WorldWideScience

Sample records for pyrochlore structure final

  1. Structural disorder and transport in ternary oxides with the pyrochlore structure. Final report; FINAL

    International Nuclear Information System (INIS)

    Tuller, Harry L.

    2001-01-01

    This research program has focused on the structure-electrical property relations in families of pyrochlore compounds which exhibit, on the one hand, controlled levels of structural disorder and on the other, controlled levels of ionic and electronic conductivities. Models have been developed to evaluate the often complex defect chemistry of these systems. Much progress has been made in extracting key thermodynamic and kinetic data. From a technological standpoint, novel solid electrolytes and compatible mixed conducting electrodes have been identified and the concept of the single phase monolithic fuel cell design has been demonstrated and patented. Related work on lanthanum gallate-based perovskites has shown even more promising results for use of such materials in the monolithic fuel cell structures. Recent work on the Bi(sub 3)Zn(sub 2)Sb(sub 3)O(sub 14) Pyrochlore, a phase found at grain boundaries in varistors, was also completed. This material was found to be a mixed ionic-electronic conductor with interesting implications for grain boundary equilibration kinetics in SnO-base varistor materials. Three of the most recent projects are summarized in this paper. The results of work on the perovskites are reported in recent publications

  2. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  3. Analysis of coordination polyhedra symmetry in pyrochlore and zirconolite structures

    International Nuclear Information System (INIS)

    Troole, A.Y.; Stefanovsky, S.V.

    1999-01-01

    Zirconolite and pyrochlore are considered as promising host phases for high level waste (HLW). However, correct information on substitution mechanisms, forms of dopants incorporation in their structures and distortions in coordination polyhedra is presently unavailable. To clarify these points the authors use the electron paramagnetic resonance (EPR). Pyrochlore and three of zirconolite polytypes: zirconolite-2M, zirconolite-3T, and zirconolite-3O are considered. Pyrochlore is the parent structure for zirconolite since any zirconolite variety is produced by means of distortion of the initial pyrochlore structure. Space groups of pyrochlore and basic polymorphous zirconolite varieties found from XRD and TEM data, as well as interatomic distances and angles, were taken from reference data. This allows the determination of the most probable sites for impurities, substitution mechanisms, and local symmetry of coordination polyhedra (initial). Ions chosen for EPR were Gd(III) as an analog of trivalent rare earth and actinide elements which are also occurred in HLW and Fe(III) as a typical corrosion product which occurs in all HLW. For Gd(III) a strong ligand field approximation is suggested, theoretical computation using perturbation theory in this approximation has been carried out. All the non-diagonal members plus magnetic field were chosen as perturbation and formulate for transition frequencies, estimations of fine structure and g-factors parameters in the given approximation have been obtained

  4. Structural response of titanate pyrochlores to swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Shamblin, Jacob; Tracy, Cameron L.; Ewing, Rodney C.; Zhang, Fuxiang; Li, Weixing; Trautmann, Christina; Lang, Maik

    2016-01-01

    The structure, size, and morphology of ion tracks resulting from irradiation of five different pyrochlore compositions (A 2 Ti 2 O 7 , A = Yb, Er, Y, Gd, Sm) with 2.2 GeV 197 Au ions were investigated by means of synchrotron X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Radiation-induced amorphization occurred in all five materials analyzed following an exponential rate as a function of ion fluence. XRD patterns showed a general trend of increasing susceptibility of amorphization with increasing ratio of A- to B-site cation ionic radii (r A /r B ) with the exception of Y 2 Ti 2 O 7 and Sm 2 Ti 2 O 7 . This indicates that the track size does not necessarily increase with r A /r B , in contrast with results from previous swift heavy ion studies on Gd 2 Zr 2-x Ti x O 7 pyrochlore materials. For Y 2 Ti 2 O 7 , this effect is attributed to the significantly lower electron density of this material relative to the lanthanide-bearing pyrochlores, thus lowering the electronic energy loss (dE/dx) of the high-energy ions in this composition. An energy loss normalization procedure was performed which reveals an initial increase of amorphous track size with r A /r B that saturates above a cation radius ratio larger than Gd 2 Ti 2 O 7 . This is in agreement with previous low-energy ion irradiation experiments and first principles calculations of the disordering energy of titanate pyrochlores indicating that the same trends in disordering energy apply to radiation damage induced in both the nuclear and electronic energy loss regimes. HRTEM images indicate that single ion tracks in Yb 2 Ti 2 O 7 and Er 2 Ti 2 O 7 , which have small A-site cations and low r A /r B , exhibit a core-shell structure with a small amorphous core surrounded by a larger disordered shell. In contrast, single tracks in Gd 2 Ti 2 O 7 and Sm 2 Ti 2 O 7 , have a larger amorphous core with minimal disordered shells.

  5. Characterization, Microstructure, and Dielectric properties of cubic pyrochlore structural ceramics

    KAUST Repository

    Li, Yangyang

    2013-05-01

    The (BMN) bulk materials were sintered at 1050°C, 1100°C, 1150°C, 1200°C by the conventional ceramic process, and their microstructure and dielectric properties were investigated by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Transmission electron microscopy (TEM) (including the X-ray energy dispersive spectrometry EDS and high resolution transmission electron microscopy HRTEM) and dielectric impedance analyzer. We systematically investigated the structure, dielectric properties and voltage tunable property of the ceramics prepared at different sintering temperatures. The XRD patterns demonstrated that the synthesized BMN solid solutions had cubic phase pyrochlore-type structure when sintered at 1050°C or higher, and the lattice parameter (a) of the unit cell in BMN solid solution was calculated to be about 10.56Å. The vibrational peaks observed in the Raman spectra of BMN solid solutions also confirmed the cubic phase pyrochlore-type structure of the synthesized BMN. According to the Scanning Electron Microscope (SEM) images, the grain size increased with increasing sintering temperature. Additionally, it was shown that the densities of the BMN ceramic tablets vary with sintering temperature. The calculated theoretical density for the BMN ceramic tablets sintered at different temperatures is about 6.7521 . The density of the respective measured tablets is usually amounting more than 91% and 5 approaching a maximum value of 96.5% for sintering temperature of 1150°C. The microstructure was investigated by using Scanning Transmission Electron Microscope (STEM), X-ray diffraction (XRD). Combined with the results obtained from the STEM and XRD, the impact of sintering temperature on the macroscopic and microscopic structure was discussed. The relative dielectric constant ( ) and dielectric loss ( ) of the BMN solid solutions were measured to be 161-200 and (at room temperature and 100Hz-1MHz), respectively. The BMN solid

  6. Structural properties of the geometrically frustrated pyrochlore Tb2Ti2O7

    International Nuclear Information System (INIS)

    Han, Sang-Wook; Gardner, Jason S.; Booth, Corwin H.

    2004-01-01

    Although materials that exhibit nearest-neighbor-only antiferromagnetic interactions and geometrical frustration theoretically should not magnetically order in the absence of disorder, few such systems have been observed experimentally. One such system appears to be the pyrochlore Tb 2 Ti 2 O 7 . However, previous structural studies indicated that Tb 2 Ti 2 O 7 is an imperfect pyrochlore. To clarify the situation, we performed neutron powder diffraction (NPD) and x-ray absorption fine structure (XAFS) measurements on samples that were prepared identically to those that show no magnetic order. The NPD measurements show that the long-range structure of Tb 2 Ti 2 O 7 is well ordered with no structural transitions between 4.5 and 600 K. In particular, mean-squared displacements (u 2 's) for each site follow a Debye model with no offsets. No evidence for Tb/Ti site interchange was observed within an upper limit of 2%. Likewise, no excess or deficiency in the oxygen stoichiometry was observed, within an upper limit of 2% of the nominal pyrochlore value. Tb L III and Ti K-edge XAFS measurements from 20-300 K similarly indicate a well-ordered local structure. Other aspects of the structure are considered. We conclude that Tb 2 Ti 2 O 7 has, within experimental error, an ideal, disorder-free pyrochlore lattice, thereby allowing the system to remain in a dynamic, frustrated spin state to the lowest observed temperatures

  7. Structural properties of the geometrically frustrated pyrochlore Tb2Ti2O7

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang-Wook; Gardner, Jason S.; Booth, Corwin H.

    2004-06-14

    Although materials that exhibit nearest-neighbor-only antiferromagnetic interactions and geometrical frustration theoretically should not magnetically order in the absence of disorder, few such systems have been observed experimentally. One such system appears to be the pyrochlore Tb{sub 2}Ti{sub 2}O{sub 7}. However, previous structural studies indicated that Tb{sub 2}Ti{sub 2}O{sub 7} is an imperfect pyrochlore. To clarify the situation, we performed neutron powder diffraction (NPD) and x-ray absorption fine structure (XAFS) measurements on samples that were prepared identically to those that show no magnetic order. The NPD measurements show that the long-range structure of Tb{sub 2}Ti{sub 2}O{sub 7} is well ordered with no structural transitions between 4.5 and 600 K. In particular, mean-squared displacements (u{sup 2}'s) for each site follow a Debye model with no offsets. No evidence for Tb/Ti site interchange was observed within an upper limit of 2%. Likewise, no excess or deficiency in the oxygen stoichiometry was observed, within an upper limit of 2% of the nominal pyrochlore value. Tb L{sub III} and Ti K-edge XAFS measurements from 20-300 K similarly indicate a well-ordered local structure. Other aspects of the structure are considered. We conclude that Tb{sub 2}Ti{sub 2}O{sub 7} has, within experimental error, an ideal, disorder-free pyrochlore lattice, thereby allowing the system to remain in a dynamic, frustrated spin state to the lowest observed temperatures.

  8. The pressure-induced structural response of rare earth hafnate and stannate pyrochlore from 0.1-50 GPa

    Science.gov (United States)

    Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.

    2017-12-01

    Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. These compounds are under consideration for applications including as a proposed waste-form for actinides generated in the nuclear fuel cycle. High-pressure transformations in rare earth hafnates (A2Hf2O7, A=Sm, Eu, Gd, Dy, Y, Yb) and stannates (A2Sn2O7, A=Nd, Gd, Er) were investigated to 50 GPa by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Rare-earth hafnates form the pyrochlore structure for A=La-Tb and the defect-fluorite structure for A=Dy-Lu. Lanthanide stannates form the pyrochlore structure. Raman spectra revealed that at ambient pressure all compositions have pyrochlore-type short-range order. Stannate compositions show a larger degree of pyrochlore-type short-range ordering relative to hafnates. In situ high-pressure synchrotron XRD showed that rare earth hafnates and stannates underwent a pressure-induced phase transition to a cotunnite-like (Pnma) structure that begins between 18-25 GPa in hafnates and between 30-33 GPa in stannates. The phase transition is not complete at 50 GPa, and upon decompression, XRD indicates that all compositions transform to defect-fluorite with an amorphous component. In situ Raman spectroscopy showed that disordering in stannates and hafnates occurs gradually upon compression. Pyrochlore-structured hafnates retain short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Hafnates and stannates decompressed from 50 GPa show Raman spectra consistent with weberite-type structures, also reported in irradiated stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of 250 GPa for hafnate compositions with the pyrochlore structure, and 400 GPa for hafnate compositions with the defect-fluorite structure. Stannates have a lower bulk modulus relative to hafnates (between 80-150 GPa

  9. Ion-Exchange Reaction Of A-Site In A2Ta2O6 Pyrochlore Crystal Structure

    Directory of Open Access Journals (Sweden)

    Matsunami M.

    2015-06-01

    Full Text Available Na+ or K+ ion rechargeable battery is started to garner attention recently in Place of Li+ ion cell. It is important that A+ site ion can move in and out the positive-electrode materials. When K2Ta2O6 powder had a pyrochlore structure was only dipped into NaOH aqueous solution at room temperature, Na2Ta2O6 was obtained. K2Ta2O6 was fabricated from a tantalum sheet by a hydrothermal synthesize with KOH aqueous solution. When Na2Ta2O6 was dipped into KOH aqueous solution, K2Ta2O6 was obtained again. If KTaO3 had a perovskite structure was dipped, Ion-exchange was not observed by XRD. Because a lattice constant of pyrochlore structure of K-Ta-O system is bigger than perovskite, K+ or Na+ ion could shinny through and exchange between Ta5+ and O2− ion site in a pyrochlore structure. K+ or Na+ ion exchange of A2Ta2O6 pyrochlore had reversibility. Therefore, A2Ta2O6 had a pyrochlore structure can be expected such as Na+ ion rechargeable battery element.

  10. Structural, magnetic, and electronic transport properties of pyrochlore iridate Pr2Ir2O7

    Science.gov (United States)

    Kumar, Harish; Chaurasia, Rachna; Kumari, Pratibha; Paramanik, A. K.

    2018-04-01

    We have studied the structural, magnetic, and electronic transport properties of pyrochlore iridate Pr2Ir2O7. Structural investigation has been done using x-ray powder diffraction and Rietveld analysis. Pr2Ir2O7 crystallize in cubic crystallographic phase with Fd-3m space group. Temperature dependent magnetization data does not show magnetic bifurcation down to 2 K. Electrical resistivity data of Pr2Ir2O7 exhibits metallic behavior throughout temperature range. Below 50 K, a small rise in resistivity data of Pr2Ir2O7 is observed down to 12 K.

  11. XPS studies of ceramics with pyrochlore structure for radioactive wastes disposal

    International Nuclear Information System (INIS)

    Teterin, Yu.A.; Vukchevich, L.; Ivanov, K.E.; Utkin, I.O; Teterin, A. Yu.; Maslakov, K.I.; Yudintseva, T.S.; Yudintsev, S.V.; Stefanovsky, S.V.; Lapina, M.I. . E-mail address of corresponding author: vukas@rc.pmf.cg.ac.yu; Vukchevich, L.)

    2005-01-01

    X-ray photoelectron spectroscopy (XPS) study of ceramics CaThSn 2 O 7 and CaThZr 2 O 7 with pyrochlore structure used as matrixes for the disposal of long lived high level radioactive wastes was done. On the basis of the XPS parameters of the core and outer electrons in the binding energy range 0 - 1000 eV the oxidation states of the included metals were determined, quantitative elemental and ionic analysis was carried out and a conclusion on the monophaseness of the studied samples was drawn. The obtained data agree with the X-ray diffraction and scanning electron microscopy results. (author)

  12. Isomorphic Structural Transition in the β-Pyrochlore Oxide Superconductor KOs2O6

    Science.gov (United States)

    Yamaura, Jun-ichi; Takigawa, Masashi; Yamamuro, Osamu; Hiroi, Zenji

    2010-04-01

    A phase transition observed at Tp = 7.65 K in the β-pyrochlore oxide superconductor KOs2O6 is studied by means of heat capacity, 39K-NMR, and X-ray diffraction measurements using high-quality single crystals. We find evidence of an isomorphic structural transition at Tp without the off-center freezing of the K ion even below Tp. It is possibly related to the rattling motion of the K ion in an oversized atomic cage.

  13. The atomic structure of protons and hydrides in Sm1.92Ca0.08Sn2O7-δ pyrochlore from DFT calculations and FTIR spectroscopy

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Eurenius, K. E. J.; Rossmeisl, Jan

    2012-01-01

    A combined density functional theory and Fourier transform infrared spectroscopy study of the structure and specific site preference of protons and hydrides in the pyrochlore Sm1.92Ca0.08Sn2O7-δ is presented. Two protonic sites of particular high stability are identified, both located on O(1......) oxygen atoms closely associated with a Ca dopant. Further, the unexpected presence of Ho hydride defects in undoped, oxygen deficient Sm2Sn2O7 is reported. Finally, the stretching frequencies and relative intensities for these and other sites are calculated. The main features of the Fourier transform...

  14. Structural order parameter in the pyrochlore superconductor Cd sub 2 Re sub 2 O sub 7

    CERN Document Server

    Sergienko, I A

    2003-01-01

    It is shown that both structural phase transitions in Cd sub 2 Re sub 2 O sub 7 , which occur at T sub s sub 1 = 200 K and T sub s sub 2 = 120 K, are due to an instability of the Re tetrahedral network with respect to the same doubly degenerate long-wavelength phonon mode. The primary structural order parameter transforms according to the irreducible representation E sub u of the point group O sub h. We argue that the transition at T sub s sub 1 may be of the second order, in accordance with experimental data. We obtain the phase diagram in the space of phenomenological parameters and propose a thermodynamic path that Cd sub 2 Re sub 2 O sub 7 follows upon cooling. Coupling of the itinerant electronic system and localized spin states in pyrochlores and spinels to atomic displacements are discussed. (author)

  15. Electronic Structure of the Pyrochlore-Type Ru Oxides through the Metal--Insulator Transition

    International Nuclear Information System (INIS)

    Okamoto, J.; Fujimori, S.I.; Okane, T.; Fujimori, A.; Abbate, M.; Yoshii, S.; Sato, M.

    2003-01-01

    The electronic structures of the pyrochlore-type Ru oxides Sm 2-x Ca x Ru 2 O 7 and Sm 2-x Bi x Ru 2 O 7 , which show metal-insulator transition with increasing Ca or Bi concentration, have been studied by ultraviolet photoemission spectroscopy. Spectral changes near the Fermi level are different but reflect the tendency of their transport properties in both systems. The Sm 2-x Ca x Ru 2 O 7 system shows an energy shift, which is expected from the increase of hole in the Ru 4d t 2g band and the Sm 2 - x Bi x Ru 2 O 7 system shows spectral weight transfer within the Ru 4d t 2g band, which is expected to be observed in bandwidth-control Mott-Hubbard system. (author)

  16. Structural vs. intrinsic carriers: contrasting effects of cation chemistry and disorder on ionic conductivity in pyrochlores

    International Nuclear Information System (INIS)

    Perriot, Romain; Uberuaga, Blas P.

    2015-01-01

    We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2 Zr 2 O 7 (GZO) and Gd 2 Ti 2 O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusion with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.

  17. Single crystal growth and structure refinements of CsMxTe2-xO6 (M = Al, Ga, Ge, In) pyrochlores

    International Nuclear Information System (INIS)

    Siritanon, Theeranun; Sleight, A.W.; Subramanian, M.A.

    2011-01-01

    Graphical abstract: Single crystals of CsM x Te 2-x O 6 pyrochlores with M = Al, Ga, Ge, and In have been grown and structure refinements indicate deviations from ideal stoichiometry presumably related to mixed valency of tellurium. Highlights: → Single crystals of CsM x Te 2-x O 6 pyrochlores with M = Al, Ga, Ge, and In have been grown. → Structure refinements from single crystal X-ray diffraction data confirm e structure. → Deviations from ideal stoichiometry suggest mixed valency of tellurium and hence conductivity. -- Abstract: Single crystals of CsM x Te 2-x O 6 pyrochlores with M = Al, Ga, Ge, and In have been grown from a TeO 2 flux. Structure refinements from single crystal X-ray diffraction data are reported. These results are used to discuss deviations from ideal stoichiometry that result in electronic conductivity presumably related to mixed valency of tellurium.

  18. Structures and solid solution mechanisms of pyrochlore phases in the systems Bi2O3-ZnO-(Nb, Ta)2O5

    International Nuclear Information System (INIS)

    Tan, K.B.; Khaw, C.C.; Lee, C.K.; Zainal, Z.; Miles, G.C.

    2010-01-01

    Research highlights: → Combined XRD and ND Rietveld structural refinement of pyrochlores. → Structures and solid solution mechanisms of Bi-pyrochlores. → Bi and Zn displaced off-centre to different 96g A-site positions. → Summary of composition-structure-property of Bi-pyrochlores. - Abstract: The crystal structures of two pyrochlore phases have been determined by Rietveld refinement of combined X-ray and neutron powder diffraction data. These are stoichiometric, Bi 1.5 ZnTa 1.5 O 7 and non-stoichiometric Bi 1.56 Zn 0.92 Nb 1.44 O 6.86 . In both structures, Zn is distributed over A- and B-sites; Bi and Zn are displaced off-centre, to different 96g A-site positions; of the three sets of oxygen positions, O(1) are full, O(2) contain vacancies and O(3) contain a small number of oxygen, again in both cases. Comparisons between these structures, those of related Sb analogues and literature reports are made.

  19. Pyrochlore type semiconducting ceramic oxides in Ca-Ce-Ti-M-O system (M = Nb or Ta)-Structure, microstructure and electrical properties

    International Nuclear Information System (INIS)

    Deepa, M.; Prabhakar Rao, P.; Radhakrishnan, A.N.; Sibi, K.S.; Koshy, Peter

    2009-01-01

    A new series of pyrochlore type ceramic semiconducting oxides in Ca-Ce-Ti-M-O (M = Nb or Ta) system has been synthesized by the conventional ceramic route. The electrical conductivity measurements show that these oxides exhibit semiconducting behavior and the conductivity increases with the Ce content in the compound. Activation energy of the current carriers is in the range of 0.5-1.6 eV. The electrical conductivity in these oxides is due to the presence of Ce 3+ , which remains in the reduced state without being oxidized to Ce 4+ by structural stabilization. The photoluminescence and X-ray photoelectron spectroscopy analysis corroborate the presence of Ce in the 3+ state. Impedance spectral analysis is carried out to evaluate the transport properties and indicates that the conduction in these compounds is mainly due to electronic contribution. The X-ray powder diffraction and Raman spectroscopy analysis establishes that these oxides belong to a cubic pyrochlore type structure.

  20. Structural and photoluminescence properties of stannate based displaced pyrochlore-type red phosphors: Ca(3-x)Sn₃Nb₂O₁₄:xEu³⁺.

