.2 deg K), electron microprobe, and X-ray diffraction (XRD) measurements have been carried out for the investigation of a Sudanese meteorite, named New Halfa, from a new fall. The specimen contains well defined chondrules which consist mainly of radiating orthopyroxene and olivine. The XRD and the microprobe analysis show the presence of the silicate phases (olivine and pyroxene), iron sulphide (troilite), and Fe-Ni alloys (kamacite and taenite). The olivine appears to have a constant composition throughout the specimen, whereas pyroxene have a varying composition and both orthopyroxene (which is the dominant pyroxene) and clinopyroxene were present. The microprobe trace of Ni concentration across a kamacite-taenite-kamacite area shows a high Ni concentration at the interface between kamacite and taenite phases. The room temperature Mossbauer spectrum is fitted with with three sextets and two doublets. The sextets were assigned Fe in troilite, kamacite and taenite, and the two doublets to Fe 2+ in olivine and pyroxene (no Fe 3+ was found). The Mossbauer spectrum at 4.2 K shows that olivine, which is paramagnetic at room temperature, is magnetic showing relaxation effects. The Mossbauer data of this meteorite confirm it as an ordinary L-chondrite. (author). 19 refs., 5 tabs., 17 figs

  5. Mossbauer analysis of Luna 16 lunar surface material

    Science.gov (United States)

    Nady, D. L.; Cher, L.; Kulcsar, K.

    1974-01-01

    Samples of Apollo 11 lunar surface material were studied by the Mossbauer effect. Owing to the small number of other resonant isotopes, all measurements were made with Fe-57 nuclei. The principal constituents of the material were as follows: Iron containing silicates (olivine, pyroxene, and so on), ilmenite (FeTiO3), and metallic iron.

  6. The infrared spectrum of asteroid 433 Eros

    Science.gov (United States)

    Larson, H. P.; Fink, U.; Treffers, R. R.; Gautier, T. N., III

    1976-01-01

    The mineralogical composition of asteroid Eros has been determined from its infrared spectrum (0.9-2.7 micrometers; 28/cm resolution). Major minerals include metallic Ni-Fe and pyroxene; no spectroscopic evidence for olivine or plagioclase feldspar was found. The IR spectrum of Eros is most consistent with a stony-iron composition.

  7. New Individuals from the Almahata Sitta Strewn Field: Old Friends and Brand-New Fellows

    Science.gov (United States)

    Bischoff, A.; Ebert, S.; Patzek, M.; Horstmann, M.; Pack, A.; Barrat, J.-A.; Decker, S.

    2015-07-01

    Nine new samples (MS-MU-012-MS-MU-020) from the Almahata Sitta strewn field were studied including ureilitic samples, chondrites, and a unique sample (MS-MU-019). Among these MS-MU-012 is an unbrecciated, ureilitic feldspar-olivine-pyroxene rock.

  8. Crystal-field spectra of fassaite from the Angra dos Reis meteorite

    Energy Technology Data Exchange (ETDEWEB)

    Mao, H K; Bell, P M; Virgo, D [Carnegie Institution of Washington, D.C. (USA)

    1977-06-01

    Fassaitic pyroxene from the Angra dos Reis meteorite has striking spectral properties. The /sup 57/Fe Moessbauer spectra show no Fe/sup 3 +/, and thus the absorption is thought to originate from a complex charge-transfer process. Intense absorption at 480 nm dominates the spectrum of the meteorite and may be important in the interpretation of telescope spectra of objects in space.

  9. Possibilities for rutile extraction from Norwegian eclogite by flotation

    OpenAIRE

    Gaydardzhiev, Stoyan; Sandvik, Knut

    1993-01-01

    Preliminary flotations tests towards rutile extraction from Norwegian eclogites (Verving deposit) have been carried out. Various sulfonate type flotation reagents (produced by Hoechts) have been tested. Selectivity between rutile/pyroxene has been targeted. Rutile separation from pyrite and garnet has been further identified as principal problem.

  10. Ancient melt depletion overprinted by young carbonatitic metasomatism in the New Zealand lithospheric mantle

    DEFF Research Database (Denmark)

    Scott, James M.; Hodgkinson, A.; Palin, J.M.

    2014-01-01

    radiogenic than, the HIMU mantle reservoir. Metasomatism appears to pre-date ubiquitous pyroxene core to rim Al diffusion zoning, which may have resulted from cooling of the lithospheric mantle following cessation of Late Cretaceous-Eocene rifting of Zealandia from Gondwana. Nd isotope data, however, suggest...

  11. Presence of 60Fe in eucrite Piplia Kalan: A new perspective to the initial 60Fe/ 56Fe in the early solar system

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; Sahijpal, S.; Bhandari, N.

    Fe-Ni isotope measurements of ferrous pyroxenes of the Piplia Kalan eucrite using Secondary Ion Mass Spectrometer revealed the presence of sup (60) Ni excess corresponding to the initial 60Fe/56Fe of (5.2 + or - 2.4) × 10 sup(-9). Combining...

  12. Compositional evidence for an impact origin of the Moon's Procellarum basin

    Science.gov (United States)

    Nakamura, Ryosuke; Yamamoto, Satoru; Matsunaga, Tsuneo; Ishihara, Yoshiaki; Morota, Tomokatsu; Hiroi, Takahiro; Takeda, Hiroshi; Ogawa, Yoshiko; Yokota, Yasuhiro; Hirata, Naru; Ohtake, Makiko; Saiki, Kazuto

    2012-11-01

    The asymmetry between the nearside and farside of the Moon is evident in the distribution of mare basalt, crustal thickness and concentrations of radioactive elements, but its origin remains controversial. According to one attractive scenario, a gigantic impact early in the Moon's history produced the observed dichotomy; the putative 3,000-km-diameter Procellarum basin has been suggested to be a relic of this ancient impact. Low-calcium pyroxene can be formed during an impact by melting a mixture of crust and mantle materials or by excavating differentiated cumulates from the lunar magma ocean. Therefore, the association of low-calcium pyroxene with a lunar basin could indicate an impact origin. Here we use spectral mapping data from KAGUYA/SELENE (ref. ) to show that low-calcium pyroxene is concentrated around two established impact structures, the South Pole-Aitken and Imbrium basins. In addition, we detect a high concentration of low-calcium pyroxene at Procellarum, which supports an impact origin of the ancient basin. We propose that, in forming the largest known basin on the Moon, the impact excavated the nearside's primary feldspathic crust, which derived from the lunar magma ocean. A secondary feldspathic crust would have later recrystallized from the sea of impact melt, leading to two distinct sides of the Moon.

  13. Extensive, water-rich magma reservoir beneath southern Montserrat

    Science.gov (United States)

    Edmonds, M.; Kohn, S. C.; Hauri, E. H.; Humphreys, M. C. S.; Cassidy, M.

    2016-05-01

    South Soufrière Hills and Soufrière Hills volcanoes are 2 km apart at the southern end of the island of Montserrat, West Indies. Their magmas are distinct geochemically, despite these volcanoes having been active contemporaneously at 131-129 ka. We use the water content of pyroxenes and melt inclusion data to reconstruct the bulk water contents of magmas and their depth of storage prior to eruption. Pyroxenes contain up to 281 ppm H2O, with significant variability between crystals and from core to rim in individual crystals. The Al content of the enstatites from Soufrière Hills Volcano (SHV) is used to constrain melt-pyroxene partitioning for H2O. The SHV enstatite cores record melt water contents of 6-9 wt%. Pyroxene and melt inclusion water concentration pairs from South Soufriere Hills basalts independently constrain pyroxene-melt partitioning of water and produces a comparable range in melt water concentrations. Melt inclusions recorded in plagioclase and in pyroxene contain up to 6.3 wt% H2O. When combined with realistic melt CO2 contents, the depth of magma storage for both volcanoes ranges from 5 to 16 km. The data are consistent with a vertically protracted crystal mush in the upper crust beneath the southern part of Montserrat which contains heterogeneous bodies of eruptible magma. The high water contents of the magmas suggest that they contain a high proportion of exsolved fluids, which has implications for the rheology of the mush and timescales for mush reorganisation prior to eruption. A depletion in water in the outer 50-100 μm of a subset of pyroxenes from pumices from a Vulcanian explosion at Soufrière Hills in 2003 is consistent with diffusive loss of hydrogen during magma ascent over 5-13 h. These timescales are similar to the mean time periods between explosions in 1997 and in 2003, raising the possibility that the driving force for this repetitive explosive behaviour lies not in the shallow system, but in the deeper parts of a vertically

  14. Titanium, vanadium and chromium valences in silicates of ungrouped achondrite NWA 7325 and ureilite Y-791538 record highly-reduced origins

    Science.gov (United States)

    Sutton, S. R.; Goodrich, C. A.; Wirick, S.

    2017-05-01

    Titanium, Cr, and V valences were determined by applying micro-X-ray Absorption Near Edge Structure (micro-XANES) spectroscopy methods to individual grains of olivine and pyroxene in the ungrouped achondrite NWA 7325 and ureilite Y-791538, as well as to plagioclase in NWA 7325. The advantages of applying multiple, multivalent-element-based oxybarometers to individual grains are (1) the ability to cover the entire oxygen fugacity (fO2) range encountered in nature, and (2) the increased reliability from consistent results for semi-independent fO2 proxies. fO2 values were inferred from each mineral valence determination after correcting with available laboratory-experiment-derived, valence-specific partition coefficients to obtain melt valences and then calibrating with the fO2 values of the relevant equal species proportions points suggested for igneous (primarily basaltic) systems. The resulting olivine and pyroxene valences are highly reduced and similar in the two meteorites with substantial fractions of Cr2+, Ti3+ and V2+. The exception is Cr in NWA 7325 pyroxene which is much more oxidized than the Cr in its olivine. Chromium and Ti in plagioclase in NWA 7325 is relatively oxidized (V valence not determined). The anomalously oxidized Cr in NWA 7325 pyroxene may be due to a secondary reheating event that oxidized Cr in the pyroxene without similarly oxidizing Ti and V. Such a separation of the redox couples may be an effect of re-equilibration kinetics, where the valence of Cr would be more rapidly modified. These valences yielded similar mean fO2s for the two meteorites; IW-3.1 ± 0.2 for NWA 7325 and IW-2.8 ± 0.2 for Y-791538, consistent with an origin of NWA 7325 in either Mercury or an asteroid that experienced redox conditions similar to those on the ureilite parent body.

  15. Composition and Redox Potential of High-Grade Fluids: An Example from the Nilgiri Block, Southern India

    Science.gov (United States)

    Samuel, V. O.; Harlov, D. E.; Kwon, S.

    2017-12-01

    Composition and redox potential of fluids present during high-grade metamorphism exert an enormous influence on mineral textures and their regional trends within metamorphic complexes. We examine silicate, oxide, and sulfide trends in the Nilgiri Block, southern India. This terrain formed through subduction-related arc magmatic processes in the Neoarchean (ca. 2500 Ma). The Nilgiri highlands are characterized by granulite-facies metagabbro in the north, a two-pyroxene granulite transition zone, and tonalitic-granodioritic charnockites in the central and southern part. Garnet-orthopyroxene and orthopyroxene-clinopyroxene thermometry and garnet-orthopyroxene-plagioclase-quartz barometric results indicate a regional trend both in temperature ( 650 to 800 °C) and in pressure (700 to 1100 MPa) from SW to NE across the Nilgiri highlands. Regional trends are also seen in the oxide-sulfide mineralogy. The main oxide assemblage in the charnockites is rutile-ilmenite, whereas in the two-pyroxene granulites and metagabbros, hemo-ilmenite-magnetite dominates. The key sulfide mineral in the charnockites is pyrrhotite, with minor chalcopyrite. In the two-pyroxene granulites and metagabbros, the principle sulfide assemblage is pyrite +/- minor pyrrhotite. This reveals a regional oxidation trend. The metagabbros and two-pyroxene granulites are highly oxidized compared to the charnockites. Their higher oxidation state is proposed to be the result of highly oxidizing agents (probably as SO2) in low H2O activity fluids (most likely concentrated NaCl brines) during granulite-facies metamorphism of the metagabbros and two-pyroxene granulites. These agents were considerably more reducing (possibly as H2S) during granulite-facies metamorphism of the charnockites. This study emphasizes the potential role of oxidizing and reducing, low H2O activity fluids during granulite-facies metamorphism.

  16. A New Type of Foreign Clast in A Polymict Ureilite: A CAI or AL-Rich Chondrule

    Science.gov (United States)

    Goodrich, C. A.; Ross, D. K.; Treiman, A. H.

    2017-01-01

    Introduction: Polymict ureilites are breccias interpreted to represent regolith formed on a ureilitic asteroid [1-3]. They consist of approximately 90-95% clasts of various ureilite types (olivine-pyroxene rocks with Fo 75-95), a few % indigenous feldspathic clasts, and a few % foreign clasts [4-20]. The foreign clasts are diverse, including fragments of H, L, LL and R chondrites, angrites, other achondrites, and dark clasts similar to CC [6,7,9-19]. We report a new type of foreign clast in polymict ureilite DaG 999. Methods: Clast 8 in Dar al Gani (DaG) 999/1 (Museum fur Naturkunde) was discovered during a survey of feldspathic clasts in polymict ureilites [19,20]. It was studied by BEI, EMPA, and X-ray mapping on the JEOL 8530F electron microprobe at ARES, JSC. Petrography and Mineral Compositions: Clast 8 is sub-rounded to irregular in shape, approximately 85 micrometers in diameter, and consists of approximately 68% pyroxene and 32% mesostasis (by area). Part of the pyroxene (top half of clast in Fig. 1a and 2) shows a coarse dendritic morphology; the rest appears massive. Mesostasis may be glassy and contains fine needles/grains of pyroxene. The pyroxene has very high CaO (23.5 wt.%) and Al2O3 (19.7 wt.%), with the formula: (Ca(0.91)Mg(0.63)Fe(0.01)Al(sup VI) (0.38)Cr(0.01)Ti(0.05)1.99 Si2O6. The bulk mesostasis also has very high Al2O3 (approximately 26 wt.%). A bulk composition for the clast was obtained by combining modal abundances with phase compositions (Table 1, Fig. 3). Discussion: The pyroxene in clast 8 has a Ca-Al-(Ti)- rich (fassaitic) composition that is clearly distinct from compositions of pyroxenes in main group ureilites [22] or indigenous feldspathic clasts in polymict ureilites [4-8]. It also has significantly higher Al than fassaite in angrites (up to approximately 12 wt.% [23]), which occur as xenoliths in polymict ureilites. Ca-Al-Ti rich pyroxenes are most commonly found in CAIs, Al-rich chondrules and other types of refractory

  17. Trace Element Characteristics of the New Shergottite LEW88516

    Science.gov (United States)

    Wadhwa, M.; Crozaz, G.

    1992-07-01

    LEW88516, a meteorite collected in Antarctica, has recently been identified as a shergottite (Mason and Satterwhite, 1991). The shergottites belong to a group of unique achondritic meteorites, the SNCs, for which Mars has been suggested as the parent body. From preliminary petrologic and geochemical studies, it appears that LEW88516 is closely related to the shergottite ALHA77005. Like ALHA77005, LEW88516 is composed of two distinct lithologies; one consists of large (mm-sized) pyroxenes poikilitically enclosing olivine crystals, and the other is represented by interstitial areas that contain small pyroxenes, olivine, maskelynite, whitlockite, and opaques (Lindstrom et al., 1992). Besides mineralogy and texture, whole rock chemical characteristics of these two shergottites also appear to be strikingly similar (Lindstrom et al., 1992; Boynton et al., 1992). We measured REE and other selected trace elements in individual mineral phases present in LEW88516, and compared the results with similar data obtained for ALHA77005 by Lundberg et al. (1990). Analyses were made on a thin section of LEW88516 with an ion microprobe; trace elements concentrations were measured in poikilitic and interstitial pyroxenes (augites and pigeonites), maskelynite, whitlockite, and glass. The total REE inventory of LEW88516 is dominated by whitlockite, although this mineral, as in ALHA77005, is present in only small modal abundance. Maskelynite in LEW88516 is characterized by a positive Eu anomaly that is approximately twice as large as that present in the maskelynite in ALHA77005, although the rest of the REE are present in lower abundances. The homogeneous, crystallite-free glass in LEW88516 is slightly enriched relative to LEW88516 bulk rock REE abundances, and has a REE pattern that is parallel to the ALHA77005 whole rock REE pattern. Pyroxenes in LEW88516 are zoned in their trace element concentrations, as are the pyroxenes in ALHA77005. Elemental abundances (e.g., REE, Y, Ti, Zr, Cr, V

  18. Paleozoic tectonic evolution of the Dananhu-Tousuquan island arc belt, Eastern Tianshan: Constraints from the magmatism of the Yuhai porphyry Cu deposit, Xinjiang, NW China

    Science.gov (United States)

    Wang, Yunfeng; Chen, Huayong; Han, Jinsheng; Chen, Shoubo; Huang, Baoqiang; Li, Chen; Tian, Qinglei; Wang, Chao; Wu, Jianxin; Chen, Mingxia

    2018-03-01

    The Yuhai intrusions (quartz diorite, granite and pyroxene diorite) are located in the eastern part of the Dananhu-Tousuquan island arc belt of the Eastern Tianshan, and associated with the early Paleozoic porphyry Cu mineralization. LA-ICP-MS zircon U-Pb dating yielded emplacement ages of 443.5 ± 4.1 Ma for the quartz diorite, 325.4 ± 2.5 Ma for the granite, and 291 ± 3.0 Ma for the pyroxene diorite. These rocks are tholeiitic to calc-alkaline and metaluminous, with A/CNK values ranging from 0.66 to 1.10. The Silurian ore-bearing Yuhai quartz diorite is rich in LREEs and LILEs (e.g., K, Ba, Pb and Sr), and depleted in HREEs and HFSEs (e.g., Nb, Ta and Ti). These rocks are MgO-rich (1.90-3.80 wt.%; Mg# = 37-72), with high Sr/Y, La/Yb and Ba/Th ratios, positive εNd(t) (6.31-6.84) and εHf(t) (13.26-16.40), low (87Sr/86Sr)i (0.7037-0.7039), and low Nb/U and Ta/U ratios. The data suggest that the quartz diorite was generated by the partial melting of subducted juvenile oceanic slab. The oxygen fugacity (ƒO2) of the quartz diorite, calculated by zircon Ce4+/Ce3+ ratios, is higher than that of the granite and pyroxene diorite, implying that the quartz diorite was more favorable to porphyry Cu mineralization. The Carboniferous Yuhai granite reveals similar geochemical features with the quartz diorite, except for the lower Mg# (27-33), and the more elevated Th/U and Th/La ratios. Furthermore, these rocks also show high εNd(t) (5.2-5.8) and εHf(t) (11.03-14.85) values, and low (87Sr/86Sr)i (0.7036-0.7037). These features indicate that the parental magma of the granite was probably derived from a juvenile lower crust with no significant mantle component involvement. Different from the Yuhai quartz diorite and granite, the early Permian Yuhai pyroxene diorite contains low SiO2 (50.76-55.74 wt.%) and high MgO (3.96-4.33 wt.%; Mg# = 40-44). The εNd(t), εHf(t) and (87Sr/86Sr)i values of the pyroxene diorite are 5.77-6.42, 7.99-12.10 and 0.7035-0.7040, respectively. The

  19. Exploration of faint absorption bands in the reflectance spectra of the asteroids by method of optimal smoothing: Vestoids

    Science.gov (United States)

    Shestopalov, D. I.; McFadden, L. A.; Golubeva, L. F.

    2007-04-01

    An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called "optimal" because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1-35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroids' surface. While not measured by microprobe analysis, Fe 3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe 3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038

  20. The Cr Redox Record of fO2 Variation in Angrites. Evidence for Redox Conditions of Angrite Petrogenesis and Parent Body

    Science.gov (United States)

    Shearer, Charles K.; Bell, Aaron S.; Burger, Paul V.; Papike, James J.; Jones, John; Le, Loan

    2016-01-01

    Angrites represent some of the earliest stages of planetesimal differentiation. Not surprisingly, there is no simple petrogenetic model for their origin. Petrogenesis has been linked to both magmatic and impact processes. Studies demonstrated that melting of chondritic material (e.g. CM, CV) at redox conditions where pure iron metal is unstable (e.g., IW+1 to IW+2) produced angrite-like melts. Alternatively, angrites were produced at more reducing conditions (redox conditions during crystallization (e.g., Fe metal and a Fe-Ti oxide with potential Fe3+. There have been several estimates of fO2 for angrites. Most notably, experiments examined the variation of DEu/DGd with fO2, between plagioclase and fassaitic pyroxene in equilibrium with an angrite melt composition. They used their observations to estimate the fO2 of crystallization to be approximately IW+0.6 for angrite LEW 86010. This estimate is only a "snapshot" of fO2 conditions during co-crystallization of plagioclase and pyroxene. Preliminary XANES analyses of V redox state in pyroxenes from D'Orbigny reported changes in fO2 from IW-0.7 during early pyroxene crystallization to IW+0.5 during latter episodes of pyroxene crystallization [15]. As this was a preliminary report, it presented limited information concerning the effects of pyroxene orientation and composition on the V valence measurements, and the effect of melt composition on valence and partitioning behavior of V. A closer examination of fO2 as recorded by Cr valence state in olivine will allow us to test models for primordial melting of chondritic material to produce the angrite parent melts. Here, we report the our initial stages of examining the origin and conditions of primordial melting on the angrite parent body and test some of the above models by integrating an experimental study of Cr and V valence partitioning between olivine [OL] and an angrite melt, with micro-scale determinations of Cr and V oxidation state in OL in selected "volcanic

  1. Basaltic rocks analyzed by the Spirit rover in Gusev crater

    Science.gov (United States)

    McSween, H.Y.; Arvidson, R. E.; Bell, J.F.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; Clark, B. C.; Crisp, J.A.; Crumpler, L.S.; Des Marias, D.J.; Farmer, J.D.; Gellert, Ralf; Ghosh, A.; Gorevan, S.; Graff, T.; Grant, J.; Haskin, L.A.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.L.; Klingelhoefer, G.; Knudson, A.T.; McLennan, S.; Milam, K.A.; Moersch, J.E.; Morris, R.V.; Rieder, R.; Ruff, S.W.; De Souza, P.A.; Squyres, S. W.; Wanke, H.; Wang, A.; Wyatt, M.B.; Yen, A.; Zipfel, J.

    2004-01-01

    The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain ???25% megacrysts. Chemical analyses of rocks by the Alpha Particle X-ray Spectrometer are consistent with picritic basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mo??ssbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.

  2. Orbital Evolution of Dust Particles in the Sublimation Zone near the Sun

    Science.gov (United States)

    Shestakova, L. I.; Demchenko, B. I.

    2018-03-01

    We have performed the calculations of the orbital evolution of dust particles from volcanic glass ( p-obsidian), basalt, astrosilicate, olivine, and pyroxene in the sublimation zone near the Sun. The sublimation (evaporation) rate is determined by the temperature of dust particles depending on their radius, material, and distance to the Sun. All practically important parameters that characterize the interaction of spherical dust particles with the radiation are calculated using the Mie theory. The influence of radiation and solar wind pressure, as well as the Poynting-Robertson drag force effects on the dust dynamics, are also taken into account. According to the observations (Shestakova and Demchenko, 2016), the boundary of the dust-free zone is 7.0-7.6 solar radii for standard particles of the zodiacal cloud and 9.1-9.2 solar radii for cometary particles. The closest agreement is obtained for basalt particles and certain kinds of olivine, pyroxene, and volcanic glass.

  3. Areally Extensive Surface Bedrock Exposures on Mars: Many Are Clastic Rocks, Not Lavas

    Science.gov (United States)

    Rogers, A. Deanne; Warner, Nicholas H.; Golombek, Matthew P.; Head, James W.; Cowart, Justin C.

    2018-02-01

    Areally extensive exposures of intact olivine/pyroxene-enriched rock, as well as feldspar-enriched rock, are found in isolated locations throughout the Martian highlands. The petrogenetic origin(s) of these rock units are not well understood, but some previous studies favored an effusive volcanic origin partly on the basis of distinctive composition and relatively high thermal inertia. Here we show that the regolith development, crater retention, and morphological characteristics for many of these "bedrock plains" are not consistent with competent lavas and reinterpret the high thermal inertia orbital signatures to represent friable materials that are more easily kept free of comminution products through eolian activity. Candidate origins include pyroclastic rocks, impact-generated materials, or detrital sedimentary rocks. Olivine/pyroxene enrichments in bedrock plains relative to surrounding materials could have potentially formed through deflation and preferential removal of plagioclase.

  4. Initial results from the Mini-TES experiment in Gusev Crater from the Spirit Rover

    Science.gov (United States)

    Christensen, P. R.; Ruff, S. W.; Fergason, R. L.; Knudson, A. T.; Anwar, S.; Arvidson, R. E.; Bandfield, J. L.; Blaney, D. L.; Budney, C.; Calvin, W. M.; hide

    2004-01-01

    The Miniature Thermal Emission Spectrometer (Mini-TES) on Spirit has studied the mineralogy and thermophysical properties at Gusev crater. Undisturbed soil spectra show evidence for minor carbonates and bound water. Rocks are olivinerich basalts with varying degrees of dust and other coatings. Dark-toned soils observed on disturbed surfaces may be derived from rocks and have derived mineralogy (+/-5 to 10%) of 45% pyroxene (20% Ca-rich pyroxene and 25% pigeonite), 40% sodic to intermediate plagioclase, and 15% olivine (forsterite 45% +/-5 to 10). Two spectrally distinct coatings are observed on rocks, a possible indicator of the interaction of water, rock, and airfall dust. Diurnal temperature data indicate particle sizes from 40 to 80 microm in hollows to approximately 0.5 to 3 mm in soils.

  5. Mid-infrared spectra of cometary dust: the evasion of its silicate mineralogy

    Science.gov (United States)

    Kimura, H.; Chigai, T.; Yamamoto, T.

    2008-04-01

    Infrared spectra of dust in cometary comae provide a way to identify its silicate constituents, and this is crucial for correctly understanding the condition under which our planetary system is formed. Recent studies assign a newly detected peak at a wavelength of 9.3 μm to pyroxenes and regard them as the most abundant silicate minerals in comets. Here we dispense with this pyroxene hypothesis to numerically reproduce the infrared features of cometary dust in the framework of our interstellar dust models. Presolar interstellar dust in a comet is modeled as fluffy aggregates consisting of submicrometer-sized organic grains with an amorphous-silicate core that undergoes nonthermal crystallization in a coma. We assert that forsterite (Mg2SiO4) is the carrier of all the observed features, including the 9.3 μm peak and that the major phase of iron is sulfides rather than iron-rich silicates.

  6. Surface compositions in the Aristarchus Region: Implications for regional stratigraphy

    Science.gov (United States)

    Hawke, H. R.; Lucey, P. G.; Mccord, T. B.; Pieters, C. M.; Head, J. W.

    1984-01-01

    Near infrared reflectance spectra for the Aristachus region, obtained using the 2.2m UH telescope at the Mauna Kea Observatory, were reduced and analyzed. The spectra obtained for the central peak, southern floor, southwestern wall, eastern wall, and northwestern wall of Aristachus crater exhibit shallow continuum slopes, relatively strong feldspar bands, pyroxene bands stronger than those typically seen in the spectra of fresh higland features, and pyroxene band centers near l micrometer suggesting the dominance of Ca rich clinopyroxene. The spectrum of the south rim of Aristachus is quite distinct from those of other crater units. The position of Aristrchus on the plateau/mare boundary raises questions concerning compositional variations in crater ejects deposits.

  7. Characterization of Maghsail meteorite from Oman by Moessbauer spectroscopy, X-ray diffraction and petrographic microscopy

    International Nuclear Information System (INIS)

    Al-Rawas, A. D.; Gismelseed, A. M.; Al-Kathiri, A. F.; Elzain, M. E.; Yousif, A. A.; Al-Kathiri, S. B.; Widatallah, H. M.; Abdalla, S. B.

    2008-01-01

    The meteorite found at Maghsail (16 55 70 N-53 46 69 E) west of Salalah Oman, has been studied by 57 Fe Moessbauer spectroscopy, X-diffractometry and petrographic microscopy. In the polished section the meteorite exhibits a porphyritic texture consisting of pyroxene and olivine phenocrysts in a fine to medium grained ground mass in addition to minor phases possibly skeletal chromite, troilite and minute amount of iron oxides. X-ray diffraction supports the existence of these compounds. The Moessbauer spectra of powdered material from the core of the rock at 298 K and 78 K exhibit a mixture of magnetic and paramagnetic components. The paramagnetic components are assigned to the silicate minerals olivine and pyroxene. On the other hand, the magnetic spectra reveal the presence of troilite and iron oxides. The petrographic analyses indicate that the iron oxides are terrestrial alteration products.

  8. Sequence of eruptive events in the Vesuvio area recorded in shallow-water Ionian Sea sediments

    Directory of Open Access Journals (Sweden)

    C. Taricco

    2008-01-01

    Full Text Available The dating of the cores we drilled from the Gallipoli terrace in the Gulf of Taranto (Ionian Sea, previously obtained by tephroanalysis, is checked by applying a method to objectively recognize volcanic events. This automatic statistical procedure allows identifying pulse-like features in a series and evaluating quantitatively the confidence level at which the significant peaks are detected. We applied it to the 2000-years-long pyroxenes series of the GT89-3 core, on which the dating is based. The method confirms the dating previously performed by detecting at a high confidence level the peaks originally used and indicates a few possible undocumented eruptions. Moreover, a spectral analysis, focussed on the long-term variability of the pyroxenes series and performed by several advanced methods, reveals that the volcanic pulses are superimposed to a millennial trend and a 400 years oscillation.

  9. Sequence of eruptive events in the Vesuvio area recorded in shallow-water Ionian Sea sediments

    Science.gov (United States)

    Taricco, C.; Alessio, S.; Vivaldo, G.

    2008-01-01

    The dating of the cores we drilled from the Gallipoli terrace in the Gulf of Taranto (Ionian Sea), previously obtained by tephroanalysis, is checked by applying a method to objectively recognize volcanic events. This automatic statistical procedure allows identifying pulse-like features in a series and evaluating quantitatively the confidence level at which the significant peaks are detected. We applied it to the 2000-years-long pyroxenes series of the GT89-3 core, on which the dating is based. The method confirms the dating previously performed by detecting at a high confidence level the peaks originally used and indicates a few possible undocumented eruptions. Moreover, a spectral analysis, focussed on the long-term variability of the pyroxenes series and performed by several advanced methods, reveals that the volcanic pulses are superimposed to a millennial trend and a 400 years oscillation.

  10. Petrology of blueschist facies metamorphic rocks of the Meliata Unit

    Directory of Open Access Journals (Sweden)

    Faryad Shah Wali

    1997-06-01

    Full Text Available Meliata blueschists originated from basalts, limestones, pelites, psammitic and amphibolite facies basement rocks. Compositionally, the metabasalts have a geochemical signature mostly indicative of a transitional arc-MORB origin, but some mafic rocks having affinity with within plate basalts also present. The mafic blueschists consist of blue amphibole, epidote and albite, rarely also garnet, Na-pyroxene and chloritoid. Apart from phengite and quartz the metapelites and metapsammites contain one or more of the minerals: chloritoid, paragonite, glaucophane, albite, chlorite, occasionally also Na-pyroxene and garnet. Amphibolite facies rocks contain relic garnet, plagioclase and hornblende, the latter two replaced by albite and blue amphibole, respectively. The zoning patterns of blue amphibole, garnet and chloritoid suggest their formation during prograde stage of metamorphism. P-T conditions of meta-morphism are estimated to be about 350-460 oC and 10-12 kbar.

  11. Cosmic-ray production rates of neon isotopes in meteorite minerals

    International Nuclear Information System (INIS)

    Bhandari, N.

    1988-01-01

    The rates of production of 21 Ne and 22 Ne in spallation reactions, both due to solar as well as galactic cosmic rays, in some major meteoritic minerals, e.g. olivines, feldspars and pyroxenes, are calculated using their energy spectra and excitation functions. The production profiles of 21 Ne and 22 Ne due to galactic cosmic rays, and the 22 Ne/ 21 Ne ratio depend upon the size of the meteoroid. The 22 Ne/ 21 Ne ratio is very sensitive to the abundance of sodium and consequently its depth profile is distinctly different in feldspars, the ratio increasing with depth rather than decreasing as in pyroxenes and olivines. In the near-surface regions, up to a depth of 2 cm, production due to solar flare protons dominates, giving rise to a steep gradient in isotopic production as well as in the 22 Ne/ 21 Ne ratio. Composite production profiles are given and compared with measurements in some meteorites. (author). 22 refs

  12. Iron Redox Systematics of Shergottites and Martian Magmas

    Science.gov (United States)

    Righter, Kevin; Danielson, L. R.; Martin, A. M.; Newville, M.; Choi, Y.

    2010-01-01

    Martian meteorites record a range of oxygen fugacities from near the IW buffer to above FMQ buffer [1]. In terrestrial magmas, Fe(3+)/ SigmaFe for this fO2 range are between 0 and 0.25 [2]. Such variation will affect the stability of oxides, pyroxenes, and how the melt equilibrates with volatile species. An understanding of the variation of Fe(3+)/SigmaFe for martian magmas is lacking, and previous work has been on FeO-poor and Al2O3-rich terrestrial basalts. We have initiated a study of the iron redox systematics of martian magmas to better understand FeO and Fe2O3 stability, the stability of magnetite, and the low Ca/high Ca pyroxene [3] ratios observed at the surface.

  13. Serpentinite with and without brucite: A reaction pathway analysis of a natural serpentinite in the Josephine ophiolite, California

    OpenAIRE

    Sonzogni, Yann; Treiman, Allan H.; Schwenzer, Susanne P.

    2017-01-01

    A partially serpentinized peridotite from the Josephine ophiolite has been studied in detail in order to characterize the chemical processes of its serpentinization. The original rock was harzburgite, and its olivine and orthopyroxene are partially replaced by veins and patches of lizardite serpentine and magnetite; brucite and talc are completely absent from the serpentinite, regardless of whether the precursor mineral was olivine or pyroxene. Petrographic and mineral-chemical data suggest a...

  14. Serpentinization and alteration in an olivine cumulate from the Stillwater Complex, Southwestern Montana

    Science.gov (United States)

    Page, N.J.

    1976-01-01

    Some of the olivine cumulates of the Ultramafic zone of the Stillwater Complex, Montana, are progressively altered to serpentine minerals and thompsonite. Lizardite and chrysotile developed in the cumulus olivine and postcumulus pyroxenes; thompsonite developed in postcumulus plagioclase. The detailed mineralogy, petrology, and chemistry indicate that olivine and plagioclase react to form the alteration products, except for H2O, without changes in the bulk composition of the rocks. ?? 1976 Springer-Verlag.

  15. Sedimentary response to volcanic activity in the Okinawa Trough since the last deglaciation

    Institute of Scientific and Technical Information of China (English)

    蒋富清; 李安春; 李铁刚

    2010-01-01

    To investigate the relationship between volcanic activity and sediment record on regional and temporal scales,158 surface sediment samples were collected from the East China Sea Shelf to the northern Okinawa Trough (OT),and two cores recovered in the northern and southern OT,respectively.Mineralogy,grain-size,and geochemical analyses of those samples show that:1) volcanic glass,volcanic-type pyroxene,hypersthenes,and magnetite increase in sediment influenced by volcanic activity;2) sediment grain sizes (and...

  16. Indication Of Hydrothermal Alteration Activities Based On Petrography Of Volcanic Rocks In Abang Komba Submarine Volcano, East Flores Sea

    OpenAIRE

    Sarmili, Lili; Hutabarat, Johanes

    2014-01-01

    The presence of mineral alteration or secondary processes to rocks on submarine volcano of Abang Komba was caused by an introduction of hydrothermal solutions. Those are indicated by the presence of a resembly of minerals alteration seen in their petrographic analyses. They are characterized by replacement partially surrounding of plagioclase phenocrysts, partially replacing plagioclase by sericite, carbonate and clay minerals. The replacement of pyroxene partly by chlorite, and the presence ...

  17. Glass-crystalline materials for active waste incorporation

    International Nuclear Information System (INIS)

    Kulichenko, V.V.; Krylova, N.V.; Vlasov, V.I.; Polyakov, A.S.

    1979-01-01

    This paper presents the results of investigations into the possibility and conditions for using glass-crystalline materials for the incorporation of radionuclides. Materials of a cast pyroxene type that are obtained by smelting calcined wastes with acid blast furnace slags are described. A study was also made of materials of a basalt type prepared from wastes with and without alkali metal salt. Changes in the structure and properties of materials in the process of storage at different temperatures have been studied

  18. The mineralogy of ordinary chondrites and implications for asteroid spectrophotometry

    Science.gov (United States)

    Mcsween, Harry Y., Jr.; Bennett, Marvin E., III; Jarosewich, Eugene

    1991-01-01

    Published data from bulk chemical analyses of 94 ordinary chondrites are compiled in a table of normative mineralogy and discussed in detail. Significant variations in olivine, pyroxene, and metal abundance ratios are found within each chondrite class and attributed to redox processes superimposed on initial differences in metal/silicate ratios. The use of the diagrams constructed here to predict the mineralogic characteristics of asteroids on the basis of spectrophotometric observations is suggested.

  19. Mineralization and geochemical studies in the Kalchouyeh occurrence, southwest of Naein

    OpenAIRE

    Hengameh Hosseini Dinani; Hashem Bagheri; Reza Shamsipour Dehkordi

    2012-01-01

    Kalchouyeh area in southwest of Naein is located in the Urumieh-Dokhtar volcano-plutonic belt. Mineralization occurred mainly as disseminations and veinlets hosted by trachy-andesite and pyroxene andesites. For mineralogy, alteration, fluid inclusion and geochemical studies, the two major mineralized zones: A (larger vein) from the north-northwest and B (smaller vein) from the east-southeast of the area were sampled. Alteration studies revealed that the main alteration assemblages are silicif...

  20. Iron signatures in Planetary Regoliths: The Moon as Case Study

    Science.gov (United States)

    McFadden, L. A.; Clark, P. E.; Basu, A.

    1998-09-01

    We consider the distribution of iron in the lunar crust by combining two complementary remote sensing techniques, Apollo Gamma-ray (AGR) spectroscopy and Clementine reflectance spectroscopy (CRS). Both maps were compared in areas of overlap controlled by Apollo 15 and 16 ground tracks. The CRS map was scaled to the same lower spatial resolution (200 km) as AGR using the same color map in a mercator projection. Both AGR and CRS maps show bimodal distributions of iron abundance and have large scale similarities, but there are quantitative and significant differences. Maria account for the high iron peak and highlands, the low iron peak. CSR-derived Fe has a greater overall range, very narrow modal peaks and greater separation between high and low modes compared to AGR Fe values. If both techniques measure total iron in the regolith then both approaches should agree, their residuals should be zero. After failure to explain the differences in a systematic manner, we recalibrated the CSR iron map to the iron abundance in the pyroxene component of Apollo landing site soils, an approach consistent with crystal field theory and the algorithm used to produce the CSR map. The difference between total iron measured by AGR and iron in pyroxene now measured by CSR gives a map of the non-pyroxene iron component of the lunar crust and its distribution. We now see a correlation with lunar morphology and an anti-correlation with age of mare basins and their iron abundance, the younger basins having a higher component of non-pyroxene iron than the older ones. These results can be checked with Lunar Prospector data on other areas of the Moon. Combining remote sensing data sets has promise for determining the distribution of iron in different oxidation states on Eros with data from the NEAR mission.

  1. Condiciones de cristalización y diferenciación de las lavas del volcán El Metate (Campo Volcánico de Michoacán-Guanajuato, México)

    OpenAIRE

    Losantos, Emma; Cebriá Gómez, J. M.; Morán-Zenteno, D. J.; Martiny, B. M.; López Ruiz, J.

    2014-01-01

    El Metate is a shield volcano located in the southern sector of the Michoacan-Guanajuato Volcanic Field, one of two largest monogenetic volcanic fields of the Transmexican Volcanic Belt. It was active c. 4.700 ± 200 years B.P and emitted about fifteen calcalkaline lava flows showing variable differentiation degrees. Temperatures calculated from mineral-liquid geothermobarometers for olivine, plagioclase and pyroxene, suggest that olivine was the earliest fractionating phase (1232–1198 °C)...

  2. Significant differences in late Quaternary bedrock erosion and transport

    DEFF Research Database (Denmark)

    Andrews, John; Bjørk, Anders Anker; Eberl, Dennis

    2015-01-01

    in 10 cores from the two margins. On the East Greenland Shelf (EGS), late Quaternary samples have an average quartz weight per cent of 6.22.3 versus 12.83.9 from the West Greenland Shelf (WGS), and 12.024.8 versus 1.9 2.3wt% for pyroxene. K-means clustering indicated only 9% of the samples did not fit...

  3. Magnetic characterization of synthetic titanomagnetites: Quantifying the recording fidelity of ideal synthetic analogs

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Muxworthy, Adrian R.; Williams, Wyn

    2014-01-01

    (TEM) demonstrate the reaction product composition consisted of mainly Fe3-xTixO4, pyroxene hedenbergite, fayalite, and SiO2. The samples exhibit bimodal distributions of larger (...A series of four synthetic basalts comprising titanomagnetite (Fe3-xTixO4) grains of varied size and titanium content have been produced by a glass-ceramic method. Complementary characterization techniques of X-ray diffractometry, secondary electron microscopy, and transmission electron microscopy...

  4. Petrology and geochemistry of Granitoids at Khanchay-Aliabad region, Tarom sub-zone, East of Zanjan

    Directory of Open Access Journals (Sweden)

    Arefeh Saiedi

    2018-03-01

    Full Text Available Khanchay-Aliabad area as a part of Tarom magmatic belt contains some shallow depth intrusions which are intruded the Eocene volcanic- sedimentary rocks and have very close association with Cu mineralization. The Eocene volcanic- sedimentary rocks include alternation of basalt, basaltic andesite and andesite, various kinds of tuff, tuffaceous sandstone, sandstone, siltstone and occasionally shale. Petrographical studies demonstrate that intrusions are pyroxene quartz monzonite and olivine gabbro in composition. The Khanchay pyroxene quartz monzonite have porphyritic to porphyroidic, hetero-granular to sereitic, ophitic and sub- ophitic textures and composed of plagioclase, clinopyroxene, hornblende, quartz, K-feldspar and biotite. The Aliabad pyroxene quartz monzonite shows porphyritic to porphyroidic textures composing of plagioclase, clinopyroxene and hornblende in the quartz- feldspatic matrix. The Khanchay olivine gabbro is characterized by the presence of coarse grained granular, ophitic and sub- ophitic textures as well as the occurrence of plagioclase, clinopyroxene and olivine. Geochemical studies indicate that the Khanchay- Aliabad pyroxene quartz monzonitic intrusions have SiO2 content varying from 59.58 to 61.34 %. These intrusions have high- K calc- alkaline nature and are classified as I-type metaluminous granitoids. Their similar patterns on spider diagrams are indication of genetic relation of these intrusions. On these diagrams LILEs (Ba, K, Th and Pb enrichment along with negative anomalies of HFSEs (Nb and Ti are observed. Moreover, the Chondrite normalized REE patterns demonstrate LREE enrichment with high ratio of LREE/HREE and Lan/Ybn ratio ranging from 3.08 to 3.72. The overall  field investigation, petrological and geochemical studies as well as  tectonic setting discrimination diagrams confirm that the Khanchay- Aliabad high-K intrusions were formed from a subduction related metasomatized lithospheric mantle in a post

  5. Infrared spectra of lunar soils. [using a Michelson interferometer

    Science.gov (United States)

    Aronson, J. R.; Emslie, A. G.; Smith, E. M.

    1979-01-01

    Measured data obtained by Michelson interferometer spectrometer were stored in a computer file and smoothed by being passed forward and backward through a digital four-pole low pass filter. Infrared spectra of the 10 lunar samples are presented in the format of brightness temperature versus frequency. The mol % of feldspar, pyroxene, olivine, ilmenite and ferromagnetic silicate in each sample is presented in tables. The reflectance spectra of ilmenite and enstatite are shown in graphs.

  6. Deformation and hydration state of the lithospheric mantle beneath the Styrian Basin (Pannonian Basin, Eastern Austria)

    Science.gov (United States)

    Aradi, L. E.; Hidas, K.; Kovács, I. J.; Klébesz, R.; Szabo, C.

    2016-12-01

    In the Carpathian-Pannonian Region, Neogene alkali basaltic volcanism occurred in six volcanic fields, from which the Styrian Basin Volcanic Field (SBVF) is the westernmost one. In this study, we present new petrographic and crystal preferred orientation (CPO) data, and structural hydroxyl ("water") contents of upper mantle xenoliths from 12 volcanic outcrops across the SBVF. The studied xenoliths are mostly coarse granular lherzolites, amphiboles are present in almost every sample and often replace pyroxenes and spinels. The peridotites are highly annealed, olivines and pyroxenes do not show significant amount of intragranular deformation. Despite the annealed texture of the peridotites, olivine CPO is unambiguous, and varies between [010]-fiber, orthogonal and [100]-fiber symmetry. The CPO of pyroxenes is coherent with coeval deformation with olivine, showing [100]OL distributed subparallel to [001]OPX. The CPO of amphiboles suggest postkinematic epitaxial overgrowth on the precursor pyroxenes. The "water" content of the studied xenoliths exhibit rather high values, up to 10, 290 and 675 ppm in olivine, ortho- and clinopyroxene, respectively. Ortho- and clinopyroxene pairs show equilibrium in all samples, however "water" loss in olivines is observed in several xenoliths. The xenoliths show equilibrium temperatures from 850 to 1100 °C, which corresponds to lithospheric mantle depths between 30 and 60 km. Equilibrium temperatures show correlation with the varying CPO symmetries and grain size: coarser grained xenoliths with [100]-fiber and orthorhombic symmetry appear in the high temperature (>1000 °C) xenoliths, which is characteristic for asthenospheric origin. Most of the samples display transitional CPO symmetry between [010]-fiber and orthogonal, which indicate extensive lithospheric deformation under varying stress field from transtensional to transpressional settings. Based on the estimated seismic properties of the studied samples, a significant part of

  7. STUDY OF MINERALOGY OF MARE HUMORUM, MOON UTILIZING HySI and M3 DATA FROM CHANDRAYAAN-I MISSION Dr. Mamta Chauhan and Mayank BishwariDept. of Geology, School of Earth Sciences, Banasthali Vidyapith, Rajasthan, INDIA geologymamta@gmail.com

    Science.gov (United States)

    Chauhan, M.

    2017-12-01

    Mare Humorum, centered at 24°S and 39°W is a mare basin of Nectarian age present at the southwestern end of Oceanus Procellarum towards the nearside of the Moon. It displays several rings, in varying states of exposure and preservation. The area is entirely flooded by mare material that constitutes its major recognizable event. In the present study, investigation of mineralogy of the basaltic flows of Mare Humorum basin have been undertaken to understand its compositional character, especially the pyroxene variability. Primarily, high-resolution data of Hyperspectral Imager (HySI) (Spatial resolution, 80m/pixel) from Chandrayaan-I mission of Indian Space Research Organization (I.S.R.O) have been used. Besides, Moon Mineralogy Mapper M3 data (140 m/pixel) from the same mission, with its full coverage of the area have been used as base of whole study. The spectral properties of pyroxenes have utilized for characterization of mare lithology and to demarcate the various spectral units based on pyroxene-variability. The compositional analysis results, thus obtained, are studied and discussed for understanding the basaltic evolution of the Humorum basin.

  8. Preparation of novel ceramics with high CaO content from steel slag

    International Nuclear Information System (INIS)

    Zhao, Lihua; Li, Yu; Zhou, Yuanyuan; Cang, Daqiang

    2014-01-01

    Highlights: • Efficiently utilize such solid waste with high CaO content. • A novel ceramics was put forward by traditional ceramic process. • The novel ceramics attained high strength. • Sintering mechanisms of the novel ceramics were discussed. - Abstract: Steel slag, an industrial waste discharged from steelmaking process, cannot be extensively used in traditional aluminosilicate based ceramics manufacturing for its high content of calcium oxide. In order to efficiently utilize such solid waste, a method of preparing ceramics with high CaO content was put forward. In this paper, steel slag in combination with quartz, talcum, clay and feldspar was converted to a novel ceramic by traditional ceramic process. The sintering mechanism, microstructure and performances were studied by scanning electron microscope (SEM), X-ray diffraction (XRD) techniques, combined experimenting of linear shrinkage, water absorption and flexural strength. The results revealed that all crystal phases in the novel ceramic were pyroxene group minerals, including diopsite ferrian, augite and diopsite. Almost all raw materials including quartz joined the reaction and transformed into pyroxene or glass phase in the sintering process, and different kinds of clays and feldspars had no impact on the final crystal phases. Flexural strength of the ceramic containing 40 wt.% steel slag in raw materials can reach 143 MPa at sintering temperature of 1210 °C and its corresponding water absorption, weight loss, linear shrinkage were 0.02%, 8.8%, 6.0% respectively. Pyroxene group minerals in ceramics would contribute to the excellent physical and mechanical properties

  9. The New Peruvian Meteorite Carancas: Mössbauer Spectroscopy and X-Ray Diffraction Studies

    Science.gov (United States)

    Munayco, P.; Munayco, J.; Varela, M. E.; Scorzelli, R. B.

    2013-02-01

    The Carancas meteorite fell on 15 September 2007 approximately 10 km south of Desaguadero, near Lake Titicaca, Peru, producing bright lights, clouds of dust in the sky and intense detonations. The Carancas meteorite is classified as a H4-5 ordinary chondrite with shock stage S3 and a degree of weathering W0. The Carancas meteorite is characterized by well defined chondrules composed either of olivine or pyroxene. The Mössbauer spectra show an overlapping of paramagnetic and magnetic phases. The spectra show two quadrupole doublets associated to olivine and pyroxene; and two magnetic sextets, associated with the primary phases kamacite/taenite and Troilite (Fe2+). Metal particles were extracted from the bulk powdered samples exhibit only kamacite and small amounts of the intergrowth tetrataenite/antitaenite. X-Ray diffractogram shows the primary phases olivine, pyroxene, troilite, kamacite, diopside and albite. Iron oxides has not been detected by Mössbauer spectroscopy or XRD as can be expected for a meteorite immediately recovered after its fall.

  10. High-Pressure Polymorphism in Orthoamphiboles

    Science.gov (United States)

    Finkelstein, G. J.; Zhang, D.; Shelton, H.; Dera, P.

    2017-12-01

    Amphiboles are double-chain silicate minerals that are the structurally hydrated counterpart to single-chain, anhydrous pyroxenes. They may play an important role in the earth as a carrier for volatiles in subduction zones, as well as a generator for seismic anisotropy in the upper mantle. Recent work has described previously unrecognized high-pressure polymorphism at low temperatures in a variety of pyroxene minerals, which may be relevant for the structure and dynamics of thick, cold, subducted slabs. However, high-pressure polymorphism in amphiboles above a few GPa in pressure has not been well explored, and if similar polymorphism to pyroxenes exists in this mineral family, it may affect the extent and depth of volatile transport in amphiboles, as well as their rheological properties. At low temperatures and high pressures, orthopyroxenes undergo crystal structure transitions at lower pressures than clinopyroxenes (10-30 GPa vs. > 50 GPa), so for this study we have investigated polymorphism in the anthophyllite-gedrite (Al-free and Al rich) orthoamphibole solid solution series. Using neon gas-loaded diamond anvil cells, we compressed both phases to a maximum pressure of 31 GPa, and observed transitions to new monoclinic structures in both endmembers. In this presentation, we will discuss the details of these transitions and implications for the earth's interior.

  11. Studies on Al Kidirate and Kapoeta meteorites

    International Nuclear Information System (INIS)

    Gismelseed, A.M.; Khangi, F.; Ibrahim, A.; Yousif, A.A.; Worthing, M.A.; Rais, A.; Elzain, M.E.; Brooks, C.K.; Sutherland, H.H.

    1994-01-01

    Moessbauer spectroscopy (20-300 K), magnetic susceptibility measurements (77-350 K), scanning electron microscopy and X-ray diffraction experiments have been performed on two meteorite samples: one from an old fall (Kapoeta) and another from a very recent fall (Al Kidirate). The two specimens differ in their mineralogy. Chondrules appear to be absent in Kapoeta and it is probably a pyroxene-plagioclase achondrite with ferrohypersthene as the most abundant mineral. On the other hand, the Al Kidirate meteorite is an ordinary chondrite and the specimen consists of olivine, orthopyroxene, troilite and kamacite. The Moessbauer measurements confirm the above characterization, showing a paramagnetic doublet for the Kapoeta sample and at least two paramagnetic doublets and magnetic sextets for the Al Kidirate specimens. The former were assigned to Fe in pyroxene sites, while the latter was assigned to Fe in pyroxene, olivine, Fe-S and Fe-Ni alloys. The difference in the mineralogy of the two meteorites has also been reflected in the temperature-dependent magnetic susceptibility. The magnetization and the hyperfine interaction parameters will be discussed in relation to the mineralogy. (orig.)

  12. Investigations of Al-Dalang and Al-Hawashat meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Gismelseed, A. M., E-mail: abbasher@squ.edu.om [Sultan Qaboos University, College of Science (Oman); Abdallah, S. B. [University of Khartoum, Department of Geology, Faculty of Science (Sudan); Al-Rawas, A. D.; Al-Mabsali, F. N.; Widatallah, H. M.; Elzain, M. E.; Yousif, A. A. [Sultan Qaboos University, College of Science (Oman); Ericsson, T. [Uppsala University, Department of Physics and Material Sciences (Sweden); Annersten, H. [Uppsala University, Department of Earth Sciences (Sweden)

    2016-12-15

    Mössbauer spectroscopy, X-ray diffraction (XRD) measurements, and electron microprobe analysis (EMPA) have been performed on two meteorites named Al-Dalang and Al-Hawashat after identifying their falling sites in the Western region of Sudan. These two meteorites are ordinary chondrites with similar mineralogy. XRD and EMPA show that the two specimens consist of primary olivine, ortho-pyroxene and later crystallising clino-pyroxene as reaction rims against plagioclase. Fe-metal phases are dominated by kamacite (≈6 wt.% Ni) and minor amounts of tetrataenite (≈52 wt.% Ni). Troilite (FeS) and alabandite (MnS) are optically observed as sulphide phases. The Mössbauer measurements at 295 and 78 K are in agreement with the above characterizations, showing at least two paramagnetic doublets which are assigned to olivine and pyroxene and magnetic sextets assigned to kamacite (hyperfine field ≈33.5 T) and troilite FeS (hyperfine field ≈31 T).

  13. Post-igneous redistribution of components in eucrites

    Science.gov (United States)

    Phinney, W. C.; Lindstrom, D. J.; Mittlefehldt, D. W.; Martinez, R. R.

    1993-01-01

    In our analyses, we utilize a microdrilling technique that removes 40 to 100 micron diameter cores from mineral grains in thin sections analyzed by microprobe. The cores are then analyzed by INAA using the technique of Lindstrom. Three eucrites were selected for application of this analytical technique: monomict breccias Pasamonte and Stannern and unbrecciated EET90020. Pasamonte is among the most unequilibrated of the eucrites on the basis of zoning in pyroxenes and is considered to be an igneous rock not significantly affected by metamorphism. Stannern has igneous texture but its pyroxenes indicate some re-equilibration, although little, if any, recrystallization. EET90020 has a granulite texture and has been substantially recrystallized. Our sample of Pasamonte contains several clasts of different grain sizes ranging from glass to fine grained with diabasic texture containing lathy plagioclase, unexsolved pigeonite, and mesostasis. Cores were taken of the glass and from minerals and mesostases in six lithic clasts which normally allowed sampling of more than one phase per clast. Our sample of Stannern is also a breccia but with little difference in grain size between clasts and matrix. The plagioclase and pigeonite are blocky, twinned, and exsolved and coexist with a bit of mesostasis. Cores were taken of plagioclase and pigeonite with no attempt to distinguish separate clasts. EET90020 is a granular mixture of twinned plagioclase and pigeonite having rather uniform size and many triple junctions. Several cores were taken of both phases. Both clear and cloudy grains of plagioclase and pyroxene were sampled in all three eucrites.

  14. First Ti-XANES analyses of refractory inclusions from Murchison

    International Nuclear Information System (INIS)

    Simon, S.B.; Sutton, S.R.; Grossman, L.

    2009-01-01

    Ti valence in refractory phases is an important recorder of redox conditions in the early solar nebula. We report the valence of Ti in pyroxene, spinel and hibonite in spinel-hibonite and spinel-pyroxene inclusions and in a coarse hibonite grain. A system of solar composition is so reducing that Ti 3+ and Ti 4+ can coexist, making the valence of Ti a valuable indicator of f O2 conditions during formation of nebular materials. The Ti 3+ /Ti 4+ ratios observed in the Ti-rich phases fassaite and rhoenite in coarse-grained refractory inclusions from CV3 chondrites have been shown to be quantitatively consistent with formation in a gas of solar composition (log f O2 = IW-6.8), but these are the only objects in chondrites for which this is the case. Here, we report the valence of Ti in various phases in refractory inclusions from the Murchison CM2 chondrite. The second-highest temperature, major-element-bearing phase predicted to condense from a gas of solar composition, hibonite (ideally CaAl 12 O 19 ), can contain significant amounts of Ti, but the hibonite structure can have oxygen vacancies, so calculation of Ti valence from stoichiometry of electron probe analyses is not recommended for hibonite. To date, the only reported measurement of Ti valence in meteoritic hibonite was done by electron spin resonance, on coarse crystals from a Murchison hibonite-perovskite-melilite inclusion. Spinel and most of the pyroxene in CM inclusions contain too little Ti for derivation of Ti 3+ /Ti 4+ ratios from electron probe analyses. X-ray absorption near edge spectroscopy (XANES), however, allows determination of Ti valence in relatively Ti-poor phases. In the present work, we apply synchrotron microXANES to a large hibonite grain from Murchison and to spinel-hibonite (sp-hib) and spinel-pyroxene (sp-pyx) inclusions from Murchison, refractory materials whose Ti 3+ /Ti 4+ ratios have not been previously measured. Analysis of these samples allows comparison of Ti valence of (1

  15. Cooling History and Redox State of NWA 8694 Chassignite: Comparison with Chassigny and NWA 2737

    Science.gov (United States)

    Mikouchi, T.; Takenouchi, A.; Zolensky, M. E.

    2016-01-01

    NWA 8694 is a new chassignite whose constituent minerals are more Fe-rich than those in the other known chassignites (Chassigny and NWA 2737), and may suggest a petrogenetic relationship to nakhlites. In this abstract we report mineralogy of NWA 8694 to infer its cooling rate and redox state, and discuss its thermal and shock history in comparison with other chassignites. NWA 8694 is a cumulate dunite of approximately 2 mm olivine with interstitial pyroxene and feldspar. Olivine is homogeneous (Fo(sub 55-56)), but Ca decreases at the approximately 50-100 micrometer rim (0.25-0.1 wt% CaO). Because the Ca-depleted rim is narrower than those in other chassignites (approximately 50 ?micrometer), NWA 8694 may have cooled slightly faster than the others (approximately 30 C/yr), but would be in the same order. Pyroxenes are low- and high-Ca pyroxenes, both exhibiting sub-micron exsolution textures (0.2-0.3 micrometer wide lamellae with the spacing of 0.8-1.8 micrometers). Although the low-Ca pyroxene host has an orthopyroxene composition (Wo approximately 2), the EBSD analysis suggests a pigeonite structure (P2(sub 1)/c), which is also reported from the Chassigny pyroxene. The size of exsolution texture is a bit smaller, but broadly similar to those in other chassignites, implying a similar fast cooling rate (35-43 C/yr). Feldspars are isotropic (plagioclase: clustered around An25Or10, K-feldspar: approximately An19Or78), suggestive of extensive shock metamorphism, consistent with undulatory extinction of olivine. Feldspar compositions are around the equilibrium isotherm of approximately 800 C. The olivine and chromite compositions give an equilibration temperature of 760-810 C and logfO2 of QFM+/-0.3. The inferred fast cooling rate and high fO2 of NWA 8694 are both similar to those of Chassigny and NWA 2737, and suggest a common formation condition (e.g., thick lava flow or shallow intrusion) under oxidizing condition. The Fe-rich mineral compositions of NWA 8694 may be

  16. Mineralogy and Thermal Properties of V-Type Asteroid 956 Elisa: Evidence for Diogenitic Material from the Spitzer IRS (5-35 Micrometers) Spectrum

    Science.gov (United States)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2010-01-01

    We present the thermal infrared (5-35 micrometer) spectrum of 956 Elisa as measured by the Spitzer Infrared Spectrograph ("IRS"; Houck,1.R. et .11. [20041. Astrophys, 1. SuppL 154, 18-24) together with new ground-based lightcurve data and near-IR spectra. From the visible lightcurve photometry, we determine a rotation period of 16.494 +/- 0.001 h, identify the rotational phase of the Spitzer observations, and estimate the visible absolute magnitude (Hv) at that rotational phase to be 12.58 +/- 0.04. From radiometric analysis of the thermal flux spectrum, we find that at the time of observation 956 Elisa had a projected radius of 5.3 +/- 0.4 km with a visible albedo pv = 0.142+/- 0.022, significantly lower than that of the prototype V-type asteroid, 4 Vesta. (This corresponds to a radius of 5.2 +/- 0.4 km at lightcurve mean.) Analysis with the standard thermal model (STM) results in a sub-solar temperature of 292.3 +/- 2.8 K and beaming parameter eta = 1.16 +/- 0.05. Thermophysical modeling places a lower limit of 20 J m(exp -2)K(exp -1)s(exp -1/2) on the thermal inertia of the asteroid's surface layer (if the surface is very smooth) but more likely values fall between 30 and 150 J m(exp -2)K(exp -1)s(exp -1/2) depending on the sense of rotation. The emissivity spectrum, calculated by dividing the measured thermal flux spectrum by the modeled thermal continuum, exhibits mineralogically interpretable spectral features within the 9-12 micrometer reststrahlen band, the 15-16.5 micrometer Si-O-Si stretching region, and the 16-25 micrometer reststrahlen region that are consistent with pyroxene of diogenitic composition: extant diogenitic pyroxenes fall within the narrow compositional range W0(sub 2+/-1)En(sub 74+/-2)Fs(sub 24+/-1). Spectral deconvolution of the 9-12 micrometer reststrahlen features indicates that up to approximately 20% olivine may also be present, suggesting an olivine-diogenite-like mineralogy. The mid-IR spectrum is inconsistent with non

  17. Formation of chondrules in a moderately high dust enriched disk: Evidence from oxygen isotopes of chondrules from the Kaba CV3 chondrite

    Science.gov (United States)

    Hertwig, Andreas T.; Defouilloy, Céline; Kita, Noriko T.

    2018-03-01

    Oxygen three-isotope analysis by secondary ion mass spectrometry of chondrule olivine and pyroxene in combination with electron microprobe analysis were carried out to investigate 24 FeO-poor (type I) and 2 FeO-rich (type II) chondrules from the Kaba (CV) chondrite. The Mg#'s of olivine and pyroxene in individual chondrules are uniform, which confirms that Kaba is one of the least thermally metamorphosed CV3 chondrites. The majority of chondrules in Kaba contain olivine and pyroxene that show indistinguishable Δ17O values (= δ17O - 0.52 × δ18O) within analytical uncertainties, as revealed by multiple spot analyses of individual chondrules. One third of chondrules contain olivine relict grains that are either 16O-rich or 16O-poor relative to other indistinguishable olivine and/or pyroxene analyses in the same chondrules. Excluding those isotopically recognized relicts, the mean oxygen isotope ratios (δ18O, δ17O, and Δ17O) of individual chondrules are calculated, which are interpreted to represent those of the final chondrule melt. Most of these isotope ratios plot on or slightly below the primitive chondrule mineral (PCM) line on the oxygen three-isotope diagram, except for the pyroxene-rich type II chondrule that plots above the PCM and on the terrestrial fractionation line. The Δ17O values of type I chondrules range from ∼-8‰ to ∼-4‰; the pyroxene-rich type II chondrule yields ∼0‰, the olivine-rich type II chondrule ∼-2‰. In contrast to the ungrouped carbonaceous chondrite Acfer 094, the Yamato 81020 CO3, and the Allende CV3 chondrite, type I chondrules in Kaba only possess Δ17O values below -3‰ and a pronounced bimodal distribution of Δ17O values, as evident for those other chondrites, was not observed for Kaba. Investigation of the Mg#-Δ17O relationship revealed that Δ17O values tend to increase with decreasing Mg#'s, similar to those observed for CR chondrites though data from Kaba cluster at the high Mg# (>98) and the low Δ17O

  18. Znaczenie analizy minerałów ciężkich w badaniach osadów czwartorzędowych Polski

    Science.gov (United States)

    Racinowski, Roman

    2008-01-01

    In most regions of Poland the composition of heavy minerals assemblage permits to distinguish the Quaternary deposits from the older ones. The pre-Quaternary deposits are characterized by high content of glauconite, carbonate-ferruginous-manganese concretions, muscovite and chlorites. In their transparent heavy minerals spectrum the following minerals predominate: zircon, tourmaline, rutile, staurolite, disthene. However, the Tertiary deposits in the Carpathians and their foreland contain a significant amount of garnet, and sometimes also amphiboles, pyroxenes and biotite. Pyroxenes and sillimanite are found in the Sudetes foreland. In many Tertiary deposits of the northwestern and western Poland there are rather high contents of amphiboles, biotite, pyroxenes, garnets, rutile. In all Quaternary deposits in Poland the qualitative composition of heavy minerals assemblage is similar but the contents of particular minerals are different depending on the examined grain fraction. In tills (Table 1) and glaciofluvial deposits (Table 2), with the decreasing grain diameter the contents of zircon, rutile, and partly epidote increase, and those of amphiboles and garnets decrease. In rubble of coastal zone in the Polish Baltic Sea, with the decreasing grain diameter the contents of zircon, rutile and epidote increase, and those of amphibole, biotite and pyroxenes decrease (Tables 3-7). In Poland, glacial, glaciofluvial and glaciolacustrine deposits are characterized by quantitatively similar composition of heavy minerals assemblage. Amphiboles, biotite, epidotes, garnets and pyroxenes are typical transparent minerals (Tables 8 and 9). Young Pleistocene and Holocene sands of river terraces and dune fields in the upland zone of Poland differ from glacial deposits in low contents of amphiboles, biotite and pyroxenes, and higher contents of garnets and epidotes (Tables 8 and 9). Fossil river and lacustrine deposits of Polish Lowlands have very similar assemblage of heavy minerals

  19. Supra-subduction and mid-ocean ridge peridotites from the Piranshahr area, NW Iran

    Science.gov (United States)

    Hajialioghli, Robab; Moazzen, Mohssen

    2014-11-01

    The Piranshahr metaperidotites in the northwestern end of the Zagros orogen were emplaced following the closure of the Neotethys ocean. The ophiolitic rocks were emplaced onto the passive margin of the northern edge of the Arabian plate as a result of northeastward subduction and subsequent accretion of the continental fragments. The metaperidotites have compositions ranging from low-clinopyroxene lherzolite to harzburgite and dunite. They are mantle residues with distinct geochemical signatures of both mid-ocean ridge and supra subduction zone (SSZ) affinities. The abyssal peridotites are characterized by high Al2O3 and Cr2O3 contents and low Mg-number in pyroxenes. The Cr-number in the coexisting spinel is also low. The SSZ mantle peridotites are characterized by low Al2O3 contents in pyroxenes as well as low Al2O3 and high Cr-number in spinel. Mineral chemical data indicate that the MOR- and SSZ-type peridotites are the residues from ∼15-20% and ∼30-35% of mantle melting, respectively. Considering petrography, mineralogy and textural evidence, the petrological history of the Piranshahr metaperidotites can be interpreted in three stages: mantle stable stage, serpentinization and metamorphism. The temperature conditions in the mantle are estimated using the Ca-in-orthopyroxene thermometer as 1210 ± 26 °C. The rocks have experienced serpentinization. Based on the textural observations, olivine and pyroxene transformed into lizardite and/or chrysotile with pseudomorphic textures at temperatures below 300 °C during the initial stage of serpentinization. Subsequent orogenic metamorphism affected the rocks at temperatures lower than 600 °C under lower-amphibolite facies metamorphism.

  20. Oxygen isotope systematics of chondrules in the Murchison CM2 chondrite and implications for the CO-CM relationship

    Science.gov (United States)

    Chaumard, Noël; Defouilloy, Céline; Kita, Noriko T.

    2018-05-01

    High-precision oxygen three-isotope measurements of olivine and pyroxene were performed on 29 chondrules in the Murchison CM2 chondrite by secondary ion mass spectrometry (SIMS). The oxygen isotope ratios of analyzed chondrules all plot very close to the primitive chondrule minerals (PCM) line. In each of 24 chondrules, the olivine and/or pyroxene grains analyzed show indistinguishable oxygen isotope ratios. Exceptions are minor occurrences of isotopically distinguished relict olivine grains, which were found in nine chondrules. The isotope homogeneity of these phenocrysts is consistent with a co-magmatic crystallization of olivine and pyroxene from the final chondrule melts and a significant oxygen isotope exchange between the ambient gas and the melts. Homogeneous type I chondrules with Mg#'s of 98.9-99.5 have host chondrule Δ17O values ranging from -6.0‰ to -4.1‰, with one exception (Δ17O: -1.2‰; Mg#: 99.6). Homogeneous chondrules with Mg#'s poor H2O ice (∼0.3-0.4× the CI dust; Δ17O > 0‰) and at dust enrichments of ∼300-2000×. Regarding the Mg# and oxygen isotope ratios, the chondrule populations sampled by CM and CO chondrites are similar and indistinguishable. The similarity of these 16O-rich components in CO and CM chondrites is also supported by the common Fe/Mn ratio of olivine in type II chondrules. Although they accreted similar high-temperature silicates, CO chondrites are anhydrous compared to CM chondrites, suggesting they derived from different parent bodies formed inside and outside the snow line, respectively. If chondrules in CO and CM chondrites formed at the same disk locations but the CM parent body accreted later than the CO parent body, the snow line might have crossed the common chondrule-forming region towards the Sun between the time of the CO and CM parent bodies accretion.

  1. DIFFERENT ORIGINS OR DIFFERENT EVOLUTIONS? DECODING THE SPECTRAL DIVERSITY AMONG C-TYPE ASTEROIDS

    International Nuclear Information System (INIS)

    Vernazza, P.; Marsset, M.; Groussin, O.; Lamy, P.; Jorda, L.; Mousis, O.; Delsanti, A.; Castillo-Rogez, J.; Beck, P.; Emery, J.; Brunetto, R.; Djouadi, Z.; Dionnet, Z.; Delbo, M.; Carry, B.; Marchis, F.; Zanda, B.; Borondics, F.

    2017-01-01

    Anhydrous pyroxene-rich interplanetary dust particles (IDPs) have been proposed as surface analogs for about two-thirds of all C-complex asteroids. However, this suggestion appears to be inconsistent with the presence of hydrated silicates on the surfaces of some of these asteroids, including Ceres. Here, we report the presence of enstatite (pyroxene) on the surface of two C-type asteroids (Ceres and Eugenia) based on their spectral properties in the mid-infrared range. The presence of this component is particularly unexpected in the case of Ceres, because most thermal evolution models predict a surface consisting of hydrated compounds only. The most plausible scenario is that Ceres’ surface has been partially contaminated by exogenous enstatite-rich material, possibly coming from the Beagle asteroid family. This scenario questions a similar origin for Ceres and the remaining C-types, and it possibly supports recent results obtained by the Dawn mission (NASA) that Ceres may have formed in the very outer solar system. Concerning the smaller D  ∼ 200 km C-types such as Eugenia, both their derived surface composition (enstatite and amorphous silicates) and low density (<1.5 g cm −3 ) suggest that these bodies accreted from the same building blocks, namely chondritic porous, pyroxene-rich IDPs and volatiles (mostly water ice), and that a significant volume fraction of these bodies has remained unaffected by hydrothermal activity likely implying a late accretion. In addition, their current heliocentric distance may best explain the presence or absence of water ice at their surfaces. Finally, we raise the possibility that CI chondrites, Tagish-Lake-like material, or hydrated IDPs may be representative samples of the cores of these bodies.

  2. Isotopic and chemical investigations on Angra dos Reis

    International Nuclear Information System (INIS)

    Wasserburg, G.J.; Tera, F.; Papanastassiou, D.A.; Huneke, J.C.