    Science.gov (United States)

    Sreena, T S; Prabhakar Rao, P; Francis, T Linda; Raj, Athira K V; Babu, Parvathi S

    2015-05-14

    New stannate based displaced pyrochlore-type red phosphors, Ca(3-x)Sn3Nb2O14:xEu(3+), were prepared via a conventional solid state method. The influence of partial occupancy of Sn in both A and B sites of the pyrochlore-type oxides on the photoluminescence properties was studied using powder X-ray diffraction, FT-Raman, transmission electron microscopy, scanning electron microscopy with energy dispersive spectrometry, UV-visible absorption spectroscopy, and photoluminescence excitation and emission spectra with lifetime measurements. The structural analysis establishes that these oxides belong to a cubic displaced pyrochlore type structure with a space group Fd3̄m. These phosphors exhibit strong absorptions at near UV and blue wavelength regions and emit intense multiband emissions due to Eu(3+ 5)D0-(7)F(0, 1, 2) transitions. The absence of characteristic MD transition splitting points out that local cation disorder exists in this type of displaced pyrochlores, reducing the D(3d) inversion symmetry, which is not evidenced by such disorder in the X-ray diffraction analysis. The unusual forbidden intense sharp (5)D0-(7)F0 transition indicates single site occupancy of Eu(3+) with a narrower range of bonding environment, preventing the cluster formation. This is supported by the stable (5)D0 lifetime with Eu(3+) concentration. The Judd-Ofelt intensity parameter assessment corroborates these results. The CIE color coordinates of these phosphors were found to be (0.60, 0.40), which are close to the NTSC standard values (0.67, 0.33) for a potential red phosphor.

  1. Superconducting and Structural Transitions in the β-Pyrochlore Oxide KOs2O6 under High Pressure

    Science.gov (United States)

    Ogusu, Hiroki; Takeshita, Nao; Izawa, Koichi; Yamaura, Jun-ichi; Ohishi, Yasuo; Tsutsui, Satoshi; Okamoto, Yoshihiko; Hiroi, Zenji

    2010-11-01

    Rattling-induced superconductivity in the β-pyrochlore oxide KOs2O6 is investigated under high pressure up to 5 GPa. Resistivity measurements in a high-quality single crystal reveal a gradual decrease in the superconducting transition temperature Tc from 9.7 K at 1.0 GPa to 6.5 K at 3.5 GPa, followed by a sudden drop to 3.3 K at 3.6 GPa. Powder X-ray diffraction experiments show a structural transition from cubic to monoclinic or triclinic at a similar pressure. The sudden drop in Tc is ascribed to this structural transition, by which an enhancement in Tc due to a strong electron-rattler interaction present in the low-pressure cubic phase is abrogated as the rattling of the K ion is completely suppressed or weakened in the high-pressure phase of reduced symmetry. In addition, we find two anomalies in the temperature dependence of resistivity in the low-pressure phase, which may be due to subtle changes in rattling vibration.

  2. Incorporation of uranium in pyrochlore oxides and pressure-induced phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F.X., E-mail: zhangfx@umich.edu [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Lang, M.; Tracy, C.; Ewing, R.C. [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Gregg, D.J.; Lumpkin, G.R. [Institute of Materials Engineering, ANSTO, Locked Bag 2001, Kirrawee DC 2232, NSW (Australia)

    2014-11-15

    Uranium-doped gadolinium zirconates with pyrochlore structure were studied at ambient and high-pressure conditions up to 40 GPa. The bonding environment of uranium in the structure was determined by x-ray photoelectron and Raman spectroscopies and x-ray diffraction. The uranium valence for samples prepared in air is mainly U{sup 6+}, but U{sup 4+} is present in pyrochlores fabricated in an argon atmosphere. Rietveld refinement of the XRD pattern suggests that uranium ions in pyrochlores are on the 16d site in 6-fold coordination with oxygen. At pressures greater than 22 GPa, the pyrochlore structure transformed to a cotunnite-type phase. The cotunnite high-pressure phase transformed to a defect fluorite structure on the release of pressure. - Graphical abstract: In U-bearing pyrochlore, U ions mainly occupy the 16d site and replace the smaller Zr{sup 4+}, part of the oxygen will occupy the 8b site, which is empty to most pyrochlores. At pressure of 22 GPa, the pyrochlore lattice is not stable and transforms to a cotunnite-type structure. The high-pressure structure is not stable and transform to a fluorite or back to the pyrochlore structure when pressure is released. - Highlights: • We found that U ions mainly occupy the smaller cation site in U-bearing pyrochlore. • Pyrochlore structure is not stable at pressure of more than 20 GPa. • The quenched sample has a pyrochlore or a disordered fluorite structure.

  3. Pyrochlore type semiconducting ceramic oxides in Ca-Ce-Ti-M-O system (M = Nb or Ta)-Structure, microstructure and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Deepa, M. [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019 (India); Prabhakar Rao, P., E-mail: padala_rao@yahoo.com [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019 (India); Radhakrishnan, A.N.; Sibi, K.S.; Koshy, Peter [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019 (India)

    2009-07-01

    A new series of pyrochlore type ceramic semiconducting oxides in Ca-Ce-Ti-M-O (M = Nb or Ta) system has been synthesized by the conventional ceramic route. The electrical conductivity measurements show that these oxides exhibit semiconducting behavior and the conductivity increases with the Ce content in the compound. Activation energy of the current carriers is in the range of 0.5-1.6 eV. The electrical conductivity in these oxides is due to the presence of Ce{sup 3+}, which remains in the reduced state without being oxidized to Ce{sup 4+} by structural stabilization. The photoluminescence and X-ray photoelectron spectroscopy analysis corroborate the presence of Ce in the 3+ state. Impedance spectral analysis is carried out to evaluate the transport properties and indicates that the conduction in these compounds is mainly due to electronic contribution. The X-ray powder diffraction and Raman spectroscopy analysis establishes that these oxides belong to a cubic pyrochlore type structure.

  4. Structures and solid solution mechanisms of pyrochlore phases in the systems Bi{sub 2}O{sub 3}-ZnO-(Nb, Ta){sub 2}O{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K.B., E-mail: tankb@science.upm.edu.m [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Khaw, C.C. [Department of Engineering, Universiti Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur (Malaysia); Lee, C.K. [Academic Science Malaysia, 902-4 Jalan Tun Ismail, 50480 Kuala Lumpur (Malaysia); Zainal, Z. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Miles, G.C. [Department of Engineering Materials, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2010-10-22

    Research highlights: {yields} Combined XRD and ND Rietveld structural refinement of pyrochlores. {yields} Structures and solid solution mechanisms of Bi-pyrochlores. {yields} Bi and Zn displaced off-centre to different 96g A-site positions. {yields} Summary of composition-structure-property of Bi-pyrochlores. - Abstract: The crystal structures of two pyrochlore phases have been determined by Rietveld refinement of combined X-ray and neutron powder diffraction data. These are stoichiometric, Bi{sub 1.5} ZnTa{sub 1.5}O{sub 7} and non-stoichiometric Bi{sub 1.56}Zn{sub 0.92}Nb{sub 1.44}O{sub 6.86}. In both structures, Zn is distributed over A- and B-sites; Bi and Zn are displaced off-centre, to different 96g A-site positions; of the three sets of oxygen positions, O(1) are full, O(2) contain vacancies and O(3) contain a small number of oxygen, again in both cases. Comparisons between these structures, those of related Sb analogues and literature reports are made.

  5. Synthesis, crystal structure, and magnetic properties of pyrochlore-type Eu{sub 2}Ta{sub 2}(O,N){sub 7+δ}

    Energy Technology Data Exchange (ETDEWEB)

    Anke, Bjoern; Hund, Sophie; Lorent, Christian; Lerch, Martin [Institut fuer Chemie, Technische Universitaet Berlin (Germany); Janka, Oliver; Block, Theresa; Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany)

    2017-12-13

    Pyrochlore-type Eu{sub 2}Ta{sub 2}(O,N){sub 7+δ} phases were prepared by reaction of ammonia with an amorphous europium tantalum oxide precursor. {sup 151}Eu Moessbauer and EPR spectroscopy as well as magnetic susceptibility measurements point to the presence of exclusively Eu{sup 3+}. For phase-pure samples (X-ray powder diffraction), the nitrogen content varies between 1.0 and 1.8 wt %, leading to compositions in the range Eu{sub 2}Ta{sub 2}O{sub 7.1}N{sub 0.6} - Eu{sub 2}Ta{sub 2}O{sub 6.5}N{sub 1.0}. Pyrochlore-type phases are structurally derived from the fluorite type with 1/8 of the anions missing, resulting in an ideal composition A{sub 2}B{sub 2}X{sub 7}. In Eu{sub 2}Ta{sub 2}(O,N){sub 7+δ} the excess anions partly occupy these vacancies. The prepared phases are colorless with a direct optical bandgap of 4.3 eV and they show the typical Van Vleck paramagnetic behavior known for trivalent Eu atoms. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Synthesis, crystal structure and luminescent properties of a new pyrochlore type tungstate CsGa0.333W1.667O6

    Science.gov (United States)

    Zhao, Dan; Zhao, Ji; Fan, Yun-Chang; Ma, Zhao; Zhang, Rui-Juan; Liu, Bao-Zhong

    2018-06-01

    High temperature solution reaction leads to a new tungstate compound CsGa0.333W1.667O6, whose structure was determined by single-crystal X-ray diffraction analysis. The results show that it crystallizes in pyrochlore structure with cubic space group Fd-3m and a = 10.2529 (13) Å. In this structure, Ga and W atoms are in a statistical disorder manner. The self-activated luminescent properties CsGa0.333W1.667O6 were studied. Under the excitation of 323 nm, the emission spectrum exhibits a blue emission centered at 466 nm with the chromaticity coordinates (0.1838, 0.1814).

  7. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    Science.gov (United States)

    Berry, David A [Morgantown, WV; Shekhawat, Dushyant [Morgantown, WV; Haynes, Daniel [Morgantown, WV; Smith, Mark [Morgantown, WV; Spivey, James J [Baton Rouge, LA

    2012-03-13

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  8. Re-examination of the crystal structure of the β-pyrochlore oxide superconductor KOs 2O 6 by X-ray and convergent-beam electron diffraction analyses

    Science.gov (United States)

    Yamaura, Jun-Ichi; Hiroi, Zenji; Tsuda, Kenji; Izawa, Koichi; Ohishi, Yasuo; Tsutsui, Satoshi

    2009-01-01

    The crystal structure of the β-pyrochlore oxide superconductor KOs 2O 6 is re-examined. A single-crystal X-ray diffraction (XRD) analysis at room temperature first revealed that the compound crystallizes in a cubic structure with the centrosymmetric space group Fd3¯m, as in conventional pyrochlore oxides. Later, however, Schuck et al. claimed a different non-centrosymmetric F4¯3m structure based on their single-crystal XRD analysis. To unambiguously determine the true crystal structure of KOs 2O 6, we carried out high-resolution synchrotron powder X-ray and convergent-beam electron diffraction measurements at room temperature. The space group was determined with high reliability to be centrosymmetric Fd3¯m, not F4¯3m. This confirms the importance of the K atom location in a high-symmetry site, which causes unusually large rattling of the K atom.

  9. Evolution of pyrochlore composition in a carbonatite complex of the Eastern European platform

    International Nuclear Information System (INIS)

    Nechelyastnov, G.N.; Pozharitskaya, L.K.

    1986-01-01

    X-ray microanalysis is used to study 29 pyrochlore group mineral samples of the East European platform carbonatite complex. Pyrochlore sequential evolution: frm high in tantalum and uranium, passing uranium poor in tantalum to low in tantalum and uranium and also an increased content of iron, manganese, magnesium and lead, is shown. Calcium, niobium, tantalum non-homogeneous distribution in pyrochlore grains is detected. Peculiarities of pyrochlore group mineral composition reflect the effect of specific geologic-structural position of the East European platform carbonatites high depth of formation and intensive development of deformations) on general evolution for pyrochlore of carbonatite complexes and related to it pyrochlore specific nature, in particular, high uranium and low niobium contents

  10. Heat capacity and magnetic properties of fluoride CsFe{sup 2+}Fe{sup 3+}F{sub 6} with defect pyrochlore structure

    Energy Technology Data Exchange (ETDEWEB)

    Gorev, M.V., E-mail: gorev@iph.krasn.ru [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Institute of Engineering Physics and Radio Electronics, Siberian State University, 660074 Krasnoyarsk (Russian Federation); Flerov, I.N. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Institute of Engineering Physics and Radio Electronics, Siberian State University, 660074 Krasnoyarsk (Russian Federation); Tressaud, A. [Institut de Chimie de la Matière Condensée, ICMCB-CNRS, Université Bordeaux, 33608 Pessac Cedex (France); Bogdanov, E.V. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Astafijev Krasnoyarsk State Pedagogical University, 660049 Krasnoyarsk (Russian Federation); Kartashev, A.V. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Krasnoyarsk State Agrarian University, 660049 Krasnoyarsk (Russian Federation); Bayukov, O.A. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Eremin, E.V. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Institute of Engineering Physics and Radio Electronics, Siberian State University, 660074 Krasnoyarsk (Russian Federation); Krylov, A.S. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation)

    2016-05-15

    Heat capacity, Mössbauer and Raman spectra as well as magnetic properties of fluoride CsFe{sub 2}F{sub 6} with defect pyrochlore structure were studied. In addition to recently found above room temperature three successive structural transformations Pnma-Imma-I4{sub 1}amd-Fd-3m, phase transition of antiferromagnetic nature with the 13.7 K Neel temperature and a broad heat capacity anomaly with a maximum at about 30 K were observed. The room temperature symmetry Pnma is unchanged at least down to 7 K. Simple model of indirect bond used to estimate the exchange interactions and to propose a magnetic structure model. - Graphical abstract: The ordered arrangement of Fe{sup 2+} and Fe{sup 3+} ions in high-spin states as well as antiferromagnetic phase transition followed by significant magnetic frustrations were found in pyrocholore-related CsFe{sup 2+}Fe{sup 3+}F{sub 6}. A magnetic structure was proposed using a simple model of indirect bonds. - Highlights: • The Pnma structure in pyrocholore CsFe{sub 2}F{sub 6} is stable down to helium temperature. • Mössbauer spectra confirmed the ordering of Fe{sup 2+} and Fe{sup 3+} ions. • Antiferromagnetic transformation and significant magnetic frustrations are found. • Experimental magnetic entropy agrees with entropy for Fe ions in high-spin state. • Superexchange interactions were calculated and a magnetic structure was proposed.

  11. Pyrochlore as nuclear waste form. Actinide uptake and chemical stability

    Energy Technology Data Exchange (ETDEWEB)

    Finkeldei, Sarah Charlotte

    2015-07-01

    Radioactive waste is generated by many different technical and scientific applications. For the past decades, different waste disposal strategies have been considered. Several questions on the waste disposal strategy remain unanswered, particularly regarding the long-term radiotoxicity of minor actinides (Am, Cm, Np), plutonium and uranium. These radionuclides mainly arise from high level nuclear waste (HLW), specific waste streams or dismantled nuclear weapons. Although many countries have opted for the direct disposal of spent fuel, from a scientific and technical point of view it is imperative to pursue alternative waste management strategies. Apart from the vitrification, especially for trivalent actinides and Pu, crystalline ceramic waste forms are considered. In contrast to glasses, crystalline waste forms, which are chemically and physically highly stable, allow the retention of radionuclides on well-defined lattice positions within the crystal structure. Besides polyphase ceramics such as SYNROC, single phase ceramics are considered as tailor made host phases to embed a specific radionuclide or a specific group. Among oxidic single phase ceramics pyrochlores are known to have a high potential for this application. This work examines ZrO{sub 2} based pyrochlores as potential nuclear waste forms, which are known to show a high aqueous stability and a high tolerance towards radiation damage. This work contributes to (1) understand the phase stability field of pyrochlore and consequences of non-stoichiometry which leads to pyrochlores with mixed cationic sites. Mixed cationic occupancies are likely to occur in actinide-bearing pyrochlores. (2) The structural uptake of radionuclides themselves was studied. (3) The chemical stability and the effect of phase transition from pyrochlore to defect fluorite were probed. This phase transition is important, as it is the result of radiation damage in ZrO{sub 2} based pyrochlores. ZrO{sub 2} - Nd{sub 2}O{sub 3} pellets

  12. Pyrochlore as nuclear waste form. Actinide uptake and chemical stability

    International Nuclear Information System (INIS)

    Finkeldei, Sarah Charlotte

    2015-01-01

    Radioactive waste is generated by many different technical and scientific applications. For the past decades, different waste disposal strategies have been considered. Several questions on the waste disposal strategy remain unanswered, particularly regarding the long-term radiotoxicity of minor actinides (Am, Cm, Np), plutonium and uranium. These radionuclides mainly arise from high level nuclear waste (HLW), specific waste streams or dismantled nuclear weapons. Although many countries have opted for the direct disposal of spent fuel, from a scientific and technical point of view it is imperative to pursue alternative waste management strategies. Apart from the vitrification, especially for trivalent actinides and Pu, crystalline ceramic waste forms are considered. In contrast to glasses, crystalline waste forms, which are chemically and physically highly stable, allow the retention of radionuclides on well-defined lattice positions within the crystal structure. Besides polyphase ceramics such as SYNROC, single phase ceramics are considered as tailor made host phases to embed a specific radionuclide or a specific group. Among oxidic single phase ceramics pyrochlores are known to have a high potential for this application. This work examines ZrO 2 based pyrochlores as potential nuclear waste forms, which are known to show a high aqueous stability and a high tolerance towards radiation damage. This work contributes to (1) understand the phase stability field of pyrochlore and consequences of non-stoichiometry which leads to pyrochlores with mixed cationic sites. Mixed cationic occupancies are likely to occur in actinide-bearing pyrochlores. (2) The structural uptake of radionuclides themselves was studied. (3) The chemical stability and the effect of phase transition from pyrochlore to defect fluorite were probed. This phase transition is important, as it is the result of radiation damage in ZrO 2 based pyrochlores. ZrO 2 - Nd 2 O 3 pellets with pyrochlore and defect

  13. Synthesis by two methods and crystal structure determination of a new pyrochlore-related compound Sm{sub 2}FeTaO{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Martinez, Leticia M., E-mail: lettorresg@yahoo.com [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Ruiz-Gomez, Miguel A. [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, San Luis Potosi, S.L.P. 78290 (Mexico); Figueroa-Torres, M.Z.; Juarez-Ramirez, Isaias [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Moctezuma, Edgar [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, San Luis Potosi, S.L.P. 78290 (Mexico); and others

    2012-04-16

    Graphical abstract: The monoclinic (space group C2/c) structure of a new compound, Sm{sub 2}FeTaO{sub 7} shows an alternating Sm-O and Fe/Ta-O layers. In the Fe/Ta-O layer, Fe/Ta1 and Fe/Ta3 cations are coordinated by six oxygen atoms, forming irregular octahedral interconnected into a hexagonal tungsten bronze (HTB) type network. The HTB layer is a fundamental framework in the pyrohlore-related structure. Highlights: Black-Right-Pointing-Pointer Pyrochlore-related compound Sm{sub 2}FeTaO{sub 7} prepared by solid state reaction and sol-gel. Black-Right-Pointing-Pointer Sm{sub 2}FeTaO{sub 7} crystallizes with a monoclinic crystal structure and space group C2/c. Black-Right-Pointing-Pointer The compound is synthesized by sol-gel at lower temperature and time than solid state. Black-Right-Pointing-Pointer Surface area of sol-gel Sm{sub 2}FeTaO{sub 7} is 10 times higher than that prepared by solid state. - Abstract: This paper reports on the synthesis of a new pyrochlore-related compound Sm{sub 2}FeTaO{sub 7} by both solid state reaction and sol-gel synthesis routes. Structural features were determined by X-ray powder diffraction and Rietveld refinement and were corroborated using Transmission Electron Microscopy (TEM). The results revealed that Sm{sub 2}FeTaO{sub 7} crystallized in the monoclinic system with space group C2/c and the following cell parameters: a = 13.1307(5) Angstrom-Sign , b = 7.5854(3) Angstrom-Sign , c = 11.6425(4) Angstrom-Sign and {beta} = 100.971(2) Degree-Sign . The monoclinic structure of Sm{sub 2}FeTaO{sub 7} showed an arrangement of alternating Sm-O and Fe/Ta-O layers and two types of irregular octahedra of Fe/Ta-O, which are interconnected into a hexagonal tungsten bronze (HTB)-type network. On the other hand, Sm{sub 2}FeTaO{sub 7} prepared by sol-gel was obtained with lower particle sizes than the solid state produced compound. The difference in particle size causes a difference of one order of magnitude in the specific surface area. In

  14. Weyl magnons in breathing pyrochlore antiferromagnets

    Science.gov (United States)

    Li, Fei-Ye; Li, Yao-Dong; Kim, Yong Baek; Balents, Leon; Yu, Yue; Chen, Gang

    2016-01-01

    Frustrated quantum magnets not only provide exotic ground states and unusual magnetic structures, but also support unconventional excitations in many cases. Using a physically relevant spin model for a breathing pyrochlore lattice, we discuss the presence of topological linear band crossings of magnons in antiferromagnets. These are the analogues of Weyl fermions in electronic systems, which we dub Weyl magnons. The bulk Weyl magnon implies the presence of chiral magnon surface states forming arcs at finite energy. We argue that such antiferromagnets present a unique example, in which Weyl points can be manipulated in situ in the laboratory by applied fields. We discuss their appearance specifically in the breathing pyrochlore lattice, and give some general discussion of conditions to find Weyl magnons, and how they may be probed experimentally. Our work may inspire a re-examination of the magnetic excitations in many magnetically ordered systems. PMID:27650053

  15. Investigation of structural and electrical properties of vanadium substituted disordered pyrochlore-type Ho{sub 2−x}V{sub x}Zr{sub 2}O{sub 7} nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Karamat, Nazia, E-mail: naziakaramatgoraya@yahoo.com [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan (Pakistan); Ashiq, Muhammad Naeem, E-mail: naeemashiqqau@yahoo.com [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan (Pakistan); Najam-ul-Haq, Muhammad [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan (Pakistan); Ali, Irshad; Iqbal, M. Asif; Irfan, Muhammad [Department of Physics, Bahauddin Zakariya University, Multan (Pakistan); Abbas, Yasir; Athar, Muhammad [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan (Pakistan)

    2014-04-01

    Graphical abstract: - Highlights: • Normal microemulsion method has been used for the synthesis of zirconates nanomaterials. • Structure shifted towards highly disordered pyrochlore state with substitution. • The electrical resistivity increase with the vanadium content. • The dielectric constant show resonance behavior. • The synthesized materials are suitable for microwave devices. - Abstract: Disordered pyrochlore system with composition Ho{sub 2−x}V{sub x}Zr{sub 2}O{sub 7} (where x = 0, 0.25, 0.50, 0.75 and 1) has been synthesized by the normal microemulsion route to examine the effect of vanadium substitution on structural and electrical properties. The prepared compounds are characterized by several techniques including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, energy dispersive X-ray fluorescence (ED-XRF), energy dispersive spectra (EDS), scanning electron microscopy (SEM), temperature dependent electrical and frequency dependent dielectric measurements. The XRD analysis confirms the formation of disordered pyrochlore phase with crystallite size 7–30 nm while a second phase is also observed in the highly substituted materials. The increase in resistivity is attributed to the removal of low energy pathway due to cation disordering. The dielectric constant decreases due to lowering of dipole moment with substitution and its resonance behavior shifted toward higher frequencies. The electrical and dielectric measurements suggest that materials are suitable for high frequency electronic devices, such as oscillators, resonators and frequency filters.