    1977-01-01

    Extensive isotopic studies of Pb, Sr and Xe and chemical abundance measurements of K, Rb, Sr, Ba, Nd, Sm, U and Th for total meteorite and mineral separates of the Angra dos Reis achondrite are reported on. U-Pb, Th-Pb and Pb-Pb ages are concordant at 4.54 AE for the total meteorite and for high-purity whitlockite in Angra dos Reis. This establishes Angra dos Reis as an early planetary differentiate which has not been disturbed for these systems since 4.54 AE ago. Measured 87 Sr/ 86 Sr in pyroxene and whitlockite for Angra dos Reis (ADOR) are distinctly below BABI by two parts in 10 4 and only one part in 10 4 above the lowest 87 Sr/ 86 Sr (ALL) measured in an Allende inclusion. The difference in ADOR-ALL corresponds to an interval of condensation in the solar nebula of approximately 3 m.y. If 26 Al was the heat source for the magmatism on the parent planets of Angra dos Reis and the basaltic achondrites (BABI) then the relatively large difference in 87 Sr/ 86 Sr, BABI - ALL, must be the result of planetary evolution rather than condensation over approximately 10 m.y. Xe isotopic measurements confirm the presence of large amounts of 244 Pu-produced fission Xe and show that 244 Pu was enriched in the whitlockite relative to the pyroxene by a factor of approximately 18. Chemical element enrichment factors between the whitlockite and the fassaitic pyroxene in Angra dos Reis are presented. The enrichment factors demonstrate close analogy between the rare earth elements and their actinide analogs. The enrichment factor for Pu is intermediate to the enrichment factors of Nd and Sm. (Auth.)

  3. DIFFERENT ORIGINS OR DIFFERENT EVOLUTIONS? DECODING THE SPECTRAL DIVERSITY AMONG C-TYPE ASTEROIDS

    Energy Technology Data Exchange (ETDEWEB)

    Vernazza, P.; Marsset, M.; Groussin, O.; Lamy, P.; Jorda, L.; Mousis, O.; Delsanti, A. [Aix Marseille Univ, CNRS, LAM, Laboratoire d’Astrophysique de Marseille, Marseille (France); Castillo-Rogez, J. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Beck, P. [UJF-Grenoble 1, CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), UMR 5274, Grenoble F-38041 (France); Emery, J. [Department of Earth and Planetary Sciences and Planetary Geosciences Institute, University of Tennessee, Knoxville, TN 37996-1410 (United States); Brunetto, R.; Djouadi, Z.; Dionnet, Z. [Institut d’Astrophysique Spatiale, CNRS, UMR-8617, Université Paris-Sud, bâtiment 121, F-91405 Orsay Cedex (France); Delbo, M.; Carry, B. [Laboratoire Lagrange, UNS-CNRS, Observatoire de la Cote d’Azur, Boulevard de l’Observatoire-CS 34229, F-06304 Nice Cedex 4 (France); Marchis, F. [Carl Sagan Center at the SETI Institute, Mountain View, CA 94043 (United States); Zanda, B. [IMCCE, Observatoire de Paris, 77 avenue Denfert-Rochereau, F-75014 Paris Cedex (France); Borondics, F., E-mail: pierre.vernazza@lam.fr [SMIS Beamline, Soleil Synchrotron, BP48, L’Orme des Merisiers, F-91192 Gif sur Yvette Cedex (France)

    2017-02-01

    Anhydrous pyroxene-rich interplanetary dust particles (IDPs) have been proposed as surface analogs for about two-thirds of all C-complex asteroids. However, this suggestion appears to be inconsistent with the presence of hydrated silicates on the surfaces of some of these asteroids, including Ceres. Here, we report the presence of enstatite (pyroxene) on the surface of two C-type asteroids (Ceres and Eugenia) based on their spectral properties in the mid-infrared range. The presence of this component is particularly unexpected in the case of Ceres, because most thermal evolution models predict a surface consisting of hydrated compounds only. The most plausible scenario is that Ceres’ surface has been partially contaminated by exogenous enstatite-rich material, possibly coming from the Beagle asteroid family. This scenario questions a similar origin for Ceres and the remaining C-types, and it possibly supports recent results obtained by the Dawn mission (NASA) that Ceres may have formed in the very outer solar system. Concerning the smaller D  ∼ 200 km C-types such as Eugenia, both their derived surface composition (enstatite and amorphous silicates) and low density (<1.5 g cm{sup −3}) suggest that these bodies accreted from the same building blocks, namely chondritic porous, pyroxene-rich IDPs and volatiles (mostly water ice), and that a significant volume fraction of these bodies has remained unaffected by hydrothermal activity likely implying a late accretion. In addition, their current heliocentric distance may best explain the presence or absence of water ice at their surfaces. Finally, we raise the possibility that CI chondrites, Tagish-Lake-like material, or hydrated IDPs may be representative samples of the cores of these bodies.

  4. Petrography of isotopically-dated clasts in the Kapoeta howardite and petrologic constraints on the evolution of its parent body

    International Nuclear Information System (INIS)

    Dymek, R.F.; Albee, A.L.; Chodos, A.A.; Wasserburg, G.J.

    1976-01-01

    Detailed mineralogic and petrographic data are presented for four isotopically-dated basaltic rock fragments separated from the howardite Kapoeta. Clasts C and rho have been dated at approximately 4.55 AE and approximately 4.60 AE respectively, and Clast rho contains 244 Pu and 129 I decay products. These are both igneous rocks that preserve all the features of their original crystallization from a melt. They thus provide good evidence that the Kapoeta parent body produced basaltic magmas shortly after its formation ( 40 Ar/ 39 Ar age. This sample is extensively recrystallized, and the ages are interpreted as a time of recrystallization, and not the time of original crystallization from a melt. Clast B has yielded a Rb-Sr age of approximately 3.63 AE, and an 40 Ar/ 39 Ar age of > approximately 4.50 AE. This sample is moderately recrystallized, and the Rb-Sr age probably indicates a time of recrystallization, whereas the 40 Ar/ 39 Ar age more closely approaches the time of crystallization from a melt. Thus, there is no clearcut evidence for 'young' magmatism on the Kapeota parent body. The FeO and MnO contents of all pyroxenes in Kapeota fall near a line with FeO/MnO approximately 35, suggesting that the source rocks are fundamentally related. The FeO/MnO value in lunar pyroxenes (approximately 60) is distinct from that of the pyroxenes in Kapoeta. Anorthositic rocks were not observed in Kapoeta, suggesting that plagioclase was not important in the evolution of the Kapoeta parent body, in contrast to the Moon. Both objects appear to have originated in chemically-distinct portions of the solar system, and to have undergone differentiation on different time scales involving differing materials. (author)

  5. Characterization of Mason Gully (H5): The second recovered fall from the Desert Fireball Network

    Science.gov (United States)

    Dyl, Kathryn A.; Benedix, Gretchen K.; Bland, Phil A.; Friedrich, Jon M.; Spurný, Pavel; Towner, Martin C.; O'Keefe, Mary Claire; Howard, Kieren; Greenwood, Richard; Macke, Robert J.; Britt, Daniel T.; Halfpenny, Angela; Thostenson, James O.; Rudolph, Rebecca A.; Rivers, Mark L.; Bevan, Alex W. R.

    2016-03-01

    Mason Gully, the second meteorite recovered using the Desert Fireball Network (DFN), is characterized using petrography, mineralogy, oxygen isotopes, bulk chemistry, and physical properties. Geochemical data are consistent with its classification as an H5 ordinary chondrite. Several properties distinguish it from most other H chondrites. Its 10.7% porosity is predominantly macroscopic, present as intergranular void spaces rather than microscopic cracks. Modal mineralogy (determined via PS-XRD, element mapping via energy dispersive spectroscopy [EDS], and X-ray tomography [for sulfide, metal, and porosity volume fractions]) consistently gives an unusually low olivine/orthopyroxene ratio (0.67-0.76 for Mason Gully versus ~1.3 for typical H5 ordinary chondrites). Widespread "silicate darkening" is observed. In addition, it contains a bright green crystalline object at the surface of the recovered stone (diameter ≈ 1.5 mm), which has a tridymite core with minor α-quartz and a rim of both low- and high-Ca pyroxene. The mineralogy allows the calculation of the temperatures and ƒ(O2) characterizing thermal metamorphism on the parent body using both the two-pyroxene and the olivine-chromite geo-oxybarometers. These indicate that MG experienced a peak metamorphic temperature of ~900 °C and had a similar ƒ(O2) to Kernouvé (H6) that was buffered by the reaction between olivine, metal, and pyroxene. There is no evidence for shock, consistent with the observed porosity structure. Thus, while Mason Gully has some unique properties, its geochemistry indicates a similar thermal evolution to other H chondrites. The presence of tridymite, while rare, is seen in other OCs and likely exogenous; however, the green object itself may result from metamorphism.

  6. Timing of pyroxenite formation in supra-subduction Josephine Ophiolite, Oregon.

    Science.gov (United States)

    Hough, T.; Le Roux, V.; Kurz, M. D.

    2017-12-01

    The Josephine ophiolite is a partly dismembered ophiolite located in southern Oregon and northwestern California (USA). It displays a large ( 640 km2) mantle section that is mostly composed of depleted spinel harzburgite and lherzolite re-equilibrated at temperatures of 900 °C. In addition, the peridotite section of the ophiolite contains minor dunites and pyroxenite veins ranging from orthopyroxenites to clinopyroxenites. Using field, petrological and geochemical data, previous studies have shown that the peridotite experienced 10-20% of hydrous flux melting. In addition, clinopyroxene and orthopyroxene in harzburgites show variable degrees of light rare-earth element (LREE) enrichment, which suggests percolation and re-equilibration with small fractions of boninite melt. Overall, the trace element concentrations of pyroxenes indicate that the harzburgites experienced particularly high degrees of melting in the mantle wedge. We collected a number of orthopyroxenite and clinopyroxenite veins in the mantle section of the Josephine Ophiolite. Here we present the major and rare-earth element (REE) contents of pyroxene in 4 orthopyroxenites and 2 clinopyroxenites and calculate the major element and REE closure temperatures for individual veins. We show that individual pyroxenites record drastic variations in their degree of REE depletion, indicating that multiple generations of melts percolated the peridotite. The pyroxenite veins also record higher REE closure temperatures (>1200 ºC) compared to the surrounding peridotite, potentially indicating rapid cooling after emplacement. REE closure temperatures are also higher than major element closure temperatures. In parallel, we analyzed Sr isotopes by MC-ICPMS in pyroxene separates from 4 veins. Results indicate that the maximum age of emplacement of orthopyroxenite veins corresponds to the age of exhumation. Some clinopyroxenites may have formed during earlier melt percolation events. This study supports the idea that

  7. Fragments of ancient lunar crust: Ferroan noritic anorthosites from the descartes region of the Moon

    Science.gov (United States)

    Norman, M. D.; Alibert, C.; Mcculloch, M. T.

    1993-01-01

    Noritic anorthosite clasts from breccia 67016 have bulk compositions similar to that of the upper crust of the Moon and petrogenetic affinities with pristine ferroan anorthosites. Rb-Sr and Sm-Nd isotopic compositions of mineral separates from one of these clasts suggest very old (greater than or = 4.4 Ga) ages, but interpretation of these data is complicated by the multi-stage history of the clasts which involved magmatic crystallization, brecciation, subsolidus recrystallization, and sulfide metasomatism. These clasts record some of the earliest events on the Moon, including early crust formation, accretionary bombardment, and degassing of the lunar interior. Modal analyses of these clasts show they are now composed of about 70 percent plagioclase, 28 percent pyroxene, 2 percent troilite, and minor amounts of ilmenite and chromite. No metallic iron, phosphates, or other trace phases were observed. Olivine is very rare, occurring only as relicts within secondary troilite+pyroxene intergrowths which may reflect reaction of olivine with sulfurous vapors. PIXE proton microprobe analyses of the sulfides show that the metasomatism was accompanied by enrichments of Cu, Zn, Ni, Se, and Sb. The clasts have been only mildly shocked since the observed texture was established. Major and minor element mineral compositions are very homogeneous and strikingly similar to those of pristine ferroan anorthosites. Pyroxene compositions indicate equilibration temperatures of 850-900 C. Except for the sulfide and chalcophile element metasomatism, these clasts appear to be essentially monomict and probably represent a noritic member of the ferroan anorthosite suite. Their low Ni contents and Ni/Co ratios are consistent with the interpretation of these clasts as igneous rocks which have escaped mixing with meteoritic material.

  8. Petrologic and zircon U-Pb geochronological characteristics of the pelitic granulites from the Badu Complex of the Cathaysia Block, South China

    Science.gov (United States)

    Zhao, Lei; Zhou, Xiwen; Zhai, Mingguo; Liu, Bo; Cui, Xiahong

    2018-06-01

    The recognition of the Indosinian Orogeny in the South China block has been controversial and difficult because of strong weathering and thick cover. High temperature (HT) and high pressure (HP) metamorphic rocks related to this orogeny were considered to be absent from this orogenic belt until the recent discovery of eclogite and granulite facies meta-igneous rocks, occurring as lenses within the meta-sedimentary rocks of the Badu Complex. However, metamorphic state of these meta-sedimentary rocks is still not clear. Besides, there have been no geochronological data of HT pelitic granulites previously reported from the Badu Complex. This paper presents petrographic characteristics and zircon geochronological results on the newly discovered kyanite garnet gneiss, pyroxene garnet gneiss and the HT pelitic granulites (sillimanite garnet gneiss). Mineral assemblages are garnet + sillimanite + ternary feldspar + plagioclase + quartz + biotite for the HT pelitic granulite, kyanite + ternary feldspar + garnet + sillimanite + plagioclase + quartz + biotite for the kyanite garnet gneiss, and garnet + biotite + pyroxene + plagioclase + ternary feldspar + quartz for the pyroxene garnet gneiss, respectively. Decompressional coronas around garnet grains can be observed in all these pelitic rocks. Typical granulite facies mineral assemblages and reaction textures suggest that these rocks experienced HP granulite facies metamorphism and overprinted decompression along a clockwise P-T loop. Results from integrated U-Pb dating and REE analysis indicate the growth of metamorphic zircons from depleted heavy REE sources (100-50 chondrite) compared with detrital zircons derived from granitic sources (typically > 1000 chondrite). Metamorphic zircons in HP granulite exhibit no or subdued negative Eu anomalies, which perhaps indicate zircon overgrowth under eclogite facies conditions. The zircon overgrowth ages range from 250 to 235 Ma, suggesting that HP granulite (eclogite) to

  9. Crystal reaming during the assembly, maturation, and waning of an eleven-million-year crustal magma cycle: thermobarometry of the Aucanquilcha Volcanic Cluster

    Science.gov (United States)

    Walker, Barry A.; Klemetti, Erik W.; Grunder, Anita L.; Dilles, John H.; Tepley, Frank J.; Giles, Denise

    2013-04-01

    Phenocryst assemblages of lavas from the long-lived Aucanquilcha Volcanic Cluster (AVC) have been probed to assess pressure and temperature conditions of pre-eruptive arc magmas. Andesite to dacite lavas of the AVC erupted throughout an 11-million-year, arc magmatic cycle in the central Andes in northern Chile. Phases targeted for thermobarometry include amphibole, plagioclase, pyroxenes, and Fe-Ti oxides. Overall, crystallization is documented over 1-7.5 kbar (~25 km) of pressure and ~680-1,110 °C of temperature. Pressure estimates range from ~1 to 5 kbar for amphiboles and from ~3 to 7.5 kbar for pyroxenes. Pyroxene temperatures are tightly clustered from ~1,000-1,100 °C, Fe-Ti oxide temperatures range from ~750-1,000 °C, and amphibole temperatures range from ~780-1,050 °C. Although slightly higher, these temperatures correspond well with previously published zircon temperatures ranging from ~670-900 °C. Two different Fe-Ti oxide thermometers (Andersen and Lindsley 1985; Ghiorso and Evans 2008) are compared and agree well. We also compare amphibole and amphibole-plagioclase thermobarometers (Ridolfi et al. 2010; Holland and Blundy 1994; Anderson and Smith 1995), the solutions from which do not agree well. In samples where we employ multiple thermometers, pyroxene temperature estimates are always highest, zircon temperature estimates are lowest, and Fe-Ti oxide and amphibole temperature estimates fall in between. Maximum Fe-Ti oxide and zircon temperatures are observed during the middle stage of AVC activity (~5-3 Ma), a time associated with increased eruption rates. Amphibole temperatures during this time are relatively restricted (~850-1,000 °C). The crystal record presented here offers a time-transgressive view of an evolving, multi-tiered subvolcanic reservoir. Some crystals in AVC lavas are likely to be true phenocrysts, but the diversity of crystallization temperatures and pressures recorded by phases in individual AVC lavas suggests erupting magma

  10. Redox effects in ordinary chondrites and implications for asteroid spectrophotometry

    Science.gov (United States)

    Mcsween, Harry Y., Jr.

    1992-01-01

    The sensitivity of reflectance spectra to mean ferrous iron content and olivine and pyroxene proportion enhancements in the course of metamorphic oxidation is presently used to examine whether metamorphically-induced ranges in mineralogy, and corresponding spectral parameters, may explain the observed variations in S-asteroid rotational spectra. The predicted spectral variations within any one chondrite class are, however, insufficient to account for S-asteroid rotational spectra, and predicted spectral-range slopes have a sign opposite to the rotational measurements. Metamorphic oxidation is found unable to account for S-asteroid rotational spectra.

  11. Insights into the Early to Late Oligocene Izu-Bonin Mariana Arc Magmatic History from Volcanic Minerals and Glass within Volcaniclastic Sediments of IODP Site U1438 and DSDP Site 296

    Science.gov (United States)

    Samajpati, E.; Hickey-Vargas, R.

    2017-12-01

    The Kyushu-Palau Ridge (KPR) is a remnant of the early Izu-Bonin-Mariana (IBM) island arc, separated by arc rifting and seafloor spreading. We examine and compare volcanic materials from two sites where the transition from IBM arc building to rifting is well sampled: DSDP Site 296 on the northern KPR crest, and recent IODP Site U1438 in the adjacent Amami-Sankaku basin to the west. The purpose of the study is to understand the origin and depositional regime of volcaniclastic sediments during the arc rifting stage. Site 1438 sedimentary Unit II and the upper part of Unit III (300 and 453 mbsf) correlate in time with sedimentary Units 1G and 2 of DSDP Site 296 (160 and 300 mbsf). The upper part of Site U1438 Unit III and Site 296 Unit 2 consist of early to late Oligocene coarse volcaniclastic sedimentary rocks. These are overlain by late Oligocene nannofossil chalks with volcanic sand and ash-rich layers at Site 296 Unit 1G, and tuffaceous silt, sand, siltstone and sandstone at Site 1438 Unit II. The chemical composition of volcanic glass shards, pyroxenes with melt inclusions and amphiboles separated from volcaniclastic sediments were analyzed by EPMA and LA-ICPMS. Glasses are found at Site 296 only, range from medium-K basalt to rhyolite and have trace element patterns typical of arc volcanics. Clinopyroxene and orthopyroxene are found as detrital grains in sediments from both sites. Mg-numbers range from 58 to 94. Interestingly, the alumina content of pyroxene grain populations from both sites increase and then decrease with decreasing Mg-number. This probably reflects control of Al contents in magma and pyroxene by suppressed plagioclase saturation, which apparently was a consistent feature of KPR volcanoes. Melt-inclusions within the pyroxenes are typically small (30-50 microns) and have similar chemical compositions within one grain. The melt inclusions range from basalt to rhyolite with moderate alkali content. Amphibole is more prevalent in late Oligocene

  12. New model for the lunar interior to 250 km

    International Nuclear Information System (INIS)

    Piwinskii, A.J.; Duba, A.G.

    1975-01-01

    A new model for the structure of the lunar interior to about a 250-km depth is proposed. It is suggested that this region is composed of plagioclase-bearing rocks, and that the 65-km seismic discontinuity represents the appearance of garnet. A variety of rock types mainly composed of plagioclase, pyroxene, olivine and garnet is envisioned, with at least half of the outer 250 km of the moon made of plagioclase, which dominates the electrical conductivity. This model agrees with recent petrological and electrical conductivity results and does not violate velocity-depth profiles obtained from elastic-wave studies of lunar and terrestrial materials. (U.S.)

  13. Identification of excess 40Ar by the 40Ar/39Ar age spectrum technique

    International Nuclear Information System (INIS)

    Lanphere, M.A.; Dalrymple, G.B.

    1976-01-01

    40 Ar/ 39 Ar incremental heating experiments on igneous plagioclase, biotite, and pyroxene that contain known amounts of excess 40 Ar indicate that saddle-shaped age spectra are diagnostic of excess 40 Ar in igneous minerals as well as in igneous rocks. The minima in the age spectra approach but do not reach the crystallization age. Neither the age spectrum diagram nor the 40 Ar/ 36 Ar versus 39 Ar/ 36 Ar isochron diagram reliably reveal the crystallization age in such samples. (Auth.)

  14. Infrared spectral reflectances of asteroid surfaces

    Science.gov (United States)

    Larson, H. P.; Veeder, G. J.

    1979-01-01

    This review compares the types of compositional information produced by three complementary techniques used in infrared observations of asteroid surfaces: broadband JHKL photometry, narrow band photometry, and multiplex spectroscopy. The high information content of these infrared observations permits definitive interpretations of asteroid surface compositions in terms of the major meteoritic minerals (olivine, pyroxene, plagioclase feldspar, hydrous silicates, and metallic Ni-Fe). These studies emphasize the individuality of asteroid surface compositions, the inadequacy of simple comparisons with spectra of meteorites, and the need to coordinate spectral measurements of all types to optimize diagnostic capabilities.

  15. Archaeological jade mystery solved using a 119-year-old rock collection specimen

    Science.gov (United States)

    Harlow, G. E.; Davies, H. L.; Summerhayes, G. R.; Matisoo-Smith, E.

    2012-12-01

    In a recent publication (Harlow et al. 2012), a ~3200-year old small stone artefact from an archaeological excavation on Emirau Island, Bismarck Archipelago, Papua New Guinea was described and determined to be a piece of jadeite jade (jadeitite). True jadeitite from any part of New Guinea was not previously known, either in an archaeological or geological context, so this object was of considerable interest with respect to its geological source and what that would mean about trade between this source and Emirau Island. Fortuitously, the artefact, presumably a wood-carving gouge, is very unusual with respect to both pyroxene composition and minor mineral constituents. Pyroxene compositions lie essentially along the jadeite-aegirine join: Jd94Ae6 to Jd63Ae36, and without any coexisting omphacite. This contrasts with Jd-Di or Jd-Aug compositional trends commonly observed in jadeitites worldwide. Paragonite and albite occur in veins and cavities with minor titanite, epidote-allanite, and zircon, an assemblage seen in a few jadeitites. Surprisingly, some titanite contains up to 6 wt% Nb2O5 with only trace Ta and a single grain of a Y-Nb phase (interpreted as fergusonite) is present; these are unique for jadeitite. In a historical tribute to C.E.A. Wichmann, a German geologist who taught at Utrecht University, the Netherlands, a previously unpublished description of chlormelanite from the Torare River in extreme northeast Papua, Indonesia was given. The bulk composition essentially matches the pyroxene composition of the jade, so this sample was hypothesized as coming from the source. We were able to arrange a loan from the petrology collection at Utrecht University of the specimen acquired by Wichmann in 1893. In addition we borrowed stone axes from the Natural History Museum - Naturalis in Leiden obtained from natives near what is now Jayapura in eastern-most Papua. Petrography and microprobe analysis of sections of these samples clearly show that (1) Wichmann's 1893

  16. Exploration of the Carlsberg Rodge

    Digital Repository Service at National Institute of Oceanography (India)

    Mudholkar, A.; KameshRaju, K.A.; Kodagali, V.N.; Afzulpurkar, S.; Ambre, N.V.

    serpentinites were associated with pyroxenes, which were altered and show twinkling when viewed against the light. With the two expeditions carried out so far, a continuous coverage of ~ 150 nautical miles of the axial and adjacent flank area of the Carlsberg..., which acts as a plate boundary between the Indian and African plates in the northern Arabian Sea, have been ongoing since 1996. A ~ 100 km long section of the Carlsberg ridge was surveyed with multi-beam bathymetry, gravity and magnetics and seabed...

  17. Geologic Structures in Crater Walls on Vesta

    Science.gov (United States)

    Mittlefehldt, David W.; Beck, A. W.; Ammannito, E.; Carsenty, U.; DeSanctis, M. C.; LeCorre, L.; McCoy, T. J.; Reddy, V.; Schroeder, S. E.

    2012-01-01

    The Framing Camera (FC) on the Dawn spacecraft has imaged most of the illuminated surface of Vesta with a resolution of apporpx. 20 m/pixel through different wavelength filters that allow for identification of lithologic units. The Visible and Infrared Mapping Spectrometer (VIR) has imaged the surface at lower spatial resolution but high spectral resolution from 0.25 to 5 micron that allows for detailed mineralogical interpretation. The FC has imaged geologic structures in the walls of fresh craters and on scarps on the margin of the Rheasilvia basin that consist of cliff-forming, competent units, either as blocks or semi-continuous layers, hundreds of m to km below the rims. Different units have different albedos, FC color ratios and VIR spectral characteristics, and different units can be juxtaposed in individual craters. We will describe different examples of these competent units and present preliminary interpretations of the structures. A common occurrence is of blocks several hundred m in size of high albedo (bright) and low albedo (dark) materials protruding from crater walls. In many examples, dark material deposits lie below coherent bright material blocks. In FC Clementine color ratios, bright material is green indicating deeper 1 m pyroxene absorption band. VIR spectra show these to have deeper and wider 1 and 2 micron pyroxene absorption bands than the average vestan surface. The associated dark material has subdued pyroxene absorption features compared to the average vestan surface. Some dark material deposits are consistent with mixtures of HED materials with carbonaceous chondrites. This would indicate that some dark material deposits in crater walls are megabreccia blocks. The same would hold for bright material blocks found above them. Thus, these are not intact crustal units. Marcia crater is atypical in that the dark material forms a semi-continuous, thin layer immediately below bright material. Bright material occurs as one or more layers. In

  18. Orthopyroxene-enrichment in the lherzolite-websterite xenolith suite from Paleogene alkali basalts of the Poiana Ruscă Mountains (Romania)

    Science.gov (United States)

    Nédli, Zsuzsanna; Szabó, Csaba; Dégi, Júlia

    2015-12-01

    In this paper we present the petrography and geochemistry of a recently collected lherzolite-websterite xenolith series and of clinopyroxene xenocrysts, hosted in Upper Cretaceous-Paleogene basanites of Poiana Ruscă (Romania), whose xenoliths show notable orthopyroxene-enrichment. In the series a slightly deformed porphyroclastic-equigranular textured series could represent the early mantle characteristics, and in many cases notable orthopyroxene growth and poikilitic texture formation was observed. The most abundant mantle lithology, Type A xenoliths have high Al and Na-contents but low mg# of the pyroxenes and low cr# of spinel suggesting a low degree (Dacia block.

  19. An Introduction to camptonite lamprophyric dikes at Misho Mountains (Almas area - East Azarbaijan Province

    Directory of Open Access Journals (Sweden)

    Mohsen moayyed

    2017-07-01

    Full Text Available The Almas area in NW of the East Azarbaijan Province, is a part of the Soltaniye-Misho zone. The lamprophyric dikes crosscut the Kahar Formation. The principal minerals of these rocks are amphibole (amphibole phenocrysts are longer than 3 cm, biotite, pyroxene, olivine, plagioclase, apatite, calcite and chlorite with porphyritic texture. According to mineralogical and geochemical evidences, the studied lamprophyres are camptonite with alkaline nature. The plotted spider diagrams indicate that the studied lamprophyres are enriched in light rare earth elements (LREE and incompatible elements in comparison to heavy rare earth elements (HREE. The parent magma is probably generated from spinel lherzolite mantle with low rate partial melting.

  20. Giordano Bruno crater on the Moon: Detection and Mapping of Hydration Features of Endogenic and/or Exogenic Nature

    Science.gov (United States)

    Saran Bhiravarasu, Sriram; Bhattacharya, Satadru; Chauhan, Prakash

    2017-10-01

    We analyze high resolution spectral and spatial data from the recent lunar missions and report the presence of strong hydration features within the inner flank, hummocky floor, ejecta and impact melt deposits of crater Giordano Bruno. Hydroxyl-bearing lithologies at Giordano Bruno are characterized primarily by a prominent absorption feature near 2800 nm, the band minima of which goes beyond 3000 nm. The hydration features are found to be associated with low-Ca pyroxene-bearing noritic lithologies along the inner crater flanks, whereas similar features are also seen within the hummocky crater floor in association with shocked plagioclase-bearing anorthositic lithology. Interestingly, the ejecta blanket is characterized by sharp, narrow features centered near 2800 nm similar to the features previously reported from Compton-Belkovich volcanic complex and central peak of crater Theophilus. The low-Ca pyroxene-bearing rock exposures within the crater inner flanks are characterized by both presence and absence of the hydration features. Enhanced hydration is also seen within the ejecta blanket covering the nearby Harkhebi K and J craters. We also analyze the impact melts and ejecta using radar images at regions interior and exterior to the Giordano Bruno crater rim.Anomalous behaviors of hydration feature associated with low-Ca pyroxene-rich exposures, its nature and occurrences within the impact melt sheets inside the crater along with the ejecta blankets could possibly indicate endogenic and/or exogenic nature of the observed hydration feature. Initial results indicate the presence of strongest hydration feature in the partially shadowed pole-facing slopes (with low-Ca pyroxene-bearing exposures) and its complete absence in the equator-facing sun-lit slopes. This hints at a possible exogenic origin, whereas the same feature occurring (with same mineral) under both sun-lit and shadowed conditions suggest it to be of magmatic origin. We propose that the heterogeneous

  1. Porfiroblastic hornblendites: lithological, guide of arch root plutonism in Piedra Alta Terrane. (Paleoproterozoic, Uruguay)

    International Nuclear Information System (INIS)

    Bossi, J.; Pineyro, D.

    2004-01-01

    Petrographic and geochemical features of porphyroblastic hornblendites in Piedra Alta Terrene of Uruguay are described. Their spatial and genetic relationships whith hornblendic gabbros and other basic plutonic rocks is also stablished. Their association with low grade metamorphic supracrustals inmagmatic mingling structures and late development, suggests an origin related to high vapour pressure that take off stability to gabbro paragenesis and favours Deer's reaction:pyroxene+ plagioclase +water= hornblende + SIO2. The silica produced is expressed as quartz dikes frequently mineralized with gold and platinum group elements. San Carlos gabbro is an uruguayan exemple of such proposed model.

  2. Morphology and U-Pb ages of zircons from the high-grade metamorphic Precambrian in the Sirdal-Oersdal area, SW Norway

    International Nuclear Information System (INIS)

    Wielens, J.B.W.

    1979-01-01

    The U-Pb systematics of seven suites of zircons and two apatites were investigated in an attempt to obtain data about the pre-Sveconorwegian geochronology. Very little was known about this earlier history, as previous studies have shown that the high-grade metamorphism has obliterated most of the older Rb-Sr record. Three samples were investigated from the augengneisses, two from the pyroxene syenites, one garnetiferous migmatite and one magnetite-ilmenite-zircon veinlet cross-cutting the charnockitic migmatites. (Auth.)

  3. Mineral resource of the month: vermiculite

    Science.gov (United States)

    Tanner, Arnold O.

    2014-01-01

    Vermiculite comprises a group of hydrated, laminar magnesium-aluminum-iron silicate minerals resembling mica. They are secondary minerals, typically altered biotite, iron-rich phlogopite or other micas or clay-like minerals that are themselves sometimes alteration products of amphibole, chlorite, olivine and pyroxene. Vermiculite deposits are associated with volcanic ultramafic rocks rich in magnesium silicate minerals, and flakes of the mineral range in color from black to shades of brown and yellow. The crystal structure of vermiculite contains water molecules, a property that is critical to its processing for common uses.

  4. Evidence from the Semarkona ordinary chondrite for /sup 26/Al heating of small planets

    Energy Technology Data Exchange (ETDEWEB)

    Hutcheon, I D; Hutchison, R

    1989-01-19

    We report the first observation of radiogenic /sup 26/Mg in non-refractory meteoritic material, a plagio-clase-bearing, olivine-pyroxene clast chondrule in the Semarkona ordinary chondrite. The inferred initial abundance of /sup 26/Al is sufficient to produce incipient melting in well insulated bodies of chondritic composition. We conclude that planetary accretion and differentiation must have begun on a timescale comparable to the half life of /sup 26/Al and that, even if widespread melting did not occur, /sup 26/Al heating played a significant role in thermal metamorphism on small planets.

  5. Evidence from the Semarkona ordinary chondrite for 26Al heating of small planets

    International Nuclear Information System (INIS)

    Hutcheon, I.D.

    1989-01-01

    We report the first observation of radiogenic 26 Mg in non-refractory meteoritic material, a plagio-clase-bearing, olivine-pyroxene clast chondrule in the Semarkona ordinary chondrite. The inferred initial abundance of 26 Al is sufficient to produce incipient melting in well insulated bodies of chondritic composition. We conclude that planetary accretion and differentiation must have begun on a timescale comparable to the half life of 26 Al and that, even if widespread melting did not occur, 26 Al heating played a significant role in thermal metamorphism on small planets. (author)

  6. Rb-Sr Isotopic Systematics of Alkali-Rich Fragments in the Yamato-74442 LL-Chondritic Breccia

    Science.gov (United States)

    Yokoyama, T.; Misawa, K.; Okano, O.; Shih, C.-Y.; Nyquist, L. E.; Simo, J. I.; Tappa, M. J.; Yoneda, S.

    2012-01-01

    Alkali-rich igneous fragments were identified in the brecciated LL-chondrites, Kr henberg (LL5)], Bhola (LL3-6) and Yamato (Y)-74442 (LL4), and show characteristic fractionation patterns of alkaline elements. The K-Rb-Cs-rich fragments in Kr henberg, Bhola, and Y-74442 are very similar in mineralogy and petrography (olivine + pyroxene + glass), suggesting that they could have come from related precursor materials. We have undertaken Rb-Sr isotopic studies on alkali-rich fragments in Y-74442 to precisely determine their crystallization ages and the isotopic signatures of their precursor material(s).

  7. An 57Fe Mössbauer study of three Australian L5 ordinary-chondrite meteorites: dating Kinclaven–001

    International Nuclear Information System (INIS)

    Cadogan, J. M.; Rebbouh, L.; Mills, J. V. J.; Bland, P. A.

    2013-01-01

    Three L5-type ordinary chondrite meteorites recovered from the Nullarbor Region of Western Australia were studied by 57 Fe Mössbauer spectroscopy: Kinclaven–001, Camel Donga–007 and Gunnadorah–002. The relative amounts of the various Fe-bearing phases including the primary minerals (Olivine, Pyroxene, Troilite and Fe-Ni metal) and the ferric alteration products (Goethite, Maghemite/Magnetite) were obtained to determine the percentage of iron converted to Fe 3 +  by weathering processes. These data allow us to estimate the terrestrial age of Kinclaven–001 at 1,700 ± 1,300 yrs

  8. Lower crustal intrusions beneath the southern Baikal Rift Zone

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Thybo, Hans

    2009-01-01

    centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities....../s and 7.9 km/s. We interpret this feature as resulting from mafic to ultra-mafic intrusions in the form of sills. Petrological interpretation of the velocity values suggests that the intrusions are sorted by fractional crystallization into plagioclase-rich low-velocity layers and pyroxene- and olivine...

  9. Composition and size of Apollo asteroid 1984 KB

    Science.gov (United States)

    Bell, Jeffrey F.; Hawke, B. Ray; Brown, Robert Hamilton

    1988-01-01

    The Class S object-typifying spectral signatures of olivine, pyroxene, and NiFe metal are noted in the present reflection spectra and thermal-emission radiometric data for the earth orbit-crossing Apollo object, 1984KB; a surface material akin to the rare lodranite meteorites. While the Class S object identification is strengthened by standard asteroid thermal model's indication of an about 0.7-km radius, and albedo of about 0.16, which is inconsistent with the IR spectrum, is obtained by an analysis of the same thermal data with a bare-rock thermal model. The object must have a significant regolith despite its small size.

  10. Deformation and fluid-enhanced annealing in subcontinental lithospheric mantle beneath the Pannonian Basin (Styrian Basin, Eastern Austria)

    Science.gov (United States)

    Aradi, Laszlo; Hidas, Károly; János Kovács, István; Tommasi, Andrea; Garrido, Carlos; Szabó, Csaba

    2017-04-01

    In the Carpathian-Pannonian region, xenolith-bearing Neogene alkali basaltic volcanism occurred in five volcanic fields [1], from which the Styrian Basin Volcanic Field (SBVF) is the westernmost one. In this study, we present new petrographic and crystal preferred orientation (CPO) data, and structural hydroxyl ("water") contents of upper mantle xenoliths from 12 volcanic outcrops across the SBVF. The studied xenoliths are mostly coarse granular hydrous spinel lherzolites. Amphiboles, replacing pyroxenes and spinels, are present in almost every sample. The peridotites are highly annealed, olivines and pyroxenes show no significant amount of intragranular deformation. Despite the annealed texture of the peridotites, olivine CPO is unambiguous and varies between [010]-fiber, orthogonal and [100]-fiber symmetry. The CPO of pyroxenes is coherent with coeval deformation with olivine. The fabric and CPO of amphiboles suggest postkinematic epitaxial overgrowth on the precursor pyroxenes. The structural hydroxyl content of the studied xenoliths exhibits rather high, equilibrium values, up to 10, 290 and 675 ppm in olivine, ortho- and clinopyroxene, respectively. The olivines contain more structural hydroxyl in the annealed xenoliths than in the more deformed ones. The xenoliths show equilibrium temperatures from 850 to 1100 °C, which corresponds to lithospheric mantle depths between 30 and 60 km. Equilibrium temperatures show correlation with the varying CPO symmetries and grain size: coarser grained xenoliths with [100]-fiber and orthorhombic symmetry appear in the high temperature (>1000 °C) xenoliths, which is characteristic for asthenospheric environments [2]. Most of the samples display transitional CPO symmetry between [010]-fiber and orthogonal, which indicate lithospheric deformation under varying stress field from transtensional to transpressional settings [3], probably related to the Miocene evolution of the Pannonian Basin, during which varying compressive and

  11. Melt density and the average composition of basalt

    Science.gov (United States)

    Stolper, E.; Walker, D.

    1980-01-01

    Densities of residual liquids produced by low pressure fractionation of olivine-rich melts pass through a minimum when pyroxene and plagioclase joint the crystallization sequence. The observation that erupted basalt compositions cluster around the degree of fractionation from picritic liquids corresponding to the density minimum in the liquid line of descent may thus suggest that the earth's crust imposes a density fiber on the liquids that pass through it, favoring the eruption of the light liquids at the density minimum over the eruption of denser more fractionated and less fractionated liquids.

  12. Mineral chemistry of clinopyroxene: guidance on geo- thermobarometry and tectonomagmatic setting of Nabar volcanic rocks, South of Kashan

    Directory of Open Access Journals (Sweden)

    Rezvan Mehvari

    2017-02-01

    Full Text Available Introduction The Nabar area that is a part of the Urumieh- Dokhtar volcano- plutonic belt is located in the south of Kashan. Research works such as Emami (Emami, 1993 and Abbasi (Abbasi, 2012 have been done about the geology of this area. Rock units in the study area contain middle- upper Eocene intermediate to acidic lavas and pyroclastic rocks, green marl, shale and sandy marls of Oligo- Miocene, limestones of Qom formation, intrusive granitoids with Oligo- Miocene age and quaternary travertine and recent alluvium (Emami, 1993. The volcanic and sub volcanic rocks of this area are composed of andesite, trachyandesite, dacite, rhyolite and porphyric pyroxene diorite along with pyroclastic rocks. Materials and methods In order to achieve the aims of this work, at first field surveying and sampling were done. Then, thin and polished thin sections were prepared. Some of the samples were selected for microprobe analysis and clinopyroxene minerals were analyzed by using JEOL- JXA-8800 analyzer with a voltage of 20 Kv and a current of 12 nA in the Kanazava University of Japan and Cameca-Sx100 analyzer with a voltage of 15 Kv and a current of 15 nA in the Iranian mineral processing research center, Karaj. Discussion On the basis of petrographic investigations, porphyritic, porphyroid, fluidal, amygdaloidal and porphyry with microlitic groundmass are common textures of these rocks. Also plagioclase, clinopyroxene, amphibole, biotite, sanidine and quartz are essential minerals, opaque, zircon and apatite as accessory minerals are observed in the studied rocks. Clinopyroxenes are observed with corona texture that resulted during the uralitization process. On the basis of minerals’ chemistry, pyroxenes are Fe- Mg- Ca type in composition (Morimoto et al., 1988. These clinopyroxenes are augite. Investigations indicate that mineral composition of clinopyroxene can be effectively used to evaluation the P-T conditions during crystallization. Previous research

  13. Serpentinization and its implications for life on the early Earth and Mars.

    Science.gov (United States)

    Schulte, Mitch; Blake, David; Hoehler, Tori; McCollom, Thomas

    2006-04-01

    Ophiolites, sections of ocean crust tectonically displaced onto land, offer significant potential to support chemolithoautotrophic life through the provision of energy and reducing power during aqueous alteration of their highly reduced mineralogies. There is substantial chemical disequilibrium between the primary olivine and pyroxene mineralogy of these ophiolites and the fluids circulating through them. This disequilibrium represents a potential source of chemical energy that could sustain life. Moreover, E (h)-pH conditions resulting from rock- water interactions in ultrabasic rocks are conducive to important abiotic processes antecedent to the origin of life. Serpentinization--the reaction of olivine- and pyroxene-rich rocks with water--produces magnetite, hydroxide, and serpentine minerals, and liberates molecular hydrogen, a source of energy and electrons that can be readily utilized by a broad array of chemosynthetic organisms. These systems are viewed as important analogs for potential early ecosystems on both Earth and Mars, where highly reducing mineralogy was likely widespread in an undifferentiated crust. Secondary phases precipitated during serpentinization have the capability to preserve organic or mineral biosignatures. We describe the petrology and mineral chemistry of an ophiolite-hosted cold spring in northern California and propose criteria to aid in the identification of serpentinizing terranes on Mars that have the potential to harbor chemosynthetic life.

  14. The solar nebula redox state as recorded by most reduced chondrules of five primitive chondrites

    International Nuclear Information System (INIS)

    Johnson, M.C.; Harvard Univ., Cambridge, MA

    1986-01-01

    Mafic minerals in the most reduced chondrules of five primitive meteorites were analyzed with an electron microprobe to determine the lower limit on their FeO contents. The accuracy obtained was +-0.01 weight percent FeO. The thermodynamic relationship between mole fraction FeSiO 3 and pO 2 of the ambient nebular gas at the time of mineral equilibration was established, and was used to infer the local O/H ratio of the nebular gas during chondrule formation. The lowest ferrosilite compositions reflected equilibration at 1500K with a gas 2-18 times more oxidizing than a gas of solar composition. Olivines in low-FeO UOC chondrules are uniformly more FeO-rich than coexisting pyroxenes. This descrepancy suggests that a significant change in the O/H ratio of the nebular gas occurred between the time of olivine and pyroxene crystallization in the region of the nebula where UOCs formed. Mineral compositions in the chondrules of two C2 chondrites studied suggest they formed in a more homogeneous region of the nebula than the UOCs. (author)

  15. Noble gases from solar energetic particles revealed by closed system stepwise etching of lunar soil minerals

    International Nuclear Information System (INIS)

    Wieler, R.; Baur, H.; Signer, P.

    1986-01-01

    He, Ne, and Ar abundances and isotopic ratios in plagioclase and pyroxene separates from lunar soils were determined using a closed system stepwise etching technique. This method of noble gas release allows one to separate solar wind (SW) noble gases from those implanted as solar energetic particles (SEP). SEP-Ne with 20 Ne/ 22 Ne = 11.3 +- 0.3 is present in all samples studied. The abundances of SEP-Ne are 2-4 orders of magnitude too high to be explained exclusively as implanted solar flare gas. The major part of SEP-Ne possibly originates from solar 'suprathermal ions' with energies < 0.1 MeV/amu. The isotopic composition of Ne in these lower energy SEP is, however, probably identical to that of real flare Ne. The suggestion that SEP-Ne might have the same isotopic composition as planetary Ne and thus possibly represent an unfractionated sample of solar Ne is not tenable. SW-Ne retained in plagioclase and pyroxene is less fractionated than has been deduced by total fusion analyses. Ne-B is a mixture of SW-Ne and SEP-Ne rather than fractionated SW-Ne. In contrast to SEP-Ne, SEP-Ar has probably a very similar composition as SW-Ar. (author)

  16. The Sao Jose do Rio Pardo mangeritic-granitic suite, south eastern Brazil

    International Nuclear Information System (INIS)

    Campos Neto, M.C.; Figueiredo, M.C.H.; Janasi, V.A.; Basei, M.A.S.; Fryer, B.J.

    1988-01-01

    In the Sao Jose do Rio Pardo region, Sao Paulo and Minas Gerais States, occur some intrusive, folded tabular bodies of mangerites associated with hornblende granitoids. The country rocks correspond to a complex association of gneisses and migmatites, locally with granulite facies assemblages. Both the magnerites and hornblende granitoids present a tectonic foliation with mineral flattening and stretching. Petrographically the mangeritic rocks are mainly dark green quartz mangerites with mesoperthite, plagioclase, quartz, hypersthene, clinopyroxene and variable amounts of hornblende, with zircon as conspicuous acessory. The pink hornblende granitoids are mainly granite s.s. exhibiting higher quartz and amphibole contents and lacking pyroxenes. Hololeucocratic alkali feldspar granites are locally associated to the hornblende granites. The textures of the mangerites and granites almost always show an important metamorphic overprinting, with relictic mesoperthite and pyroxene crystal into a granoblastic matrix. The magneritic-granitic suite is characterized by relatively high Fe/(Fe + Mg), K and HFS elements and low Ca contents, being comparable to typical anorogenic magneritic-granitic suites from Svcandinavia and North America. The Rb/Sr data indicate a Late Proterozoic metamorphic isotopic rehomogenization (930 Ma, Ro = 0.706). Geological evidence suggest that the intrusive age could be Middle Proterozoic, wich is reinforced by another Rb-Sr value of about 1300 Ma. (author) [pt

  17. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Sargent, B. A., E-mail: sfogerty@pas.rochester.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2016-10-20

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  18. Insights into Collisional between Small Bodies: Comparison of Impacted Magnesium-rich Minerals

    Science.gov (United States)

    Lederer, Susan M.; Jensen, E. A.; Strojia, C.; Smith, D. C.; Keller, L. P.; Nakamura-Messenger, K.; Berger, E. L.; Lindsay, S. S.; Wooden, D. H.; Cintala, M. J.; hide

    2013-01-01

    Impacts are sustained by comets and asteroids throughout their lives, especially early in the Solar system's history, as described by the Nice model. Identifying observable properties that may be altered due to impacts can lead to a better understanding their collisional histories. Here, we investigate spectral effects and physical shock features observed in infrared spectra and Transmission Electron Microscope (TEM) images, respectively, of magnesium-rich minerals subjected to shock through impact experiments. Samples of magnesium-rich forsterite (Mg2SiO4, olivine), orthoenstatite (Mg2SiO3, pyroxene), diopside (MgCaSi2O6, monoclinic pyroxene), and magnesite (MgCO3, carbonate) were impacted at speeds of 2.4 km/s, 2.6 km/s and 2.8 km/s. Impact experiments were conducted in the Johnson Space Center Experimental Impact Laboratory using the vertical gun. Clear signatures are observed in both the mid-IR spectra (shift in wavelengths of the spectral peaks and relative amplitude changes) of all minerals except magnesite, and in TEM images (planar dislocations) of both the forsterite and orthoenstatite samples. Further discussion on forsterite and enstatite analyses can be found in Jensen et al., this meeting.

  19. Petrography, mineral chemistry of tourmaline, geochemistry and tectonic setting of Tertiary igneous rocks in Shurab area(west of Khusf), Southern Khorasan

    International Nuclear Information System (INIS)

    Gholami, A. A.; Mohammadi, S. S.; Zarrinkoub, M. H.

    2016-01-01

    Tertiary igneous rocks of Shurab area in eastern part of Lut block include pyroxene andesite, andesite, trachy andesite, quartz andesite, diorite, quartz diorite and porphyric quartz monzodiorite. Plagioclase, hornblende, pyroxene, biotite and quartz are common minerals and alkali feldspar, opaque, sphene, apatite, tourmaline and zircon exists as minor minerals. Propylitization, chloritization, silisification and tourmalinization are common alterations. Based on electron micro prob analysis, tourmaline in quartz monzodiorite is characterized by weakly chemical zoning, high Mg/Fe ratio from dravite type with alkaline nature that originated from Ca-poor metapelites and metapsammites. The studied rocks have low to medium-K calk-alkaline nature and their spider diagrams display enrichment in LILE such as Cs, Rb ,K , Sr and LREE and depletion in Nb,Ti and HREE that indicate their relation to subduction zone. Geochemical characteristics such as high Sr/Y and La/Yb ratios, high SiO_2 and no Eu anomaly are comparable to high-SiO_2 adakites. Shuorab adakitic rocks are likely originated from partial melting of the crust during delamination process.

  20. Lunar bulk chemical composition: a post-Gravity Recovery and Interior Laboratory reassessment.

    Science.gov (United States)

    Taylor, G Jeffrey; Wieczorek, Mark A

    2014-09-13

    New estimates of the thickness of the lunar highlands crust based on data from the Gravity Recovery and Interior Laboratory mission, allow us to reassess the abundances of refractory elements in the Moon. Previous estimates of the Moon fall into two distinct groups: earthlike and a 50% enrichment in the Moon compared with the Earth. Revised crustal thicknesses and compositional information from remote sensing and lunar samples indicate that the crust contributes 1.13-1.85 wt% Al2O3 to the bulk Moon abundance. Mare basalt Al2O3 concentrations (8-10 wt%) and Al2O3 partitioning behaviour between melt and pyroxene during partial melting indicate mantle Al2O3 concentration in the range 1.3-3.1 wt%, depending on the relative amounts of pyroxene and olivine. Using crustal and mantle mass fractions, we show that that the Moon and the Earth most likely have the same (within 20%) concentrations of refractory elements. This allows us to use correlations between pairs of refractory and volatile elements to confirm that lunar abundances of moderately volatile elements such as K, Rb and Cs are depleted by 75% in the Moon compared with the Earth and that highly volatile elements, such as Tl and Cd, are depleted by 99%. The earthlike refractory abundances and depleted volatile abundances are strong constraints on lunar formation processes. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Genetic relationships between skarn ore deposits and magmatic activity in the Ahar region, Western Alborz, NW Iran

    Directory of Open Access Journals (Sweden)

    Mollai Habib

    2014-06-01

    Full Text Available Paleocene to Oligocene tectonic processes in northwest Iran resulted in extensive I-type calc-alkaline and alkaline magmatic activity in the Ahar region. Numerous skarn deposits formed in the contact between Upper Cretaceous impure carbonate rocks and Oligocene-Miocene plutonic rocks. This study presents new field observations of skarns in the western Alborz range and is based on geochemistry of igneous rocks, mineralogy of the important skarn deposits, and electron microprobe analyses of skarn minerals. These data are used to interpret the metasomatism during sequential skarn formation and the geotectonic setting of the skarn ore deposit related igneous rocks. The skarns were classified into exoskarn, endoskarn and ore skarn. Andraditic garnet is the main skarn mineral; the pyroxene belongs to the diopside-hedenbergite series. The skarnification started with pluton emplacement and metamorphism of carbonate rocks followed by prograde metasomatism and the formation of anhydrous minerals like garnet and pyroxene. The next stage resulted in retro gradation of anhydrous minerals along with the formation of oxide minerals (magnetite and hematite followed by the formation of hydrosilicate minerals like epidote, actinolite, chlorite, quartz, sericite and sulfide mineralization. In addition to Fe, Si and Mg, substantial amounts of Cu, along with volatile components such as H2S and CO2 were added to the skarn system. Skarn mineralogy and geochemistry of the igneous rocks indicate an island arc or subduction-related origin of the Fe-Cu skarn deposit.

  2. What We Might Know About Gusev Crater if the Mars Exploration Rover Spirit Mission were Coupled with a Mars Sample Return Mission

    Science.gov (United States)

    Morris, Richard V.

    2008-01-01

    The science instruments on the Mars Exploration Rover (MER) Spirit have provided an enormous amount of chemical and mineralogical data during more than 1450 sols of exploration at Gusev crater. The Moessbauer (MB) instrument identified 10 Fe-bearing phases at Gusev Crater: olivine, pyroxene, ilmenite, chromite, and magnetite as primary igneous phases and nanophase ferric oxide (npOx), goethite, hematite, a ferric sulfate, and pyrite/marcusite as secondary phases. The Miniature Thermal Emission Spectrometer (Mini-TES) identified some of these Fe-bearing phases (olivine and pyroxene), non- Fe-bearing phases (e.g., feldspar), and an amorphous high-SiO2 phase near Home Plate. Chemical data from the Alpha Particle X-Ray Spectrometer (APXS) provided the framework for rock classification, chemical weathering/alteration, and mineralogical constraints. APXS-based mineralogical constraints include normative calculations (with Fe(3+)/FeT from MB), elemental associations, and stoichiometry (e.g., 90% SiO2 implicates opalline silica). If Spirit had cached a set of representative samples and if those samples were returned to the Earth for laboratory analysis, what value is added by Mars Sample return (MSR) over and above the mineralogical and chemical data provided by MER?

  3. Oxygen isotope and trace element compositions of platiniferous dunite pipes of the Bushveld Complex, South Africa - Signals from a recycled mantle component?

    Science.gov (United States)

    Günther, T.; Haase, K. M.; Junge, M.; Oberthür, T.; Woelki, D.; Krumm, S.

    2018-06-01

    Platiniferous dunite pipes occur in the lower mafic/ultramafic portion of the Rustenburg Layered Suite of the Bushveld large igneous province (LIP). Olivine compositions in these pipes range from forsterite (Fo) 80 to 35 mol% and suggest crystallization from variably evolved magmas at high temperatures ( 1200 °C). The most primitive olivines are from a stock unit and have the highest contents of Ni (>0.15 wt%) and lowest contents of Mn (formation of the fayalitic olivines with its high Mn contents (>0.3 wt%). High δ18O values of olivine (5.7-7.0‰) and pyroxene (6.7-7.4‰) are akin to those of the Lower and Critical Zone of the Bushveld intrusion suggesting a common origin. The constant high O isotope ratios with variable Fo contents in the olivines are unlike trends observed in olivine phenocrysts in magmas forming by assimilation-fractional crystallization. We suggest that the high δ18O in the most primitive dunites reflect that of the primary melt of the Bushveld pipes, indicating either a bulk assimilation of crust prior to pipe formation or a contribution from recycled oceanic crust in the sub-continental lithospheric mantle (SCLM). The latter scenario is supported by the high Ni/Mn ratios in primitive pipe olivine that might be inherited from melting of a pyroxene-rich mantle source.

  4. Origin of Holocene trachyte lavas of the Quetrupillán volcanic complex, Chile: Examples of residual melts in a rejuvenated crystalline mush reservoir

    Science.gov (United States)

    Brahm, Raimundo; Parada, Miguel Angel; Morgado, Eduardo; Contreras, Claudio; McGee, Lucy Emma

    2018-05-01

    The Quetrupillán Volcanic Complex (QVC) is a stratovolcano placed in the center of a NW-SE volcanic chain, between Villarrica volcano and Lanín volcano, in the Central Southern Volcanic Zone of the Andes. Its youngest effusive products are dominated by crystal-poor (most samples with differentiation at shallow depth (<1 kbar) and NNO-QFM oxidation conditions were obtained from initial melt compositions equivalent to the Huililco basalts, a small eruptive centre located ca. 12 km NE of the QVC main vent. Pyroxene-bearing crystal clots, locally abundant in the trachytes, were formed at 900-960 °C (±55 °C) and represent a dismembered crystal mush from which interstitial trachytic melts were extracted and transported upward before eruption. Heating of the crystal mush by a hotter magma recharge is inferred from complex zoned plagioclases formed at higher crystallization temperatures (50-90 °C) than those obtained from pyroxene. Ca-rich plagioclase overgrowths around more albitic cores, followed by an external rim of similar composition to the core are interpreted as restoration to the initial conditions of plagioclase crystallization after the mentioned heating event. Additionally, a late heating of up to 150 °C just prior to eruption is recorded by Fe-Ti oxide thermometry.

  5. Alkali feldspar syenites with shoshonitic affinities from Chhotaudepur area: Implication for mantle metasomatism in the Deccan large igneous province

    Directory of Open Access Journals (Sweden)

    K.R. Hari

    2014-03-01

    Full Text Available Two petrologically distinct alkali feldspar syenite bodies (AFS-1 and AFS-2 from Chhotaudepur area, Deccan Large Igneous Province are reported in the present work. AFS-1 is characterized by hypidiomorphic texture and consists of feldspar (Or55Ab43 to Or25Ab71, ferro-pargasite/ferro-pargasite hornblende, hastingsite, pyroxene (Wo47, En5, Fs46, magnetite and biotite. AFS-2 exhibits panidiomorphic texture with euhedral pyroxene (Wo47-50, En22-39, Fs12–31 set in a groundmass matrix of alkali feldspar (Or99Ab0.77 to Or1.33Ab98, titanite and magnetite. In comparison to AFS-1, higher elemental concentrations of Ba, Sr and ∑REE are observed in AFS-2. The average peralkaline index of the alkali feldspar syenites is ∼1 indicating their alkaline nature. Variation discrimination diagrams involving major and trace elements and their ratios demonstrate that these alkali feldspar syenites have a shoshonite affinity but emplaced in a within-plate and rifting environment. No evidence of crustal contamination is perceptible in the multi-element primitive mantle normalized diagram as well as in terms of trace elemental ratios. The enrichment of incompatible elements in the alkali feldspar syenites suggests the involvement of mantle metasomatism in their genesis.

  6. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I.; Sargent, B. A.

    2016-01-01

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  7. An in-depth look at the lunar crater Copernicus: Exposed mineralogy by high-resolution near-infrared spectroscopy

    Science.gov (United States)

    Bugiolacchi, Roberto; Mall, Urs; Bhatt, Megha; McKenna-Lawlor, Susan; Banaszkiewicz, Marek; Brønstad, Kjell; Nathues, Andreas; Søraas, Finn; Ullaland, Kjetil; Pedersen, Rolf B.

    2011-05-01

    Newly acquired, sequentially spaced, high-resolution near-infrared spectra across the central section of crater Copernicus' interior have been analyzed using a range of complementary techniques and indexes. We have developed a new interpretative method based on a multiple stage normalization process that appears to both confirm and expand on previous mineralogical estimations and mapping. In broad terms, the interpreted distribution of the principle mafic species suggests an overall composition of surface materials dominated by calcium-poor pyroxenes and minor olivine but with notable exceptions: the southern rim displays strong ca-rich pyroxene absorption features and five other locations, the uppermost northern crater wall, opposite rim sections facing the crater floor, and the central peak Pk1 and at the foot of Pk3, show instead strong olivine signatures. We also propose impact glass an alternative interpretation to the source of the weak but widespread olivine-like spectral signature found in low-reflectance samples, since it probably represents a major regolith constituent and component in large craters such as Copernicus. The high quality and performance of the SIR-2 data allows for the detection of diagnostic key mineral species even when investigating spectral samples with very subdued absorption features, confirming the intrinsic high-quality value of the returned data.

  8. Mössbauer study of Slovak meteorites

    Science.gov (United States)

    Lipka, J.; Sitek, J.; Dekan, J.; Degmová, J.; Porubčan, V.

    2013-04-01

    57Fe Mössbauer spectroscopy was used as an analytical tool in the investigation of iron containing compounds of two meteorites (Rumanová and Košice) out of total of six which had fallen on Slovak territory. In the magnetic fraction of the iron bearing compounds in the Rumanová meteorite, maghemite, troilite and Fe-Ni alloy were identified. In the non-magnetic fraction silicate phases were found, such as olivine and pyroxene. The paramagnetic component containing Fe3 + ions corresponds probably to small superparamagnetic particles. The Košice meteorite was found near the town of Košice in February 2010. Its magnetic fraction consists of a Fe-Ni alloy with the Mössbauer parameters of the magnetic field corresponding to kamacite α-Fe(Ni, Co) and troilite. The non-magnetic part consists of Fe2 + phases such as olivine and pyroxene and traces of a Fe3 + phase. The main difference between these meteorites is their iron oxide content. These kinds of analyses can bring important knowledge about phases and compounds formed in extraterrestrial conditions, which have other features than their terrestrial analogues.

  9. Analysis of volcanic tephra as a material of environment

    Science.gov (United States)

    Sitek, J.; Dekan, J.; Fang, X.; Xiaoli, P.; Chmielewská, E.

    2012-10-01

    Tephra is a fragmental material produced by volcanic eruption. Here, volcanic tephra deposit from the northeast of China was used for our study. Samples of unaltered tephra are usually composed of feldspar, glass, pyroxene, and olivine. Moreover, these volcanic alteration products also contain Fe oxides, phylosilicates, sulfates, and amorphous Al-Si-bearing material. Six different samples of tephra obtained were analyzed by Mössbauer spectroscopy. A typical Mössbauer spectrum of tephra consists of magnetic and non-magnetic components (magnetic component represents about 11% and non-magnetic component about 89% of spectral area). According to the structural composition, it may be supposed that the magnetic component can be assigned to titanomagnetite. Non-magnetic components contain two quadrupole doublets (Fe2+ species) and one doublet containing Fe3+. According to the measured values of Mössbauer spectra, the first two doublets are very similar with pyroxene, olivine and the third to phylosilicate, aluminosilicate or iron oxide of FeO type. Recently, volcanic tephra was applied as an ecological substance. Special solution was proposed for tephra utilization, especially for phosphate removal from contaminated water.

  10. Moessbauer study of Slovak meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Lipka, J.; Sitek, J.; Dekan, J., E-mail: julius.dekan@stuba.sk; Degmova, J. [Slovak University of Technology, Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology (Slovakia); Porubcan, V. [Comenius University, Faculty of Mathematics and Physics (Slovakia)

    2013-04-15

    {sup 57}Fe Moessbauer spectroscopy was used as an analytical tool in the investigation of iron containing compounds of two meteorites (Rumanova and Kosice) out of total of six which had fallen on Slovak territory. In the magnetic fraction of the iron bearing compounds in the Rumanova meteorite, maghemite, troilite and Fe-Ni alloy were identified. In the non-magnetic fraction silicate phases were found, such as olivine and pyroxene. The paramagnetic component containing Fe{sup 3 + } ions corresponds probably to small superparamagnetic particles. The Kosice meteorite was found near the town of Kosice in February 2010. Its magnetic fraction consists of a Fe-Ni alloy with the Moessbauer parameters of the magnetic field corresponding to kamacite {alpha}-Fe(Ni, Co) and troilite. The non-magnetic part consists of Fe{sup 2 + } phases such as olivine and pyroxene and traces of a Fe{sup 3 + } phase. The main difference between these meteorites is their iron oxide content. These kinds of analyses can bring important knowledge about phases and compounds formed in extraterrestrial conditions, which have other features than their terrestrial analogues.

  11. Precambrian tholeiitic-dacitic rock-suites and Cambrian ultramafic rocks in the Pennine nappe system of the Alps: Evidence from Sm-Nd isotopes and rare earth elements

    Science.gov (United States)

    Stille, P.; Tatsumoto, M.

    1985-04-01

    Major element, trace element and Sm-Nd isotope analyses were made of polymetamorphic hornblendefelses, plagioclase amphibolites and banded amphibolites from the Berisal complex in the Simplon area (Italy, Switzerland) to determine their age, origin and genetic relationships. In light of major and rare earth element data, the hornblendefelses are inferred to have originally been pyroxene-rich cumulates, the plagioclase amphibolites and the dark layers of the banded amphibolites to have been tholeiitic basalts and the light layers dacites. The Sm-Nd isotope data yield isochron ages of 475±81 Ma for the hornblendefelses, 1,018±59 Ma for the plagioclase amphibolites and 1,071±43 Ma for the banded amphibolites. The 1 Ga magmatic event is the oldest one ever found in the crystalline basement of the Pennine nappes. The Sm -Nd isotope data support the consanguinity of the tholeiitic dark layers and the dacitic light layers of the banded amphibolites with the tholeiitic plagioclase amphibolites and the ultramafic hornblendefelses. The initial ɛ Nd values indicate that all three rock types originated from sources depleted in light rare earth elements. We suggest that plagioclase and banded amphibolites were a Proterozoic tholeiite-dacite sequence that was strongly deformed and flattened during subsequent folding. The hornblendefelses are thought to be Cambrian intrusions of pyroxene-rich material.

  12. Mineralogy, geochemistry and petrogenesis of volcanic tuffs from Ataraws, Jordan

    International Nuclear Information System (INIS)

    Al-Fugha, H.

    1997-01-01

    Magistracy are common in tuff and paralytic's materials of Pleistocene age in western Jordan. The dominant phases are olivine, augite, plagioclase, magnetite and ilmenite. Chemical analysis of the whole rocks samples indicate alkali olivine magma origin. Low concentration of Li and Rb in Tuff samples are used as an argument against the contamination of the basaltic magma during its journey to the surface. The Mg O and mg- values (Mg/Mg+Fe 2+ ) in samples from volcano exhibit different degrees of fractionation, which are indicated by the varying concentrations of incompatible trace elements (Ba, Rb, Sr). The thermometric evacuation of tuff formation by using pyroxenes thermometers revealed a temperature range between 1022-1083 deg. and pressure of 5-10 K bars. The low Mg-ratio (Mg/Mg+Fe 2+ ) is due to fractional crystallization of olivine and pyroxene in tuff samples. The variation of incompatible elements imply derivation from a peridotite source in the upper mantle with low degree of melting (<20%).The volcanic activity took place in phases corresponding to rifting sinistral displacement along the Jordan Rift. (author). 11 refs., 6 tabs, 6 figs

  13. Contrasted glass-whole rock compositions and phenocryst re-distribution, IPOD Sites 417 and 418

    Science.gov (United States)

    Staudigel, H.; Bryan, W. B.

    1982-01-01

    Major element composition ranges of closely associated basalt glass-whole rock pairs from individual small cooling units approach the total known range of basalt glass and whole rock compositions at IPOD sites 417 and 418. The whole rock samples fall into two groups: one is depleted in MgO and distinctly enriched in plagioclase but has lost some olivine and/or pyroxene relative to its corresponding glass; and the other is enriched in MgO and in phenocrysts of olivine and pyroxene as well as plagioclase compared to its corresponding glass. By analogy with observed phenocryst distributions in lava pillows, tubes, and dikes, and with some theoretical studies, we infer that bulk rock compositions are strongly affected by phenocryst redistribution due to gravity settling, flotation, and dynamic sorting after eruption, although specific models are not well constrained by the one-dimensional geometry of drill core. Compositional trends or groupings in whole rock data resulting from such late-stage processes should not be confused with more fundamental compositional effects produced in deep chambers or during partial melting.

  14. SHOCKS AND A GIANT PLANET IN THE DISK ORBITING BP PISCIUM?

    International Nuclear Information System (INIS)

    Melis, C.; Zuckerman, B.; Gielen, C.; Chen, C. H.; Rhee, Joseph H.; Song, Inseok

    2010-01-01

    Spitzer Infrared Spectrograph data support the interpretation that BP Piscium, a gas and dust enshrouded star residing at high Galactic latitude, is a first-ascent giant rather than a classical T Tauri star. Our analysis suggests that BP Piscium's spectral energy distribution can be modeled as a disk with a gap that is opened by a giant planet. Modeling the rich mid-infrared emission line spectrum indicates that the solid-state emitting grains orbiting BP Piscium are primarily composed of ∼75 K crystalline, magnesium-rich olivine; ∼75 K crystalline, magnesium-rich pyroxene; ∼200 K amorphous, magnesium-rich pyroxene; and ∼200 K annealed silica (cristobalite). These dust grains are all sub-micron sized. The giant planet and gap model also naturally explains the location and mineralogy of the small dust grains in the disk. Disk shocks that result from disk-planet interaction generate the highly crystalline dust which is subsequently blown out of the disk mid-plane and into the disk atmosphere.

  15. Study on the uranium mineralization genesis of the Cachoeira, Lagoa Real, Bahia, mine, as auxiliary in the discovery and comprehension of mineral beds; Estudo da genese da mineralizacao uranifica da mina da Cachoeira, Lagoa Real, BA, como auxilio na descoberta e compreensao de jazidas minerais

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Lucilia Aparecida Ramos de; Rios, Francisco Javier; Chaves, Alexandre de Oliveira; Pereira, Ana Rosa Passos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: laro@cdtn.br

    2007-07-01

    The acknowledgement of the geological history of a ore reserve allows to infer relative to a large area with possibility to contain the large mineral content or even give the localization of new anomalies or mineral reserve. The study of ore reserve genesis is of great importance for the stages to obtain the mineral, from the prospection until the mineral mining. Fluid inclusions (FI) are fluid quantities which are imprison in the minerals during the formation process or some process where deformation occurs. The study of fluid inclusions, together with the petrographic mapping of the blades associated to the uranium para genesis of Lagoa Real, Brazil, are been used for a better comprehension of the uranium orogenesis. The main analysis techniques used in this context were the petrography and microthermometry. With the petrographic analysis fluid inclusions were observed and mapped in various minerals present in rocks associated to uranium mineralization, such as amphiboles, pyroxenes and grenades. The micro thermometric studies were only performed in the pyroxenes and the grenades due to the fluid inclusions types found in these minerals, and also the supposed relationships that those minerals have with uranium mineralization at that region. (author)

  16. The central uplift of Ritchey crater, Mars

    Science.gov (United States)

    Ding, Ning; Bray, Veronica J.; McEwen, Alfred S.; Mattson, Sarah S.; Okubo, Chris H.; Chojnacki, Matthew; Tornabene, Livio L.

    2015-01-01

    Ritchey crater is a ∼79 km diameter complex crater near the boundary between Hesperian ridged plains and Noachian highland terrain on Mars (28.8°S, 309.0°E) that formed after the Noachian. High Resolution Imaging Science Experiment (HiRISE) images of the central peak reveal fractured massive bedrock and megabreccia with large clasts. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectral analysis reveals low calcium pyroxene (LCP), olivine (OL), hydrated silicates (phyllosilicates) and a possible identification of plagioclase bedrock. We mapped the Ritchey crater central uplift into ten units, with 4 main groups from oldest and originally deepest to youngest: (1) megabreccia with large clasts rich in LCP and OL, and with alteration to phyllosilicates; (2) massive bedrock with bright and dark regions rich in LCP or OL, respectively; (3) LCP and OL-rich impactites draped over the central uplift; and (4) aeolian deposits. We interpret the primitive martian crust as igneous rocks rich in LCP, OL, and probably plagioclase, as previously observed in eastern Valles Marineris. We do not observe high-calcium pyroxene (HCP) rich bedrock as seen in Argyre or western Valles Marineris. The association of phyllosilicates with deep megabreccia could be from impact-induced alteration, either as a result of the Richey impact, or alteration of pre-existing impactites from Argyre basin and other large impacts that preceded the Ritchey impact, or both.

  17. RETRIEVAL OF MINERAL ABUNDANCES OF THE DELTA REGION IN EBERSWALDE, MARS

    Directory of Open Access Journals (Sweden)

    X. Wu

    2017-07-01

    Full Text Available Eberswalde Crater, a hotspot of Mars exploration, possesses an unambiguous hydrological system. However, little research has been performed on the large-scale mineral abundances retrieval in this region. Hence, we employed hyperspectral unmixing technology to quantitatively retrieve mineral abundances of the delta region in Eberswalde. In this paper, the single-scattering albedos were calculated by the Hapke bidirectional reflectance function from Compact Reconnaissance Imaging Spectrometer for Mars (CRISM data (FRT000060DD and CRISM spectral library respectively, and a sparse unmixing algorithm was adopted to quantitatively retrieve mineral abundances. The abundance maps show that there are six kinds of minerals (pyroxene, olivine, plagioclase, siderite, diaspore, and tremolite. By comparing minerals spectra obtained from images with corresponding spectra in spectral library, we found the similar trend in both curves. Besides, the mineral abundance maps derived in this study agree well spatially with CRISM parameter maps. From the perspective of mineralogy, the instability of pyroxene and olivine indicates the area in which they distribute is close to provenance, and the original provenance is ultrabasic rock (e.g. peridotite and basic rock (e.g. gabbro, respectively. And minerals, existing in the area of alluvial fan, also distribute in the outside of alluvial fan, which might be caused by fluid transportation.

  18. The central uplift of Ritchey crater, Mars

    Science.gov (United States)

    Ding, Ning; Bray, Veronica J.; McEwen, Alfred S.; Mattson, Sarah S.; Okubo, Chris H.; Chojnacki, Matthew; Tornabene, Livio L.

    2015-05-01

    Ritchey crater is a ∼79 km diameter complex crater near the boundary between Hesperian ridged plains and Noachian highland terrain on Mars (28.8°S, 309.0°E) that formed after the Noachian. High Resolution Imaging Science Experiment (HiRISE) images of the central peak reveal fractured massive bedrock and megabreccia with large clasts. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectral analysis reveals low calcium pyroxene (LCP), olivine (OL), hydrated silicates (phyllosilicates) and a possible identification of plagioclase bedrock. We mapped the Ritchey crater central uplift into ten units, with 4 main groups from oldest and originally deepest to youngest: (1) megabreccia with large clasts rich in LCP and OL, and with alteration to phyllosilicates; (2) massive bedrock with bright and dark regions rich in LCP or OL, respectively; (3) LCP and OL-rich impactites draped over the central uplift; and (4) aeolian deposits. We interpret the primitive martian crust as igneous rocks rich in LCP, OL, and probably plagioclase, as previously observed in eastern Valles Marineris. We do not observe high-calcium pyroxene (HCP) rich bedrock as seen in Argyre or western Valles Marineris. The association of phyllosilicates with deep megabreccia could be from impact-induced alteration, either as a result of the Richey impact, or alteration of pre-existing impactites from Argyre basin and other large impacts that preceded the Ritchey impact, or both.

  19. Minerals in the Ash and Slag from Oxygen-Enriched Underground Coal Gasification

    Directory of Open Access Journals (Sweden)

    Shuqin Liu

    2016-03-01

    Full Text Available Underground coal gasification (UCG is a promising option for the recovery of low-rank and inaccessible coal resources. Detailed mineralogical information is essential to understand underground reaction conditions far from the surface and optimize the operation parameters during the UCG process. It is also significant in identifying the environmental effects of UCG residue. In this paper, with regard to the underground gasification of lignite, UCG slag was prepared through simulation tests of oxygen-enriched gasification under different atmospheric conditions, and the minerals were identified by X-Ray diffraction (XRD and a scanning electron microscope coupled to an energy-dispersive spectrometer (SEM-EDS. Thermodynamic calculations performed using FactSage 6.4 were used to help to understand the transformation of minerals. The results indicate that an increased oxygen concentration is beneficial to the reformation of mineral crystal after ash fusion and the resulting crystal structures of minerals also tend to be more orderly. The dominant minerals in 60%-O2 and 80%-O2 UCG slag include anorthite, pyroxene, and gehlenite, while amorphous substances almost disappear. In addition, with increasing oxygen content, mullite might react with the calcium oxide existed in the slag to generate anorthite, which could then serve as a calcium source for the formation of gehlenite. In 80%-O2 UCG slag, the iron-bearing mineral is transformed from sekaninaite to pyroxene.

  20. {sup 57}Fe Mössbauer study of the Chainpur meteorite

    Energy Technology Data Exchange (ETDEWEB)

    Elewa, Nancy N., E-mail: nancy.elewa@student.adfa.edu.au; Cobas, R.; Cadogan, J. M. [The University of New South Wales at the Australian Defence Force Academy, School of Physical, Environmental and Mathematical Sciences (Australia)

    2016-12-15

    The Chainpur meteorite is one of 23 ordinary chondrites classified as LL3-type (low-Fe & low-metal). It was observed as a shower of stones falling on May 9, 1907 in Uttar Pradesh, India. We report here the characterization of the Fe-bearing phases in this chondrite using {sup 57}Fe Mössbauer spectroscopy carried out at 298 K, 120 K, 50 K and 13 K. The paramagnetic doublets of olivine and pyroxene dominate the room temperature spectrum, accounting for around 70 % of the spectral area. Moreover, a doublet present with a spectral area of 5 % and assigned to a superparamagnetic Fe {sup 3+} phase is a consequence of terrestrial weathering. On the basis of the measured {sup 57}Fe electric quadrupole splitting of the olivine component at room temperature we estimate the mean Fe:Mg ratio in this meteoritic olivine to be around 35:65 % although there is clearly a wide range of composition. The effects of magnetic ordering of the major components olivine and pyroxene are observed at 13 K.

  1. Some antarctic lacustrine sediments from northern Victoria Land investigation by Moessbauer spectroscopy, INNA and XRD

    International Nuclear Information System (INIS)

    Stievano, L.; Bertelle, M.; Leotta, G.; Calogero, S.; Constantinescu, S.; Oddone, M.

    1999-01-01

    Fifteen lacustrine sediments, sampled during the 1994-1995 Austral summer in Northern Victoria Land (Antarctica), were characterised by 57 Fe Moessbauer spectroscopy, instrumental neutron activation analysis and X-ray diffraction. These sediments are related to the intrusive rocks from Granite Harbour, to the metamorphic rocks of the Complex of Wilson Terrane and the volcanic rocks from Mc Murdo. The samples contain quartz, alkaline feldspars, plagioclases, amphiboles, biotite, chlorite and muscovite except for the sediments of volcanic origin that contain alkaline feldspars, plagioclases and pyroxenes. The paramagnetic components of the Moessbauer spectra were assigned mainly to the iron sides in biotites except for those displayed from the sediments of volcanic origin assigned mainly to pyroxenes. Moessbauer spectra at room temperature do not display magnetic ordering except for those of the sediments of volcanic origin containing bulk magnetite, hematite and goethite. Moessbauer spectra collected at the liquid helium temperature always exhibit magnetic ordering. This spectral difference has been attributed to the different dimensions of the iron oxide particles in the sediments. The scarce weathering involves a partial transformation of magnetite in hematite and goethite in the sediment of volcanic origin. In the remaining sediments a partial hydrolysis of biotite together with a partial oxidation of iron (II) retained in silicates is present. (authors)

  2. Seismic anisotropy from compositional banding in granulites from the deep magmatic arc of Fiordland, New Zealand

    Science.gov (United States)

    Cyprych, Daria; Piazolo, Sandra; Almqvist, Bjarne S. G.

    2017-11-01

    We present calculated seismic velocities and anisotropies of mafic granulites and eclogites from the Cretaceous deep lower crust (∼40-65 km) of Fiordland, New Zealand. Both rock types show a distinct foliation defined by cm-scale compositional banding. Seismic properties are estimated using the Asymptotic Expansion Homogenisation - Finite Element (AEH-FE) method that, unlike the commonly used Voigt-Reuss-Hill homogenisation, incorporates the phase boundary network into calculations. The predicted mean P- and S-wave velocities are consistent with previously published data for similar lithologies from other locations (e.g., Kohistan Arc), although we find higher than expected anisotropies (AVP ∼ 5.0-8.0%, AVS ∼ 3.0-6.5%) and substantial S-wave splitting along foliation planes in granulites. This seismic signature of granulites results from a density and elasticity contrast between cm-scale pyroxene ± garnet stringers and plagioclase matrix rather than from crystallographic orientations alone. Banded eclogites do not show elevated anisotropies as the contrast in density and elastic constants of garnet and pyroxene is too small. The origin of compositional banding in Fiordland granulites is primarily magmatic and structures described here are expected to be typical for the base of present day magmatic arcs. Hence, we identify a new potential source of anisotropy within this geotectonic setting.

  3. Textures in spinel peridotite mantle xenoliths using micro-CT scanning: Examples from Canary Islands and France

    Science.gov (United States)

    Bhanot, K. K.; Downes, H.; Petrone, C. M.; Humphreys-Williams, E.

    2017-04-01

    Spinel pyroxene-clusters, which are intergrowths of spinel, orthopyroxene and clinopyroxene in mantle xenoliths, have been investigated through the use of micro-CT (μ-CT) in this study. Samples have been studied from two different tectonic settings: (1) the northern Massif Central, France, an uplifted and rifted plateau on continental lithosphere and (2) Lanzarote in the Canary Islands, an intraplate volcanic island on old oceanic lithosphere. μ-CT analysis of samples from both locations has revealed a range of spinel textures from small Lanzarote are regions that have experienced significant lithospheric thinning. This process provides a mechanism where the sub-solidus reaction of olivine + garnet = orthopyroxene + clinopyroxene + spinel is satisfied by providing a pathway from garnet peridotite to spinel peridotite. We predict that such textures would only occur in the mantle beneath regions that show evidence of thinning of the lithospheric mantle. Metasomatic reactions are seen around spinel-pyroxene clusters in some Lanzarote xenoliths, so metasomatism post-dated cluster formation.

  4. Characterization and utilization potential of basalt rock from East-Lampung district

    Science.gov (United States)

    Isnugroho, K.; Hendronursito, Y.; Birawidha, D. C.

    2018-01-01

    The aim of this research was to study the petrography and chemical properties of basalt rock from East Lampung district, Lampung province. Petrography analysis was performed using a polarization microscope, and analysis of chemical composition using X-RF method. From the analysis of basalt rock samples, the mineral composition consists of pyroxene, plagioclase, olivine, and opaque minerals. Basic mass of basalt rock samples is, composed of plagioclase and pyroxene with subhedral-anhedral shape, forming intergranular texture, and uniform distribution. Mineral plagioclase is colorless and blade shape, transformed into opaque minerals with a size of basalt rock samples, consisting of 37.76-59.64 SiO2; 10.10-20.93 Fe2O3; 11.77-14.32 Al2O3; 5.57-14.75 CaO; 5.37-9.15 MgO; 1.40-3.34 Na2O. From the calculation, obtained the value of acidity ratio (Ma) = 3.81. With these values, indicate that the basalt rock from East Lampung district has the potential to be utilized as stone wool fiber.

  5. Uranium mineralization at Lagoa Real, BA, Brazil: the role of fluids in its genesis

    International Nuclear Information System (INIS)

    Prates, Sonia Pinto; Neves, Jose Marques Correia; Fuzikawa, Kazuo

    2009-01-01

    The Lagoa Real uranium province is situated in the central-south of Bahia state . Brazil and it is presently by far the most important and best known uranium occurrence in Brazil. Nowadays 34 anomalies are known in a 30 Km long and 5 km wide area. An open pit mine was open in Cachoeira Mine, in the north portion of the area, and it is the only uranium mine in operation in Brazil and even in South America as well. The uranium mineralization in the Lagoa Real uranium province occurs in metamorphic rocks named albitites, due to their albite content (over 70%). Uraninite is the main uranium mineral, followed by pechblende, uranophane, torbernite and other uranyl minerals. Uraninite occurs as tiny round and irregular crystals (20 a 30 μm) included or associated to mafic minerals, mainly pyroxene and garnet, and also to amphibole and biotite and sometimes to albite. Some secondary minerals such as, for instance, uranophane, torbernite and tyuyamunite are also found. The main albitites minerals from the Cachoeira mine (plagioclase, garnet, biotite, pyroxene, amphibole and titanite) were studied by means of Infrared Spectroscopy Techniques. Good results were obtained from small quantities of material (around 2 mg) and allowed the minerals identification, and also to know their composition (from the peak position) and to detect the presence of water molecules, which indicates an aqueous phase during the uranium formation, probably rich in Fluorine. (author)

  6. Joint M3 and Diviner Analysis of the Mineralogy, Glass Composition, and Country Rock Content of Pyroclastic Deposits in Oppenheimer Crater

    Science.gov (United States)

    Bennett, Kristen A.; Horgan, Briony H. N.; Greenhagen, Benjamin T.; Allen, Carlton C.; Paige, David A.; Bell, James F., III

    2013-01-01

    Here we present our analysis of the near- and mid-infrared spectral properties of pyroclastic deposits within the floor fractured Oppenheimer Crater that are hypothesized to be Vulcanian in origin. These are the first results of our global study of lunar pyroclastic deposits aimed at constraining the range of eruption processes on the Moon. In the near-infrared, we have employed a new method of spectral analysis developed in Horgan et al. (2013) of the 1 ?m iron absorption band in Chandrayaan-1 Moon Mineralogy Mapper (M3) spectra. By analyzing both the position and shape of the 1 ?m band we can detect and map the distribution of minerals, glasses, and mixtures of these phases in pyroclastic deposits. We are also using mid-infrared spectra from the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment to develop 200 m/pixel Christiansen Feature (CF) maps, which correlate with silica abundance. One of the benefits of using CF maps for analysis of pyroclastic deposits is that they can be used to detect silicic country rock that may have been emplaced by Vulcanian-style eruptions, and are sensitive to iron abundance in glasses, neither of which is possible in the near-infrared. M3 analysis reveals that the primary spectral endmembers are low-calcium pyroxene and iron-bearing glass, with only minor high-calcium pyroxene, and no detectable olivine. The large deposit in the south shows higher and more extensive glass concentrations than the surrounding deposits. We interpret the M3 spectra of the pyroclastic deposits as indicating a mixture of low-calcium pyroxene country rock and juvenile glass, and no significant olivine. Analysis of Diviner CF maps of the Oppenheimer crater floor indicates an average CF value of 8.16, consistent with a mixture of primarily plagioclase and some pyroxene. The average CF values of the pyroclastic deposits range from 8.31 in the SW to 8.24 in the SE. Since CF values within the deposits are as high as 8.49, the lower average CF

  7. The Mafic Lower Crust of Neoproterozoic age beneath Western Arabia: Implications for Understanding African Lower Crust

    Science.gov (United States)

    Stern, R. J.; Mooney, W. D.

    2011-12-01

    We review evidence that the lower crust of Arabia - and by implication, that beneath much of Africa was formed at the same time as the upper crust, rather than being a product of Cenozoic magmatic underplating. Arabia is a recent orphan of Africa, separated by opening of the Red Sea ~20 Ma, so our understanding of its lower crust provides insights into that of Africa. Arabian Shield (exposed in W. Arabia) is mostly Neoproterozoic (880-540 Ma) reflecting a 300-million year process of continental crustal growth due to amalgamated juvenile magmatic arcs welded together by granitoid intrusions that make up as much as 50% of the Shield's surface. Seismic refraction studies of SW Arabia (Mooney et al., 1985) reveal two layers, each ~20 km thick, separated by a well-defined Conrad discontinuity. The upper crust has average Vp ~6.3 km/sec whereas the lower crust has average Vp ~7.0 km/sec, corresponding to a granitic upper crust and gabbroic lower crust. Neogene (<30 ma) lava fields in Arabia (harrats) extend over 2500 km, from Yemen to Syria. Many of these lavas contain xenoliths, providing a remarkable glimpse of the lower-crustal and upper-mantle lithosphere beneath W. Arabia. Lower crustal xenoliths brought up in 8 harrats in Saudi Arabia, Jordan, and Syria are mostly 2-pyroxene granulites of igneous (gabbroic, anorthositic, and dioritic) origin. They contain plagioclase, orthopyroxene, and clinopyroxene, and a few contain garnet and rare amphibole and yield mineral-equilibrium temperatures of 700-900°C. Pyroxene-rich and plagioclase-rich suites have mean Al2O3 contents of 13% and 19%, respectively: otherwise the two groups have similar elemental compositions, with ~50% SiO2 and ~1% TiO2, with low K2O (<0.5%) and Na2O (1-3%). Both groups show tholeiitic affinities, unrelated to their alkali basalt hosts. Mean pyroxene-rich and plagioclase-rich suites show distinct mean MgO contents (11% vs. 7%), Mg# (67 vs. 55), and contents of compatible elements Ni (169 vs. 66 ppm

  8. The evaluation of physico-chemical parameters of the Nasrand Plutonic complex by using mineral composition

    Directory of Open Access Journals (Sweden)

    Fatemeh Sarjoughian

    2017-02-01

    Full Text Available Introduction Mineral composition is sensitive to variations in the composition of the magma and can be used to characterize the physical conditions of crystallization such as temperature, pressure, oxygen fugacity and water content. The studies have demonstrated that geobarometery by amphibole provides a tool for determining the depth of crystallization and knowledge of the depth of crystallization of hornblende through to solidification of calc-alkaline plutons (Anderson and Smith, 1995. The composition of pyroxene can be used as crystallization pressure and temperature indicators of pyroxene too. Anlytical methods The mineral compositions of the Nasrand intrusion were determined by electron microprobe, with special emphasis on the amphibole, feldspar, and pyroxene at the Naruto University, Japan, the EPMA (Jeol- JXA-8800R was used at operating conditions of 15 kV, 20 nA acceleration voltage and 20s counting time. Results The Nasrand intrusion (33°13'–33°15' N, 52°33'–52°34'E with an outcrop area of about 40 km2 is situated in the Urumieh–Dokhtar magmatic belt, SE of Ardestan. It is composed of granite and granodiorite and various dikes of diorite and gabbro which are intruded in it. It is intruded into Eocene volcanic rocks, including andesite, rhyolite, and dacite. The petrographical studies indicate that the granitic and granodioritic rocks contain major minerals such as quartz, K-feldspar, plagioclase, and amphibole, which are in an approximate equilibrium state. The gabbroic-dioritic dikes usually show microgranular porphyric texture. They mainly consist of plagioclase, amphibole, and pyroxene. The plagioclase shows variable composition from albite to oligoclase in the granitoid rocks and from oligoclase to bytownite in dioritic and gabbroic dikes (Deer et al., 1991. The amphiboles are calcic and their composition varies from hornblende to actinolite, whereas the composition of the basic dikes is inclined to hastingsite (Leake et

  9. Silicate melt metasomatism in the lithospheric mantle beneath SW Poland

    Science.gov (United States)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Grégoire, Michel; Kukuła, Anna

    2014-05-01

    The xenoliths of peridotites representing the subcontinental lithospheric mantle (SCLM) beneath SW Poland and adjacent parts of Germany occur in the Cenozoic alkaline volcanic rocks. Our study is based on detailed characterization of xenoliths occurring in 7 locations (Steinberg in Upper Lusatia, Księginki, Pilchowice, Krzeniów, Wilcza Góra, Winna Góra and Lutynia in Lower Silesia). One of the two major lithologies occurring in the xenoliths, which we call the "B" lithology, comprises peridotites (typically harzburgites) with olivine containing from 90.5 to 84.0 mole % of forsterite. The harzburgites contain no clinopyroxene or are poor in that mineral (eg. in Krzeniów the group "B" harzburgites contain pfu in ortho-, and pfu in clinopyroxene). The exception are xenoliths from Księginki, which contain pyroxenes characterised by negative correlation between mg# and Al. The REE patterns of both ortho- and clinopyroxene in the group "B" peridotites suggest equilibration with silicate melt. The rocks of "B" lithology were formed due to alkaline silicate melt percolation in the depleted peridotitic protolith. The basaltic melts formed at high pressure are usually undersaturated in both ortho- and clinopyroxene at lower pressures (Kelemen et al. 1992). Because of cooling and dissolution of ortho- and clinopyroxene the melts change their composition and become saturated in one or both of those phases. Experimental results (e.g. Tursack & Liang 2012 and references therein) show that the same refers to alkaline basaltic silicate melts and that its reactive percolation in the peridotitic host leads to decrease of Mg/(Mg+Fe) ratios of olivine and pyroxenes. Thus, the variation of relative volumes of olivine and orthopyroxene as well as the decrease of mg# of rock-forming silicates is well explained by reactive melt percolation in the peridotitic protolith consisting of high mg# olivine and pyroxenes (in the area studied by us that protolith was characterised by olivine

  10. Metaultramafic schists and dismembered ophiolites of the Ashe Metamorphic Suite of northwestern North Carolina, USA

    Science.gov (United States)

    Raymond, Loren A.; Merschat, Arthur J.; Vance, R. Kelly

    2016-01-01

    Metaultramafic rocks (MUR) in the Ashe Metamorphic Suite (AMS) of northwestern North Carolina include quartz ± feldspar-bearing QF-amphibolites and quartz-deficient, locally talc-, chlorite-, and/or Mg-amphibole-bearing TC-amphibolites. Some workers divide TC-amphibolites into Todd and Edmonds types, based on mineral and geochemical differences, and we provisionally add a third type – olivine ± pyroxene-rich, Rich Mountain-type rocks. Regionally, MUR bodies range from equant, Rich Mountain- to highly elongate, Todd-TC-amphibolite-type bodies. The MURs exhibit three to five mineral associations containing assemblages with olivine, anthophyllitic amphibole, Mg-hornblende, Mg-actinolite, cummingtonite, and serpentine representing decreasing eclogite to greenschist facies grades of metamorphism over time. MUR protoliths are difficult to determine. Southwestern MUR bodies have remnant olivine ± pyroxene-rich assemblages representing ultrabasic-basic, dunite-peridotite-pyroxenite protoliths. Northeastern TC-amphibolite MURs contain hornblende and actinolitic amphiboles plus chlorites – aluminous and calcic assemblages suggesting to some that metasomatism of basic, QF-amphibolites yields all TC-amphibolites. Yet MgO-CaO-Al2O3 and trace element chemistries of many TC-amphibolites resemble compositions of plagioclase peridotites. We show that a few AMS TC-amphibolites had basaltic/gabbroic protoliths, while presenting arguments opposing application of the metasomatic hypothesis to all TC-amphibolites. We establish that MUR bodies are petrologically heterolithic and that TC-amphibolites are in contact with many rock types; that those with high Cr, Ni, and Mg have olivine- or pyroxene-dominated protoliths; that most exhibit three or more metamorphic mineral associations; and that contacts thought to be metasomatic are structural. Clearly, different MUR bodies have different chemistries representing various protoliths, and have different mineral assemblages, reflecting

  11. Are some chondrule rims formed by impact processes? Observations and experiments.

    Science.gov (United States)

    Bunch, T E; Schultz, P; Cassen, P; Brownlee, D; Podolak, M; Lissauer, J; Reynolds, R; Chang, S

    1991-01-01

    Observations and experimental evidence are presented to support the hypothesis that high-speed impact into a parent body regolith can best explain certain textures and compositions observed for rims on some chondrules. A study of 19 interclastic rimmed chondrules in the Weston (H 3/4) ordinary chondrite shows that two main rim types are present on porphyritic olivine-pyroxene (POP) and porphyritic pyroxene (PP) chondrules: granular and opaque rims. Granular rims are composed of welded, fine-grained host chondrule fragments. Bulk compositions of granular rims vary among chondrules, but each rim is compositionally dependent on that of the host chondrule. Opaque rims contain mineral and glass compositions distinctly different from those of the host, partially reacted chondrule mantle components, and some matrix grains. Opaque rims are greatly enriched in FeO (up to 63 wt%). The original chondrule pyroxene compositional zonation patterns and euhedral grain outlines are discontinuous at the chondrule/rim interface. Opaque rims are dominated by fayalitic olivine (Fa92-56), with high Al2O3 content (0.78-3.15%), which makes them distinctly different from primary olivine, but similar to Fe-olivine in chondrule rims of other meteorites. Thin zones of chondrule minerals adjacent to the present rims are intermediate in FeO content between the Mg-rich interior and the Fe-rich rim, which indicates a reaction relationship. Regardless of conclusions drawn regarding other types of rims, granular and opaque rim characteristics appear to be inconsistent with nebular condensation, in that host and matrix fragments are included within the rim. We have initiated a series of experiments, using the Ames two-stage light gas gun, to investigate the hypothesis that the Weston chondrule rims are the result of thermal and mechanical alteration upon impact into a low-density medium. Clusters of approximately 200-micron-sized silicate particles were fired into aerogel (density = 0.1 g cm-3) at

  12. Magma evolution at Copahue volcano (Chile/Argentina border): insights from melt inclusions

    Science.gov (United States)

    Cannatelli, C.; Aracena, C.; Leisen, M.; Moncada, D.; Roulleau, E.; Vinet, N.; Petrelli, M.; Paolillo, A.; Barra, F.; Morata, D.

    2016-12-01

    Copahue volcano is an active stratovolcano in the Andean Southern Volcanic Zone (SVZ), straddling at the border between Central Chile and Argentina. The volcano's eruptive style during its history has changed from mainly effusive in the Pleistocene to explosive in the Holocene. The prehistoric eruptions can be divided into pre-glacial (PG), syn-glacial (SG) and post-glacial (PM) stages, with products ranging from basaltic andesites to andesites. In order to investigate the evolution of the magma source and volatiles through time, we have focused our study on the eruptive products from the SG to the 2014 eruption (SUM2014). Sampled rocks are glomero-porphyritic, with a paragenetic mineral sequence of feldspars, ortho- and clinopyroxene, and olivine in order of abundance. All samples present a variable number of vesicles, with SUM2014 samples containing the biggest amount. Feldspar composition varies from Na-rich (andesine) in SG to Ca-rich (labradorite) in SUM2014. Two pyroxene types are present in SG and PM samples (augite and enstatite), while SUM2014 presents augite, pigeonite and enstatite. Thermobarometric estimation, based on mineral chemistry, show a bimodal distribution for SG and SUM2014 (P=10-12 kbars and 5-8 kbars) and only one interval for PM (P=7-8 kbars). Melt Inclusions Assemblages (MIAs) are found in all mineral phases, mostly re-crystallized, with one or more bubbles and daughter oxide minerals. Compositions vary from trachy-andesitic to dacitic for SG, andesitic to trachydacitic for PM, and basaltic andesitic to trachydacitic for SUM2014. Major elements systematics show the existence of a bimodal distribution of pyroxene and feldspar hosted-MIA in SUM2014, which together with the co-presence of pigeonite (low-Ca pyroxene) and augite and the bimodal distribution of P, can be interpreted as evidence of mixing of two types of magmas, evolving at different depths. Trace elements systematics for MIA in SG, PM and SUM2014 show a negative anomaly for Nb

  13. Magmatic controls on eruption dynamics of the 1950 yr B.P. eruption of San Antonio Volcano, Tacaná Volcanic Complex, Mexico-Guatemala

    Science.gov (United States)

    Mora, Juan Carlos; Gardner, James Edward; Macías, José Luis; Meriggi, Lorenzo; Santo, Alba Patrizia

    2013-07-01

    San Antonio Volcano, in the Tacaná Volcanic Complex, erupted ~ 1950 yr. B.P., with a Pelean type eruption that produced andesitic pyroclastic surges and block-and-ash flows destroying part of the volcano summit and producing a horse-shoe shaped crater open to the SW. Between 1950 and 800 yr B.P. the eruption continued with effusive andesites followed by a dacite lava flow and a summit dome, all from a single magma batch. All products consist of phenocrysts and microphenocrysts of zoned plagioclase, amphibole, pyroxene, magnetite ± ilmenite, set in partially crystallized groundmass of glass and microlites of the same mineral phases, except for the lack of amphibole. Included in the andesitic blocks of the block-and-ash flow deposit are basaltic andesite enclaves with elongated and ellipsoidal forms and chilled margins. The enclaves have intersertal textures with brown glass between microphenocrysts of plagioclase, hornblende, pyroxene, and olivine, and minor proportions of phenocrysts of plagioclase, hornblende, and pyroxene. A compositional range obtained of blocks and enclaves resulted from mixing between andesite (866 °C ± 22) and basaltic andesite (enclaves, 932 °C ± 22), which may have triggered the explosive Pelean eruption. Vestiges of that mixing are preserved as complex compositional zones in plagioclase and clinopyroxene-rich reaction rims in amphibole in the andesite. Whole-rock chemistry, geothermometry, experimental petrology and modeling results suggest that after the mixing event the eruption tapped hybrid andesitic magma (≤ 900 °C) and ended with effusive dacitic magma (~ 825 °C), all of which were stored at ~ 200 MPa water pressure. A complex open-system evolution that involved crustal end-members best explains the generation of effusive dacite from the hybrid andesite. Amphibole in the dacite is rimmed by reaction products of plagioclase, orthopyroxene, and Fe-Ti oxides produced by decompression during ascent. Amphibole in the andesite

  14. Chemical Analysis of Reaction Rims on Olivine Crystals in Natural Samples of Black Dacite Using Energy-Dispersive X-Ray Spectroscopy, Lassen Peak, CA.

    Science.gov (United States)

    Graham, N. A.

    2014-12-01

    Lassen Volcanic Center is the southernmost volcanic region in the Cascade volcanic arc formed by the Cascadia Subduction Zone. Lassen Peak last erupted in 1915 in an arc related event producing a black dacite material containing xenocrystic olivine grains with apparent orthopyroxene reaction rims. The reaction rims on these olivine grains are believed to have formed by reactions that ensued from a mixing/mingling event that occurred prior to eruption between the admixed mafic andesitic magma and a silicic dacite host material. Natural samples of the 1915 black dacite from Lassen Peak, CA were prepared into 15 polished thin sections and carbon coated for analysis using a FEI Quanta 250 Scanning Electron Microscope (SEM) to identify and measure mineral textures and disequilibrium reaction rims. Observed mineralogical textures related to magma mixing include biotite and amphibole grains with apparent dehydration/breakdown rims, pyroxene-rimmed quartz grains, high concentration of microlites in glass matrix, and pyroxene/amphibole reaction rims on olivine grains. Olivine dissolution is evidenced as increased iron concentration toward convolute edges of olivine grains as observed by Backscatter Electron (BSE) imagery and elemental mapping using NSS spectral imaging software. In an attempt to quantify the area of reaction rim growth on olivine grains within these samples, high-resolution BSE images of 30 different olivine grains were collected along with Energy-Dispersive X-Ray Spectroscopy (EDS) of different phases. Olivine cores and rims were extracted from BSE images using Photoshop and saved as separate image files. ImageJ software was used to calculate the area (μm2) of the core and rim of these grains. Average pyroxene reaction rim width for 30 grains was determined to be 11.68+/-1.65 μm. Rim widths of all 30 grains were averaged together to produce an overall average rim width for the Lassen Peak black dacite. By quantifying the reaction rims on olivine grains

  15. An initial perspective of S-asteroid subtypes within asteroid families

    Science.gov (United States)

    Kelley, M. S.; Gaffey, M. J.

    1993-01-01

    Many main belt asteroids cluster around certain values of semi-major axis (a), inclination (i), and eccentricity (e). Hirayama was the first to notice these concentrations which he interpreted as evidence of disruptions of larger parent bodies. He called these clusters 'asteroid families'. The term 'families' is increasingly reserved for genetic associations to distinguish them from clusters of unknown or purely dynamical origin (e.g. the Phocaea cluster). Members of a genetic asteroid family represent fragments derived from various depths within the original parent planetesimal. Thus, family members offer the potential for direct examination of the interiors of parent bodies which have undergone metamorphism and differentiation similar to that occurring in the inaccessible interiors of terrestrial planets. The differentiation similar to that occurring in the inaccessible interiors of terrestrial planets. The condition that genetic family members represent the fragments of a parent object provides a critical test of whether an association (cluster in proper element space) is a genetic family. Compositions (types and relative abundances of materials) of family members must permit the reconstruction of a compositionally plausible parent body. The compositions of proposed family members can be utilized to test the genetic reality of the family and to determine the type and degree of internal differentiation within the parent planetesimal. The interpretation of the S-class mineralogy provides a preliminary evaluation of family memberships. Detailed mineralogical and petrological analysis was done based on the reflectance spectra of 39 S-type asteroids. The result is a division of the S-asteroid class into seven subtypes based on compositional differences. These subtypes, designated S(I) to S(VII), correspond to surface silicate assemblages ranging from monomineralic olivine (dunites) through olivine-pyroxene mixtures to pure pyroxene or pyroxene-feldspar mixtures

  16. Comparison of the Mineralogy of Comet Wild 2 Coma Grains to Other Astromaterials

    Science.gov (United States)

    Frank, David; Zolensky, Michael

    2010-01-01

    We propose that Kuiper Belt samples (in this case comet coma grains from the Jupiter family comet Wild 2) are recognizably different from the bulk of materials in outer belt asteroids, because of their different formation positions and times in the early solar system. We believe this despite similarities found between some Wild 2 grains and components of carbonaceous chondrites (i.e. some CAI and chondrules). Kuiper Belt samples must preserve measurable mineralogical and compositional evidence of formation at unique positions and times in the early solar nebula, and these formational differences must have imparted recognizable special characteristics. We hypothesize that these characteristics include: (1) Unique major element compositional ranges of common astromaterial minerals, especially olivine and pyroxene; (2) Unique minor element compositions of major silicate phases, especially olivine and low-Ca pyroxene; (3) Degree and effects of radiation processing -- including amorphous rims, metal coatings, and Glass with Embedded Metal and Sulfides (GEMS); (4) Presence of abundant presolar silicate grains as recognized by anomalous oxygen in silicates; (5) Oxidation state of the mineral assemblage. We are working our way through all available Wild 2 samples, selecting 1-2 non-consecutive viable TEM grids from each possible extracted Wild 2 grain. We especially prefer TEM grids from grains for which complete mineralogical details have not been published (which is to say the majority of the extracted grains). We are performing a basic mineralogic survey by E-beam techniques, to establish the essential features of the extracted Wild 2 grains. We are making a particular effort to carefully and accurately measure minor elements of olivine and pyroxene, as these minerals are widespread in astromaterials, and comparisons of their compositions will serve to place the Wild 2 silicates in contact with asteroids, meteorites and chondritic interplanetary dust particles

  17. Lithospheric strength in the active boundary between the Pacific Plate and Baja California microplate constrained from lower crustal and upper mantle xenoliths

    Science.gov (United States)

    Chatzaras, Vasileios; van der Werf, Thomas; Kriegsman, Leo M.; Kronenberg, Andreas; Tikoff, Basil; Drury, Martyn R.

    2017-04-01

    The lower crust is the most poorly understood of the lithospheric layers in terms of its rheology, particularly at active plate boundaries. We studied naturally deformed lower crustal xenoliths within an active plate boundary, in order to link their microstructures and rheological parameters to the well-defined active tectonic context. The Baja California shear zone (BCSZ), located at the western boundary of the Baja California microplate, comprises the active boundary accommodating the relative motion between the Pacific plate and Baja California microplate. The basalts of the Holocene San Quintin volcanic field carry lower crustal and upper mantle xenoliths, which sample the Baja California microplate lithosphere in the vicinity of the BCSZ. The lower crustal xenoliths range from undeformed gabbros to granoblastic two-pyroxene granulites. Two-pyroxene geothermometry shows that the granulites equilibrated at temperatures of 690-920 oC. Phase equilibria (P-T pseudosections using Perple_X) indicate that symplectites with intergrown pyroxenes, plagioclase, olivine and spinel formed at 3.6-5.4 kbar, following decompression from pressures exceeding 6 kbar. FTIR spectroscopy shows that the water content of plagioclase varies among the analyzed xenoliths; plagioclase is relatively dry in two xenoliths while one xenolith contains hydrated plagioclase grains. Microstructural observations and analysis of the crystallographic texture provide evidence for deformation of plagioclase by a combination of dislocation creep and grain boundary sliding. To constrain the strength of the lower crust and upper mantle near the BCSZ we estimated the differential stress using plagioclase and olivine grain size paleopiezomtery, respectively. Differential stress estimates for plagioclase range from 10 to 32 MPa and for olivine are 30 MPa. Thus the active microplate boundary records elevated crustal temperatures, heterogeneous levels of hydration, and low strength in both the lower crust and

  18. Mineralogy and Iron Content of the Lunar Polar Regions Using the Kaguya Spectral Profiler and the Lunar Orbiter Laser Altimeter

    Science.gov (United States)

    Lemelin, M.; Lucey, P. G.; Trang, D.; Jha, K.

    2016-12-01

    The lunar polar regions are of high scientific interest, but the extreme lighting conditions have made quantitative analyses using reflectance spectra difficult; some regions are in permanent shadow, and flat surfaces are difficult to correct photometrically due to the extreme grazing incidence and low signal available. Thus, most mineral maps derived from visible and near infrared reflectance spectra have been constrained to within 50° in latitude. The mineralogy of the polar regions, or 44% of the lunar surface, is almost entirely unknown. A few studies have provided compositional analysis based on the spectral shape (where strong absorption bands were present) of lithologies dominated by one or two minerals. In this study, we take a novel approach and use strong signal and well-calibrated reflectance acquired by two different instruments, the Kaguya Spectra Profiler (SP) and the Lunar Orbiter Laser Altimeter (LOLA), in order to derive the first FeO and mineral maps of the polar regions at a spatial resolution of 1 km per pixel. We use reflectance ratios from SP and calibrated reflectance data from LOLA to derive the first polar maps of FeO, which are within 2 wt.% of the FeO measured by the Lunar Prospector Gamma-Ray spectrometer up to 85° in latitude. We then use the reflectance data from SP and Hapke radiative transfer model to compute the abundance of olivine, low-calcium pyroxene, high-calcium pyroxene and plagioclase, using FeO as a constraint. The radiative transfer model yields an error in mineral abundances of 9 wt.%. We use the mineral maps to study the composition of 27 central peaks and 5 basin rings in the polar regions, and relate their composition to their depth of origin in the lunar crust. We find that the central peaks and basin rings in Feldspathic Highlands Terrane are mostly anorthositic in composition, with modal plagioclase content ranging between 66 and 92 wt.%. The central peaks and basin rings in the South Pole-Aitken basin are noritic

  19. The influence of fluorine on phase relations and REE enrichment in alkaline magmas

    Science.gov (United States)

    Beard, C. D.; van Hinsberg, V.; Stix, J.; Wilke, M.

    2017-12-01

    Fluorine is a minor element in most magmas, but higher concentrations to wt% levels have been reported in alkaline systems, including those which host economic deposits of REE + HFSE1. Despite low abundance in most natural melts, fluorine has received great attention from the experimental community because it has a strong influence on melt structure, lowering melting points and drastically reducing viscosity. The effect of fluorine on element speciation has important implications for phase relations and the partitioning of trace elements between minerals and melts, thus metal enrichment processes in alkaline magmas. We have experimentally investigated the impact of fluorine on phase relations and partitioning of rare metals, the REE in particular, in evolved alkaline melts. Synthetic glasses of tephriphonolite to phonolite composition were doped with a wide range of elements at trace levels, and fluorine contents were varied from fluorine-free to 2.5 wt%. Experiments were performed water-saturated in an internally heated pressure vessel at 200 MPa with log fO2 at ca. QFM+1, which represents the intrinsic redox conditions of the setup. Charges were heated to super-liquidus conditions for 16 hours, cooled slowly (1˚C/min) to run temperature and subsequently equilibrated for at least 40 hours. Run products were analysed by EPMA and LA-ICP-MS. The experiments produce an equilibrium assemblage of sodic pyroxene, biotite, Fe-oxide, melt, fluid, ±K-feldspar, ±titanite, ±fluorite. Addition of fluorine markedly increases the mode of biotite, which initially buffers melt F content at low levels (< 0.2 wt%). Only in experiments with more than 0.6 wt% F do we observe a significant increase in the melt F-content. Here, fluorine decreases pyroxene/melt partitioning coefficients equally for all REE where pyroxene composition and P-T conditions are equivalent (ca. 1/2 with 0.6% F). We suggest that the formation of REE-F complexes in the melt2 lowers the availability of metals

  20. Mineralogical Mapping of the Av-5 Floronia Quadrangle of Asteroid 4 Vesta

    Science.gov (United States)

    Combe, J.-Ph.; Fulchinioni, M.; McCord, T. B.; Ammannito, E.; De Sanctis, M. C.; Nathues, A.; Capaccioni, F.; Frigeri, A.; Jaumann, R.; Le Corre, L.; Palomba, E.; Preusker, F.; Reddy, V.; Stephan, K.; Tosi, F.; Zambon, F.; Raymond, C. A.; Russell, C. T.

    2012-04-01

    Asteroid 4 Vesta is currently under investigation by NASA's Dawn orbiter. The Dawn Science Team is conducting mineralogical mapping of Vesta's surface in the form of 15 quadrangle maps, and here we report results from the mapping of Floronia quadrangle Av-5. The maps are based on the data acquired by the Visible and Infrared Mapping Spectrometer (VIR-MS) and the Framing Camera (FC) (De Sanctis et al., this meeting). This abstract is focused on the analysis of band ratios, as well as the depth and position of the 2-µm absorption band of pyroxenes, but additional information will be presented. Absorption band depth is sensitive to abundance, texture and multiple scattering effects. Absorption band position is controlled by composition, shorter wavelength positions indicate less Calcium (and more Magnesium) in pyroxenes. The inferred composition is compared with that of Howardite, Eucite and Diogenite meteorites (HEDs). Diogenites are Mg-rich with large orthopyroxene crystals suggesting formation in depth; Eucrites are Ca-poor pyroxene, with smaller crystals. Av-5 Floronia Quadrangle is located between ~20-66˚N and 270˚-360˚E. It covers a portion of the heavily-cratered northern hemisphere of Vesta, and part of it is in permanent night, until August 2012. Long shadows make the visualization of albedo variations difficult, because of limited effectiveness of photometric corrections. Most of the variations of the band depth at 2 µm are partly affected by illumination geometry in this area. Only regional tendencies are meaningful at this time of the analysis. The 2-µm absorption band depth seems to be deeper towards the south of the quadrangle, in particular to the south of Floronia crater. It is not possible to interpret the value of the band depth in the floor the craters because of the absence of direct sunlight. However, the illuminated rims seem to have a deeper 2-µm absorption band, as does the ejecta from an unnamed crater located further south, within

  1. Geochemical studies of abyssal lavas recovered by DSRV Alvin from Eastern Galapagos Rift, Inca Transform, and Ecuador Rift: 2. Phase chemistry and crystallization history

    Science.gov (United States)

    Perfit, Michael R.; Fornari, Daniel J.

    1983-12-01

    A diverse suite of lavas recovered by DSRV Alvin from the eastern Galapagos rift and Inca transform includes mid-ocean ridge tholeiitic basalts (MORB), iron- and titanium-enriched basalts (FeTi basalts), and abyssal andesites. Rock types transitional in character (ferrobasalts and basaltic andesites) were also recovered. The most mafic glassy basalts contain plagioclase, augite, and olivine as near-liquidus phases, whereas in more fractionated basalts, pigeonite replaces olivine and iron-titanium oxides crystallize. Plagioclase crystallizes after pyroxenes and iron-titanium oxides in andesites, possibly due to increased water contents or cooling rates. Apatite phenocrysts are present in some andesitic glasses. Ovoid sulfide globules are also common in many lavas. Compositional variations of phenocrysts in glassy lavas reflect changes in magma chemistry, temperature of crystallization, and cooling rate. The overall chemical variations parallel the chemical evolution of the lava suite and are similar to those in other fractionated tholeiitic complexes. Elemental partitioning between plagioclase-, pyroxene-, and olivine-glass pairs suggests that equilibration occurred at low pressure in a rather restricted temperature range. Various geothermometers indicate that the most primitive MORB began to crystallize between 1150° and 1200°C with fo2 PH 2 o could have been as high as 1 kbar during andesite crystallization. Compositions of the lavas from the Galapagos rift follow the experimentally determined (1 atm-QFM) liquid line of descent. Least squares calculations for the major elements indicate that the entire suite of lavas can be produced by fractional crystallization of successive residual liquids from a MORB parent magma. FeTi basalts represent 30-65 cumulative weight percent crystallization of plagioclase, augite, and olivine. An additional 30-50% fractionation of pyroxenes, plagioclase, titanomagnetite, and possible apatite is required to generate andesite from Fe

  2. Distinct 238U/235U ratios and REE patterns in plutonic and volcanic angrites: Geochronologic implications and evidence for U isotope fractionation during magmatic processes

    Science.gov (United States)

    Tissot, François L. H.; Dauphas, Nicolas; Grove, Timothy L.

    2017-09-01

    Angrites are differentiated meteorites that formed between 4 and 11 Myr after Solar System formation, when several short-lived nuclides (e.g., 26Al-26Mg, 53Mn-53Cr, 182Hf-182W) were still alive. As such, angrites are prime anchors to tie the relative chronology inferred from these short-lived radionuclides to the absolute Pb-Pb clock. The discovery of variable U isotopic composition (at the sub-permil level) calls for a revision of Pb-Pb ages calculated using an ;assumed; constant 238U/235U ratio (i.e., Pb-Pb ages published before 2009-2010). In this paper, we report high-precision U isotope measurement for six angrite samples (NWA 4590, NWA 4801, NWA 6291, Angra dos Reis, D'Orbigny, and Sahara 99555) using multi-collector inductively coupled plasma mass-spectrometry and the IRMM-3636 U double-spike. The age corrections range from -0.17 to -1.20 Myr depending on the samples. After correction, concordance between the revised Pb-Pb and Hf-W and Mn-Cr ages of plutonic and quenched angrites is good, and the initial (53Mn/55Mn)0 ratio in the Early Solar System (ESS) is recalculated as being (7 ± 1) × 10-6 at the formation of the Solar System (the error bar incorporates uncertainty in the absolute age of Calcium, Aluminum-rich inclusions - CAIs). An uncertainty remains as to whether the Al-Mg and Pb-Pb systems agree in large part due to uncertainties in the Pb-Pb age of CAIs. A systematic difference is found in the U isotopic compositions of quenched and plutonic angrites of +0.17‰. A difference is also found between the rare earth element (REE) patterns of these two angrite subgroups. The δ238U values are consistent with fractionation during magmatic evolution of the angrite parent melt. Stable U isotope fractionation due to a change in the coordination environment of U during incorporation into pyroxene could be responsible for such a fractionation. In this context, Pb-Pb ages derived from pyroxenes fraction should be corrected using the U isotope composition

  3. Magnetometry, radiometry and gammaspectrometry of the Janjao diatreme, Lages, State of Santa Catarina, Brazil

    International Nuclear Information System (INIS)

    Svisero, D.P.; Scheibe, L.F.

    1985-01-01

    Magnetic, radiometric and gamma spectrometric surveys have been carried out on the Janjao diatreme which outcrops near Lajes in central-east Santa Catarina State, Brazil. The body is deeply weathered on the surface and its concentrates contain serpentinized olivine, phlogopote, pyroxenes, ilmenites, garnet and zircon. The interpretation of the magnetic anomaly revealed an irregular diatreme whose main dimensions are 50 X 190 meters. A vertical to subvertical dyke cuts the main diatreme. The radiometric anomaly as well as the potassium content helped to delineate the contacts between the diatreme and its country rocks (sandstones). Faults striking NNE controlled the emplacement of the Janjao diatreme as well as the intrusion of an alkaline dyke located near the diatreme. (Author) [pt

  4. Rb-Sr age of the Sivamalai alkaline complex, Tamil Nadu

    International Nuclear Information System (INIS)

    Subba Rao, T.V.; Narayana, B.L.; Gopalan, K.

    1994-01-01

    The Sivamalai alkaline complex comprises ferro-, pyroxene- hornblende-and nepheline-syenites. Field relations show that the nepheline syenites followed the emplacement of non-feldspathoidal syenites. Mineralogical data on the syenite suite have been reviewed. The Sivamalai alkaline rocks are not strongly enriched in rare-earth elements like most miaskites. Rb-Sr isotopic analyses of a suite of six samples from the various members of the complex define an isochron corresponding to an age of 623 ± 21 Ma (2σ) and initial Sr ratio of 0.70376 ± 14 (2σ). This is consistent with a model of fractional crystallization of a parent magma derived from an upper mantle source with apparently no isotopic evidence for more than one magma source for the complex. The Sivamalai alkaline complex represents a Pan-African alkaline magmatic event in the southern granulite terrane of peninsular India. (author). 26 refs., 4 figs., 4 tabs

  5. Possible zircon U-Pb evidence for Pan-African granulite-facies metamorphism in the Mozambique belt of southern Tanzania

    International Nuclear Information System (INIS)

    Coolen, J.J.M.M.M.

    1982-01-01

    Four zircon fractions of garnet-bearing two-pyroxene granulite, from the Furua granulite complex of southern Tanzania, plot very close to concordia. A discordia yields a lower intercept at 652 +- 10 Ma, an age slightly higher than the Rb-Sr whole-rock and mineral ages reported from the surrounding amphibolite-facies rocks. The U-Pb systematics indicate the presence of a very small amount of older (2-3 Ga) radiogenic lead. The zircon data may be interpreted as indicating an event of granulite-facies metamorphism during the Pan-African thermotectonic episode. This interpretation is at variance with current models postulating that the granulite complexes in the Mozambique belt are relicts of older, possibly Archaean events of metamorphism. (Auth.)

  6. Evidence for extreme Ti-50 enrichments in primitive meteorites

    International Nuclear Information System (INIS)

    Fahey, A.; Mckeegan, K.D.; Zinner, E.; Goswami, J.N.; Physical Research Lab., Ahmedabad, India)

    1985-01-01

    The results of the first high mass resolution ion microprobe study of Ti isotopic compositions in individual refractory grains from primitive carbonaceous meteorites are reported. One hibonite from the Murray carbonaceous chondrite has a 10 percent excess of Ti-50, 25 times higher than the maximum value previously reported for bulk samples of refractory inclusions from carbonaceous chondrites. The variation of the Ti compositions between different hibonite grains, and among pyroxenes from a single Allende refractory inclusion, indicates isotopic inhomogeneities over small scale lengths in the solar nebula and emphasizes the importance of the analysis of small individual phases. This heterogeneity makes it unlikely that the isotopic anomalies were carried into the solar system in the gas phase. 20 references

  7. 9969 Braille: Deep Space 1 infrared spectroscopy, geometric albedo, and classification

    Science.gov (United States)

    Buratti, B.J.; Britt, D.T.; Soderblom, L.A.; Hicks, M.D.; Boice, D.C.; Brown, R.H.; Meier, R.; Nelson, R.M.; Oberst, J.; Owen, T.C.; Rivkin, A.S.; Sandel, B.R.; Stern, S.A.; Thomas, N.; Yelle, R.V.

    2004-01-01

    Spectra of Asteroid 9969 Braille in the 1.25-2.6 ??m region returned by the Deep Space 1 (DS1) Mission show a ???10% absorption band centered at 2 ??m, and a reflectance peak at 1.6 ??m. Analysis of these features suggest that the composition of Braille is roughly equal parts pyroxene and olivine. Its spectrum between 0.4 and 2.5 ??m suggests that it is most closely related to the Q taxonomic type of asteroid. The spectrum also closely matches that of the ordinary chondrites, the most common type of terrestrial meteorite. The geometric albedo of Braille is unusually high (pv = 0.34), which is also consistent with its placement within the rarer classes of stony asteroids, and which suggests it has a relatively fresh, unweathered surface, perhaps due to a recent collision. ?? 2003 Elsevier Inc. All rights reserved.

  8. Glass inclusions in volcanic rocks in the Okinawa Trough back-arc basin: constraints on magma genesis and evolution

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The major elemnt compositions of glass inclusions in plagioclase and pyroxene phenocrysts of basalt and pumice in the Okinawa Trough back-arc basin are determined by electron microprobe. The results indicate that basalt and pumice are cognate and respectively represent the proluots at early stages of mgmtism and at late stage of crystal fractionation. The initial magrma in the trough is rich in H2O. The variation of H2O content in magma may play an important role in the magma evolution. Plagioclase is the mineral crystallized throughout the whole magrmatic process and accumulates in the zoned magma chamber. From these features it can he inferred that the initial magma in the Okinawa Trough, whose opening began in recent years, is serious ly affected by fluid or other materials carried by subducting slab and the geocbemical feature of volcanic rocks is in some degree similar to that of lavas in island-arc environments.

  9. A Model of Silicate Grain Nucleation and Growth in Circumstellar Outflows

    Science.gov (United States)

    Paquette, John A.; Ferguson, Frank T.; Nuth, Joseph A., III

    2011-01-01

    Based on its abundance, high bond energy, and recent measurements of its vapor pressure SiO is a natural candidate for dust nucleation in circumstellar outflows around asymptotic giant branch stars. In this paper, we describe a model of the nucleation and growth of silicate dust in such outflows. The sensitivity of the model to varying choices of poorly constrained chemical parameters is explored, and the merits of using scaled rather than classical nucleation theory are briefly considered, An elaboration of the model that includes magnesium and iron as growth species is then presented and discussed. The composition of the bulk of the grains derived from the model is consistent with olivines and pyroxenes, but somewhat metal-rich grains and very small, nearly pure SiO grains are also produced,

  10. The mineral chemistry and origin of inclusion matrix and meteorite matrix in the Allende CV3 chondrite

    International Nuclear Information System (INIS)

    Kornacki, A.S.; Wood, J.A.; Harvard Univ., Cambridge, MA

    1984-01-01

    The two textural varieties of olivine-rich Allende inclusions consist primarily of a porous, fine-grained mafic constituent that differs from the opaque meteorite matrix of CV3 chondrites by being relatively depleted in sulfides, metal grains, and carbonaceous material. Olivine is the most abundant mineral in Allende inclusion matrix; clinopyroxene, nepheline, sodalite, and Ti-Al-pyroxene occur in lesser amounts. Olivine in unrimmed olivine aggregates is ferrous and has a narrow compositional range. Olivine in rimmed olivine aggregates is, on average, more magnesian, with a wider compositional range. Olivine grains in the granular rims of Type 1B inclusions are zoned, with magnesian cores and ferrous rinds. Ferrous olivines in both varieties of inclusions commonly contain significant amounts of Al 2 O 3 , CaO and TiO 2 , refractory elements that probably occur in submicroscopic inclusions of Ca, Al, Ti-rich glass. Defocussed beam analyses of Allende matrix materials are discussed. (author)

  11. Nucleation and crystallization of new glasses from fly ash originating from thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, L.; Lancellotti, I.; Manfredini, T.; Pellacani, G.C.; Rincon, J.M.; Romero, M. [University of Modena & Reggio Emilia, Modena (Italy). Faculty of Engineering, Dept. of Chemistry

    2001-08-01

    The nucleation and crystallization kinetics of new glasses obtained by melting mixtures of a Spanish carbon fly ash with glass cullet and dolomite slag at 1500{degree}C has been evaluated by a calculation method. These glasses, whose microstructure was examined by TEM carbon replica, were susceptible to controlled crystallization in the 800{degree} -1100{degree}C range. The resulting glass-ceramics developed acicular and branched wollastonite crystals or a network of dendritic pyroxene mixed with anorthite feldspar (SEM and EDX analysis). The time-temperature-transformation curves (processing of the XRD data) showed the crystallization kinetics and the critical cooling rate to be in the 12{degree} -42{degree}C/min range.

  12. Physical Properties of Aten, Apollo and Amor asteroids

    International Nuclear Information System (INIS)

    McFadden, L.A.; Tholen, D.J.; Veeder, G.J.

    1989-01-01

    The physical properties of Aten, Apollo and Amor objects includeing their taxonomy, composition, size, rotation rate, shape and surface texture, are derived from observations using spectrophometry, reflectance spectroscopy, broadband photometry, radiometry, polarimetry and radar. The authors discuss how their current understanding of this population is that it is diverse in terms of all physical properties that can be studied from the ground and consists of contributions from more than one source region. Almost all taxonomic types found in the main belt are present amoung this population. Class Q objects are unique to the AAAO population. Both low-temperature assemblages, which are dark and probably carbonaceous-rich, and high-temperature, differentiated assemblages of olivine, pyroxene and metallic phases, are found amoung the AAAO. These asteroids have experienced a range of different thermal regimes in the past. Discovery biases probably create the high abundance of bright objects. A bimodal distribution of rotation rates indicates that the population is not collisionally evolved

  13. Mössbauer parameters of ordinary chondrites influenced by the fit accuracy of the troilite component: an example of Chelyabinsk LL5 meteorite

    Energy Technology Data Exchange (ETDEWEB)

    Maksimova, A. A. [Ural Federal University, Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology (Russian Federation); Klencsár, Z. [Hungarian Academy of Sciences, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences (Hungary); Oshtrakh, M. I., E-mail: oshtrakh@gmail.com; Petrova, E. V.; Grokhovsky, V. I. [Ural Federal University, Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology (Russian Federation); Kuzmann, E.; Homonnay, Z. [Eötvös Loránd University, Institute of Chemistry (Hungary); Semionkin, V. A. [Ural Federal University, Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology (Russian Federation)

    2016-12-15

    The influence of the fit accuracy of the troilite component in the Mössbauer spectra of ordinary chondrites on the parameters obtained for other spectral components was evaluated using the Mössbauer spectrum of Chelyabinsk LL5 meteorite fragment with light lithology as a typical example. It was shown that with respect to the application of a usual sextet component where quadrupole interaction is taken into account in the first-order perturbation limit, substantial improvement of the spectrum fit can be achieved either by using the full Hamiltonian description of the troilite component or by its formal approximation with the superposition of three symmetric doublet components. Parameter values obtained for the main spectral components related to olivine and pyroxene were not sensitive to the fit of troilite component while parameters of the minor spectral components depended on the way of troilite component fitting.

  14. Mineralogical and chemical properties of the lunar regolith

    Science.gov (United States)

    Mckay, David S.; Ming, Douglas W.

    1989-01-01

    The composition of lunar regolith and its attendant properties are discussed. Tables are provided listing lunar minerals, the abundance of plagioclase feldspar, pyroxene, olivine, and ilmenite in lunar materials, typical compositions of common lunar minerals, and cumulative grain-size distribution for a large number of lunar soils. Also provided are charts on the chemistry of breccias, the chemistry of lunar glass, and the comparative chemistry of surface soils for the Apollo sites. Lunar agglutinates, constructional particles made of lithic, mineral, and glass fragments welded together by a glassy matrix containing extremely fine-grained metallic iron and formed by micrometeoric impacts at the lunar surface, are discussed. Crystalline, igneous rock fragments, breccias, and lunar glass are examined. Volatiles implanted in lunar materials and regolith maturity are also addressed.

  15. Highly Siderophile Elements in Pallasites and Diogenites, Including the New Pallasite, CMS 04071

    Science.gov (United States)

    Danielson, L. R.; Humayun, M.; Righter, K.

    2006-01-01

    Pallasites are long thought to represent a metallic core-silicate mantle boundary, where the IIIAB irons are linked to the crystallization history of the metallic fraction, and the HED meteorites may be linked to the silicate fraction. However, measurement of trace elements in individual metallic and silicate phases is necessary in order to fully under-stand the petrogenetic history of pallasites, as well as any magmatic processes which may link pallasites to both IIIAB irons and HED meteorites. In order to achieve this objective, abundances of a suite of elements were measured, including the highly siderophile elements (HSEs), in kamacite, taenite, troilite, schreibersite, chromite and olivine for the pallasites Admire, Imilac, Springwater, CMS 04071. In the diogenites GRO 95555, LAP 91900, and MET 00436, metal, sulfide, spinel, pyroxene, and silica were individually measured.

  16. Almahata Sitta MS-MU-011 and MS-MU-012: Formation Conditions of Two Unusual Rocks From the Ureilite Parent Body

    Science.gov (United States)

    Mikouchi, T.; Takenouchi, A.; Zolensky, M. E.; Hoffmann, V. H.

    2018-01-01

    Almahata Sitta meteorites are unique polymict breccia, comprising of many different meteorite groups as individual fragments dominated by ureilite lithologies and are considered to be recovered fragments of the asteroid 2008TC3. Recently, two unusual Almahata Sitta samples (MS-MU-011 and MS-MU-012) have been reported that show close petrogenetic relationships to ureilites. MS-MU-011 is a trachyandesite mainly composed of feldspar (plagioclase and anorthoclase) and pyroxene (pigeonite and augite) having ureilitic oxygen isotopic ratios. MS-MU-012 is the first ureilite example (unbrecciated) containing primary plagioclase crystals. The findings of these two rock types are important to better understand formation conditions of ureilites and the evolution of their parent body(s). In this abstract we discuss formation conditions of these ureilite-related rocks using redox state estimate by Fe valence states of plagioclase and olivine cooling rate calculations.

  17. Geochemistry and source of iron-formation from Guanhaes group, Guanhaes district, Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Sad, J.H.G.; Chiodi Filho, C.; Magalhaes, J.M.M.; Carelos, P.M.

    1990-01-01

    The Guanhaes district is underlain by metavolcano-sedimentary rocks of the Guanhaes Group, emplaced over an older Archean basement and intruded by granitic bodies. The Guanhaes Group is composed of pelitic, mafic and ultramafic schists at the base; silicate and carbonate facies iron-formation, calcarious schists, calcsilicates rocks and quartzites at the median portion and para-gneisses (meta-graywacks) at the top. Geochemistry of iron-formation suggest a hydrothermal affinity comparable to the hydrothermal sediments flanking East Pacific Rise. Paragenetic studies indicates that the rocks were submited to two metamorphic processes: one of regional character (high-amphibolite facies) and one of themal character (pyroxene-hornfels facies). Chemical analysis, as X-ray and optic spectrography, atomic absorption and plasma spectrography are presented. (author)

  18. Reduction of iron-bearing lunar minerals for the production of oxygen

    Science.gov (United States)

    Massieon, Charles; Cutler, Andrew; Shadman, Farhang

    1992-01-01

    The kinetics and mechanism of the reduction of simulants of the iron-bearing lunar minerals olivine ((Fe,Mg)2SiO4), pyroxene ((Fe,Mg,Ca)SiO3), and ilmenite (FeTiO3) are investigated, extending previous work with ilmenite. Fayalite is reduced by H2 at 1070 K to 1480 K. A layer of mixed silica glass and iron forms around an unreacted core. Reaction kinetics are influenced by permeation of hydrogen through this layer and a reaction step involving dissociated hydrogen. Reaction mechanisms are independent of Mg content. Augite, hypersthene, and hedenbergite are reduced in H2 at the same temperatures. The products are iron metal and lower iron silicates mixed throughout the mineral. Activation energy rises with calcium content. Ilmenite and fayalite are reduced with carbon deposited on partially reduced minerals via the CO disproportionation reaction. Reduction with carbon is rapid, showing the carbothermal reduction of lunar minerals is possible.

  19. Dating emplacement and evolution of the orogenic magmatism in the internal Western Alps

    DEFF Research Database (Denmark)

    Berger, Alfons; Thomsen, Tonny B.; Ovtcharova, Maria

    2012-01-01

    The Canavese Line in the Western Alps represents the position in the Alpine chain, where alkaline and calc-alkaline magmatism occur in close spatial and temporal association. In addition to available data on the alkaline Valle del Cervo Pluton, we present petrological and geochemical data...... on the Miagliano tonalite. The latter is of special interest, because it is located in the south-eastern side of the Canavese Line, in contrast to most Periadriatic Plutons. The dioritic to tonalitic rocks of the Miagliano Pluton represent an intermediate stage of a calc-alkaline differentiation, demonstrated...... by relics of two different pyroxenes as well as the texture of allanite. Hornblende barometry indicates pressures of similar to 0.46 GPa consistent with the presence of magmatic epidote. Field relationships between the two Plutons, the volcanic and volcaniclastic rocks of the Biella Volcanic Suite...

  20. Temperature dependence of the hyperfine parameters of the iron bearing phases in the Moessbauer spectra collected by the Mars Exploration Rover Spirit

    International Nuclear Information System (INIS)

    Van Cromphaut, Caroline; Resende, Valdirene G. de; De Grave, Eddy; Vandenberghe, Robert E.

    2009-01-01

    This contribution focuses on the Moessbauer spectra acquired by the Mars Exploration Rover Spirit which carried a MIMOS II Moessbauer spectrometer. Only those spectra which present a reasonable statistical quality were selected to for this study. Twenty five Moessbauer spectra have been considered. Common phases identified from the temperature dependent hyperfine parameters are olivine, pyroxene, hematite and magnetite. It is believed that the applied analysis method has provided accurate values for the various hyperfine data averaged over single 10 K temperature intervals in the range 210-260 K. The obtained results, to some extent forced to evolve consistently over the various ΔT intervals considered for a given soil/rock target, are in many cases different from previously published data. Possible reasons for these differences will be discussed.

  1. Visible and ultraviolet (800--130 nm) extinction of vapor-condensed silicate, carbon, and silicon carbide smokes and the interstellar extinction curve

    International Nuclear Information System (INIS)

    Stephens, J.R.

    1980-01-01

    The extinction curves from 800 to 130 nm (1.25--7.7 μm -1 ) of amorphous silicate smokes nominally of olivine and pyroxene composition, carbon smokes, and crystalline SiC smokes are presented. The SiC smoke occurred in the low-temperature (β) cubic structural form. The mean grain radius ranged from 5 to 13 nm. The extinction profiles of the amorphous olivine smokes were similar in the ultraviolet to the measured extinction curves of crystalline olivine of nearly the same grain size. The SiC smoke showed an absorption edge which occurred at significantly longer wavelengths than the calculated extinction profile of the hexagonal SiC form previously used to calculate the interstellar extinction profile. Neither SiC nor amorphous silicates show an extinction band similar to the observed 6.6 μm -1 astronomical extinction band

  2. Lunar cement

    Science.gov (United States)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  3. Overview of the magnetic properties experiments on the Mars Exploration Rovers

    DEFF Research Database (Denmark)

    Madsen, M. B.; Goetz, W.; Bertelsen, P.

    2009-01-01

    , while the weakly magnetic one is bright red. Images returned by the Microscopic Imager reveal the formation of magnetic chains diagnostic of magnetite-rich grains with substantial magnetization (>8 Am-2 kg(-1)). On the basis of Mossbauer spectra the dust contains magnetite, olivine, pyroxene......The Mars Exploration Rovers have accumulated airborne dust on different types of permanent magnets. Images of these magnets document the dynamics of dust capture and removal over time. The strongly magnetic subset of airborne dust appears dark brown to black in Panoramic Camera (Pancam) images......, and nanophase oxides in varying proportions, depending on wind regime and landing site. The dust contains a larger amount of ferric iron (Fe3+/Fe-tot similar to 0.6) than rocks in the Gusev plains (similar to 0.1-0.2) or average Gusev soil (similar to 0.3). Alpha Particle X-Ray Spectrometer data of the dust...

  4. Partial pressures of oxygen, phosphorus and fluorine in some lunar lavas

    Science.gov (United States)

    Nash, W. P.; Hausel, W. D.

    1973-01-01

    Lunar sample 14310 is a feldspar-rich basalt which shows no evidence of shock deformation or recrystallization. Pyroxenes include Mg-rich orthopyroxene, pigeonite and augite; pyroxferroite occurs in the interstitial residuum. Plagioclase feldspars are zoned from An(96) to An(67), and variations in feldspar compositions do not necessarily indicate loss of Na during eruption of the lava. Opaque phases include ilmenite, ulvospinel, metallic iron, troilite, and schreibersite. Both whitlockite and apatite are present, and the interstitial residua contain baddeleyite, tranquillityite and barium-rich sanidine. Theoretical calculations provide estimates of partial pressures of oxygen, phosphorus, and fluorine in lunar magmas. In general, partial pressures of oxygen are restricted by the limiting assemblages of iron-wuestite and ilmenite-iron-rutile; phosphorus partial pressures are higher in lunar magmas than in terrestrial lavas. The occurrence of whitlockite indicates significantly lower fugacities of fluorine in lunar magmas than in terrestrial magmas.

  5. Room temperature 57Fe Moessbauer spectroscopy of ordinary chondrites from the Atacama Desert (Chile): constraining the weathering processes on desert meteorites

    International Nuclear Information System (INIS)

    Valenzuela, M.; Abdu, Y.; Scorzelli, R. B.; Duttine, M.; Morata, D.; Munayco, P.

    2007-01-01

    We report the results of a study on the weathering products of 21 meteorites found in the Atacama Desert (Chile) using room temperature 57 Fe Moessbauer spectroscopy (MS). The meteorites are weathered ordinary chondrites (OCs) with unknown terrestrial ages and include the three chemical groups (H, L, and LL). We obtained the percentage of all the Fe-bearing phases for the primary minerals: olivine, pyroxene, troilite and Fe-Ni metal, and for the ferric alteration products (composed of the paramagnetic Fe 3+ component and the magnetically ordered Fe 3+ components) which gives the percentage of oxidation of the samples. From the Moessbauer absorption areas of these oxides, the terrestrial oxidation of the Atacama OC was found in the range from ∼5% to ∼60%. The amount of silicates as well as the opaques decreases at a constant rate with increasing oxidation level.

  6. Supporting online materials for mineralogy and petrology of Comet81P/Wild 2 nucleus samples

    Energy Technology Data Exchange (ETDEWEB)

    Zolensky, Michael E.; Zega, Thomas J.; Yano, Hajime; Wirick, Sue; Westphal, Andrew J.; Weisberg, Mike K.; Weber, Iris; Warren, Jack L.; Velbel, Michael A.; Tsuchiyama, Akira; Tsou, Peter; Toppani, Alice; Tomioka, Naotaka; Tomeoka, Kazushige; Teslich, Nick; Taheri, Mitra; Susini, Jean; Stroud, Rhonda; Stephan, Thomas; Stadermann, Frank J.; Snead, Christopher J.; Simon, Steven B.; Simionovici, Alexandre; See,Thomas H.; Robert Francois; Rietmeijer, Frans J.M.; Rao, William; Perronnet, Murielle C.; Papanastassiou, Dimitri A.; Okudaira, Kyoko; Ohsumi, Kazumasa; Ohnishi, Ichiro; Nakamura-Messenger, Keilo; Nakamura,Tomoki; Mostefaoui, Smail; Mikouchi, Takashi; Meibom, Anders; Matrajt,Graciela; Marcus, Matthew A.; Leroux, Hugues; Lemelle, Laurence; Antonio,Loan Le; Lanzirotti, Antonio; Langenhorst, Falko; Krot, Alexander N.; Keller, Lindsay P.; Kearsley, Anton T.; Joswiak, Davis; Jacob, Damien; Ishii, Hope; Harvey, Ralph; Hagiya, Kenji; Grossman, Lawrence; Grossman,Jeffrey N.; Graham, Giles A.; Gounelle, Matthieu; Gillet, Philippe; Genge, Matthew J.; Flynn, George; Ferroir, Tristan; Fallow, Stewart; Ebel, Denton S.; Dai, Zu Rong; Cordier, Patrick; Clark, Benton; Chi,Miaofang; Butterworth, Anna L.; Brownlee, Donald E.; Bridges, John C.; Brennan, Sean; Brearley, Adrian; Bradley, John P.; Bleuet, Pierre; Bland,Phil A.; Bastien, Ron

    2006-01-01

    The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk.

  7. Shock melting and vaporization of lunar rocks and minerals.

    Science.gov (United States)

    Ahrens, T. J.; O'Keefe, J. D.

    1972-01-01

    The entropy associated with the thermodynamic states produced by hypervelocity meteoroid impacts at various velocities are calculated for a series of lunar rocks and minerals and compared with the entropy values required for melting and vaporization. Taking into account shock-induced phase changes in the silicates, we calculate that iron meteorites impacting at speeds varying from 4 to 6 km/sec will produce shock melting in quartz, plagioclase, olivine, and pyroxene. Although calculated with less certainty, impact speeds required for incipient vaporization vary from 7 to 11 km/sec for the range of minerals going from quartz to periclase for aluminum (silicate-like) projectiles. The impact velocities, which are required to induce melting in a soil, are calculated to be in the range of 3 to 4 km/sec, provided thermal equilibrium is achieved in the shock state.

  8. The Park Volcanics Group : field relations of an igneous suite emplaced in the Triassic-Jurassic Murihiku Terrane, South Island, New Zealand

    International Nuclear Information System (INIS)

    Coombs, D.S.; Cook, N.D.J.; Campbell, J.D.

    1992-01-01

    Park Volcanics Group is proposed for igneous rocks, either shallow intrusive or extrusive, emplaced in the Murihiku Terrane during Triassic-Jurassic times. The term replaces Park Intrusives of Mutch, some members of which are shown to be extrusive rather than intrusive. Formation status within the group is given to Gowan Andesite and Pinney Volcanics (new names) in western Southland, Glenham Porphyry in eastern Southland, and Barnicoat Andesite (new) in the Richmond area, Nelson. Gowan Andesite is a porphyritic feldspar two-pyroxene andesite with a glassy or microcrystalline groundmass. A suite of low-grade metavolcanic rocks which forms the main mass of Malakoff Hill and which has formerly been included in the 'Park Intrusives' is here excluded and ascribed to the Takitimu Group; representative chemical data are given. Glenham Porphyry is typically a porphyritic feldspar two-pyroxene andesite texturally similar to the Gowan Andesite but with significant geochemical differences. Two volumetrically minor members are recognised, Habukinini Trachydacite and Kenilworth Rhyolite. In the north of its outcrop area, Glenham Porphyry is emplaced on or into Late Triassic terrestrial beds; in the middle it overlies Kaihikuan (Middle Triassic) and is overlain by Otapirian (latest Triassic) marine beds; and in the southeast it is directly overlain by Ururoan (late Early to early Middle Jurassic) conglomerates and marine sandstones. Pinney Volcanics are restricted to a very few, probably one, massive conglomeratic horizon in the Oretian Stage. The commonest rock type is a two-pyroxene trachydacite, modified by very-low-grade burial metamorphism. Auto-brecciation is characteristic and rock types change over short distances. Hornblende-rich variants occur as well as more felsic varieties including rhyolite ignimbrite. These may have been erupted onto a bouldery floodplain or shallow-marine surface, but alternatively may have been mass-emplaced by debris avalanche resulting from

  9. Characterization of the Carancas-Puno meteorite by energy dispersive X-ray fluorescence, X-ray diffractometry and transmission Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ceron Loayza, Maria L., E-mail: malucelo@hotmail.com; Bravo Cabrejos, Jorge A. [Universidad Nacional Mayor de San Marcos, Laboratorio de Analisis de Suelos, Facultad de Ciencias Fisicas (Peru)

    2011-11-15

    We report the results of the study of a meteorite that impacted an inhabited zone on 15 September 2007 in the neighborhood of the town of Carancas, Puno Region, about 1,300 km south of Lima. The analysis carried out by energy dispersive X-ray fluorescence, X-ray diffractometry and transmission Moessbauer spectroscopy (at room temperature and at 4.2 K), reveal the presence in the meteorite sample of magnetic sites assigned to taenite (Fe,Ni) and troilite (Fe,S) phases, and of two paramagnetic doublets assigned to Fe{sup 2 + }, one associated with olivine and the other to pyroxene. In accord with these results, this meteorite is classified as a type IV chondrite meteorite.