  16. Frustration under pressure: Exotic magnetism in new pyrochlore oxides

    Directory of Open Access Journals (Sweden)

    C. R. Wiebe

    2015-04-01

    Full Text Available Pyrochlore structures, of chemical formula A2B2O7 (A and B are typically trivalent and tetravalent ions, respectively, have been the focus of much activity in the condensed matter community due to the ease of substitution of rare earth and transition metal ions upon the two interpenetrating corner-shared tetrahedral lattices. Over the last few decades, superconductivity, spin liquid states, spin ice states, glassy states in the absence of chemical disorder, and metal-insulator transitions have all been discovered in these materials. Geometric frustration plays a role in the relevant physics of all of these phenomena. In the search for new pyrochlore materials, it is the RA/RB cation radius ratio which determines the stability of the lattice over the defect fluorite structure in the lower limit. Under ambient pressure, the pyrochlores are stable for 1.36 ≤ RA/RB ≤ 1.71. However, using high pressure synthesis techniques (1-10 GPa of pressure, metastable pyrochlores exist up to RA/RB = 2.30. Many of these compounds are stable on a timescale of years after synthesis, and provide a means to greatly enhance exchange, and thus test theories of quantum magnetism and search for new phenomena. Within this article, we review new pyrochlore compounds synthesized via high pressure techniques and show how the ground states are extremely sensitive to chemical pressure.

  17. The fluorite-pyrochlore transformation of Ho2-yNdyZr2O7

    International Nuclear Information System (INIS)

    Clements, Richard; Hester, James R.; Kennedy, Brendan J.; Ling, Chris D.; Stampfl, Anton P.J.

    2011-01-01

    Twelve members of the Ho 2-y Nd y Zr 2 O 7 series, prepared using conventional solid state methods, have been characterised by neutron powder diffraction. Ho 2 Zr 2 O 7 has a defect fluorite structure whereas Nd 2 Zr 2 O 7 is found to adopt the ordered pyrochlore structure with the composition induced fluorite-pyrochlore transformation occurring near y=1. Rietveld analysis on the neutron data for all the compositions reveals an increase in lattice parameter as a function of y across the entire series, with a small discontinuity associated with the transformation. The neutron profile results suggest that domains of pyrochlore-type initially begin to form before crystallising into a separate phase, and therefore that anion and cation ordering processes are distinct. There is a strong correlation between the extent of disorder in the anion sublattice and the x-parameter of 48f oxygen. These results point the way to a better understanding of the stability observed in pyrochlore structures. - Graphical abstract: Neutron diffraction profiles for Nd 2-y Ho y Zr 2 O 7 type oxides reveal details of the transformation from the ordered pyrochlore structure (y=0) to the disordered fluorite structure (y=2). Highlights: → Structures of twelve members of the Ho 2-y Nd y Zr 2 O 7 series studied using neutron powder diffraction. → Domains of pyrochlore-type materials form at low doping levels. → Higher doping stabilises the pyrochlore. → Anion and cation ordering processes are distinct.

  18. Processing glass-pyrochlore composites for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Pace, S.; Cannillo, V.; Wu, J.; Boccaccini, D.N.; Seglem, S.; Boccaccini, A.R.

    2005-01-01

    Glass matrix composites have been developed as alternative materials to immobilize nuclear solid waste, in particular actinides. These composites are made of soda borosilicate glass matrix, into which particles of lanthanum zirconate pyrochlore are encapsulated in concentrations of 30 vol.%. The fabrication process involves powder mixing followed by hot-pressing. At the relatively low processing temperature used (620 deg. C), the pyrochlore crystalline structure of the zirconate, which is relevant for containment of radioactive nuclei, remains unaltered. The microstructure of the composites exhibits a homogeneous distribution of isolated pyrochlore particles in the glass matrix and strong bonding at the matrix-particle interfaces. Hot-pressing was found to lead to high densification (95% th.d.) of the composite. The materials are characterized by relatively high elastic modulus, flexural strength, hardness and fracture toughness. A numerical approach using a microstructure-based finite element solver was used in order to investigate the mechanical properties of the composites

  19. Order and disorder in the local and long-range structure of the spin-glass pyrochlore, Tb{sub 2}Mo{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu; Huq, Ashfia; Booth, Corwin H.; Ehlers, Georg; Greedan, John E.; Gardner, Jason S.

    2011-02-11

    To understand the origin of the spin-glass state in molybdate pyrochlores, the structure of Tb{sub 2}Mo{sub 2}O{sub 7} is investigated using two techniques: the long-range lattice structure was measured using neutron powder diffraction (NPD), and local structure information was obtained from the extended x-ray absorption fine structure (EXAFS) technique. While the long-range structure appears generally well ordered, enhanced mean-squared site displacements on the O(1) site and the lack of temperature dependence of the strongly anisotropic displacement parameters for both the Mo and O(1) sites indicate some disorder exists. Likewise, the local structure measurements indicate some Mo-Mo and Tb-O(1) nearest-neighbor disorder exists, similar to that found in the related spin-glass pyrochlore, Y{sub 2}Mo{sub 2}O{sub 7}. Although the freezing temperature in Tb{sub 2}Mo{sub 2}O{sub 7}, 25 K, is slightly higher than in Y{sub 2}Mo{sub 2}O{sub 7}, 22 K, the degree of local pair distance disorder is actually less in Tb{sub 2}Mo{sub 2}O{sub 7}. This apparent contradiction is considered in light of the interactions involved in the freezing process.

  20. Thermal annealing of natural, radiation-damaged pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter; Mihailova, Boriana [Hamburg Univ. (Germany). Dept. of Earth Sciences; Beirau, Tobias [Hamburg Univ. (Germany). Dept. of Earth Sciences; Stanford Univ., CA (United States). Dept. of Geological Sciences; and others

    2017-03-01

    Radiation damage in minerals is caused by the α-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400-1000 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1.10{sup 18} α-decay events per gram (dpg)], Panda Hill/Tanzania (1.6 wt% Th, 1.6.10{sup 18} dpg), and Blue River/Canada (10.5 wt% U, 115.4.10{sup 18} dpg), are compared with a crystalline reference pyrochlore from Schelingen (Germany). The type of structural recovery depends on the initial degree of radiation damage (Panda Hill 28%, Blue River 85% and Miass 100% according to XRD), as the recrystallization temperature increases with increasing degree of amorphization. Raman spectra indicate reordering on the local scale during annealing-induced recrystallization. As Raman modes around 800 cm{sup -1} are sensitive to radiation damage (M. T. Vandenborre, E. Husson, Comparison of the force field in various pyrochlore families. I. The A{sub 2}B{sub 2}O{sub 7} oxides. J. Solid State Chem. 1983, 50, 362, S. Moll, G. Sattonnay, L. Thome, J. Jagielski, C. Decorse, P. Simon, I. Monnet, W. J. Weber, Irradiation damage in Gd{sub 2}Ti{sub 2}O{sub 7} single crystals: Ballistic versus ionization processes. Phys. Rev. 2011, 84, 64115.), the degree of local order was deduced from the ratio of the integrated intensities of the sum of the Raman bands between 605 and 680 cm{sup -1} divided by the sum of the integrated intensities of the bands between 810 and 860 cm{sup -1}. The most radiation damaged pyrochlore (Miass) shows an abrupt recovery of both, its short- (Raman) and long-range order (X-ray) between 800 and 850 K, while the weakly damaged pyrochlore (Panda Hill) begins to recover at considerably lower temperatures (near 500 K

  1. Atomic disorder in Gd{sub 2}Zr{sub 2}O{sub 7} pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F. X. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Lang, M. [Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Ewing, R. C. [Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States)

    2015-05-11

    Gd{sub 2}Zr{sub 2}O{sub 7} pyrochlore with different degrees of cation disorder were synthesized by isothermal annealing at various temperatures (1100–1550 °C), and the related changes in the structure were investigated by ambient and high pressure x-ray diffraction (XRD) measurements. Unit cell parameters increase almost linearly with increasing treatment temperature. The degree of cation order in pyrochlore also increases with the increase of temperature, but saturates at ∼60%. The compressibility of the pyrochlore structures decreases when the degree of cation order increases. High pressure XRD measurements also indicate that the phase stability of Gd{sub 2}Zr{sub 2}O{sub 7} is not very sensitive to the degree of atomic disorder in the pyrochlore structure.

  2. Soft modes in the easy plane pyrochlore antiferromagnet

    International Nuclear Information System (INIS)

    Champion, J D M; Holdsworth, P C W

    2004-01-01

    Thermal fluctuations lift the high ground state degeneracy of the classical nearest neighbour pyrochlore antiferromagnet, with easy plane anisotropy, giving a first-order phase transition to a long range ordered state. We show, from spin wave analysis and numerical simulation, that even below this transition a continuous manifold of states, of dimension N 2/3 , exist (N is the number of degrees of freedom). As the temperature goes to zero a further 'order by disorder' selection is made from this manifold. The pyrochlore antiferromagnet Er 2 Ti 2 O 7 is believed to have an easy plane anisotropy and is reported to have the same magnetic structure. This is perhaps surprising, given that the dipole interaction lifts the degeneracy of the classical model in favour of a different structure. We interpret our results in the light of these facts

  3. Lanthanide stannate pyrochlores (Ln2Sn2O7; Ln = Nd, Gd, Er) at high pressure.

    Science.gov (United States)

    Turner, Katlyn M; Tracy, Cameron L; Mao, Wendy L; Ewing, Rodney C

    2017-11-09

    Lanthanide stannate pyrochlores (Ln2Sn2O7; Ln=Nd, Gd, and Er) were investigated in situ to 50 GPa in order to determine their structural response to compression and compare it to that of lanthanide titanate, zirconate, and hafnate pyrochlores. The cation radius ratio of A3+/B4+ in pyrochlore oxides (A2B2O7) is thought to be the dominant property that influences their compression response. The ionic radius of Sn4+ is intermediate to that of Ti4+, Zr4+, and Hf4+, but the bond in stannate pyrochlore is more covalent than the bonds in titanates, zirconate, and hafnates. In stannates, the pyrochlore cation and anion sublattices begin to disorder at 0.3 GPa. The extent of sublattice disorder vs. pressure is greater in stannates with a smaller Ln3+ cation. Stannate pyrochlores (Fd-3m) begin a sluggish transformation to a cotunnite-like structure (Pnma) at ~28 GPa; similar transitions have been observed in titanate, zirconate, and hafnate pyrochlore at varying pressures with cation radius ratio. The extent of the phase transition vs. pressure varies directly with the size of the Ln3+ cation. Post-decompression from ~50 GPa, Er2Sn2O7 and Gd2Sn2O7 adopt a pyrochlore structure, rather than the multiscale defect-fluorite + weberite structure adopted by Nd2Sn2O7 that is characteristic of titanate, zirconate, and hafnate pyrochlore treated to similar conditions. Like pyrochlore titanates, zirconates, and hafnates, the bulk modulus, B0, of stannates varies linearly and inversely with cation radius ratio. The trends of bulk moduli in stannates in this study are in excellent agreement with previous experimental studies on stannates, and suggest that the size of the Ln3+ cation is a primary determining factor of B0. Additionally, when normalized to rA/rB, the bulk moduli of stannates are comparable to those of zirconates and hafnates, which vary from titanates. Our results suggest that the cation radius ratio strongly influences the bulk moduli of stannates as well as

  4. Hydrothermal synthesis of electrode materials pyrochlore tungsten trioxide film

    Science.gov (United States)

    Guo, Jingdong; Li, Yingjeng James; Stanley Whittingham, M.

    Hydrothermal synthesis methods have been successfully used to prepare new transition-metal oxides for cathodes in electrochemical devices such as lithium batteries and electrochromic windows. The tungsten oxides were the first studied, but the method has been extended to the oxides of molybdenum, vanadium and manganese. Sodium tungsten oxide films with the pyrochlore structure have been prepared on gold/alumina and indium-doped tin oxide substrates. These films reversibly and rapidly intercalate lithium and hydrogen ions.

  5. Many-Body Theory of Pyrochlore Iridates and Related Materials

    Science.gov (United States)

    Wang, Runzhi

    perform combined density functional plus dynamical mean-field calculations in Lu2Ir2O7, Y2Ir2O 7, Eu2Ir2O7, with spin-orbit coupling included and both single-site and cluster approximations appiled. A broad range of Weyl metal is predicted as the intervening phase in the metal-insulator transition. By comparing to experiments, we find that the single-site approximation fails to predict the gap values and substantial difference between the Y and Eu-compound, demonstrating the inadequacy of this approximation and indicating the key role played by the intersite effects. Finally, we provide a more accurate description of the vicinity of the metal-insulator and topological transitions implied by density functional plus cluster dynamical mean-field calculations of pyrochlore iridates. We find definitive evidence of the Weyl semimetal phase, the electronic structure of which can be approximately described as ``Weyl rings" with an extremely flat dispersion of one of the Weyl bands. This Weyl semimetal phase is further investigated by the k • p analysis fitting to the numerical results. We find that this unusual structure leads to interesting behavior in the optical conductivity including a Hall effect in the interband component, and to an enhanced susceptibility.

  6. Yttrium bismuth titanate pyrochlore mixed oxides for photocatalytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Merka, Oliver

    2012-10-18

    In this work, the sol-gel synthesis of new non-stoichiometric pyrochlore titanates and their application in photocatalytic hydrogen production is reported. Visible light response is achieved by introducing bismuth on the A site or by doping the B site by transition metal cations featuring partially filled d orbitals. This work clearly focusses on atomic scale structural changes induced by the systematical introduction of non-stoichiometry in pyrochlore mixed oxides and the resulting influence on the activity in photocatalytic hydrogen production. The materials were characterized in detail regarding their optical properties and their atomic structure. The pyrochlore structure tolerates tremendous stoichiometry variations. The non-stoichiometry in A{sub 2}O{sub 3} rich compositions is compensated by distortions in the cationic sub-lattice for the smaller Y{sup 3+} cation and by evolution of a secondary phase for the larger Bi{sup 3+} cation on the A site. For TiO{sub 2} rich compositions, the non-stoichiometry leads to a special vacancy formation in the A and optionally O' sites. It is shown that pyrochlore mixed oxides in the yttrium bismuth titanate system represent very active and promising materials for photocatalytic hydrogen production, if precisely and carefully tuned. Whereas Y{sub 2}Ti{sub 2}O{sub 7} yields stable hydrogen production rates over time, the bismuth richer compounds of YBiTi{sub 2}O{sub 7} and Bi{sub 2}Ti{sub 2}O{sub 7} are found to be not stable under irradiation. This drawback is overcome by applying a special co-catalyst system consisting of a precious metal core and a Cr{sub 2}O{sub 3} shell on the photocatalysts.

  7. A spin-frustrated cobalt(II) carbonate pyrochlore network.

    Science.gov (United States)

    Zheng, Yanzhen; Ellern, Arkady; Kögerler, Paul

    2011-11-01

    The crystal structure of the cobalt(II) carbonate-based compound cobalt(II) dicarbonate trisodium chloride, Co(CO(3))(2)Na(3)Cl, grown from a water-ethanol mixture, exhibits a three-dimensional network of corner-sharing {Co(4)(μ(3)-CO(3))(4)} tetrahedral building blocks, in which the Co(II) centres define a pyrochlore lattice and reside in a slightly distorted octahedral Co(O-CO(2))(6) environment. The space outside the hexagonal framework defined by these interlinked groups is occupied by Na(+) and Cl(-) ions. Antiferromagnetic coupling between adjacent Co(II) centres, mediated by carbonate bridges, results in geometric spin frustration which is typical for pyrochlore networks. The Co and Cl atoms reside on the special position 3, one Na atom on position 2 and a carbonate C atom on position 3.

  8. Ion irradiation of rare-earth- and yttrium-titanate-pyrochlores

    International Nuclear Information System (INIS)

    Wang, S.X.; Wang, L.M.; Ewing, R.C.; Govindan Kutty, K.V.

    2000-01-01

    Pyrochlore, A 1-2 B 2 O 6 (O,OH,F) 0-1 , is an actinide-bearing phase in Synroc, a polyphase ceramic proposed for the immobilization of high level nuclear waste. Structural damage due to alpha-decay events can significantly affect the chemical and physical stability of the nuclear waste form. Pyrochlore can effectively incorporate a variety of actinides into its structure. Four titanate pyrochlores were synthesized with compositions of Gd 2 Ti 2 O 7 , Sm 2 Ti 2 O 7 , Eu 2 Ti 2 O 7 and Y 2 Ti 2 O 2 . These samples were irradiated with 1 MeV Kr + in order to simulate alpha-decay damage and were observed by in situ electron microscopy. Irradiations were conducted from 25 K to 1023 K. At room temperature, Gd-, Sm- and Eu-pyrochlores amorphized at a dose of ∼2x10 14 ions/cm 2 (∼0.5 dpa) and Y-pyrochlore amorphized at 4x10 14 ions/cm 2 (∼0.8 dpa). The amorphization dose became higher at elevated temperatures with different rates of increase for each composition. The critical temperatures for amorphization are ∼1100 K for Gd-, Sm-, Eu-pyrochlore and ∼780 K for Y-pyrochlore. The rare-earth-pyrochlores are more susceptible to amorphization and have higher critical temperatures than Y-pyrochlore. The difference in amorphization dose and critical temperature is attributed to the different cascade sizes caused by the different cation masses of the target. Based on a model of cascade quenching, the larger cascade is related to a lower amorphization dose and higher critical temperature. The irradiated materials were studied by electron diffraction and high-resolution electron microscopy. All the pyrochlores transformed to a fluorite substructure prior to the completion of amorphization of the observed regions. This transformation was caused by the disordering between cations and between oxygen and oxygen vacancies. The concurrence of cation disordering with amorphization suggests the partial recrystallization of the displacement cascades. Isolated cascade damage

  9. Investigation into the magnetic properties of pyrochlore-type rare-earth hafnates

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Jung Hwan; Kremer, Reinhard K.; Lin, Chengtian [MPI for Solid State Research, Stuttgart (Germany)

    2015-07-01

    Cubic rare-earths transition metal pyrochlores with composition R{sub 2}TM{sub 2}O{sub 7} have attracted broad attention because of their unusual magnetic ground state properties related to geometrical frustration of the pyrochlores lattice. So far, the investigation focused mainly on 3d and 4d transition metal systems. The magnetic properties of rare-earths 5d TM pyrochlores are comparatively less well studied. Here we report on the single-crystal growth and the magnetic properties of some rare-earth hafnates (R =Nd, Gd, Dy; TM = Hf) of composition R{sub 2}Hf{sub 2}O{sub 7}. Nd{sub 2}Hf{sub 2}O{sub 7} and Gd{sub 2}Hf{sub 2}O{sub 7} crystallize with the cubic pyrochlores structure whereas diverging reports on the structure of Dy{sub 2}Hf{sub 2}O{sub 7} are available in literature. Crystals of R{sub 2}Hf{sub 2}O{sub 7} have been grown and their structural and magnetic properties have been investigated. Our investigations confirm Nd{sub 2}Hf{sub 2}O{sub 7} and Gd{sub 2}Hf{sub 2}O{sub 7} to crystallize in the cubic pyrochlores structure. Antiferromagnetic ordering below ∝0.5 K has been observed by magnetic susceptibility and heat capacity measurements for both compounds.