  10. Water Content in the SW USA Mantle Lithosphere: FTIR Analysis of Dish Hill and Kilbourne Hole Pyroxenites

    Science.gov (United States)

    Gibler, Robert; Peslier, Anne H.; Schaffer, Lillian Aurora; Brandon, Alan D.

    2014-01-01

    Kilbourne Hole (NM, USA) and Dish Hill (CA, USA) mantle xenoliths sample continental mantle in two different tectonic settings. Kilbourne Hole (KH) is located in the Rio Grande rift. Dish Hill (DH) is located in the southern Mojave province, an area potentially affected by subduction of the Farallon plate beneath North America. FTIR analyses were obtained on well characterized pyroxenite, dunite and wehrlite xenoliths, thought to represent crystallized melts at mantle depths. PUM normalized REE patterns of the KH bulk-rocks are slightly LREE enriched and consistent with those of liquids generated by 6% melting of a spinel peridotite source. Pyroxenite pyroxenes have no detectable water but one DH wehrlite, which bulk-rock is LREE enriched, has 4 ppm H2O in orthopyroxene and 2 Ga. The Farallon subduction appears to have enriched in water the southwestern United States lithospheric mantle further east than DH, beneath the Colorado plateau.

  11. Le volcanisme cambrien du Maroc central : implications géodynamiquesThe Central Morocco Cambrian volcanism: geodynamic implications

    Science.gov (United States)

    Ouali, Houssa; Briand, Bernard; Bouchardon, Jean-Luc; Capiez, Paul

    2003-05-01

    In southeastern Central Morocco, the Bou-Acila volcanic complex is considered of Cambrian age. In spite of low-grade metamorphic effect, initial volcanic texture and mineralogy can be recognized and volcanic rocks are dominated by dolerites and porphyric dolerites. The initial mineralogy is composed of plagioclases, pyroxenes and dark minerals. A secondary mineral assemblage is composed of albite, epidote, chlorite and calcite. According to their immobile elements compositions, the southeastern central Morocco metavolcanites are of within-plate continental tholeiites. This volcanism and those recognized in many other areas in Morocco confirm a Cambrian extensive episode within the Gondwana supercontinent. To cite this article: H. Ouali et al., C. R. Geoscience 335 (2003).To cite this article: H. Ouali et al., C. R. Geoscience 335 (2003).

  12. Phase analysis of Košice meteorite: Preliminary results

    Science.gov (United States)

    Sitek, J.; Dekan, J.; Degmová, J.; Sedlačková, K.

    2012-10-01

    Meteorite fall was observed by the Košice town in Slovakia in February 2010 and it was classified as an ordinary chondrite H5. The samples were prepared in powder form scratched from the surface. Mossbauer spectra were measured at room temperature and liquid nitrogen temperature. Spectra consist of components related to iron-bearing phases with different content. Non-magnetic part was fitted with three quadrupole doublets. According to its parameters, we identified olivine, pyroxene, and traces of Fe3+ phases. Magnetic part consists of an iron-rich Fe-Ni alloy with hyperfine magnetic field similar to kamacite α-Fe(Ni,Co) and troilite. Main elements were also determined by X-ray fluorescence spectroscopy.

  13. Analysis of Košice Meteorite by Mössbauer Spectroscopy

    Science.gov (United States)

    Sitek, Jozef; Dekan, Július; Sedlačková, Katarína

    2016-07-01

    The 57Fe Mössbauer spectroscopy method was used to investigate iron-containing compounds in town Košice meteorite fallen on the territory of Slovakia in February 2010. The results showed that the Mössbauer spectra consisted of magnetic and non-magnetic components related to different iron-bearing phases. The non-magnetic phase includes olivine, pyroxene and traces of Fe3+ phase and the magnetic component comprises troilite (FeS) and iron-rich Fe-Ni alloy with hyperfine magnetic field typical for kamacite. Samples from meteorite were obtained in powder from different depths to inspect its heterogeneous composition. The content of kamacite increases to the detriment of troilite from the surface toward the centre of the sample. Measurements at liquid nitrogen temperature confirmed phase composition of investigated meteorite. Main constituent elements of studied samples were also determined by X-ray fluorescence analysis.

  14. Characterization of an ecological binder for mortars obtained from recycling of ladle furnace slag

    International Nuclear Information System (INIS)

    Marinho, A.B.; Santos, C.M.; Fontes, W.C.; Matias, A.C.P.; Brigolini, G.J.; Peixoto, R.A.F.; Carvalho, J.F.

    2016-01-01

    A sustainable binder obtained from recycling of a ladle furnace slag from Piracicaba, Sao Paulo, was produced in Laboratory of Construction Materials of Federal University of Ouro Preto (UFOP). A characterization work was performed and the results are presented. The physical, chemical and mineralogical properties was obtained using, among others, the following techniques: X-ray fluorescence (XRF), X-ray diffraction (XRD) with Rietveld refining method, optical microscopy and Scanning electronic microscopy (SEM) with energy dispersive spectroscopy (EDS). The chemical analysis showed predominance of CaO and SiO_3; the mineralogical analysis pointed the predominant presence of calcium-olivine, merwinite and pyroxene and; the images showed predominance of angulous and elongated grains. According to results, the material was classified as a hydraulic binder, with characteristics comparable to hydraulic limes. (author)

  15. Effect of Crystallisation Degree on Hardness of Basaltic Glass-Ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    The dependence of hardness of basaltic glass-ceramics on their crystallisation degree has been explored by means of differential scanning calorimetry, optical microscopy, X-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses have been obtained...... by varying the temperature of heat treatment. The change of the relative degree of crystallisation with the heat treatment temperature can be described by an empirical model established in this work. The predominant crystalline phase in the glass has been identified as the pyroxene augite. The hardness...... principle calculations. It is found that the hardness of the glass phase decreases slightly with an increase in the degree of crystallisation, while that of the augite phase drastically decreases....

  16. LOW Mg/Si PLANETARY HOST STARS AND THEIR Mg-DEPLETED TERRESTRIAL PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Carter-Bond, Jade C.; O' Brien, David P. [Planetary Science Institute, 1700 E. Fort Lowell, Tucson, AZ 85719 (United States); Delgado Mena, Elisa; Israelian, Garik; Gonzalez Hernandez, Jonay I. [Instituto de Astrofisica de Canarias, 38200 La Laguna, Tenerife (Spain); Santos, Nuno C., E-mail: j.bond@unsw.edu.au [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-03-15

    Simulations have shown that a diverse range of extrasolar terrestrial planet bulk compositions are likely to exist based on the observed variations in host star elemental abundances. Based on recent studies, it is expected that a significant proportion of host stars may have Mg/Si ratios below 1. Here we examine this previously neglected group of systems. Planets simulated as forming within these systems are found to be Mg-depleted (compared to Earth), consisting of silicate species such as pyroxene and various feldspars. Planetary carbon abundances also vary in accordance with the host star C/O ratio. The predicted abundances are in keeping with observations of polluted white dwarfs, lending validity to this approach. Further studies are required to determine the full planetary impacts of the bulk compositions predicted here.

  17. Utilization of plastic detectors in autoradiographic studies of radioactive minerals from the Lagoa Real uranium Province, state of Bahia, Brazil

    International Nuclear Information System (INIS)

    Brandao, P.M.C.

    1984-01-01

    A short account on an autoradiographic technique using plastic detectors, it's methodology, application and results is presented. With this technique the distribution of radioactive minerals in rocks can be studied in detail. As radioactive source for this study, samples mineralized in uraninite and/or pitchblende were used. The utilized detectors were the CR-39 (a polymer plate) and films of celulose nitrate: CA-80-15 and CN-85. The mineralization is associated to mafics (amphibole, pyroxene, biotite, garnet, etc.) and to plagioclase (albite or albite-oligoclase), occurring as small inclusions and also in microfractures, cleavages and grain boundaries, mainly among plagioclase crystals which occur close to or practically touching mafic minerals. (Author) [pt

  18. Elaboration of vitreous and vitrocrystalline basalt materials containing simulated radioactive ash wastes. Study of some physical properties and leaching behaviour

    International Nuclear Information System (INIS)

    Lebeau, M.J.

    1988-01-01

    This work is a preliminary study of a matrix for containment of incinerator ashes. Basalt presents a good capacity for ash incorporation (up to 50%), glasses obtained are homogeneous and the low viscosity at 1300 0 C allows an industrial preparation. Vitrocrystalline products have a dendritic texture which can be controlled by cooling rate and are composed of magnesioferrite, pyroxene, plagioclase and vitreous fraction depending on the filling material ratio. Uranium and thorium, for actinide simulation in ashes, are localized in the glass. Glass leaching decrease with ash content and the alteration film presents a better retention of some elements, such as uranium and thorium. Vitrocrystalline materials are less leachable than glasses. Interesting possibilities are shown for use of basalt as filling material in underground storage, since basalt decrease glass deterioration [fr

  19. The evolution of hydrous magmas in the Tongariro Volcanic Centre : the 10 ka Pahoka-Mangamate eruptions

    International Nuclear Information System (INIS)

    Auer, A.; Palin, J.M.; White, J.D.L.; Nakagawa, M.; Stirling, C.

    2015-01-01

    The majority of arc-type andesites in the Tongariro Volcanic Centre are highly porphyritic, hornblende-free, two-pyroxene andesites. An exception is tephras from the c. 10,000 ka Pahoka-Mangamate event. Magmas of these Plinian eruptions bypassed the extensive crustal mush columns under the central volcanoes and sequentially derived a series of almost aphyric rocks spanning a compositional range from dacite to basaltic andesite. Mineral composition, trace element and isotopic data suggest that this eruptive series tapped a mid-crustal magma reservoir, resulting in the initial eruption of an hydrous dacitic magma and several following eruptions characterised by less-evolved and less-hydrous compositions at progressively higher temperatures and substantially lower 87 Sr/ 86 Sr ratios. Systematic changes in magma chemistry are also reflected in a sequential change in phenocryst content starting with an early hornblende-plagioclase-dominated assemblage to a late olivine-plagioclase-dominated assemblage. (author).

  20. Isotope Fractionation by Diffusion in Liquids (Final Technical Report)

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Frank [Univ. of Chicago, IL (United States)

    2016-11-09

    The overall objective of the DOE-funded research by grant DE-FG02-01ER15254 was document and quantify kinetic isotope fractionations during chemical and thermal (i.e., Soret) diffusion in liquids (silicate melts and water) and in the later years to include alloys and major minerals such as olivine and pyroxene. The research involved both laboratory experiments and applications to natural settings. The key idea is that major element zoning on natural geologic materials is common and can arise for either changes in melt composition during cooling and crystallization or from diffusion. The isotope effects associated with diffusion that we have documented are the key for determining whether or not the zoning observed in a natural system was the result of diffusion. Only in those cases were the zoning is demonstrably due to diffusion can use independently measured rates of diffusion to constrain the thermal evolution of the system.

  1. A study based on trace elements of differentiated metabasic rocks from the Machado-MG region

    International Nuclear Information System (INIS)

    Choudhuri, A.; Carvalho, S.G. de.

    1983-01-01

    Large metabasic intrusive bodies occur in the Precambrian gneiss-migmatite basement around Poco Fundo - Campestre - Machado Triangle, south Minas Gerais. Separate occurrences consisting in each case of pyroxenite, metagabbro and amphibolite seem to be related to each other as is evident from their mineralogy, texture and trends of trace element concentration when plotted against their mg number (Mg/MgO + FeO mol.). Furthermore, their trace elements indicate that these rocks belong to a differentiated sequence resulting from separation of pyroxenes in situ. In spite of their high large ion lithophile element contents comparable to calc-alcaline rocks, the metabasic rocks show close resemblance to present-day mid-ocean ridge basalts when these are plotted in relevant variation diagrams. The tectonic implication of the observations is, however, not yet clear. (Author) [pt

  2. Geological research on rare earth elements, results and outlook

    International Nuclear Information System (INIS)

    Fortin, H

    1999-01-01

    This is a report of the geological investigation of rare earth elements carried out by CCHEN and ENAMI (Empresa Nacional de Mineria) over 70,000 square kilometers in Chile's northern coastal mountain range. Twenty areas were identified with sphena, davidite, ilmenite, pyroxene, anatase and magnetite minerals containing 0.3 kg/t to 6.0 kg/t of rare earth elements. Additional research on Cerro Carmen Prospect, located near Diego de Almagro, define it as a metasomatic deposit, hosted in metamorphic contact rocks, between andesites (Pliensbachian to early Jurassic) and intrusive monzonitic rocks. This information increases knowledge about the metallogenesis of Chile's copper - iron - rare earth - uranium deposits and the application of this geological model of ore deposits as defined in Australia's Olympic Dam

  3. Solar Ion Processing of Itokawa Grains: Reconciling Model Predictions with Sample Observations

    Science.gov (United States)

    Christoffersen, Roy; Keller, L. P.

    2014-01-01

    Analytical TEM observations of Itokawa grains reported to date show complex solar wind ion processing effects in the outer 30-100 nm of pyroxene and olivine grains. The effects include loss of long-range structural order, formation of isolated interval cavities or "bubbles", and other nanoscale compositional/microstructural variations. None of the effects so far described have, however, included complete ion-induced amorphization. To link the array of observed relationships to grain surface exposure times, we have adapted our previous numerical model for progressive solar ion processing effects in lunar regolith grains to the Itokawa samples. The model uses SRIM ion collision damage and implantation calculations within a framework of a constant-deposited-energy model for amorphization. Inputs include experimentally-measured amorphization fluences, a Pi steradian variable ion incidence geometry required for a rotating asteroid, and a numerical flux-versus-velocity solar wind spectrum.

  4. An evaluation of the geothermal potential of the Tecuamburro Volcano area of Guatemala

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.; Duffield, W. (eds.)

    1990-09-01

    Radiometric ages indicate that the Tecuamburro Volcano and three adjacent lava domes grew during the last 38,300 years, and that a 360-m-wide phreatic crater, Laguna Ixpaco, was formed near the base of these domes about 2900 years ago. Laguna Ixpaco is located within the Chupadero crater, from which pyroxene pumice deposits were erupted 38,300 years ago. Thus, the likelihood is great for a partly molten or solid-but-still-hot near-surface intrusion beneath the area. Fumaroles and hot springs issue locally from the Tecuamburro volcanic complex and near Laguna Ixpaco. Analyses of gas and fluid samples from these and other nearby thermal manifestations yield chemical-geothermometer temperatures of about 150{degree} to 300{degree}C, with the highest temperatures at Ixpaco. The existence of a commercial-grade geothermal reservoir beneath the Ixpaco area seems likely. 84 refs., 70 figs., 12 tabs.

  5. Aubrite and Impact Melt Enstatite Chondrite Meteorites as Potential Analogs to Mercury

    Science.gov (United States)

    Wilbur, Z. E.; Udry, A.; Mccubbin, Francis M.; McCubbin, F. M.; Combs, L. M.; Rahib, R. R.; McCoy, C.; McCoy, T. J.

    2018-01-01

    The MESSENGER (MErcury Sur-face, Space ENvironment, GEochemistry and Ranging) orbiter measured the Mercurian surface abundances of key rock-forming elements to help us better understand the planet's surface and bulk geochemistry. A major discovery is that the Mercurian surface and interior are characterized by an extremely low oxygen fugacity (ƒO2; Iron-Wüstite (IW) -7.3 to IW-2.6. This is supported by low Fe and high S abundances on the surface. This low ƒO2 causes a different elemental partioning from what is observed on Earth. Using surface composition, it was shown that the Mercurian surface mainly consists of normative plagioclase, pyroxene, olivine, and exotic sulfides, such as niningerite ((Mg,Mn, Fe)S) and oldhamite (CaS).

  6. Lithos 50th anniversary editorial

    Science.gov (United States)

    Kerr, Andrew

    2018-01-01

    This year marks the 50th anniversary of the publication of the first issue of Lithos. The journal was established in 1968 by the National Councils for Scientific Research in Denmark, Finland, Norway, and Sweden. Lithos was launched along with a sister journal, Lethaia, that focussed on palaeontology and stratigraphy. From the beginning Lithos was promoted as an international journal and this is borne out by the selection of papers published in the first issue that ranged from pyroxenes in meteorites, to cookeite from Mozambique, to the behaviour of zirconium in artificial magmas, to geochemistry of deep-crustal rocks from the Australian shield, to the genesis of the Norra Kärr alkaline body in southern Sweden.

  7. Experimental measurements of 3He and 4He mobility in olivine and clinopyroxene at magmatic temperatures

    Science.gov (United States)

    Trull, T. W.; Kurz, M. D.

    1993-03-01

    In-vacuo heating of 0.5 -0.7 mm olivine and clinopyroxene grains separated from Hawaiian ultramafic xenoliths leads to complete He loss within hours to days for temperatures of 700-1400°C. Diffusivities calculated from the observed release rates assuming spherical grains and initially homogeneous He distributions define Arrhenius relations with activation energies of 420 ± 20 and 290 ± 40 Kj/mol and log 10D0 of +5.1 ± .7 and +2.1 ± 1.2 cm 2/s in olivine and pyroxene, respectively. Values at 1350°C are 5.3 × 10 -9 cm 2/s in olivine and 10 times faster in pyroxene (4.7 × 10 -8 cm 2/s). These values include small corrections for grain size variations and, in the case of olivine, about 15% prior diffusive He loss. However, an important factor that has not been considered in previous studies of this type, is that the xenolith He resides predominantly within CO 2 rich fluid inclusions. Theoretical description of He loss in such a case demonstrates that the diffusivities calculated using the standard approach actually represent the product of the true volume diffusivity ( D) and the helium solubility, as represented by the distribution coefficient KDv (defined by C crystal/C fluid). Although He solubility in crystals is not well determined, estimates based on the CO 2 concentrations in these samples suggest that it is very low ( KDv of 3 × 10 -4 for pyroxene and 6 × 10 -6 for olivine; which also implies low crystal-melt distribution coefficients of .05 and .001). The resultant corrected diffusion rates are significantly faster than those obtained by the standard approach (~ 10 -4 cm 2/s at 1350°C and are thus higher than basaltic melt values). The most reasonable interpretation of this result is that He release is enhanced by internal grain fractures, including the planar healed cracks along which most fluid inclusions are arrayed. This treatment illustrates the difficulties involved in extrapolating laboratory He release measurements to nature, in particular

  8. The hardness of synthetic products obtained from cooled and crystallized basaltic melts (in Romanian

    Directory of Open Access Journals (Sweden)

    Daniela Ogrean

    2001-04-01

    Full Text Available The Hardness of Synthetic Products Obtained from Cooled and Crystallized Basaltic Melts. Hardness is one of the main properties of the products obtained from cooled and crystallized basaltic melts under a controlled thermal regime. It influences the abrasion tear resistance of the resulted material. The microhardness measurements on the samples (bricks, boards, gutters, armour plates, tubes indicated Vickers hardness value between 757–926 for the materials obtained from Şanovita basalts (Timiş district and between 539–958 respectively, in case of the Racoş basalts (Braşov district. There is a certain variation of the hardness within the same sample, in various measurement points, within the theoretical limits of the hardnesses of the pyroxenes and that of the spinels.

  9. New Insights to the Mid Miocene Calc-alkaline Lavas of the Strawberry Volcanics, NE Oregon Surrounded by the Coeval Tholeiitic Columbia River Basalt Province

    Science.gov (United States)

    Steiner, A. R.; Streck, M. J.

    2013-12-01

    The Strawberry Volcanics (SV) of NE Oregon were distributed over 3,400 km2 during the mid-Miocene and comprise a diverse volcanic suite, which span the range of compositions from basalt to rhyolite. The predominant composition of this volcanic suite is calc-alkaline (CA) basaltic andesite and andesite, although tholeiitic (TH) lavas of basalt to andesite occur as well. The coeval flood basalts of the Columbia River province surround the SV. Here we will discuss new ages and geochemical data, and present a new geologic map and stratigraphy of the SV. The SV are emplaced on top of pre-Tertiary accreted terranes of the Blue Mountain Province, Mesozoic plutonic rocks, and older Tertiary volcanic rocks thought to be mostly Oligocene of age. Massive rhyolites (~300 m thick) are exposed mainly along the western flank and underlie the intermediate composition lavas. In the southern portion of this study area, alkali basaltic lavas, thought to be late Miocene to early Pliocene in age, erupted and overlie the SV. In addition, several regional ignimbrites reach into the area. The 9.7 Ma Devine Canyon Tuff and the 7.1 Ma Rattlesnake Tuff also overlie the SV. The 15.9-15.4 Ma Dinner Creek Tuff is mid-Miocene, and clear stratigraphic relationships are found in areas where the tuff is intercalated between thick SV lava flows. All of the basalts of the SV are TH and are dominated by phenocryst-poor (≤2%) lithologies. These basalts have an ophitic texture dominated by plagioclase, clinopyroxene and olivine (often weathered to iddingsite). Basalts and basaltic andesites have olivine Fo #'s ranging from 44 at the rims (where weathered to iddingsite) and as high as 88 at cores. Pyroxene Mg #'s range from 65 to 85. Andesites of the SV are sub-alkaline, and like the basalts, are exceedingly phenocryst-poor (≤3%) with microphenocrysts of plagioclase and lesser pyroxene and olivine, which occasionally occur as crystal clots of ~1-3 mm instead of single crystals. In addition, minimal

  10. Apollo 16 - Impact melt sheets, contrasting nature of the Cayley plains and Descartes mountains, and geologic history

    Science.gov (United States)

    Mckinley, J. P.; Taylor, G. J.; Keil, K.; Ma, M.-S.; Schmitt, R. A.

    1984-01-01

    Apollo 16 stations four and five rake samples have been examined petrographically and by electron microprobe and INAA. Lithologic abundances support the idea (Korontev, 1981) that the variation of soil composition at Apollo 16 results from mixing between a component represented by station five and components much like either the dimict breccias or feldspathic fragmental breccias in composition. Pyroxene, olivine, and coexisting plagioclase compositions from within the anorthosite portions of dimict breccias bridge the gap between the Mg-rich and ferroan anorthosite fields. Analyses from associated cumulate and granulitic clasts indicate that they are the source of the intermediate material. Dimict breccias formed about 3.92 b.y. ago, the nectaris event occurred 3.84-3.92 b.y. ago, and the Cayley plains were deposited as a result of the Imbrium event sometime later than 3.84 b.y.

  11. A pristine eucrite-like gabbro from Descartes and its exotic kindred

    Science.gov (United States)

    Marvin, U. B.; Warren, P. H.

    1980-01-01

    A coarse-grained plagioclase-pyroxene gabbro (61224,6) with a cumulate texture suggestive of a slowly cooled plutonic rock was recovered from the 4-10 mm fraction of an Apollo 16 soil. The rock is uncommonly poor in feldspar and rich in Na for a lunar highlands lithology. Trace element analyses show extremely low siderophile element concentrations which confirm the pristine character indicated by the texture. The composition of 61224,6 is compared with those of 3 other pristine, exceptionally mafic, nonmare gabbros and of certain eucrites. 61224,6 and the three other gabbros have notable chemical differences but share relatively high ratios of Ti/Sm and Sc/Sm which suggest a possible genetic relationship. We conclude that 61224,6 represents a Na-rich cumulate from a layered intrusion within the highlands crust.

  12. Contrasting thermal and melting histories for segments of mantle lithosphere in the Nahlin ophiolite, British Columbia, Canada

    Science.gov (United States)

    McGoldrick, Siobhan; Canil, Dante; Zagorevski, Alex

    2018-03-01

    The Permo-Triassic Nahlin ophiolite is the largest and best-preserved ophiolite in the Canadian Cordillera of British Columbia and Yukon, Canada. The ophiolite is well-exposed along its 150 km length with mantle segments divisible into the Hardluck and Menatatuline massifs. Both massifs comprise mostly depleted spinel harzburgite (exchange temperatures in the mantle of the ophiolite also change systematically along strike with the degree of partial melt depletion. The temperatures recorded by REE and Ca-Mg exchange between coexisting pyroxenes require markedly higher peak temperatures and cooling rates for the Menatatuline massif (1250 °C, 0.1-0.01 °C/year) compared to the Hardluck massif (rates controlled by presence or absence of a crustal section above the mantle lithosphere, or by rapid exhumation along a detachment.

  13. Rapid Classification of Ordinary Chondrites Using Raman Spectroscopy

    Science.gov (United States)

    Fries, M.; Welzenbach, L.

    2014-01-01

    Classification of ordinary chondrites is typically done through measurements of the composition of olivine and pyroxenes. Historically, this measurement has usually been performed via electron microprobe, oil immersion or other methods which can be costly through lost sample material during thin section preparation. Raman microscopy can perform the same measurements but considerably faster and with much less sample preparation allowing for faster classification. Raman spectroscopy can facilitate more rapid classification of large amounts of chondrites such as those retrieved from North Africa and potentially Antarctica, are present in large collections, or are submitted to a curation facility by the public. With development, this approach may provide a completely automated classification method of all chondrite types.

  14. Cosmogenic 10Be production rate calibrated against 3He in the high Tropical Andes (3800-4900 m, 20-22° S)

    Science.gov (United States)

    Blard, P.-H.; Braucher, R.; Lavé, J.; Bourlès, D.

    2013-11-01

    Many geomorphologic applications, notably glacier chronologies, require improvements in both the precision and the accuracy of the cosmogenic dating tool. Of particular importance is the need to better constrain the spatial variability of the cosmogenic nuclides production rates at high elevation and low latitudes. One strategy that can be adopted for this is to couple absolute calibrations, from independently dated surfaces, with cross-calibration studies, performed by measuring several cosmogenic nuclides in the same rock. In the present study, we report the highest-elevation (>4800 m) cross-calibration published to date, comprising measurements of cosmogenic 3He and 10Be in cogenetic pyroxene and quartz. The samples were collected from six dacitic moraine boulders, exposed from 32 to 65 ka at 4820 m on the flanks of the Uturuncu volcano (22° S, 67° W), Southern Lipez (Bolivia). The samples yield a remarkably tight cluster of 3He-10Be production ratios, with a weighted mean of 33.3±0.9 (1σ). This production ratio is undistinguishable, within uncertainties, from the 3He-10Be production ratio of 32.3±0.9 determined in the same mineral pair at low elevation (1333 m) by Amidon et al. (2009). These results agree at the 1σ level and suggest that any hypothetical increase of the 3He-10Be production ratio in pyroxene and quartz is likely to be lower than 5% over this elevation range (1000-5000 m). Moreover, the production ratio is almost insensitive to the Li content of the pyroxene (20 to 50 ppm Li), suggesting that the cosmogenic thermal neutron production of 3He is very low in this setting. The high-elevation 3He-10Be production ratio is used in combination with a local determination of the 3He production rate in the high Central Altiplano (3800 m) (Blard et al., 2013) to establish a local 10Be production rate of 30.0±1.4 at g yr at 3800 m and 20° S. After scaling to sea-level high latitude with the time-dependent Lal/Stone model, this yields a 10Be production

  15. Weathering processes in waste materials from a mining area in a semiarid zone

    International Nuclear Information System (INIS)

    Navarro-Hervás, Cortes; Pérez-Sirvent, Carmen; Martínez-Sánchez, María José; García-Lorenzo, Mari Luz; Molina, José

    2012-01-01

    Chemical and mineralogical characterization of waste materials present in an abandoned Pb, Zn–Ag mining site (SE, Spain) was carried out. In unaltered rocks, the mineralogy is characterized by plagioclase, pyroxene, magnetite, ilmenite, amphibole, biotite and quartz. Trace-element contents of these samples represent unaltered values. In mine-waste materials, pH ranged from acidic to slightly acidic and trace-element content was generally high, especially for Pb and Zn, although there were also substantial As concentrations. X-ray diffraction results suggested that these samples have a complex mineralogy, including alteration products. Surficial materials in the study area were affected by weathering processes, generating supergene assemblages, including Fe and Mn oxides and hydroxides, carbonates, hydrated sulfates and jarosite. Knowledge of the geochemical processes that took place in the past and which are still taking place provide an important tool for assessing associated environmental problems in this area.

  16. Economic potential of the heavy minerals of the beaches between Baruva and Bavanapadu, Andhra Pradesh

    International Nuclear Information System (INIS)

    Rajasekhara Reddy, D.; Prasad, V.S.S.; Malathi, V.; Reddy, K.S.N.; Varma, D.D.

    2001-01-01

    The economic potentiality of the heavy minerals in the beaches between Baruva and Bavanapadu extending for about 45 km was examined. In the sub-surface sediments, the heavy minerals were studied at an interval of 1 m up to a maximum depth of 5.8m. In general the concentration of heavy minerals is high in dunes followed by backshore and foreshore regions. Heavy mineral content increases from surface to sub-surface in dunes, decreases in foreshore and does not vary much in backshore. The heavy minerals include mainly ilmenite, garnet, sillimanite and ortho-pyroxenes with minor amounts of amphiboles, zircon, monazite, rutile etc. Majority of the heavies such as ilmenite, monazite, zircon etc. are concentrated in finer fractions while some of the heavies like garnet and sillimanite are concentrated in coarser fractions. The inferred reserves estimated for the area indicate its economical potential. (author)

  17. Molten (Mg0.88Fe0.12)2SiO4 at lower mantle conditions - Melting products and structure of quenched glasses

    Science.gov (United States)

    Williams, Quentin

    1990-01-01

    Infrared spectra of quenched magnesium silicate glasses synthesized by fusing olivine at pressures in excess of 50 GPa and temperatures greater than 2500 K demonstrate that silicon is dominantly present in four-fold coordination with respect to oxygen within these quenched glasses. This low coordination is attributed, by analogy with the structural behavior of glasses compressed at 300 K, to the instability of higher coordinations in glasses of these compositions on decompression. Spectra of glasses formed in a hydrous environment document that water is extensively soluble in melts at these high pressures and temperatures. Also, these results are consistent with the melting of (Mg0.88Fe0.12)2SiO4 compositions to liquids near pyroxene in stoichiometry under these conditions, with iron-rich magnesiowuestite being the liquidus phase.

  18. Nanodiamonds and silicate minerals in ordinary chondrites as determined by micro-Raman spectroscopy

    Science.gov (United States)

    Saikia, Bhaskar J.; Parthasarathy, Gopalakrishnarao; Borah, Rashmi R.

    2017-06-01

    We present here the Raman spectroscopic study of silicate and carbonaceous minerals in three ordinary chondrites with the aim to improve our understanding the impact process including the peak metamorphic pressures present in carbon-bearing ordinary chondites. The characteristic Raman vibrational peaks of olivines, pyroxenes, and plagioclase have been determined on three ordinary chondrites from India, Dergaon (H5), Mahadevpur (H4/5), and Kamargaon (L6). The Raman spectra of these meteorite samples show the presence of nanodiamonds at 1334-1345 cm-1 and 1591-1619 cm-1. The full-width at half maximum (FWHM) of Raman peaks for Mahadevpur and Dergaon reflect the nature of shock metamorphism in these meteorites. The frequency shift in Raman spectra might be because of shock effects during the formation of the diamond/graphite grains.

  19. Characterization of an ecological binder for mortars obtained from recycling of ladle furnace slag; Caracterizacao de aglomerante ecologico para argamassas obtido a partir da reciclagem de escoria de forno panela

    Energy Technology Data Exchange (ETDEWEB)

    Marinho, A.B.; Santos, C.M.; Fontes, W.C.; Matias, A.C.P.; Brigolini, G.J.; Peixoto, R.A.F. [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Departamento de Engenhaira Civil; Carvalho, J.F., E-mail: josemaria.carvalho@ufv.br [Universidade Federal de Vicosa (UFV), MG (Brazil). Departamento de Engenharia Civil

    2016-07-01

    A sustainable binder obtained from recycling of a ladle furnace slag from Piracicaba, Sao Paulo, was produced in Laboratory of Construction Materials of Federal University of Ouro Preto (UFOP). A characterization work was performed and the results are presented. The physical, chemical and mineralogical properties was obtained using, among others, the following techniques: X-ray fluorescence (XRF), X-ray diffraction (XRD) with Rietveld refining method, optical microscopy and Scanning electronic microscopy (SEM) with energy dispersive spectroscopy (EDS). The chemical analysis showed predominance of CaO and SiO{sub 3}; the mineralogical analysis pointed the predominant presence of calcium-olivine, merwinite and pyroxene and; the images showed predominance of angulous and elongated grains. According to results, the material was classified as a hydraulic binder, with characteristics comparable to hydraulic limes. (author)

  20. Mineralogical Mapping of Quadrangle Av-2 (belicia) and Av-3 (caparronia) on 4 Vesta.

    Science.gov (United States)

    Stephan, K.; Frigeri, A.; Barucci, M. A.; Sunshine, J.; Jaumann, R.; Palomba, E.; Blewett, D. T.; Yingst, A.; Marchi, S.; De Sanctis, C. M.; Matz, K.-D.; Roatsch, Th.; Preusker, F.; Le Corre, L.; Reddy, V.; Russell, C. T.; Raymond, C. A.

    2012-04-01

    Since the arrival of the Dawn spacecraft at 4 Vesta on July 16, 2011 the Visible and InfraRed Imaging Spectrometer (VIR) has acquired hyperspectral images of Vesta's surface, which enable to characterize Vesta's mineralogical composition in the wavelength range from 0.25 to 5.1µm. As part of the analysis of Vesta's surface composition the science team is preparing a series of 15 quadrangle maps showing the results derived from the spectroscopic analysis of the VIR and FC color data. We present preliminary results of the spectroscopic analysis achieved for the quadrangles Av-2 (Belicia) and Av-3 (Caparronia), which show Vesta's surface between 21°N - 66° N°, 0° - 90°E and 90° - 180° E, respectively. These results are based on the analysis of the combination of the visible albedo, spectral parameters including the position, depth of the pyroxene absorptions, as well as color ratio composites using the VIR channels centering at 749nm/438nm (Red), 749nm/917nm (Green) and 438nm/749nm (Blue). Vesta's rotation axis, however, is tilted ~29° with respect to its orbital plane. Since Dawn arrived during northern winter, portions of Vesta north of ~45° N are dominated by extended shadows or have not yet been imaged due to permanent night. Thus, limited FC color or VIR hyperspectral data have been available for the quadrangles Av-2 and Av-3. The illuminated parts are dominated by a heavily-cratered northern terrain with ancient troughs and grooves and named after the prominent relatively large impact craters Belicia (~37°N/48°E) and Caparronia (~36°N/167°E). Numerous impact craters of different size, morphology, and state of surface degradation are apparent. Most spectral variations are strongly affected by the extreme illumination conditions, making the analysis of albedo variations and spectral signatures rather difficult. Their interpretation thus remains. Nevertheless, VIR spectra show clear evidence of Vesta's surface composition similar to those of HED

  1. The dissolution of high-FeO olivine rock from the Lovasjaervi intrusion (SE-Finland) at 25 deg. C as a function of pH

    International Nuclear Information System (INIS)

    Duro, Lara; El Aamrani, Fatima; Rovira, Miquel; Gimenez, Javier; Casas, Ignasi; Pablo, Joan de; Bruno, Jordi

    2005-01-01

    The high-FeO olivine-rich rock from the Lovasjaervi intrusion (65% olivine, 20% plagioclase, 8% magnetite, 4% pyroxene and 3% serpentine) has been proposed as a potential redox-active backfill-additive in deep high level nuclear waste repositories. In this work, the authors report on kinetic dissolution studies of this solid under different pH and redox conditions performed by using a flow-through methodology. Assuming that silicon is mainly released to solution from the olivine contained in the solid, the experimental results have been adjusted to an empirical rate law as a function of proton concentration. The proton concentration reaction orders agree with results found in the literature for both acidic and alkaline pH ranges. The calculations conducted with the reactive transport code RETRASO show that at alkaline pH, the olivine rock might have a lower redox buffer capacity than expected

  2. Crystal preferred orientations of minerals from mantle xenoliths in alkali basaltic rocks form the Catalan Volcanic Zone (NE Spain)

    Science.gov (United States)

    Fernández-Roig, Mercè; Galán, Gumer; Mariani, Elisabetta

    2015-04-01

    Mantle xenoliths in alkali basaltic rocks from the Catalan Volcanic Zone, associated with the Neogene-Quaternary rift system in NE Spain, are formed of anhydrous spinel lherzolites and harzburgites with minor olivine websterites. Both peridotites are considered residues of variable degrees of partial melting, later affected by metasomatism, especially the harzburgites. These and the websterites display protogranular microstructures, whereas lherzolites show continuous variation between protogranular, porphyroclastic and equigranular forms. Thermometric data of new xenoliths indicate that protogranular harzburgites, lherzolites and websterites were equilibrated at higher temperatures than porphyroclastic and equigranular lherzolites. Mineral chemistry also indicates lower equilibrium pressure for porphyroclastic and equigranular lherzolites than for the protogranular ones. Crystal preferred orientations (CPOs) of olivine and pyroxenes from these new xenoliths were determined with the EBSD-SEM technique to identify the deformation stages affecting the lithospheric mantle in this zone and to assess the relationships between the deformation fabrics, processes and microstructures. Olivine CPOs in protogranular harzburgites, lherzolites and a pyroxenite display [010]-fiber patterns characterized by a strong point concentration of the [010] axis normal to the foliation and girdle distribution of [100] and [001] axes within the foliation plane. Olivine CPO symmetry in porphyroclastic and equigranular lherzolites varies continuously from [010]-fiber to orthorhombic and [100]-fiber types. The orthorhombic patterns are characterized by scattered maxima of the three axes, which are normal between them. The rare [100]-fiber patterns display strong point concentration of [100] axis, with normal girdle distribution of the other two axes, which are aligned with each other. The patterns of pyroxene CPOs are more dispersed than those of olivine, especially for clinopyroxene, but

  3. New constraints on the textural and geochemical evolution of the upper mantle beneath the Styrian basin

    Science.gov (United States)

    Aradi, Laszlo; Hidas, Károly; Zanetti, Alberto; János Kovács, István; Patkó, Levente; Szabó, Csaba

    2016-04-01

    Plio-Pleistocene alkali basaltic volcanism sampled sporadically the upper mantle beneath the Carpathian-Pannonian Region (CPR, e.g. [1]). Lavas and pyroclasts often contain mantle derived xenoliths, and the majority of them have been extensively studied [1], except the westernmost Styrian Basin Volcanic Field (SBVF, Eastern Austria and Slovenia). In the SBVF only a few volcanic centers have been studied in details (e.g. Kapfenstein & Tobaj). Based on these studies, the upper mantle beneath the SBVF is consists of dominantly high temperature, texturally and geochemically homogeneous protogranular spinel lherzolite. New major and trace element data from rock-forming minerals of ultramafic xenoliths, coupled with texture and deformation analysis from 12 volcanic outcrops across the SBVF, suggest that the lithospheric roots of the region are more heterogeneous than described previously. The studied xenoliths are predominantly lherzolite, amphibole is a common phase that replaces pyroxenes and spinels and proves modal metasomatism. Phlogopite coupled with apatite is also present in amphibole-rich samples. The texture of the xenoliths is usually coarse-grained and annealed with low abundance of subgrain boundaries in both olivine and pyroxenes. Olivine crystal preferred orientation (CPO) varies between the three most abundant one: [010]-fiber, orthogonal and [100]-fiber symmetry [2]. The CPO of pyroxenes is usually coherent with coeval deformation with olivine, however the CPO of amphibole is suggesting postkinematic epitaxial overgrowth on the precursor pyroxenes. According to equilibrium temperatures, the studied xenolith suite samples a broader temperature range (850-1100 °C) than the literature data, corresponding to mantle depths between 30 and 60 km, which indicates that the xenolith suite only represents the shallower part of the recent 100 km thick lithospheric mantle beneath the SBVF. The equilibrium temperatures show correlation with the varying CPO symmetries

  4. THE DUST CLOUD AROUND THE WHITE DWARF G 29-38. II. SPECTRUM FROM 5 TO 40 μm AND MID-INFRARED PHOTOMETRIC VARIABILITY

    International Nuclear Information System (INIS)

    Reach, William T.; Lisse, Carey; Von Hippel, Ted; Mullally, Fergal

    2009-01-01

    We model the mineralogy and distribution of dust around the white dwarf G29-39 using the infrared spectrum from 1 to 35 μm. The spectral model for G29-38 dust combines a wide range of materials based on spectral studies of comets and debris disks. In order of their contribution to the mid-infrared emission, the most abundant minerals around G29-38 are amorphous carbon (λ || = 5, and the radial density profile ∝r -2.7 ; the total mass of this model disk is 2 x 10 19 g. A physically thin (less than the white dwarf radius) and optically thick disk can contribute to the near-infrared continuum only; such a disk cannot explain the longer-wavelength continuum or strong emission features. The combination of a physically thin, optically thick inner disk and an outer, physically thick and moderately optically thin cloud or disk produces a reasonably good fit to the spectrum and requires only silicates in the outer cloud. We discuss the mineralogical results in comparison to planetary materials. The silicate composition contains minerals found from cometary spectra and meteorites, but Fe-rich pyroxene is more abundant than enstatite (Mg-rich pyroxene) or forsterite (Mg-rich olivine) in G29-38 dust, in contrast to what is found in most comet or meteorite mineralogies. Enstatite meteorites may be the most similar solar system materials to G29-38 dust. Finally, we suggest the surviving core of a h ot Jupiteras an alternative (neither cometary nor asteroidal) origin for the debris, though further theoretical work is needed to determine if this hypothesis is viable.

  5. The Carlisle Lakes-type chondrites: A new grouplet with high. Delta. sup 17 O and evidence for nebular oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Weisberg, M.K. (American Museum of Natural History, New York, NY (United States) Brooklyn Coll., NY (United States)); Prinz, M. (American Museum of Natural History, New York, NY (United States)); Kojima, Hideyasu; Yanai, Keizo (National Inst. of Polar Research, Tokyo (Japan)); Clayton, R.N.; Mayeda, T.K. (Univ. of Chicago, IL (United States))

    1991-09-01

    Carlisle Lakes, ALH85151, and Y75302 are similar ungrouped chondrites which have petrologic and bulk compositional similarities to the ordinary chondrites, but are more oxidized; and their oxygen isotopic compositions differ. They represent a new grouplet which the authors call the Carlisle Lakes-type chondrites. They have the highest {Delta}{sup 17}O values (up to 2.91) measured to date. The whole chondrites and most of their chondrules plot on the same mass fractionation line on an oxygen 3-isotope diagram. They are olivine rich (>70 vol%), essentially metal free, and most olivine is FeO rich, equilibrated at Fa{sub 38}. Rare olivine and pyroxene grains in chondrules and fragments are zoned, and these are important in discerning the history of these chondrites. The zoning does not appear to have formed during crystallization from a melt droplet chondrule, but post-dated chondrule formation. Two hypotheses are postulated to explain the zoning: (1) parent-body thermal metamorphism and (2) nebular gas-solid exchange reactions accompanied by condensation of new FeO-rich olivine, utilizing existing olivine surfaces as nucleation sites. The occurrence of steep Fe-Mg compositional gradients of core-to-rim profiles, oscillatory zoning in olivine, fayalitic rims of Fa{sub 45} that exceed instead of approach the equilibrium composition of the matrix (Fa{sub 38}), and olivine-filled veins in zoned pyroxenes are more compatible with the nebular hypothesis. The Carlisle Lakes-type chondrites may have originally been derived from an ordinary chondrite-like precursor which was later oxidized, prior to its final lithification. However, the oxygen isotopic compositions of the whole chondrites and most of their chondrules suggest that the precursor probably formed in an oxygen isotopically distinct environment.

  6. Remotely sensed detection of sulfates on Mars: Laboratory measurements and spacecraft observations

    Science.gov (United States)

    Cooper, Christopher David

    Visible, near-infrared, and mid-infrared spectroscopic measurements were made of physically realistic analogs of Martian soil containing silicates and sulfates. These measurements indicate that the physical structure of soil will control its spectroscopic properties. Orbital measurements from the Thermal Emission Spectrometer (TES) identified features similar to those seen in the laboratory mixtures. Maps were made of this sulfate-cemented soil which indicated that the presence of this material is not geographically controlled and hints at an origin for duricrust in atmosphere-surface interactions. Further confirmation comes from combining data from TES and the Imaging Spectrometer for Mars (ISM). This data shows a congruence between sulfate spectral features and water features. The likely form of the mappable sulfate in Martian soils is therefore a cemented mixture of hydrated sulfate mixed with silicates and oxides derived from crustal rocks. The combination of ISM and TES spectra in particular and spectra from multiple wavelength regimes in general also is an excellent technique for addressing other problems of interest regarding the geology of Mars. A number of topics including rock coatings in Syrtis Major and the nature of low albedo rock assemblages are addressed. Syrtis Major is found to behave differently in the thermal and near infrared, likely indicating that the spectral features are not related to simple coatings but perhaps processes like penetrative oxidation. TES Type I rocks are found to be high in pyroxene, but TES Type II rocks do not have a correlation with pyroxene. Spectral mixing trends indicate that dust and rock are the dominant two variables in surface composition on a large scale. A smaller mixing trend involves the physical breakup of sulfate-cemented soils into a loose, fine-grained, but still hydrated form. In all, this work provides strong evidence for the global identification and distribution of sulfate minerals in the Martian soil.

  7. Visible-NIR Spectroscopic Evidence for the Composition of Low-Albedo Altered Soils on Mars

    Science.gov (United States)

    Murchie, S.; Merenyi, E.; Singer, R.; Kirkland, L.

    1996-03-01

    Spectroscopic studies of altered Martian soils at visible and at NIR wavelengths have generally supported the canonical model of the surface layer as consisting mostly of 2 components, bright red hematite-containing dust and dark gray pyroxene-containing sand. However several of the studies have also provided tantalizing evidence for distinct 1 micrometer Fe absorptions in discrete areas, particularly dark red soils which are hypothesized to consist of duricrust. These distinct absorptions have been proposed to originate from one or more non-hematitic ferric phases. We have tested this hypothesis by merging high spatial resolution visible- and NIR-wavelength data to synthesize composite 0.44-3.14 1lm spectra for regions of western Arabia and Margaritifer Terra. The extended wavelength coverage allows more complete assessment of ferric, ferrous, and H2O absorptions in both wavelength ranges. The composite data show that, compared to nearby bright red soil in Arabia, dark red soil in Oxia has a lower albedo, a more negative continuum slope, and a stronger 3 micrometer H2O absorption . However Fe absorptions are closely similar in position and depth. These results suggest that at least some dark red soils may differ from "normal" dust and mafic sand more in texture than in Fe mineralogy, although there appears to be enrichment in a water-containing phase and/or a dark, spectrally neutral phase. In contrast, there is clear evidence for enrichment of a low-albedo ferric mineral in dark gray soils composing Sinus Meridiani. These have visible- and NIR-wavelength absorptions consistent with crystalline hematite with relatively little pyroxene, plus a very weak 3 micrometer H2O absorption. These properties suggest a Ethology richer in crystalline hematite and less hydrated than both dust and mafic-rich sand.

  8. Petrology of the 1995/2000 Magma of Copahue, Argentina

    Science.gov (United States)

    Goss, A.; Varekamp, J. C.

    2001-05-01

    Phreatomagmatic eruptions of Copahue in July/August,1995 and July/August 2000 produced mixed juvenile clasts, silica-rich debris from the hydrothermal system, and magmatic scoria with 88 percent SiO2. These high-SiO2 clasts carry an as yet unidentified (crystobalite?), euhedral silica phase in great abundance, which is riddled with tan, primary melt inclusions. The mixed clasts have bands of mafic material with small euhedral olivine, clinopyroxene, and plagioclase that are mixed with an intermediate magma with coarser, resorbed phenocrysts of olivine, plagioclase, clino- and ortho- pyroxene, and rare occurrences of the silica phase. These ejecta are intimate mixtures of a relatively felsic magma similar to Pleistocene Copahue lavas and a mafic basaltic andesite, with minor contributions of a magma contaminated with silica-rich hydrothermal wallrock material. Two-pyroxene geothermometry indicates crystallization temperatures of 1020 deg - 1045 deg C. Glass inclusions (59-63 percent SiO2) in plagioclase and olivine crystals yield very low volatile contents in the melt (0.4-1.5 percent H2O). The 1995/2000 magmas resided at shallow level and degassed into the active volcano-hydrothermal system which discharges acid fluids into the Copahue crater lake and hot springs. More mafic magma intruded this shallow batch and the mixture rose into the hydrothermal system and assimilated siliceous wall rock. A Ti-diffusion profile in a magnetite crystal suggests that the period between magma mixing and eruption was on the order of 4-10 weeks, and the temperature difference between resident and intruding magma was about 50-60 oC.

  9. DETECTION OF ROTATIONAL SPECTRAL VARIATION ON THE M-TYPE ASTEROID (16) PSYCHE

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Juan A.; Thomas, Cristina [Planetary Science Institute, Tucson, AZ 85719 (United States); Reddy, Vishnu [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Shepard, Michael K. [Bloomsburg University, Bloomsburg, PA 17815 (United States); Cloutis, Edward A.; Kiddell, Cain; Applin, Daniel [Department of Geography, University of Winnipeg, Winnipeg, Manitoba (Canada); Takir, Driss [Astrogeology Science Center, U.S. Geological Survey, Flagstaff, AZ 86001 (United States); Conrad, Albert, E-mail: jsanchez@psi.edu [LBT Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2017-01-01

    The asteroid (16) Psyche is of scientific interest because it contains ∼1% of the total mass of the asteroid belt and is thought to be the remnant metallic core of a protoplanet. Radar observations have indicated the significant presence of metal on the surface with a small percentage of silicates. Prior ground-based observations showed rotational variations in the near-infrared (NIR) spectra and radar albedo of this asteroid. However, no comprehensive study that combines multi-wavelength data has been conducted so far. Here we present rotationally resolved NIR spectra (0.7–2.5 μ m) of (16) Psyche obtained with the NASA Infrared Telescope Facility. These data have been combined with shape models of the asteroid for each rotation phase. Spectral band parameters extracted from the NIR spectra show that the pyroxene band center varies from ∼0.92 to 0.94 μ m. Band center values were used to calculate the pyroxene chemistry of the asteroid, whose average value was found to be Fs{sub 30}En{sub 65}Wo{sub 5}. Variations in the band depth (BD) were also observed, with values ranging from 1.0% to 1.5%. Using a new laboratory spectral calibration method, we estimated an average orthopyroxene content of 6% ± 1%. The mass-deficit region of Psyche, which exhibits the highest radar albedo, also shows the highest value for the spectral slope and the minimum BD. The spectral characteristics of Psyche suggest that its parent body did not have the typical structure expected for a differentiated body or that the sequence of events that led to its current state was more complex than previously thought.

  10. Cryptic trace-element alteration of Anorthosite, Stillwater complex, Montana

    Science.gov (United States)

    Czamanske, G.K.; Loferski, P.J.

    1996-01-01

    Evidence of cryptic alteration and correlations among K, Ba, and LREE concentrations indicate that a post-cumulus, low-density aqueous fluid phase significantly modified the trace-element contents of samples from Anorthosite zones I and II of the Stillwater Complex, Montana. Concentrations of Ba, Ca, Co, Cr, Cu, Fe, Hf, K, Li, Mg, Mn, Na, Ni, Sc, Sr, Th, Zn, and the rare-earth elements (REE) were measured in whole rocks and plagioclase separates from five traverses across the two main plagioclase cumulate (anorthosite) zones and the contiguous cumulates of the Stillwater Complex in an attempt to better understand the origin and solidification of the anorthosites. However, nearly the entire observed compositional range for many trace elements can be duplicated at a single locality by discriminating between samples rich in oikocrystic pyroxene and those which are composed almost entirely of plagioclase and show anhedral-granular texture. Plagioclase separates with high trace-element contents were obtained from the pyroxene-poor samples, for which maps of K concentration show plagioclase grains to contain numerous fractures hosting a fine-grained, K-rich phase, presumed to be sericite. Secondary processes in layered intrusions have the potential to cause cryptic disturbance, and the utmost care must be taken to ensure that samples provide information about primary processes. Although plagioclase from Anorthosite zones I and II shows significant compositional variation, there are no systematic changes in the major- or trace-element compositions of plagioclase over as much as 630 m of anorthosite thickness or 18 km of strike length. Plagioclase in the two major anorthosite zones shows little distinction in trace-element concentrations from plagioclase in the cumulates immediately below, between, and above these zones.

  11. Petrological and geochemical studies of alkaline rocks from continental Brazil. The tunas massif, state of Parana

    International Nuclear Information System (INIS)

    Gomes, C.B.; Barbieri, M.

    1987-01-01

    The Tunas massif, outcropping 80 km from the city of Curitiba, Parana State, southern Brazil, covers about 22 km 2 . It intruded into Precambrian metaigneous and metasedimentary units about 80 Ma ago (K/Ar and Rb/Sr data); five subcircular volcanic structures are recognized. Syenites and alkali syenites (plus some pulaskites) are the main rock-types, with subordinate alkali gabbros, syenogabbros, essexites and syenodiorites; small late syenitic dikes are also found. Magmatic breccias containing clasts of all rock-types are widespread. Main minerals are feldspars (both alkali feldspars and plagioclases, varying from bytownite to more sodic members), Ca-pyroxenes (Ti-salites grading towards ferrosalites and aegirine-augites), amphiboles (mainly pargasites, although kaersutites and katophorites are also present), Fe-biotites (sometimes enriched in Ti), olivines (hortonolites to ferrohortonolites), quartz and feldspathoids (both fresh and altered nephelines and sodalites); main accessories are Ti-magnetites (with exsolved ilmenite) and apatite. In the AFM diagram, whole rock chemistry depicts a typical alkaline trend. Binary variation diagrams (D.I. vs. several elements) show positive correlation for Si, Na and K, and negative slopes for Mg and Ca. The variation in the amounts of Ni, Cr and V with differentiation can be explained by withdrawal of olivine, Ca-pyroxenes and magnetite, and that of Sr and Ba by the fractionation of feldspars. The rocks are also relatively enriched in REE, a trend which is more pronounced for the light REE. Mass balance calculations show that the overall differentiation trend of the Tunas rocks can be explained by crystal fractionation, although several complexities arise and point to more complex genetic patterns. Isotopic Rb/Sr ratios are consistent with a mantle origin for the parental magma; dike rocks, however, with 87 Sr 86 Sr i = 0.70777 - 0.70806, were probably contaminated by crustal material. (author) [pt

  12. Lunar and Planetary Science XXXV: Mars: Remote Sensing and Terrestrial Analogs

    Science.gov (United States)

    2004-01-01

    The session "Mars: Remote Sensing and Terrestrial Analogs" included the following:Physical Meaning of the Hapke Parameter for Macroscopic Roughness: Experimental Determination for Planetary Regolith Surface Analogs and Numerical Approach; Near-Infrared Spectra of Martian Pyroxene Separates: First Results from Mars Spectroscopy Consortium; Anomalous Spectra of High-Ca Pyroxenes: Correlation Between Ir and M ssbauer Patterns; THEMIS-IR Emissivity Spectrum of a Large Dark Streak near Olympus Mons; Geomorphologic/Thermophysical Mapping of the Athabasca Region, Mars, Using THEMIS Infrared Imaging; Mars Thermal Inertia from THEMIS Data; Multispectral Analysis Methods for Mapping Aqueous Mineral Depostis in Proposed Paleolake Basins on Mars Using THEMIS Data; Joint Analysis of Mars Odyssey THEMIS Visible and Infrared Images: A Magic Airbrush for Qualitative and Quantitative Morphology; Analysis of Mars Thermal Emission Spectrometer Data Using Large Mineral Reference Libraries ; Negative Abundance : A Problem in Compositional Modeling of Hyperspectral Images; Mars-LAB: First Remote Sensing Data of Mineralogy Exposed at Small Mars-Analog Craters, Nevada Test Site; A Tool for the 2003 Rover Mini-TES: Downwelling Radiance Compensation Using Integrated Line-Sight Sky Measurements; Learning About Mars Geology Using Thermal Infrared Spectral Imaging: Orbiter and Rover Perspectives; Classifying Terrestrial Volcanic Alteration Processes and Defining Alteration Processes they Represent on Mars; Cemented Volcanic Soils, Martian Spectra and Implications for the Martian Climate; Palagonitic Mars: A Basalt Centric View of Surface Composition and Aqueous Alteration; Combining a Non Linear Unmixing Model and the Tetracorder Algorithm: Application to the ISM Dataset; Spectral Reflectance Properties of Some Basaltic Weathering Products; Morphometric LIDAR Analysis of Amboy Crater, California: Application to MOLA Analysis of Analog Features on Mars; Airborne Radar Study of Soil Moisture at

  13. Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation

    Science.gov (United States)

    Palandri, J.L.; Reed, M.H.

    2004-01-01

    In a series of water-rock reaction simulations, we assess the processes of serpentinization of harzburgite and related calcium metasomatism resulting in rodingite-type alteration, and seafloor carbonate chimney precipitation. At temperatures from 25 to 300??C (P = 10 to 100 bar), using either fresh water or seawater, serpentinization simulations produce an assemblage commonly observed in natural systems, dominated by serpentine, magnetite, and brucite. The reacted waters in the simulations show similar trends in composition with decreasing water-rock ratios, becoming hyper-alkaline and strongly reducing, with increased dissolved calcium. At 25??C and w/r less than ???32, conditions are sufficiently reducing to yield H2 gas, nickel-iron alloy and native copper. Hyperalkalinity results from OH- production by olivine and pyroxene dissolution in the absence of counterbalancing OH- consumption by alteration mineral precipitation except at very high pH; at moderate pH there are no stable calcium minerals and only a small amount of chlorite forms, limited by aluminum, thus allowing Mg2+ and Ca2+ to accumulate in the aqueous phase in exchange for H+. The reducing conditions result from oxidation of ferrous iron in olivine and pyroxene to ferric iron in magnetite. Trace metals are computed to be nearly insoluble below 300??C, except for mercury, for which high pH stabilizes aqueous and gaseous Hg??. In serpentinization by seawater at 300??C, Ag, Au, Pd, and Pt may approach ore-forming concentrations in sulfide complexes. Simulated mixing of the fluid derived from serpentinization with cold seawater produces a mineral assemblage dominated by calcite, similar to recently discovered submarine, ultramafic rock-hosted, carbonate mineral deposits precipitating at hydrothermal vents. Simulated reaction of gabbroic or basaltic rocks with the hyperalkaline calcium- and aluminum-rich fluid produced during serpentinization at 300??C yields rodingite-type mineral assemblages, including

  14. Reconstructing the thermal evolution of the CK chondrite parent body using Northwest Africa 5343, the least metamorphosed CK chondrite

    Science.gov (United States)

    Dunn, T. L.; Gross, J.; O'Hara, E. J.

    2017-12-01

    Carbonaceous chondrites (CCs) represent some of the most pristine solar system material, providing constraints on the early formation of planetesimals. The CK chondrites are the only group of CCs to exhibit the full range of thermal metamorphism (petrologic type 3 to 6). Most unequilibrated CK chondrites (CK3s) have been metamorphosed to petrologic subtype 3.8 or higher. However, homogeneity of olivine suggests that CK3 chondrite Northwest Africa (NWA) 5343 is less metamorphosed than the other CK3s. The presence of unrecrystallized matrix indicates that it is less than petrologic type 3.7. To better assess the lower limits of metamorphism on the CK chondrite parent body, we performed a detailed analysis of matrix material in NWA 5343. Ascertaining the lower limit of metamorphism in the CK chondrites is critical when addressing the CK-CV parent body debate (e.g., one vs. two parent bodies), and will shed light onto the evolution of metamorphosed CC parent bodies. We recognize two texturally distinct regions in the matrix of NWA 5343. Both have similar mineralogies (mostly olivine with lesser pyroxene and plagioclase), but differ in grain size, shape, and porosity. The porous region of the sample is characterized by subhedral-rounded olivine grains, typically Skeletal pyroxene is also common. Original pore space is filled with a Ca-rich glass that appears to originate from an unusual vein in this region. Most interestingly, the extent of metamorphism varies within NWA 5343. Larger, anhedral olivine in the glassy region suggest that this region is more metamorphosed than the porous region. Even within the porous region there is a range of metamorphism, with small patches of granoblastic olivine intermixed with the clastic matrix. This suggests that NWA 5343 may represent a metamorphic breccia, a common occurrence in OCs and CCs of lower petrologic types, and provides insight into the evolution of the only completely metamorphosed CC parent body.

  15. Insights into the evolution of an alkaline magmatic system: An in situ trace element study of clinopyroxenes from the Ditrău Alkaline Massif, Romania

    Science.gov (United States)

    Batki, Anikó; Pál-Molnár, Elemér; Jankovics, M. Éva; Kerr, Andrew C.; Kiss, Balázs; Markl, Gregor; Heincz, Adrián; Harangi, Szabolcs

    2018-02-01

    Clinopyroxene is a major constituent in most igneous rock types (hornblendite, diorite, syenite, nepheline syenite, camptonite, tinguaite and ijolite) of the Ditrău Alkaline Massif, Eastern Carpathians, Romania. Phenocryst and antecryst populations have been distinguished based on mineral zoning patterns and geochemical characteristics. Major and trace element compositions of clinopyroxenes reflect three dominant pyroxene types including primitive high-Cr Fe-diopside, intermediate Na-diopside-hedenbergite and evolved high-Zr aegirine-augite. Clinopyroxenes record two major magma sources as well as distinct magma evolution trends. The primitive diopside population is derived from an early camptonitic magma related to basanitic parental melts, whilst the intermediate diopside-hedenbergite crystals represent a Na-, Nb- and Zr-rich magma source recognised for the first time in the Ditrău magmatic system. This magma fractionated towards ijolitic and later phonolitic compositions. Field observations, petrography and clinopyroxene-melt equilibrium calculations reveal magma recharge and mingling, pyroxene recycling, fractional crystallisation and accumulation. Repeated recharge events of the two principal magmas resulted in multiple interactions between more primitive and more fractionated co-existing magma batches. Magma mingling occurred between mafic and felsic magmas by injection of ijolitic magma into fissures (dykes) containing phonolitic (tinguaite) magma. This study shows that antecryst recycling, also described for the first time in Ditrău, is a significant process during magma recharge and demonstrates that incorporated crystals can crucially affect the host magma composition and so whole-rock chemical data should be interpreted with great care.

  16. UV Reflectance of Jupiter's Moon Europa and Asteroid (16) Psyche

    Science.gov (United States)

    Becker, T. M.; Retherford, K. D.; Roth, L.; Hendrix, A.; McGrath, M. A.; Cunningham, N.; Feaga, L. M.; Saur, J.; Elkins-Tanton, L. T.; Walhund, J. E.; Molyneux, P.

    2017-12-01

    Surface reflectance observations of solar system objects in the UV are not only complimentary to longer wavelength observations for identifying surface composition, but can also reveal new and meaningful information about the surfaces of those bodies. On Europa, far-UV (FUV) spectral observations made by the Hubble Space Telescope (HST) show that the surface lacks a strong water ice absorption edge near 165 nm, which is intriguing because such a band has been detected on most icy satellites. This may suggest that radiolytic processing by Jupiter's magnetosphere has altered the surface, causing absorption at wavelengths longward of the H2O edge, masking this feature. Additionally, the FUV spectra are blue (increasing albedo with shorter wavelengths), and regions that are observed to be dark in the visible appear bright in the FUV. This spectral inversion, also observed on the Moon and some asteroids, may provide insight into the properties of the surface material and how they are processed.We also explore the UV reflectance spectra of the main belt asteroid (16) Psyche. This asteroid is believed to be the metallic remnant core of a differentiated asteroid, stripped of its mantle through collisions. However, there is speculation that the asteroid could have formed as-is from highly reduced metal-rich material near the Sun early in the formation of the solar system. Further, spectral observations in the infrared have revealed pyroxene and hydroxyl on the asteroid's surface, complicating the interpretation that (16) Psyche is a pure metallic object. Laboratory studies indicate that there are diagnostic spectral features in the UV that could be useful for determining the surface composition. We obtained HST observations of Psyche from 160 - 300 nm. Preliminary results show a featureless, red-sloped spectrum, inconsistent with significant amounts of pyroxene on the surface. We will present the spectra of Europa and the asteroid (16) Psyche and discuss the unique details

  17. DETECTION OF ROTATIONAL SPECTRAL VARIATION ON THE M-TYPE ASTEROID (16) PSYCHE

    International Nuclear Information System (INIS)

    Sanchez, Juan A.; Thomas, Cristina; Reddy, Vishnu; Shepard, Michael K.; Cloutis, Edward A.; Kiddell, Cain; Applin, Daniel; Takir, Driss; Conrad, Albert

    2017-01-01

    The asteroid (16) Psyche is of scientific interest because it contains ∼1% of the total mass of the asteroid belt and is thought to be the remnant metallic core of a protoplanet. Radar observations have indicated the significant presence of metal on the surface with a small percentage of silicates. Prior ground-based observations showed rotational variations in the near-infrared (NIR) spectra and radar albedo of this asteroid. However, no comprehensive study that combines multi-wavelength data has been conducted so far. Here we present rotationally resolved NIR spectra (0.7–2.5 μ m) of (16) Psyche obtained with the NASA Infrared Telescope Facility. These data have been combined with shape models of the asteroid for each rotation phase. Spectral band parameters extracted from the NIR spectra show that the pyroxene band center varies from ∼0.92 to 0.94 μ m. Band center values were used to calculate the pyroxene chemistry of the asteroid, whose average value was found to be Fs 30 En 65 Wo 5 . Variations in the band depth (BD) were also observed, with values ranging from 1.0% to 1.5%. Using a new laboratory spectral calibration method, we estimated an average orthopyroxene content of 6% ± 1%. The mass-deficit region of Psyche, which exhibits the highest radar albedo, also shows the highest value for the spectral slope and the minimum BD. The spectral characteristics of Psyche suggest that its parent body did not have the typical structure expected for a differentiated body or that the sequence of events that led to its current state was more complex than previously thought.

  18. Detection of Rotational Spectral Variation on the M-type Asteroid (16) Psyche

    Science.gov (United States)

    Sanchez, Juan A.; Reddy, Vishnu; Shepard, Michael K.; Thomas, Cristina; Cloutis, Edward A.; Takir, Driss; Conrad, Albert; Kiddell, Cain; Applin, Daniel

    2017-01-01

    The asteroid (16) Psyche is of scientific interest because it contains ˜1% of the total mass of the asteroid belt and is thought to be the remnant metallic core of a protoplanet. Radar observations have indicated the significant presence of metal on the surface with a small percentage of silicates. Prior ground-based observations showed rotational variations in the near-infrared (NIR) spectra and radar albedo of this asteroid. However, no comprehensive study that combines multi-wavelength data has been conducted so far. Here we present rotationally resolved NIR spectra (0.7-2.5 μm) of (16) Psyche obtained with the NASA Infrared Telescope Facility. These data have been combined with shape models of the asteroid for each rotation phase. Spectral band parameters extracted from the NIR spectra show that the pyroxene band center varies from ˜0.92 to 0.94 μm. Band center values were used to calculate the pyroxene chemistry of the asteroid, whose average value was found to be Fs30En65Wo5. Variations in the band depth (BD) were also observed, with values ranging from 1.0% to 1.5%. Using a new laboratory spectral calibration method, we estimated an average orthopyroxene content of 6% ± 1%. The mass-deficit region of Psyche, which exhibits the highest radar albedo, also shows the highest value for the spectral slope and the minimum BD. The spectral characteristics of Psyche suggest that its parent body did not have the typical structure expected for a differentiated body or that the sequence of events that led to its current state was more complex than previously thought.

  19. Estudio y caracterización de vidriados vitrocerámicos basados en piroxeno

    Directory of Open Access Journals (Sweden)

    Lucas, F.

    2004-10-01

    Full Text Available A method was proposed to develop pyroxene-based glass-ceramic glazes. First, was studied, by X-ray diffraction and scanning electron microscopy, the effect of several additives in the monophasic crystallization of pyroxene from glasses in the CaO•MgO•Al2O3•SiO2 quaternary system. After, it was determined the sinterization intervals and thermal properties of the glasses, by hot stage microscopy and dilatometry. Finally, some studied glasses were chosen and glazed tiles were developed under fast firing wall- and floor-tile industrial cycles. The results proved the reproducibility of the microstructural characteristics obtained in the previous study with glasses. The measurement of different mechanical properties confirmed their potential application in nowadays industrial processing.

    En este trabajo se presenta una metodología para desarrollar vidriados vitrocerámicos basados en piroxeno. En primer lugar se ha estudiado, mediante difracción de rayos X y microscopía electrónica de barrido, el efecto de diferentes aditivos en la cristalización monofásica de piroxeno a partir de vidrios en el sistema CaO•MgO•Al2O3•SiO2. Posteriormente, se han determinado los intervalos de sinterización y características térmicas de los vidrios, mediante microscopía de calefacción y dilatometría. Finalmente, con los vidrios seleccionados se han preparado piezas esmaltadas mediante tratamientos térmicos utilizados habitualmente en la industria de pavimento y revestimiento, comprobando la reproducibilidad de las características microestructurales obtenidas en los estudios iniciales en vidrios. Se han medido sobre las piezas esmaltadas diferentes propiedades que permiten confirmar su potencial aplicación en procesados industriales de monococción y/o bicocción.

  20. Termobarometría Opx-Cpx aplicada al conocimiento de las condiciones de formación de las roca s ultramálicas de Vivero (Lugo, noroeste de España

    Directory of Open Access Journals (Sweden)

    Galán, G.

    1985-12-01

    Full Text Available Several two-pyroxene thermometers and barometers have been used to determine the genetic conditions of ultramafic rocks associated to calc-alkalic granites that outcrop in the Vivero Massif (Lugo, NW of Spain. These ultramafic rocks, some of which are similar to cortlandtites, have an amphibole being the most abundant phase, together with olivino, pyroxenes and phlogopite. They have been differentiated in peridotites, pyroxenites and hornblendites. Some dioritic mafic rocks are also present. Their emplacement, simultaneous with that of the granites, was made following a shear zone related to the Mondoñedo nappe and resulted in Penetrative deformationof the whole complex Temperatures obtained with different methods are quite uniform with an average value of 938º C, and a pressure of about 3 Kbars. The results of the different thermometers are compared, as well as their petrological and regional significance.

    Diversos métodos termométricos y barométricos, basados en el equilibrio ortopiroxenoclinopiroxeno, se utilizan en la determinación de la temperatura y presión de formación de rocas ultramáficas ricas en anfíbol, asociadas a granitos calcoalcalinos del macizo de Vivero (Lugo, noroeste de España. Se trata de rocas ultramáficas, algunas de ellas de tipo cortlandtítico, con una proporción variable de olivinos, piroxenos, anfíboles y flogopita como fases principales, que se emplazan simultáneamente con los granitos asociados, aprovechando una zona de cizalla en relación con el manto de Mondoñedo. Se comparan los resultados obtenidos y la validez de los diversos métodos empleados, a la vez que se discute su significado petrológico y regional.

  1. Impact of dissolution and carbonate precipitation on carbon storage in basalt

    Science.gov (United States)

    Wells, R. K.; Xiong, W.; Tadeoye, J.; Menefee, A.; Ellis, B. R.; Skemer, P. A.; Giammar, D.