  10. Theoretical and experimental investigations of frustrated pyrochlore magnets

    International Nuclear Information System (INIS)

    Champion, John Dickon Mathison

    2001-01-01

    This thesis describes the investigation of frustrated magnetic systems based on the pyrochlore lattice of corner-sharing tetrahedra. Monte Carlo simulations and analytical calculations have been performed on a pyrochlore ferromagnet with local (111) easy-axis anisotropy related to the problem of 'spin ice'. The anisotropy-temperature-magnetic field phase diagram was determined. It contained a tricritical point as well as features related to some real ferroelectrics. A pyrochlore antiferromagnet with local (111) easy-plane anisotropy was studied by Monte Carlo simulation. A general expression for its degenerate ground states was discovered and normal- modes out of the ground states were calculated. Both systems are frustrated yet have a long-range ordered state at low temperature. The degeneracy lifting observed is discussed as well as the reasons for its presence. The rare-earth titanate series Ln 2 Ti 2 O 7 (Ln = rare earth), crystallizes in the Fd3-barm space group, with the magnetic ions situated on the 16c sites which constitute the pyrochlore lattice. Crystal-field effects are known to play a significant role in the frustration observed in these compounds. Powder neutron diffraction was performed on gadolinium and erbium titanate. Both systems are frustrated antiferromagnets yet show long-range magnetic order at ∼ 1 K and ∼ 1.2 K respectively. The magnetic structures of both these compounds have been determined by powder neutron diffraction techniques and related to other theoretical results as well as the theoretical results of the author. Further neutron scattering experiments on the 'spin ice' materials Ho 2 Ti 2 O 7 and Dy 2 Ti 2 O 7 are also described. (author)

  11. Properties and recrystallization of radiation damaged pyrochlore and titanite

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter

    2016-11-02

    Radiation damage in minerals is caused by the alpha-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400-1400 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG) (Zietlow et al., in print). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia (6.4 wt% Th, 23.1.10{sup 18} a-decay events per gram (dpg)), Zlatoust/Russia (6.3 wt% Th, 23.1.10{sup 18} dpg), Panda Hill/Tanzania (1.6 wt% Th, 1.6.10{sup 18} dpg), and Blue River/Canada (10.5 wt% U, 115.4.10{sup 18} dpg), are compared with a crystalline reference pyrochlore from Schelingen (Germany). The type of structural recovery depends on the initial degree of radiation damage (Panda Hill 28 %, Blue River 85 %, Zlatoust and Miass 100 % according to XRD), as the recrystallization temperature increases with increasing degree of amorphization. Raman spectra indicate reordering on the local scale during annealing-induced recrystallization. As Raman modes around 800 cm{sup -1} are sensitive to radiation damage (Vandenborre and Husson 1983, Moll et al. 2011), the degree of local order was deduced from the ratio of the integrated intensities of the sum of the Raman bands between 605 and 680 cm{sup -1} devided by the sum of the integrated intensities of the bands between 810 and 860 cm{sup -1}. The most radiation damaged pyrochlores (Miass and Zlatoust) show an abrupt recovery of both, its short- (Raman) and long-range order (X-ray) between 800 and 850 K. The volume decrease upon recrystallization in Zlatoust pyrochlore was large enough to crack the sample repeatedly. In contrast, the weakly damaged pyrochlore (Panda Hill) begins to recover at considerably lower temperatures (near 500 K), extending over a temperature range of ca. 300 K, up to 800 K (Raman). The pyrochlore from Blue River shows in its

  12. Density Functional Theory Study of Leaching Performance of Different Acids on Pyrochlore (100) Surface

    Science.gov (United States)

    Yang, Xiuli; Fang, Qing; Ouyang, Hui

    2018-06-01

    Pyrochlore leaching using hydrofluoric, sulfuric, and hydrochloric acids has been studied via experimental methods for years, but the interactions between niobium atoms on the pyrochlore surface and different acids have not been investigated. In this work, first-principles calculations based on density functional theory were used to elucidate the leaching performance of these three acids from the viewpoint of geometrical and electronic structures. The calculation results indicate that sulfate, chloride, and fluoride anions influence the geometric structure of pyrochlore (100) to different extents, decreasing in the order: sulfate, fluoride, chloride. Orbitals of O1 and O2 atoms of sulfate hybridized with those of surface niobium atom. Fluorine orbitals hybridized with those of surface niobium atoms. However, no obvious overlap exists between any orbitals of chlorine and surface niobium, revealing that chlorine does not interact chemically with surface niobium atoms.

  13. Dielectric properties and microstructural characterization of cubic pyrochlored bismuth magnesium niobates

    KAUST Repository

    Zhang, Yuan

    2013-08-06

    Cubic bismuth pyrochlores in the Bi2O3 Bi 2O3-MgO-Nb2O5 Nb2O 5 system have been investigated as promising dielectric materials due to their high dielectric constant and low dielectric loss. Here, we report on the dielectric properties and microstructures of cubic pyrochlored Bi 1.5 MgNb 1.5 O 7 Bi1.5MgNb1.5O7 (BMN) ceramic samples synthesized via solid-state reactions. The dielectric constant (measured at 1 MHz) was measured to be ∼ 120 ∼120 at room temperature, and the dielectric loss was as low as 0.001. X-ray diffraction patterns demonstrated that the BMN samples had a cubic pyrochlored structure, which was also confirmed by selected area electron diffraction (SAED) patterns. Raman spectrum revealed more than six vibrational models predicted for the ideal pyrochlore structure, indicating additional atomic displacements of the A and O′ O\\' sites from the ideal atomic positions in the BMN samples. Structural modulations of the pyrochlore structure along the [110] and [121] directions were observed in SAED patterns and high-resolution transmission electron microscopy (HR-TEM) images. In addition, HR-TEM images also revealed that the grain boundaries (GBs) in the BMN samples were much clean, and no segregation or impure phase was observed forming at GBs. The high dielectric constants in the BMN samples were ascribed to the long-range ordered pyrochlore structures since the electric dipoles formed at the superstructural direction could be enhanced. The low dielectric loss was attributed to the existence of noncontaminated GBs in the BMN ceramics. © 2013 Springer-Verlag Berlin Heidelberg.

  14. Study of the nearly constant dielectric loss regime in ionic conductors with pyrochlore-like structure; Estudio del regimen de perdidas dielectricas constantes en conductores ionicos con estructura de tipo pirocloro

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Guillen, M. r.; Fuentes, A. F.; Diaz-Guillen, J. a.; Santamaria, J.; Leon, C.

    2012-07-01

    We report on ac conductivity measurement of oxide ion conductors with composition Gd{sub 2}(ZryTi{sub 1}-y){sub 2}O{sub 7} and a pyrochlore type structure, at temperatures between -20 and 250 degree centigrade and in the frequency range from 1 Hz to 3 MHz by using impedance spectroscopy. Results show that a crossover from a power law dependence to a linear frequency dependence (or nearly constant loss behavior) in the ac conductivity can be clearly observed in a wide temperature range. This crossover is found to be thermally activated, and its activation energy ENCL to be much lower than the activation energy Edc for the dc conductivity. We also found that the values of ENCL are almost independent of composition, and therefore of the concentration of mobile oxygen vacancies, unlike those of Edc. Moreover, for each composition, the values of E{sub N}CL=0.67{+-}0.04 eV are very similar to those estimated for the energy barrier for the ions to leave their cages, E{sub {alpha}}=0.69{+-}0.05 eV. These results support that the nearly constant loss behavior, ubiquitous in ionic conductors, is originated from caged ion dynamics. (Author) 33 refs.

  15. Aspects of reduction clorination of pyrochlore concentrates

    International Nuclear Information System (INIS)

    Gameiro, D.H.; Brocchi, E.A.

    1985-01-01

    Reduction chlorination experiments were carried out with two different Brazilian pyrochlore concentrates in order to evaluate the effects of some variables on the extent of niobium pentoxide gaseification as well as to compare the behavior of concentrate under the same chlorination conditions. The pyrochlore concentrates from Araxa (MG) and Catalao (GO), Brazil, were submitted to X ray diffraction and X ray fluorescence analysis for determining their chemical compositions. Kinetic curves were obtained with the main variables being temperature and percentage of reducing agent. Analysis of the condensed material in terms of Nb 2 O 5 indicated that chlorination can be used to produce niobium pentoxide. (Author) [pt

  16. Lanthanide stannate pyrochlores (Ln2Sn2O7; Ln  =  Nd, Gd, Er) at high pressure

    Science.gov (United States)

    Turner, Katlyn M.; Tracy, Cameron L.; Mao, Wendy L.; Ewing, Rodney C.

    2017-12-01

    Lanthanide stannate pyrochlores (Ln2Sn2O7; Ln  =  Nd, Gd, and Er) were investigated in situ to 50 GPa in order to determine their structural response to compression and compare their response to that of lanthanide titanate, zirconate, and hafnate pyrochlores. The cation radius ratio of A3+/B4+ in pyrochlore oxides (A2B2O7) is thought to be the dominant feature that influences their response on compression. The ionic radius of Sn4+ is intermediate to that of Ti4+, Zr4+, and Hf4+, but the 〈Sn-O〉 bond in stannate pyrochlore is more covalent than the 〈B-O〉 bonds in titanates, zirconate, and hafnates. In stannates, based on in situ Raman spectroscopy, pyrochlore cation and anion sublattices begin to disorder with the onset of compression, first measured at 0.3 GPa. The extent of sublattice disorder versus pressure is greater in stannates with a smaller Ln3+ cation. Stannate pyrochlores (Fd-3m) begin a sluggish transformation to an orthorhombic, cotunnite-like structure at ~28 GPa similar transitions have been observed in titanate, zirconate, and hafnate pyrochlores at varying pressures (18-40 GPa) with cation radius ratio. The extent of the phase transition versus pressure varies directly with the size of the Ln3+ cation. Post-decompression from ~50 GPa, Er2Sn2O7 and Gd2Sn2O7 adopt a pyrochlore structure, rather than the multi-scale defect-fluorite  +  weberite-type structure adopted by Nd2Sn2O7 that is characteristic of titanate, zirconate, and hafnate pyrochlores under similar conditions. Like pyrochlore titanates, zirconates, and hafnates, the bulk modulus, B 0, of stannates varies linearly and inversely with cation radius ratio from 1 1 1 GPa (Nd2Sn2O7) to 251 GPa (Er2Sn2O7). The trends of bulk moduli in stannates in this study are in excellent agreement with previous experimental studies on stannates and suggest that the size of the Ln3+ cation is the primary determining factor of B 0. Additionally, when normalized to r A

  17. Investigation of annealed and metamict pyrochlore minerals by x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Greegor, R.B.; Lytle, F.W.; Ewing, R.C.; Chakoumakos, B.C.; Lumpkin, G.R.

    1984-01-01

    Materials of the pyrochlore structure type exhibit a variety of interesting properties including phases capable of acting as hosts for actinides in radioactive wastes. Studies of curium doped gadolinium titanate phases (Gd 2 Ti 2 O 7 ) have been made which showed that the radiation damage ingrowth followed an exponential relationship. For the study reported here a series of synthetic pyrochlores were produced having the titanate phase with the general formula (RE) 2 Ti 2 O 7 , RE = Er, Y 2 , Gd 2 , Dy, La. Additionally a set of metamict (radiation damaged) pyrochlores was examined in both a natural and post temperature annealed state. Experiments were conducted on these samples using the Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Structure (XANES) techniques. In summary, these studies show that in pyrochlore structure types the Ti-O cage undergoes changes due to radiation damage. The individual Ti-O bonds become more disordered which leads to a loss of short and long range order and, ultimately, to expansion of the bulk material. 2 refs., 2 figs

  18. Combined experimental–theoretical study of the optoelectronic properties of non-stoichiometric pyrochlore bismuth titanate

    KAUST Repository

    Noureldine, Dalal; Lardhi, Sheikha F.; Ziani, Ahmed; Harb, Moussab; Cavallo, Luigi; Takanabe, Kazuhiro

    2015-01-01

    A combination of experimental and computational methods was applied to investigate the crystal structure and optoelectronic properties of the non-stoichiometric pyrochlore Bi2−xTi2O7−1.5x. The detailed experimental protocol for both powder and thin

  19. Novel rattling of K atoms in aluminium-doped defect pyrochlore tungstate

    International Nuclear Information System (INIS)

    Shoko, Elvis; Kearley, Gordon J; Peterson, Vanessa K; Thorogood, Gordon J; Mutka, Hannu; Koza, Michael M; Yamaura, Jun-ichi; Hiroi, Zenji

    2014-01-01

    Rattling dynamics have been identified as fundamental to superconductivity in defect pyrochlore osmates and aluminium vanadium intermetallics, as well as low thermal conductivity in clathrates and filled skutterudites. Combining inelastic neutron scattering (INS) measurements and ab initio molecular dynamics (MD) simulations, we use a new approach to investigate rattling in the Al-doped defect pyrochlore tungstates: AAl 0.33 W 1.67 O 6 (A = K, Rb, Cs). We find that although all the alkali metals rattle, the rattling of the K atoms is unique, not only among the tungstates but also among the analogous defect osmates, KOs 2 O 6 and RbOs 2 O 6 . Detailed analysis of the MD trajectories reveals that two unique features set the K dynamics apart from the rest, namely, (1) quasi one-dimensional local diffusion within a cage, and (2) vibration at a range of frequencies. The local diffusion is driven by strongly anharmonic local potentials around the K atoms exhibiting a double-well structure in the direction of maximum displacement, which is also the direction of local diffusion. On the other hand, vibration at a range of frequencies is a consequence of the strong anisotropy in the local potentials around the K atoms as revealed by directional magnitude spectra. We present evidence to show that it is the smaller size rather than the smaller mass of the K rattler which leads to the unusual dynamics. Finally, we suggest that the occurrence of local diffusion and vibration at a range of frequencies in the dynamics of a single rattler, as found here for the K atoms, may open new possibilities for phonon engineering in thermoelectric materials. (paper)

  20. Crystal chemistry of pyrochlore from the Mesozoic Panda Hill carbonatite deposit, western Tanzania

    Science.gov (United States)

    Boniface, Nelson

    2017-02-01

    The Mesozoic Panda Hill carbonatite deposit in western Tanzania hosts pyrochlore, an ore and source of niobium. This study was conducted to establish the contents of radioactive elements (uranium and thorium) in pyrochlore along with the concentration of niobium in the ore. The pyrochlore is mainly hosted in sövite and is structurally controlled by NW-SE (SW dipping) or NE-SW (NW dipping) magmatic flow bands with dip angles of between 60° and 90°. Higher concentrations of pyrochlore are associated with magnetite, apatite and/or phlogopite rich flow bands. Electron microprobe analyses on single crystals of pyrochlore yield very low UO2 concentrations that range between 0 and 0.09 wt% (equivalent to 0 atoms per formula unit: a.p.f.u.) and ThO2 between 0.55 and 1.05 wt% (equivalent to 0.1 a.p.f.u.). The analyses reveal high concentrations of Nb2O5 (ranging between 57.13 and 65.50 wt%, equivalent to a.p.f.u. ranging between 1.33 and 1.43) and therefore the Panda Hill Nb-oxide is classified as pyrochlore sensu stricto. These data point to a non radioactive pyrochlore and a deposit rich in Nb at Panda Hill. The Panda Hill pyrochlore has low concentrations of REEs as displayed by La2O3 that range between 0.10 and 0.49 wt% (equivalent to a.p.f.u. ranging between 0 and 0.01) and Ce2O3 ranging between 0.86 and 1.80 wt% (equivalent to a.p.f.u. ranging between 0.02 and 0.03), Pr2O3 concentrations range between 0 and 0.23 wt% (equivalent to 0 a.p.f.u.), and Y2O3 is 0 wt% (equivalent to 0 a.p.f.u.). The abundance of the REEs in pyroclore at the Panda Hill Carbonatite deposit is of no economic significance.

  1. Experimental hydrothermal alteration of crystalline and radiation-damaged pyrochlore

    International Nuclear Information System (INIS)

    Geisler, T.; Seydoux-Guillaume, A.-M.; Poeml, P.; Golla-Schindler, U.; Berndt, J.; Wirth, R.; Pollok, K.; Janssen, A.; Putnis, A.

    2005-01-01

    We have performed hydrothermal experiments with a crystalline microlite and a heavily self-irradiation-damaged (i.e., X-ray amorphous) betafite in a solution containing 1 mol/l HCl and 1 mol/l CaCl 2 at 175 deg. C for 14 days. The well-crystalline microlite grains were partly (∼5-10 μm rim) replaced by a Ca and Na-poorer, defect pyrochlore phase with a larger unit-cell and a sharp chemical gradient at the interface (on a nm scale) to the unreacted core. The amorphous betafite grains (up to ∼2 mm in diameter), on the other hand, were completely transformed into an intergrowth of different crystalline phases (polycrystalline anatase and rutile, a yet unidentified Nb-Ta oxide, and a Y-REE phase), showing complex non-equilibrium structures. Our experimental observations bear a remarkable resemblance to those made on natural samples. They indicate that the processes of the fluid-pyrochlore interaction are influenced by self-irradiation structural damage and that thermodynamic equilibrium models can hardly be applied to adequately describe such systems

  2. Experimental Insights into Ground-State Selection of Quantum XY Pyrochlores

    Science.gov (United States)

    Hallas, Alannah M.; Gaudet, Jonathan; Gaulin, Bruce D.

    2018-03-01

    Extensive experimental investigations of the magnetic structures and excitations in the XY pyrochlores have been carried out over the past decade. Three families of XY pyrochlores have emerged: Yb2B2O7, Er2B2O7, and, most recently, [Formula: see text]Co2F7. In each case, the magnetic cation (either Yb, Er, or Co) exhibits XY anisotropy within the local pyrochlore coordinates, a consequence of crystal field effects. Materials in these families display rich phase behavior and are candidates for exotic ground states, such as quantum spin ice, and exotic ground-state selection via order-by-disorder mechanisms. In this review, we present an experimental summary of the ground-state properties of the XY pyrochlores, including evidence that they are strongly influenced by phase competition. We empirically demonstrate the signatures for phase competition in a frustrated magnet: multiple heat capacity anomalies, suppressed TN or TC, sample- and pressure-dependent ground states, and unconventional spin dynamics.

  3. Final disposal room structural response calculations

    International Nuclear Information System (INIS)

    Stone, C.M.

    1997-08-01

    Finite element calculations have been performed to determine the structural response of waste-filled disposal rooms at the WIPP for a period of 10,000 years after emplacement of the waste. The calculations were performed to generate the porosity surface data for the final set of compliance calculations. The most recent reference data for the stratigraphy, waste characterization, gas generation potential, and nonlinear material response have been brought together for this final set of calculations

  4. George E. Valley, Jr. Prize Talk: Quantum Frustrated Magnetism and its Expression in the Ground State Selection of Pyrochlore Magnets

    Science.gov (United States)

    Ross, Kate

    In the search for novel quantum states of matter, such as highly entangled Quantum Spin Liquids, ``geometrically frustrated'' magnetic lattices are essential for suppressing conventional magnetic order. In three dimensions, the pyrochlore lattice is the canonical frustrated geometry. Magnetic materials with pyrochlore structures have the potential to realize unusual phases such as ``quantum spin ice'', which is predicted to host emergent magnetic monopoles, electrons, and photons as its fundamental excitations. Even in pyrochlores that form long range ordered phases, this often occurs through unusual routes such as ``order by disorder'', in which the fluctuation spectrum dictates the preferred ordered state. The rare earth-based pyrochlore series R2Ti2O7 provides a fascinating variety of magnetic ground states. I will introduce the general anisotropic interaction Hamiltonian that has been successfully used to describe several materials in this series. Using inelastic neutron scattering, the relevant anisotropic interaction strengths can be extracted quantitatively. I will discuss this approach, and its application to two rare earth pyrochlore materials, Er2Ti2O7 and Yb2Ti<2O7, whose ground state properties have long been enigmatic. From these studies, ErTi2O7 and Yb2Ti2O7 have been suggested to be realizations of "quantum order by disorder" and "quantum spin ice", respectively. This research was supported by NSERC of Canada and the National Science Foundation.

  5. Strain engineered pyrochlore at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Park, Changyong; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-22

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy2Ti2O7 and Dy2Zr2O7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defects in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy2Zr2O7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy2Zr2O7. These improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.

  6. Tunable Magnon Weyl Points in Ferromagnetic Pyrochlores.

    Science.gov (United States)

    Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2016-10-07

    The dispersion relations of magnons in ferromagnetic pyrochlores with Dzyaloshinskii-Moriya interaction are shown to possess Weyl points, i. e., pairs of topologically nontrivial crossings of two magnon branches with opposite topological charge. As a consequence of their topological nature, their projections onto a surface are connected by magnon arcs, thereby resembling closely Fermi arcs of electronic Weyl semimetals. On top of this, the positions of the Weyl points in reciprocal space can be tuned widely by an external magnetic field: rotated within the surface plane, the Weyl points and magnon arcs are rotated as well; tilting the magnetic field out of plane shifts the Weyl points toward the center Γ[over ¯] of the surface Brillouin zone. The theory is valid for the class of ferromagnetic pyrochlores, i. e., three-dimensional extensions of topological magnon insulators on kagome lattices. In this Letter, we focus on the (111) surface, identify candidates of established ferromagnetic pyrochlores which apply to the considered spin model, and suggest experiments for the detection of the topological features.

  7. Preparation, structural characterization, and enhanced electrical conductivity of pyrochlore-type (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Xia, X.L. [Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin (China); Institute of Oceanography Instruments, Shandong Academy of Science, Chinese National Engineering Research Center for Marine Monitoring Equipment, Qingdao (China); Liu, Z.G.; Ouyang, J.H. [Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin (China); Zheng, Y. [Institute of Oceanography Instruments, Shandong Academy of Science, Chinese National Engineering Research Center for Marine Monitoring Equipment, Qingdao (China)

    2012-08-15

    (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} (0 {<=} x {<=} 1.0) samples are prepared by solid state reaction method using Sm{sub 2}O{sub 3}, Eu{sub 2}O{sub 3}, and ZrO{sub 2} as starting materials. The phase composition and microstructure of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics are investigated by X-ray diffraction (XRD), scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM) coupled with selected area electron diffraction and Raman spectroscopy. XRD and TEM show that all the samples exhibit a single pyrochlore-type structure. HRTEM observation indicates that the whole grain interior of Sm{sub 2}Zr{sub 2}O{sub 7} ceramic is a perfect crystal free of any dislocation. Raman spectroscopy reveals that the degree of structural disorder of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics increases gradually with increasing Eu content. The electrical conductivity of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics is investigated by impedance spectroscopy in the air and hydrogen atmospheres, respectively. The electrical conductivity of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics increases with increasing Eu content at identical temperature levels. Both the activation energy E{sub g} and the pre-exponential factor {sigma}{sub 0g} for the grain conductivity gradually increase with increasing Eu content. As the ionic conductivity shows no obvious change in both air and hydrogen atmospheres, the conduction of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} is purely ionic with negligible electronic conduction. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Steam Reforming of CH4 Using Ni- Substituted Pyrochlore Catalysts

    Science.gov (United States)

    Haynes, Daniel J.