    2016-12-01

    The spatial evolution of silicate mineral dissolution, carbonate precipitation, and the transport of fluids influence the viability of carbon storage in basalt reservoirs. Dissolution of natural basalt and subsequent carbonate precipitation in systems with different transport processes operating were characterized using static and flow-through (5 mL/hr) experiments at 50, 100, and 150 °C, and 100 bar CO2. Intact samples and cores with milled pathways that simulate fractures were tested. Spatial and mineralogical patterns in dissolution and precipitation were analyzed using optical and electron microscopy, microCT scanning, and surface roughness data. Precipitates and fluid chemistry were analyzed using Raman spectroscopy, SEM-EDS, and ICP-MS. Analysis of the bulk solution and surface topography suggests dissolution of olivine and pyroxene grains begins within hours of the start of the experiments. In flow-through experiments, total effluent cation concentrations reach a peak concentration within a few hours then drop towards a steady state within a few days. In static experiments, the initial rate of cation release is faster than it is after several weeks. In both cases Ca2+, Mg2+, and Fe2+ are the dominant cations in solution in the initial stages of reaction. Lower concentrations of Na2+, K+, and Al3+, and the preservation of feldspar and matrix grains after several weeks of reaction indicate the slow reactivity of these minerals. As the reaction progresses, the surface roughness increases steadily with cavities developing at the sites of olivine and pyroxene grains. Post-reaction analysis of basalt samples reacted at static conditions with milled pathways reveals that both siderite and amorphous silica precipitated within diffusion-limited zones as early as 4-6 weeks. Siderite abundance varies with distance along the pathway with the highest concentration of carbonates 1-2 cm below the fracture opening. Siderite precipitates are large enough to fill fracture

  2. Magmatic water contents determined through clinopyroxene: Examples from the Western Canary Islands, Spain

    Science.gov (United States)

    Weis, Franz A.; Skogby, Henrik; Troll, Valentin R.; Deegan, Frances M.; Dahren, Börje

    2015-07-01

    Water is a key parameter in magma genesis, magma evolution, and resulting eruption styles, because it controls the density, the viscosity, as well as the melting and crystallization behavior of a melt. The parental water content of a magma is usually measured through melt inclusions in minerals such as olivine, a method which may be hampered, however, by the lack of melt inclusions suitable for analysis, or postentrapment changes in their water content. An alternative way to reconstruct the water content of a magma is to use nominally anhydrous minerals (NAMs), such as pyroxene, which take up low concentrations of hydrogen as a function of the magma's water content. During magma degassing and eruption, however, NAMs may dehydrate. We therefore tested a method to reconstruct the water contents of dehydrated clinopyroxene phenocrysts from the Western Canary islands (n = 28) through rehydration experiments followed by infrared and Mössbauer spectroscopy. Employing currently available crystal/melt partitioning data, the results of the experiments were used to calculate parental water contents of 0.71 ± 0.07 to 1.49 ± 0.15 wt % H2O for Western Canary magmas during clinopyroxene crystallization at upper mantle conditions. This H2O range is in agreement with calculated water contents using plagioclase-liquid-hygrometry, and with previously published data for mafic lavas from the Canary Islands and comparable ocean island systems elsewhere. Utilizing NAMs in combination with hydrogen treatment can therefore serve as a proxy for pre-eruptive H2O contents, which we anticipate becoming a useful method applicable to mafic rocks where pyroxene is the main phenocryst phase.

  3. Spectral measurements of howardites in support of the interpretation of the Dawn VIR spectra at Vesta

    Science.gov (United States)

    De Angelis, S.; Ammannito, E.; Di Iorio, T.; De Sanctis, M.; Mittlefehldt, D.

    2014-07-01

    The howardites, eucrites, and diogenites constitute a suite of meteorite lithologies (HED) known to be related to asteroid Vesta [1]. Howardites are physical mixtures of eucrites and diogenites. Howardites are divided in two subtypes: regolithic howardites are actually linked to the true regolith, while fragmental howardites are simple polymict breccias [2]. Mapping of Vesta's surface, as obtained with data from Visible and Infrared mapping Spectrometer (VIR) on Dawn [3,4], showed that it is mainly howarditic, with few regions of diogenite-rich and eucrite-rich terrains [5, 6]. In order to map quantitatively the distribution of lithologic types on Vesta, we are carrying on a study of a set of well-characterized howardites [7]. Spectra were measured on sample powders sieved to 75 μ m in the laboratories of the Istituto di Astrofisica e Planetologia Spaziali (IAPS-INAF) in Rome (Italy) and Brown University, in Providence (USA). Here we report about the measurements done at IAPS-INAF. The spectra of 33 samples have been acquired with the S.LAB setup, consisting in the FieldSpec Pro spectrometer (range 0.35-2.5 μ m, spatial resolution 0.5 cm^2) coupled with a goniometer (incidence i=30°, emission e=0°) [8]. Some representative spectra of the measured howardites are shown in the figure. The spectra are characterized by the two broad Fe^{2+} absorption bands near 1 and 2 μ m (BI and BII) indicative of pyroxenes. Band parameters relative to BI and BII have been calculated using the algorithm developed to process VIR spectra [4]. This enables us to compare laboratory data directly with the VIR results. Other weaker absorptions also characterize some spectra: the 0.5 μ m feature (Mn^{2+} or Cr^{3+}) and the 1.2 μ m feature possibly due to Fe^{2+} in plagioclases. The PRA04401 sample is characterized by a pyroxene-carbonaceous matter mixture [7].

  4. Khatyrka, a new CV3 find from the Koryak Mountains, Eastern Russia

    Science.gov (United States)

    MacPherson, Glenn J.; Andronicos, Christopher L.; Bindi, Luca; Distler, Vadim V.; Eddy, Michael P.; Eiler, John M.; Guan, Yunbin; Hollister, Lincoln S.; Kostin, Alexander; Kryachko, Valery; Steinhardt, William M.; Yudovskaya, Marina; Steinhardt, Paul J.

    2013-08-01

    A new meteorite find, named Khatyrka, was recovered from eastern Siberia as a result of a search for naturally occurring quasicrystals. The meteorite occurs as clastic grains within postglacial clay-rich layers along the banks of a small stream in the Koryak Mountains, Chukotka Autonomous Okrug of far eastern Russia. Some of the grains are clearly chondritic and contain Type IA porphyritic olivine chondrules enclosed in matrices that have the characteristic platy olivine texture, matrix olivine composition, and mineralogy (olivine, pentlandite, nickel-rich iron-nickel metal, nepheline, and calcic pyroxene [diopside-hedenbergite solid solution]) of oxidized-subgroup CV3 chondrites. A few grains are fine-grained spinel-rich calcium-aluminum-rich inclusions with mineral oxygen isotopic compositions again typical of such objects in CV3 chondrites. The chondritic and CAI grains contain small fragments of metallic copper-aluminum-iron alloys that include the quasicrystalline phase icosahedrite. One grain is an achondritic intergrowth of Cu-Al metal alloys and forsteritic olivine ± diopsidic pyroxene, both of which have meteoritic (CV3-like) oxygen isotopic compositions. Finally, some grains consist almost entirely of metallic alloys of aluminum + copper ± iron. The Cu-Al-Fe metal alloys and the alloy-bearing achondrite clast are interpreted to be an accretionary component of what otherwise is a fairly normal CV3 (oxidized) chondrite. This association of CV3 chondritic grains with metallic copper-aluminum alloys makes Khatyrka a unique meteorite, perhaps best described as a complex CV3 (ox) breccia.

  5. Redox dependent behaviour of molybdenum during magmatic processes in the terrestrial and lunar mantle: Implications for the Mo/W of the bulk silicate Moon

    Science.gov (United States)

    Leitzke, F. P.; Fonseca, R. O. C.; Sprung, P.; Mallmann, G.; Lagos, M.; Michely, L. T.; Münker, C.

    2017-09-01

    We present results of high-temperature olivine-melt, pyroxene-melt and plagioclase-melt partitioning experiments aimed at investigating the redox transition of Mo in silicate systems. Data for a series of other minor and trace elements (Sc, Ba, Sr, Cr, REE, Y, HFSE, U, Th and W) were also acquired to constrain the incorporation of Mo in silicate minerals. All experiments were carried out in vertical tube furnaces at 1 bar and temperatures ranging from ca. 1220 to 1300 °C. Oxygen fugacity was controlled via CO-CO2 gas mixtures and varied systematically from 5.5 log units below to 1.9 log units above the fayalite-magnetite-quartz (FMQ) redox buffer thereby covering the range in oxygen fugacities of terrestrial and lunar basalt genesis. Molybdenum is shown to be volatile at oxygen fugacities above FMQ and that its compatibility in pyroxene and olivine increases three orders of magnitude towards the more reducing conditions covered in this study. The partitioning results show that Mo is dominantly tetravalent at redox conditions below FMQ-4 and dominantly hexavalent at redox conditions above FMQ. Given the differences in oxidation states of the terrestrial (oxidized) and lunar (reduced) mantles, molybdenum will behave significantly differently during basalt genesis in the Earth (i.e. highly incompatible; average DMoperidotite/melt ∼ 0.008) and Moon (i.e. moderately incompatible/compatible; average DMoperidotite/melt ∼ 0.6). Thus, it is expected that Mo will strongly fractionate from W during partial melting in the lunar mantle, given that W is broadly incompatible at FMQ-5. Moreover, the depletion of Mo and the Mo/W range in lunar samples can be reproduced by simply assuming a primitive Earth-like Mo/W for the bulk silicate Moon. Such a lunar composition is in striking agreement with the Moon being derived from the primitive terrestrial mantle after core formation on Earth.

  6. Evolution of the Oxidation State of the Earth's Mantle: Challenges of High Pressure Quenching

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, R.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3+ at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. Experiments of more mafic compositions and at higher pressures commonly form a polyphase quench intergrowth composed primarily of pyroxenes, with interstitial glass which hosts nearly all of the more volatile minor elements. In our previous experiments on shergottite compositions, variable fO2, T, and P is less than 4 GPa, Fe3+/TotFe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3+/TotFe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3+. Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Experiments with Knippa basalt as the starting composition were conducted at 1-8 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products from 7-8 GPa quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal Fe3+/2+. A number of different approaches have been employed to produce glassy samples that can be measured by EELS and XANES. A more intermediate andesite was used in one experiment, and decompression during quenching was attempted after, but both resulted in a finer grained polyphase texture. Experiments are currently underway to test different capsule materials may affect quench texture. A preliminary experiment using liquid nitrogen to greatly enhance the rate of cooling of the assembly has also been attempted and this technique will be

  7. Nd-isotopes in selected mantle-derived rocks and minerals and their implications for mantle evolution

    Science.gov (United States)

    Basu, A.R.; Tatsumoto, M.

    1980-01-01

    The Sm-Nd systematics in a variety of mantle-derived samples including kimberlites, alnoite, carbonatite, pyroxene and amphibole inclusions in alkali basalts and xenolithic eclogites, granulites and a pyroxene megacryst in kimberlites are reported. The additional data on kimberlites strengthen our earlier conclusion that kimberlites are derived from a relatively undifferentiated chondritic mantle source. This conclusion is based on the observation that the e{open}Nd values of most of the kimberlites are near zero. In contrast with the kimberlites, their garnet lherzolite inclusions show both time-averaged Nd enrichment and depletion with respect to Sm. Separated clinopyroxenes in eclogite xenoliths from the Roberts Victor kimberlite pipe show both positive and negative e{open}Nd values suggesting different genetic history. A whole rock lower crustal scapolite granulite xenolith from the Matsoku kimberlite pipe shows a negative e{open}Nd value of -4.2, possibly representative of the base of the crust in Lesotho. It appears that all inclusions, mafic and ultramafic, in kimberlites are unrelated to their kimberlite host. The above data and additional Sm-Nd data on xenoliths in alkali basalts, alpine peridotite and alnoite-carbonatites are used to construct a model for the upper 200 km of the earth's mantle - both oceanic and continental. The essential feature of this model is the increasing degree of fertility of the mantle with depth. The kimberlite's source at depths below 200 km in the subcontinental mantle is the most primitive in this model, and this primitive layer is also extended to the suboceanic mantle. However, it is clear from the Nd-isotopic data in the xenoliths of the continental kimberlites that above 200 km the continental mantle is distinctly different from their suboceanic counterpart. ?? 1980 Springer-Verlag.

  8. Calcium isotopic composition of mantle peridotites

    Science.gov (United States)

    Huang, F.; Kang, J.; Zhang, Z.

    2015-12-01

    Ca isotopes are useful to decipher mantle evolution and the genetic relationship between the Earth and chondrites. It has been observed that Ca isotopes can be fractionated at high temperature [1-2]. However, Ca isotopic composition of the mantle peridotites and fractionation mechanism are still poorly constrained. Here, we report Ca isotope composition of 12 co-existing pyroxene pairs in 10 lherzolites, 1 harzburgite, and 1 wehrlite xenoliths collected from Hainan Island (South Eastern China). Ca isotope data were measured on a Triton-TIMS using the double spike method at the Guangzhou Institute of Geochemistry, CAS. The long-term external error is 0.12‰ (2SD) based on repeated analyses of NIST SRM 915a and geostandards. δ44Ca of clinopyroxenes except that from the wehrlite ranges from 0.85‰ to 1.14‰, while opx yields a wide range from 0.98‰ up to 2.16‰. Co-existing pyroxene pairs show large Δ44Caopx-cpx (defined as δ44Caopx-δ44Cacpx) ranging from 0 to 1.23‰, reflecting equilibrium fractionation controlled by variable Ca contents in the opx. Notably, clinopyroxene of wehrlite shows extremely high δ44Ca (3.22‰). δ44Ca of the bulk lherzolites and harzburgites range from 0.86‰ to 1.14‰. This can be explained by extracting melts with slightly light Ca isotopic compositions. Finally, the high δ44Ca of the wehrlite (3.22‰) may reflect metasomatism by melt which has preferentially lost light Ca isotopes due to chemical diffusion during upwelling through the melt channel. [1] Amini et al (2009) GGR 33; [2] Huang et al (2010) EPSL 292.

  9. Geochemistry and Mineral Chemistry of Zeolites Bearing Basic Volcanic Rocks from the Boumehen-Roudehen Area, East of Tehran

    Directory of Open Access Journals (Sweden)

    Amir Ali Tabbakh Shabani

    2017-11-01

    Full Text Available Introduction The Upper Eocene basic volcanic rocks that have cropped out in Karaj formation in the Boumehen and Roudehen area in the east of Tehran are characterized by fibrous zeolites filling their vesicles, cavities and fractures creating amygdale texture. The study area is located structurally in the Central Alborz orogenic belt. The presence of large volumes of shoshonitic magma during the Middle to Late Eocene in southern–central Alborz implies that partial melting to produce shoshsonitic melts was not a local petrological event. Thus, their ages, formation processes, and interpretations are of regional tectonic significance. In this study, we present a detailed petrography, mineral chemistry, and whole-rock geochemistry of high-K (shoshonitic basic rocks to understand the petrogenesis and source region and to deduce the nature of the tectonomagmatic regime of the Alborz. Materials and methods In this study, we present new major and trace element data for a selection of 4 of the least altered samples by a combination of X-ray fluorescence (XRF and ICP-OES techniques at the Zarazma Mineral Studies Company. Mineral analyses were obtained by wavelength dispersive X-ray spectrometry on polished thin sections prepared from each rock sample described above for 12 elements using a Cameca SX-50 electron microprobe at the Istituto di Geologia e Geoingegneria Ambientale, C.N.R., University La Sapienza of Rome, Italy. Typical beam operating conditions were 15 kV and probe current of 15 nA. The accuracy of the analyses is 1% for major and 10% for minor elements. A total of 24 point analyses were collected. Results and Discussion The extent of alteration in the study rocks varies from slight to severe and shows porphyritic to glomeroporphyritic textures. Pyroxenes are generally subhedral to euhedral and occur as discrete crystals as well as aggregates. Olivine may occur only as relics filled with iddingsite, chlorite and calcite. Plagioclase is

  10. Mineralogy and skarnification processes at the Avan Cu-Fe Skarn, northeast of Kharvana, NW Iran

    Directory of Open Access Journals (Sweden)

    Mir Ali Asghar Mokhtari

    2017-02-01

    Full Text Available Introduction The Avan Cu-Fe skarn is located at the southern margin of Qaradagh batholith, about 60 km north of Tabriz. The Skarn-type metasomatic alteration is the result of Qaradagh batholith intrusion into the Upper Cretaceous impure carbonates. The studied area belongs to the Central Iranian structural zone. In regional scale, the studied area is a part of the Zangezour mineralization zone in the Lesser Caucasus. Several studies (Karimzadeh Somarin and Moayed, 2002; Calagari and Hosseinzadeh, 2005; Mokhtari, 2008; Baghban Asgharinezhad, 2012; Mokhtari, 2012 including master’s theses and research programs have been done on some skarns in the Azarbaijan area considering their petrologic and mineralization aspects. However, before this study, the Avan skarn aureole has not been studied in detail. In this paper, various geological aspects of the Avan skarn including mineralogy, bi-metasomatic alteration, metasomatism and mineralization during the progressive and retrograde stages of the skarnification processes have been studied in detail. Research Method This research consists of field and laboratory studies. Field studies include preparation of the geological map, identifying the relationship between the intrusion and the skarn aureole, identifying the relationship between different parts of the skarn zone and also collecting samples for laboratory studies. Laboratory studies include petrography, mineralography and microprobe studies. Cameca SX100 Microprobe belonging to Geological Survey of the Czech Republic was used in order to determine the chemical composition of the calc-silicate minerals such as pyroxene and garnet in garnet skarn and pyroxene- garnet skarn sub-zones. Discussion and conclusion Qaradagh batholith is composed of discrete acid to mafic phases including gabbro, diorite, quartz diorite, quartz monzonite, quartz monzodiorite, tonalite, granodiorite, monzogranite and granite porphyry which is dominated by granodiorite

  11. Characterization of fluids associated to mineral paragenesis of uraniferous albitites and their gnessic embedding rocks from Lagoa da Rabicha Uranium Deposit, Lagoa Real, BA, Brazil

    International Nuclear Information System (INIS)

    Oliveira, Lucilia Aparecida Ramos de

    2010-01-01

    Brazil has now the seventh largest uranium reserve in the world. The Lagoa Real Uranium Province (PULR) is located in central-south region of Bahia State. Along a helical structure, north-south oriented, with approximately 33 km long, there are 34 known uranium mineralized areas. In its central-south portion is located anomaly 03 (AN03), named Lagoa da Rabicha, discovered and mapped by NUCLEBRAS (Brazilian Nuclear Enterprises), in the 80s. The Cachoeira Mine (AN13), located in northern PULR, is currently the only uranium mine in production in Brazil and even in South America. Nowadays it is observed a growth in energy demand in Brazil and also worldwide and studies and research applied to the petrogenetic uranium deposits are relevant both to be able to increase their potential for exploration and to assist in the possible future occurrences discovery. In recent years, fluid inclusions analysis (FI) have been widely used to study the genesis of uranium deposits in PULR and even thought there are still doubts about the uranium mineralization metallogenesis at Lagoa Real. Therefore, this work aimed to study the minerals and fluids associated with Lagoa da Rabicha albitites uraniferous and gneissic host rocks. In this way it was prepared an overview of the fluids found in this sector, establishing a comparison with several authors' studies in this and others Lagoa Real anomalies, trying to show the solutions evolution, at the same time that happened the uraninite precipitation. Petrography, electronic microprobe, laser ablation (LA-ICP-MS) and fluid inclusion studies were the applied methodologies. The fluids inclusions assemblages present in pyroxene, garnet and plagioclase, the main mineralogical constituents, were studied. The older fluid was found in aegirine-augite pyroxene and had aquo-saline composition (without carbonic phases) with Ca, Fe and Mg, 9-13 wt% NaCl salinities and homogenization temperatures between 220 and 290 deg C. Concomitantly, occurred a

  12. ⁵³Mn-⁵³Cr and ²⁶Al-²⁶Mg ages of a feldspathic lithology in polymict ureilites

    Energy Technology Data Exchange (ETDEWEB)

    Goodrich, Cyrena Anne [Planetary Science Institute. Tucson, AZ (United States); Hutcheon, Ian D. [Glenn T. Seaborg Institute. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kita, Noriko T. [Dept. of Geoscience. Univ. of Wisconsin, Madison, WI (United States); Huss, Gary R. [NASA Marshall Space Flight Center (MSFC), Huntsville, AL (United States); Cohen, Barbara Anne [Hawaii Institute of Geophysics and Planetology. Univ. of Hawaii, Honolulu, HI (United States); Keil, Klaus

    2010-07-01

    We report 53Mn–53Cr and 26Al–26Mg isotopic data, obtained by in-situ SIMS analysis, for feldspathic clasts in polymict ureilites DaG 319 and DaG 165. The analyzed clasts belong to the “albitic lithology,” the most abundant population of indigenous feldspathic materials in polymict ureilites, and are highly fractionated igneous assemblages of albitic plagioclase, Fe-rich pyroxenes, phosphates, ilmenite, silica, and Fe(Mn, K, P, Ti)-enriched glass. Glass in DaG 165 clast 19 has extremely high and variable 55Mn/52Cr ratios (500–58,000) and shows correlated 53Cr excesses up to ~ 1500‰, clearly indicating the presence of live 53Mn at the time of formation. The slope of the well-correlated isochron defined by glass and pyroxenes from this clast corresponds to (53Mn/55Mn) = (2.84 ± 0.10) × 10-6 (2σ). Data for less 55Mn/52Cr-enriched glasses from DaG 319 clast B1, as well as phosphates from several other clasts, are consistent with this isochron. The 53Mn/55Mn ratio obtained from the isochron implies that these clasts are 0.70 ± 0.18 Ma younger than the D'Orbigny angrite, corresponding to the absolute age of 4563.72 ± 0.22 Ma. Plagioclase in DaG 319 clast B1 has a fairly constant 27Al/24Mg ratio of ~ 900 and shows resolvable 26Mg excesses of ~ 2‰. The slope of the isochron defined by pyroxene and plagioclase in this clast is (3.0 ± 1.1) × 10-7 (2σ), corresponding to a time difference of 5.4 (-0.3/+0.5) Ma after CAI (assuming the canonical initial 26Al/27Al ratio of 5 × 10-5) and an age 0.5 (-0.3/+0.5) Ma younger than D'Orbigny. Its absolute age (relative to D'Orbigny) is 4563.9 (+ 0.4/-0.5) Ma, in agreement with the 53Mn–53Cr age from clast 19. These data provide the first

  13. Trace elements record complex histories in diogenites

    Science.gov (United States)

    Balta, J. B.; Beck, A. W.; McSween, H. Y.

    2012-12-01

    Diogenite meteorites are cumulate rocks composed mostly of orthopyroxene and chemically linked to eucrites (basaltic) and howardites (brecciated mixtures of diogenites and eucrites). Together, they represent the largest single family of achondrite meteorites delivered to Earth, and have been spectrally linked to the asteroid 4 Vesta, the largest remaining basaltic protoplanet. However, this spectral link is non-unique as many basaltic asteroids likely formed and were destroyed in the early solar system. Recent work suggested that Vesta may be an unlikely parent body for the diogenites based on correlations between trace elements and short-lived isotope decay products, which would be unlikely to survive on a body as large as Vesta due to its long cooling history [1]. Recent analyses of terrestrial and martian olivines have demonstrated that trace element spatial distributions can preserve evidence of their crystallization history even when major elements have been homogenized [2]. We have mapped minor elements including Cr, Al, and Ti in seemingly homogeneous diogenite orthopyroxenes and found a variety of previously unobserved textures. The pyroxenes in one sample (GRA 98108) are seemingly large grains of variable shapes and sizes, but the trace elements reveal internal grain boundaries between roughly-equal sized original subgrains, with equilibrated metamorphic triple junctions between them and trace element depletions at the boundaries. These trends suggest extraction of trace elements by a magma along those relict grain boundaries during a reheating event. Two other samples show evidence of fracturing and annealing, with trace element mobility within grains. One sample appears to have remained a closed system during annealing (MET 01084), while the other has interacted with a fluid or magma to move elements along annealed cracks (LEW 88679). These relict features establish that the history of diogenite pyroxenes is more complex than their homogeneous major

  14. Lithosphere destabilization by melt percolation during pre-oceanic rifting: Evidence from Alpine-Apennine ophiolitic peridotites

    Science.gov (United States)

    Piccardo, Giovanni; Ranalli, Giorgio

    2017-04-01

    Orogenic peridotites from Alpine-Apennine ophiolite Massifs (Lanzo, Voltri, External and Internal Ligurides, - NW Italy, and Mt. Maggiore - Corsica) derive from the mantle lithosphere of the Ligurian Tethys. Field/structural and petrologic/geochemical studies provide constraints on the evolution of the lithospheric mantle during pre-oceanic passive rifting of the late Jurassic Ligurian Tethys ocean. Continental rifting by far-field tectonic forces induced extension of the lithosphere by means of km-scale extensional shear zones that developed before infiltration of melts from the asthenosphere (Piccardo and Vissers, 2007). After significant thinning of the lithosphere, the passively upwelling asthenosphere underwent spinel-facies decompression melting along the axial zone of the extensional system. Silica-undersaturated melt fractions percolated through the lithospheric mantle via diffuse/focused porous flow and interacted with the host peridotite through pyroxenes-dissolving/olivine-precipitating melt/rock reactions. Pyroxene dissolution and olivine precipitation modified the composition of the primary silica-undersaturated melts into derivative silica-saturated melts, while the host lithospheric spinel lherzolites were transformed into pyroxene-depleted/olivine-enriched reactive spinel harzburgites and dunites. The derivative liquids interacted through olivine-dissolving/orthopyroxene+plagioclase-crystallizing reactions with the host peridotites that were impregnated and refertilized (Piccardo et al., 2015). The saturated melts stagnated and crystallized in the shallow mantle lithosphere (as testified by diffuse interstitial crystallization of euhedral orthopyroxene and anhedral plagioclase) and locally ponded, forming orthopyroxene-rich/olivine-free gabbro-norite pods (Piccardo and Guarnieri, 2011). Reactive and impregnated peridotites are characterized by high equilibration temperatures (up to 1250 °C) even at low pressure, plagioclase-peridotite facies

  15. Mn-Cr dating of Fe- and Ca-rich olivine from 'quenched' and 'plutonic' angrite meteorites using Secondary Ion Mass Spectrometry

    Science.gov (United States)

    McKibbin, Seann J.; Ireland, Trevor R.; Amelin, Yuri; Holden, Peter

    2015-05-01

    Angrite meteorites are suitable for Mn-Cr relative dating (53Mn decays to 53Cr with a half life of 3.7 Myr) using Secondary Ion Mass Spectrometry (SIMS) because they contain olivine and kirschsteinite with very high 55Mn/52Cr ratios arising from very low Cr concentrations. Discrepant Mn-Cr and U-Pb time intervals between the extrusive or 'quenched' angrite D'Orbigny and some slowly cooled or 'plutonic' angrites suggests that some have been affected by secondary disturbances, but this seems to have occurred in quenched rather than in slow-cooled plutonic angrites, where such disturbance or delay of isotopic closure might be expected. Using SIMS, we investigate the Mn-Cr systematics of quenched angrites to higher precision than previously achieved by this method and extend our investigation to non-quenched (plutonic or sub-volcanic) angrites. High values of 3.54 (±0.18) × 10-6 and 3.40 (±0.19) × 10-6 (2-sigma) are found for the initial 53Mn/55Mn of the quenched angrites D'Orbigny and Sahara 99555, which are preserved by Cr-poor olivine and kirschsteinite. The previously reported initial 53Mn/55Mn value of D'Orbigny obtained from bulk-rock and mineral separates is slightly lower and was probably controlled by Cr-rich olivine. Results can be interpreted in terms of the diffusivity of Cr in this mineral. Very low Cr concentrations in Ca-rich olivine and kirschsteinite are probably charge balanced by Al; this substitutes for Si and likely diffuses at a very slow rate because Si is the slowest-diffusing cation in olivine. Diffusion in Cr-rich Mg-Fe olivine is probably controlled by cation vacancies because of deficiency in charge-balancing Al and is therefore more prone to disturbance. The higher initial 53Mn/55Mn found by SIMS for extrusive angrites is more likely to reflect closure of Cr in kirschsteinite at the time of crystallisation, simultaneous with closure of U-Pb and Hf-W isotope systematics for these meteorites obtained from pyroxenes. For the younger

  16. Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: Evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite

    Science.gov (United States)

    Ionov, Dmitri A.; Doucet, Luc S.; Xu, Yigang; Golovin, Alexander V.; Oleinikov, Oleg B.

    2018-03-01

    The Obnazhennaya kimberlite in the NE Siberian craton hosts a most unusual cratonic xenolith suite, with common rocks rich in pyroxenes and garnet, and no sheared peridotites. We report petrographic and chemical data for whole rocks (WR) and minerals of 20 spinel and garnet peridotites from Obnazhennaya with Re-depletion Os isotope ages of 1.8-2.9 Ga (Ionov et al., 2015a) as well as 2 pyroxenites. The garnet-bearing rocks equilibrated at 1.6-2.8 GPa and 710-1050 °C. Some xenoliths contain vermicular spinel-pyroxene aggregates with REE patterns in clinopyroxene mimicking those of garnet. The peridotites show significant scatter of Mg# (0.888-0.924), Cr2O3 (0.2-1.4 wt.%) and high NiO (0.3-0.4 wt.%). None are pristine melting residues. Low-CaO-Al2O3 (≤0.9 wt.%) dunites and harzburgites are melt-channel materials. Peridotites with low to moderate Al2O3 (0.4-1.8 wt.%) usually have CaO > Al2O3, and some have pockets of calcite texturally equilibrated with olivine and garnet. Such carbonates, exceptional in mantle xenoliths and reported here for the first time for the Siberian mantle, provide direct evidence for modal makeover and Ca and LREE enrichments by ephemeral carbonate-rich melts. Peridotites rich in CaO and Al2O3 (2.7-8.0 wt.%) formed by reaction with silicate melts. We infer that the mantle lithosphere beneath Obnazhennaya, initially formed in the Mesoarchean, has been profoundly modified. Pervasive inter-granular percolation of highly mobile and reactive carbonate-rich liquids may have reduced the strength of the mantle lithosphere leading the way for reworking by silicate melts. The latest events before the kimberlite eruption were the formation of the carbonate-phlogopite pockets, fine-grained pyroxenite veins and spinel-pyroxene symplectites. The reworked lithospheric sections are preserved at Obnazhennaya, but similar processes could erode lithospheric roots in the SE Siberian craton (Tok) and the North China craton, where ancient melting residues and

  17. Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site

    Science.gov (United States)

    McSween, H.Y.; Murchie, S.L.; Crisp, J.A.; Bridges, N.T.; Anderson, R.C.; Bell, J.F.; Britt, D.T.; Brückner, J.; Dreibus, G.; Economou, T.; Ghosh, A.; Golombek, M.P.; Greenwood, J.P.; Johnson, J. R.; Moore, H.J.; Morris, R.V.; Parker, T.J.; Rieder, R.; Singer, R.; Wänke, H.

    1999-01-01

    of a "1 μm" pyroxene absorption band. Plausible explanations include impact glass, band masking by magnetite, or presence of calcium- and iron-rich pyroxenes and olivine which push the absorption band minimum past the imager's spectral range. The inferred andesitic composition is most similar to terrestrial anorogenic icelandites, formed by fractionation of tholeiitic basaltic magmas. Early melting of a relatively primitive Martian mantle could produce an appropriate parent magma, supporting the ancient age of Pathfinder rocks inferred from their incorporation in Hesperian flood deposits. Although rocks of andesitic composition at the Pathfinder site may represent samples of ancient Martian crust, inferences drawn about a necessary role for water or plate tectonics in their petrogenesis are probably unwarranted.

  18. Ba-rich sanidine megacrysts in trachytic rocks of Eslamy volcano, NW Iran

    Science.gov (United States)

    Aßbichler, Donjá; Asadpour, Manijeh; Heuss-Aßbichler, Soraya; Kunzmann, Thomas

    2016-04-01

    The Eslamy volcano is located on a peninsula at the eastern coast of Urumieh lake, NW Iran. The complex stratovolcano with gentle slope flanks exposes a collapsed caldera in the central part. Specific features are different sanidine rich rocks that occur in form of ejecta and flows. According to the field observations they are products of one volcanic event. XRF measurements show they all have trachytic compositions. Typical for this locality are the large sanidine phenocrysts. In the trachytic flow the sanidine crystals reach average size of ~4 cm embedded in a greenish-blue matrix consisting mainly of crystallized feldspar and subordinate pyroxen. Occasionally feldspar megacrysts of approx. 10 cm were observed. Na content of the sanidine megacrysts varies between 0.05 - 0.5 pfu with higher concentrations in the cores. Furthermore they show oscillatory zoning patterns caused by variations of Ba content (0-0.04 pfu). The matrix of the trachytic flow consist mainly of interlocking sanidine crystals (0.05-0.45 pfu Na) partly with Ba-rich cores containing up to 0.06 pfu Ba. In contrast to the megacrysts they show slightly higher Fe contents (0.025-0.035 pfu). The volcanic ejecta with bombs of approx. 50 cm in size were found in one distinct layer within a pyroclastic horizon. The average diameter of the feldspar phenocrysts is much smaller (0.5-2 cm). Sanidine is the main phase of these rocks (up to 80 %). As mafic phase up to 30 % pyroxen (mainly diospide) ± biotite can be observed. Accessories are magnetite ± apatite ± titanite ± zircon. In contrast to the flow rocks the main phase of the matrix of the ejecta is always glass with higher Fe2O3 (total) contents (up to 6 wt.-%) indicating a fast cooling of the sample due to ejection. They are completely depleted in Ba. In two samples zoned feldspar relicts enclosed in glass show remolten rims. Similar to flow rocks the feldspar phenocrysts of all ejecta show a complex zoning pattern, e.g. three samples expose high

  19. Water in the oceanic lithosphere: Salt Lake Crater xenoliths, Oahu, Hawaii

    Science.gov (United States)

    Peslier, A. H.; Bizimis, M.

    2010-12-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient ( 2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx

  20. Late Miocene Debris-Avalanche Deposit At The Gutai Shield Volcano, NW Romania. Re- Evaluation Of Geological Mapping And Mineral Deposits

    Science.gov (United States)

    Seghedi, I.; Fülöp, A.

    2009-05-01

    The recent identification of debris avalanche deposits (DADs) originating from the southern edge of the Ignis peak (1306m, highest of the Gutai Mts.) has important implications for understanding its genesis in the geological context of the broader area, rich in hydrothermal intrusive-related base metal and gold-silver deposits closely connected to the Dragos Voda - Bogdan Voda strike-slip fault system. Pyroxene andesite lavas are exposed below the Ignis peak followed by hornblende and pyroxene andesites the only ones found in the DAD. The flank failure event has left an E-W-oriented horseshoe shaped scar with an estimated volume of material removed of at least 0.35 km3 and an estimated area covered by DADs of 4,345 km2 as a minimum. The deposit is a mega breccia with a variable amount of coarse matrix with jigsaw-fractured blocks, large boulders, and several southward-elongated hummocks up to 1.8 km distance from the scar. Between 720-850 m altitude the DADs contain megablocks of 5-12 m thick and up to 100 m long of layered fine-grained poorly consolidated pyroclastic materials of interlayered ash and lapillistone of fallout origin, and clay beds rich in vegetation remnants(known as the 'Chiuzbaia flora' of similar age as the surrounding lava flows, i.e. ca. 10-7 Ma) and diatoms. These megablocks found in various positions, suggest a lithological discontinuity likely representing the detachment surface of the gravity-driven instability phenomenon and the deep excavation of the volcano flank by the sector collapse event. The clayey material of these blocks acted probably as an efficient barrier to water infiltration and helped destabilization of the overlying rock mass. Since no explosive products have been observed to follow the DAD, it is possible that the sliding was triggered by pressure release of hydrothermal system along an E-W fault parallel to the Dragos Voda-Bogdan Voda fault system, with related high-grade ore deposits. This suggests the possible presence

  1. Constraining the volatile budget of the lunar interior

    Science.gov (United States)

    Potts, N. J.; Bromiley, G. D.

    2017-12-01

    Measurements of volatiles (F, Cl, S, H2O) in a range of lunar samples confirm the presence of volatile material in lunar magmas. It remains unknown, however, where this volatile material is stored and when it was delivered to the Moon. On Earth, point defects within mantle olivine, and its high-pressure polymorphs, are thought to be the largest reservoir of volatile material. However, as volatiles have been cycled into and out of the Earth's mantle throughout geological time, via subduction and volcanism, this masks any original volatile signatures. As the Moon has no plate tectonics, it is expected that any volatile material present in the deep lunar interior would have been inherited during accretion and differentiation, providing insight into the delivery of volatiles to the early Earth-Moon system. Our aim was, therefore, to test the volatile storage capacity of the deep lunar mantle and determine mineral/melt partitioning for key volatiles. Experiments were performed in a primitive lunar mantle composition and run at relevant T, P, and at fO2 below the IW buffer. Experiments replicated the initial stages of LMO solidification with either olivine + melt, olivine + pyroxene + melt, or pyroxene + melt as the only phases present. Mineral-melt partition coefficients (Dx) derived for volatile material (F, Cl, S, H2O) vary significantly compared to those derived for terrestrial conditions. An order of magnitude more H2O was found to partition into lunar olivine compared to the terrestrial upper mantle. DF derived for lunar olivine are comparable to the highest terrestrial derived values whilst no Cl was found to partition into lunar olivine under these conditions. Furthermore, an inverse trend between DF and DOH hints towards coupled-substitution mechanisms between H and F under low-fO2/lunar bulk composition. These results suggest that if volatile material was present in the LMO a significant proportion could be partitioned into the lower lunar mantle. The

  2. The differentiation process of the I-type granitoids in southwest Japan and New South Wares in Australia

    Science.gov (United States)

    Kawakatsu, K.; Iwamoto, Y.; Ebisu, S.; Hasegawa, M.; Hiraiwa, N.; Kawakatsu, T.; Kitano, A.; Masuta, T.; Ootsubo, H.; Wakazono, R.

    2013-12-01

    Cretaceous-Paleogene Granitoids in the inner zone of southwest Japan have been divided into two series: the magnetite series that is distributed mainly in the San-in belt and the ilmenite series that is distributed mainly in San-yo belt. For 8 years, we have been investigating the two series to clear their processes of magmatic differentiation. Recently, we discovered oscillatory zoned structure, exsolution lamellae of amphibole, and relics of pyroxene left in the core of amphibole from Harima granodiorite, Nunobiki granodiorite (San-yo belt) and Daito-Yokota quartz diorite (San-in belt). The amphibole that has microstructure coexists with magnetite, ilmenite and pyrrhotite. We compared the two series for crystallization and re-equilibrium by ion substitution using the microstructure of the amphibole as 'time measure' during the differentitation process of acidic magma. While magnetites and ilmenites coexist with the core of the amphiboles, the oxygen fugacity of the San-yo belt magma was low until the later stage of magmatic differentiation where H2S from the Earth's crust mixed with it. In the subsolidus process, hydrothermal solutions circulated. On the other hand, the oxygen fugacity of the San-in belt magma began to rise in the early stage of magmatic differentiation. In the later stage, mafic magma was contaminated with SO2. The rims of amphiboles coexist with pyrrhotites in both of belts. Furthermore, the re-equilibrium of minerals underwent progressive oxidation and hydrothermal fluid circulated actively in the subsolidus process. Bingie Bingie Point at New South Wares (Eurobodalla National Park) is a peninsula about a meter around. The plutonic rocks were formed in the Devonian period and belong to the magnetite series. They are classified I-type granitoids such as those found in the inner zone of southwest Japan. They have only trace amounts of oxide minerals and pyrrhotite. The amphiboles of the granitoids have oscillatory zoned structures at pale green

  3. Geology, tectonism and composition of the northwest Imbrium region

    Science.gov (United States)

    Wu, Yunzhao; Li, Lin; Luo, Xiaoxing; Lu, Yu; Chen, Yuan; Pieters, Carle M.; Basilevsky, Alexander T.; Head, James W.

    2018-03-01

    The objective of this study is to explore the regional geology of the northwest Imbrium region in which the Chang'E-3 (CE-3) landing site is located. CE-3 successfully landed on December 14, 2013 on the unsampled Eratosthenian basalts whose study is important for understanding the evolution of the Moon. New geologic and structural maps of the research area were produced through the integrated analysis of diverse datasets. The highlands surrounding Imbrium differ from typical Farside Highlands Terrain (FHT). The Iridum highland region (as well as the surrounding Imbrium region) exhibits elevated concentrations of Fe, and abundant local exposures of low-Ca pyroxene and olivine bearing lithologies. In this study these highlands are named as mafic highlands (MH). Our dating results using crater size-frequency distributions (CSFDs) show that the Iridum basin (hosting Sinus Iridum) was formed ∼3.8 Ga, shortly following the Imbrium basin formation and before the last large multiringed basin, Orientale. The Eratosthenian period of lunar basalt eruptions, which lasted longer than other stratigraphic units, is suggested to divide into the Lower Eratosthenian mare (LEm) and Upper Eratosthenian mare (UEm) units. This subdivision is based on whether lava fronts can be clearly seen or not and the age separating the units is 2.35 Ga. The mafic mineralogy of the mare basalts in Imbrium is characterized by abundant olivine in the Eratosthenian-aged basalts and average pyroxene compositions near pigeonite to sub-calcic augite in the Imbrian and Em1 units. The thickness of individual lava for UEm units is 8-11 m, indicative of high effusion rates. The thickness of the Em3 unit ranges from ∼17 m to ∼45 m with lesser thickness to the west and greater thickness in the interior and to the east. The estimated volume and average flux of the Eratosthenian-aged basalts are greater than previously thought. The presence of these youngest basalts in the Procellarum-KREEP terrain (PKT) is

  4. An exotic terrane in the Sulu UHP region, China

    Science.gov (United States)

    Chu, W.; Zhang, R.; Tsujimori, T.; Liou, J. G.

    2004-12-01

    The Haiyangsuo region of about 15 km2 along the coast in the NE part of the Triassic Sulu UHP terrane occurs three major rock types: amphibolitized metagabbro, gneiss and granitic dikes. Three different gneisses were observed in the field: A) Light color felsic gneiss is the dominant country rock and contains Qtz, Pl, Ms and Bi. B) Dark color plagioclase-amphibole gneiss occurs as thin layers within country rock; C) Granulite facies rock occurs as discontinuous lens. The amphibolitized metagabbros intrude into the gneisses as massive bodies (several m to hundreds of m in size) and thin dikes. Both metamorphic intrusives and gneisses are cross-cut by granitic dikes. The amphibolitized metagabbro was divided into three types: coronal metagabbro, transitional rock and garnet amphibolite: 1) Coronal metagabbro preserves gabbroic texture and primary assemblage of Opx+Cpx+Pl+Amp+Ilm. Most pyroxene grains are partially rimmed by thin corona of Amp+Ab+Qtz. Garnet occurs as fine-grained coronas at interface between plagioclase, pyroxene or ilmenite. 2) Transitional rocks contain similar assemblage and texture but most orthopyroxenes were partially or totally replaced by Amp+Qtz; garnet increases in content and size. Some gabbroic textures are preserved, but calcic plagioclase was replaced by zoisite, albite and muscovite. 3) Garnet amphibolite occurs at the margins of intrusive bodies and boudins where only minor relict clinopyroxenes preserve. Garnet coronal chains are not clear any more. Granitic dikes show pronounced deformation with mylonitic texture and contain 40-50% quartz porphyroclasts. Zircon separates from 2 metagabbros, 4 gneisses and 1 granitic rock were dated by using Stanford SHRIMP-RG. Metagabbroic zircons are angular and fractured shapes. The upper-intercept ages of gneisses rang from 1730 to about 2400 Ma, indicating variable protoith age. The 2 garnet amphibolites have upper-intercept ages 1734±5Ma and 1735±21Ma respectively. They are much older than

  5. Water in the Oceanic Lithosphere: Salt Lake Crater Xenoliths, Oahu, Hawaii

    Science.gov (United States)

    Peslier, Anne H.; Bizimis, Michael

    2010-01-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient (2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx water

  6. Growth Rates and Mechanisms of Magmatic Orbicule Formation: Insights from Calcium Isotopes

    Science.gov (United States)

    Antonelli, M. A.; Watkins, J. M.; DePaolo, D. J.

    2017-12-01

    Orbicular diorites and granites are rare plutonic rock textures that remain enigmatic despite a century of study. Orbicules consist of a rounded core (xenolith, xenocryst, or autolith) surrounded by a variable number of concentric rings defined by different modal mineralogies and textures. Recent work suggests that the alternating layers of mineral growth are a consequence of either changes in external conditions of the magma (e.g. temperature, magma composition due to mixing, changes in volatile abundances), or rapid growth of one mineral phase (e.g plagioclase) creating a depleted boundary layer that then promotes precipitation of an alternative mineral phase (e.g. pyroxene). This process can be repeated to produce multiple layers. The rates at which orbicules grow is also of interest and relates to the mechanisms. Studies of orbicular diorites from the northern Sierra Nevada suggest exceptionally high growth rates (McCarthy et al., 2016). Ca isotopes can offer a unique perspective on orbicule formation, as diffusive isotope fractionation should be substantial when growth rates are high, and they are also sensitive to the nature of the growth medium (silicate liquid or supercritical fluid phase). We present δ44Ca measurements and chemistry for a transect of a dioritic orbicule collected from Emerald Lake, California (Sierra Nevada), where the growth layers are defined by variations in plagioclase/pyroxene ratio, grain size, and texture. Ca concentration varies from 5-13 wt%, and d44Ca values oscillate between -0.5 to 0.0‰ relative to BSE, correlating with changes in mineralogy and texture. Zones of plagioclase comb texture are associated with negative δ44Ca excursions of -0.2 to -0.4‰, consistent with diffusive isotope fractionation during rapid mineral growth. Assuming a 10‰ difference in diffusivity for 44Ca vs. 40Ca in dioritic liquids (Watson et al., 2016), and using the models of Watson and Muller (2009) as a guide, these small fractionations

  7. Late Neoproterozoic layered mafic intrusion of arc-affinity in the Arabian-Nubian Shield: A case study from the Shahira layered mafic intrusion, southern Sinai, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Azer, M.K.; Obeid, M.A.; Gahalan, H.A.

    2016-07-01

    The Shahira Layered Mafic Intrusion (SLMI), which belongs to the late Neoproterozoic plutonic rocks of the Arabian-Nubian Shield, is the largest layered mafic intrusion in southern Sinai. Field relations indicate that it is younger than the surrounding metamorphic rocks and older than the post-orogenic granites. Based on variation in mineral paragenesis and chemical composition, the SLMI is distinguished into pyroxene-hornblende gabbro, hornblende gabbro and diorite lithologies. The outer zone of the mafic intrusion is characterized by fine-grained rocks (chilled margin gabbroic facies), with typical subophitic and/or microgranular textures. Different rock units from the mafic intrusion show gradational boundaries in between. They show some indications of low grade metamorphism, where primary minerals are transformed into secondary ones. Geochemically, the Shahira layered mafic intrusion is characterized by enrichment in LILE relative to HFSE (e.g. Nb, P, Zr, Ti, Y), and LREE relative to HREE [(La/Lu)n= 4.75–8.58], with subalkaline characters. It has geochemical characteristics of pre-collisional arc-type environment. The geochemical signature of the investigated gabbros indicates partial melting of mantle wedge in a volcanic-arc setting, being followed by fractional crystallization and crustal contamination. Fractional crystallization processes played a vital role during emplacement of the Shahira intrusion and evolution of its mafic and intermediate rock units. The initial magma was evolved through crystallization of hornblende which was caused by slight increasing of H2O in the magma after crystallization of liquidus olivine, pyroxene and Ca-rich plagioclase. The gabbroic rocks crystallized at pressures between 4.5 and 6.9kbar (~15–20km depth). Whereas, the diorites yielded the lowest crystallization pressure between 1.0 to 4.4Kbar (<10km depth). Temperature was estimated by several geothermometers, which yielded crystallization temperatures ranging from 835

  8. Spinel and plagioclase peridotites of the Nain ophiolite (Central Iran): Evidence for the incipient stage of oceanic basin formation

    Science.gov (United States)

    Pirnia, Tahmineh; Saccani, Emilio; Arai, Shoji

    2018-06-01

    The Nain ophiolites crop out along the western border of the central East Iran Microcontinent (CEIM) and consist of an ophiolitic mélange in which pargasite-bearing spinel and plagioclase mantle lherzolites are largely represented. Whole-rock and mineral chemistry data suggest that these rocks record the complex history of the asthenospheric and lithospheric mantle evolution. The spinel lherzolites have experienced low-degree ( 5%) partial melting and contain clinopyroxenes with positive Eu anomalies (Eu/Eu* = 1.10-1.48) suggesting that the partial melting occurred under oxidized conditions (fayalite-magnetite-quartz -0.8 to +1.3). The pargasite and coexisting clinopyroxene in these rocks are depleted in light rare earth elements (LREE) (mean chondrite-normalized CeN/SmN = 0.045). The depleted chemistry of this amphibole reflects metasomatism during interaction with H2O-rich subalkaline mafic melts, most likely concurrently with or after the partial melting of the spinel lherzolites. The plagioclase lherzolites were subsequently formed by the subsolidus recrystallization of spinel lherzolites under plagioclase facies conditions as a result of mantle uprising, as evidenced by: (1) the development of plagioclase rims around the spinels; (2) plagioclase + orthopyroxene exsolution textures within some clinopyroxene grains; (3) an increase in plagioclase modal content coupled with an increase in modal olivine and a decrease in modal pyroxene and pargasite; (4) coincident decreases in Al, Mg, and Ni, and increases in Cr, Ti, and Fe in spinel, as well as decreases in Al and Ca, and increases in Cr and Ti in pyroxene and pargasite; and (5) the identical whole rock compositions of the spinel and plagioclase lherzolites, which rules out a magmatic origin for the plagioclase in these units. The Nain lherzolites have similar whole-rock and mineral geochemical compositions to subcontinental peridotites that are typically representative of Iberia-type rifted continental margins

  9. Digging Deep: Is Lunar Mantle Excavated Around the Imbrium Basin?

    Science.gov (United States)

    Klima, R. L.; Bretzfelder, J.; Buczkowski, D.; Ernst, C. M.; Greenhagen, B. T.; Petro, N. E.; Shusterman, M. L.

    2017-12-01

    The Moon has experienced over a dozen impacts resulting in basins large enough to have excavated mantle material. With many of those basins concentrated on the lunar near side, and extensive regolith mixing since the lunar magma ocean crystallized, one might expect that some mantle material would have been found among the lunar samples on Earth. However, so far, no mantle clasts have been definitively identified in lunar samples [1]. From orbit, a number of olivine-bearing localities, potentially sourced from the mantle, have been identified around impact basins [2]. Based on analysis of near-infrared (NIR) and imaging data, [3] suggest that roughly 60% of these sites represent olivine from the mantle. If this is the case and the blocks are coherent and not extensively mixed into the regolith, these deposits should be ultramafic, containing olivine and/or pyroxenes and little to no plagioclase. In the mid-infrared, they would thus exhibit Christiansen features at wavelengths in excess of 8.5 μm, which has not been observed in global studies using the Diviner Lunar Radiometer [4]. We present an integrated study of the massifs surrounding the Imbrium basin, which, at over 1000 km wide, is large enough to have penetrated through the lunar crust and into the mantle. These massifs are clearly associated with the Imbrium basin-forming impact, but existing geological maps do not distinguish between whether they are likely ejecta or rather uplifted from beneath the surface during crustal rebound [5]. We examine these massifs using vis, NIR and Mid IR data to determine the relationships between and the bulk mineralogy of local lithologies. NIR data suggest that the massifs contain exposures of four dominant minerals: olivine, Mg-rich orthopyroxene, a second low-Ca pyroxene, and anorthite. Mid IR results suggest that though many of these massifs are plagioclase-rich, portions of some may be significantly more mafic. We will present our growing mineralogical map of the

  10. Modeling low-temperature serpentinization reactions to estimate molecular hydrogen production with implications for potential microbial life on Saturn's moon Enceladus.

    Science.gov (United States)

    Zwicker, Jennifer; Smrzka, Daniel; Taubner, Ruth-Sophie; Bach, Wolfgang; Rittmann, Simon; Schleper, Christa; Peckmann, Jörn

    2017-04-01

    Serpentinization of ultramafic rocks attracts much interest in research on the origin of life on Earth and the search for life on extraterrestrial bodies including icy moons like Enceladus. Serpentinization on Earth occurs in peridotite-hosted systems at slow-spreading mid-ocean ridges, and produces large amounts of molecular hydrogen and methane. These reduced compounds can be utilized by diverse chemosynthetic microbial consortia as a metabolic energy source. Although many hydrothermal vents emit hot and acidic fluids today, it is more likely that life originated in the Archean at sites producing much cooler and more alkaline fluids that allowed for the synthesis and stability of essential organic molecules necessary for life. Therefore, a detailed understanding of water-rock interaction processes during low-temperature serpentinization is of crucial importance in assessing the life-sustaining potential of these environments. In the course of serpentinization, the metasomatic hydration of olivine and pyroxene produces various minerals including serpentine minerals, magnetite, brucite, and carbonates. Hydrogen production only occurs if ferrous iron within iron-bearing minerals is oxidized and incorporated as ferric iron into magnetite. The PHREEQC code was used to model the pH- and temperature-dependent dissolution of olivine and pyroxene to form serpentine, magnetite and hydrogen under pressure and temperature conditions that may exist on Saturn's icy moon Enceladus. Various model setups at 25 and 50°C were run to assess the influence of environmental parameters on hydrogen production. The results reveal that hydrogen production rates depend on the composition of the initial mineral assemblage and temperature. The current assumption is that there is a gaseous phase between Enceladus' ice sheet and subsurface ocean. To test various scenarios, model runs were conducted with and without the presence of a gas phase. The model results show that hydrogen production is

  11. Hydrothermal alteration and diagenesis of terrestrial lacustrine pillow basalts: Coordination of hyperspectral imaging with laboratory measurements

    Science.gov (United States)

    Greenberger, Rebecca N.; Mustard, John F.; Cloutis, Edward A.; Mann, Paul; Wilson, Janette H.; Flemming, Roberta L.; Robertson, Kevin M.; Salvatore, Mark R.; Edwards, Christopher S.

    2015-12-01

    We investigate an outcrop of ∼187 Ma lacustrine pillow basalts of the Talcott Formation exposed in Meriden, Connecticut, USA, focusing on coordinated analyses of one pillow lava to characterize the aqueous history of these basalts in the Hartford Basin. This work uses a suite of multidisciplinary measurements, including hyperspectral imaging, other spectroscopic techniques, and chemical and mineralogical analyses, from the microscopic scale up to the scale of an outcrop. The phases identified in the sample are albite, large iron oxides, and titanite throughout; calcite in vesicles; calcic clinopyroxene, aegirine, and Fe/Mg-bearing clay in the rind; and fine-grained hematite and pyroxenes in the interior. Using imaging spectroscopy, the chemistry and mineralogy results extend to the hand sample and larger outcrop. From all of the analyses, we suggest that the pillow basalts were altered initially after emplacement, either by heated lake water or magmatic fluids, at temperatures of at least 400-600 °C, and the calcic clinopyroxenes and aegirine identified in the rind are a preserved record of that alteration. As the hydrothermal system cooled to slightly lower temperatures, clays formed in the rind, and, during this alteration, the sample oxidized to form hematite in the matrix of the interior and Fe3+ in the pyroxenes in the rind. During the waning stages of the hydrothermal system, calcite precipitated in vesicles within the rind. Later, diagenetic processes albitized the sample, with albite replacing plagioclase, lining vesicles, and accreting onto the exterior of the sample. This albitization or Na-metasomatism occurred when the lake within the Hartford Basin evaporated during a drier past climatic era, resulting in Na-rich brines. As Ca-rich plagioclase altered to albite, Ca was released into solution, eventually precipitating as calcite in previously-unfilled vesicles, dominantly in the interior of the pillow. Coordinated analyses of this sample permit

  12. The XRD Amorphous Component in John Klein Drill Fines at Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    Morris, Richard V.; Ming,, Douglas W.; Blake, David; Vaniman, David; Bish, David L; Chipera, Steve; Downs, Robert; Morrison, Shaunna; Gellert, Ralf; Campbell, Iain; hide

    2013-01-01

    Drill fines of mudstone (targets John Klein and Cumberland) from the Sheepbed unit at Yel-lowknife Bay were analyzed by MSL payload elements including the Chemistry and Mineralogy (CheMin), APXS (Alpha Particle X-Ray Spectrometer), and Sample Analysis at Mars (SAM) instruments. CheMin XRD results show a variety of crystalline phases including feldspar, pyroxene, olivine, oxides, oxyhydroxides, sulfates, sulfides, a tri-octahedral smectite, and XRD amorphous material. The drill fines are distinctly different from corresponding analyses of the global soil (target Rocknest) in that the mudstone samples contained detectable phyllosilicate. Here we focus on John Klein and combine CheMin and APXS data to calculate the chemical composition and concentration of the amorphous component. The chemical composition of the amorphous plus smectite component for John Klein was calculated by subtracting the abundance-weighted chemical composition of the individual XRD crystalline components from the bulk composition of John Kline as measured by APXS. The chemical composition of individual crystalline components was determined either by stoichiometry (e.g., hematite and magnetite) or from their unit cell parameters (e.g., feldspar, olivine, and pyroxene). The chemical composition of the amorphous + smectite component (approx 71 wt.% of bulk sample) and bulk chemical composition are similar. In order to calculate the chemical composition of the amorphous component, a chemical composition for the tri-octahedral smectite must be assumed. We selected two tri-octahedral smectites with very different MgO/(FeO + Fe2O3) ratios (34 and 1.3 for SapCa1 and Griffithite, respectively). Relative to bulk sample, the concentration of amorphous and smectite components are 40 and 29 wt.% for SapCa1 and 33 and 36 wt.% for Griffithite. The amount of smectite was calculated by requiring the MgO concentration to be approx 0 wt.% in the amorphous component. Griffithite is the preferred smectite because

  13. Characterization of jade and silicates of the jade family for application in radiation dosimetry

    International Nuclear Information System (INIS)

    Melo, Adeilson Pessoa de

    2007-01-01

    The main dosimetric properties of jade and of Brazilian silicates of the jade family were studied for application in radiation dosimetry of high doses. Jade is a common denomination of two different silicates: jadeite, Na Al(Si 2 O 6 ), and nephrite, Ca 2 (Mg, Fe) 5 (Si 4 O 11 ) 2 (OH) 2 , that belong to the subclasses of the pyroxenes and amphiboles respectively. The jade samples studied in this work were from: Austria, New Zealand, United States and Brazil. The Brazilian silicates of the jade family studied in this work were the amphiboles: tremolite,Ca 2 Mg 5 (Si 4 O 11 ) 2 (OH) 2 e actinolite, Ca 2 Fe 5 (Si 4 O 11 ) 2 (OH) 2 ; and the pyroxenes: rhodonite, MnSiO 3 and diopside, Ca Mg(Si 2 O 6 ). The mineralogical and chemical composition of these materials were obtained using the neutron activation analysis and X-ray diffraction techniques. The main dosimetric properties (emission curves, calibration curves, reproducibility, lower detection limits, angular and energy dependence, etc) were studied using the thermoluminescent (T L), thermally stimulated exo-emission (TSEE) and electronic paramagnetic resonance (EPR) techniques. The jade-Teflon and the silicate-Teflon samples present two T L peaks around 115 deg C (peak 1) and 210 deg C (peak 2). The calibration curves of the studied materials present a linear behaviour between 0.5 Gy and 1 kGy. The TSEE emission peak occurs at 240 deg C for all samples, and the calibration curves present a sub linear behaviour between 100 Gy and 20 kGy. In the case of the EPR technique, only jade USA has a potential application for radiation dosimetry. A static computational simulation of the most probable intrinsic and extrinsic defects in rhodonite was also realized. Among the basic defects, the Schottky defects of rhodonite are the most probable to occur and, among the extrinsic defects, the divalent and trivalent dopants present the best possibility of inclusion in rhodonite. (author)

  14. Moessbauer Study of Serpentine Minerals in the Ultramafic Body of Tehuitzingo, Southern Mexico

    International Nuclear Information System (INIS)

    Gonzalez-Mancera, G.; Ortega-Gutierrez, F.; Nava, N. E.; Arriola, H. S.

    2003-01-01

    Serpentine 'polymorph' minerals (chrysotile, lizardite, and antigorite) are hydrous Mg-Fe silicates that commonly form serpentine rock (serpentinite) by hydration of olivine-pyroxene peridotites from the mantle of the Earth. During the complex geologic history of orogenic belts, the redox and hydration state of the mantle changes, and olivine and pyroxenes are replaced by serpentine group minerals during tectonic deformation and uplift. Unfortunately, modern microanalysis of minerals by electron probe does not distinguish the oxidation state of iron, and it has to be assumed or estimated by precise methods, such as Moessbauer spectrometry. The studied samples were collected in the Xayacatlan Formation of the Tehuitzingo area, State of Puebla, within the Paleozoic Acatlan Complex. The original mantle peridotite was completely converted to serpentinite, with secondary crystallization of Fe-Mg oxides, calcsilicates, and carbonates. The three serpentine 'polymorphs' were identified in the studied samples, although with a clear predominance of the high-temperature member antigorite, which was preliminary determined by optical petrography, X-ray diffraction, electron probe, and scanning electron microscopy. Microprobe total iron content in most specimens was +3 substitution at the tetrahedral site may also occur according to some Moessbauer studies. This paper studied the iron valence state and its position in serpentine minerals of the Tehuitzingo ultramafic body using Moessbauer techniques. The analyses in most samples detected one doublet, compatible with Fe +2 in octahedral coordination, but only two specimens displayed two doublets corresponding to Fe +2 and Fe +3 in octahedral coordination. Doublets corresponding to Fe +3 in tetrahedral sites were not found. The parameters obtained for all the Fe +2 doublets are similar (QS=2.76±0.08 mm/sec, and IS=1.12±0.01), whereas the ratio Fe +3 /Fe +2 (0-0.34) has a strong tendency for iron to be in a divalent state. This

  15. The Mukundpura meteorite, a new fall of CM chondrite

    Science.gov (United States)

    Ray, Dwijesh; Shukla, Anil D.

    2018-02-01

    Mukundpura is a new CM chondrite fell near Jaipur, Rajasthan, India on June 6, 2017 at 5:15 IST. The fall was observed by local villager. According to eyewitness, the meteorite was fragmented into several pieces once the object hit the ground. Based on petrography, mineralogy and bulk composition, Mukundpura is classified as CM2 chondrite. The chondrules are mainly similar to type I (Olivine: Fo99). Olivines are often found associated with pyroxene (Wo10-35En62-87Fs2-7) phenocryst. However, occurrences of forsteritic and fayalitic olivine (Fa58-71) as isolated mineral clast in matrix are not uncommon. Other types of chondrules include porphyritic pyroxene (En86Fs14) and barred olivine (Fa32.7±0.3) clast. Chondrules are commonly rimmed by fine-grained accretionary dust mantles. Phyllosilicates are the most dominant secondary mineral in matrix and largely associated with poorly characterised phases (PCP). FeO/SiO2 and S/SiO2 of PCP are 2.7 and 0.4 respectively. Other phases in matrix generally include calcite (pure CaCO3), Fe-Ni metal and sulphides. Spinel and perovskite occur occasionally as inclusions. The spherical or elliptical shaped metals (within chondrule or in isolated grains) are low-Ni type (kamacite <7.5 wt%) and resembles the solar Ni/Co ratio. However, Ni content in metal rarely exceeds 8.5 wt% (up to 23 wt%, taenite). Pyrrhotite (Fe ∼62 wt%; S ∼38 wt%) and pentlandite (Fe ∼31-33 wt%, Ni ∼28-32 wt%, S ∼33 wt%)) are the common sulphides occur as isolated grains within the matrix, however, the former is the most dominant. The bulk chemical composition of Mukundpura is largely similar to other CM type chondrite (e.g. Paris CM). Based on petrography, we infer a modest aqueous alteration stage for Mukundpura while the effect of thermal metamorphism was negligible.

  16. Preliminary Examination of Particles Recovered from the Surface of the Asteroid Itokawa by the Hayabusa Mission

    Science.gov (United States)

    Tsuchiyama, A.; Ebihara, M.; Kimura, M.; Kitajima, F.; Kotsugi, M.; Ito, S.; Nagao, K.; Nakamura, T.; Naraoka, H.; Noguchi, T.; hide

    2011-01-01

    The Hayabusa spacecraft arrived at S-type Asteroid 25143 Itokawa in November 2006, and reveal astounding features of the small asteroid (535 x 294 x 209 m). Near-infrared spectral shape indicates that the surface of this body has an olivinerich mineral assemblage potentially similar to that of LL5 or LL6 chondrites with different degrees of space weathering. Based on the surface morphological features observed in high-resolution images of Itokawa s surface, two major types of boulders were distinguished: rounded and angular boulders. Rounded boulders seem to be breccias, while angular boulders seem to have severe impact origin. Although the sample collection did not be made by normal operations, it was considered that some amount of samples, probably small particles of regolith, was collected from MUSES-C regio on the Itokawa s surface. The sample capsule was successfully recovered on the earth on June 13, 2010, and was opened at curation facility of JAXA (Japan Aerospace Exploration Agency), Sagamihara, Japan. A large number of small particles were found in the sample container. Preliminary analysis with SEM/EDX at the curation facility showed that at least more than 1500 grains were identified as rocky particles, and most of them were judged to be of extraterrestrial origin, and definitely from Asteroid Itokawa. Minerals (olivine, low-Ca pyroxene, high-Ca pyroxene, plagioclase, Fe sulfide, Fe-Ni metal, chromite, Ca phosphate), roughly estimated mode the minerals and rough measurement of the chemical compositions of the silicates show that these particles are roughly similar to LL chondrites. Although their size are mostly less than 10 m, some larger particles of about 100 m or larger were also identified. A part of the sample (probably several tens particles) will be selected by Hayabusa sample curation team and examined preliminary in Japan within one year after the sample recovery in prior to detailed analysis phase. Hayabusa Asteroidal Sample Preliminary

  17. The 2006-2009 activity of the Ubinas volcano (Peru): Petrology of the 2006 eruptive products and insights into genesis of andesite magmas, magma recharge and plumbing system

    Science.gov (United States)

    Rivera, Marco; Thouret, Jean-Claude; Samaniego, Pablo; Le Pennec, Jean-Luc

    2014-01-01

    Following a fumarolic episode that started six months earlier, the most recent eruptive activity of the Ubinas volcano (south Peru) began on 27 March 2006, intensified between April and October 2006 and slowly declined until December 2009. The chronology of the explosive episode and the extent and composition of the erupted material are documented with an emphasis on ballistic ejecta. A petrological study of the juvenile products allows us to infer the magmatic processes related to the 2006-2009 eruptions of the andesitic Ubinas volcano. The juvenile magma erupted during the 2006 activity shows a homogeneous bulk-rock andesitic composition (56.7-57.6 wt.% SiO2), which belongs to a medium- to high-K calc-alkaline series. The mineral assemblage of the ballistic blocks and tephra consists of plagioclase > two-pyroxenes > Fe-Ti oxide and rare olivine and amphibole set in a groundmass of the same minerals with a dacitic composition (66-67 wt.% SiO2). Thermo-barometric data, based on two-pyroxene and amphibole stability, records a magma temperature of 998 ± 14 °C and a pressure of 476 ± 36 MPa. Widespread mineralogical and textural features point to a disequilibrium process in the erupted andesite magma. These features include inversely zoned "sieve textures" in plagioclase, inversely zoned clinopyroxene, and olivine crystals with reaction and thin overgrowth rims. They indicate that the pre-eruptive magmatic processes were dominated by recharge of a hotter mafic magma into a shallow reservoir, where magma mingling occurred and triggered the eruption. Prior to 2006, a probable recharge of a mafic magma produced strong convection and partial homogenization in the reservoir, as well as a pressure increase and higher magma ascent rate after four years of fumarolic activity. Mafic magmas do not prevail in the Ubinas pre-historical lavas and tephras. However, mafic andesites have been erupted during historical times (e.g. AD 1667 and 2006-2009 vulcanian eruptions). Hence

  18. The granulite suite: Impact melts and metamorphic breccias of the early lunar crust

    Science.gov (United States)

    Cushing, J. A.; Taylor, G. J.; Norman, M. D.; Keil, K.

    1993-03-01

    The granulite suite consists of two major types of rocks. One is coarse-grained and poikilitic with many euhedral crystals of olivine and plagioclase. These characteristics indicate crystallization from a melt; the poikilitic granulites are impact melt breccias. The other group is finer-grained and granoblastic, with numerous triple junctions; the granoblastic granulites are metamorphic rocks. Compositional groups identified by Lindstrom and Lindstrom contain both textural types. Two pyroxene thermometry indicates that both groups equilibrated at 1000 to 1150 C. Calculations suggest that the granoblastic group, which has an average grain size of about 80 microns, was annealed for less than 6 x 10 exp 4 y at 1000 C, and for less than 2500 y at 1150 C. Similar equilibration temperatures suggest that both groups were physically associated after impact events produced the poikilitic melts. Granulitic impactites hold important information about the pre-Nectarian bombardment history of the Moon, and the composition and thermal evolution of the early lunar crust. Granulitic impactites are widely considered to be an important rock type in the lunar crust, but how they formed is poorly understood. Metal compositions and elevated concentrations of meteoritic siderophile elements suggest that most lunar granulites are impact breccias. Their occurrence as clasts in approximately 3.9 Ga breccias, and Ar-(40-39) ages greater than or = 4.2 Ga for some granulites show that they represent a component of the lunar crust which formed prior to the Nectarian cataclysm. Petrographic characteristics of lunar granulites indicate at least two endmember textural variants which apparently formed in fundamentally different ways. One type has granoblastic textures consisting of equant, polygonal to rounded grains, and abundant triple junctions with small dispersions around 120 degrees indicating a close approach to textural equilibrium. As suggested by many authors, granoblastic granulites

  19. Petrographic and Geochemical Investigation of Andesitic Arc Volcanism: Mount Kerinci, Sunda Arc, Indonesia

    Science.gov (United States)

    Tully, M.; Saunders, K.; Troll, V. R.; Jolis, E.; Muir, D. D.; Deegan, F. M.; Budd, D. A.; Astbury, R.; Bromiley, G. D.

    2014-12-01

    Present knowledge of the chain of dominantly andesitic volcanoes, which span the Sumatran portion of the Sunda Arc is extremely limited. Previous studies have focused on Toba and Krakatau, although over 13 further volcanic edifices are known. Several recent explosive eruptions in Sumatra such as that of Mt. Sinabung, 2014, have highlighted the potential hazard that these volcanoes pose to the local and regional communities. Mount Kerinci, is one of the most active of the volcanoes in this region, yet little is known about the petrogenesis of the magma by which it is fed. Kerinci is located approximately mid-way between Toba in the North and Krakatau in the south. Along arc variations are observed in the major, minor and trace elements of whole rock analyses. However, bulk rock approaches produce an average chemical composition for a sample, potentially masking important chemical signatures. In-situ micro-analytical analysis of individual components of samples such as melt inclusions, crystals and groundmass provides chemical signatures of individual components allowing the evolution of volcanic centres to be deciphered in considerably more detail. Examination of whole rock chemistry indicates its location may be key to unravelling the petrogenesis of the arc as significant chemical changes occur between Kerinci and Kaba, 250 km to the south. Kerinci samples are dominantly porphyritic with large crystals of plagioclase, pyroxene and Fe-Ti oxides, rare olivine crystals are observed. Plagioclase and pyroxene crystals are chemically zoned and host melt inclusions. Multiple plagioclase populations are observed. A combination of in-situ micro-analysis techniques will be used to characterise the chemical composition of melt inclusions and crystals. These data can be used along with extant geothermobarometric models to help determine the magma source, storage conditions and composition of the evolving melt. Integration of the findings from this study with existing data for

  20. Inter-comparison of cosmogenic in-situ 3He, 21Ne and 36Cl at low latitude along an altitude transect on the SE slope of the Kilimanjaro volcano (3°S, Tanzania)

    Science.gov (United States)

    Schimmelpfennig, I.; Williams, A.; Pik, R.; Burnard, P.; Niedermann, S.; Finkel, R. C.; Benedetti, L.; Schneider, B.

    2010-12-01

    Because the intensity and energy spectrum of the cosmic ray flux is affected by atmospheric depth and geomagnetic-field strength, cosmogenic nuclide production rates increase considerably with altitude and to a lesser degree with latitude. The scaling methods used to account for spatial variability in production rates assume that all cosmogenic nuclides have the same altitude dependence. In this study we evaluate whether the production rates of cosmogenic 36Cl, 3He and 21Ne change differently with altitude, which is plausible due to the different energy-thresholds of their production reactions. If so, nuclide-specific scaling factors would be required. Concentrations of the three cosmogenic nuclides were determined in mafic phenocrysts over an altitude transect between 1000 and 4300 m at Kilimanjaro volcano (3° S). Altitude-dependence of relative production rates was assessed in two ways: by determination of concentration ratios and by calculation of apparent exposure age ratios for all nuclide pairs. The latter accounts for characteristics of 36Cl that the stable nuclides 3He and 21Ne do not possess (radioactive decay, high sensitivity to mineral composition and significant contributions from production reactions other than spallation). All ratios overlap within error over the entire transect, and altitudinal variation in relative production rates is not therefore evident. This suggests that nuclide-specific scaling factors are not required for the studied nuclides at this low latitude location. However, because previous studies [1,2] documented anomalous altitude-dependent variations of 3He production at mid-latitude sites, the effect of latitude on cross-calibrations should be further evaluated. We determined cosmogenic 21Ne/3He concentration ratios of 0.187 ± 0.010 in pyroxenes and 0.375 ± 0.015 in olivines, agreeing with those reported in previous studies. Despite the absence of independently determined ages for the studied lava surfaces, the consistency in

  1. Geological setting, emplacement mechanism and igneous evolution of the Atchiza mafic-ultramafic layered suite in north-west Mozambique

    Science.gov (United States)

    Ibraimo, Daniel Luis; Larsen, Rune B.

    2015-11-01

    The Atchiza mafic and ultramafic-layered suite (hereafter, "Atchiza Suite) crops out in an area 330 km2 west of the Mozambican Tete province. In an early account of the geology of this intrusion, it was considered the continuation of the Great Dyke of Zimbabwe, an idea that was aborted after detailed studies. Nevertheless, the Ni concentrations in the Atchiza outcrop rocks are considerable. Our investigation used field evidence, hand specimens and petrography descriptions, mineral chemistry studies using electron microprobe analysis and tectonic analysis to arrive at a plausible mineralogical composition and understanding of the tectonic setting for the igneous evolution. The mineral composition from the Atchiza Suite indicates that these are cumulates. The magmatic segregation from the petrographic and mineral composition reasoning indicates that dunite-lherzolitic peridotite-olivine gabbro-gabbronorite-gabbro-pegmatitic gabbro is the rock formation sequence. Olivine and chromite were the first phases formed, followed by pyroxene and plagioclase. In addition, it is shown that these minerals are near-liquidus crystallization products of basaltic magma with olivine Fo: 87.06 in dunite, mean values of clinopyroxene are (Wo: 36.4, En: 48.0, Fs: 15.2), orthopyroxene (Wo: 2.95, En: 73.0, Fs: 24.2) and plagioclase An: 71.3, respectively. Opaque minerals comprise Fe-Ti oxides and (Fe, Cr) spinel up to 4.8 vol.%, but chromitite layers are not present. Most of the opaque minerals are interstitial to pyroxene. Sulphides are common in gabbros, with pyrrhotite, pentlandite, chalcopyrite, pyrite and covellite together comprising 0.4-2.0 vol.%. The whole rock Rare Earth Element (REE) concentrations are mainly a result of differentiation, but slight crustal contamination/assimilation contributed to the REE contents. In addition, they also show Eu enrichment, suggesting that plagioclase fractionation was important in the rock. The Atchiza Suite preserves a deep-seated plumbing

  2. The Role of Water in the Stability of Cratonic Keels

    Science.gov (United States)

    Peslier, Anne H.; Woodland, Alan B.; Bell, David R.; Lazarov, Marina

    2011-01-01

    Cratons are typically underlain by large, deep, and old lithospheric keels (to greater than 200 km depth, greater than 2.5 Ga old) projecting into the asthenosphere (e.g., Jordan, 1978; Richardson et al., 1984). This has mystified Earth scientists as the dynamic and relatively hot asthenosphere should have eroded away these keels over time (e.g., Sleep, 2003; O'Neill et al., 2008; Karato, 2010). Three key factors have been invoked to explain cratonic root survival: 1) Low density makes the cratonic mantle buoyant (e.g., Poudjom Djomani et al., 2001). 2) Low temperatures (e.g., Pollack, 1986; Boyd, 1987), and 3) low water contents (e.g., Pollack, 1986), would make cratonic roots mechanically strong. Here we address the mechanism of the longevity of continental mantle lithosphere by focusing on the water parameter. Although nominally anhydrous , olivine, pyroxene and garnet can accommodate trace amounts of water in the form of H bonded to structural O in mineral defects (e.g., Bell and Rossman, 1992). Olivine softens by orders of magnitude if water (1-1000 ppm H2O) is added to its structure (e.g., Mackwell et al., 1985). Our recent work has placed constraints on the distribution of water measured in peridotite minerals in the cratonic root beneath the Kaapvaal in southern Africa (Peslier et al., 2010). At P greater than 5 GPa, the water contents of pyroxene remain relatively constant while those of olivine systematically decrease from 50 to less than 10 ppm H2O at 6.4 GPa. We hypothesized that at P greater than 6.4 GPa, i.e. at the bottom of the cratonic lithosphere, olivines are essentially dry (greater than 10 ppm H2O). As olivine likely controls the rheology of the mantle, we calculated that the dry olivines could be responsible for a contrast in viscosity between cratonic lithosphere and surrounding asthenosphere large enough to explain the resistance of cratonic root to asthenospheric delamination.

  3. Crystallization Stages of the Bishop Tuff Magma Body Recorded in Crystal Textures in Pumice Clasts

    Energy Technology Data Exchange (ETDEWEB)

    Pamukcu, Ayla; Gualda, Guilherme A.R.; Anderson, Jr. , Alfred T. (Vanderbilt); (UC)

    2012-07-25

    The Bishop Tuff is a giant silicic ignimbrite erupted at 0.76 Ma in eastern California, USA. Five pumice clasts from the late-erupted Bishop Tuff (Aeolian Buttes) were studied in an effort to better understand the pre- and syn-eruptive history of the Bishop magma body and place constraints on the timescales of its existence. This study complements and expands on a previous study that focused on early-erupted Bishop Tuff pumice clasts. Bulk densities of pumice clasts were measured using an immersion method, and phenocryst crystal contents were determined using a sieving and winnowing procedure. X-ray tomography was used to obtain qualitative and quantitative textural information, particularly crystal size distributions (CSDs). We have determined CSDs for crystals ranging in size from {approx}10 to {approx}1000 {micro}m for three groups of mineral phases: magnetite ({+-}ilmenite), pyroxene + biotite, quartz + feldspar. Similar to early-erupted pumice, late-erupted pumice bulk density and crystal contents are positively correlated, and comparison of crystal fraction vs size trends suggests that the proportion of large crystals is the primary control on crystallinity. Porosity is negatively correlated with crystal content, which is difficult to reconcile with closed-system crystallization. Magnetite and pyroxene + biotite size distributions are fractal in nature, often attributed to fragmentation; however, crystals are mostly whole and euhedral, such that an alternative mechanism is necessary to explain these distributions. Quartz + feldspar size distributions are kinked, with a shallow-sloped log-linear section describing large crystals (> 140 {micro}m) and a steep-sloped log-linear section describing small crystals (< 140 {micro}m). We interpret these two crystal populations as resulting from a shift in crystallization regime. We suggest that the shallow-sloped section describes a pre-eruptive quartz + feldspar growth-dominated regime, whereas the steep

  4. Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars

    Science.gov (United States)

    McSween, H.Y.; Wyatt, M.B.; Gellert, Ralf; Bell, J.F.; Morris, R.V.; Herkenhoff, K. E.; Crumpler, L.S.; Milam, K.A.; Stockstill, K.R.; Tornabene, L.L.; Arvidson, R. E.; Bartlett, P.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; Clark, B. C.; Crisp, J.A.; Des Marais, D.J.; Economou, T.; Farmer, J.D.; Farrand, W.; Ghosh, A.; Golombek, M.; Gorevan, S.; Greeley, R.; Hamilton, V.E.; Johnson, J. R.; Joliff, B.L.; Klingelhofer, G.; Knudson, A.T.; McLennan, S.; Ming, D.; Moersch, J.E.; Rieder, R.; Ruff, S.W.; Schrorder, C.; de Souza, P.A.; Squyres, S. W.; Wanke, H.; Wang, A.; Yen, A.; Zipfel, J.

    2006-01-01

    Rocks on the floor of Gusev crater are basalts of uniform composition and mineralogy. Olivine, the only mineral to have been identified or inferred from data by all instruments on the Spirit rover, is especially abundant in these rocks. These picritic basalts are similar in many respects to certain Martian meteorites (olivine-phyric shergottites). The olivine megacrysts in both have intermediate compositions, with modal abundances ranging up to 20-30%. Associated minerals in both include low-calcium and high-calcium pyroxenes, plagioclase of intermediate composition, iron-titanium-chromium oxides, and phosphate. These rocks also share minor element trends, reflected in their nickel-magnesium and chromium-magnesium ratios. Gusev basalts and shergottites appear to have formed from primitive magmas produced by melting an undepleted mantle at depth and erupted without significant fractionation. However, apparent differences between Gusev rocks and shergottites in their ages, plagioclase abundances, and volatile contents preclude direct correlation. Orbital determinations of global olivine distribution and compositions by thermal emission spectroscopy suggest that olivine-rich rocks may be widespread. Because weathering under acidic conditions preferentially attacks olivine and disguises such rocks beneath alteration rinds, picritic basalts formed from primitive magmas may even be a common component of the Martian crust formed during ancient and recent times. Copyright 2006 by the American Geophysical Union.

  5. Kinetics and mechanisms of iron redox reactions in silicate melts: The effects of temperature and alkali cations

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, V.; Pinet, O. [CEA VALRHO, SCDV/LEBV, F-30207 Bagnols Sur Ceze, (France); Magnien, V.; Neuville, D. R.; Roux, J.; Richet, P. [IPGP, CNRS, Physique des Mineraux et Magmas, F-75252 Paris 05, (France); Cormier, L. [Univ Paris 06, IMPMC, F-75015 Paris, (France); Hazemann, J. L. [CNRS, Inst Neel, F-38043 Grenoble, (France); De Ligny, D. [Univ Lyon 1, LMLC, CNRS, UMR 5620, F-69622 Villeurbanne, (France); Pascarelli, S. [European Synchrotron Radiat Facil, F-38043 Grenoble, (France); Vickridge, I. [Univ Paris 06, INSP, F-75015 Paris, (France)

    2008-07-01

    The kinetics and the mechanisms of iron redox reactions in molten Fe-bearing pyroxene compositions have been investigated by Raman spectroscopy and X-ray absorption Near Edge Structure (XANES) experiments at the iron K-edge. The former experiments have been made only near the glass transition whereas the latter have also been performed from about 1300 to 2100 K. The same kinetics are observed with both techniques. They are described by characteristic times that depend primarily on temperature and not on the initial redox state. At high temperatures, where both kinds of reactions could be investigated, these times are similar for oxidation and reduction. From these characteristic times we have calculated as a function of temperature and composition a parameter termed effective redox diffusivity. For a given melt, the diffusivities follow two distinct Arrhenius laws, which indicate that the mechanisms of the redox reaction are not the same near the glass transition and at high temperatures. As is now well established, diffusion of divalent cations is the dominant mechanism at low temperatures but the enhanced kinetics observed for alkali-bearing melts indicate that Li{sup +} and Na{sup +} also participate in ionic transport. At super-liquidus temperatures, in contrast, diffusion of oxygen represents the dominant mechanism. (authors)

  6. Mineralogy of asbestos from the metamorphic complex from north eastern Takab-NW Iran

    International Nuclear Information System (INIS)

    Hajialioghli, R.; Moazzen, M.

    2016-01-01

    The ultramafic rocks from the Takht-e-Soleyman metamorphic complex, in Precambrian age, are classified as serpentinized meta peridotites and serpentinites, based on degree of serpentinization. Serpentine forms more than 90 volume% of the serpentinites. On the basis of serpentine polymorphs, textural relations and micro-structure features, variety of serpentinites are determined as massive serpentinites, serpentinite schists and chrysotile-bearing serpentinites. Chrysotile in serpentinites has been formed due to static condition and brittle deformations. During static state chrysotile and lizardite after olivine and pyroxene are formed as pseudomorphic mesh and bastite textures in the massive serpentinites. Then serpentinization processes reactivated by formation and development of joints and fractures related to brittle deformations at the local sheared zones. Chrysotile occur as fine grained crystals in the serpentinite matrix and veinlets with mm thickness filling fractures of the chrysotile-bearing serpentinites. Slight thickness of chrysotile veinlet in the investigated serpentinites can be attributed to the olivine rich composition of protolite. Low amounts of Cr 2 O 3 in composition of the analyzed chrysotile supports low clinopyroxene and high olivine in protolite of serpentinites. Serpentinite schists are formed under ductile deformation condition at the regional sheared zones. Amphibole asbestos occur as veins having meter scale thickness filling of joints and fractures at the regional sheared zone. Length of thin and long asbestos amphibole arrives up to cm. On the basis of petrography, Raman spectroscopy, XRD and microprope analysis, both chrysotile- and amphibole asbestos have been recognized in the Takht-e-Soleyman serpentintes.

  7. Aqueous Geochemical Dynamics at the Coast Range Ophiolite Microbial Observatory and The Case for Subsurface Mixing of Regional Groundwaters

    Science.gov (United States)

    Cardace, D.; Schrenk, M. O.; McCollom, T. M.; Hoehler, T. M.

    2017-12-01

    Serpentinization is the aqueous alteration (or hydration) of olivine and pyroxene minerals in ultramafic rocks, occurring in the seabed and ultramafic units on continents, such as at the Coast Range Ophiolite (CRO) in northern California, USA. Mineral products of serpentinization include serpentine, magnetite, brucite, talc, oxyhydroxides, carbonates, and diverse clay minerals. Such mineral transformations generate extremely high pH solutions with characteristic cation and dissolved metal loads, transmitting CH4, H2, and CO gas mixtures from depth; deep life in ultramafic terrains is thought to be fueled by chemical energy derived from these geochemical reactions. The installation of 8 groundwater monitoring wells in the CRO has allowed frequent monitoring since 2011. Influx of deeply sourced, serpentinization-influenced waters is evidenced by related geochemical shifts (e.g., pH, oxidation-reduction potential), but is apparently mixing with other, regionally important groundwater types. Evaluation salinity loads in concert with other parameters, we model the mixing scenario of this site of ongoing scientific study and experimentation.

  8. Impact of Mars sand on dust on the design of space suits and life support equipment: A technology assessment

    Science.gov (United States)

    Simonds, Charles H.

    1991-01-01

    Space suits and life support equipment will come in intimate contact with Martian soil as aerosols, wind blown particles and material thrown up by men and equipment on the Martian surface. For purposes of this discussion the soil is assumed to consist of a mixture of cominuted feldspar, pyroxene, olivine, quartz, titanomagnetite and other anhydrous and hydrous iron bearing oxides, clay minerals, scapolite and water soluble chlorides and sulfates. The soil may have photoactivated surfaces that acts as a strong oxidizer with behavior similar to hydrogen peroxide. The existing data about the Mars soil suggests that the dust and sand will require designs analogous to those uses on equipment exposed to salty air and blowing sand and dust. The major design challenges are in developing high performance radiators which can be cleaned after each EVA without degradation, designing seals that are readily cleaned and possibly in selecting materials which will not be degraded by any strong oxidants in the soil. The magnitude of the dust filtration challenge needs careful evaluation in terms of the trade off between fine-particle dust filters with low pressure drop that are either physically large and heavy, like filter baghouses require frequent replacement of filter elements, of low volume high pressure thus power consumption approaches, or washable filters. In the latter, filter elements are cleaned with water, as could the outsides of the space suits in the airlock.

  9. Impact of Mars sand on dust on the design of space suits and life support equipment: A technology assessment

    Science.gov (United States)

    Simonds, Charles H.

    1991-05-01

    Space suits and life support equipment will come in intimate contact with Martian soil as aerosols, wind blown particles and material thrown up by men and equipment on the Martian surface. For purposes of this discussion the soil is assumed to consist of a mixture of cominuted feldspar, pyroxene, olivine, quartz, titanomagnetite and other anhydrous and hydrous iron bearing oxides, clay minerals, scapolite and water soluble chlorides and sulfates. The soil may have photoactivated surfaces that acts as a strong oxidizer with behavior similar to hydrogen peroxide. The existing data about the Mars soil suggests that the dust and sand will require designs analogous to those uses on equipment exposed to salty air and blowing sand and dust. The major design challenges are in developing high performance radiators which can be cleaned after each EVA without degradation, designing seals that are readily cleaned and possibly in selecting materials which will not be degraded by any strong oxidants in the soil. The magnitude of the dust filtration challenge needs careful evaluation in terms of the trade off between fine-particle dust filters with low pressure drop that are either physically large and heavy, like filter baghouses require frequent replacement of filter elements, of low volume high pressure thus power consumption approaches, or washable filters. In the latter, filter elements are cleaned with water, as could the outsides of the space suits in the airlock.

  10. An {sup 57}Fe Mössbauer study of the ordinary chondrite meteorite Lynch 001

    Energy Technology Data Exchange (ETDEWEB)

    Elewa, Nancy N., E-mail: nancy.elewa@student.unsw.edu.au; Cadogan, J. M. [The University of New South Wales at the Australian Defence Force Academy, School of Physical, Environmental and Mathematical Sciences (Australia)

    2017-11-15

    The Lynch 001 meteorite was found in the Nullarbor Plain region of Western Australia in 1977. This meteorite is classified as an ordinary chondrite of the petrologic group L5/6 that has undergone ‘minor to moderate’ terrestrial weathering. Here, we characterize the Fe-bearing phases in this chondrite using {sup 57}Fe Mössbauer spectroscopy carried out over the temperature range 13 K to room temperature (295 K). The paramagnetic doublets of olivine, pyroxene and a superparamagnetic ferric phase dominate the room temperature Mössbauer spectrum. On the basis of the room temperature quadrupole splitting of the olivine component, we estimate its composition to be Fa {sub 30(5)}. Besides the paramagnetic ferric component, accounting for ∼15 % of the spectral area at room temperature, magnetically ordered ferric phases were also detected. The total relative proportion of the Fe {sup 3+} components allows us to estimate the terrestrial age of Lynch 001 to be 6,500 ± 1,500 yr, consistent with the value of 6,700 ± 1,300 yr determined by {sup 14}C dating.

  11. Reactive transport and mass balance modeling of the Stimson sedimentary formation and altered fracture zones constrain diagenetic conditions at Gale crater, Mars

    Science.gov (United States)

    Hausrath, E. M.; Ming, D. W.; Peretyazhko, T. S.; Rampe, E. B.

    2018-06-01

    On a planet as cold and dry as present-day Mars, evidence of multiple aqueous episodes offers an intriguing view into very different past environments. Fluvial, lacustrine, and eolian depositional environments are being investigated by the Mars Science Laboratory Curiosity in Gale crater, Mars. Geochemical and mineralogical observations of these sedimentary rocks suggest diagenetic processes affected the sediments. Here, we analyze diagenesis of the Stimson formation eolian parent material, which caused loss of olivine and formation of magnetite. Additional, later alteration in fracture zones resulted in preferential dissolution of pyroxene and precipitation of secondary amorphous silica and Ca sulfate. The ability to compare the unaltered parent material with the reacted material allows constraints to be placed on the characteristics of the altering solutions. In this work we use a combination of a mass balance approach calculating the fraction of a mobile element lost or gained, τ, with fundamental geochemical kinetics and thermodynamics in the reactive transport code CrunchFlow to examine the characteristics of multiple stages of aqueous alteration at Gale crater, Mars. Our model results indicate that early diagenesis of the Stimson sedimentary formation is consistent with leaching of an eolian deposit by a near-neutral solution, and that formation of the altered fracture zones is consistent with a very acidic, high sulfate solution containing Ca, P and Si. These results indicate a range of past aqueous conditions occurring at Gale crater, Mars, with important implications for past martian climate and environments.

  12. Uranium and REE potential of the albitite-pyroxenite-microclinite belt of Rajasthan, India

    International Nuclear Information System (INIS)

    Singh, Govind; Sharma, D.K.; Yadav, O.P.; Jain, Rajan B.; Singh, Rajendra

    1998-01-01

    A number of radioactive albitite, pyroxenite and microclinite occurrences have been identified in north and central Rajasthan, along or in close proximity to major lineaments, from Dancholi - Mewara in the NE to Tal in the SW. With these new findings the total extent of Albitite belt of Rajasthan now stands at over 320 km. These occurrences have been evaluated on the basis of their U, Th and REE content to identify the potential areas for the second phase of uranium exploration programme. Further, based on the various characteristic features of radioactive host rocks, the Albitite Belt has been divided into five sectors. The U 3 O 8 content of albitites varies from 0.008 to 0.44% and of pyroxenites from 0.022 to 2.0% whereas ThO 2 varies from < 0.005 to 0.83% in albitites and <0.005 to 0.033% in pyroxenities. These albitites, microclinites and pyroxenites are also characterised by anomalous concentration of REEs. Uranium and REE bearing phases are represented by uraninite, brannerite, davidite, fergusonite, monazite, anatase, rutile, zircon, allanite and britholite. The data accrued so far suggest that U and REE potential of the Mewara-Maonda and Hurra Ki Dhani-Rohil sectors are very high and hence needs further detailed integrated exploration. (author)

  13. Metal mobilization under alkaline conditions in ash-covered tailings.

    Science.gov (United States)

    Lu, Jinmei; Alakangas, Lena; Wanhainen, Christina

    2014-06-15

    The aim of this study was to determine element mobilization and accumulation in mill tailings under alkaline conditions. The tailings were covered with 50 cm of fly ash, and above a sludge layer. The tailings were geochemically and mineralogically investigated. Sulfides, such as pyrrhotite, sphalerite and galena along with gangue minerals such as dolomite, calcite, micas, chlorite, epidote, Mn-pyroxene and rhodonite were identified in the unoxidized tailings. The dissolution of the fly ash layer resulted in a high pH (close to 12) in the underlying tailings. This, together with the presence of organic matter, increased the weathering of the tailings and mobilization of elements in the uppermost 47 cm of the tailings. All primary minerals were depleted, except quartz and feldspar which were covered by blurry secondary carbonates. Sulfide-associated elements such as Cd, Fe, Pb, S and Zn and silicate-associated elements such as Fe, Mg and Mn were released from the depletion zone and accumulated deeper down in the tailings where the pH decreased to circum-neutral. Sequential extraction suggests that Cd, Cu, Fe, Pb, S and Zn were retained deeper down in the tailings and were mainly associated with the sulfide phase. Calcium, Cr, K and Ni released from the ash layer were accumulated in the uppermost depletion zone of the tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Limited mobility of argon in a metamorphic terrain

    Energy Technology Data Exchange (ETDEWEB)

    Foland, K A [Pennsylvania Univ., Philadelphia (USA). Dept. of Geology

    1979-06-01

    Excess /sup 40/Ar in biotite from some relatively anhydrous charnockitic rocks in the Appalachian Piedmont indicates limited mobility or argon. Biotite from the Arden pluton of the granulite-facies Wilmington Complex apparently formed as a retrograde product at the expense of pyroxene and K-feldspar Rb-Sr ages of biotite from all rocks are approximately 365 Myr. The same micas have apparent K-Ar ages which range from about 365-590 Mye, six of which clearly exceed the Sr isotope whole-rock date of 500 Myr. They contain variable amounts of excess /sup 40/Ar incorporated during crystallization or recrystallization of biotite at about 365 Myr ago. None of the other minerals appears to contain significant amounts of excess argon. The K-Ar apparent ages show strong, positive correlation with whole-rock K concentrations. These relations yield a correlation between excess argon in the biotite phase and rock potassium. This suggests that excess /sup 40/Ar in biotite is of local derivation and is due to an imprint of the local argon activity. If the amount incorporated is roughly proportional to the prevailing argon partial pressure then substantial differences in psub(Ar) existed. Argon did not have a uniform chemical potential over large rock volumes. Analysis of closely spaced samples suggests different argon activity over the scale of less than 10 m. This implies restricted transport of Ar and is probably due to very low effective permeability of the anhydrous assemblages.

  15. Compositional variations in sands of the Bagnold Dunes, Gale Crater, Mars, from visible-shortwave infrared spectroscopy and comparison with ground truth from the Curiosity Rover

    Science.gov (United States)

    Lapotre, Mathieu G.A.; Ehlmann, B. L.; Minson, Sarah E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.

    2017-01-01

    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single scattering albedo spectra and a Markov-Chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that XRD-measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are non-unique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold dunes, consistent with a mafic enrichment of sands with cumulative transport distance by sorting of olivine, pyroxene, and plagioclase grains during aeolian saltation. Furthermore, the large variations in Fe and Mg abundances (~20 wt%) at the Bagnold Dunes suggest that compositional variability induced by wind sorting may be enhanced by local mixing with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within martian aeolian sandstones.

  16. 论冲绳海槽沉积物中金属球粒矿物的起源

    Institute of Scientific and Technical Information of China (English)

    王先兰; 梁景周

    1984-01-01

    In order to understand the origin of metal spherical minerals in the Okinawa Trough sediments, the authors have microscopically examined 215 samples (161 surface and 54 core samples) from 150 stations scattered in the shallow-sea continental shelf and trough areas,on the basis of the extensive studies of detrital minerals in the East China Sea continental shelf sediments. It is found that no metal spherical minerals occur either in surface or in core samples from sediments in the vast shallow-sea continental area, with an occurrence probability of zero, while in the narrow trough area the occurrence probability is 43% or more. And their distribution, either in. lateral or in vertical direction, shows an obvious regional speciality. This regional speciality is related to the assemblage type in which volcanoclastic minerals are predominant in the Okinawa Trough sediments, i.e., the occurrence probability of metal spherical minerals is proportional to the contents of pyroxene of volcanic origin and volcanic glass. A few metal spherical minerals are found enclosed within the volcanic glass. These facts strongly.indicate that metal spherical minerals in the Okinawa Trough sediments are of terrestrial rather than cosmic origin.

  17. Colors and Photometry of Bright Materials on Vesta as Seen by the Dawn Framing Camera

    Science.gov (United States)

    Schroeder, S. E.; Li, J.-Y.; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.; hide

    2012-01-01

    The Dawn spacecraft has been in orbit around the asteroid Vesta since July, 2011. The on-board Framing Camera has acquired thousands of high-resolution images of the regolith-covered surface through one clear and seven narrow-band filters in the visible and near-IR wavelength range. It has observed bright and dark materials that have a range of reflectance that is unusually wide for an asteroid. Material brighter than average is predominantly found on crater walls, and in ejecta surrounding caters in the southern hemisphere. Most likely, the brightest material identified on the Vesta surface so far is located on the inside of a crater at 64.27deg S, 1.54deg . The apparent brightness of a regolith is influenced by factors such as particle size, mineralogical composition, and viewing geometry. As such, the presence of bright material can indicate differences in lithology and/or degree of space weathering. We retrieve the spectral and photometric properties of various bright terrains from false-color images acquired in the High Altitude Mapping Orbit (HAMO). We find that most bright material has a deeper 1-m pyroxene band than average. However, the aforementioned brightest material appears to have a 1-m band that is actually less deep, a result that awaits confirmation by the on-board VIR spectrometer. This site may harbor a class of material unique for Vesta. We discuss the implications of our spectral findings for the origin of bright materials.

  18. Moessbauer mineralogy on the Moon: The lunar regolith

    International Nuclear Information System (INIS)

    Morris, Richard V.; Klingelhoefer, Goestar; Korotev, Randy L.; Shelfer, Tad D.

    1998-01-01

    A first-order requirement for spacecraft missions that land on solid planetary objects is instrumentation for mineralogical analyses. For purposes of providing diagnostic information about naturally-occurring materials, the element iron is particularly important because it is abundant and multivalent. Knowledge of the oxidation state of iron and its distribution among iron-bearing mineralogies tightly constrains the types of materials present and provides information about formation and modification (weathering) processes. Because Moessbauer spectroscopy is sensitive to both the valence of iron and its local chemical environment, the technique is unique in providing information about both the relative abundance of iron-bearing phases and oxidation state of the iron. The Moessbauer mineralogy of lunar regolith samples (primarily soils from the Apollo 16 and 17 missions to the Moon) were measured in the laboratory to demonstrate the strength of the technique for in-situ mineralogical exploration of the Moon. The regolith samples were modeled as mixtures of five iron-bearing phases: olivine, pyroxene, glass, ilmenite, and metal. Based on differences in relative proportions of iron associated with these phases, volcanic-ash regolith can be distinguished from impact-derived regolith, impact-derived soils of different geologic affinity (e.g., highlands and maria) can be distinguished on the basis of their constituent minerals, and soil maturity can be estimated. The total resonant absorption area of the Moessbauer spectrum can be used to estimate total FeO concentrations

  19. High-pressure polymorphs in Yamato-790729 L6 chondrite and their significance for collisional conditions

    Science.gov (United States)

    Kato, Yukako; Sekine, Toshimori; Kayama, Masahiko; Miyahara, Masaaki; Yamaguchi, Akira

    2017-12-01

    Shock pressure recorded in Yamato (Y)-790729, classified as L6 type ordinary chondrite, was evaluated based on high-pressure polymorph assemblages and cathodoluminescence (CL) spectra of maskelynite. The host-rock of Y-790729 consists mainly of olivine, low-Ca pyroxene, plagioclase, metallic Fe-Ni, and iron-sulfide with minor amounts of phosphate and chromite. A shock-melt vein was observed in the hostrock. Ringwoodite, majorite, akimotoite, lingunite, tuite, and xieite occurred in and around the shock-melt vein. The shock pressure in the shock-melt vein is about 14-23 GPa based on the phase equilibrium diagrams of high-pressure polymorphs. Some plagioclase portions in the host-rock occurred as maskelynite. Sixteen different CL spectra of maskelynite portions were deconvolved using three assigned emission components (centered at 2.95, 3.26, and 3.88 eV). The intensity of emission component at 2.95 eV was selected as a calibrated barometer to estimate shock pressure, and the results indicate pressures of about 11-19 GPa. The difference in pressure between the shock-melt vein and host-rock might suggest heterogeneous shock conditions. Assuming an average shock pressure of 18 GPa, the impact velocity of the parent-body of Y-790729 is calculated to be 1.90 km s-1. The parent-body would be at least 10 km in size based on the incoherent formation mechanism of ringwoodite in Y-790729.

  20. Compositional variations in sands of the Bagnold Dunes, Gale crater, Mars, from visible-shortwave infrared spectroscopy and comparison with ground truth from the Curiosity rover

    Science.gov (United States)

    Lapotre, M. G. A.; Ehlmann, B. L.; Minson, S. E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.

    2017-12-01

    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single-scattering albedo spectra and a Markov chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that X-ray diffraction-measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are nonunique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold Dunes, consistent with a mafic enrichment of sands with cumulative aeolian-transport distance by sorting of olivine, pyroxene, and plagioclase grains. Furthermore, the large variations in Fe and Mg abundances ( 20 wt %) at the Bagnold Dunes suggest that compositional variability may be enhanced by local mixing of well-sorted sand with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within Martian aeolian sandstones.

  1. Crystallization kinetics of magnetic glass-ceramics prepared by the processing of waste materials

    International Nuclear Information System (INIS)

    Francis, A.A.

    2006-01-01

    The objective of the present investigation was to study the feasibility of conversion of an intimate mixture of blast furnace slag and blast furnace flue dust generated by a single industrial company into magnetic glass-ceramic product. Blast furnace slag (BFS) and blast furnace flue dust (BFD) are generated at a rate of 300,000 and 30,000 tons/year, respectively, from iron and steel factory. The crystallization mechanisms of a composition containing BFS and BFD in a 50/50 proportion were investigated by differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The crystallization temperature was found to vary from 900 to 1100 deg. C and two phases appeared in the crystallized samples: pyroxene Ca(Mg, Fe, Al)(Si, Al) 2 O 6 and magnetite/maghemite. Heating rate and particle sizes effects on crystal growth of powdered samples were studied by DTA. The apparent activation energy of crystal growth using the particle size 180-315 μm was determined to be 355 and 329 kJ/mol for the first and second peak, respectively. The presence of sharp and broad crystallization peaks indicate simultaneous surface and internal crystallization mechanism. Good wear resistance and chemical durability particularly in alkaline environment, combine with good hardness and magnetic properties make this glass-ceramic material potentially useful for various industrial applications

  2. Vitrification of copper flotation waste

    Energy Technology Data Exchange (ETDEWEB)

    Karamanov, Alexander [Institute of Physical Chemistry, Bulgarian Academy of Science, G. Bonchev Str. Block 11, 1113 Sofia (Bulgaria)]. E-mail: karama@ing.univaq.it; Aloisi, Mirko [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, 67040 Monteluco di Roio, L' Aquila (Italy); Pelino, Mario [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, 67040 Monteluco di Roio, L' Aquila (Italy)

    2007-02-09

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30 wt% W were melted for 30 min at 1400 deg. C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit.

  3. Influence of aluminium nitride as a foaming agent on the preparation of foam glass-ceramics from high-titanium blast furnace slag

    Science.gov (United States)

    Shi, Huan; Feng, Ke-qin; Wang, Hai-bo; Chen, Chang-hong; Zhou, Hong-ling

    2016-05-01

    To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000°C. TS and waste glass were used as the main raw materials, aluminium nitride (AlN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of AlN added (1wt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing AlN content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the average pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AlN.

  4. Effects of sintering atmosphere on the physical and mechanical properties of modified BOF slag glass

    Science.gov (United States)

    Dai, Wen-bin; Li, Yu; Cang, Da-qiang; Zhou, Yuan-yuan; Fan, Yong

    2014-05-01

    This study proposes an efficient way to utilize all the chemical components of the basic oxygen furnace (BOF) slag to prepare high value-added glass-ceramics. A molten modified BOF slag was converted from the melting BOF slag by reducing it and separating out iron component in it, and the modified BOF slag was then quenched in water to form glasses with different basicities. The glasses were subsequently sintered in the temperature range of 600-1000°C in air or nitrogen atmosphere for 1 h. The effects of different atmospheres on the physical and mechanical properties of sintered samples were studied by using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) and by conducting experiment on evaluating the sintering shrinkage, water absorption and bulk density. It is found that the kinetics of the sintering process is significantly affected by sintering atmosphere. In particular, compared with sintering in air atmosphere, sintering in N2 atmosphere promotes the synergistic growth of pyroxene and melilite crystalline phases, which can contribute to better mechanical properties and denser microstructure.

  5. X-ray diffraction measurements on CuGeO3 under high pressures to 81 GPa using synchrotron radiation and imaging plates

    International Nuclear Information System (INIS)

    Ming, L C; Eto, T; Takeda, K; Kobayashi, Y; Suzuki, E; Endo, S; Sharma, S K; Jayaraman, A; Kikegawa, T

    2002-01-01

    Angle-dispersive x-ray diffraction measurements using CuGeO 3 (I) and CuGeO 3 (III) as the starting materials were carried out to 81 and 31 GPa, respectively, at room temperature. Data for phase (I) show that phase transitions occur at ∼7, ∼14, and ∼22 GPa, respectively, corresponding to (I) → (II), (II) → (II'), and (II') → (VI) transitions, as reported previously. The tetragonal phase (VI) was found to be stable up to 81 GPa, the highest pressure determined in this study. The volume changes at the transition pressures are estimated to be of ∼5%, ∼0%, and ∼14% for (I) → (II), (II) → (II'), and (II') → (VI) transitions, respectively. Data from measurements where phase (III) was the starting material show that phase (III) first changes to phase (IV) at ∼7 GPa and then to (IV') at 13.5 GPa, and finally to phase (V) at ∼18 GPa, with volume changes of 1.5%, 0%, and 20%, respectively, at the transition pressure. The volume change of 20% at 18 GPa is consistent with the pyroxene-perovskite transition

  6. Comparison of Nickel XANES Spectra and Elemental Maps from a Ureilite, a LL3.8 Ordinary Chondrite, Two Carbonaceous Chondrites and Two Large Cluster IDPs

    Science.gov (United States)

    Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.

    2014-01-01

    Nickel in the extraterrestrial world is commonly found in both Fe-Ni sulfide and Fe-Ni met-al forms [1] and in the pure metal state in the interior of iron meteorites where it is not easily oxidized. Ni is also found in olivine, pyroxene and glasses and in some melts the partitioning of Ni between the olivines and glass is controlled by the amount of S in the melt [2]. Its most common valence state is Ni(2+) but Ni also occurs as Ni(0), Ni(+), and Ni(3+) and rarely as Ni(2-), Ni(1-) and Ni(4+) [3]. It's valence state in olivines is Ni(2+) in octa-hedral coordination on the M1 site and rarely on the M2 site.[4]. The chemical sensitivity of X-ray absorp-tion near-edge structure (XANES) spectroscopy is well established and can be used to determine not only va-lence states but also coordination sites [5]. We report here Ni XANES spectroscopy and elemental maps collected from 2 carbonaceous chondrites, 2 large clus-ter IDPs, 1 ureilite and 1 LL3 orginary chondrite.Using XANES it may be possible to find a common trait in the large cluster IDPs that will also be found in mete-orite samples.

  7. A Classification Table for Achondrites

    Science.gov (United States)

    Chennaoui-Aoudjehane, H.; Larouci, N.; Jambon, A.; Mittlefehldt, D. W.

    2014-01-01

    Classifying chondrites is relatively easy and the criteria are well documented. It is based on mineral compositions, textural characteristics and more recently, magnetic susceptibility. It can be more difficult to classify achondrites, especially those that are very similar to terrestrial igneous rocks, because mineralogical, textural and compositional properties can be quite variable. Achondrites contain essentially olivine, pyroxenes, plagioclases, oxides, sulphides and accessory minerals. Their origin is attributed to differentiated parents bodies: large asteroids (Vesta); planets (Mars); a satellite (the Moon); and numerous asteroids of unknown size. In most cases, achondrites are not eye witnessed falls and some do not have fusion crust. Because of the mineralogical and magnetic susceptibility similarity with terrestrial igneous rocks for some achondrites, it can be difficult for classifiers to confirm their extra-terrestrial origin. We -as classifiers of meteorites- are confronted with this problem with every suspected achondrite we receive for identification. We are developing a "grid" of classification to provide an easier approach for initial classification. We use simple but reproducible criteria based on mineralogical, petrological and geochemical studies. We presented the classes: acapulcoites, lodranites, winonaites and Martian meteorites (shergottite, chassignites, nakhlites). In this work we are completing the classification table by including the groups: angrites, aubrites, brachinites, ureilites, HED (howardites, eucrites, and diogenites), lunar meteorites, pallasites and mesosiderites. Iron meteorites are not presented in this abstract.

  8. Geology, geochemistry and petrology of basalts from Paraná Continental Magmatic Province in the Araguari, Uberlândia, Uberaba and Sacramento regions, Minas Gerais state, Brazil

    Directory of Open Access Journals (Sweden)

    Lucia Castanheira de Moraes

    2018-02-01

    Full Text Available Abstract: This study covers the region between the cities of Sacramento and Araguari/Uberlândia (Minas Gerais State, Brazil, where basalt flows from the Paraná Continental Magmatic Province outcrop. The investigated rocks present tholeiitic signature, with high titanium content, and are classified as Pitanga magma-type. The preserved basalt thickness is between 10 and 200 meters and individual flows do not exceed 15 meters thick. Flows were identified as sheet lobes, smaller and thinner flows units - stacked laterally and vertically forming compound lavas -, or frontal, centimetric lobes. The basalt flows show decimetric to metric intercalations of clastic sedimentary rock, with depositional characteristics that can vary from aeolian to lacustrine, and are important markers on prevailing environmental conditions. The plagioclases are dominantly labradorite and pyroxene is augite, whereas olivine can be hyalosiderite or hortonolite/ferrohortonolite. The behavior of the major, minor and trace elements is compatible with the presence of at least two parental magmas, which were subjected to fractional crystallization mainly of plagioclase, clinopyroxene, ilmenite and magnetite. There is a chemistry distinction between basalts from Sacramento to those from Araguari/Uberlândia region, the former one showing more evolved than the last one. The high (La/LuN values are indicative of partial melting of a garnet peridotite, while the Rare Earth Elements (REE values are indicative of fractional crystallization.

  9. Chemistry and mineralogy of some Plio-Pleistocene tuffs from the Shungura Formation, southwest Ethiopia

    Science.gov (United States)

    Martz, A. M.; Brown, F. H.

    1981-09-01

    The Shungura Formation of southwestern Ethiopia has yielded many tens of thousands of vertebrate fossils including hominids and microvertebrates, and in addition has also yielded fossil wood, pollen, and invertebrates. Widespread tuffs have made subdivision and detailed mapping of the formation possible, have provided material for potassium-argon dating, and have allowed direct lithostratigraphic correlation with the Koobi Fora Formation in northern Kenya. The basis for correlation between the two formations is the distinctive chemistry of the tuffs, but systematic chemical variation within some tuffs invalidates some statistical correlation techniques. Here chemical analysis of glass separates and minerals from tuffs of the Shungura and Usno Formations are presented which may allow further ties to be established when data become available on other tuffs of the Koobi Fora Formation. The tuffs consist primarily of glass, but also contain phenocrysts of anorthoclase, hedenbergitic pyroxene, sodic amphibole, ilmenite, titanomagnetite, chevkinite, quartz, zircon, and rarely orthopyroxene and plagioclase. The glasses show evidence of alkali loss during hydration, and are not now peralkaline, although it is likely that they were initially. The source volcanoes were most likely situated within the Ethiopian rift valley, or on its margins.

  10. Study on Sumbawa gold recovery using centrifuge

    Science.gov (United States)

    Ferdana, A. D.; Petrus, H. T. B. M.; Bendiyasa, I. M.; Prijambada, I. D.; Hamada, F.; Sachiko, T.

    2018-01-01

    The Artisanal Small Gold Mining in Sumbawa has been processing gold with mercury (Hg), which poses a serious threat to the mining and global environment. One method of gold processing that does not use mercury is by gravity method. Before processing the ore first performed an analysis of Mineragraphy and analysis of compound with XRD. Mineragraphy results show that gold is associated with chalcopyrite and covelite and is a single particle (native) on size 58.8 μm, 117 μm up to 294 μm. characterization with XRD shows that the Sumbawa Gold Ore is composed of quartz, pyrite, pyroxene, and sericite compounds. Sentrifugation is one of separation equipment of gravity method to increase concentrate based on difference of specific gravity. The optimum concentration result is influenced by several variables, such as water flow rate and particle size. In this present research, the range of flow rate is 5 lpm and 10 lpm, the particle size - 100 + 200 mesh and -200 +300 mesh. Gold concentration in concentrate is measured by EDX. The result shows that the optimum condition is obtained at a separation with flow rate 5 lpm and a particle size of -100 + 200 mesh.

  11. Geology and Geochemistry of some crystalline basement rocks in ilesha area, southwestern nigeria: implications on provenance and evolution

    International Nuclear Information System (INIS)

    Oyinloye, A.O.

    2007-01-01

    Geological and geochemical study of the basement complex rocks in ilesha schist belt revealed that amphibolite, hornblende gneiss and granite gneiss are the major constituents. The gneisses are composed of similar rock forming silicates with variations in abundance. The amphibolite being a mafic rock has different compositions, containing abundant pyroxene, actinolite and tremolite. Monazite is present in the mineralogy of all these rocks. Chemical composition of these rocks revealed that they are petrogenetically related. Geochemical diagrams, plotted from chemical composition of these rocks, REE fractionation trends and presence of monazite in their mineralogy reveal that all these rocks were derived from a mixed magma source which did not originate from a pure tipper mantle, but possibly from a back arc tectonic setting. The pattern of the REE, progressively increasing negative Eu/Eu anomaly, La/sub N//Yb/sub N/ from the amphibolite to the granite gneiss and marked Eu depletion tend to implicate evolution through fractionation of a mixed basaltic magma to form the precursor of these rocks. The amphibolite probably represents the sample of the original basaltic magma. (author)

  12. On-Going Laboratory Efforts to Quantitatively Address Clay Abundance on Mars

    Science.gov (United States)

    Roush, Ted L.; Bishop, Janice L.; Brown, Adrian J.; Blake, David F.; Bristow, Thomas F.

    2012-01-01

    Data obtained at visible and near-infrared wavelengths by OMEGA on MarsExpress and CRISM on MRO provide definitive evidence for the presence of phyllosilicates and other hydrated phases on Mars. A diverse range of both Fe/Mg-OH and Al-OH-bearing phyllosilicates were identified including the smectites, nontronite, saponite, and montmorillonite. In order to constrain the abundances of these phyllosilicates spectral analyses of mixtures are needed. We report on our on-going effort to enable the quantitative evaluation of the abundance of hydrated-hydroxylated silicates when they are contained in mixtures. We include two component mixtures of hydrated/hydroxylated silicates with each other and with two analogs for other martian materials; pyroxene (enstatite) and palagonitic soil (an alteration product of basaltic glass). For the hydrated-hydroxylated silicates we include saponite and montmorillonite (Mg- and Al- rich smectites). We prepared three size separates of each end-member for study: 20-45, 63-90, and 125-150 µm. As the second phase of our effort we used scanning electron microscopy imaging and x-ray diffraction to characterize the grain size distribution, and structural nature, respectively, of the mixtures. Visible and near-infrared reflectance spectra of the 63-90 micrometers grain size of the mixture samples are shown in Figure 1. We discuss the results of our measurements of these mixtures.

  13. Experimental and geochemical evidence for derivation of the El Capitan Granite, California, by partial melting of hydrous gabbroic lower crust

    Science.gov (United States)

    Ratajeski, K.; Sisson, T.W.; Glazner, A.F.

    2005-01-01

    Partial melting of mafic intrusions recently emplaced into the lower crust can produce voluminous silicic magmas with isotopic ratios similar to their mafic sources. Low-temperature (825 and 850??C) partial melts synthesized at 700 MPa in biotite-hornblende gabbros from the central Sierra Nevada batholith (Sisson et al. in Contrib Mineral Petrol 148:635-661, 2005) have major-element and modeled trace-element (REE, Rb, Ba, Sr, Th, U) compositions matching those of the Cretaceous El Capitan Granite, a prominent granite and silicic granodiorite pluton in the central part of the Sierra Nevada batholith (Yosemite, CA, USA) locally mingled with coeval, isotopically similar quartz diorite through gabbro intrusions (Ratajeski et al. in Geol Soc Am Bull 113:1486-1502, 2001). These results are evidence that the El Capitan Granite, and perhaps similar intrusions in the Sierra Nevada batholith with lithospheric-mantle-like isotopic values, were extracted from LILE-enriched, hydrous (hornblende-bearing) gabbroic rocks in the Sierran lower crust. Granitic partial melts derived by this process may also be silicic end members for mixing events leading to large-volume intermediate composition Sierran plutons such as the Cretaceous Lamarck Granodiorite. Voluminous gabbroic residues of partial melting may be lost to the mantle by their conversion to garnet-pyroxene assemblages during batholithic magmatic crustal thickening. ?? Springer-Verlag 2005.

  14. Hydrogeochemical tracing of mineral water in Jingyu County, Northeast China.

    Science.gov (United States)

    Yan, Baizhong; Xiao, Changlai; Liang, Xiujuan; Wu, Shili

    2016-02-01

    The east Jilin Province in China, Jingyu County has been explored as a potential for enriching mineral water. In order to assess the water quality and quantity, it is of crucial importance to investigate the origin of the mineral water and its flow paths. In this study, eighteen mineral springs were sampled in May and September of 2012, May and September of 2013, and May 2014 and the environment, evolvement, and reaction mechanism of mineral water formation were analysed by hydrochemical data analysis, geochemical modelling and multivariate statistical analysis. The results showed that the investigated mineral water was rich in calcium, magnesium, potassium, sodium, bicarbonate, chloride, sulphate, fluoride, nitrate, total iron, silicate, and strontium, and mineral water ages ranged from 11.0 to more than 61.0 years. The U-shape contours of the mineral ages indicate a local and discrete recharge. The mineral compositions of the rocks were olivine, potassium feldspar, pyroxene, albite, and anorthite and were under-saturated in the mineral water. The origin of mineral water was from the hydrolysis of basalt minerals under a neutral to slightly alkaline and CO2-rich environment.

  15. To the problem about the origin of lunar maria and continents (Moessbauer investigations)

    Science.gov (United States)

    Malysheva, T. V.

    1977-01-01

    A comparative study of Mossbauer spectra of regolith returned by the Luna 16 and Luna 20 spacecraft is presented. The Mossbauer spectra of the mare regolith differs significantly for all fractions from the spectra for the same fractions of continental regolith. The total quantity of iron is 1.85 times greater in the mare regolith. There is 2.4 times less olivine in the mare region than in the continental region. The pyroxene component of the mare regolith is less homogeneous in composition (contains more augite and glass) and is present in larger quantities. Ilmenite was found only in the mare regolith. In the continental region, the predominant titanium-containing phase is ulvospinel. The mare regolith contains more metallic iron, which is more finely dispersed and contains less nickel. Troilite is found in the maria region. Based on these differences, it is concluded that the formation of continental rocks occurred at an earlier stage of crystallization from the melt and at higher temperatures and higher partial pressures of oxygen. The mare basalts crystallized from a more reduced magma, apparently in a later process.

  16. Geology, alteration, mineralization and geochemistry at south of Arghash (Neyshabour

    Directory of Open Access Journals (Sweden)

    Zahra Karimi Saeid Abadi

    2010-11-01

    Full Text Available The Arghash area is located 45 km to southwest of Neyshabour. The subvolcanic rocks in the area consist of biotite hornblende quartz monzodiorite porphyry, hornblende biotite quartz monzodiorite porphyry, hornblende monzonite porphyry, biotite hornblende monzonite porphyry, monzodiorite porphyry and biotite quartz monzodiorite porphyry units. The volcanic rocks consist of hornblende biotite dacite, biotite hornblende dacite, and andesite and pillow lava. The plutonic rocks consist of hornblende monzodiorite, hornblende monzonite, quartz monzonite, hornblende quartz monzodiorite, biotite granodiorite, hornblende granodiorite, biotite hornblende granodiorite, biotite quartz diorite and pyroxene dolerite units. Five types of alteration including propylitic, carbonate, argillic, silicification and sericitic were recognized. Those are subdivided into twelve sub-zones based on the mineral abundances and intensity of alteration. Primary pyrite, 3-4%, is found mainly as disseminated. Secondary mineralization includes limonite, hematite and jarosite. Twenty rock chip and 8 stream sediment samples were collected for geochemical exploration. The samples were analysed for Cu, Zn, Pb, Ag and Sb using Atomic Absorbtion Spectrophotometric (AAS method. In stream sediment samples, Cu abundance is 34-58 ppm, Zn 45-422 ppm, Pb 28-42 ppm and Ag 2-12 ppm; whereas in rock chip samples, Cu abundance is 8-1137 ppm, Zn 13-411 ppm, Pb 15-97 ppm and Ag 3-32 ppm.

  17. Mineralization and geochemical studies in the Kalchouyeh occurrence, southwest of Naein

    Directory of Open Access Journals (Sweden)

    Hengameh Hosseini Dinani

    2012-10-01

    Full Text Available Kalchouyeh area in southwest of Naein is located in the Urumieh-Dokhtar volcano-plutonic belt. Mineralization occurred mainly as disseminations and veinlets hosted by trachy-andesite and pyroxene andesites. For mineralogy, alteration, fluid inclusion and geochemical studies, the two major mineralized zones: A (larger vein from the north-northwest and B (smaller vein from the east-southeast of the area were sampled. Alteration studies revealed that the main alteration assemblages are silicification and propylitic. The ore minerals are chalcopyrite, galena, pyrite, bornite, chalcocite, covellite, goethite, malachite, azurite, cerussite and cuprite with quartz, calcite and barite as the main gangues. Fluid inclusion studies demonstrated that salinity and homogenization temperatures were 0.38-4.23 and 0.166-9.188 wt% NaCl and 175-252°C and 250-324°C at the A and B veins, respectively. Rare Earth Element (REE plots show negative slopes that is one of the features for calc-alkaline magmas. La/Y is higher than 1 showing that mineralizing fluids were neutral to basic. According to the data, direction of ore-bearing fluids movement was determined to be from east-southeast toward north-northwest (from B to A veins(, approximate site of mineralization center is located adjacent to smaller vein and the mineralization is epithermal in type.

  18. Usage of energy- dispersial analysis in studying rocks melts

    Directory of Open Access Journals (Sweden)

    Kudelas Dušan

    2001-09-01

    Full Text Available EDS analysis of constituent minerals of nefelitic basanite from locality Konrádovce – lava stream of ceric basalt formation of upper Phocene-Pleistocene age was carried out using the electron microscope JEOL JSM-840 and the energy-dispersive microanalyser KEVEX DELTA+ with MIRROR QUANTEX+ software.Based on the results of EDS microanalysis, the primary rock can be, from the petrographic point of view, described as nefelitic basanite. The following substances were determined in the primer matter and porfiric phenocrysts:- isometric grainsof pyroxene-augite (point A1,- grainsof nepheline-kalsite (point A2,- cryptocrystallic glassy matter (point A3,- grainsof olivine (point A4,- microlite of basic plagioclase (point A5.The energy-dispersive analysis is fast and full spectrum is taken at the same time. In common, a required time is less than one minute. Results of the measurement donot depend significantly on the topography of sample and it is also possible to analyze a rough surface which makes easier the preparation of samples. A very important aspect of the mentioned method is the precision of obtained results in order to identify the chemical composition of analyzed point which, in a subsequent step, allows to determine the type of mineral. EDS is a convenient and powerful supplement of microscopic studies which are, sometime, unable to distinguish exactly the complete composition of the analyzed rocks.

  19. Mineralogical Diversity and Geology of Humboldt Crater Derived Using Moon Mineralogy Mapper Data

    Science.gov (United States)

    Martinot, M.; Besse, S.; Flahaut, J.; Quantin-Nataf, C.; Lozac'h, L.; van Westrenen, W.

    2018-02-01

    Moon Mineralogy Mapper (M3) spectroscopic data and high-resolution imagery data sets were used to study the mineralogy and geology of the 207 km diameter Humboldt crater. Analyses of M3 data, using a custom-made method for M3 spectra continuum removal and spectral parameters calculation, reveal multiple pure crystalline plagioclase detections within the Humboldt crater central peak complex, hinting at its crustal origin. However, olivine, spinel, and glass are observed in the crater walls and rims, suggesting these minerals derive from shallower levels than the plagioclase of the central peak complex. High-calcium pyroxenes are detected in association with volcanic deposits emplaced on the crater's floor. Geologic mapping was performed, and the age of Humboldt crater's units was estimated from crater counts. Results suggest that volcanic activity within this floor-fractured crater spanned over a billion years. The felsic mineralogy of the central peak complex region, which presumably excavated deeper material, and the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and rim are not in accordance with the general view of the structure of the lunar crust. Our observations can be explained by the presence of a mafic pluton emplaced in the anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the excavation of Australe basin ejecta could explain the observed mineralogical detections. This highlights the importance of detailed combined mineralogical and geological remote sensing studies to assess the heterogeneity of the lunar crust.

  20. Geochemistry and mineral chemistry of Shahabad gabbroic intrusion, NW Nourabad, Lorestan province

    Directory of Open Access Journals (Sweden)

    Reza Zarei Sahamieh

    2013-10-01

    Full Text Available The Shahabad gabbroic intrusion, with NW-SE trend cropped out at the boundary of Zagros and Sanandaj-Sirjan zones is composed of olivine gabbro, orthogabbro and troctolite. Plagioclase, clinopyroxene and olivine are the main minerals; and magnetite, titanomagnetite and serpentine are minor and secondary minerals. Microprobe analyses of the minerals show that plagioclase is labradorite, pyroxene diopsidic augite and olivine, chrysolite. The rocks appear to have calc-alkaline and metaluminous nature. The plots of some trace elements and composition of clinopyroxenes in the tectonic discrimination diagrams indicate a volcanic arc environment. In addition, spider diagram pattern of elements shows Sr enrichment and Ti, Nb, Zr and P depletion, typical characteristics of volcanic arc subduction related magmas. Furthermore, close similarity between the patterns of spider diagram for the Shahabad pluton with those of Andean basic rocks suggests that the Shahabad calc-alkaline basic magma may have formed in a subduction environment. Based on geological, geochemical and mineralogical features, formation of the gabbros, as a part of ophiolite mélange, is attributed to a suprasubduction system.

  1. Martian Surface Mineralogy from Rovers with Spirit, Opportunity, and Curiosity

    Science.gov (United States)

    Morris, Richard V.

    2016-01-01

    Beginning in 2004, NASA has landed three well-instrumented rovers on the equatorial martian surface. The Spirit rover landed in Gusev crater in early January, 2004, and the Opportunity rover landed on the opposite side of Mars at Meridian Planum 21 days later. The Curiosity rover landed in Gale crater to the west of Gusev crater in August, 2012. Both Opportunity and Curiosity are currently operational. The twin rovers Spirit and Opportunity carried Mossbauer spectrometers to determine the oxidation state of iron and its mineralogical composition. The Curiosity rover has an X-ray diffraction instrument for identification and quantification of crystalline materials including clay minerals. Instrument suites on all three rovers are capable of distinguishing primary rock-forming minerals like olivine, pyroxene and magnetite and products of aqueous alteration in including amorphous iron oxides, hematite, goethite, sulfates, and clay minerals. The oxidation state of iron ranges from that typical for unweathered rocks and soils to nearly completely oxidized (weathered) rocks and soils as products of aqueous and acid-sulfate alteration. The in situ rover mineralogy also serves as ground-truth for orbital observations, and orbital mineralogical inferences are used for evaluating and planning rover exploration.

  2. Remote Sensing Exploration of Nb-Ta-LREE-Enriched Carbonatite (Epembe/Namibia

    Directory of Open Access Journals (Sweden)

    Robert Zimmermann

    2016-07-01

    Full Text Available On the example of the Epembe carbonatite-hosted Nb-Ta-LREE deposit, we demonstrate the use of hyperspectral reflectance data and geomorphic indicators for improving the accuracy of remote sensing exploration data of structurally-controlled critical raw material deposits. The results further show how exploration can benefit from a combination of expert knowledge and remotely-sensed relief, as well as imaging data. In the first stage, multi-source remote sensing data were used in lithological mapping based on Kohonen Self-Organizing Maps (SOM. We exemplify that morphological indices, such as Topographic Position Index (TPI, and spatial coordinates are crucial parameters to improve the accuracy of carbonate classification as much as 10%. The resulting lithological map shows the spatial distribution of the ridge forming carbonatite dyke, the fenitization zone, syenite plugs and mafic intrusions. In a second step, the internal zones of the carbonatite complex were identified using the Multi-Range Spectral Feature Fitting (MRSFF algorithm and a specific decision tree. This approach allowed detecting potential enrichment zones characterized by an abundance of fluorapatite and pyroxene, as well as dolomite-carbonatite (beforsite. Cross-validation of the mineral map with field observations and radiometric data confirms the accuracy of the proposed method.

  3. The Thermal Properties of CM Carbonaceous Chondrites

    Science.gov (United States)

    Britt, D. T.; Opeil, C.

    2017-12-01

    The physical properties of asteroid exploration targets are fundamental parameters for developing models, planning observations, mission operations, reducing operational risk, and interpreting mission results. Until we have returned samples, meteorites represent our "ground truth" for the geological material we expect to interact with, sample, and interpret on the surfaces of asteroids. The physical properties of the volatile-rich carbonaceous chondrites (CI, C2, CM, and CR groups) are of particular interest because of their high resource potential. We have measured the thermal conductivity, heat capacity and thermal expansion of five CM carbonaceous chondrites (Murchison, Murray, Cold Bokkeveld, NWA 7309, Jbilet Winselwan) at low temperatures (5-300 K) to mimic the conditions in the asteroid belt. The mineralogy of these meteorites are dominated by abundant hydrous phyllosilicates, but also contain anhydrous minerals such as olivine and pyroxene found in chondrules. The thermal expansion measurements for all these CMs indicate a substantial increase in meteorite volume as temperature decreases from 230 - 210 K followed by linear contraction below 210 K. Such transitions were unexpected and are not typical for anhydrous carbonaceous chondrites or ordinary chondrites. Our thermal diffusivity results compare well with previous estimates for similar meteorites, where conductivity was derived from diffusivity measurements and modeled heat capacities; our new values are of a higher precision and cover a wider range of temperatures.

  4. Petrology of the Fort Smith - Great Slave Lake radiometric high near Pilot Lake, N.W.T

    International Nuclear Information System (INIS)

    Burwash, R.A.; Cape, D.F.

    1981-01-01

    Near Pilot Lake, the east boundary of the Fort Smith - Great Slave Lake radiometric high coincides with the contact of a well-foliated, porphyroblastic microcline-plagioclase-quartz-garnet-biotite gneiss (Pilot Lake Gneiss) with a hybrid assemblage of quartzite, mica schist, garnet-cordierite gneiss, and minor amphibolite (Variable Paragneiss). Anomalously high concentrations of uranium and thorium are associated with mafic-rich, lenticular bodies with a mineral assemblage biotite + monazite + zircon + ilmenite + hematite +- plagioclase +- quartz, within both the Variable Paragneiss and the Pilot Lake Gneiss. Corundum and spinel occur in the mafic lenses and sillimanite, kyanite, and hypersthene in other inclusions of the Pilot Lake Gneiss. The ilmenite-magnetite--monazite-zircon-apatite assemblage is interpreted as a 'black sand' concentration in a clastic sedimentary sequence subsequently metamorphosed by a regional granulite facies event. A granite pluton intruded during the same orogenic cycle assimilated the clastic metasedimentary rocks containing black sand interlayers, becoming enriched in thorium from the monazite. A second metamorphic event at lower P-T conditions, accompanied by strong cataclasis, developed the texture of the Pilot Lake Gneiss as now observed. Shearing within the gneiss locally concentrated hematite + quartz + uranium. Regional tectonic extrapolations suggest that the pyroxene granulite event was Kenoran and the later amphibolite event Hudsonian. (author)

  5. Analytical study of ancient pottery from the archaeological site of Aiani, northern Greece

    International Nuclear Information System (INIS)

    Iordanidis, A.; Garcia-Guinea, J.; Karamitrou-Mentessidi, G.

    2009-01-01

    The present study is a multi-analytical approach on the characterization of several potsherd samples, dated from prehistoric to hellenistic times, from Aiani, ancient Upper Macedonia, northern Greece. In particular, X-ray Diffraction (XRD), X-ray Fluorescence (XRF) and Environmental Scanning Electron Microscopy, coupled with Energy Dispersive X-ray system (ESEM-EDX) were used for the determination of the morphological, chemical and mineralogical characteristics of the potsherds. The preliminary results indicated a rather local provenance of the analyzed ancient pottery samples and a finer texture and thus better ceramic manufacture as getting to hellenistic era. The use of a silicious or calcerous raw material is probably related to the specific utilization of each ceramic vessel in ancient times. The presence of gehlenite or pyroxene minerals in the ceramic matrix indicated higher firing temperatures, while lower temperatures were deduced when finding phylosilicate minerals. The preliminary results of this study do not necessarily imply that all the pottery of this area, belonging to the same chronological type, have similar physicochemical characteristics

  6. The compositional classification of chondrites

    International Nuclear Information System (INIS)

    Kallemeyn, G.W.; Wasson, J.T.; California Univ., Los Angeles; California Univ., Los Angeles

    1985-01-01

    Six specimens of unusual chondritic materials were analyzed by neutron activation for 30 elements in order to assess their degree of chondritic compositional pristinity and to search for evidence of genetic links to other chondrites. Five have highly recrystallized textures: the other, the Cumberland Falls chondrite, has suffered minor metamorphic recrystallization. Acapulco and Allan Hills A77081, are closely related and have subpristine compositions; they are more distantly related to Enon which has an altered composition. Udei Station appears to be a IAB meteorite even though its FeO/(FeO + MgO) ratio is slightly above the IAB field. The highly weathered meteorite Tierra Blanca is closely related to IAB but has a delta 18 O value 5 standard deviations higher than the IAB mean, and is designated ungrouped. Udei Station and Tierra Blanca have altered compositions; rare earth element patterns indicate loss of a phosphate phase. The elemental composition of the Cumberland Falls chondrite is virtually identical to that of LL chondrites, and its O-isotope composition is closely similar to those of some unequilibrated ordinary chondrites including LL Semarkona. The FeO/(FeO + MgO) ratios in its olivine are generally much lower than those in pyroxene. (author)

  7. Identification of a Compound Spinel and Silicate Presolar Grain in a Chondritic Interplanetary Dust Particle

    Science.gov (United States)

    Nguyen, A. N.; Nakamura-Messenger, K.; Messenger, S.; Keller, L. P.; Kloeck, W.

    2014-01-01

    Anhydrous chondritic porous interplanetary dust particles (CP IDPs) have undergone minimal parent body alteration and contain an assemblage of highly primitive materials, including molecular cloud material, presolar grains, and material that formed in the early solar nebula [1-3]. The exact parent bodies of individual IDPs are not known, but IDPs that have extremely high abundances of presolar silicates (up to 1.5%) most likely have cometary origins [1, 4]. The presolar grain abundance among these minimally altered CP IDPs varies widely. "Isotopically primitive" IDPs distinguished by anomalous bulk N isotopic compositions, numerous 15N-rich hotspots, and some C isotopic anomalies have higher average abundances of presolar grains (375 ppm) than IDPs with isotopically normal bulk N (<10 ppm) [5]. Some D and N isotopic anomalies have been linked to carbonaceous matter, though this material is only rarely isotopically anomalous in C [1, 5, 6]. Previous studies of the bulk chemistry and, in some samples, the mineralogy of select anhydrous CP IDPs indicate a link between high C abundance and pyroxene-dominated mineralogy [7]. In this study, we conduct coordinated mineralogical and isotopic analyses of samples that were analyzed by [7] to characterize isotopically anomalous materials and to establish possible correlations with C abundance.

  8. Mineralogical composition of the meteorite El Pozo (Mexico): a Raman, infrared and XRD study.

    Science.gov (United States)

    Ostrooumov, Mikhail; Hernández-Bernal, Maria del Sol

    2011-12-01

    The Raman (RMP), infrared (IR) and XRD analysis have been applied to the examination of mineralogical composition of El Pozo meteorite (an ordinary chondrite L5 type; village Valle of Allende, founded in State of Chihuahua, Mexico: 26°56'N and 105°24'W, 1998). RMP measurements in the range of 100-3500 cm(-1) revealed principal characteristic bands of the major minerals: olivine, two polymorph modifications of pyroxene (OPx and CPx) and plagioclase. Some bands of the minor minerals (hematite and goethite) were also identified. All these minerals were clearly distinguished using IR and XRD techniques. XRD technique has shown the presence of some metallic phases such as kamacite and taenite as well as troilite and chromite. These minerals do not have characteristic Raman spectra because Fe-Ni metals have no active modes for Raman spectroscopy and troilite is a weak Raman scatterer. Raman mapping microspectroscopy was a key part in the investigation of El Pozo meteorite's spatial distribution of the main minerals because these samples are structurally and chemically complex and heterogeneous. The mineral mapping by Raman spectroscopy has provided information for a certain spatial region on which a spatial distribution coexists of the three typical mineral assemblages: olivine; olivine+orthopyroxene; and orthopyroxene. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. FTIR spectra of the solid solutions (Na0.88K0.12)VO3, (Na0.5K0.5)VO3, and Na(V0.66P0.34)O3

    Science.gov (United States)

    de Waal, D.; Heyns, A. M.

    1992-03-01

    It is known that three different solid solutions, (Na0.88K0.12)VO3, (Na0.5K0.5)VO3 and Na(V0.66P0.34)O3, form in the (Na,K)(V,P)O3 system. These compounds all have monoclinic crystal structures similar to the pure alkali metal metavanadates containing small cations, e.g. Li+ and Na+ (Space group C2/c). Metavanadates with large cations like K+, Rb+, C+s and NH+4 form orthorhombic crystals, space group Pbcm. All those are structurally related to the silicate pyroxenes. Na(V0.66P0.34)O3 and (Na0.88K0.12)VO3 have the same modified diopside structure as (alpha) - NaVO3 while (Na0.5K0.5)VO3 adopts the true diopside structure. The infrared spectra of the three solid solutions are reported here in comparison with those of (alpha) -NaVO3 and KVO3. The results are also correlated with those obtained in two independent high pressure Raman studies of NH4VO3 and RbVO3 as the introduction of a larger cation like K+ should increase the pressure in the structure.

  10. Trace Elements and Minerals in Fumarolic Sulfur: The Case of Ebeko Volcano, Kuriles

    Directory of Open Access Journals (Sweden)

    E. P. Shevko

    2018-01-01

    Full Text Available Native sulfur deposits on fumarolic fields at Ebeko volcano (Northern Kuriles, Russia are enriched in chalcophile elements (As-Sb-Se-Te-Hg-Cu and contain rare heavy metal sulfides (Ag2S, HgS, and CuS, native metal alloys (Au2Pd, and some other low-solubility minerals (CaWO4, BaSO4. Sulfur incrustations are impregnated with numerous particles of fresh and altered andesite groundmass and phenocrysts (pyroxene, magnetite as well as secondary minerals, such as opal, alunite, and abundant octahedral pyrite crystals. The comparison of elemental abundances in sulfur and unaltered rocks (andesite demonstrated that rock-forming elements (Ca, K, Fe, Mn, and Ti and other lithophile and chalcophile elements are mainly transported by fumarolic gas as aerosol particles, whereas semimetals (As, Sb, Se, and Te, halogens (Br and I, and Hg are likely transported as volatile species, even at temperatures slightly above 100°C. The presence of rare sulfides (Ag2S, CuS, and HgS together with abundant FeS2 in low-temperature fumarolic environments can be explained by the hydrochloric leaching of rock particles followed by the precipitation of low-solubility sulfides induced by the reaction of acid solutions with H2S at ambient temperatures. The elemental composition of native sulfur can be used to qualitatively estimate elemental abundances in low-temperature fumarolic gases.

  11. The Geology of the Marcia Quadrangle of Asteroid 4Vesta: An Integrated Mapping Study Using Dawn Spacecraft Data

    Science.gov (United States)

    Williams, David A.; Denevi, B. W.; Mittlefehldt, D. W.; Mest, S. C.; Schenk, P. M.; Jaumann, R.; DeSanctis, M. C.; Buczkowski, D. L.; Ammannito, E.; Prettyman, T. H.; hide

    2012-01-01

    We used geologic mapping applied to Dawn data as a tool to understand the geologic history of the Marcia quadrangle of Vesta. This region hosts a set of relatively fresh craters and surrounding ejecta field, an unusual dark hill named Arisia Tholus, and a orange (false color) diffuse material surrounding the crater Octavia. Stratigraphically, from oldest to youngest, three increasingly larger impact craters named Minucia, Calpurnia, and Marcia make up a snowmanlike feature, which is surrounded by a zone of dark material interpreted to consist of impact ejecta and possibly impact melts. The floor of Marcia contains a pitted terrain thought to be related to release of volatiles (1). The dark ejecta field has an enhanced signature of H, possibly derived from carbonaceous chondritic material that accumulated in Vesta s crust (2,3). The dark ejecta has a spectrally distinctive behavior with shallow pyroxenes band depths. Outside the ejecta field this quadrangle contains various cratered terrains, with increasing crater abundance moving south to north away from the Rheasilvia basin. Arisia Tholus, originally suggested as an ancient volcano, appears to be an impact-sculpted basin rim fragment with a superposed darkrayed impact crater. There remains no unequivocal evidence of volcanic features on Vesta s surface, likely because basaltic material of the HED meteorite suite demonstrates magmatism ended very early on Vesta (4). Ongoing work includes application of crater statistical techniques to obtain model ages of surface units, and more detailed estimates of the compositional variations among the surface units.

  12. Geochemistry of the alkaline volcanicsubvolcanic rocks of the Fernando de Noronha Archipelago, southern Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Rosana Peporine Lopes

    Full Text Available The Fernando de Noronha Archipelago presents, on its main island, a centrally-located stratigraphic unit, the Remédios Formation (age around 8 - 12 Ma constituted by basal pyroclastic rocks intruded by dikes, plugs and domes of varied igneous rocks, capped by flows and pyroclastics of mafic to ultramafic rocks of the Quixaba Formation (age around 1 - 3 Ma, which is limited from the underlying unit by an extensive irregular erosion surface. A predominant sodic Remédios series (basanites, tephrites, tephriphonolites, essexite, phonolites can be separated from a moderately potassic Remédios sequence (alkali basalts, trachyandesites, trachytes, both alkaline series showing mostly continuous geochemical trends in variation diagrams for major as well as trace elements, indicating evolution by crystal fractionation (mainly, separation of mafic minerals, including apatites and titanites. There are textural and mineralogical evidences pointing to hybrid origin of some intermediate rocks (e.g., resorbed pyroxene phenocrysts in basaltic trachyandesites, and in some lamprophyres. The primitive Quixaba rocks are mostly melanephelinites and basanites, primitive undersaturated sodic types. Geology (erosion surface, stratigraphy (two distinct units separated by a large time interval, petrography (varied Remédios Formation, more uniform Quixaba unit and geochemistry indicate that the islands represent the activity of a protracted volcanic episode, fueled by intermittent melting of an enriched mantle, not related to asthenospheric plume activity.