    The steam reforming of methane (SMR) continues to remain an important industrial reaction for large-scale production of H2 as well as synthesis gas mixtures which can be used for the production of useful chemicals (e.g. methanol). Although SMR is a rather mature technology, traditional nickel based catalysts used industrially are subjected to severe temperatures and reaction conditions, which lead to irreversible activity loss through sintering, support collapse, and carbon formation. Pyrochlore-based mixed oxide have been identified as refractory materials that can be modified through the substitution of catalytic metals and other promoting species into the structure to mitigate these issues causing deactivation. For this study, a lanthanum zirconate pyrochlore catalyst was substituted with Ni to determine whether the oxide structure could effectively stabilize the activity of the catalytic metal during the SMR. The effect of different variables including calcination temperature, a comparison of a substituted versus supported Ni pyrochlore catalyst, Ni weight loading, and Sr promotion have been evaluated to determine the location of the Ni in the structure, and their effect on catalytic behavior. It was revealed that the effect of calcination temperature on a 6wt% Ni substituted pyrochlore produced by the Pechini method demonstrated very little Ni was soluble in the pyrochlore lattice. It was further revealed that by XRD, TEM, and atom probe tomography that, despite the metal loading, Ni exsolves from the structure upon crystallization of the pyrochlore at 700°C, and forms NiO at the surface and grain boundaries. An additional separate La2ZrNiO6 perovskite phase also began to form at higher temperatures (>800°C). Increasing calcination temperature was found to lead to slight sintering of the NiO at the surface, which made the NiO more reducible. Meanwhile decreasing the Ni weight loading was found to produce a lower reduction temperature due to the presence of

  9. Transmission electron microscopic study of pyrochlore to defect-fluorite transition in rare-earth pyrohafnates

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, Chinnathambi, E-mail: Karthikchinnathambi@boisestate.edu [Department of Materials Science and Engineering, Boise State University, 1910 University drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83415 (United States); Anderson, Thomas J. [Department of Materials Science and Engineering, Boise State University, 1910 University drive, Boise, ID 83725 (United States); Gout, Delphine [Oak Ridge National Lab, Neutron Scattering Science Division, Oak Ridge, TN (United States); Ubic, Rick [Department of Materials Science and Engineering, Boise State University, 1910 University drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83415 (United States)

    2012-10-15

    A structural transition in rare earth pyrohafnates, Ln{sub 2}Hf{sub 2}O{sub 7} (Ln=Y, La, Pr, Nd, Tb, Dy, Yb and Lu), has been identified. Neutron diffraction showed that the structure transforms from well-ordered pyrochloric to fully fluoritic through the lanthanide series from La to Lu with a corresponding increase in the position parameter x of the 48f (Fd3{sup Macron }m) oxygen site from 0.330 to 0.375. As evidenced by the selected area electron diffraction, La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} exhibited a well-ordered pyrocholoric structure with the presence of intense superlattice spots, which became weak and diffuse (in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}) before disappearing completely as the series progressed towards the Lu end. High resolution electron microscopic studies showed the breakdown of the pyrochlore ordering in the form of antiphase domains resulting in diffused smoke-like superlattice spots in the case of Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. - Graphical abstract: Transmission electron microscopic studies showed the ordered pyrochlore to defect fluorite transition in rare-earth pyrohafnates to occur via the formation of anti-phase domains to start with. Highlights: Black-Right-Pointing-Pointer Pyrochlore to fluorite structural transition in rare earth pyrohafnates. Black-Right-Pointing-Pointer La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} showed well ordered pyrochlore structure. Black-Right-Pointing-Pointer Short range ordering in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. Black-Right-Pointing-Pointer Break down of pyrochlore ordering due to antiphase boundaries. Black-Right-Pointing-Pointer Rest of the series showed fluoritic structure.

  10. Band structure of metallic pyrochlore ruthenates Bi2Ru2O7 and Pb2Ru2O/sub 6.5/

    International Nuclear Information System (INIS)

    Hsu, W.Y.; Kasowski, R.V.; Miller, T.; Chiang, T.

    1988-01-01

    The band structure of Bi 2 Ru 2 O 7 and Pb 2 Ru 2 O/sub 6.5/ has been computed self-consistently from first principles for the first time by the pseudofunction method. We discover that the 6s bands of Bi and Pb are very deep and unlikely to contribute to the metallic behavior as previously believed. The unoccupied 6p bands, however, are only several eV above the Fermi energy and are mixed with the Ru 4d band at the Fermi surface via the framework O atoms, leading to band conduction and delocalized magnetic moments. The predicted location of the 6s bands and the location and width of the O 2p band are confirmed by synchrotron radiation and ultraviolet electron spectroscopy of single crystals

  11. Preparation and characterization of bismuth ruthenate pyrochlore via solid state reaction and sol-gel methods

    Directory of Open Access Journals (Sweden)

    Mayuree Sansernnivet

    2010-01-01

    Full Text Available Bismuth ruthenate pyrochlores, potential cathode materials for intermediate temperature solid oxide fuel cells(ITSOFCs, were prepared via solid-state and sol-gel method. Effects of the preparation routes and conditions on the phase and microstructures of the materials were investigated in this study using XRD and SEM. The study showed that the preparation method and the adding sequence of the starting meterials have a significant effect on the crystal phase and the particle size obtained. Sol-gel synthesis could yield a material with only pyrochlore structure, i.e. Bi2Ru2O7, while the solid state method yielded powder with a small amount of the secondary RuO2 phase. The sol-gel synthesis resulted in materialswith a finer particle size (~0.3-1.0 μm compared to powder synthesized via the solid state reaction method.

  12. High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaemin [Department; Shih, Pei-Chieh [Department; Tsao, Kai-Chieh [Department; Pan, Yung-Tin [Department; Yin, Xi [Department; Sun, Cheng-Jun [X-ray; Yang, Hong [Department

    2017-08-17

    Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge for the production of hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (Y2Ru2O7-δ) electrocatalyst that has significantly enhanced performance towards OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1-M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates Y2Ru2O7-δ electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band center energy for the overlap between Ru 4d and O 2p orbitals and therefore more stable Ru-O bond than RuO2, highlighting the effect of yttrium on the enhancement in stability. The Y2Ru2O7-δ pyrochlore is also free of expensive iridium metal, thus a cost-effective candidate for practical applications.

  13. Emergence of magnetic order in ultra-thin pyrochlore iridate films

    Science.gov (United States)

    Cheema, Suraj; Serrao, Claudy; Mundy, Julia; Patankar, Shreyas; Birgeneau, Robert; Orenstein, Joseph; Salahuddin, Sayeef; Ramesh, Ramamoorthy

    We report on thickness-dependent magnetotransport in (111) - oriented Pb2Ir2O7-x (Pb227) epitaxial thin films. For thicknesses greater than 4 nm, the magnetoresistance (MR) of metallic Pb227 is positive, linear and non-saturated up to 14 T. Meanwhile at 4 nm, the conduction turns nonmetallic and the MR becomes negative and asymmetric upon field-cooling; such traits are reminiscent of all-in-all-out (AIAO) magnetic order in the insulating pyrochlore iridates. Hysteretic low-field MR dips and trained-untrained resistivity bifurcations suggest the presence of magnetic conducting domain walls within the chiral AIAO spin structure. Beyond just AIAO order, angular-dependent MR indicates a magnetic phase space hosting 2-in-2-out (2I2O) spin ice order. Such anomalous magnetotransport calls for re-evaluation of the pyrochlore iridate phase diagram, as epitaxially strained Pb227 exhibits traits reminiscent of both the insulating magnetic and metallic spin-liquid members. Furthermore, these results open avenues for realizing topological phase predictions in (111) - oriented pyrochlore slabs of kagome-triangular iridate heterostructures. This work is supported by the Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231.

  14. Energetics of stepwise disordering transformation in pyrochlores, RE2Ti2O7 (RE = Y, Gd and Dy)

    International Nuclear Information System (INIS)

    Hayun, Shmuel; Tran, Tien B.; Lian, Jie; Fuentes, Antonio F.; Navrotsky, Alexandra

    2012-01-01

    Graphical abstract: The transformation from disordered to more order state in the pyrochlore system go through multiple energetics steps; the cation sublattice rearrangement is control by the diffusion of the cations while the anion sublattice display an irreversible transformation from a disordered to a higher-ordered state via diffusionless transformation. - Abstract: The capacity to incorporate actinide cations makes pyrochlore titanates first-choice phases in titanate-based waste form ceramics. Despite broad interest in the pyrochlore order–disorder transformation due to the cumulative effects of 238 U, 235 U and 232 Th radioactive decay and their daughter products, only limited thermodynamic data, mainly based on simulations of ion-beam irradiation experiments, have been reported. In this work, for the first time, heavily disordered pyrochlores, RE 2 Ti 2 O 7 (RE = Y, Gd and Dy), from mechanical milling of their constituent oxides, were thermochemically investigated. Two types of thermal events were identified using high-temperature differential scanning calorimetry and correlated to the structural disorder in the cation and anion sublattices. Moreover, the excess formation energy measured by oxide melt solution calorimetry shows that the smaller the ionic radius of the RE, the easier it is to remove damage domains.

  15. High-pressure resistivity measurements on the β-pyrochlore oxide KOs2O6

    Science.gov (United States)

    Ogusu, Hiroki; Takeshita, Nao; Yamaura, Jun-Ichi; Okamoto, Yoshihiko; Hiroi, Zenji

    2010-12-01

    High-pressure resistivity measurements are performed on a high-quality single crystal of the β-pyrochlore oxide KOs2O6 in the pressure range of 1.0 to 5.0 GPa. The superconducting transition temperature T increases slightly from 9.6 K at ambient pressure to 9.8 K at 1.0 GPa, decreases gradually with increasing pressure, and suddenly drops from 6.5 K to 3.2 K across P=3.6GPa. The drop of T at P is likely to be related to a change in the rattling vibration associated with a symmetry-breaking structural transition.

  16. Low-temperature specific heat of the β-pyrochlore oxide superconductors under high pressure

    Science.gov (United States)

    Isono, T.; Iguchi, D.; Machida, Y.; Izawa, K.; Salce, B.; Flouquet, J.; Ogusu, H.; Yamaura, J.; Hiroi, Z.

    2011-01-01

    We report the results of the low-temperature specific heat measurements of the single crystalline β-pyrochlore oxide superconductors AOs 2O 6 (A=K, Rb, and Cs) under high pressure up to 13 GPa. We find that superconducting transition temperature ( Tc) monotonically increases for CsOs 2O 6 and RbOs 2O 6, while the one for KOs 2O 6 decreases by applying the pressure. With further increasing the pressure, Tc is suddenly suppressed at the same lattice volume for all compounds, concomitant with the first-order structural phase transition.

  17. Thermal annealing of natural, radiation-damaged pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter; Beirau, Tobias; Mihailova, Boriana; Groat, Lee A.; Chudy, Thomas; Shelyug, Anna; Navrotsky, Alexandra; Ewing, Rodney C.; Schlüter, Jochen; Škoda, Radek; Bismayer, Ulrich

    2017-01-01

    Abstract

    Radiation damage in minerals is caused by the α-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400–1000 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1·10

  18. Ceramic Single Phase High-Level Nuclear Waste Forms: Hollandite, Perovskite, and Pyrochlore

    Science.gov (United States)

    Vetter, M.; Wang, J.

    2017-12-01

    The lack of viable options for the safe, reliable, and long-term storage of nuclear waste is one of the primary roadblocks of nuclear energy's sustainable future. The method being researched is the incorporation and immobilization of harmful radionuclides (Cs, Sr, Actinides, and Lanthanides) into the structure of glasses and ceramics. Borosilicate glasses are the main waste form that is accepted and used by today's nuclear industry, but they aren't the most efficient in terms of waste loading, and durability is still not fully understood. Synroc-phase ceramics (i.e. hollandite, perovskite, pyrochlore, zirconolite) have many attractive qualities that glass waste forms do not: high waste loading, moderate thermal expansion and conductivity, high chemical durability, and high radiation stability. The only downside to ceramics is that they are more complex to process than glass. New compositions can be discovered by using an Artificial Neural Network (ANN) to have more options to optimize the composition, loading for performance by analyzing the non-linear relationships between ionic radii, electronegativity, channel size, and a mineral's ability to incorporate radionuclides into its structure. Cesium can be incorporated into hollandite's A-site, while pyrochlore and perovskite can incorporate actinides and lanthanides into their A-site. The ANN is used to predict new compositions based on hollandite's channel size, as well as the A-O bond distances of pyrochlore and perovskite, and determine which ions can be incorporated. These new compositions will provide more options for more experiments to potentially improve chemical and thermodynamic properties, as well as increased waste loading capabilities.

  19. Disorder-induced transition from grain boundary to bulk dominated ionic diffusion in pyrochlores

    International Nuclear Information System (INIS)

    Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.

    2017-01-01

    In this paper, we use molecular dynamics simulations to investigate the role of grain boundaries (GBs) on ionic diffusion in pyrochlores, as a function of the GB type, chemistry of the compound, and level of cation disorder. We observe that the presence of GBs promotes oxygen transport in ordered and low-disordered systems, as the GBs are found to have a higher concentration of mobile carriers with higher mobilities than in the bulk. Thus, in ordered samples, the ionic diffusion is 2D, localized along the grain boundary. When cation disorder is introduced, bulk carriers begin to contribute to the overall diffusion, while the GB contribution is only slightly enhanced. In highly disordered samples, the diffusive behavior at the GBs is bulk-like, and the two contributions (bulk vs. GB) can no longer be distinguished. There is thus a transition from 2D/GB dominated oxygen diffusivity to 3D/bulk dominated diffusivity versus disorder in pyrochlores. Finally, these results provide new insights into the possibility of using internal interfaces to enhance ionic conductivity in nanostructured complex oxides.

  20. High-pressure effects on the superconductivity of β-pyrochlore oxides AOs2O6

    International Nuclear Information System (INIS)

    Muramatsu, Takaki; Takeshita, Nao; Terakura, Chikeko; Takagi, Hidenori; Tokura, Yoshinori; Yonezawa, Shigeki; Muraoka, Yuji; Hiroi, Zenji

    2006-01-01

    High-pressure effects on the superconducting transitions of β-pyrochlore oxide superconductors AOs 2 O 6 (A=Cs, Rb, K) are studied by measuring resistivity under high pressures up to 16 GPa. The superconducting transition temperature T c first increases with increasing pressure in all the compounds and then exhibits a broad maximum at 7.6 K (6 GPa), 8.2 K (2 GPa) and 10 K (0.6 GPa) for A=Cs, Rb and K, respectively. Finally, the superconductivity is suppressed completely at a critical pressure near 7 and 6 GPa for A=Rb and K and probably above 10 GPa for A=Cs. Characteristic changes in the temperature dependence of resistivity of RbOs 2 O 6 under high pressure. The residual resistivity largely increases with pressure above 4 GPa and, as a result, resistivity indicates small temperature dependence down to 4.2 K at 7 GPa and application of further pressure up to 10 GPa indicates that temperature dependence of resistivity decrease below 100 K. This characteristic behavior in the β-pyrochlore oxides may originate from the nesting of nearly octahedron shape of Fermi surface

  1. Insulating Structural Ceramics Program, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Mark J.; Tandon, Raj; Ott, Eric; Hind, Abi Akar; Long, Mike; Jensen, Robert; Wheat, Leonard; Cusac, Dave; Lin, H. T.; Wereszczak, Andrew A.; Ferber, Mattison K.; Lee, Sun Kun; Yoon, Hyung K.; Moreti, James; Park, Paul; Rockwood, Jill; Boyer, Carrie; Ragle, Christie; Balmer-Millar, Marilou; Aardahl, Chris; Habeger, Craig; Rappe, Ken; Tran, Diana; Koshkarian, Kent; Readey, Michael

    2005-11-22

    New materials and corresponding manufacturing processes are likely candidates for diesel engine components as society and customers demand lower emission engines without sacrificing power and fuel efficiency. Strategies for improving thermal efficiency directly compete with methodologies for reducing emissions, and so the technical challenge becomes an optimization of controlling parameters to achieve both goals. Approaches being considered to increase overall thermal efficiency are to insulate certain diesel engine components in the combustion chamber, thereby increasing the brake mean effective pressure ratings (BMEP). Achieving higher BMEP rating by insulating the combustion chamber, in turn, requires advances in material technologies for engine components such as pistons, port liners, valves, and cylinder heads. A series of characterization tests were performed to establish the material properties of ceramic powder. Mechanical chacterizations were also obtained from the selected materials as a function of temperature utilizing ASTM standards: fast fracture strength, fatique resistance, corrosion resistance, thermal shock, and fracture toughness. All ceramic materials examined showed excellent wear properties and resistance to the corrosive diesel engine environments. The study concluded that the ceramics examined did not meet all of the cylinder head insert structural design requirements. Therefore we do not recommend at this time their use for this application. The potential for increased stresses and temperatures in the hot section of the diesel engine combined with the highly corrosive combustion products and residues has driven the need for expanded materials capability for hot section engine components. Corrosion and strength requirements necessitate the examination of more advanced high temperture alloys. Alloy developments and the understanding of processing, structure, and properties of supperalloy materials have been driven, in large part, by the gas

  2. Odd-parity magnetoresistance in pyrochlore iridate thin films with broken time-reversal symmetry

    Science.gov (United States)

    Fujita, T. C.; Kozuka, Y.; Uchida, M.; Tsukazaki, A.; Arima, T.; Kawasaki, M.

    2015-01-01

    A new class of materials termed topological insulators have been intensively investigated due to their unique Dirac surface state carrying dissipationless edge spin currents. Recently, it has been theoretically proposed that the three dimensional analogue of this type of band structure, the Weyl Semimetal phase, is materialized in pyrochlore oxides with strong spin-orbit coupling, accompanied by all-in-all-out spin ordering. Here, we report on the fabrication and magnetotransport of Eu2Ir2O7 single crystalline thin films. We reveal that one of the two degenerate all-in-all-out domain structures, which are connected by time-reversal operation, can be selectively formed by the polarity of the cooling magnetic field. Once formed, the domain is robust against an oppositely polarised magnetic field, as evidenced by an unusual odd field dependent term in the magnetoresistance and an anomalous term in the Hall resistance. Our findings pave the way for exploring the predicted novel quantum transport phenomenon at the surfaces/interfaces or magnetic domain walls of pyrochlore iridates. PMID:25959576

  3. Multifunctional Sm2-xDyxZr2O7 pyrochlore system: potential ionic conductors and photocatalysts

    International Nuclear Information System (INIS)

    Grover, V.; Sayed, Farheen N.; Bhattacharyya, K.; Jain, D.; Pillai, C.G.S.; Tyagi, A.K.; Arya, A.

    2010-01-01

    Full text: Pyrochlores have garnered considerable interest over the years because of a range of potentially useful properties such as fast-ion (mainly anion) conductivity, electrical conductivity, catalysis, luminescence etc. In present work a series of Sm 2-x Dy x Zr 2 O 7 compounds (0.0 ≤ x ≤ 2.0) were synthesized by gel combustion and characterized by Powder XRD and Raman spectroscopic studies. XRD studies revealed the system to be single-phasic throughout with the retention of pyrochlore phase till 40 mol% of Dy 3+ beyond which, an order-disorder phase transition occurred resulting in a defect fluorite structure. Surprisingly, Raman studies showed the retention of pyrochlore type ordering till the other end member, i.e. Dy 2 Zr 2 O 7 . This is the first study, which reports the retention of a weak pyrochlore type superstructure in Dy 2 Zr 2 O 7 system. Ionic conductivity measurements were performed on these samples, which showed that the activation Energy (E a ) increases with increase in Dy 3+ mol% owing to the decreased mobility with increasing degree of disorder. The representative nquist Plots are given for Sm 2 Zr 2 O 7 . These materials have a definite band gap absorbing mainly in the UV region which makes them good candidates for photocatalysed dye degradation studies. Potential of some of these compositions as photocatalysts was also explored and they were found to efficiently catalyse the degradation of Xylenol Orange with t 1/2 decreasing from pure Sm 2 Zr 2 O 7 to pure Dy 2 Zr 2 O 7

  4. Radiation damage effects in pyrochlore and zirconolite ceramic matrices for the immobilization of actinide-rich wastes

    International Nuclear Information System (INIS)

    Lumpkin, G.R.; Begg, B.D.; Smith, K.L.

    2000-01-01

    Actinide-doping experiments using short-lived 238 Pu and 244 Cm have demonstrated that pyrochlore and zirconolite become fully amorphous at a dose of 0.2-0.5 x 10 16 α/mg at ambient temperature and exhibit bulk swelling of 5-7%. Detailed studies of natural samples have included determination of the critical amorphization dose, long-term annealing rate, microstructural changes as a function of dose, and the thermal histories of the host rocks. Together, the laboratory based work and studies of natural samples indicate that the critical amorphization dose will increase by about a factor of 2-4 for samples stored at temperatures of 100-200 deg. C for up to 10 million years. These studies of alpha-decay damage have been complemented by heavy ion irradiation studies over the last ten years. Most of the irradiation work has concerned the critical amorphization dose as a function of temperature in thin films; however, some work has been carried out on bulk samples. The irradiation work indicates that most pyrochlore and zirconolite compositions will have similar critical amorphization doses at low temperatures (e.g., below 300-400 deg. C). Pyrochlore with Zr as the major B-site cation transform to a defect fluorite structure with increasing ion irradiation dose, but do not become amorphous. (authors)

  5. Anisotropic vortex pinning in the β-pyrochlore oxide superconductor KOs 2O 6

    Science.gov (United States)

    Ishii, Y.; Yamaura, J.; Okamoto, Y.; Maeda, A.; Hiroi, Z.

    2011-11-01

    Vortex pinning in the β-pyrochlore oxide superconductor KOs2O6 with Tc = 9.6 K is investigated by measuring magnetic torque. A large anisotropy of magnetic torque is observed in the superconducting state below Tp = 7.6 K, where a first-order structural transition takes place, in spite of the inherent isotropic nature of the structural and electronic properties. Magnetic torque is enhanced at external magnetic fields parallel to the [1 1 1] and [0 0 1] directions. Moreover, a pronounced peak effect is also observed in the magnetic field dependence of the torque in these two directions. We consider that the observed anisotropy is related to a microstructure associated with the structural transition.

  6. Dielectric and magnetic properties, and electronic structure of multiferroic perovskite PbFe.sub.0.5./sub.Ta.sub.0.5./sub.O.sub.3./sub. and incipient ferroelectric pyrochlore Pb.sub.2./sub.Fe.sub.0.34./sub.Ta.sub.1.84./sub.O.sub.7.11./sub. single crystals and ceramics

    Czech Academy of Sciences Publication Activity Database

    Kania, A.; Miga, S.; Talik, E.; Gruszka, I.; Szubka, M.; Savinov, Maxim; Prokleška, J.; Kamba, Stanislav

    2016-01-01

    Roč. 36, č. 14 (2016), s. 3369-3381 ISSN 0955-2219 R&D Projects: GA ČR GA15-08389S Institutional support: RVO:68378271 Keywords : lead iron tantalate * perovskite multiferroic * pyrochlore * incipient ferroelectric * X-ray photoelectron spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.411, year: 2016

  7. Exchange interactions in two-state systems: rare earth pyrochlores

    Science.gov (United States)

    Curnoe, S. H.

    2018-06-01

    The general form of the nearest neighbour exchange interaction for rare earth pyrochlores is derived based on symmetry. Generally, the rare earth angular momentum degeneracy is lifted by the crystal electric field (CEF) into singlets and doublets. When the CEF ground state is a doublet that is well-separated from the first excited state the CEF ground state doublet can be treated as a pseudo-spin of some kind. The general form of the nearest neighbour exchange interaction for pseudo-spins on the pyrochlore lattice is derived for three different types of pseudo-spins. The methodology presented in this paper can be applied to other two-state spin systems with a high space group symmetry.

  8. Synthesis and characterization of bismuth zinc niobate pyrochlore nanopowders

    Directory of Open Access Journals (Sweden)

    Sonia Maria Zanetti

    2007-09-01

    Full Text Available Bismuth zinc niobate pyrochlores Bi1.5ZnNb1.5O7 (alpha-BZN, and Bi2(Zn1/3Nb2/32O 7 (beta-BZN have been synthesized by chemical method based on the polymeric precursors. The pyrochlore phase was investigated by differential scanning calorimetry, infrared spectroscopy, and X ray diffraction. Powder and sintered pellets morphology was examined by scanning electron microscopy. The study of alpha-BZN phase formation reveals that, at 500 °C, the pyrochlore phase was already present while a single-phased nanopowder was obtained after calcination at 700 °C. The crystallization mechanism of the beta-BZN is quite different, occurring through the crystallization of alpha-BZN and BiNbO4 intermediary phases. Both compositions yielded soft agglomerated powders. alpha-BZN pellets, sintered at 800 °C for 2 hours, presented a relative density of 97.3% while those of beta-BZN, sintered at 900 °C for 2 hours, reached only 91.8%. Dielectric constant and dielectric loss, measured at 1 MHz, were 150 and 4 x/10-4 for a-BZN, and 97 and 8 x 10-4 for beta-BZN.

  9. Structural study and electrical properties of Zr-doped Nd2Sn2O7 ...

    Indian Academy of Sciences (India)

    applications as neutron absorbers and radioactive waste forms for final disposal. [2,3]. The cubic pyrochlore structure, space group Fd3m, has eight molecules of the general formula A2B2O6O in the unit cell. The anion array consists of three independent sites O(1), O(2) and O(3), occupying the locations 48f, 8a and 8b.

  10. Phase transition and water incorporation into Eu2Sn2O7 pyrochlore at high pressure

    Science.gov (United States)

    Zhang, F. X.; Lang, M.; Ewing, R. C.

    2016-04-01

    Structural changes of europium stannate pyrochlore, Eu2Sn2O7, have been investigated at high pressures with in situ Raman spectroscopy, photoluminescence (PL), and synchrotron X-ray diffraction (XRD) techniques. The XRD measurements suggest that a pressure-induced phase transition starts at 34.4 GPa. The PL spectrum from Eu3+ cations also suggests a phase transition above 36 GPa. XRD analysis shows that the unit cell of the cubic phase deviates from the equation of state at pressures above 23.8 GPa. This is due to the incorporation of water from the pressure medium in the structure at high pressures, which is confirmed by optical spectroscopy measurements.

  11. A spin-liquid with pinch-line singularities on the pyrochlore lattice.

    Science.gov (United States)

    Benton, Owen; Jaubert, L D C; Yan, Han; Shannon, Nic

    2016-05-26

    The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7.

  12. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  13. Phonon Dynamics and Multipolar Isomorphic Transition in β-Pyrochlore KOs2O6

    Science.gov (United States)

    Hattori, Kazumasa

    2011-02-01

    We investigate with a microscopic model anharmonic K-cation oscillation observed by neutron experiments in β-pyrochlore superconductor KOs2O6, which also shows a mysterious first-order structural transition at Tp = 7.5 K. We have identified a set of microscopic model parameters that successfully reproduce the observed tem perature dependence and the superconducting transition temperature. Considering changes in the parameters at Tp, we can explain puzzling experimental results about electron--phonon coupling and neutron data. Our analysis demonstrates that the first-order transition is multipolar transition driven by the octupolar component of K-cation oscillations. The octupole moment does not change the symmetry and is characteristic to noncentrosymmetric K-cation potential.

  14. Phase Competition in the Palmer-Chalker X Y Pyrochlore Er2Pt2O7

    Science.gov (United States)

    Hallas, A. M.; Gaudet, J.; Butch, N. P.; Xu, Guangyong; Tachibana, M.; Wiebe, C. R.; Luke, G. M.; Gaulin, B. D.

    2017-11-01

    We report neutron scattering measurements on Er2Pt2O7 , a new addition to the X Y family of frustrated pyrochlore magnets. Symmetry analysis of our elastic scattering data shows that Er2Pt2O7 orders into the k =0 , Γ7 magnetic structure (the Palmer-Chalker state), at TN=0.38 K . This contrasts with its sister X Y pyrochlore antiferromagnets Er2Ti2O7 and Er2Ge2O7 , both of which order into Γ5 magnetic structures at much higher temperatures, TN=1.2 and 1.4 K, respectively. In this temperature range, the magnetic heat capacity of Er2Pt2O7 contains a broad anomaly centered at T*=1.5 K . Our inelastic neutron scattering measurements reveal that this broad heat capacity anomaly sets the temperature scale for strong short-range spin fluctuations. Below TN=0.38 K , Er2Pt2O7 displays a gapped spin-wave spectrum with an intense, flat band of excitations at lower energy and a weak, diffusive band of excitations at higher energy. The flat band is well described by classical spin-wave calculations, but these calculations also predict sharp dispersive branches at higher energy, a striking discrepancy with the experimental data. This, in concert with the strong suppression of TN, is attributable to enhanced quantum fluctuations due to phase competition between the Γ7 and Γ5 states that border each other within a classically predicted phase diagram.

  15. Conductivity and hydration trends in disordered fluorite and pyrochlore oxides: A study on lanthanum cerate–zirconate based compounds

    DEFF Research Database (Denmark)

    Besikiotis, Vasileios; Ricote, Sandrine; Jensen, Molly Hjorth

    2012-01-01

    In the present contribution we discuss the influence of order/disorder on the concentration and mobility of ionic charge carriers in undoped and acceptor (calcium) doped fluorite and pyrochlore structured lanthanum cerate–zirconate solid solutions: (La1−yCay)2(Ce1−xZrx)2O7−δ (y=0, 0.02, 0.10; x=0...... enthalpy becomes more exothermic with higher cerium content, i.e. with more disordered materials. The proton conductivity decreases upon acceptor substitution of La3+ with Ca2+ which is attributed to trapping of the charge carriers by the effectively negative acceptor....

  16. Irradiation-induced amorphization of Cd2Nb2O7 pyrochlore

    International Nuclear Information System (INIS)

    Meldrum, A.; White, C. W.; Keppens, V.; Boatner, L. A.; Ewing, R. C.

    2001-01-01

    Several investigations have recently been undertaken in order to achieve a more complete understanding of the radiation-damage mechanisms in A 2 B 2 O 7 pyrochlore-structure compounds. The present work represents the first systematic study of the irradiation-induced amorphization of a pyrochlore with A- and B-site cation valences of +2 and +5, respectively. Relatively large single crystals of Cd 2 Nb 2 O 7 were grown for these experiments. In situ ion-irradiation experiments were carried out in a transmission electron microscope in conjunction with ex situ Rutherford backscattering measurements of ion-irradiated Cd 2 Nb 2 O 7 single crystals. Cd 2 Nb 2 O 7 can be amorphized in situ by Ne or Xe ions at temperatures up to 480 and 620 K, respectively. At room temperature, the amorphization fluence was 36 times higher for 280 keV Ne + than for 1200 keV Xe 2+ , corresponding to a displacement dose that was higher by a factor of 3. Disordering of Cd and Nb over the available cation sites occurs at intermediate ion doses prior to amorphization. The temperature dependence of the amorphization dose is modeled, and the results are compared to those of a previous model. The bulk-sample Rutherford backscattering spectroscopy (RBS) results were generally consistent with the in situ TEM measurements. Effects of crystallographic orientation and ion charge state had relatively little effect on the damage accumulation in bulk crystals. The RBS data are consistent with a defect-accumulation, cascade-overlap model of amorphization of Cd 2 Nb 2 O 7 , as are the in situ TEM observations

  17. Low temperature spin dynamics and high pressure effects in frustrated pyrochlores

    Science.gov (United States)

    Mirebeau, Isabelle

    2008-03-01

    Frustrated pyrochlores R2M2O7, where R^3+ is a rare earth and M^4+ a transition or sp metal ion, show a large variety of exotic magnetic states due to the geometrical frustration of the pyrochlore lattice, consisting of corner sharing tetrahedra for both R and M ions. Neutron scattering allows one to measure their magnetic ground state as well as the spin fluctuations, in a microscopic way. An applied pressure may change the subtle energy balance between magnetic interactions, inducing new magnetic states. In this talk, I will review recent neutron results on Terbium pyrochlores, investigated by high pressure neutron diffraction and inelastic neutron scattering. Tb2M2O7 pyrochlores show respectively a spin liquid state for M=Ti [1], an ordered spin ice state for M= Sn [2], and a spin glass state with chemical order for M=Mo [3]. In Tb2Ti2O7 spin liquid, where only Tb^3+ ions are magnetic, an applied pressure induces long range antiferromagnetic order due to a small distortion of the lattice and magneto elastic coupling [4]. In Tb2Sn2O7, the substitution of Ti^4+ by the bigger Sn^4+ ion expands the lattice, inducing a long range ordered ferromagnetic state, with the local structure of a spin ice [2] and unconventional spin fluctuations [2,5]. The local ground state and excited crystal field states of the Tb^3+ ion were recently investigated by inelastic neutron scattering in both compounds [6]. Tb2Mo2O7, where Mo^4+ ions are also magnetic, shows an even more rich behaviour, due to the complex interaction between frustrated Tb and Mo lattices, having respectively localized and itinerant magnetism. In Tb2Mo2O7 spin glass, the lattice expansion induced by Tb/La substitution yields an ordered ferromagnetic state, which transforms back to spin glass under applied pressure [7]. New data about the spin fluctuations in these compounds, as measured by inelastic neutron scattering, will be presented. The talk will be dedicated to the memory of Igor Goncharenko, a renowned

  18. Large-scale calculation of ferromagnetic spin systems on the pyrochlore lattice

    Energy Technology Data Exchange (ETDEWEB)

    Soldatov, Konstantin, E-mail: soldatov_ks@students.dvfu.ru [School of Natural Sciences, Far Eastern Federal University, Vladivostok (Russian Federation); Nefedev, Konstantin, E-mail: nefedev.kv@dvfu.ru [School of Natural Sciences, Far Eastern Federal University, Vladivostok (Russian Federation); Institute of Applied Mathematics, Far Eastern Branch, Russian Academy of Science, Vladivostok (Russian Federation); Komura, Yukihiro [CIJ-solutions, Chuo-ku, Tokyo 103-0023 (Japan); Okabe, Yutaka, E-mail: okabe@phys.se.tmu.ac.jp [Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 (Japan)

    2017-02-19

    We perform the high-performance computation of the ferromagnetic Ising model on the pyrochlore lattice. We determine the critical temperature accurately based on the finite-size scaling of the Binder ratio. Comparing with the data on the simple cubic lattice, we argue the universal finite-size scaling. We also calculate the classical XY model and the classical Heisenberg model on the pyrochlore lattice. - Highlights: • Calculations of the ferromagnetic models on the pyrochlore lattice were performed. • Precise critical temperatures were determined using Binder ratio finite-size scaling. • The universal finite-size scaling was argued.

  19. New Type of Quantum Criticality in the Pyrochlore Iridates

    Directory of Open Access Journals (Sweden)

    Lucile Savary

    2014-11-01

    Full Text Available Magnetic fluctuations and electrons couple in intriguing ways in the vicinity of zero-temperature phase transitions—quantum critical points—in conducting materials. Quantum criticality is implicated in non-Fermi liquid behavior of diverse materials and in the formation of unconventional superconductors. Here, we uncover an entirely new type of quantum critical point describing the onset of antiferromagnetism in a nodal semimetal engendered by the combination of strong spin-orbit coupling and electron correlations, and which is predicted to occur in the iridium oxide pyrochlores. We formulate and solve a field theory for this quantum critical point by renormalization group techniques and show that electrons and antiferromagnetic fluctuations are strongly coupled and that both these excitations are modified in an essential way. This quantum critical point has many novel features, including strong emergent spatial anisotropy, a vital role for Coulomb interactions, and highly unconventional critical exponents. Our theory motivates and informs experiments on pyrochlore iridates and constitutes a singular realistic example of a nontrivial quantum critical point with gapless fermions in three dimensions.

  20. Forging Fast Ion Conducting Nanochannels with Swift Heavy Ions: The Correlated Role of Local Electronic and Atomic Structure

    Energy Technology Data Exchange (ETDEWEB)

    Sachan, Ritesh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division; Cooper, Valentino R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division; Liu, Bin [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Aidhy, Dilpuneet S. [Univ. of Wyoming, Laramie, WY (United States). Dept. of Mechanical Engineering; Voas, Brian K. [Iowa State Univ., Ames, IA (United States). Dept. of Materials Science and Engineering; Lang, Maik [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Ou, Xin [Chinese Academy of Sciences (CAS), Shanghai (China). State Key Lab. of Functional Material for Informatics; Trautmann, Christina [GSI Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany); Technical Univ. of Darmstadt (Germany). Dept. of Materials Science; Zhang, Yanwen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Chisholm, Matthew F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division; Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division

    2016-12-19

    Atomically disordered oxides have attracted significant attention in recent years due to the possibility of enhanced ionic conductivity. However, the correlation between atomic disorder, corresponding electronic structure, and the resulting oxygen diffusivity is not well understood. The disordered variants of the ordered pyrochlore structure in gadolinium titanate (Gd2Ti2O7) are seen as a particularly interesting prospect due to intrinsic presence of a vacant oxygen site in the unit atomic structure, which could provide a channel for fast oxygen conduction. In this paper, we provide insights into the subangstrom scale on the disordering-induced variations in the local atomic environment and its effect on the electronic structure in high-energy ion irradiation-induced disordered nanochannels, which can be utilized as pathways for fast oxygen ion transport. With the help of an atomic plane-by-plane-resolved analyses, the work shows how the presence of various types of TiOx polyhedral that exist in the amorphous and disordered crystalline phase modify the electronic structures relative to the ordered pyrochlore phase in Gd2Ti2O7. Finally, the correlated molecular dynamics simulations on the disordered structures show a remarkable enhancement in oxygen diffusivity as compared with ordered pyrochlore lattice and make that a suitable candidate for applications requiring fast oxygen conduction.

  1. Study on the chemical treatment processes of the uranium pyrochlore of Araxa

    International Nuclear Information System (INIS)

    Batista, H.F.; Fernandes, M.D.

    Several processes are presented for the chemical treatment, in laboratory scale, of the uranium pyrochlore concentrates found in Araxa (Minas Gerais, Brazil), aiming to the extraction of uranium, thorium and rare earths, besides the recovery of niobium pentoxide [pt

  2. The XPS study of pyrochlore matrixes for the radioactive waste disposal

    Directory of Open Access Journals (Sweden)

    Teterin Anton Yu.

    2010-01-01

    Full Text Available Two pyrochlore ceramic samples were studied in this work. The X-ray diffraction and the scanning electron microscopy showed that the ceramics with the calculated composition CaThSn2O7 was formed by the dominating pyrochlore phase with the traces of thorianite and hematite, while the CaThZr2O7 ceramics - by the dominating pyrochlore phase with the minor admixtures of thorianite and perovskite. The real compositions of pyrochlore phases determined by the scaning electron microscopy are Ca0.88Th0.92Sn2O6.72 and Ca0.84Th0.80Zr2O6.44. On the basis of the X-ray photoelectron spectral parameters of the outer and core electrons in the binding energy range of 0-1250 eV it was found that tin, zirconium and thorium in pyrochlore are at least 93%-94% tetravalent. Sn-O and Zr-O interatomic distances in BO6-octahedrons in the pyrochlore were found to be 0.210 nm and 0.220 nm, respectively, and these octahedrons are possible to be tetragonaly distorted.

  3. Thermodynamic stability of actinide pyrochlore minerals in deep geologic repository environments

    International Nuclear Information System (INIS)

    Wang, YIFENG; Xu, HUIFANG

    2000-01-01

    Crystalline phases of pyrochlore (e.g., CaPuTi 2 O 7 , CaUTi 2 O 7 ) have been proposed as a durable ceramic waste form for disposal of high level radioactive wastes including surplus weapons-usable plutonium. In this paper, the authors use a linear free energy relationship to predict the Gibbs free energies of formation of pyrochlore phases (CaMTi 2 O 7 ). The Pu-pyrochlore phase is predicted to be stable with respect to PuO 2 , CaTiO 3 , and TiO 2 at room temperatures. Pu-pyrochlore is expected to be stable in a geologic repository where silica and carbonate components are absent or limited. The authors suggest that a repository in a salt formation be an ideal environment for disposal of high level, pyrochlore-based ceramic wastes. In such environment, adding CaO as a backfill will make pyrochlore minerals thermodynamically stable and therefore effectively prevent actinide release from these mineral phases

  4. Weyl magnons in pyrochlore antiferromagnets with an all-in-all-out order

    Science.gov (United States)

    Jian, Shao-Kai; Nie, Wenxing

    2018-03-01

    We investigate topological magnon band crossings of pyrochlore antiferromagnets with all-in-all-out (AIAO) magnetic order. By general symmetry analysis and spin-wave theory, we show that pyrochlore materials with AIAO orders can host Weyl magnons under external magnetic fields or uniaxial strains. Under a small magnetic field, the magnon bands of the pyrochlore with AIAO background can feature two opposite-charged Weyl points, which is the minimal number of Weyl points realizable in quantum materials, and has not been experimentally observed so far. We further show that breathing pyrochlores with AIAO orders can exhibit Weyl magnons upon uniaxial strains. These findings apply to any pyrochlore material supporting AIAO orders, irrespective of the forms of interactions. Specifically, we show that the Weyl magnons are robust against direct (positive) Dzyaloshinskii-Moriya interactions. Because of the ubiquitous AIAO orders in pyrochlore magnets including R2Ir2O7 , and experimentally achievable external strain and magnetic field, our predictions provide a promising arena to witness the Weyl magnons in quantum magnets.

  5. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang

    2014-07-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O\\' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O\\' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric

  6. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang; Zhu, Xinhua; Al-Kassab, Talaat

    2014-01-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric constants of

  7. Crystal-field study of magnetization and specific heat properties of frustrated pyrochlore Pr2Zr2O7

    International Nuclear Information System (INIS)

    Alam, J.; Jana, Y.M.; Biswas, A. Ali

    2016-01-01

    The experimental results of temperature dependent dc magnetic susceptibility, field dependent isothermal magnetization, magnetic specific heat and entropy of the pyrochlore Pr 2 Zr 2 O 7 are simulated and analyzed using appropriate D 3d crystal-field (CF) and anisotropic molecular field tensors at Pr-sites in the self-consistent mean-field approach involving four magnetically non-equivalent rare-earth spins on the tetrahedral unit of the pyrochlore structure. CF level pattern and wave-functions of the ground 3 H 4 multiplet of the Pr 3+ ions are obtained considering intermediate coupling between different Russell-Saunders terms of the 4f 2 electronic configurations of Pr-ion and J-mixing effects. CF analysis shows that the CF ground-state of the Pr 3+ ion in Pr 2 Zr 2 O 7 is a well-isolated doublet, with significant admixtures of terms coming from |M J =±4〉 and |M J =±1〉, and the Pr-spins are effectively Ising-like along the local <111> axes. Magnetic specific heat in zero-field is simulated by considering a temperature dependence of the exchange splitting of the ground doublet. - Highlights: • Full CF diagonalization using intermediate coupling and J-mixing. • Pr-spins are Ising-like along local [111] axis. • Magnetic specific heat is due to temperature dependence exchange splitting of ground CF doublet.