  13. Mineralogical Diversity and Geology of Humboldt Crater Derived Using Moon Mineralogy Mapper Data.

    Science.gov (United States)

    Martinot, M; Besse, S; Flahaut, J; Quantin-Nataf, C; Lozac'h, L; van Westrenen, W

    2018-02-01

    Moon Mineralogy Mapper (M 3 ) spectroscopic data and high-resolution imagery data sets were used to study the mineralogy and geology of the 207 km diameter Humboldt crater. Analyses of M 3 data, using a custom-made method for M 3 spectra continuum removal and spectral parameters calculation, reveal multiple pure crystalline plagioclase detections within the Humboldt crater central peak complex, hinting at its crustal origin. However, olivine, spinel, and glass are observed in the crater walls and rims, suggesting these minerals derive from shallower levels than the plagioclase of the central peak complex. High-calcium pyroxenes are detected in association with volcanic deposits emplaced on the crater's floor. Geologic mapping was performed, and the age of Humboldt crater's units was estimated from crater counts. Results suggest that volcanic activity within this floor-fractured crater spanned over a billion years. The felsic mineralogy of the central peak complex region, which presumably excavated deeper material, and the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and rim are not in accordance with the general view of the structure of the lunar crust. Our observations can be explained by the presence of a mafic pluton emplaced in the anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the excavation of Australe basin ejecta could explain the observed mineralogical detections. This highlights the importance of detailed combined mineralogical and geological remote sensing studies to assess the heterogeneity of the lunar crust.

  14. Geology of the Biwabik Iron Formation and Duluth Complex.

    Science.gov (United States)

    Jirsa, Mark A; Miller, James D; Morey, G B

    2008-10-01

    The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact.

  15. Iron isotopic systematics of oceanic basalts

    Science.gov (United States)

    Teng, Fang-Zhen; Dauphas, Nicolas; Huang, Shichun; Marty, Bernard

    2013-04-01

    The iron isotopic compositions of 93 well-characterized basalts from geochemically and geologically diverse mid-ocean ridge segments, oceanic islands and back arc basins were measured. Forty-three MORBs have homogeneous Fe isotopic composition, with δ56Fe ranging from +0.07‰ to +0.14‰ and an average of +0.105 ± 0.006‰ (2SD/√n, n = 43, MSWD = 1.9). Three back arc basin basalts have similar δ56Fe to MORBs. By contrast, OIBs are slightly heterogeneous with δ56Fe ranging from +0.05‰ to +0.14‰ in samples from Koolau and Loihi, Hawaii, and from +0.09‰ to +0.18‰ in samples from the Society Islands and Cook-Austral chain, French Polynesia. Overall, oceanic basalts are isotopically heavier than mantle peridotite and pyroxenite xenoliths, reflecting Fe isotope fractionation during partial melting of the mantle. Iron isotopic variations in OIBs mainly reflect Fe isotope fractionation during fractional crystallization of olivine and pyroxene, enhanced by source heterogeneity in Koolau samples.

  16. Comet C/2011 W3 (Lovejoy) between 2 and 10 Solar Radii: Physical Parameters of the Comet and the Corona

    Science.gov (United States)

    Raymond, J. C.; Downs, Cooper; Knight, Matthew M.; Battams, Karl; Giordano, Silvio; Rosati, Richard

    2018-05-01

    Comet C/2011 W3 (Lovejoy) is the first sungrazing comet in many years to survive perihelion passage. We report ultraviolet observations with the Ultraviolet Coronagraph Spectrometer (UVCS) spectrometer aboard the Solar and Heliospheric Observatory satellite at five heights as the comet approached the Sun. The brightest line, Lyα, shows dramatic variations in intensity, velocity centroid, and width during the observation at each height. We derive the outgassing rates and the abundances of N, O, and Si relative to H, and we estimate the effective diameter of the nucleus to be several hundred meters. We consider the effects of the large outgassing rate on the interaction between the cometary gas and the solar corona and find good qualitative agreement with the picture of a bow shock resulting from mass loading by cometary neutrals. We obtain estimates of the solar wind density, temperature, and speed, and compare them with predictions of a global magnetohydrodynamic simulation, finding qualitative agreement within our uncertainties. We also determine the sublimation rate of silicate dust in the comet’s tail by comparing the visible brightness from the Large Angle Spectroscopic Coronagraphs with the Si III intensity from UVCS. The sublimation rates lie between the predicted rates for olivines and pyroxenes, suggesting that the grains are composed of a mixture of those minerals.

  17. Chemical, petrographic, and K-Ar age data to accompany reconnaissance geologic strip map from Kingman to south of Bill Williams Mountain, Arizona

    International Nuclear Information System (INIS)

    Arney, B.; Goff, F.; Eddy, A.C.

    1985-04-01

    As part of a reconnaissance mapping project, 40 chemical analyses and 13 potassium-argon age dates were obtained for Tertiary volcanic and Precambrian granitic rocks between Kingman and Bill Williams Mountain, Arizona. The dated volcanic rocks range in age from 5.5 +- 0.2 Myr for basalt in the East Juniper Mountains to about 25 Myr for a biotite-pyroxene andesite. The date for Picacho Butte, a rhyodacite in the Mt. Floyd volcanic field, was 9.8 +- 0.07 Myr, making it the oldest rhyodacite dome in that volcanic field. Dated rocks in the Fort Rock area range from 20.7 to 24.3 Myr. No ages were obtained on the Precambrian rocks. Compositionally, the volcanic rocks analyzed range from alkali basalt to rhyolite, but many rocks on the western side of the map area are unusually potassic. The granites chosen for analysis include syenogranite from the Hualapai Mountains, a muscovite granite from the Picacho Butte area, and two other granites. The chemical and K-Ar age data and petrographic descriptions included in this report accompany the reconnaissance geologic strip map published as LA-9202-MAP by Goff, Eddy, and Arney. 9 refs., 4 figs., 2 tabs

  18. Preliminary delineation of natural geochemical reactions, Snake River Plain aquifer system, Idaho National Engineering Laboratory and vicinity, Idaho

    International Nuclear Information System (INIS)

    Knobel, L.L.; Bartholomay, R.C.; Orr, B.R.

    1997-05-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, is conducting a study to determine the natural geochemistry of the Snake River Plain aquifer system at the Idaho National Engineering Laboratory (INEL), Idaho. As part of this study, a group of geochemical reactions that partially control the natural chemistry of ground water at the INEL were identified. Mineralogy of the aquifer matrix was determined using X-ray diffraction and thin-section analysis and theoretical stabilities of the minerals were used to identify potential solid-phase reactants and products of the reactions. The reactants and products that have an important contribution to the natural geochemistry include labradorite, olivine, pyroxene, smectite, calcite, ferric oxyhydroxide, and several silica phases. To further identify the reactions, analyses of 22 representative water samples from sites tapping the Snake River Plain aquifer system were used to determine the thermodynamic condition of the ground water relative to the minerals in the framework of the aquifer system. Principal reactions modifying the natural geochemical system include congruent dissolution of olivine, diopside, amorphous silica, and anhydrite; incongruent dissolution of labradorite with calcium montmorillonite as a residual product; precipitation of calcite and ferric oxyhydroxide; and oxidation of ferrous iron to ferric iron. Cation exchange reactions retard the downward movement of heavy, multivalent waste constituents where infiltration ponds are used for waste disposal

  19. Petrology of a sequence of pyroclastic rocks from the Taurus-Littrow (Apollo 17 landing site)

    International Nuclear Information System (INIS)

    Heiken, G.; McKay, D.S.

    1978-01-01

    We have studied 13 samples from core 740012 using petrographic methods and electron probe microanalysis. The samples represent most of the major units described in the core by Nagle (1978). Below 5.5 cm, the samples consist entirely of whole and broken orange glass droplets and the partly to completely crystallized black equivalents. We believe these droplets are pyroclastic ejecta from a lunar volcano. The crystalline droplets contain olivine and ilmenite as major phases. Minor phases include pyroxene, Cr-spinels, and metallic Fe. Four different properties of these droplets suggest that a wide range of cooling rates are represented. These properties are the grain shapes, the degree of crystallization, the olivine shapes or textures, and the olivine compositions. Many droplets contain vesicles indicating that a gas phase was involved in the eruption. Above 5.5 cm the core sequence has undergone in situ reworking by micrometeorites and contains ''exotic'' fragments including basalt and agglutinates. We conclude that the sequence below 5.5 cm represents 3.5 b.y. old volcanic pyroclastic ejecta which was deposited in a relativley short time period, was buried, and was subsequently brought to the lunar surface by the Shorty Crater impact where it was subjected to minor in situ reworking

  20. Preliminary Iron Distribution on Vesta

    Science.gov (United States)

    Mittlefehldt, David W.; Mittlefehldt, David W.

    2013-01-01

    The distribution of iron on the surface of the asteroid Vesta was investigated using Dawn's Gamma Ray and Neutron Detector (GRaND) [1,2]. Iron varies predictably with rock type for the howardite, eucrite, and diogenite (HED) meteorites, thought to be representative of Vesta. The abundance of Fe in howardites ranges from about 12 to 15 wt.%. Basaltic eucrites have the highest abundance, whereas, lower crustal and upper mantle materials (cumulate eucrites and diogenites) have the lowest, and howardites are intermediate [3]. We have completed a mapping study of 7.6 MeV gamma rays produced by neutron capture by Fe as measured by the bismuth germanate (BGO) detector of GRaND [1]. The procedures to determine Fe counting rates are presented in detail here, along with a preliminary distribution map, constituting the necessary initial step to quantification of Fe abundances. We find that the global distribution of Fe counting rates is generally consistent with independent mineralogical and compositional inferences obtained by other instruments on Dawn such as measurements of pyroxene absorption bands by the Visual and Infrared Spectrometer (VIR) [4] and Framing Camera (FC) [5] and neutron absorption measurements by GRaND [6].

  1. A comparison of telescopic and Phobos-2 ISM spectra of Mars in the short-wave near-infrared (0.76-1.02 microns)

    Science.gov (United States)

    Bell, James F., III; Mustard, John F.

    1993-01-01

    Recent analyses of near-IR (0.76-3.16 microns) Mars surface reflectance spectra obtained by the Phobos-2 ISM instrument during early 1989 have revealed the presence of substantial variability in surface spectral properties. Strong absorption features seen in the 0.85-1.05 micron region are up to 10-15 percent deep relative to the local continuum and have been interpreted as evidence of Fe(2+) and Fe(3+) bearing minerals (pyroxenes and iron oxides, respectively). Though these observed band depths are comparable to those seen in laboratory reflectance spectra, they are up to three times larger than most previously reported band depths for Mars spectra at these wavelengths. Six regions of variable albedo and geologic setting were identified where ISM and 1988 opposition telescopic coverage either overlapped physically or sampled the same surface geologic unit. The areal sizes and positions of the regions measured telescopically were compiled by Bell et al. ISM pixels falling within these spots were averaged to produce a spatially convolved spectrum that simulates what would have been seen telescopically. To facilitate comparisons of absorption band positions and relative strengths, the convolved ISM data and the 1988 telescopic spectra were scaled to unity at 0.81 microns and are presented. The data have also been convolved to equivalent band pass normalized reflectances in the region of spectral overlap. A scatter diagram of telescopic vs. ISM reflectances is shown. The results from the investigation are discussed.

  2. Placer mineral resources of Tamil Nadu

    International Nuclear Information System (INIS)

    Anil Kumar, V.

    2016-01-01

    Tamil Nadu, the southernmost state with second longest coast line in India has many placer heavy mineral deposits. These deposits contain economically important light heavy minerals like ilmenite, rutile, leucoxene, monazite, zircon, garnet, sillimanite, kyanite and non-economic minerals like pyroxenes, amphiboles and magnetite along with associated accessory minerals like staurolite, epidote, spinel, biotite and tourmaline. Geologically, granulitic rocks, principally Khondalites (garnet-sillimanite-graphite gneisses), charnockites and granitic gneisses bordered by sedimentary rocks are exposed along the eastern coastal plains of the Tamil Nadu. The principal highland areas, as for example, Shavaroys, Nilgiris, Palni-Kodaikanal Hills and Cardomom hills consists primarily of Charnockites. The margins of highland show a gradation into less metamorphosed rocks generally of amphibolite facies. The khondalites are found south of Kodaikanal massif. Anorthosites and layered mafic complexes occur at Sittampundi, Kadavur areas. Alkaline rocks and carbonatites are prominent at Simalpatti, Sevattur and Sivamalai. Coastal sedimentaries include, Gondwanas, Cretaceous, Tertiary and Quaternary rocks along with lateritic soils and beach sands

  3. Deep Subducction in a Compressible Mantle: Observations and Theory

    Science.gov (United States)

    King, S. D.

    2017-12-01

    Our understanding of slab dynamics is primarily based on the results of numerical models of subduction. In such models coherent, cold slabs are clearly visible from the surface of the Earth to the core mantle boundary. In contrast, fast seismic anomalies associated with cold subducted slabs are difficult to identify below 1500-2000 km in tomographic models of Earth's mantle. One explanation for this has been the resolution, or lack thereof, of seismic tomography in the mid-mantle region; however in this work I will explore the impact of compressibility on the dynamics of subducting slabs, specifically shear heating of the slab and latent heat of phase transformations. Most geodynamic models of subduction have used an incompressible formulation, thus because subducted slabs are assumed to be cold and stiff, the primary means of thermal equilibration is conduction. With an assumed sinking velocity of approximately 0.1 m/yr, a subducted slab reaches the core-mantle boundary in approximately 30 Myrs—too fast for significant conductive cooling of the downgoing slab. In this work I consider a whole-mantle geometry and include both phase transformations with associated latent heat and density changes from the olivine-wadsleyite-ringwoodite-bridgmanite system and the pyroxene-garnet system. The goal of this work is to understand both the eventual fate and thermal evolution of slabs beneath the transition zone.

  4. Insights into chondrule formation process and shock-thermal history of the Dergaon chondrite (H4-5

    Directory of Open Access Journals (Sweden)

    D. Ray

    2017-05-01

    Full Text Available The Dergaon fall represents a shock-melted H4-5 (S5 ordinary chondrite which includes at least ten textural varieties of chondrules and belongs to the high chondrule-matrix ratio type. Our study reveals that the chondrules are of diverse mineralogy with variable olivine-pyroxene ratios (Type II, igneous melt textures developed under variable cooling rates and formed through melt fractionations from two different melt reservoirs. Based on the experimental analogues, mineralogical associations and phase compositions, it is suggested that the Dergaon chondrules reflect two contrasting environments: a hot, dust-enriched and highly oxidized nebular environment through melting, without significant evaporation, and an arrested reducing environment concomitant with major evaporation loss of alkali and highly volatile trace elements. Coexistence of chlorapatite and merrillite suggests formation of the Dergaon matrix in an acidic accretionary environment. Textural integration and chemical homogenization occurred at ∼1 atmospheric pressure and a mean temperature of 765 °C mark the radiogenic thermal event. Equilibrated shock features (olivine mosaicism, diaplectic plagioclase, polycrystalline troilite due to an impact-induced thermal event reflect a shock pressure >45 GPa and temperature of 600 °C. By contrast, the local disequilibrium shock features (silicate melt veins comprising of olivine crystallites, troilite melt veins and metal droplets correspond to a shock pressure up to 75 GPa and temperature >950 °C.

  5. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, T.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Gavilan, L.; Lemaire, J. L.; Vidali, G. [Observatoire de Paris/Université de Cergy-Pontoise, 5 mail Gay Lussac, F-95000 Cergy-Pontoise (France); Mutschke, H. [Laboratory Astrophysics Group of the Astrophysical Institute and University Observatory, Friedrich Schiller University Jena Schillergässchen 3, D-07743 Jena (Germany); Henning, T., E-mail: tolou.sabri@uni-jena.de [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  6. Investigation of the geochemical and mineralogical characteristics of the dikes associated with copper mineralization at the southeastern Ardestan (NE Isfahan

    Directory of Open Access Journals (Sweden)

    Maryam Salehi

    2017-07-01

    Full Text Available The Ardestan study area lies in the northeast of Isfahan and at the outer margin of Urumieh -Dokhtar Volcanic Arc (UDMA. In this area, copper mineralization is associated with dikes. Mineralization occurred as sulfides (chalcocite, chalcopyrite and bornite and oxides (malachite and azurite. According to field studies as well as petrographic and geochemical investigations, two different types of dikes are present. The first type, trending NW-SE and comprising fine crystalline gabbro, whereas the second type with relatively E-W trend are gabbro and pyroxene diorite. Geochemically, these rock are characterized by SiO2 = 45.8 to 52.8 wt.%, MgO with 6.9 wt.% (average, Na2O+K2O = 5.6 wt.%, and Al2O3/TiO2 = 16.8%. All dikes are alkaline, related to back-arc tectonic setting in a wider concept associated with changing in source of magmatism. The second type shows enrichment in Ba, Sr, Rb, K, Zr, Nb, Ti, Cr and Ni in comparison to the first type. The first type is generated as a result of a subducted modified mantle while the latter shows an enriched astenospheric mantle source. It appears that there is a weak correlation between ore-forming and volatile elements in the mafic dikes. Overall, the same tectonic stresses are an essential controlling factor for the formation of second type E-W dikes associated with mineralization.

  7. Analyses of Rumanová meteorite

    Science.gov (United States)

    Lipka, J.; Sitek, J.; Dekan, J.; Sedlačková, K.

    2014-04-01

    Mössbauer spectroscopy was used as an analytical tool in investigation of iron containing compounds of Rumanová meteorite found on Slovak territory and it was classified as chondrite H. The results showed that the Mössbauer spectra consist of magnetic and non-magnetic components related to different iron-bearing phases. In non-magnetic part, olivine, pyroxene, and traces of Fe3 + phases have been identified. The magnetically ordered part of the Rumanová meteorite spectrum consists of kamacite, troilite and the third additional component corresponds to hydroxides originating from weathering due to being long time on the Earth surface. The weathering products can be recognised mainly as maghemite, however traces of other weathering components as akagaenite, goethite and magnetite cannot be excluded. On the contrary to Rumanová, no weathering products have been found in the sample of Košice meteorite which fell on the territory of Slovakia in February 2010 and has been investigated a few months after the fall.

  8. The accuracy of the crystal chemical parameters at high-pressure conditions from single-crystal X-ray diffraction in diamond-anvil cell

    DEFF Research Database (Denmark)

    Periotto, Benedetta

    -ray instruments. At the same time, the high-pressure experiments have benefited by the strong improvements on the high-pressure devices, in particular the diamond-anvil cell (DAC). The aim of this research project is to assess the quality of the data obtained by means of the single-crystal X-ray diffraction...... technique through the study of different mineral phases. The procedure for setting up an experiment under high-pressure conditions, using a single crystal as sample held within a DAC, are presented here with all the details of the in situ measurements at high-pressure conditions. The research project...... started with a comparison between two different DACs, in order to define the capabilities of one of the most common types of pressure device, the ETH-type DAC. Application examples of data quality analysis have been conducted on pyroxenes (NaInSi2O6, orthoenstatite MgSiO3 and LiCrSi2O6), which...

  9. Microbial reductive transformation of phyllosilicate Fe(III) and U(VI) in fluvial subsurface sediments.

    Science.gov (United States)

    Lee, Ji-Hoon; Fredrickson, James K; Kukkadapu, Ravi K; Boyanov, Maxim I; Kemner, Kenneth M; Lin, Xueju; Kennedy, David W; Bjornstad, Bruce N; Konopka, Allan E; Moore, Dean A; Resch, Charles T; Phillips, Jerry L

    2012-04-03

    The microbial reduction of Fe(III) and U(VI) was investigated in shallow aquifer sediments collected from subsurface flood deposits near the Hanford Reach of the Columbia River in Washington State. Increases in 0.5 N HCl-extractable Fe(II) were observed in incubated sediments and (57)Fe Mössbauer spectroscopy revealed that Fe(III) associated with phyllosilicates and pyroxene was reduced to Fe(II). Aqueous uranium(VI) concentrations decreased in subsurface sediments incubated in sulfate-containing synthetic groundwater with the rate and extent being greater in sediment amended with organic carbon. X-ray absorption spectroscopy of bioreduced sediments indicated that 67-77% of the U signal was U(VI), probably as an adsorbed species associated with a new or modified reactive mineral phase. Phylotypes within the Deltaproteobacteria were more common in Hanford sediments incubated with U(VI) than without, and in U(VI)-free incubations, members of the Clostridiales were dominant with sulfate-reducing phylotypes more common in the sulfate-amended sediments. These results demonstrate the potential for anaerobic reduction of phyllosilicate Fe(III) and sulfate in Hanford unconfined aquifer sediments and biotransformations involving reduction and adsorption leading to decreased aqueous U concentrations.

  10. Nanotechnology for the production of stone material from fiery liquid technogenic waste to produce products

    Directory of Open Access Journals (Sweden)

    V.O. Neviedomskyi

    2017-12-01

    Full Text Available The research presents the nanotechnology of fire-liquid technogenic waste transferred into rock material and the manufacture of various products and constructions using this material. The crystallization of the fusion at temperatures of maximum pyroxene emission is 1000–900°С, the duration of crystallization and its dependence on the dimensions, thickness of castings for the purpose of excluding the subsequent machining of manufactured products are investigated. The results of experimental investigations on finding physical-mechanical and deformation features of rock materials according to high temperatures within 600–1000°С are given. The results of investigation on the reinforcement of products made of rock material are also presented. On the basis of these investigations, the container technology for the disposal of radioactive waste, pesticides and herbicides, as well as pavement plate, foundation blocks, weighing material for the pipes of oil and gas pipelines has been developed. The problem of energy saving and environmental safety is solved using this nanotechnology and investigation

  11. 40Ar/39Ar dating and geochemistry of tholeiitic magmatism related to the early opening of the Central Atlantic rift

    International Nuclear Information System (INIS)

    Sebai, A.; Feraud, G.; Bertrand, H.; Hanes, J.

    1991-01-01

    Tholeiitic effusive and intrusive magnetism from Iberia, Morocco, Algeria and Mali, realted to the early opening of the Central Atlantic rift, was dated by the 40 Ar/ 39 Ar step-heating method. Four plateau ags, rangin from 203.7±2.7 to 197.1±1.8 Ma, were obtained on plagioclase from dykes from theTaoudenni area (Mali) and two lava flows from Morocco. The Messejana dyke (Iberia), which previously yielded discrepant conventional K-Ar dates, did not furnish any 40 Ar/ 39 Ar plateau dates. However, there is a clear inverse relationship between apparent age and K/Ca atio for gas fractions from a plagioclase separate (proportional to the alteration degree) which, combined with dates obtained on amphibole, biotite and pyroxene, allows us to determine an age of around 200 Ma for this body. These data, and those obtained on the Foum Zguid (Morocco) and the Ksi Ksou (Algeria) dykes, give evidence of a brief magmatic event (between 206 and 195 Ma ago) which affected a large area ca. 2500 km long. Trace-element modelling shows that most of these formations originated from a homogeneous, enriched, source material. Such a brief magmatic episode related to the opening of a continental rift is in agreement with findings in other magmatic provinces (e.g. the Deccan traps and the Red Sea rift, precisely dated by the 40 Ar/ 39 Ar method as well). (orig.)

  12. The origin of pumice at Balmoral Beach aboriginal shell midden

    International Nuclear Information System (INIS)

    Attenbrow, V.; Sutherland, L.; Hashimoto, R.; Barron, J.

    1997-01-01

    Full text: Pumice occurs in varying amounts throughout the 2 m depth of deposits of Balmoral Beach shell midden. In one area a distinct layer of concentrated pumice occurs between 85 cm to 95 cm below present ground level. A radiocarbon date indicates that this layer was deposited around 3300 BP. Petrographic analysis of the pumice from selected levels indicates that pumice in the concentrated layer is distinct and may come from a different source from pumice in levels above and below. It contains sporadic crystals of olivine, pyroxene, feldspar, plagioclase and opaque iron oxides set in a highly vesicular rhyolite glass. Analyses of major and trace elements support such a conclusion. Geomorphological investigations indicate that Balmoral Beach formed progressively between 6000 and 2500 years ago. We hypothesize that the main pumice layer was brought in by wave action along the shoreline and derives from a raft of pumice which formed after a volcanic eruption in an as-yet unknown location. This may be local or from known drift sources, such as New Zealand, Tonga, Indonesia, the Solomon Islands or Southern Ocean sources. Results of the petrographic and major and trace element analyses suggest a potential source in the Tongan-Kermadec region. The mode of deposition of the pumice is also being investigated and will include the possibility of tsunami action

  13. Archean crustal evolution in the central Minto block, northern Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Skulski, T; Percival, J A; Stern, R A [Geological Survey of Canada, Ottawa, ON (Canada)

    1997-12-31

    The central Minto block contains three volcano-sedimentary successions. Near Lake Qalluviartuuq, an isotopically primitive ({sup 2.83} {sup Ga}{epsilon}{sub Nd} +3.8 to +2.3) 2.83 Ga volcano-plutonic sequence comprises depleted tholeiitic basalts, anorthositic gabbro, and diorite-granodiorite that is unconformably overlain by <2.77 Ga conglomerates. Overlying the conglomerate is a more evolved ({sup 2.76} {sup Ga}{epsilon}{sub Nd} +1.8) calc-alkaline sequence of pillow basalts, andesites, and peridotite cut by 2.73 Ga diorite. To the west, and in inferred tectonic contact, the sediment-dominated Kogaluc sequence includes both isotopically evolved calc-alkaline rocks ({sup 2.76} {sup Ga}{epsilon}{sub Nd} +1.6 to -0.1) including <2.76 Ga rhyolitic tuff, pillowed andesites, and 2.76 Ga quartz-feldspar porphyry, and less abundant, depleted tholeiitic basalts (2.76 GaF-Nd +2.4). These are interlain with sedimentary rocks including banded iron-formation, quartzite, and metagreywacke. Calc-alkaline batholiths include 2.78 Ga pyroxene-bearing intermediate and felsic plutons ({sup 2.78Ga}{epsilon}{sub Nd} <+2.7) and younger, peraluminous tonalites ({epsilon}{sub Nd} <+1.3). Late, 2.73 Ga peraluminous granitoids are isotopically evolved ({sup 2.725Ga}{epsilon}{sub Nd} - 1. 6). (author). 19 refs., 4 tabs., 5 figs.

  14. Fluid and rock interaction in permeable volcanic rock

    International Nuclear Information System (INIS)

    Lindley, J.I.

    1985-01-01

    Four types of interrelated changes -geochemical, mineralogic, isotopic, and physical - occur in Oligocene volcanic units of the Mogollon-Datil volcanic field, New Mexico. These changes resulted from the operation of a geothermal system that, through fluid-rock interaction, affected 5 rhyolite ash-flow tuffs and an intercalated basaltic andesite lava flow causing a potassium metasomatism type of alteration. (1) Previous studies have shown enrichment of rocks in K 2 O as much as 130% of their original values at the expense of Na 2 O and CaO with an accompanying increase in Rb and decreases in MgO and Sr. (2) X-ray diffraction results of this study show that phenocrystic plagioclase and groundmass feldspar have been replaced with pure potassium feldspar and quartz in altered rock. Phenocrystic potassium feldspar, biotite, and quartz are unaffected. Pyroxene in basaltic andesite is replaced by iron oxide. (3) delta 18 O increases for rhyolitic units from values of 8-10 permil, typical of unaltered rock, to 13-15 permil, typical of altered rock. Basaltic andesite, however, shows opposite behavior with a delta 18 of 9 permil in unaltered rock and 6 permit in altered. (4) Alteration results in a density decrease. SEM revealed that replacement of plagioclase by fine-grained quartz and potassium feldspar is not a volume for volume replacement. Secondary porosity is created in the volcanics by the chaotic arrangement of secondary crystals

  15. Petrogenesis and geochemical characterisation of ultramafic cumulate rocks from Hawes Head, Fiordland, New Zealand

    International Nuclear Information System (INIS)

    Daczko, N.R.; Emami, S.; Allibone, A.H.; Turnbull, I.M.

    2012-01-01

    Early Cretaceous parts of the western Median Batholith (Western Fiordland Orthogneiss) represent the exposed root of a magmatic arc of dioritic to monzodioritic composition (SiO 2 = 51-55 wt%; Na 2 O/K 2 O = 3.7-8.8 in this study). We characterise for the first time the field relationships, petrography, mineralogy and geochemistry of ultramafic and mafic cumulates at Hawes Head, the largest exposure of ultramafic rocks in western Fiordland. We distinguish three related rock types at Hawes Head: hornblende peridotite (MgO = 21-35 wt%); hornblendite (MgO = 15-16 wt%); and pyroxenite (MgO = 21 wt%). Petrogenetic relationships between the ultramafic rocks and the surrounding Misty Pluton of the Western Fiordland Orthogneiss are demonstrated by: (i) mutually cross-cutting relationships; (ii) similar mafic phases (e.g. pyroxene and amphibole) with elevated Mg-numbers (e.g. olivine Mg/(Mg+Fe) = 0.77-0.82); (iii) fractionation trends in mineral geochemistry; and (iv) shared depleted heavy rare earth element patterns. In addition, the application of solid/liquid partition coefficients indicates that olivine in the ultramafic rocks at Hawes Head crystallised from a magma with Mg/(Mg+Fe) = 0.54-0.57. The olivine grains therefore represent a plausible early crystallising phase of the adjacent Western Fiordland Orthogneiss (Mg/(Mg+Fe) = 0.51-0.55). (author). 42 refs., 5 figs., 1 tab.

  16. The Lagoa Real uranium province, Bahia state, Brazil: some petrographic aspects and fluid inclusion studies

    International Nuclear Information System (INIS)

    Fuzikawa, K.; Alves, J.V.; Cuney, M.; Kostolanyl, C.; Poti, B.

    1988-01-01

    The Lagoa Real Uranium Province in the central-southern Bahia State, consisting of six deposits and several prospects, has a reserve of near one hundred tons of U 3 O 8 . The main lithological unit in the area is the Lagoa Real Complex which is formed by granites and gneisses derived from them. The unit overthrusts the Espinhaco metasediments the west. The Complex is the host of albities which may contain uraninite. The mineralization is manly associated with pyroxene and garnet. Petrographic and field relations indicate the overthrusting as the latest event, having left implants in the orebodies and their hosts. Fluid inclusion studies indicated fluids of different characteristics in the Espinhaco and the Lagoa Real Complex although they were similar in composition (carbonic and aqueous). The types inclusions detected are in agreement with the geologic processes suggested for the area: emplacement of the Sao Timoteo granite at 1.72 Ga; albitization and uranium mineralization at ∼ 1.4 Ga; and metamorphism at ∼ 0.49 Ga. The study is an example of fluid inclusion behaviour in a metamorphic process with very limited amount of fluids. (author) [pt

  17. Petrology and geochemistry of Late Proterozoic hornblende gabbros from southeast of Fariman, Khorasan Razavi province, Iran

    Directory of Open Access Journals (Sweden)

    Seyed Masoud Homam

    2015-04-01

    Full Text Available Introduction Hornblende-bearing gabbroic rocks are quite common in subduction-related magmatic suites and considered to represent magmatic differentiation process in arc magmas (Heliker, 1995; Hickey-Vargas et al., 1995; Mandal and Ray, 2012. The presence of hornblende as an important mineral phase in gabbroic rocks of subduction zone has been considered either as an early crystallizing mineral from water-bearing mafic magmas (Beard and Borgia 1989; Mandal and Ray, 2012 or as a product of reaction of early crystallized minerals (olivine, pyroxene and plagioclase and water-rich evolved melt/aqueous fluid (Costa et al., 2002; Mandal and Ray, 2012. The careful study of petrology and geochemistry of hornblende-bearing gabbroic rocks from Chahak area, of Neoproterozoic age, can provide important information about their petrogenesis. Because of the special characteristics of Chahak hornblende gabbros according to their age and their situation in the main structural units of Iran, their study can present critical keys for the knowledge of geological history of Iran specially central Iran zone. Material and Methods This study carried out in two parts including field and laboratory works. Sampling and structural studies were carried out during field work. Geological map for the study area was also prepared. 65 thin and polished thin sections for petrographical purpose were studied. Major oxides, rare earth elements and trace elements were analyzed for 4 samples (92P-1, 92P-3, B1and B6 from hornblende gabbros on the basis of 4AB1 method using ICP-MS of ACME Laboratory from Canada. In addition, major oxides of three hornblende gabbro samples (89P-62, 89P-59 and 89P-46 were used from Partovifar (Partovifar, 2012. Results and discussion Fariman metamorphic terrains, of Proterozoic age, consist of metamorphosed sedimentary and igneous (plutonic and volcanic rocks. Hornblende gabbros of the study area include plagioclase, hornblende, biotite pyroxene and

  18. Evaluation of the odd-even effect in limits of detection for electron microprobe analysis of natural minerals

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Surendra P., E-mail: spv@cie.unam.mx [Departamento de Sistemas Energeticos, Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Priv. Xochicalco s/no., Col Centro, A.P. 34, Temixco, Mor. 62580 (Mexico); Pandarinath, Kailasa [Departamento de Sistemas Energeticos, Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Priv. Xochicalco s/no., Col Centro, A.P. 34, Temixco, Mor. 62580 (Mexico); Velasco-Tapia, Fernando [Facultad de Ciencias de la Tierra, Universidad Autonoma de Nuevo Leon, Carretera Linares-Cerro Prieto km. 8, Linares, N.L. 67700 (Mexico); Rodriguez-Rios, Rodolfo [Facultad de Ingenieria e Instituto de Geologia, Universidad Autonoma de San Luis Potosi, Av. Dr. Manuel Nava No. 8, Zona Universitaria, San Luis Potosi, S.L.P. 78240 (Mexico)

    2009-04-13

    Limit of detection (LOD), being a fundamental quality parameter for analytical techniques, has been recently investigated and a systematic behavior has been observed for most odd-even element pairs for many techniques. However, to the best of our knowledge very few LOD data are available in published literature for electron microprobe analysis; these consist of three papers, two being on rare-earth elements and the third covering a large number of elements of atomic number between 21 and 92. These data confirm the systematic behavior of LODs for many odd-even pairs. To initiate to full this gap, we determined LODs for several major rock-forming chemical elements from Na to Fe with atomic numbers between 11 and 26, during the microprobe analysis of common minerals (olivine, plagioclase, pyroxene, amphibole, quartz, and opaques) in volcanic rocks. The odd-even effect of nuclear stability seems to be present in LOD data for most odd-even pairs investigated. Nevertheless, the experimental strategy concerning the reference materials, calibration procedure, and blank measurements, should be substantially modified to better evaluate the systematic behavior of LOD values in microprobe analysis.

  19. 4 Vesta in Color: High Resolution Mapping from Dawn Framing Camera Images

    Science.gov (United States)

    Reddy, V.; LeCorre, L.; Nathues, A.; Sierks, H.; Christensen, U.; Hoffmann, M.; Schroeder, S. E.; Vincent, J. B.; McSween, H. Y.; Denevi, B. W.; hide

    2011-01-01

    Rotational surface variations on asteroid 4 Vesta have been known from ground-based and HST observations, and they have been interpreted as evidence of compositional diversity. NASA s Dawn mission entered orbit around Vesta on July 16, 2011 for a year-long global characterization. The framing cameras (FC) onboard the Dawn spacecraft will image the asteroid in one clear (broad) and seven narrow band filters covering the wavelength range between 0.4-1.0 microns. We present color mapping results from the Dawn FC observations of Vesta obtained during Survey orbit (approx.3000 km) and High-Altitude Mapping Orbit (HAMO) (approx.950 km). Our aim is to create global color maps of Vesta using multi spectral FC images to identify the spatial extent of compositional units and link them with other available data sets to extract the basic mineralogy. While the VIR spectrometer onboard Dawn has higher spectral resolution (864 channels) allowing precise mineralogical assessment of Vesta s surface, the FC has three times higher spatial resolution in any given orbital phase. In an effort to extract maximum information from FC data we have developed algorithms using laboratory spectra of pyroxenes and HED meteorites to derive parameters associated with the 1-micron absorption band wing. These parameters will help map the global distribution of compositionally related units on Vesta s surface. Interpretation of these units will involve the integration of FC and VIR data.

  20. Apollo 12 feldspathic basalts 12031, 12038, and 12072; petrology, comparison and interpretations

    International Nuclear Information System (INIS)

    Beaty, E.W.; Hill, S.M.R.; Albee, A.L.; Baldridge, W.S.

    1979-01-01

    Modal and chemical data indicate that 12072, 12038, and 12031, the Apollo 12 feldspathic basalts, form a well-defined group which cannot be related to the other Apollo 12 rock types. 12072 contains phenocrysts of olivine and pigeonite and microphenocrysts of Cr-spinel set in a fine-grained, variolitic groundmass. 12038 is a medium-grained, equigranular basalt with a texture indicating it was multiply saturated. 12031 is a coarse-grained rock with granular to graphic intergrowths of pyroxene and plagioclase; it was also multiply saturated. Petrologic observations, as well as the bulk chemistry, are consistent with the interpretation that 12031 could be derived from 12072 through fractionation of Cr-spinel, olivine, and pigeonite, the observed phenocryst assemblage. 12038, however, contains more pigeonite, less olivine, three times as much Ca-phosphate minerals, one-fifth as much troilite, and much more sodic plagioclase than 12072. These differences indicate that 12038 must have come from a separate igneous body. Consideration of the bulk compositions indicates that neither 12072 and 12031 nor 12038 could have been derived from the Apollo 12 olivine, pigeonite, or ilmenite basalts by crystal--liquid fractionation. The general petrologic similarities between 12072, 12031, and the other Apollo 12 basalts suggests that they were produced in either the same or similar source regions. 12038, however, is petrologically and chemically unique, and is probably exotic to the Apollo 12 landing site

  1. Influence of alumina on mineralogy and environmental properties of zinc-copper smelting slags

    Science.gov (United States)

    Mostaghel, Sina; Samuelsson, Caisa; Björkman, Bo

    2013-03-01

    An iron-silicate slag, from a zinc-copper smelting process, and mixtures of this slag with 5wt%, 10wt%, and 15wt% alumina addition were re-melted, semi-rapidly solidified, and characterized using scanning electron microscopy equipped with energy dispersive spectroscopy, and X-ray diffraction. The FactSage™6.2 thermodynamic package was applied to compare the stable phases at equilibrium conditions with experimental characterization. A standard European leaching test was also carried out for all samples to investigate the changes in leaching behaviour because of the addition of alumina. Results show that the commonly reported phases for slags from copper and zinc production processes (olivine, pyroxene, and spinel) are the major constituents of the current samples. A correlation can be seen between mineralogical characteristics and leaching behaviours. The sample with 10wt% alumina addition, which contains high amounts of spinels and lower amounts of the other soluble phases, shows the lowest leachabilities for most of the elements.

  2. Hubungan Kumpulan Mineral Berat pada Sedimen Pantai dan Lepas Pantai dengan Batuan Asal Darat di Perairan Teluk Pelabuhan Ratu, Jawa Barat

    Directory of Open Access Journals (Sweden)

    Deny Setiady

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i1.93Based on the depth contour, the sea bottom morphology in southern part of the researched area is very steep, while in the northern area it is sloped slightly. It shows that sedimentation process is from south to the north and continues to the west. It is supported by the current process in studied area. Rock slope stability of hilly morphology in the Cimandiri River area is related to weathering, erosion, and transportation process in coastal and nearshore areas. The presence of mineral in the studied area caused by those processes, was accumulated in the mouth of Cimandiri River, coastal, and nearshore areas. Those minerals were deposited in Cibelendung to Karangbeureum nearshore area by the longshore current. Magnetite and pyroxene minerals are dominant along the coastal and offshore areas of Pelabuhan Ratu Bay. The presence of augite and diopside shows that the source rock is basic igneous rocks (basalt, while the presence of hornblende and biotite minerals tend to indicate that the source rock is intermediate igneous rocks (andesite.

  3. Evaluation of the odd-even effect in limits of detection for electron microprobe analysis of natural minerals

    International Nuclear Information System (INIS)

    Verma, Surendra P.; Pandarinath, Kailasa; Velasco-Tapia, Fernando; Rodriguez-Rios, Rodolfo

    2009-01-01

    Limit of detection (LOD), being a fundamental quality parameter for analytical techniques, has been recently investigated and a systematic behavior has been observed for most odd-even element pairs for many techniques. However, to the best of our knowledge very few LOD data are available in published literature for electron microprobe analysis; these consist of three papers, two being on rare-earth elements and the third covering a large number of elements of atomic number between 21 and 92. These data confirm the systematic behavior of LODs for many odd-even pairs. To initiate to full this gap, we determined LODs for several major rock-forming chemical elements from Na to Fe with atomic numbers between 11 and 26, during the microprobe analysis of common minerals (olivine, plagioclase, pyroxene, amphibole, quartz, and opaques) in volcanic rocks. The odd-even effect of nuclear stability seems to be present in LOD data for most odd-even pairs investigated. Nevertheless, the experimental strategy concerning the reference materials, calibration procedure, and blank measurements, should be substantially modified to better evaluate the systematic behavior of LOD values in microprobe analysis.

  4. A note on the layered intrusions at Annandagstoppane and Juletoppane, western Dronning Maud Land

    International Nuclear Information System (INIS)

    Krynauw, J.R.; Hunter, D.R.; Wilson, A.H.

    1984-01-01

    Aspects of the geology and geochemistry of the layered rocks at Annandagstoppane (72 degrees 33'S, 06 degrees 16'W) and Juletoppane (72 degrees 23'S, 05 degrees 33'W) in the Giaeverryggen, western Dronning Maud Land, are discussed. The mafic rocks in the two areas have been divided into a 'main suite' and a 'younger suite'. The main suite rocks comprise medium-grained gabbros, gabbronorites and anorhositic gabbros. lenticular and discontinuous rhythmic layers are present. The younger suite comprises basaltic dykes at Annandagstoppane, and a dolerite sill and small pods of fine-grained gabbroic bodies at Juletoppane. Petrographic and geochemical aspects of main suite rocks in the two areas show close similarities, and indicate that pyroxene and plagioclase were the primocrysts in the orthocumulate assemblages. The preliminary results suggest that the Annandagstoppane and Juletoppane gabbroic rocks may either constitute a single layered intrusion, or reflect outcrops of intrusions of several ages, their magmas having been derived from compositionally similar mantle sources. The close chemical similarities of the younger suite with the main suite suggest that all the mafic phases in the two areas are genetically related

  5. Dynamic crystallization of a eucrite basalt. [achondrite textural features produced by superheating and differing cooling rates

    Science.gov (United States)

    Walker, D.; Powell, M. A.; Hays, J. F.; Lofgren, G. E.

    1978-01-01

    The textural features produced in Stannern, a non-porpyritic representative of the eucrite basaltic achondrite class of meteorite, at differing cooling rates and various degrees of initial superheating were studied. Textures produced from mildly superheated melts were found to be fasciculate rather than porphyritic as the result of the cosaturated bulk chemistry of Stannern. The qualitative type of texture apparently depends mainly on the degree of initial superheating, whereas cooling rate exerts a strong influence on the coarseness of texture. Increasing the degree of superheating produces textures from intergranular/subophitic to fasciculate/porphyritic. With initial superheating to 1200 deg C the transition to quasi-porphyritic is controlled by cooling rate, but the development of phenocrysts is merely an overprint on the fasciculate background texture of the groundmass. The suppression of fasciculate texture is completed by a decrease of the degree of initial superheating below the plagioclast entry and suppression of quasi-porphyritic texture is completed by decrease of the degree of initial superheating below pyroxene entry; these qualitative changes do not seem to be produced by changes of cooling rate. A grain size/cooling rate dependence has been used to deduce the cooling rate of fasciculate-textured Stannern clasts (10.1 to 100 deg C/hr).

  6. Fluid Inclusion Study of Quartz Xenocrysts in Mafic Dykes from Kawant Area, Chhota Udaipur District, Gujarat, India

    Directory of Open Access Journals (Sweden)

    Randive Kirtikumar

    2015-09-01

    Full Text Available Unusual mafic dykes occur in the proximity of the Ambadongar Carbonatite Complex, Lower Narmada Valley, Gujarat, India. The dykes contain dense population of quartz xenocrysts within the basaltic matrix metasomatised by carbonate-rich fluids. Plagioclase feldspars, relict pyroxenes, chlorite, barite, rutile, magnetite, Fe-Ti oxides and glass were identified in the basaltic matrix. Quartz xenocrysts occur in various shapes and sizes and form an intricate growth pattern with carbonates. The xenocrysts are fractured and contain several types of primary and secondary, single phase and two-phase fluid inclusions. The two-phase inclusions are dominated by aqueous liquid, whereas the monophase inclusions are composed of carbonic gas and the aqueous inclusions homogenize to liquid between 226°C and 361°C. Majority of the inclusions are secondary in origin and are therefore unrelated to the crystallization of quartz. Moreover, the inclusions have mixed carbonic-aqueous compositions that inhibit their direct correlation with the crustal or mantle fluids. The composition of dilute CO2-rich fluids observed in the quartz xenocrysts appear similar to those exsolved during the final stages of evolution of the Amba Dongar carbonatites. However, the carbonates are devoid of fluid inclusions and therefore their genetic relation with the quartz xenocrysts cannot be established.

  7. Spitzer IRS (8-30 micron) Spectra of Basaltic Asteroids 1459 Magnya and 956 Elisa: Mineralogy and Thermal Properties

    Science.gov (United States)

    Lim, Lucy F.; Emery, J. P.; Moskovitz, N. A.

    2009-01-01

    We report preliminary results from Spitzer IRS (Infrared Spectrograph) spectroscopy of 956 Elisa, 1459 Magnya, and other small basaltic asteroids with the Spitzer IRS. Program targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan. The preliminary thermal model (STM) fit to the 5--35 micron spectrum of 956 Elisa gives a radius of 5.4 +/- 0.3 km and a subsolar- point temperature of 282.2 +/- 0.5 K. This temperature corresponds to eta approximately equals 1.06 +/- 0.02, which is substantially higher than the eta approximately equals 0.756 characteristic of large main-belt asteroids. Unlike 4 Vesta and other large asteroids, therefore, 956 Elisa has significant thermal inertia in its surface layer. The wavelength of the Christiansen feature (emissivity maximum near 9 micron), the positions and shapes of the narrow maxima (10 micron, 11 micron) within the broad 9--14 micron silicate band, and the 19--20 micron minimum are consistent with features found in the laboratory spectra of diogenites and of low-Ca pyroxenes of similar composition (Wo<5, En50-En75).

  8. Geochemical differentiation processes for arc magma of the Sengan volcanic cluster, Northeastern Japan, constrained from principal component analysis

    Science.gov (United States)

    Ueki, Kenta; Iwamori, Hikaru

    2017-10-01

    In this study, with a view of understanding the structure of high-dimensional geochemical data and discussing the chemical processes at work in the evolution of arc magmas, we employed principal component analysis (PCA) to evaluate the compositional variations of volcanic rocks from the Sengan volcanic cluster of the Northeastern Japan Arc. We analyzed the trace element compositions of various arc volcanic rocks, sampled from 17 different volcanoes in a volcanic cluster. The PCA results demonstrated that the first three principal components accounted for 86% of the geochemical variation in the magma of the Sengan region. Based on the relationships between the principal components and the major elements, the mass-balance relationships with respect to the contributions of minerals, the composition of plagioclase phenocrysts, geothermal gradient, and seismic velocity structure in the crust, the first, the second, and the third principal components appear to represent magma mixing, crystallizations of olivine/pyroxene, and crystallizations of plagioclase, respectively. These represented 59%, 20%, and 6%, respectively, of the variance in the entire compositional range, indicating that magma mixing accounted for the largest variance in the geochemical variation of the arc magma. Our result indicated that crustal processes dominate the geochemical variation of magma in the Sengan volcanic cluster.

  9. Compositional controls on spinel clouding and garnet formation in plagioclase of olivine metagabbros, Adirondack Mountains, New York

    Science.gov (United States)

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    Olivine metagabbros from the Adirondacks usually contain both clear and spinel-clouded plagioclase, as well as garnet. The latter occurs primarily as the outer rim of coronas surrounding olivine and pyroxene, and less commonly as lamellae or isolated grains within plagioclase. The formation of garnet and metamorphic spinel is dependent upon the anorthite content of the plagioclase. Plagioclase more sodic than An38??2 does not exhibit spinel clouding, and garnet rarely occurs in contact with plagioclase more albitic than An36??4. As a result of these compositional controls, the distribution of spinel and garnet mimics and visually enhances original igneous zoning in plagioclase. Most features of the arrangement of clear (unclouded) plagioclase, including the shells or moats of clear plagioclase which frequently occur inside the garnet rims of coronas, can be explained on the basis of igneous zoning. The form and distribution of the clear zones may also be affected by the metamorphic reactions which have produced the coronas, and by redistribution of plagioclase in response to local volume changes during metamorphism. ?? 1980 Springer-Verlag.

  10. NATURE AND DYNAMIC OF SEDIMENTS AT THE MOUTH OF KOMOÉ RIVER (IVORY COAST

    Directory of Open Access Journals (Sweden)

    Laurent K. ADOPO

    2014-06-01

    Full Text Available Komoé River represents the most important freshwater resource of Ivory Coast. This study aims at identifying the alluvia material and its dynamic at the mouth. The agricultural activity within the upper basin has determined a decrease in liquid discharge and an increase in alluvia transport. Most of the water is used in agriculture. The alluvia material comprises mainly sands and it is included in the middle-coarse category. Mixed sediments are composed of muddy sands and sandy muds. Most quartz grains transported by the river are flattened and glassy (91.66%, while the rest are round and opaque (8.34%. Minerals are angular, subangular, rounded and subrounded. Among heavy minerals, it is worth mentioning as follows: quartz, mica, feldspar, pyroxene, tourmaline, amphibole, gamet, epidote etc. The high degree of alluvia deposit has reduced the depth of the lower river course and it has closed the estuary completely. In this case, the wetland was extended and the vegetation tends to cover the entire surface. Navigation has been made difficult by the alluvial and organic clogging processes.

  11. Santa Lucia (2008) (L6) Chondrite, a Recent Fall: Composition, Noble Gases, Nitrogen and Cosmic Ray Exposure Age

    Science.gov (United States)

    Mahajan, Ramakant R.; Varela, Maria Eugenia; Joron, Jean Louis

    2016-04-01

    The Santa Lucia (2008)—one the most recent Argentine meteorite fall, fell in San Juan province, Argentina, on 23 January 2008. Several masses (total ~6 kg) were recovered. Most are totally covered by fusion crust. The exposed interior is of light-grey colour. Chemical data [olivine (Fa24.4) and low-Ca pyroxene (En77.8 Fs20.7 Wo1.6)] indicate that Santa Luica (2008) is a member of the low iron L chondrite group, corresponding to the equilibrated petrologic type 6. The meteorite name was approved by the Nomenclature Committee (NomCom) of the Meteoritical Society (Meteoritic Bulletin, no. 97). We report about the chemical composition of the major mineral phases, its bulk trace element abundance, its noble gas and nitrogen data. The cosmic ray exposure age based on cosmogenic 3He, 21Ne, and 38Ar around 20 Ma is comparable to one peak of L chondrites. The radiogenic K-Ar age of 2.96 Ga, while the young U, Th-He are of 1.2 Ga indicates that Santa Lucia (2008) lost radiogenic 4He more recently. Low cosmogenic (22Ne/21Ne)c and absence of solar wind noble gases are consistent with irradiation in a large body. Heavy noble gases (Ar/Kr/Xe) indicated trapped gases similar to ordinary chondrites. Krypton and neon indicates irradiation in large body, implying large pre-atmospheric meteoroid.

  12. Understanding the monotonous life of open vent mafic volcanoes

    Science.gov (United States)

    Costa Rodriguez, F.; Ruth, D. C. S.; Bornas, M.; Rivera, D. J. V. I.

    2016-12-01

    Mafic open vent volcanoes display prominent degassing plumes during quiescence but also erupt frequently, every few months or years. Their small and mildly explosive eruptions (volatile contents indicate that the magma reservoir system extends at least to 5 km depth. Mg/Fe pyroxene zoning and diffusion modeling suggests that mafic magma intrusion in a shallow, crystal-rich and more evolved reservoir has occurred repeatedly. The time scale for this process is the same for all 9 events, starting about 2 years prior and continuing up to eruption. We estimate the relative proportions of injecting to resident magma that vary from about 0.2 to 0.7, probably reflecting the local crystal-melt interaction during intrusion. The near constant magma composition is probably the result of buffering of new incoming magma by a crystal-rich upper reservoir, and erupted magmas are physical mixtures. However, we do not find evidence of large-scale crystal recycling from one eruption to another, implying the resetting of the system after each event. The recurrent eruptions and intrusions could be driven by the near continuous degassing of the volcano that induces a mass imbalance which leads to magma movement from depth to the shallow system [e.g., 1]. [1] Girona et al. (2016). Science Reports doi:10.1038/srep18212

  13. Petrology of the Indian Eucrite Piplia Kalan

    Science.gov (United States)

    Buchanan, Paul C.; Mittlefehldt, D. W.; Hutchinson, R.; Koeberl, C.; Lindstrom, D. J.; Pandit, M. K.

    1999-01-01

    Piplia Kalan is an equilibrated eucrite consisting of 60-80 vol.% lithic clasts in a subordinate brecciated matrix. Ophitic/subophitic lithic clasts fall into two groups: finer-grained lithology A and coarser-grained lithology B. Very fine-grained clasts (lithology C) also occur and originally were hypocrystalline in texture. The variety of materials represented in Piplia Kalan suggests cooling histories ranging from quenching or fast crystallization to slower crystallization. Despite textural differences, clasts and matrix have similar mineral and bulk compositions. Thus. Piplia Kalan is probably best classified as a genomict breccia that could represent fragments of a single lava flow or shallow intrusive body, including fine-grained or glassy outer margin and more slowly cooled coarser-grained interior. Piplia Kalan displays evidence of an early shock event, including brecciated matrix and areas of lithic clasts that contain fine-grained, equigranular pyroxene between deformed feldspar laths. The meteorite also displays evidence of at least one episode of thermal metamorphism: hypocrystalline materials are recrystallized to hornfelsic textures and the matrix has a nonporous texture similar to those of eucrites that were affected by post-brecciation heating. Veins of brown glass transect both lithic clasts and brecciated matrix and indicate a second, post-metamorphism shock event.

  14. Trace Element Geochemistry of Martian Iddingsite in the Lafayette Meteorite

    Science.gov (United States)

    Treiman, Allan H.; Lindstrom, David J.

    1997-01-01

    The Lafayette meteorite contains abundant iddingsite, a fine-grained intergrowth of smectite clay, ferrihydrite, and ionic salt minerals. Both the meteorite and iddingsite formed on Mars. Samples of iddingsite, olivine, and augite pyroxene were extracted from Lafayette and analyzed for trace elements by instrumental neutron activation. Our results are comparable to independent analyses by electron and ion microbeam methods. Abundances of most elements in the iddingsite do not covary significantly. The iddingsite is extremely rich in Hg, which is probably terrestrial contamination. For the elements Si, Al, Fe, Mn, Ni, Co, and Zn, the composition of the iddingsite is close to a mixture of approximately 50% Lafayette olivine + approximately 40% Lafayette siliceous glass + approximately 1O% water. Concordant behavior among these elements is not compatible with element fractionations between smectite and water, but the hydrous nature and petrographic setting of the iddingsite clearly suggest an aqueous origin. These inferences are both consistent, however, with deposition of the iddingsite originally as a silicate gel, which then crystallized (neoformed) nearly isochemically. The iddingsite contains significantly more magnesium than implied by the model, which may suggest that the altering solutions were rich in Mg(2+).

  15. I-Xe studies of individual Allende chondrules

    Energy Technology Data Exchange (ETDEWEB)

    Swindle, T D; Caffee, M W; Hohenberg, C M; Lindstrom, M M [Washington Univ., St. Louis, MO (USA). McDonnell Center for the Space Sciences

    1983-12-01

    Iodine-xenon studies have been performed on nine Allende chondrules and a sample of oxidized Allende matrix material. The chondrules are all very rich in radiogenic xenon relative to trapped xenon, making it possible to determine a relatively precise model initial iodine composition for each temperature extraction. These model compositions show a total range in variation of about 20 percent, spanning the compositions seen in Bjurbole chondrules. One of the chondrules gives a well-defined isochron, with an apparent age .53 +- .15 m.y. later than Bjurbole whole rock. The rest of the chondrules show a pattern of increasing apparent antiquity with increasing extraction temperature, which could be interpreted as relatively slow cooling. Alternatively, poorly-defined plateaus in composition can be seen, perhaps indicative of a few phases with distinct initial iodine compositions as has been previously suggested for Allende inclusions. Possible consequences of these interpretations are discussed. Elemental abundances were determined for some elements several months after the irradiation by INAA, and suggest that all the chondrules except chondrule 6 might be pyroxene- or mesostasis-rich. The oxidized matrix sample gives a well-defined isochron with an initial /sup 129/I//sup 127/I ratio higher than any plateaus seen in the chondrules.

  16. Consortium study of lunar meteorites Yamato-793169 and Asuka-881757: Geochemical evidence of mutual similarity, and dissimilarity versus other mare basalts

    Science.gov (United States)

    Warren, Paul H.; Lindstrom, Marilyn M.

    1993-01-01

    Compositions of bulk powders and separated minerals from two meteorites derived from the mare lava plains of the Earth's Moon, Yamato-793169 and Asuka-881757, indicate a remarkable degree of similarity to one another, and clearly favor lunar origin. However, these meteorites are unlike any previously studied lunar rock. In both cases, the bulk-rock TiO2 content is slightly greater than the level separating VLT from low-Ti mare basalt, yet the Sc content is much higher than previously observed except among high-Ti mare basalts. Conceivably, the Sc enrichment in A881757 reflects origin of this rock as a cumulate from a mare magma of 'normal' Sc content, but this seems unlikely. Mineral-separate data suggest that most of the Sc is in pyroxene, and a variety of evidence weighs against the cumulus hypothesis as a major cause for the high Sc. The remarkable similarity between Y793169 and A881757 suggests the possibility that they were derived from a single source crater on the Moon.

  17. Laser-induced breakdown spectroscopy analysis of minerals: Carbonates and silicates

    International Nuclear Information System (INIS)

    McMillan, Nancy J.; Harmon, Russell S.; De Lucia, Frank C.; Miziolek, Andrzej M.

    2007-01-01

    Laser-induced breakdown spectroscopy (LIBS) provides an alternative chemical analytical technique that obviates the issues of sample preparation and sample destruction common to most laboratory-based analytical methods. This contribution explores the capability of LIBS analysis to identify carbonate and silicate minerals rapidly and accurately. Fifty-two mineral samples (18 carbonates, 9 pyroxenes and pyroxenoids, 6 amphiboles, 8 phyllosilicates, and 11 feldspars) were analyzed by LIBS. Two composite broadband spectra (averages of 10 shots each) were calculated for each sample to produce two databases each containing the composite LIBS spectra for the same 52 mineral samples. By using correlation coefficients resulting from the regression of the intensities of pairs of LIBS spectra, all 52 minerals were correctly identified in the database. If the LIBS spectra of each sample were compared to a database containing the other 51 minerals, 65% were identified as a mineral of similar composition from the same mineral family. The remaining minerals were misidentified for two reasons: 1) the mineral had high concentrations of an element not present in the database; and 2) the mineral was identified as a mineral with similar elemental composition from a different family. For instance, the Ca-Mg carbonate dolomite was misidentified as the Ca-Mg silicate diopside. This pilot study suggests that LIBS has promise in mineral identification and in situ analysis of minerals that record geological processes

  18. 208-240 M.Y. old jadeite-glaucophane schists in the Kurosegawa tectonic zone near Kochi city, Shikoku

    International Nuclear Information System (INIS)

    Maruyama, Shigenori; Ueda, Yoshio; Banno, Shohei.

    1978-01-01

    A new member of the Kurosegawa tectonic zone was found in the serpentinite near Kochi city. They are high P and low T schists derived from basalt and chert. Three metamorphic events can be deciphered in the high-pressure schists, based upon the texture and mineral paragenesis: first, low P metamorphism at intermediate- to high-grade, second, high P and low T metamorphism of the jadeite-glaucophane facies and the third, retrograde crystallization of the second stage high P schists within the stability field of lawsonit + pumpellyite + glaucophane. Further, the formation of analcime replacing jadeite took place. The second and third metamorphism can be distinguished on pyroxene mineralogy that jadeite + quartz was stable in the second, but albite + quartz + aegirinejadeite in the third stage of metamorphism. Not all of the high P and low T schists had suffered low P metamorphism before they were metamorphosed by the high P one. Some basaltic rocks directly changed to high P and low T schists. Two muscovites in the schists give K-Ar ages of 208 - 240 m.y., and a relic igneous biotite, being partly replaced by chlorite, gives 225 m.y. of K-Ar age. These values are different not only from those of the Sanbagawa schists, but also from the other members of the Kurosegawa zone. (author)

  19. Geology and geochemistry of the Middle Proterozoic Eastern Ghat mobile belt and its comparison with the lower crust of the Southern Peninsular shield

    Science.gov (United States)

    Rao, M. V. Subba

    1988-01-01

    Two prominent rock suites constitute the lithology of the Eastern Ghat mobile belt: (1) the khondalite suite - the metapelites, and (2) the charnockite suite. Later intrusives include ultramafic sequences, anorthosites and granitic gneisses. The chief structural element in the rocks of the Eastern Ghats is a planar fabric (gneissosity), defined by the alignment of platy minerals like flattened quartz, garnet, sillimanite, graphite, etc. The parallelism between the foliation and the lithological layering is related to isoclinal folding. The major structural trend (axial plane foliation trend) observed in the belt is NE-SW. Five major tectonic events have been delineated in the belt. A boundary fault along the western margin of the Eastern Ghats, bordering the low grade terrain has been substantiated by recent gravity and the deep seismic sounding studies. Field evidence shows that the pyroxene granulites (basic granulites) post-date the khondalite suite, but are older than the charnockites as well as the granitic gneisses. Polyphase metamorphism, probably correlatable with different periods of deformation is recorded. The field relations in the Eastern Ghats point to the intense deformation of the terrain, apparently both before, during and after metamorphism.

  20. Uranium-thorium disequilibria and partitioning on melting of garnet peridotite

    International Nuclear Information System (INIS)

    Beattie, P.

    1993-01-01

    The abundances of isotopes in the 238 U decay series can be used as both tracers and chronometers of magmatic processes. In the subsolidus asthenosphere, the activity of each daughter isotope (defined as the product of its concentration and decay constant, and denoted by parentheses) is assumed to be equal to that of its parent. By contrast, ( 230 Th/ 238 U) is greater than unity in most recent mid-ocean-ridge and ocean-island basalts, implying that thorium is more incompatible (that is, it is partitioned into the melt phase more strongly) than uranium. Melting of spinel peridotite cannot produce the ( 230 Th) excesses, because measured partition coefficients for pyroxenes and olivine demonstrate that uranium is more incompatible than thorium for this rock. Here I report garnet-melt partitioning data which show that for this mineral-melt pair thorium does behave more incompatibility than uranium, thus supporting the suggestion that mid-ocean-ridge basalts (MORB) are produced by melting initiated at depths where garnet is stable. Using these data, I show that the observed ( 230 Th/ 238 U) ratios of MORB and most ocean-island basalts can be explained by slow, near-fractional melting initiated in the garnet stability field. (author)

  1. Vitrification of copper flotation waste.

    Science.gov (United States)

    Karamanov, Alexander; Aloisi, Mirko; Pelino, Mario

    2007-02-09

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30wt% W were melted for 30min at 1400 degrees C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit.

  2. Vitrification of copper flotation waste

    International Nuclear Information System (INIS)

    Karamanov, Alexander; Aloisi, Mirko; Pelino, Mario

    2007-01-01

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30 wt% W were melted for 30 min at 1400 deg. C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit

  3. An Evaluation of Quantitative Methods of Determining the Degree of Melting Experienced by a Chondrule

    Science.gov (United States)

    Nettles, J. W.; Lofgren, G. E.; Carlson, W. D.; McSween, H. Y., Jr.

    2004-01-01

    Many workers have considered the degree to which partial melting occurred in chondrules they have studied, and this has led to attempts to find reliable methods of determining the degree of melting. At least two quantitative methods have been used in the literature: a convolution index (CVI), which is a ratio of the perimeter of the chondrule as seen in thin section divided by the perimeter of a circle with the same area as the chondrule, and nominal grain size (NGS), which is the inverse square root of the number density of olivines and pyroxenes in a chondrule (again, as seen in thin section). We have evaluated both nominal grain size and convolution index as melting indicators. Nominal grain size was measured on the results of a set of dynamic crystallization experiments previously described, where aliquots of LEW97008(L3.4) were heated to peak temperatures of 1250, 1350, 1370, and 1450 C, representing varying degrees of partial melting of the starting material. Nominal grain size numbers should correlate with peak temperature (and therefore degree of partial melting) if it is a good melting indicator. The convolution index is not directly testable with these experiments because the experiments do not actually create chondrules (and therefore they have no outline on which to measure a CVI). Thus we had no means to directly test how well the CVI predicted different degrees of melting. Therefore, we discuss the use of the CVI measurement and support the discussion with X-ray Computed Tomography (CT) data.

  4. Melt Inclusion Analysis of RBT 04262 with Relationship to Shergottites and Mars Surface Compositions

    Science.gov (United States)

    Potter, S. A.; Brandon, A. D.; Peslier, A. H.

    2015-01-01

    Martian meteorite RBT 04262 is in the shergottite class. It displays the two lithologies typically found in "lherzolitic shergottites": one with a poikilitic texture of large pyroxene enclosing olivine and another with non-poikilitic texture. In the case of RBT 04262, the latter strongly ressembles an olivine- phyric shergottite which led the initial classification of this meteorite in that class. RBT 04262 has been studied with regards to its petrology, geochemistry and cosmic ray exposure and belongs to the enriched oxidized end-member of the shergottites. Studies on RBT 04262 have primarily focused on the bulk rock composition or each of the lithologies independently. To further elucidate RBT 04262's petrology and use it to better understand Martian geologic history, an in-depth study of its melt inclusions (MI) is being conducted. The MI chosen for this study are found within olivine grains. MI are thought to be trapped melts of the crystallizing magma preserved by the encapsulating olivine and offer snapshots of the composition of the magma as it evolves. Some MI, in the most Mg-rich part of the olivine of olivine-pyric shergottites, may even be representative of the meteorite parent melt.

  5. Discovery of Ni-smectite-rich saprolite at Loma Ortega, Falcondo mining district (Dominican Republic): geochemistry and mineralogy of an unusual case of "hybrid hydrous Mg silicate - clay silicate" type Ni-laterite

    Science.gov (United States)

    Tauler, Esperança; Lewis, John F.; Villanova-de-Benavent, Cristina; Aiglsperger, Thomas; Proenza, Joaquín A.; Domènech, Cristina; Gallardo, Tamara; Longo, Francisco; Galí, Salvador

    2017-10-01

    Hydrous Mg silicate-type Ni-laterite deposits, like those in the Falcondo district, Dominican Republic, are dominated by Ni-enriched serpentine and garnierite. Recently, abundant Ni-smectite in the saprolite zone have been discovered in Loma Ortega, one of the nine Ni-laterite deposits in Falcondo. A first detailed study on these Ni-smectites has been performed (μXRD, SEM, EPMA), in addition to a geochemical and mineralogical characterisation of the Loma Ortega profile (XRF, ICP-MS, XRD). Unlike other smectite occurrences in laterite profiles worldwide, the Loma Ortega smectites are trioctahedral and exhibit high Ni contents never reported before. These Ni-smectites may be formed from weathering of pyroxene and olivine, and their composition can be explained by the mineralogy and the composition of the Al-depleted, olivine-rich parent ultramafic rock. Our study shows that Ni-laterites are mineralogically complex, and that a hydrous Mg silicate ore and a clay silicate ore can be confined to the same horizon in the weathering profile, which has significant implications from a recovery perspective. In accordance, the classification of "hybrid hydrous Mg silicate - clay silicate" type Ni-laterite deposit for Loma Ortega would be more appropriate.

  6. Microdioritas de afinidad toleítica en las bandas de cizalla de Segovia

    Directory of Open Access Journals (Sweden)

    Villaseca, C.

    1985-04-01

    Full Text Available There are many two-pyroxene microdiorite sills along the milonitic band s of Segovia, They intruded before the second hercynian deformation phase (F2, appearing as microdiabase sills with metamorphized border zones.
    Microdiorites are tholeitic in composition, of continental type, usually low in K2O. Therefore they are not related to the overall calc-alkaline trend of the Sierra de Guadarrama's latehercynian plutonism. Indeed, it doesn't seem reasonable to infer a "granite precursor" character for these rocks, as they were interpreted at begining.

    A lo largo de los corredores miloníticos de Segovia intruyen en momentos pre-F2, microdioritas de dos piroxenos que aparecen como sills microdiabásicos deformados y anfibolitizados en sus bordes por el metamorfismo hercínico.
    Geoquímicamente son rocas de afinidad toleítica continental, normalmente con contenidos bajos en K2O. No presentan relaciones gen éticas claras con las pautas evolutivas de magmatismo calcoalcalino tardihercínico de la Sierra de Guadarrama. En principio no parece lógico definirlas corno precursores básicos del mismo, como inicialmente se pensó.

  7. Raman-IR vibrational and XRD characterization of ancient and modern mineralogy from volcanic eruption in Tenerife Island: Implication for Mars

    Directory of Open Access Journals (Sweden)

    E.A. Lalla

    2016-07-01

    Full Text Available A detailed vibrational Raman-IR spectroscopic and diffractional analyses have been performed on basalts from two locations from Tenerife Island: (1 the Arenas Negras volcano which belongs to the historical eruption not showing visible alteration and (2 Pillow Lavas zone from Anaga Massif which shows a clearly fluid-rock interaction caused by submarine alteration. These places have been extensively studied due to its similarity with the surface of Mars. The analysis is based on the mineral detection of selected samples by a Micro-Raman study of the materials. The complementary techniques have confirmed the mineralogy detected by the Raman measurement. The results show a volcanic environment behavior with primary phases like olivine, pyroxene, and feldspar/plagioclase. Moreover, the presence of accessory minerals or secondary mineralization like phosphate, iron oxides, zeolite or carbonates shows the alteration processes on each outcrop. The variation in the crystallinity and amorphous phases is related to fluid-rock interaction caused by hydrothermal episodes and external weathering processes, which shows several analogies with the ancient volcanic activity from Mars.

  8. Water Distribution in the Continental and Oceanic Upper Mantle

    Science.gov (United States)

    Peslier, Anne H.

    2015-01-01

    Nominally anhydrous minerals such as olivine, pyroxene and garnet can accommodate tens to hundreds of ppm H2O in the form of hydrogen bonded to structural oxygen in lattice defects. Although in seemingly small amounts, this water can significantly alter chemical and physical properties of the minerals and rocks. Water in particular can modify their rheological properties and its distribution in the mantle derives from melting and metasomatic processes and lithology repartition (pyroxenite vs peridotite). These effects will be examined here using Fourier transform infrared spectrometry (FTIR) water analyses on minerals from mantle xenoliths from cratons, plume-influenced cratons and oceanic settings. In particular, our results on xenoliths from three different cratons will be compared. Each craton has a different water distribution and only the mantle root of Kaapvaal has evidence for dry olivine at its base. This challenges the link between olivine water content and survival of Archean cratonic mantle, and questions whether xenoliths are representative of the whole cratonic mantle. We will also present our latest data on Hawaii and Tanzanian craton xenoliths which both suggest the intriguing result that mantle lithosphere is not enriched in water when it interacts with melts from deep mantle upwellings (plumes).

  9. Petrography and geochemistry of the Javaherdasht basalts (east of Guilan Province): The investigation of the role of crystal fractionation and crustal contamination in the magmatic evolution

    International Nuclear Information System (INIS)

    Haghnazar, Sh.; Malakotian, S.

    2009-01-01

    The Javaherdasht Basalts show compositional range from olivine basalts to quartz basaltic andesites. Petrographic studies indicate that the differentiation of clinopyroxene and olivine minerals has main role for lithologic variety of the basalts. The corrosion golf, crenated margins and lack of the same colour in the clinopyroxene phenochrysts margins with matrix Pyroxene grains express a nonequilibrium and are petrographic features for crustal contamination of the basalts.The positive correlation Ca O,Ca O/Al 2 O 3 and Cr with Mg and Ca O/Al 2 O 3 with Sc and the negative correlation Al 2 O 3 with Mg are geochemical characters for the differentiation of clinopyroxene and olivine in the magmatic evolution of the area.The high ratios of Ba/Zr and Pb/Nd and law ratio of Ce/Pb and positive correlation of SiO 2 and Rb with 87 Sr/ 86 Sr and negative correlation of Nd-Sr isotopes display the contamination of these basalts with continental crust.