  8. TFTR Inner Support Structure final assembly and installation

    International Nuclear Information System (INIS)

    Rocco, R.E.; Brown, G.; Carglia, G.; Heitzenroeder, P.; Koenig, F.; Mookerjee, S.; Raugh, J.

    1983-01-01

    The Inner Support Structure (ISS) of the TFTR provides a specific level of restraint to the net centering force and overturning moment produced by the Toroidal Field (TF) coils and to the vertical forces produced by the Inner Poloidal Field (PF) coils. This is accomplished consistent with the need for four radial dielectric breaks running the entire length of the ISS to prevent eddy current loops. A brief description of the major components, method of manufacture and material selection of the ISS and PF coils is presented. Particular attention is given to the integration of the PF coils and the ISS components into the total assembly and the installation of strain gauges and crack monitors on the ISS. The requirements of no gaps at the interfaces of the ISS teeth at all three horizontal planes is discussed. The problem encountered with achieving the no gap requirement and the successful resolution of this problem, including its impact on installation of the ISS, is also discussed. The installation of the ISS, including setting in position, preloading with TF coil clips, and final tensioning of the tension bars is discussed. A brief description of the lower and upper lead stem splicing operation is presented. Subsequent to the final assembly, electrical tests were performed prior to and after installation on the TFTR machine. An overview of the tests and their results is presented

  9. Combined experimental–theoretical study of the optoelectronic properties of non-stoichiometric pyrochlore bismuth titanate

    KAUST Repository

    Noureldine, Dalal

    2015-10-27

    A combination of experimental and computational methods was applied to investigate the crystal structure and optoelectronic properties of the non-stoichiometric pyrochlore Bi2−xTi2O7−1.5x. The detailed experimental protocol for both powder and thin-film material synthesis revealed that a non-stoichiometric Bi2−xTi2O7−1.5x structure with an x value of ∼0.25 is the primary product, consistent with the thermodynamic stability of the defect-containing structure computed using density functional theory (DFT). The approach of density functional perturbation theory (DFPT) was used along with the standard GGA PBE functional and the screened Coulomb hybrid HSE06 functional, including spin–orbit coupling, to investigate the electronic structure, the effective electron and hole masses, the dielectric constant, and the absorption coefficient. The calculated values for these properties are in excellent agreement with the measured values, corroborating the overall analysis. This study indicates potential applications of bismuth titanate as a wide-bandgap material, e.g., as a substitute for TiO2 in dye-sensitized solar cells and UV-light-driven photocatalysis.

  10. Thermo-selective Tm(x)Ti(1-x)O(2-x/2) nanoparticles: from Tm-doped anatase TiO2 to a rutile/pyrochlore Tm2Ti2O7 mixture. An experimental and theoretical study with a photocatalytic application.

    Science.gov (United States)

    Navas, Javier; Sánchez-Coronilla, Antonio; Aguilar, Teresa; De los Santos, Desireé M; Hernández, Norge C; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2014-11-07

    This is an experimental and theoretical study of thulium doped TiO2 nanoparticles. From an experimental perspective, a method was used to synthesize thulium-doped TiO2 nanoparticles in which Tm(3+) replaces Ti(4+) in the lattice, which to our knowledge has neither been reported nor studied theoretically so far. Different proportions of anatase and rutile phases were obtained at different annealing temperatures, and XRD and Raman spectroscopy also revealed the presence of a pyrochlore phase (Tm2Ti2O7) at 1173 K. Thus, the structure of the Tm-doped nanoparticles was thermally-controlled. Furthermore, XPS showed the presence of Tm(3+) in the samples synthesized, which produces oxygen vacancies to maintain the local neutrality in the lattice. The presence of Tm(3+) in the samples led to changes in the UV-Vis absorption spectra, so they showed photoluminescence properties and new states in the band gap, which produce a new lower energy electronic transition than the main TiO2 one. Periodic DFT calculations were performed to understand the experimentally produced structures. The production of oxygen vacancies was analysed and the changes generated in the structure were fully detailed. The DOS and PDOS analyses confirmed the experimental results obtained using UV-Vis spectroscopy, and showed that the new electronic states in the band gap are due to interactions of the f state of Tm and the p state of O. Likewise, the charge study and the ELF analysis indicate that when Tm is introduced into the TiO2 structure, the Ti-O bond around the oxygen vacancy is strengthened. Finally, an example of a photocatalytic application was developed to show the high efficiency of the samples due to the heterojunction in the interfaces of the phases in the samples, which improved the charge separation and the good charge carrier mobility due to the presence of the pyrochlore phase, as was also shown theoretically.

  11. Order-disorder phase transformations in quaternary pyrochlore oxide system: Investigated by X-ray diffraction, transmission electron microscopy and Raman spectroscopic techniques

    International Nuclear Information System (INIS)

    Radhakrishnan, A.N.; Prabhakar Rao, P.; Sibi, K.S.; Deepa, M.; Koshy, Peter

    2009-01-01

    Order-disorder transformations in a quaternary pyrochlore oxide system, Ca-Y-Zr-Ta-O, were studied by powder X-ray diffraction (XRD) method, transmission electron microscope (TEM) and FT-NIR Raman spectroscopic techniques. The solid solutions in different ratios, 4:1, 2:1, 1:1, 1:2, 1:4, 1:6, of CaTaO 3.5 and YZrO 3.5 were prepared by the conventional high temperature ceramic route. The XRD results and Rietveld analysis revealed that the crystal structure changed from an ordered pyrochlore structure to a disordered defect fluorite structure as the ratios of the solid solutions of CaTaO 3.5 and YZrO 3.5 were changed from 4:1 to 1:4. This structural transformation in the present system is attributed to the lowering of the average cation radius ratio, r A /r B as a result of progressive and simultaneous substitution of larger cation Ca 2+ for Y 3+ at A sites and smaller cation Ta 5+ for Zr 4+ at B sites. Raman spectroscopy and TEM analysis corroborated the XRD results. - Graphical abstract: Selected area electron diffraction (SAED) patterns showed highly ordered diffraction maxima with characteristic superlattice weak diffraction spots of the pyrochlore structure for (a) Ca 0.6 7Y 1.33 Zr 1.33 Ta 0.33 O 7 (C2YZT2) and bright diffraction maxima arranged in a ring pattern of the fluorite structure for (b) Ca 0.29 7Y 1.71 Zr 1.71 Ta 0.29 O 7 (CY6Z6T).

  12. Potassium Disorder in the Defect Pyrochlore KSbTeO6: A Neutron Diffraction Study

    Directory of Open Access Journals (Sweden)

    José Antonio Alonso

    2017-01-01

    Full Text Available KSbTeO6 defect pyrochlore has been prepared from K2C2O4, Sb2O3, and 15% excess TeO2 by solid-state reaction at 850 °C. Direct methods implemented in the software EXPO2013 allowed establishing the basic structural framework. This was followed by a combined Rietveld refinement from X-ray powder diffraction (XRD and neutron powder diffraction (NPD data, which unveiled additional structural features. KSbTeO6 is cubic, a = 10.1226(7 Å, space group F d 3 ¯ m , Z = 8 and it is made of a mainly covalent framework of corner-sharing (Sb,TeO6 octahedra, with weakly bonded K+ ions located within large cages. The large K-O distances, 3.05(3–3.07(3 Å, and quite large anisotropic atomic displacement parameters account for the easiness of K+ exchange for other cations of technological importance.

  13. C60 and U ion irradiation of Gd2TixZr2-xO7 pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiaming; Toulemonde, Marcel; Lang, Maik; Costantini, Jean Marc; Della-Negra, Serge; Ewing, Rodney C.

    2015-08-01

    Gd2TixZr2-xO7 (x = 0 to 2) pyrochlore was irradiated by 30 MeV C60 clusters, which provide an extremely high ionizing energy density. Here, high-resolution transmission electron microscopy revealed a complex ion-track structure in Gd2Ti2O7 and Gd2TiZrO7, consisting of an amorphous core and a shell of a disordered, defect-fluorite structure.

  14. Effect of Ion Irradiation in Cadmium Niobate Pyrochlores

    International Nuclear Information System (INIS)

    Jiang, Weilin; Weber, William J.; Thevuthasan, Suntharampillai; Boatner, Lynn A.

    2003-01-01

    Irradiation experiments have been performed for cadmium niobate pyrochlore (CdNb2O) single crystals at both 150 and 300 K using 1.0 MeV Au ions over fluences ranging from 0.01 to 0.10 ions/nm. In-situ 3.0 MeV He Rutherford backscattering spectrometry along the -axial channeling direction (RBS/C) has been applied to study the damage states ranging from small defect concentrations to a fully amorphous state. Results show that the crystal can be readily amorphized under the irradiation conditions. Room-temperature recovery of the defects produced at 150 K has been observed, while the defects produced at 300 K are thermally stable at room temperature. Results also indicate that the RBS/C analysis used in this study induced negligible damage in the near-surface regime. In addition, irradiation at and below room temperature using He and C3 ions leads to surface exfoliation at the corresponding damage peaks

  15. Emergent Topological Phenomena in Thin Films of Pyrochlore Iridates

    Science.gov (United States)

    Yang, Bohm-Jung; Nagaosa, Naoto

    2014-06-01

    Because of the recent development of thin film and artificial superstructure growth techniques, it is possible to control the dimensionality of the system, smoothly between two and three dimensions. In this Letter we unveil the dimensional crossover of emergent topological phenomena in correlated topological materials. In particular, by focusing on the thin film of pyrochlore iridate antiferromagnets grown along the [111] direction, we demonstrate that the thin film can have a giant anomalous Hall conductance, proportional to the thickness of the film, even though there is no Hall effect in 3D bulk material. Moreover, in the case of ultrathin films, a quantized anomalous Hall conductance can be observed, despite the fact that the system is an antiferromagnet. In addition, we uncover the emergence of a new topological phase, the nontrivial topological properties of which are hidden in the bulk insulator and manifest only in thin films. This shows that the thin film of correlated topological materials is a new platform to search for unexplored novel topological phenomena.

  16. Use of linear free energy relationship to predict Gibbs free energies of formation of pyrochlore phases (CaMTi2O7)

    International Nuclear Information System (INIS)

    Xu, H.; Wang, Y.

    1999-01-01

    In this letter, a linear free energy relationship is used to predict the Gibbs free energies of formation of crystalline phases of pyrochlore and zirconolite families with stoichiometry of MCaTi 2 O 7 (or, CaMTi 2 O 7 ,) from the known thermodynamic properties of aqueous tetravalent cations (M 4+ ). The linear free energy relationship for tetravalent cations is expressed as ΔG f,M v X 0 =a M v X ΔG n,M 4+ 0 +b M v X +β M v X r M 4+ , where the coefficients a M v X , b M v X , and β M v X characterize a particular structural family of M v X, r M 4+ is the ionic radius of M 4+ cation, ΔG f,M v X 0 is the standard Gibbs free energy of formation of M v X, and ΔG n,M 4+ 0 is the standard non-solvation energy of cation M 4+ . The coefficients for the structural family of zirconolite with the stoichiometry of M 4+ CaTi 2 O 7 are estimated to be: a M v X =0.5717, b M v X =-4284.67 (kJ/mol), and β M v X =27.2 (kJ/mol nm). The coefficients for the structural family of pyrochlore with the stoichiometry of M 4+ CaTi 2 O 7 are estimated to be: a M v X =0.5717, b M v X =-4174.25 (kJ/mol), and β M v X =13.4 (kJ/mol nm). Using the linear free energy relationship, the Gibbs free energies of formation of various zirconolite and pyrochlore phases are calculated. (orig.)

  17. Synthesis, magnetic properties and Moessbauer spectroscopy for the pyrochlore family Bi{sub 2}BB Prime O{sub 7} with B=Cr and Fe and B Prime =Nb, Ta and Sb

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Maria C. [INFIQC (CONICET), Dpto. de Fisicoquimica, Fac. de Ciencias Quimicas, U.N.C., Cordoba (X5000HUA) (Argentina); Franco, Diego G. [INFIQC (CONICET), Dpto. de Fisicoquimica, Fac. de Ciencias Quimicas, U.N.C., Cordoba (X5000HUA) (Argentina); Centro Atomico Bariloche - CNEA, Av. E. Bustillo 9500, S.C. de Bariloche (8500), R.N. (Argentina); Jalit, Yamile; Pannunzio Miner, Elisa V. [INFIQC (CONICET), Dpto. de Fisicoquimica, Fac. de Ciencias Quimicas, U.N.C., Cordoba (X5000HUA) (Argentina); Berndt, Graciele; Paesano, Andrea [Departamento de Fisica, Universidade Estadual de Maringa, Parana (Brazil); Nieva, Gladys [Centro Atomico Bariloche - CNEA, Av. E. Bustillo 9500, S.C. de Bariloche (8500), R.N. (Argentina); Carbonio, Raul E., E-mail: carbonio@mail.fcq.unc.edu.ar [INFIQC (CONICET), Dpto. de Fisicoquimica, Fac. de Ciencias Quimicas, U.N.C., Cordoba (X5000HUA) (Argentina)

    2012-08-15

    The samples Bi{sub 2}BB Prime O{sub 7}, with B=Cr and Fe and B Prime =Nb, Ta and Sb were prepared by solid state method. The crystallographic structure was investigated on the basis of X-ray powder diffraction data. Rietveld refinements show that the crystal structure is cubic, space group Fd-3m. The Bi{sup 3+} cation on the eight-coordinate pyrochlore A-site shows displacive disorder, as a consequence of its lone pair electron configuration. There is also a considerable A-site disorder shown by Rietveld Analysis and confirmed in the case of the iron containing samples with Moessbauer spectroscopy. The magnetic measurements show paramagnetic behavior at all temperatures for the Cr oxides. The Fe pyrochlores show antiferromagnetic order around 10 K.

  18. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores.

    Science.gov (United States)

    Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R

    2010-07-14

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.

  19. Induced quadrupolar singlet ground state of praseodymium in a modulated pyrochlore

    Science.gov (United States)

    van Duijn, J.; Kim, K. H.; Hur, N.; Ruiz-Bustos, R.; Adroja, D. T.; Bridges, F.; Daoud-Aladine, A.; Fernandez-Alonso, F.; Wen, J. J.; Kearney, V.; Huang, Q. Z.; Cheong, S.-W.; Perring, T. G.; Broholm, C.

    2017-09-01

    The complex structure and magnetism of Pr2 -xBixRu2O7 was investigated by neutron scattering and extended x-ray absorption fine structure. Pr has an approximate doublet ground state and the first excited state is a singlet. While the B -site (Ru) is well ordered throughout, this is not the case for the A -site (Pr/Bi). A broadened distribution for the Pr-O2 bond length at low temperature indicates the Pr environment varies from site to site even for x =0 . The environment about the Bi site is highly disordered ostensibly due to the 6 s lone pairs on Bi3 +. Correspondingly, we find that the non-Kramers doublet ground-state degeneracy, otherwise anticipated for Pr in the pyrochlore structure, is lifted so as to produce a quadrupolar singlet ground state with a spatially varying energy gap. For x =0 , below TN, the Ru sublattice orders antiferromagnetically, with propagation vector k =(0 ,0 ,0 ) as for Y2Ru2O7 . No ordering associated with the Pr sublattice is observed down to 100 mK. The low-energy magnetic response of Pr2 -xBixRu2O7 features a broad spectrum of magnetic excitations associated with inhomogeneous splitting of the Pr quasidoublet ground state. For x =0 (x =0.97 ), the spectrum is temperature dependent (independent). It appears disorder associated with Bi alloying enhances the inhomogeneous Pr crystal-field level splitting so that intersite interactions become irrelevant for x =0.97 . The structural complexity for the A -site may be reflected in the hysteretic uniform magnetization of B -site ruthenium in the Néel phase.

  20. Applications in soil-structure interactions. Final report, June 1979

    International Nuclear Information System (INIS)

    Jhaveri, D.P.

    1979-01-01

    Complex phenomenon of soil-structure interaction was assessed. Relationships between the characteristics of the earthquake ground motions, the local soil and geologic conditions, and the response of the structures to the ground motions were studied. (I) The use of the explicit finite-difference method to study linear elastic soil-structure interaction is described. A linear two-dimensional study of different conditions that influence the dynamic compliance and scattering properties of foundations is presented. (II) The FLUSH computer code was used to compute the soil-structure interaction during SIMQUAKE 1B, an experimental underground blast excitation of a 1/12-scale model of a nuclear containment structure. Evaluation was performed using transient excitation, applied to a finite-difference grid. Dynamic foundation properties were studied. Results indicate that the orientation and location of the source relative to the site and the wave environment at the site may be important parameters to be considered. Differences between the computed and experimental recorded responses are indicated, and reasons for the discrepancy are suggested. (III) A case study that examined structural and ground response data tabulated and catalogued from tests at the Nevada Test Site for its applicability to the soil-structure interaction questions of interest is presented. Description, methods, and evaluation of data on soil-structure interaction from forced vibration tests are presented. A two-dimensional finite-difference grid representing a relatively rigid structure resting on uniform ground was analyzed and monitored. Fourier spectra of monitored time histories were also evaluated and are presented. Results show clear evidence of soil-structure interaction and significant agreement with theory. 128 figures, 18 tables

  1. Electrical conductivities and chemical stabilities of mixed conducting pyrochlores for SOFC applications

    DEFF Research Database (Denmark)

    Holtappels, P.; Poulsen, F.W.; Mogensen, Mogens Bjerg

    2000-01-01

    Pyrochlores with praseodymium as the A-site cation and zirconium, tin, cerium and manganese cations on the B-site were prepared in air and their electrical conductivities were investigated as a function of oxygen partial pressure and temperature. Pure Pr2Zr2O7+/-delta as well as samples modified...

  2. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores

    NARCIS (Netherlands)

    Malkin, B. Z.; Lummen, T. T. A.; van Loosdrecht, P. H. M.; Dhalenne, G.; Zakirov, A. R.

    2010-01-01

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R2Ti2O7 (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the

  3. Intricate disorder in defect fluorite/pyrochlore: a concord of chemistry and crystallography

    Czech Academy of Sciences Publication Activity Database

    Simeone, D.; Thorogood, G.J.; Huo, D.; Luneville, L.; Baldinozzi, G.; Petříček, Václav; Porcher, F.; Ribis, J.; Mazerolles, L.; Largeau, L.; Berar, J.F.; Surble, S.

    2017-01-01

    Roč. 7, Jun (2017), 1-7, č. článku 3727. ISSN 2045-2322 Institutional support: RVO:68378271 Keywords : disorder * atomic scale * metallic allys * oxides * fluorite/pyrochlore Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 4.259, year: 2016

  4. Room temperature aerobic oxidation of amines by a nanocrystalline ruthenium oxide pyrochlore nafion composite catalyst.

    Science.gov (United States)

    Venkatesan, Shanmuganathan; Kumar, Annamalai Senthil; Lee, Jyh-Fu; Chan, Ting-Shan; Zen, Jyh-Myng

    2012-05-14

    The aerobic oxidation of primary amines to their respective nitriles has been carried out at room temperature using a highly reusable nanocrystalline ruthenium oxide pyrochlore Nafion composite catalyst (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Stability of Bulk Metallic Glass Structure. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D. B.

    2003-06-01

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub 80-x}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  6. An unusual hybrid fluoride featuring a [V7F27]6- chain motif based on a pyrochlore-like building unit

    International Nuclear Information System (INIS)

    Aldous, David W.; Slawin, Alexandra M.Z.; Lightfoot, Philip

    2008-01-01

    A new hybrid vanadium (III) fluoride [C 4 H 12 N 2 ] 3 [V 7 F 27 ] has been synthesised solvothermally. The crystal structure (trigonal, R3-bar c; a=17.367(2) A, c=19.604(2) A) reveals an unusual and novel chain motif consisting of pyrochlore-like heptameric units of corner-sharing octahedra, which are further linked into linear chains of alternating triple and single octahedral groups. The chains are separated by hydrogen-bonded piperazinium moieties. Magnetic susceptibility data show moderate antiferromagnetic interactions but no long-range order above 2 K, consistent with pronounced one-dimensional character, as well as frustration arising within the triangular units of magnetic ions in the chains. - Graphical abstract: A unique chain-structure vanadium(III) fluoride [C 4 H 12 N 2 ] 3 [V 7 F 27 ], based on a pyrochlore-like building unit, has been prepared solvothermally. Despite antiferromagnetic interactions, no long-range magnetic order occurs above 2 K, suggesting possible frustration

  7. Annual Report 2000. Chemical Structure and Dynamics; FINAL

    International Nuclear Information System (INIS)

    Colson, Steve D; McDowell, Rod S

    2001-01-01

    This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS and D) program is meeting the need for a fundamental, molecular-level understanding by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and (3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems

  8. Final Technical Report: Electronic Structure Workshop (ES13)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shiwei [College of William and Mary, Williamsburg, VA (United States)

    2015-02-26

    The 25th Annual Workshop on Recent Developments in Electronic Structure Methods (ES2013) was successfully held at the College of William & Mary in Williamsburg VA on June 11-14, 2013. The workshop website is at http://es13.wm.edu/ , which contains updated information on the workshop and a permanent archive of the scientific contents. DOE's continued support has been instrumental to the success of the workshop.