  10. Geochemistry and tectonomagmatic setting of the Kharaju gabbroic intrusions (South Azarshahr, East Azerbaijan province

    Directory of Open Access Journals (Sweden)

    Abdolnaser Fazlnia

    2016-12-01

    Full Text Available Kharaju mafic intrusions (south Azarshahr; East Azarbaijan are gabbro in composition. The rocks with Eocene age intruded the northwest part of Urumieh -Dokhtar magmatic belt with a trend of NW-SE. These rocks contain mostly of minerals such as plagioclase, quartz, pyroxene, titanite, apatite and magnetite. The rocks are moderate to high calc-alkaline. The gabbros were produced as a result of the partial melting of mantle wedge with spinel lherzolite and after emplacement into the crustal magma chamber underwent fractional crystallization. Injection of the Kharaju intrusions is in relation to the last stages of Neotethys subduction activity under Central Iran. Negative anomaly in the high ionic strength elements (HFSE like, Nb, Ta, P, Hf and Zr and mild positive anomalies of Eu and Sr with moderate increases in values of K, Sr, Rb, Ba, Pb and U show oblique subduction beneath Central Iran might be willing to make the appropriate space on the edge of central Iran and as a result, partial melting in the mantle wedge occurred due to reduce the pressure as decompression.

  11. Dating and source determination of volcanic rocks from Khunik area (South of Birjand, South Khorasan using Rb-Sr and Sm-Nd isotopes

    Directory of Open Access Journals (Sweden)

    Somayeh Samiee

    2016-12-01

    Full Text Available The Khunik area is located in the south of Birjand, Khorasan province, in the eastern margin of Lut block. Tertiary volcanic rocks have andesite to trachy-andesite composition. Dating analyzing by Rb-Sr method on plagioclase and hornblende as well as whole-rock isochron method was performed on pyroxene-hornblende andesite rock unit. On this basis the emplacement age is Upper Paleocene (58±11 Ma. These rocks have initial 87Sr/86Sr and εNd 0.7046-0.7049 and 2.16-3.12, respectively. According to isotopic data, volcanic rocks originated from depleted mantle and have the least crust contamination while it was fractionated. Geochemically, Khunik volcanic rocks have features typical of calk-alkaline to shoshonite and are metaluminous. Enrichment in LILEs and typical negative anomalies of Nb and Ti are evidences that the volcanic rocks formed in a subduction zone and active continental margin. Modeling suggests that these rocks were derived dominantly from 1–5% partial melting of a mainly spinel garnet lherzolite mantle source that is metasomatized by slab-derived fluid.

  12. Geochemical study of young basalts in East Azerbaijan (Northwest of Iran

    Directory of Open Access Journals (Sweden)

    Nasir Amel

    2016-12-01

    Full Text Available The young basalts in East Azerbaijan are placed in West Alborz – Azerbaijan zone. Volcanic activities have extended from the Pliocene to the Quaternary by eruption from fracture systems and faults. Rocks under study are olivine-basalt and trachybasalts. The main minerals are olivine, pyroxene, plagioclase set in glassy or microcrystalline matrix and olivine are present as phenocryst. The textures in the studied rocks are mainly hyaloporphyric, hyalomicrolitic and porphyritic. Trace elements and rare earth elements on spider diagrams have high LREE/HREE ratio. Rare earth elements on diagram display negative slope indicating alkaline nature for the basalts under study. As it may be observed, on tectonic diagrams, the Marand basalts are placed on Island Arc basalt (IAB field, whereas the Ahar, Heris, Kalaibar and Miyaneh basalts are classified as Ocean Island Basalts (OIB and finally the basalts of Sohrol area are plotted on continental rift Basalt (CRB field. The Marand and Sohrol basalts were likely originated from lithospheric - astenospheric mantle with 2 to 5 % partial melting whereas, the Ahar, Heris and Kalaibar basalts having same source experienced 1-2% partial melting rate and the Miyaneh basalts possibly produced from lithospheric mantle with 10-20% partial melting rate pointing to shallow depth of mantle and the higher rate of melting. Based on tectonic setting diagrams, all the rocks studied are plotted in post collisional environments.

  13. Change with time in extrusion and chemical composition of volcanic rock in geothermal areas in central Kyushu

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, Hiroki

    1986-10-01

    Changes with time in extrusion and chemical composition of volcanic rocks in central Kyushu are studied to provide basic data required for evaluation of geothermal resources. Distribution of volcanic rocks in successive 1Ma (10/sup 6/ year) periods and the average thickness of volcanic rock layers in each period are determined, from which the volume of volcanic rocks in each 1Ma period is calculated. Results indicate that volcanos in central Kyushu extruded about 3,000 km/sup 3//Ma of volcanic rocks during the early periods (about 5Ma), followed by a series of declining periods up to the present. Comparison of volcanic extrusive rocks of each 1Ma period shows that lava of hornblende andesite and pyroxenic andesite has been extruded in great quantities in every period. Chemical composition is studied based on diagrams showing changes in SiO/sub 2/ content. The K/sub 2/O content is relatively high in most volcanos younger than 1.6Ma, compared to those older than 1.6Ma. the K/sub 2/O content in extruded rocks has been high during the latest 0.4Ma in the Aso volcanic area, unlike other island arc conjunction areas. (4 figs, 5 tabs, 28 refs)

  14. Spectroscopic and Microscopic Characterization of Volcanic Ash from Puyehue-(Chile Eruption: Preliminary Approach for the Application in the Arsenic Removal

    Directory of Open Access Journals (Sweden)

    Irma Lia Botto

    2013-01-01

    Full Text Available Volcanic ash from Puyehue Cordon Caulle Volcanic Complex (Chile, emitted on June 4, 2011, and deposited in Villa La Angostura at ~40 km of the source, was collected and analyzed by Raman spectroscopy, optical and scanning electron microscopy (SEM-EDS, X-ray diffraction (XRD, surface area (BET, and chemical analysis (ICP-AES-MS technique. The mineralogical and physicochemical study revealed that the pyroclastic mixture contains iron oxides in the form of magnetite and hematite as well as pyroxene and plagioclase mineral species and amorphous pumiceous shards. Carbonaceous material was also identified. Physicochemical techniques allow us to select two representative samples (average composition and Fe-rich materials which were used to analyze their performances in the adsorption process to remove arsenic from water. Additional iron activation by means of ferric salts was performed under original sample. Results showed that the low-cost feedstock exhibited a good adsorption capacity to remove the contaminant, depending on the iron content and the water pH.

  15. Rotationally resolved spectroscopy of Jupiter Trojans (624) Hektor and (911) Agamemnon

    Science.gov (United States)

    Perna, D.; Bott, N.; Hromakina, T.; Mazzotta Epifani, E.; Dotto, E.; Doressoundiram, A.

    2018-03-01

    We present the first-ever rotationally resolved spectroscopic investigation of (624) Hektor and (911) Agamemnon, the two largest Jupiter Trojans. The visible and near-infrared spectra that we have obtained at the TNG telescope (La Palma, Spain) do not show any feature or hints of heterogeneity. In particular, we found no hints of water-related absorptions. No cometary activity was detected down to ˜23.5 R mag arcsec-2 based on the complementary photometric data. We estimated upper limits on the dust production rates of Hektor and Agamemnon to be ≈30 and ≈24 kg s-1, respectively. We modelled complete visible and near-infrared spectra of our targets using the Shkuratov formalism to define the upper limit to the presence of water ice and more in general to constrain their surface composition. For both objects, successful models include amorphous carbon, magnesium-rich pyroxene, and kerogen, with an upper limit to the amount of water ice of a few per cent.

  16. Iron Redox Systematics of Martian Magmas

    Science.gov (United States)

    Righter, K.; Danielson, L.; Martin, A.; Pando, K.; Sutton, S.; Newville, M.

    2011-01-01

    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite [1]. Morris et al. [1] propose that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks [2,3]. Magnetite stability in terrestrial magmas is well understood, as are the stability of FeO and Fe2O3 in terrestrial magmas [4,5]. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas we have undertaken an experimental study with two emphases. First we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition. Second, we determine the FeO and Fe2O3 contents of the same shergottite bulk composition at 1 bar and variable fO2 at 1250 C, and at variable pressure. These two goals will help define not only magnetite stability, but pyroxene-melt equilibria that are also dependent upon fO2.

  17. Extending the McDonald Observatory Serendipitous Survey of UV/Blue Asteroid Spectra

    Science.gov (United States)

    Vilas, Faith; Cochran, A. L.

    1999-01-01

    Moderate resolution asteroid spectra in the 350 - 650 nm spectral range acquired randomly over many years (Cochran and Vilas, Icarus v 127, 121, 1997) identified absorption features in spectra of some of the asteroids. A feature centered at 430 nm was identified in the spectra of some low-albedo asteroids (C class and subclass), similar to the feature identified by Vilas et al. (Icarus, v. 102, 225,1993) in other low-albedo asteroid spectra and attributed to a ferric iron spin-forbidden transition in iron alteration minerals such as jarosite. Features at 505 nm and 430 nm were identified in the spectrum of 4 Vesta. The 505-nm feature is highly diagnostic of the amount and form of calcium in pyroxenes. This suggested further research on the sharpness and spectral placement of this feature in the spectra of Vesta and Vestoids (e.g., Cochran and Vilas, Icarus v. 134, 207, 1998). In 1997 and 1998, additional UV/blue spectra were obtained at the 2.7-m Harlan J. Smith telescope with a facility cassegrain spectrograph. These included spectra of low-albedo asteroids, the R-class asteroid 349 Dembowska, and the M-class asteroid 135 Hertha. These spectra will be presented and identified features will be discussed.

  18. Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets).

    Science.gov (United States)

    Holm, N G; Oze, C; Mousis, O; Waite, J H; Guilbert-Lepoutre, A

    2015-07-01

    Serpentinization involves the hydrolysis and transformation of primary ferromagnesian minerals such as olivine ((Mg,Fe)2SiO4) and pyroxenes ((Mg,Fe)SiO3) to produce H2-rich fluids and a variety of secondary minerals over a wide range of environmental conditions. The continual and elevated production of H2 is capable of reducing carbon, thus initiating an inorganic pathway to produce organic compounds. The production of H2 and H2-dependent CH4 in serpentinization systems has received significant interdisciplinary interest, especially with regard to the abiotic synthesis of organic compounds and the origins and maintenance of life in Earth's lithosphere and elsewhere in the Universe. Here, serpentinization with an emphasis on the formation of H2 and CH4 are reviewed within the context of the mineralogy, temperature/pressure, and fluid/gas chemistry present in planetary environments. Whether deep in Earth's interior or in Kuiper Belt Objects in space, serpentinization is a feasible process to invoke as a means of producing astrobiologically indispensable H2 capable of reducing carbon to organic compounds.

  19. Noble gases, nitrogen, cosmic ray exposure history and mineralogy of Beni M'hira (L6) chondrite

    Science.gov (United States)

    Mahajan, Ramakant R.; Nejia, Laridhi Ouazaa; Ray, Dwijesh; Naik, Sekhar

    2018-03-01

    The concentrations and isotopic composition of noble gases helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon(Xe) and nitrogen were measured in the Beni M'hira L6 chondrite. The cosmic ray exposure age of Beni M'hira is estimated of 15.6 ± 3.7 (Ma). The radiogenic age, of around 485 ± 64 Ma, derived from 4He, and of around 504 ± 51 Ma from 40Ar, suggests an age resetting indicating the event impact. The heavy noble gases (Ar, Kr and Xe) concentrations imply that the gas is a mixture of trapped component Q and solar wind. The measured nitrogen abundance of 0.74 ppm and the isotopic signature of δ15N = 14.6‰ are within the range of ordinary chondrites. The homogeneous chemical composition of olivine (Fa:26 ± 0.25) and low-Ca pyroxene (Fs:22.4 ± 0.29) suggest that the Beni M'hira meteorite is an equilibrated chondrite. This is further corroborated by strong chondrule-matrix textural integration (lack of chondrules, except a few relict clast). Shock metamorphism generally corresponds to S5 (>45 GPa), however, locally disequilibrium melting (shock-melt veins) suggests, that the peak shock metamorphism was at ∼75 GPa, 950 °C.

  20. Behaviour of the Sm-Nd and Rb-Sr systems of the mafic-ultramafic layered sequence from Ribeirao dos Motas (Archaean), meridional craton Sao Francisco: evidences of mantle source enrichment and isotopic fractionation; Comportamento dos sistemas Sm-Nd e Rb-Sr da sequencia acamadada mafico-ultramafico Ribeirao dos Motas (Arqueano), craton Sao Francisco Meridional: evidencias de enriquecimento mantelico e fracionamento isotopico

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Mauricio Antonio; Carvalho Junior, Irneu Mendes de; Oliveira, Arildo Henrique de [Ouro Preto Univ., (UFOP), MG (Brazil). Dept. de Geologia]. E-mail: mauricio@degeo.ufop.br; Teixeira, Wilson [Sao Paulo Univ., SP (Brazil). Inst. de Geociencias. Dept. de Mineralogia e Geotectonica; Pimentel, Marcio Martins [Brasilia Univ., DF (Brazil). Inst. de Geociencias. Lab. de Geocronologia

    2004-10-15

    The Ribeirao dos Motas layered sequence (SARM) crops out in the southern part of the Sao Francisco Craton, Brazil. This sequence comprises phaneritic meta ultramafic and metamafic rocks, which, although slightly deformed and metamorphosed, retain primary igneous layers. Porphyritic rocks with idiomorphic pyroxene crystals and heteradcumulate and adcumulate textures are also present. Eighteen isotopic analyses were performed in the SARM, comprising rocks with primary (relict) textures, as well as rocks in amphibolite facies and retro-metamorphosed to green-schist facies. Seven samples yield a Sm/Nd isochron age of 2.79 +- 0.30 Ga (MSWD=1.2 e epsilon {sub Ndt}=+0.48), constraining the accretion time of the SARM rocks. The positive epsilon {sub Ndt} value coupled with the Rb/Sr evidence is consistent with mantle source relatively enriched in Nd and Sr isotopes. Nevertheless, some SARM samples display isotopic fractionation and disturbance, which can be ascribed to the following processes or their combinations: a) mobilization of the incompatible elements due to regional high grade metamorphism; b) isotopic changes during upper amphibolite facies overprint; c) isotopic resetting by low-grade fluids associated to the Claudio Shear zone, which is located nearby the SARM. (author)

  1. Two earth years of Moessbauer studies of the surface of Mars with MIMOS II

    International Nuclear Information System (INIS)

    Klingelhoefer, G.; Morris, R. V.; De Souza, P. A.; Rodionov, D.; Schroeder, C.

    2006-01-01

    The element iron plays a crucial role in the study of the evolution of matter from an interstellar cloud to the formation and evolution of the planets. In the Solar System iron is the most abundant metallic element. It occurs in at least three different oxidation states: Fe(0) (metallic iron), Fe(II) and Fe(III). Fe(IV) and Fe(VI) compounds are well known on Earth, and there is a possibility for their occurrence on Mars. In January 2004 the USA space agency NASA landed two rovers on the surface of Mars, both carrying the Mainz Moessbauer spectrometer MIMOS II. They performed for the first time in-situ measurements of the mineralogy of the Martian surface, at two different places on Mars, Meridiani Planum and Gusev crater, respectively, the landing sites of the Mars-Exploration-Rovers (MER) Opportunity and Spirit. After about two Earth years or one Martian year of operation the Moessbauer (MB) spectrometers on both rovers have acquired data from more than 150 targets (and more than thousand MB spectra) at each landing site. The scientific measurement objectives of the Moessbauer investigation are to obtain for rock, soil, and dust (1) the mineralogical identification of iron-bearing phases (e.g., oxides, silicates, sulfides, sulfates, and carbonates), (2) the quantitative measurement of the distribution of iron among these iron-bearing phases (e.g., the relative proportions of iron in olivine, pyroxenes, ilmenite and magnetite in a basalt), (3) the quantitative measurement of the distribution of iron among its oxidation states (e.g., Fe 2+ , Fe 3+ , and Fe 6+ ), and (4) the characterization of the size distribution of magnetic particles. Special geologic targets of the Moessbauer investigation are dust collected by the Athena magnets and interior rock and soil surfaces exposed by the Athena Rock Abrasion Tool and by trenching with rover wheels. The Moessbauer spectrometer on Opportunity at Meridiani Planum, identified eight Fe-bearing phases: jarosite (K,Na,H3O

  2. Mineralogical characterization of a meteorite impact in Carancas, Puno

    International Nuclear Information System (INIS)

    Ceron Loayza, Maria L.; Bravo Cabrejos, Jorge A.

    2009-01-01

    We report the results of the study of a meteorite that impacted an inhabited zone in the neighborhood of the town of Carancas, Puno Region, about 1,300 km south of Lima. The analysis carried out by X ray diffractometry, transmission Moessbauer spectroscopy (at room temperature and at 4,2 K), and by energy dispersive X ray fluorescence reveal the presence in the meteorite simple of magnetic sites assigned to the Fe-Ni and troilite (Fe,S) phases, and of 3 paramagnetic doublets, two of them assigned to Fe 2+ , one associated to olivine and the other to pyroxene, and the third one due to a site occupied by Fe 3+ , which can be associated to oxides in a superparamagnetic state and/or by an Fe hydroxide. The soil samples from the crater reveal a composition that consists mainly of quartz, albite and impactites such as coesite and stishovite (SiO 2 ). The occurrence of these phases with a high content of SiO 2 in the crater soils strengthens the hypothesis of their origin induced by impact; we observe also the presence of the Fe oxide hematite, of aluminum silicates such as illite and montmorillonite, and an unassigned phase of Fe 3+ . In general, the results obtained by these techniques complement each other rather well and allow the verification of the origin of the studied simples. (author).

  3. Crystal chemistry of six-coordinated silicon: A key to understanding the earth's deep interior

    International Nuclear Information System (INIS)

    Finger, L.W.; Hazen, R.M.

    1991-01-01

    A survey of high-pressure silicates reveals 12 distinct high-density structural topologies with octahedral Si. Seven of these structure types - stishovite, perovskite, ilmenite, hollandite, calcium ferrite, pyrochlore and K 2 NiF 4 type - contain only six-corrdinated silicon. Other high-pressure silicates, including those with the garnet, pyroxene, wadeite, anhydrous phase B and phase B structures, contain both tetrahedral and octahedral Si. Five systematic trends among these dozen structures suggest the existence of other, as yet unobserved, possible mantle Si phases. The criteria are: (1) Structures like rutile, hollandite and calcium ferrite formed from edge-sharing chains of silicon octahedra; (2) germanates synthesized at room pressure with octahedral Ge; (3) isomorphs of room-pressure oxides with 3+ or 4+ transition-metal cations; (4) high-pressure magnesium silicates related to room-pressure aluminates by the substitution 2Al→Mg+Si; and (5) the homologous structures in system Mg-Si-O-H that includes phase B and anhydrous phase B. Each of these criteria can be used to predict other potential octahedral Si phases. Of special interest are predicted structure types that fulfill more than one criterion: Diaspore-type (MgSi)O 2 (OH) 2 , aerugite-type Mg 10 Si 3 O 16 , sphene-type CaSi 2 O 5 , benitoite-type BaSi 4 O 9 , gibbsite-type MgSi(OH) 6 and pseudobrookite-type Fe 2 SiO 5 . (orig.)

  4. Behaviour of zirconium in the weathering of granulites from Salvador-BA/Brazil

    International Nuclear Information System (INIS)

    Garcia, I.J.C.

    1979-01-01

    The weathering related to mineralogy with chemical analysis of Zr in granulites and their weathered equivalents in Salvador - Brazil, is studied. The mineralogical and petrographical characteristics were correlated with analyses for K,Al and Zr. The fresh rocks are quartz-rich pyroxene granulites, the weathered samples were submitted to bromoform and electromagnetic separations to recovery nearly pure zircon from the fraction coarser than 50 micros. These zircons were classified by color, size and shape. Proportions between different colors of zircon were correlated with petrography of fresh granulites. Studies of zircons resistent to acid attack indicated, that the darker colors were due to iron oxide staining. Chemical analyses for Zr in fresh rocks presented values higher than the values corresponding to zircon observed in thin sections, sugesting the presence of Zr as a trace element in ferromagnesian silicates. In the weathered rocks, Zr values are much higher than those corresponding to recovered zircon. Comparisons of K 2 O, Al 2 O 3 and Zr values in fresh and weathered rocks indicated a loss of K 2 O, and a gain of Zr by weathering. However, maximum losses of K 2 O do not coincide with maximum gains of Zr. (author) [pt

  5. Evolution of the Oxidation State of the Earth's Mantle

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, E.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3(+) at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. In our previous experiments on shergottite compositions, variable fO2, T, and P less than 4 GPa, Fe3(+)/sigma Fe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3(+)/sigma Fe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3(+). Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Preliminary multi-anvil experiments with Knippa basalt as the starting composition were conducted at 5-7 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal to Fe3(+)/2(+). Experiments are underway to produce glassy samples that can be measured by EELS and XANES, and are conducted at higher pressures.

  6. Vestas Pinaria Region: Original Basaltic Achondrite Material Derived from Mixing Upper and Lower Crust

    Science.gov (United States)

    Mcfadden, L. A.; Combe, Jean-Philippe; Ammannito, Eleonora; Frigeri, Alessandro; Stephan, Katrin; Longobardo, Andrea; Palomba, Ernesto; Tosi, Federico; Zambon, Francesca; Krohn, Katrin; hide

    2015-01-01

    Analysis of data from the Dawn mission shows that the Pinaria region of Vesta spanning a portion of the rim of the Rheasilvia basin is bright and anhydrous. Reflectance spectra, absorption band centers, and their variations, cover the range of pyroxenes from diogenite-rich to howardite and eucrite compositions, with no evidence of olivine in this region. By examining band centers and depths of the floor, walls and rims of six major craters in the region, we find a lane of diogenite-rich material next to howardite-eucrite material that does not follow the local topography. The source of this material is not clear and is probably ejecta from post-Rheasilvia impacts. Material of a howardite-eucrite composition originating from beyond the Rheasilvia basin is evident on the western edge of the region. Overall, the Pinaria region exposes the complete range of basaltic achondrite parent body material, with little evidence of contamination of non-basaltic achondrite material. With both high reflectance and low abundance of hydrated material, this region of Vesta may be considered the "Pinaria desert".

  7. Water contents of clinopyroxenes from sub-arc mantle peridotites

    Science.gov (United States)

    Turner, Michael; Turner, Simon; Blatter, Dawnika; Maury, Rene; Perfit, Michael; Yogodzinski, Gene

    2017-01-01

    One poorly constrained reservoir of the Earth's water budget is that of clinopyroxene in metasomatised, mantle peridotites. This study presents reconnaissance Sensitive High-Resolution, Ion Microprobe–Stable Isotope (SHRIMP–SI) determinations of the H2O contents of (dominantly) clinopyroxenes in rare mantle xenoliths from four different subduction zones, i.e. Mexico, Kamchatka, Philippines, and New Britain (Tabar-Feni island chain) as well as one intra-plate setting (western Victoria). All of the sub-arc xenoliths have been metasomatised and carry strong arc trace element signatures. Average measured H2O contents of the pyroxenes range from 70 ppm to 510 ppm whereas calculated bulk H2O contents range from 88 ppm to 3 737 ppm if the variable presence of amphibole is taken into account. In contrast, the intra-plate, continental mantle xenolith from western Victoria has higher water contents (3 447 ppm) but was metasomatised by alkali and/or carbonatitic melts and does not carry a subduction-related signature. Material similar to the sub-arc peridotites can either be accreted to the base of the lithosphere or potentially be transported by convection deeper into the mantle where it will lose water due to amphibole breakdown.

  8. The eruption history of the quaternary Eifel volcanic fields: Implications from the ELSA - Tephra - Stack

    Science.gov (United States)

    Förster, Michael; Sirocko, Frank

    2015-04-01

    Numerous tephra layers occur in maar sediments in the quaternary Eifel volcanic fields. The sediments were systematically drilled and cored since 1998 by the Eifel Laminated Sediment Archive project (ELSA) (Sirocko et al. 2013). These maar sediments are laminated and the tephra is easily recognizeable by a coarser grain size. Additionaly, tephra layers appear dark grey to black in color. The ashes were sieved to a fraction of 250 - 100 µm and sorted into grains of: reddish and greyish sandstone, quartz, amphibole, pyroxene, scoria and pumice, sanidine, leucite and biotite. A minimum of 100 grains for each tephra layer were used for a sediment petrographic tephra characterisation (SPTC). The grain counts resemble the vol. -% of each grain species. Three types of tephra could be identified by their distinctive grain pattern: (1) phreatomagmatic tephra, rich in basement rocks like greyish/reddish sandstone and quartz. (2) Strombolian tephra, rich in scoria and mafic minerals like pyroxene. (3) evolved tephra, rich in sanidine and pumice. 16 drill-cores, covering the last 500 000 years have been examined. Younger cores were dated by 14C ages and older cores by optical stimulated luminescence. Independently from this datings, the drill-cores were cross-correlated by pollen and the occurences of specific marker-tephra layers, comprising characteristic grain-types. These marker-tephra layers are especially thick and of evolved composition with a significant abundance of sanidine and pumice. The most prominent tephra layers of this type are the Laacher See tephra, dated to 12 900 b2k by Zolitschka (1998), the 40Ar/39Ar dated tephra layers of Dümpelmaar, Glees and Hüttenberg, dated to 116 000 b2k, 151 000 b2k and 215 000 b2k by van den Bogaard & Schmincke (1990), van den Bogaard et al. (1989). These datings set the time-frame for the eruption-phases of the quaternary Eifel Volcanic Fields. Our study refines these findings and shows that phases of activity are very

  9. Gneisses of Brazil's cultural heritage buildings and its most frequent degradations

    Science.gov (United States)

    Gilberto Costa, Antônio

    2017-04-01

    Macroscopic descriptions of cultural heritage buildings constructed using gneisses in the cities of Rio de Janeiro, Belo Horizonte and Ouro Preto, Brazil, allowed to identify alterations and degradations, in part conditioned by the mineralogical composition and the structures present in these stone materials. It is important to emphasize that: - some changes still begin in the environments where these materials were formed, experiencing an intensification from the processes of extraction, processing and application; - modifications occurring after the applications are understood herein as degradations. The studied gneisses present banding consisting of parts with different thicknesses and mineralogical contents. Due to these differentiated contents, clear bands were identified and constituted essentially by felsic minerals, such as feldspars and quartz, as well as dark bands formed by mafic minerals represented by: biotite, garnets, amphiboles, such as hornblende or pyroxene (hyperstene). In addition to these minerals, low contents of oxides and sulphides were found. Also under the influence of this distribution of minerals, planar structures or foliations, more or less developed, that can be very penetrative have been identified, mainly when these rocks were submitted to the performance of milonitization processes. From the set of changes and degradations observed stand out those related to the decomposition of minerals that make up these materials. In these cases, feldspars and other silicates, such as micas, amphiboles and pyroxenes, were decomposed due to the hydrolysis and products were generated which compromised the resistance of these stone materials, leading to their consequent disintegration. On the other hand, the presence of expansive clays in these products, caused volume increases which also contributed to the expansion of the weathered surface layer (blistering). This process may result detachments in the form of scales to cavities in cases of

  10. Chromium-rich lawsonite in high-Cr eclogites from the Făgăras Massif (South Carpathians)

    Science.gov (United States)

    Negulescu, E.; Săbău, G.

    2012-12-01

    Lawsonite is a relatively rare phase in natural rocks, because of its thermal decomposition during exhumation, and Cr-bearing lawsonite being restricted to only a few occurrences worldwide. Here we report Cr-lawsonite in eclogites hosted in a medium-grade metamorphic complex. Several high-Cr eclogite lenses occur in the Topolog Complex (Făgăras Massif) of dominantly gneissic-amphibolitic composition. High Cr contents are the result of emerald-green mm-sized nodules containing Cr-rich minerals, embedded in a gray-green matrix of kyanite, clinopyroxene, garnet, amphibole, zoisite, and rutile. Garnets occur as porphyroblasts or in coronas around clinopyroxene aggregates probably replacing former magmatic pyroxene. Relict gabbroic textures (sometimes pegmatoid) and whole rock geochemistry indicate a gabbroic cumulate origin. The REE pattern, displaying a slight positive Eu anomaly and a tea spoon-shaped LREE depletion is also indicative of a cumulate origin, as also noted by Pe Piper & Piper (2002) for the Othrys gabbro (as well as others in the Vourinos and Pindos ophiolitic suites) with the same unusual REE-pattern. The emerald-green Cr-rich nodules are unevenly distributed in the rock, and always enclosed in Cr-rich clinopyroxenes (up to 5.46% Cr2O3) which may exhibit Cr-diffusion haloes towards normal Cr-free matrix pyroxene. The nodules consist of diablastic chromite, rutile and Cr-rich kyanite of up to 15.67 wt% Cr2O3, Cr-bearing epidote, to which Cr-rich staurolite (up to 10.45% Cr2O3; XMg up to 0.68) and Cr-rich lawsonite (up to 9.17% Cr2O3) may exceptionally associate. Cr concentrations in kyanite and lawsonite are, to our knowledge, the highest reported so far. Cr-lawsonite was identified in a single sample, as small single phase inclusions armoured in Cr-kyanite. Equilibrium PT-conditions of 2.6 GPa and 610o C were derived from the garnet-mantled clinopyroxene aggregates using multi-equilibria calculation with the PTGIBBS routine of Brandelik & Massonne

  11. The Finero phlogopite-peridotite massif: an example of subduction-related metasomatism

    Science.gov (United States)

    Zanetti, Alberto; Mazzucchelli, Maurizio; Rivalenti, Giorgio; Vannucci, Riccardo

    The Finero peridotite massif is a harzburgite that suffered a dramatic metasomatic enrichment resulting in the pervasive presence of amphibole and phlogopite and in the sporadic occurrence of apatite and carbonate (dolomite)-bearing domains. Pyroxenite (websterite) dykes also contain phlogopite and amphibole, but are rare. Peridotite bulk-rock composition retained highly depleted major element characteristics, but was enriched in K, Rb, Ba, Sr, LREE (light rare earth elements) (LaN/YbN=8-17) and depleted in Nb. It has high radiogenic Sr (87Sr/86Sr(270)=0.7055-0.7093), low radiogenic Nd (ɛNd(270)=-1 to -3) and EMII-like Pb isotopes. Two pyroxenite - peridotite sections examined in detail show the virtual absence of major and trace element gradients in the mineral phases. In both rock types, pyroxenes and olivines have the most unfertile major element composition observed in Ivrea peridotites, spinels are the richest in Cr, and amphibole is pargasite. Clinopyroxenes exhibit LREE-enriched patterns (LaN/YbN 16), negative Ti and Zr and generally positive Sr anomaly. Amphibole has similar characteristics, except a weak negative Sr anomaly, but incompatible element concentration 1.9 (Sr) to 7.9 (Ti) times higher than that of coexisting clinopyroxene. Marked geochemical gradients occur toward apatite and carbonate-bearing domains which are randomly distributed in both the sections examined. In these regions, pyroxenes and amphibole (edenite) arelower in mg## and higher in Na2O, and spinels and phlogopite are richer in Cr2O3. Both the mineral assemblage and the incompatible trace element characteristics of the mineral phases recall the typical signatures of ``carbonatite'' metasomatism (HFSE depletion, Sr, LILE and LREE enrichment). Clinopyroxene has higher REE and Sr concentrations than amphibole (amph/cpxDREE,Sr=0.7-0.9) and lower Ti and Zr concentrations. It is proposed that the petrographic and geochemical features observed at Finero are consistent with a subduction

  12. Comet Dust After Deep Impact

    Science.gov (United States)

    Wooden, Diane H.; Harker, David E.; Woodward, Charles E.

    2006-01-01

    When the Deep Impact Mission hit Jupiter Family comet 9P/Tempel 1, an ejecta crater was formed and an pocket of volatile gases and ices from 10-30 m below the surface was exposed (A Hearn et aI. 2005). This resulted in a gas geyser that persisted for a few hours (Sugita et al, 2005). The gas geyser pushed dust grains into the coma (Sugita et a1. 2005), as well as ice grains (Schulz et al. 2006). The smaller of the dust grains were submicron in radii (0-25.3 micron), and were primarily composed of highly refractory minerals including amorphous (non-graphitic) carbon, and silicate minerals including amorphous (disordered) olivine (Fe,Mg)2SiO4 and pyroxene (Fe,Mg)SiO3 and crystalline Mg-rich olivine. The smaller grains moved faster, as expected from the size-dependent velocity law produced by gas-drag on grains. The mineralogy evolved with time: progressively larger grains persisted in the near nuclear region, having been imparted with slower velocities, and the mineralogies of these larger grains appeared simpler and without crystals. The smaller 0.2-0.3 micron grains reached the coma in about 1.5 hours (1 arc sec = 740 km), were more diverse in mineralogy than the larger grains and contained crystals, and appeared to travel through the coma together. No smaller grains appeared at larger coma distances later (with slower velocities), implying that if grain fragmentation occurred, it happened within the gas acceleration zone. These results of the high spatial resolution spectroscopy (GEMINI+Michelle: Harker et 4. 2005, 2006; Subaru+COMICS: Sugita et al. 2005) revealed that the grains released from the interior were different from the nominally active areas of this comet by their: (a) crystalline content, (b) smaller size, (c) more diverse mineralogy. The temporal changes in the spectra, recorded by GEMIM+Michelle every 7 minutes, indicated that the dust mineralogy is inhomogeneous and, unexpectedly, the portion of the size distribution dominated by smaller grains has

  13. Net Acid Production, Acid Neutralizing Capacity, and Associated Mineralogical and Geochemical Characteristics of Animas River Watershed Igneous Rocks Near Silverton, Colorado

    Science.gov (United States)

    Yager, Douglas B.; Choate, LaDonna; Stanton, Mark R.

    2008-01-01

    Formation, west and northwest of the Silverton caldera, and (b) the Picayune Megabreccia Member of Sapinero Mesa Tuff along the western San Juan caldera margin. Sultan Mountain stock, composed of granitoid intrusive rocks, was shown to have low ANC and moderate NAP. Sequential leachate analyses on a suite of whole-rock samples from the current and a previous study indicate that host rock composition and mineralogy control leachate compositions. The most mafic volcanic samples had high leachate concentrations for Mg, Fe, and Ca, whereas silicic volcanic samples had lower ferromagnesiun compositions. Samples with high chlorite abundance also had high leachable Mg concentrations. Trace-element substitution, such as Sr for Ca in plagioclase, controls high Sr concentrations in those samples with high plagioclase abundance. High Ti abundance in leachate was observed in those samples with high magnetite concentrations. This is likely due to samples containing intergrown magnetite-ilmenite. Whole rocks having high trace-element concentrations have relatively high leachate trace-element abundances. Some lavas of the San Juan Formation and Burns Member of the Silverton Volcanics had elevated Zn-, Cd-, and Pb-leachate concentrations. Manganese was also elevated in one San Juan Formation sample. Other San Juan Formation and Burns Member lavas had low to moderate trace-element abundances. One sample of the pyroxene andesite member of the Silverton Volcanics had elevated concentrations for As and Mo. Most other pyroxene andesite member samples had low leachate trace-element abundances. Mine-waste-leachate analyses indicated that one mine-waste sample had elevated concentrations of Cu (1.5 orders of magnitude), Zn (1 order of magnitude), As (1 order of magnitude), Mo (1.5 to 2 orders of magnitude), Cd (1 to 2 orders of magnitude), and Pb (2 to 3 orders of magnitude) compared to whole rocks. These data indicate the importance of whole-rock geochemistry or leachate analys

  14. Geology, mineralization, and hydrothermal alteration and relationships to acidic and metal-bearing surface waters in the Palmetto Gulch area, southwestern Colorado

    Science.gov (United States)

    Bove, Dana J.; Kurtz, Jeffrey P.; Wright, Winfield G.

    2002-01-01

    The Palmetto Gulch area is affected by low pH and metal-bearing drainage from abandoned mines, and perhaps, from natural weathering around vein zones. To investigate these anthropogenic and potential natural sources of acidity and metals, we mapped the geology, veins, and hydrothermally altered areas; conducted mine dump leachate studies; and collected reconnaissance water quality data. Several small abandoned mines are present in the Palmetto Gulch area that produced small amounts of relatively high-grade silver ore from fault-controlled polymetallic vein deposits. These veins are hosted in lavas, breccias, and related volcaniclastic sediments that ponded within the 28 Ma San Juan-Uncompahgre caldera complex. These rock units generally have conformable contacts and have shallow dips to the northwest. Lava flows of pyroxene andesite, which host the Roy-Pray mine, are massive near their base and typically grade upward into tightly jointed rock with 2-15 cm joint spacing. In general, most hydrothermally altered rock within the Palmetto Gulch area is restricted to envelopes surrounding the mineralized veins and faults. Composite zones of vein-related alteration vary from about 50 to 80 m wide along the high ridgelines and narrow to less than 10 to 15 m beneath an elevation of about 5,462 m. Where unaffected by surficial oxidation, these altered zones contain as much as 7 to 10 volume percent finely-disseminated pyrite. The majority of rocks in the area were affected by regional and vein-related propylitic alteration. These greenish-colored rocks have alteration products consisting of chlorite, illite, and calcite; and feldspars are typically weakly altered. Most of these rocks have detectable amounts of calcite, while as much as 11 percent by weight was detected in samples collected during this study. The Palmetto Gulch area is affected by low pH and metal-bearing drainage from abandoned mines, and perhaps, from natural weathering around vein zones. To investigate

  15. The Use of Tribocharging in the Electrostatic Beneficiation of Lunar Simulant

    Science.gov (United States)

    Trigwell, S.; Captain, J. G.; Arens, E. E.; Captain, J. E.; Quinn, J. W.; Calle, C. I.

    2007-01-01

    Any future lunar base and habitat must be constructed from strong dense materials in order to provide for thermal and radiation protection. Lunar soil may meet this need. Lunar regolith has high concentrations of aluminum, silicon, calcium, iron, sodium, and titanium oxides. Refinement or enrichment of specific minerals in the soil before it is chemically processed may be more desirable as it would reduce the size and energy requirements required to produce the virgin material and it may significantly reduce the process' complexity. Also, investigations into the potential production of breathable oxygen from oxidized mineral components are a major research initiative by NASA. In this study. the objective was to investigate the use of tribocharging to charge lunar simulants and pass them through a parallel plate separator to enrich different mineral fractions. This technique takes advantage of the high Lunar vacuum in which much higher voltages can be used on the separation plates than in air. Additionally, the Lunar g1avity, only being 1/6 that of Earth, allows the particles more separation time between the plates and therefore enhances separation. For the separation studies, two lunar stimulants were used. The first simulant was created in-house, labeled KSC-1. using commercially supplied (sieved to 325 mesh) materials, and was composed of 40 wt. % feldspar ((Na,K,Ca)AlSi3O8;SiO2), 40 wt. % olivine ((Mg,Fe)2SiO4), 10 wt. % ilmenite (FeTiO3). and 10 wt. % spodumene (LiAlSi2O6) (pyroxene). The advantage of the in-house mixture is that the composition can he varied to simulate different soil compositions from different areas on the moon. This simulant was used to show proof-of-concept using the designed separator in air. The second stimulant was JSC-1. used for the vacuum experiments. JSC-1 is principally basalts, containing phases of plagioclase. pyroxene. olivine, and ilmenite. The JSC-1 was sieved to provide a 50-75 micron size range to correlate with the mean

  16. Titaniferous magnetite and barite from the San Gregorio de Polanco dike swarm, Paraná Magmatic Province, Uruguay

    Directory of Open Access Journals (Sweden)

    Rossana Muzio

    2013-07-01

    Full Text Available The San Gregorio de Polanco Dike Swarm (Tacuarembó Department, Uruguay is the southernmost set of dikes in the Paraná Magmatic Province of Uruguay. Five major dikes have been identified with two main structural trends: N140º–N170º and N50º–N80º. The dikes have tholeiitic affinities and are composed of plagioclase (An55, augite and augite-pigeonite, relicts of olivine and opaque minerals. These rocks have high contents of Fe–Ti oxides (titanomagnetites, the mineralogical and textural characteristics of which have been studied using scanning electron microscopy and energy dispersive spectrometry techniques (SEM – EDS. These features, along with other mineralogical and textural relationships, have been used to propose the following crystallization sequence for the dikes: (i crystallization of olivine, plagioclase and Ca-rich pyroxene phenocrysts; (ii precipitation of the first population of Ti-magnetite; (iii crystallization of plagioclase and pyroxene in the groundmass; (iv partial dissolution of Ti-magnetite by reaction with magmatic fluids; (v crystallization of the second population of Ti-magnetite and finally, (vi crystallization of interstitial barite.   Resumen El Haz de Diques de San Gregorio de Polanco (Departamento de Tacuarembó, Uruguay es la ocurrencia más meridional de diques pertenecientes a la Provincia Magmática Paraná en Uruguay. Fueron identificados cinco 5 diques principales con dos direcciones estructurales principales: N140º - N170º y N50º - N80º, respectivamente. Son diques de afinidad tholeítica compuestos por plagioclasa (An55, augita y augita-pigeonita, relictos de olivina y minerales opacos. Estos diques se caracterizan por el alto contenido de óxidos de Fe y Ti (titanomagnetitas, cuyas características mineralógicas y texturales fueron estudiadas con microscopio electrónico de barrido y espectrometría de energía dispersiva (SEM-EDS, incluyendo mapeos composicionales. Estas caracter

  17. Spectroscopic Evidence for the Asteroidal Nature of the July 2009 Jovian Impactor

    Science.gov (United States)

    Lisse, Carey; Orton, Glenn; Yanamandra-Fisher, Padma; Fletcher, Leigh; Depater, Imke; Hammel, Heidi

    2010-05-01

    The collision of a large object with Jupiter on July 19, 2009, heated its atmosphere, modified its composition and generated a prominent field of deposited particulate debris. Low-resolution 7-24 μm spectroscopy of the impact field obtained using the T-ReCS mid-infrared camera/spectrometer on Gemini/South on 24 July 2009 has revealed an excess 9-μm absorption in the impact debris in addition to that supplied by hot ammonia created in the impact. We have searched for candidate materials that would best fit the spectral feature near 9 μm, and find that the feature cannot be matched with candidate materials in Jupiter's atmosphere. A search through a large suite of gaseous and solid absorption spectra (c.f Lisse et al. 2008, 2009) revealed that the major competent matches were for (a) obsidian, a glassy silica, and (b) quartz and cristobalite, crystalline silicas, kinetic alteration products of primitive body ferromagnesian silicates formed at high pressures and temperatures over 1500 K. There are also weak features at 10 - 11 um consistent with olivine absorptions. While the high temperatures required to create silicas are also high enough to destroy the non-refractory water and organics dominating icy cometary bodies, and thus destroy their spectral signal, there was no detectable absorption due to pyroxene materials, which, along with olivines in roughly equal measure, comprise the majority of refractory silicaceous species found in comets (Lisse et al. 2007). This suggests that the impacting body was not a comet, but an olivine-rich differentiated body similar to asteroids that are abundant in the outer regions of the main asteroid belt (Lodders and Fegley 1998). We speculate that the weak structural strength of bulk cometary material causes a comet impactor to catastrophically disrupt at higher altitudes and lower temperatures than a strong, dense asteroidal body, so that the cometary refractory dust component remains relatively cold and unaltered through

  18. Relaciones entre la zonalidad petrológica y metalogénica de los macizos lerzolíticos de las cadenas alpinas del Mediterráneo Occidental (Cordillera Bético-Rifeña y Kabylias

    Directory of Open Access Journals (Sweden)

    Torres-Ruiz, J.

    1988-12-01

    Full Text Available Gamet-lherzolite facies, Ariegite and Seiland subfacies of the spinel-lherzolite facies and plagioclase-lherzolite facies have been identified in the Serranía de Ronda, Beni Bousera and Collo lherzolitic massifs. These petrological facies occur in a zonal arrangement: gamet lherzolite are in contact with the overlaying metapelitic sequence and spinel then plagioclase lherzolite occur inwards, representing the innermost zones in the former mantle body. The various occurrences of mineralizations can be classified in two main groups: one of them is essentialIy made up of chromite and Ni arsenides with pyroxene and/or cordierite as gangue minerals; the other consists Qf Fe-Ni-Cu sulfides and graphite, with pyroxene, plagioclase and phlogopite as gangue minerals. In both groups, the ores with the more refractory composition were the first to crystallize in the hotter core of the diapir while those other with a more differentiated composition were formed later within the external zones. The close correlation between petrological and metallogenical roning supports a magmatic origin of the mineralizations related to the petrologic evolution of the mantle bodies. The mineralizing liquids• originated from magmas generated by partial melting of the peridotites. The former migrated outwards, from the internal part of the bodies, during which marked interaction with the enclosing rocks and complex fractionation processes took place under moderate to low pressure conditions.En los macizos lerzolíticos de la Serranía de Ronda, de Beni Bousera y de Collo se han identificado facies de lerzolitas con granate, facies de lerzolitas con espinela (subfacies Ariegita y Seiland y facies de lerzolitas con plagioclasa. Estas facies petrológicas se distribuyen de forma que las lerzolitas con granate se sitúan en contacto con la unidad metapelítica suprayacente, mientras que las lerzolitas con espinela y con plagioclasa lo hacen en posiciones progresivamente m

  19. Comet Grains: Their IR Emission and Their Relation to ISM Grains

    Science.gov (United States)

    Wooden, Diane H.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Comets and the chodritic, porous interplanetary dust particles (CP IDPs) that they shed in their comae are reservoirs of primitive solar nebula materials. The high porosity and fragility of cometary grains and CP IDPs, and anomalously high deuterium contents of highly fragile, pyroxene-rich Cluster IDPs imply these aggregate particles contain significant abundances of grains from the interstellar medium (ISM). IR spectra of comets (3 - 40 micron) reveal the presence of a warm (nearIR) featureless emission modeled by amorphous carbon grains. Broad and narrow resonances near 10 and 20 microns are modeled by warm chondritic (50% Fe and 50% Mg) amorphous silicates and cooler Mg-rich crystalline silicate minerals, respectively. Cometary amorphous silicates resonances are well matched by IR spectra of CP IDPs dominated by GEMS (0.1 micron silicate spherules) that are thought to be the interstellar Fe-bearing amorphous silicates produced in AGB stars. Acid-etched ultramicrotomed CP IDP samples, however, show that both the carbon phase (amorphous and aliphatic) and the Mg-rich amorphous silicate phase in GEMS are not optically absorbing. Rather, it is Fe and FeS nanoparticles embedded in the GEMS that makes the CP IDPs dark. Therefore, CP IDPs suggest significant processing has occurred in the ISM. ISM processing probably includes in He' ion bombardment in supernovae shocks. Laboratory experiments show He+ ion bombardment amorphizes crystalline silicates, increases porosity, and reduces Fe into nanoparticles. Cometary crystalline silicate resonances are well matched by IR spectra of laboratory submicron Mg-rich olivine crystals and pyroxene crystals. Discovery of a Mg-pure olivine crystal in a Cluster IDP with isotopically anomalous oxygen indicates that a small fraction of crystalline silicates may have survived their journey from AGB stars through the ISM to the early solar nebula. The ISM does not have enough crystalline silicates (ISM Mg-rich crystals leads to the

  20. The Miller Range 090340 and 090206 meteorites: Identification of new brachinite-like achondrites with implications for the diversity and petrogenesis of the brachinite clan

    Science.gov (United States)

    Goodrich, Cyrena Anne; Kita, Noriko T.; Sutton, Stephen R.; Wirick, Sue; Gross, Juliane

    2017-05-01

    Miller Range (MIL) 090340 and MIL 090206 are olivine-rich achondrites originally classified as ureilites. We investigate their petrography, mineral compositions, olivine Cr valences, equilibration temperatures, and (for MIL 090340) oxygen isotope compositions, and compare them with ureilites and other olivine-rich achondrites. We conclude that they are brachinite-like achondrites that provide new insights into the petrogenesis of brachinite clan meteorites. MIL 090340,6 has a granoblastic texture and consists of 97 modal % by area olivine (Fo = molar Mg/[Mg+Fe] = 71.3 ± 0.6). It also contains minor to trace augite, chromite, chlorapatite, orthopyroxene, metal, troilite, and terrestrial Fe-oxides. Approximately 80% by area of MIL 090206,5 has a granoblastic texture of olivine (Fo 72.3 ± 0.1) plus minor augite and chromite, similar to MIL 090340 but also containing minor plagioclase. The rest of the section consists of a single crystal of orthopyroxene ( 11 × 3 mm), poikilitically enclosing rounded grains of olivine (Fo = 76.1 ± 0.6), augite, chromite, metal, and sulfide. Equilibration temperatures for MIL 090340 and MIL 090206, calculated from olivine-spinel, olivine-augite, and two-pyroxene thermometry range from 800 to 930 °C. In both samples, symplectic intergrowths of Ca-poor orthopyroxene + opaque phases (Fe-oxides, sulfide, metal) occur as rims on and veins/patches within olivine. Before terrestrial weathering, the opaques were probably mostly sulfide, with minor metal. All petrologic properties of MIL 090340 and MIL 090206 are consistent with those of brachinite clan meteorites, and largely distinct from those of ureilites. Oxygen isotope compositions of olivine in MIL 090340 (δ18O = 5.08 ± 0.30‰, δ17O = 2.44 ± 0.21‰, and Δ17O = -0.20 ± 0.12‰) are also within the range of brachinite clan meteorites, and well distinguished from ureilites. Olivine Cr valences in MIL 090340 and the granoblastic area of MIL 090206 are 2.57 ± 0.06 and 2.59 ± 0

  1. Calibration of cosmogenic 3He and 10Be production rates in the High Tropics

    Science.gov (United States)

    Blard, Pierre-Henri; Martin, Léo; Lavé, Jérôme; Charreau, Julien; Condom, Thomas; Lupker, Maarten; Braucher, Régis; Bourlès, Didier

    2014-05-01

    It is critical to refine both the accuracy and the precision of the in situ cosmogenic dating tool, especially for establishing reliable glacial chronologies that can be compared to other paleoclimatic records. Recent cross-calibrations of cosmogenic 3He in pyroxene and 10Be in quartz [1, 2] showed that, both at low (1300 m) and high elevation (4850 m), the 3He/10Be production ratio was probably ~40% higher than the value of ~23 initially defined in the 90's. This recent update is consistent with the last independent determinations of the sea level high latitude production rates of 10Be and 3He, that are about 4 and 125 at.g-1.yr-1, respectively [e.g. 3, 4]. However, major questions remain about these production rates at high elevation, notably because existing calibration sites for both 3He and 10Be are scarce above 2000 m. It is thus crucial to produce new high precision calibration data at high elevation. Here we report cosmogenic 10Be data from boulders sampled on a glacial fan located at 3800 m in the Central Altiplano (Bolivia), whose age is independently constrained by stratigraphic correlations and radiocarbon dating at ca. 16 ka. These data can be used to calibrate the production rate of 10Be at high elevation, in the Tropics. After scaling to sea level and high latitude, these data yield a sea level high latitude P10 ranging from 3.8 to 4.2 at.g-1.yr-1, depending on the used scaling scheme. These new calibration data are in good agreement with recent absolute and cross-calibration of 3He in pyroxenes and 10Be in quartz, from dacitic moraines located at 4850 m in the Southern Altiplano (22° S, Tropical Andes) [2,5]. The so-obtained 3He/10Be production ratio of 33.3±0.9 (1σ) combined with an absolute 3He production rate locally calibrated in the Central Altiplano, at 3800 m, indeed yielded a sea level high latitude P10 ranging from 3.7±0.2 to 4.1±0.2 at.g-1.yr-1, depending on the scaling scheme [2,5]. These values are also consistent with the 10Be

  2. Fluid flow pathways through the oceanic crust: reaction permeability and isotopic tracing

    Science.gov (United States)

    McCaig, Andrew; Castelain, Teddy; Klein, Frieder

    2013-04-01

    broken surfaces reveal extensive evidence for dissolution reactions creating porosity, particularly in diabase where pyroxene is selectively dissolved and the porosity partially filled by actinolite needles. If far-from-equilibrium fluid (such as black smoker fluid) interacts with pyroxene at 300-400 °C, dissolution rates of several microns/day are possible. Fluid volume increase in dyke margins due to heating provides space nearby for dissolved components to precipitate without immediately closing the dissolution porosity, which may be an important part of the process. Amphibole-filled vugs in gabbro are interpreted as the final result of the positive feedback between dissolution and permeability - creating fluid flow tubes analogous to karst in limestone. But in contrast, permeability created by volume increase cracking is self-limiting once the primary phase responsible (olivine) is gone, and hence leads to pervasive olivine replacement but little fluid flux.

  3. Visible and Near-Infrared (VNIR) Spectroscopy of Altered Basalts with Application to the ChemCam Library for Mars Science Laboratory

    Science.gov (United States)

    Hadnott, B.; Ehlmann, B. L.

    2012-12-01

    slopes contained strong 1.9 μm bands (greater alteration). Spectra with positive continuum slopes either had pyroxenes or ferric oxides (or both). Absorptions between 0.6 and 0.8 μm sometimes also showed strong bands near 0.5 μm, indicating a diversity of ferric phases. The position of 1.0 μm bands indicates the Fe:Mg ratio for olivines in the San Carlos basalts, as well as the Ca composition of pyroxenes in some samples. Future work will collect LIBS data of samples under ambient and Mars-like conditions. As VNIR spectroscopy is limited by surface coatings, other methods are needed to determine whole rock composition. Bulk chemistry is presently being measured and thin sections are being prepared for electron microprobe analysis. XRD analyses (and microprobe) will supplement VNIR analyses of mineralogy. We will report on key science issues regarding (1) whether identifiable LIBS chemistry trends are diagnostic of diverse chemical alteration environments and correlate with differences in VNIR spectra; (2) whether thin coatings are the cause of observed changes in VNIR continuum slope; and (3) the extent and style of alteration as revealed in these multiple chemical and mineralogical datasets.

  4. Hydrothermal Alteration in Submarine Basaltic Rocks from the Reykjanes Geothermal Field, Iceland. (Invited)

    Science.gov (United States)

    Zierenberg, R. A.; Schiffman, P.; Fowler, A. P.; Marks, N.; Fridleifsson, G.; Elders, W. A.

    2013-12-01

    The Iceland Deep Drilling Project (IDDP) is preparing to drill to 4-5 km in the Reykjanes Geothermal Field to sample geothermal fluids at supercritical temperature and pressure for power generation. The Reykjanes geothermal field is the on-land extension of the Reykjanes Ridge spreading center. The upper 1-2 kilometers drilled at Reykjanes are submarine basalts and basaltic sediments, hyalloclastites, and breccias, with an increasing proportion of basaltic intrusive rocks below 2 km depth. Geothermal fluids are evolved seawater with a composition similar to mid-ocean ridge hydrothermal systems. Zn- and Cu-rich sulfide scale, locally enriched in Au and Ag, are deposited in production pipes. The sulfide deposits are compositionally and isotopically similar to seafloor massive sulfides. In anticipation of deeper drilling, we have investigated the mineralogy and geochemistry of drill cuttings from a 3 km deep well (RN-17). The depth zoning of alteration minerals is similar to that described from other Icelandic geothermal fields, and is comparable to observed seafloor metamorphic gradients in ODP drill holes and ophiolites. Chlorite-epidote alteration occurs at depths >400 m and passes downhole through epidote-actinolite alteration and into amphibole facies (hornblende-calcic plagioclase) alteration below 2.5 km. Local zones of high temperature (>800°C), granoblastic-textured, pyroxene hornfels, are interpreted to form by contact metamorphism during dike/sill emplacement. Similar granoblasically altered basalts were recovered from the base of the sheeted dikes in IODP Hole 1256D. Downhole compositional variations of drill cuttings, collected every 50 m, suggest that rocks below ~ 2 km are little altered. Whole-rock oxygen isotope profiles are consistent with low water/rock ratios, but suggest that early stages of hydrothermal alteration included meteoric water-derived fluids. Strontium isotope profiles indicate more extensive exchange with seawater-derived fluids

  5. Detrital zircon and igneous protolith ages of high-grade metamorphic rocks in the Highland and Wanni Complexes, Sri Lanka: Their geochronological correlation with southern India and East Antarctica

    Science.gov (United States)

    Kitano, Ippei; Osanai, Yasuhito; Nakano, Nobuhiko; Adachi, Tatsuro; Fitzsimons, Ian C. W.

    2018-05-01

    The high-grade metamorphic rocks of Sri Lanka place valuable constraints on the assembly of central parts of the Gondwana supercontinent. They are subdivided into the Wanni Complex (WC), Highland Complex (HC) and Vijayan Complex (VC), but their correlation with neighbouring Gondwana terranes is hindered by a poor understanding of the contact between the HC and WC. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb dating of remnant zircon cores from 45 high-grade metamorphic rocks in Sri Lanka reveals two domains with different age characteristics that correlate with the HC and WC and which help constrain the location of the boundary between them. The HC is dominated by detrital zircon ages of ca. 3500-1500 Ma from garnet-biotite gneiss, garnet-cordierite-biotite gneiss, some samples of garnet-orthopyroxene-biotite gneiss and siliceous gneiss (interpreted as paragneisses) and igneous protolith ages of ca. 2000-1800 Ma from garnet-hornblende-biotite gneiss, other samples of garnet-orthopyroxene-biotite gneiss, garnet-two-pyroxene granulite, two-pyroxene granulite and charnockite (interpreted as orthogneisses). In contrast, the WC is dominated by detrital zircon ages of ca. 1100-700 Ma from paragneisses and igneous protolith ages of ca. 1100-800 Ma from orthogneisses. This clearly suggests the HC and WC have different origins, but some of our results and previous data indicate their spatial distribution does not correspond exactly to the unit boundary proposed in earlier studies using Nd model ages. Detrital zircon and igneous protolith ages in the HC suggest that sedimentary protoliths were eroded from local 2000-1800 Ma igneous rocks and an older Paleoproterozoic to Archean craton. In contrast, the WC sedimentary protoliths were mainly eroded from local late Mesoproterozoic to Neoproterozoic igneous rocks with very minor components from an older 2500-1500 Ma craton, and in the case of the WC precursor sediments there was possibly

  6. Petrological and geochemical studies of mantle xenoliths from La Palma, Canary Islands

    Science.gov (United States)

    Janisch, Astrid; Ntaflos, Theodoros

    2015-04-01

    La Palma is the second youngest island, after El Hierro, of the Canary archipelago. The archipelago consists of seven large islands, forming an east-west-trending island chain, and several seamounts. All together they form a volcanic belt of around 800 km length and 450 km width, which presumably comprises roughly the Canary hotspot. The islands are located off the western coast of Morocco, Africa. The distance ranges from 100 km to 500 km. Concurrently with the distance, subaerial volcanism age progresses from the oldest lava in the east to the youngest in the west of the archipelago. Presently, La Palma is in the shield building stage of growth (alongside with El Hierro and Tenerife) and is furthermore the fastest growing island of the Canary archipelago. Historical volcanic eruptions are restricted on the younger islands, La Palma and El Hierro, with the last eruption at the south end of La Palma in 1971. Mantle xenoliths described in this work were collected at the slopes of San Antonio Volcano, Fuencaliente, brought to the surface during the 1677/1678 eruption. The mantle xenolith collection comprises sp-lherzolites, sp-harzburgites and pyroxenites. The texture can be distinguished between coarse-grained matrix and fine-grained veins in various thicknesses, mostly with olivine and pyroxene but also with amphibole, phlogopite as well as apatite. Mineral analyses reveal the existence of primary and secondary ol, cpx and opx. Primary ol has Fo contents of 89.2 to 91.7 and NiO ranging from 0.3 to 0.45 wt.%, whereas secondary ol show Fo values of 78.4 to 91.9 but with NiO below 0.3 wt.%. Primary cpx are predominantly Cr-Diopsides with En48.7-51.9-Wo43.5-44.3-Fs4.1-4.9 and Mg# of 91.5 to 92.4. Secondary cpx, primarily Ti-Augit, display En36.7-44.4-Wo47.7-49.6-Fs6.7-13.0 and Mg# of 75.3 to 90.8. Primary opx compositions are in range of En89.3-90.6-Wo1.3-1.5-Fs8.1-9.3 with Mg# between 90.7 and 92.0. Secondary opx exhibit En88.7-89.2-Wo1.7-1.9-Fs9.1-9.5 and Mg# of 90

  7. The Complex Stratigraphy of the Highland Crust in the Serenitatis Region of the Moon Inferred from Mineral Fragment Chemistry

    Science.gov (United States)

    Ryder, Graham; Norman, Marc D.; Taylor, G. Jeffrey

    1997-01-01

    Large impact basins are natural drill holes into the Moon, and their ejecta carries unique information about the rock types and stratigraphy of the lunar crust. We have conducted an electron microprobe study of mineral fragments in the poikilitic melt breccias collected from the Taurus Mountains at the Apollo 17 landing site. These breccias are virtually unanimously agreed to be impact melt produced in the Serenitatis impact event. They contain lithic fragments and much more abundant mineral fragments of crustal origin. We have made precise microprobe analyses of minor element abundances in fragments of olivine, pyroxene, and plagioclase to provide new information on the possible source rocks and the crustal stratigraphy in the Serenitatis region. These data were also intended to elucidate the nature of the cryptic geochemical component in breccias such as these with low-K Fra Mauro basalt compositions. We chose the finest-grained (i.e., most rapidly quenched) breccias for study, to avoid reacted and partly assimilated fragments as much as possible. Most of the mineral fragments appear to have been derived from rocks that would fall into the pristine igneous Mg-suite as represented by lithic fragments in the Apollo collection, or reasonable extensions of it. Gabbroic rocks were more abundant in the target stratigraphy than is apparent from the Apollo sample collection. Some pyroxene and plagiociase, but probably not much olivine, could be derived from feldspathic granulites, which are metamorphosed polymict breccias. Some mineral fragments are from previously unknown rocks. These include highly magnesian olivines (up to Fo(sub 94)), possibly volcanic in origin, that exacerbate the difficulty in explaining highly magnesian rocks in the lunar crust. It appears that some part of the lunar interior has an mg*(= 100 x Mg/(Mg/Fe) atomic) greater than the conventional bulk Moon value of 80-84. Other volcanic rocks, including mare basalts, and rapidly- cooled impact melt

  8. Ida and Dactyl: Spectral Reflectance and Color Variations

    Science.gov (United States)

    Veverka, J.; Helfenstein, P.; Lee, P.; Thomas, P.; McEwen, A.; Belton, M.; Klaasen, K.; Johnson, T. V.; Granahan, J.; Fanale, F.; Geissler, P.; Head, J. W., III

    1996-03-01

    Galileo SSI color data between 0.4 and 1.0 μm demonstrate that both Ida and Dactyl are S-type asteroids with similar, but distinct spectra. Small but definite color variations are also observed on Ida itself and involve both the blue part of the spectrum and the depth of the 1-μm pyroxene-olivine band. Ida's surface can be classified into two color terrains: Terrain A has a shallower 1-μm absorption and a steeper visible red slope than does Terrain B. Qualitatively, the color-albedo systematics of these two terrains follow those noted for color units on Gaspra and the variations in 1-μm band depth with weathering described by Gaffeyet al.(Gaffey, M. J., J. F. Bell, R. H. Brown, T. H. Burbine, J. Piatek, K. L. Reed, and D. A. Chaky 1993.Icarus106, 573-602). Terrain A, with its slightly lower albedo, its shallower 1-μm band, and its slightly steeper visible red slope relative to Terrain B could be interpreted as the “more processed,” “more mature,” or the “more weathered” of the two terrains. Consistent with this interpretation is that Terrain A appears to be the ubiquitous background on most of Ida, while Terrain B is correlated with some small craters as well as with possible ejecta from the 10-km Azzurra impact structure. Because of these trends, it is less likely that differences between Terrains A and B are caused by an original compositional inhomogeneity within the body of Ida, although they do fall within the range known to occur within the Koronis family. The spectrum of Dactyl is similar to, but definitely different from, that of Terrain B on Ida. It does not conform to the pattern that obtains between the colors and albedos of Terrains A and B: the satellite's 1-μm band is deeper than that of Terrain B, but its albedo is lower, rather than higher. By itself, the deeper band depth could be interpreted, following Gaffeyet al., to mean that Dactyl is a less weathered version of Terrain B on Ida, but such an interpretation is at odds with

  9. Natural occurrence of hexavalent chromium in a sedimentary aquifer in Urânia, State of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Christine Bourotte

    2009-06-01

    Full Text Available Anomalous concentrations of hexavalent chromium have been detected in ground-water of the Adamantina Aquifer inat least 54 municipalities located in the northwestern region of the State of São Paulo, southeast Brazil, occasionallyexceeding the permitted limit for human consumption (0.05 mg.L-1. An investigation was conducted in the municipality of Urânia, where the highest concentrations of chromium were detected regionally. It was defined that the originof this contamination is natural, since high concentrations of chromium were detected in aquifer sandstones (averageof 221 ppm and also in pyroxenes (6000 ppm, one of the main heavy minerals found in the sediments. Besides, noother possible diffuse or point sources of contamination were observed in the study area. Stratification of ground-waterquality was observed and the highest concentrations of Cr6+ were detected at the base of the aquifer (0.12 mg.L-1,where ground-water shows elevated values for redox potential (472.5 mV and pH (8.61. The origin of Cr6+ in water may be associated with the weathering of pyroxene (augite, followed by the oxidation of Cr3+ by manganese oxides. The highest concentrations of Cr6+ are probably related to desorption reactions, due to the anomalous alkaline pHfound in ground-water at the base of the aquifer.Concentrações anômalas de cromo hexavalente foram detectadas em águas subterrâneas do Aqüífero Adamantina em pelo menos 54 municipalidades localizadas na região noroeste do Estado de São Paulo, sudeste do Brasil, algumas vezes ultrapassando o limite máximo permitido para consumo humano (0,05 mg.L-1. Um estudo foi realizado no município de Urânia, onde as mais elevadas concentrações de cromo da região foram detectadas. A origem da contaminação foi definida como natural, pois foram detectadas concentrações de cromonos arenitos do aqüífero (média 221 ppm e em piroxênios (6000 ppm, um dos principais minerais pesados encontrados nos sedimentos

  10. Further Evidence for Geochemical Diversity, and Possible Bimodality, Among Cumulate Eucrites

    Science.gov (United States)

    Warren, P. H.; Kallemeyn, G. W.

    1992-07-01

    We have used INAA, RNAA, and fused-bead analysis to determine the bulk compositions of numerous Antarctic eucrites (and also the LEW88516 SNC meteorite). Only a few of the most unusual eucrites can be discussed in the limited space here. Takeda et al. (1988) noted that Y791195 is a slowly cooled eucrite, with an equant, medium-grained texture, and pyroxene exsolution lamellae up to 10 micrometers across. In Y791195,81-3, we find lamellae up to 14 micrometers across. In this respect, Y791195 resembles RKPA80224, in which exsolution lamellae up to 12 micrometers across. We have previously discussed the evidence that RKPA80224 is a mildly accumulative rock that formed from an unusually low-mg parent melt. Our second analysis of RKPA80224 only partly confirms the unusually low incompatible trace element (ITE) content, but the Ce anomaly is consistently small (Ce/La = 0.90-1.02 x CI), and based on a weighted mean composition the implied parent melt is still unlike any noncumulate eucrite (see Fig. 1, which shows results from mass balance calculations modeling the sample as a mixture of cumulus px and plag, plus trapped melt). A parent melt similar to an extreme low-mg, variant of the "Nuevo Laredo Trend" would plausibly account for RKPA80224. The spectrum of possible parents for Y791195 is similar, even though its "true" Sm content is slightly obscured by weathering (Ce/La = 1.4 x CI). The [Sm] used in the figure is scaled to the highest CI-normalized REE concentration. Data of Mittlefehldt and Lindstrom (1991) indicate that except for exterior samples "showing extreme rustiness," Sm even in weathered eucrites is generally not altered beyond a few tens of pct. relative (sample size seems to account for more of the variation in [Sm] among interior, non-rusty samples). Even assuming a Sm content twice that assumed in the figure, the parent melt still must be well to the low-MgO/FeO, low-Sm side of all known eucrites. The LEW87002 eucrite is brecciated, but probably

  11. Impact-melt hygrometer for Mars: The case of shergottite Elephant Moraine (EETA) 79001

    Science.gov (United States)

    Liu, Yang; Chen, Yang; Guan, Yunbin; Ma, Chi; Rossman, George R.; Eiler, John M.; Zhang, Youxue

    2018-05-01

    We report volatile concentrations and hydrogen isotope compositions of impact melts and minerals in EETA 79001. We observed chemical changes in pyroxene, maskelynite (or feldspathic glass), and merrillite in contact with or inside impact melts. All pyroxene grains analyzed here are inside or close to impact melt pockets and contain 10-41 ppm H2O and enriched in D (δD = + 1729 to + 3707 ‰), with the highest values found in a grain enclosed in an impact melt pocket. Maskelynite or feldspathic glass contains 6.3 to 98 ppm H2O with δD values of +1604 to + 3938 ‰. The high H2O and δD values were obtained in those enclosed inside or in contact with the impact melts, whereas low H2O content (4 ppm) and terrestrial-like D/H value (δD of - 90 ± 82 ‰) were found in one maskelynite grain away from impact melts contains. Rims of ∼5 μm thickness of merrillite grains next to impact melts display Na-depletion by ∼0.9 wt%, and the sides in contact with impact melts show Mg-enrichment by ∼0.5 wt%. However, the H2O and δD values of merrillite interiors (39-242 ppm H2O and δD of +1682 to + 3884 ‰) do not show correlation with their proximity to the impact melts. Rather, δD and 1/H2O of merrillite form a negative trend different from that of impact melt pockets and maskelynite, suggesting post-crystallization or late-crystallization interactions with the crustal fluids. The impact melt pockets in EETA 79001 contain 121-646 ppm H2O, 4.3-13 ppm F, 13-50 ppm Cl, 707-2702 ppm S, and the δD values of +3368 to + 4639 ‰. The correlations between H2O, F, Cl, P2O5, and δD values of impact melts and feldspathic glass are consistent with mixing between a volatile-rich and high δD (+3000 to + 5000 ‰) endmember and a volatile-poor and low δD endmember. The volatile-poor and low δD endmember is consistent with magmatic volatiles stored in silicates. The volatile-rich and high δD endmember represents pre-impact alteration materials by subsurface water. Alteration

  12. A glassy lava flow from Toconce volcano and its relation with the Altiplano-Puna Magma Body in Central Andes

    Science.gov (United States)

    Godoy, B.; Rodriguez, I.; Aguilera, F.

    2012-12-01

    Toconce is a composite stratovolcano located at the San Pedro - Linzor volcanic chain (SPLVC). This volcanic chain distributes within the Altiplano-Puna region (Central Andes) which is characterized by extensive rhyodacitic-to-rhyolitic ignimbritic fields, and voluminous domes of dacitic-to-rhyolitic composition (de Silva, 1989). The felsic melts that gave origin to ignimbrites and domes at this area were generated by mixing of mantle-derived magmas and anatectic melts assimilated during their ascent through the thick crust. Thus, partially molten layers exist in the upper crust below the APVC (de Silva et al., 2006). Evidence of large volumes of such melts has been also proposed by geophysical methods (i.e. the Altiplano-Puna Magma Body; Chmielowsky et al., 1999) In this work, petrography and whole rock, mineralogical and melt inclusions geochemistry of a glassy lava flow of Toconce volcano are presented. Petrographically, this lava flow shows a porphyric texture, with euhdral to subhedral plagioclase, ortho- and clino-pyroxene phenocrysts immersed in a glassy groundmass. Geochemically, the lava flow has 64.7% wt. SiO2. The glassy groundmass (~70% wt. SiO2) is more felsic than all the lavas in the volcanic chain (47-68% wt., Godoy et al., 2011). Analyzed orthopyroxene-hosted melt inclusions show an even higher SiO2 content (72-75% wt.), and a decreasing on Al2O3, Na2O, and CaO content with differentiation. Crystallization pressures of this lava flow, obtained using Putirka's two-pyroxene and clinopyroxene-liquid models (Putirka, 2008), range between 6 and 9 kbar. According to crystallization pressures, and major element composition, a felsic source located at shallow crustal pressures - where plagioclase is a stable mineralogical phase - originated the inclusions. This could be related to the presence of the Altiplano-Puna Magma Body (APMB) located below SPLVC. On the other hand, glassy groundmass, and disequilibrium textures in minerals of this lava flow could

  13. Correlating multispectral imaging and compositional data from the Mars Exploration Rovers and implications for Mars Science Laboratory

    Science.gov (United States)

    Anderson, Ryan B.; Bell, James F.

    2013-03-01

    In an effort to infer compositional information about distant targets based on multispectral imaging data, we investigated methods of relating Mars Exploration Rover (MER) Pancam multispectral remote sensing observations to in situ alpha particle X-ray spectrometer (APXS)-derived elemental abundances and Mössbauer (MB)-derived abundances of Fe-bearing phases at the MER field sites in Gusev crater and Meridiani Planum. The majority of the partial correlation coefficients between