  9. Atomic structure of highly-charged ions. Final report

    International Nuclear Information System (INIS)

    Livingston, A. Eugene

    2002-01-01

    Atomic properties of multiply charged ions have been investigated using excitation of energetic heavy ion beams. Spectroscopy of excited atomic transitions has been applied from the visible to the extreme ultraviolet wavelength regions to provide accurate atomic structure and transition rate data in selected highly ionized atoms. High-resolution position-sensitive photon detection has been introduced for measurements in the ultraviolet region. The detailed structures of Rydberg states in highly charged beryllium-like ions have been measured as a test of long-range electron-ion interactions. The measurements are supported by multiconfiguration Dirac-Fock calculations and by many-body perturbation theory. The high-angular-momentum Rydberg transitions may be used to establish reference wavelengths and improve the accuracy of ionization energies in highly charged systems. Precision wavelength measurements in highly charged few-electron ions have been performed to test the most accurate relativistic atomic structure calculations for prominent low-lying excited states. Lifetime measurements for allowed and forbidden transitions in highly charged few-electron ions have been made to test theoretical transition matrix elements for simple atomic systems. Precision lifetime measurements in laser-excited alkali atoms have been initiated to establish the accuracy of relativistic atomic many-body theory in many-electron systems

  10. Investigation of lunar crustal structure and isostasy. Final technical report

    International Nuclear Information System (INIS)

    Thurber, C.H.

    1987-07-01

    The lunar mascon basins have strongly free air gravity anomalies, generally exceeding 100 milligals at an elevation of 100 km. The source of the anomalies is a combination of mantle uplift beneath the impact basins and subsequent infilling by high-density mare basalts. The relative contribution of these two components is still somewhat uncertain, although it is generally accepted that the amount of mantle uplift greatly exceeds the thickness of the basalts. Extensive studies have been carried out of the crustal structure of mare basins, based on gravity data, and their tectonic evolution, based on compressive and extensional tectonic features. The present study endeavored to develop a unified, self-consistent model of the lunar crust and lithosphere incorporating both gravity and tectonic constraints

  11. Electrical transport properties of manganese containing pyrochlore type semiconducting oxides using impedance analyses

    International Nuclear Information System (INIS)

    Sumi, S.; Prabhakar Rao, P.; Mahesh, S.K.; Koshy, Peter

    2012-01-01

    Graphical abstract: DC conductivity variation of CaCe 1−x Mn x SnNbO 7−δ (x = 0, 0.2, 0.4 and 0.6) with inverse of temperature. Variation of conductivity with Mn concentration at 600 °C is shown in the inset. Display Omitted Highlights: ► We have observed that the structural ordering as well as grain size increase with Mn substitution. ► Impedance analysis proved that a correlated barrier hopping type conduction mechanism is involved in the materials. ► Activation energy as well as electrical conductivity increases with increase in Mn substitution. ► Localization of electrons associated with Mn 2+ and structural ordering are the key factors for the increased activation energy with Mn substitution. ► All the materials showed good NTC thermistor properties. -- Abstract: A new series of manganese containing pyrochlore type semiconducting oxides CaCe 1−x Mn x SnNbO 7−δ (x = 0, 0.2, 0.4 and 0.6) have been synthesized to study the effect of Mn substitution on the structure, microstructure and electrical properties of these samples. X-ray diffraction and scanning electron microscopy studies revealed an increase of structural ordering and grain size respectively with increase of Mn substitution. Rietveld analysis and Raman spectroscopy were also employed to corroborate the XRD results. The bulk resistance measurements with temperature exhibit negative temperature coefficient behavior. The impedance analysis of the samples revealed a non-Debye type relaxation existed in the materials. The ac conductivity variation with temperature and frequency indicates a correlated barrier hopping type conduction mechanism in these materials. The barrier height and the intersite separation for hopping influence the electrical conductivity of these samples and are found to be a function of localization of electrons associated with the Mn 2+ ions and the unit cell volume respectively. The Mn substitution increases both electrical conductivity and activation energy

  12. Stability of the Weyl-semimetal phase on the pyrochlore lattice

    Science.gov (United States)

    Berke, Christoph; Michetti, Paolo; Timm, Carsten

    2018-04-01

    Motivated by the proposal of a Weyl-semimetal phase in pyrochlore iridates, we consider a Hubbard-type model on the pyrochlore lattice. To shed light on the question as to why such a state has not been observed experimentally, its robustness is analyzed. On the one hand, we study the possible phases when the system is doped. Magnetic frustration favors several phases with magnetic and charge order that do not occur at half filling, including additional Weyl-semimetal states close to quarter filling. On the other hand, we search for density waves that break translational symmetry and destroy the Weyl-semimetal phase close to half filling. The uniform Weyl semimetal is found to be stable, which we attribute to the low density of states close to the Fermi energy.

  13. Compositional Evolution of Pyrochlore-Group Minerals in Carbonatites of the Belaya Zima Pluton, Eastern Sayan

    Science.gov (United States)

    Khromova, E. A.; Doroshkevich, A. G.; Sharygin, V. V.; Izbrodin, L. A.

    2017-12-01

    Pyrochlore-group minerals are the main concentrators of niobium in carbonatites of the Belaya Zima alkaline pluton. Fluorcalciopyrochlore, kenopyrochlore and hydropyrochlore were identified in chemical composition. Their main characteristics are given: compositional variation, morphology, and zoning. During evolution from early calcite to late ankerite carbonatites, the UO2, TiO2, REE, and Y contents gradually increased. All carbonatite types are suggested to contain initial fluorcalciopyrochlore. However, in calcite-dolomite and ankerite carbonatites, it is partially or completely hydrated due to hydrothermal processes at the late stage of the pluton. This hydration resulted in the appearance of kenopyrochlore and hydropyrochlore due to removal of Ca, Na and F, and input of Ba, H2O, K, Si, Fe, and probably U and REE. At the last stage of the pluton, this hydrated pyrochlore was replaced by Fe-bearing columbite.

  14. High-pressure synthesis and characterizations of the R2Pt2O7 pyrochlores.

    Science.gov (United States)

    Cai, Yunqi; Cui, Qi; Cheng, Jinguang; Dun, Zhiling; Zhou, Haidong; Ma, Jie; Cruz, C. Dela; Yan, Jiaqiang; Li, Xiang; Zhou, Jianshi

    Pyrochlore R2B2O7 where R3 + stands for rear-earth ion and B4 + for a nonmagnetic cation such as Sn4 +or Ti4 +consist of an important family of geometrically frustrated magnets, which have been the focus of extensive investigations over last decades. To further enlarge the R2B2O7, we have chosen to stabilize the Pt-based cubic pyrochlores under HPHT conditions for two reasons: (1) Pt4 + is in a low-spin state which ionic radius is located in between Ti4 + (0.605\\x85) and Sn4 + (0.69\\x85), and (2) Pt4 + has a spatially much more extended 5d orbitals and thus enhanced Pt 5d-O 2p hybridizations that might modify the local anisotropic exchange interactions. Such an effect has never been taken into account in the previous studies. In this work, we will present the detailed characterizations on the pyrochlores R2Pt2O7 obtained under HPHT conditions. This work is supported by the National Science Foundation of China (Grant Nos.11304371, 11574377), part of the work was supported by the CEM, and NSF MRSEC, under Grant DMR-1420451, and Grant No. NSF-DMR-1350002.

  15. Atomic scale simulations of pyrochlore oxides with a tight-binding variable-charge model: implications for radiation tolerance

    International Nuclear Information System (INIS)

    Sattonnay, G; Tétot, R

    2014-01-01

    Atomistic simulations with new interatomic potentials derived from a tight-binding variable-charge model were performed in order to investigate the lattice properties and the defect formation energies in Gd 2 Ti 2 O 7 and Gd 2 Zr 2 O 7 pyrochlores. The main objective was to determine the role played by the defect stability on the radiation tolerance of these compounds. Calculations show that the titanate has a more covalent character than the zirconate. Moreover, the properties of oxygen Frenkel pairs, cation antisite defects and cation Frenkel pairs were studied. In Gd 2 Ti 2 O 7 the cation antisite defect and the Ti-Frenkel pair are not stable: they evolve towards more stable defect configurations during the atomic relaxation process. This phenomenon is driven by a decrease of the Ti coordination number down to five which leads to a local atomic reorganization and strong structural distortions around the defects. These kinds of atomic rearrangements are not observed around defects in Gd 2 Zr 2 O 7 . Therefore, the defect stability in A 2 B 2 O 7 depends on the ability of B atoms to accommodate high coordination number (higher than six seems impossible for Ti). The accumulation of structural distortions around Ti-defects due to this phenomenon could drive the Gd 2 Ti 2 O 7 amorphization induced by irradiation. (paper)

  16. All-in-all-out magnetic domain size in pyrochlore iridate thin films as probed by local magnetotransport

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T. C.; Uchida, M., E-mail: uchida@ap.t.u-tokyo.ac.jp; Kozuka, Y.; Ogawa, S. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656 (Japan); Tsukazaki, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075 (Japan); Arima, T. [Department of Advanced Materials Science, University of Tokyo, Kashiwa 277-8561 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Kawasaki, M. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2016-01-11

    Pyrochlore iridates have attracted growing attention because of a theoretical prediction of a possible topological semimetal phase originating from all-in-all-out spin ordering. Related to the topological band structure, recent findings of the magnetic domain wall conduction have stimulated investigations of magnetic domain distribution in this system. Here, we investigate the size of magnetic domains in Eu{sub 2}Ir{sub 2}O{sub 7} single crystalline thin films by magnetoresistance (MR) using microscale Hall bars. Two distinct magnetic domains of the all-in-all-out spin structure are known to exhibit linear MR but with opposite signs, which enables us to estimate the ratio of the two domains in the patterned channel. The linear MR for 80 × 60 μm{sup 2} channel is nearly zero after zero-field cooling, suggesting random distribution of domains smaller than the channel size. In contrast, the wide distribution of the value of the linear MR is detected in 2 × 2 μm{sup 2} channel, reflecting the detectable domain size depending on each cooling-cycle. Compared to simulation results, we estimate the average size of a single all-in-all-out magnetic domain as 1–2 μm.

  17. Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: enhancing the photocatalytic activity of rutile with a pyrochlore phase.

    Science.gov (United States)

    De Los Santos, Desiré M; Navas, Javier; Aguilar, Teresa; Sánchez-Coronilla, Antonio; Fernández-Lorenzo, Concha; Alcántara, Rodrigo; Piñero, Jose Carlos; Blanco, Ginesa; Martín-Calleja, Joaquín

    2015-01-01

    Tm-doped TiO2 nanoparticles were synthesized using a water-controlled hydrolysis reaction. Analysis was performed in order to determine the influence of the dopant concentration and annealing temperature on the phase, crystallinity, and electronic and optical properties of the resulting material. Various characterization techniques were utilized such as X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and UV-vis spectroscopy. For the samples annealed at 773 and 973 K, anatase phase TiO2 was obtained, predominantly internally doped with Tm(3+). ICP-AES showed that a doping concentration of up to 5.8 atom % was obtained without reducing the crystallinity of the samples. The presence of Tm(3+) was confirmed by X-ray photoelectron spectroscopy and UV-vis spectroscopy: the incorporation of Tm(3+) was confirmed by the generation of new absorption bands that could be assigned to Tm(3+) transitions. Furthermore, when the samples were annealed at 1173 K, a pyrochlore phase (Tm2Ti2O7) mixed with TiO2 was obtained with a predominant rutile phase. The photodegradation of methylene blue showed that this pyrochlore phase enhanced the photocatalytic activity of the rutile phase.

  18. Quantum Magnetism Applied to the Iron-Pnictides and Rare Earth Pyrochlores

    Science.gov (United States)

    Applegate, Ryan

    This dissertation presents computational studies of two families of magnetic materials of significant current interest. The iron pnictides are new high temperature superconductors with interesting parent compound antiferromagnetism. The rare earth pyrochlore material Yb2Ti2O7 is a candidate quantum spin ice. The magnetic and structural phases of individual iron pnictides have both many common features and material specific differences. In an attempt to unify these behaviors as instances of a larger theoretical picture, we use Monte Carlo simulations of a two-dimensional Hamiltonian with coupled Heisenberg-spin and Ising-orbital degrees of freedom. We introduce spin-space and single-ion anisotropies and study the finite temperature transitions in our model. We develop a phase diagram and propose that the interplay of spin and orbital physics in the presence of anisotropy could explain how material details affect the transitions of the pnictide materials. Nuclear magnetic resonance (NMR) can study magnetic materials via the hyperfine interaction and the coupling between the nuclear moment and the field produced by the samples local moment environment. Recent measurements suggest that Zn doped BaFe2As2 may have quantum fluctuations about the striped phase that produce a distribution of fields at As nuclear sites. The non-magnetic ion Zn replaces Fe and can be treated as an impurity which can be studied by a zero-temperature Ising Series expansion method. We propose a Heisenberg-like J1a-J 1b-J2 model which has small ferromagnetic exchanges along the b axis and strong antiferromagnetic exchanges along the a axis. In our impurity model we find that the magnetic moments are everywhere reduced by quantum fluctuations, except on the nearest neighbor site in the AFM direction. We suggest that the presented impurity model may provide an explanation for the experimental measurements. Based on a recently proposed quantum spin ice model, we use numerical linked cluster (NLC

  19. Catalytic Oxidation of Soot on a Novel Active Ca-Co Dually-Doped Lanthanum Tin Pyrochlore Oxide

    Directory of Open Access Journals (Sweden)

    Lijie Ai

    2018-04-01

    Full Text Available A novel active Ca-Co dually-doping pyrochlore oxide La2−xCaxSn2−yCoyO7 catalyst was synthesized by the sol-gel method for catalytic oxidation of soot particulates. The microstructure, atomic valence, reduction, and adsorption performance were investigated by X-ray powder diffraction (XRD, scanning electron microscope (SEM, Fourier-transform infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, H2-TPR (temperature-programmed reduction, and in situ diffuse reflection infrared Fourier transformed (DRIFTS techniques. Temperature programmed oxidation (TPO tests were performed with the mixture of soot-catalyst under tight contact conditions to evaluate the catalytic activity for soot combustion. Synergetic effect between Ca and Co improved the structure and redox properties of the solids, increased the surface oxygen vacancies, and provided a suitable electropositivity for oxide, directly resulting in the decreased ignition temperature for catalyzed soot oxidation as low as 317 °C. The presence of NO in O2 further promoted soot oxidation over the catalysts with the ignition temperature decreased to about 300 °C. The DRIFTS results reveal that decomposition of less stable surface nitrites may account for NO2 formation in the ignition period of soot combustion, which thus participate in the auxiliary combustion process.

  20. High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Yan, Jinyuan; Ewing, Rodney C.; Mao, Wendy L.

    2017-01-28

    In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A2B2O7 pyrochlore (A=Eu, Dy; B=Ti, Zr) up to ~50GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B=Ti and ~16 GPa B=Zr. However, the A-site cation affected the kinetics of the phase transformation, with the transformation for compositions with the smaller ionic radii, i.e., A=Dy, proceeding faster than those with a larger ionic radii, i.e., A=Eu. These results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B=Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A=Eu than A=Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu2Zr2O7 as compared with the initially defect-fluorite structured Dy2Zr2O7.

  1. Discourse, Paragraph, and Sentence Structure in Selected Philippine Languages. Final Report. Volume II, Sentence Structure.

    Science.gov (United States)

    Longacre, Robert E.

    Volume II of "Discourse, Paragraph, and Sentence Structure in Selected Philippine Languages" begins with an explanation of certain assumptions and postulates regarding sentence structure. A detailed treatment of systems of sentence structure and the parameters of such systems follows. Data in the various indigenous languages are…

  2. Photoluminescence properties of ‘red’ emitting La{sub 2}Zr{sub 2}O{sub 7}:Eu pyrochlore ceramics for potential phosphor application

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, M., E-mail: manojm@barc.gov.in; Rajeswari, B.; Hon, N.S.; Kadam, R.M.; Natarajan, V.

    2015-10-15

    Lanthanum zirconate (La{sub 2}Zr{sub 2}O{sub 7}=LZO) pyrochlores doped with varying concentrations of Eu were synthesized using a low temperature gel-combustion synthesis route and characterized using X-ray diffraction, scanning electron microscopic and photoluminescence techniques. The final annealing temperature of the system could be brought down to 700 °C to produce a single phase compound. In addition, the optimum activator ion concentration for maximum luminescence yield was evaluated for the system. The site occupancy for the Eu ions was also investigated which suggested that at 500 °C, the ions were on the surface of the LZO host and later diffused into the lattice and replaced the La{sup 3+} ions on annealing at 700 °C 5 h. However, due to difference in the ionic radii, the doped RE ions were of the inversion center forming a D{sub 2d} symmetry around them. For the first time the radiative properties and the commercial utility of the LZO system have been investigated. These parameters were used to get an idea about the M–L bond covalency in the system. The radiative properties suggested the system can be used as a potential ‘red’ emitting phosphor. - Highlights: • Synthesis of lanthanum zirconate pyrochlores doped with Eu using gel-combustion route. • Optimization of dopant ion concentration and annealing temperature and evaluation of its local site symmetry. • Evaluation of various photo-physical properties for the Eu-LZO system to investigate the M–L bond covalency. • Investigation of the commercial utility of the system by calculating the color coordinates. • Comparison of the emission properties with commercial sample.

  3. Speciation of uranium in La{sub 2}Zr{sub 2}O{sub 7} pyrochlore by TRPLS

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, M.; Rajeswari, B.; Hon, N. S.; Kadam, R. M., E-mail: rmkadam@barc.gov.in; Natarajan, V. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2015-06-24

    We discuss the speciation of uranium in lanthanum zirconate (La{sub 2}Zr{sub 2}O{sub 7} =LZO) pyrochlore ceramic prepared via a gel-combustion route. Uranium concentration in the pyrochlore was optimized to 2 mol%. XRD and SEM experiments were carried out to assess the phase and homogeneity of the prepared samples. Time resolved photoluminescence (TRPLS) investigations were carried out for understanding the species stabilized in the pyrochlore host. It was observed that, uranium exists as uranate ion (UO{sub 6}{sup 6−}) in the zirconate host where it replaces the ‘Zr’ ions at its regular site with surrounding defect centers created for charge compensation.

  4. Charge structure of the hadronic final state in deep-inelastic muon-nucleon scattering

    International Nuclear Information System (INIS)

    Arneodo, M.; Ferrero, M.I.; Peroni, C.; Beaufays, J.; Jacholkowska, A.; Kellner, G.; Osborne, A.M.; Bee, C.P.; Bird, I.; Coughlan, J.; Sloan, T.; Braun, H.; Brueck, H.; Drees, J.; Edwards, A.; Krueger, J.; Montgomery, H.E.; Peschel, H.; Pietrzyk, U.; Poetsch, M.; Schneider, A.; Combley, F.; Foster, J.; Whalley, M.; Wheeler, S.; Dreyer, T.; Ernst, T.; Haas, J.; Kabuss, E.M.; Landgraf, U.; Mohr, W.; Rith, K.; Schlagboehmer, A.; Schroeder, T.; Stier, H.E.; Wallucks, W.; Figiel, J.; Gajewski, J.; Janata, F.; Poensgen, B.; Schiemann, H.; Studt, M.; Torre, A. de la; Geddes, N.; Johnson, A.S.; Loken, J.; Long, K.; Renton, P.; Taylor, G.N.; Williams, W.S.C.; Grard, F.; Windmolders, R.

    1988-01-01

    The general charge properties of the hadronic final state produced in μ + p and μ + d interactions at 280 GeV are investigated. Quark charge retention and local charge compensation is observed. The ratio F 2 n /F 2 p of the neutron to proton structure function is derived from the measurement of the average hadronic charge in μd interactions. (orig.)

  5. Isotope effect on superconductivity and Raman phonons of Pyrochlore Cd2Re2O7

    Science.gov (United States)

    Razavi, F. S.; Hajialamdari, M.; Reedyk, M.; Kremer, R. K.

    2018-06-01

    Cd2Re2O7 is the only α-Pyrochlore exhibiting superconductivity with a transition temperature (Tc) of ∼ 1 K. In this study, we present the effect of oxygen isotope (18O) as well as combined 18O and cadmium isotope (116Cd) substitution on the superconductivity and Raman scattering spectrum of Cd2Re2O7. The change of Tc and the energy gap Δ(T) are reported using various techniques including point contact spectroscopy. The shift in Raman phonon frequencies upon isotope substitution will be compared with measurement of the isotope effect on the superconducting transition temperature.

  6. Spin freezing in the geometrically frustrated pyrochlore antiferromagnet Tb2Mo2O7

    DEFF Research Database (Denmark)

    Gaulin, B.D.; Reimers, J.N.; Mason, T.E.

    1992-01-01

    The magnetic metal ions in the cubic pyrochlore Tb2Mo2O7 form an infinite three-dimensional network of corner-sharing tetrahedra with a very high potential for frustration in the presence of antiferromagnetism. We have performed neutron scattering measurements which show short-range spatial...... correlations that develop continuously with decreasing temperature, while the characteristic time scale for the fluctuating moments decreases dramatically below T(f) is similar to 25 K. Therefore, this pure material, which possesses frustration that is purely geometrical in origin, displays a spin-glass state...

  7. Rattling motion in β-pyrochlore compounds explored by the millimeter-wave conductivity measurement

    International Nuclear Information System (INIS)

    Maeda, Atsutaka; Oba, Kentaro; Imai, Yoshinori; Yamaura, Jun-ichi; Hiroi, Zenji

    2010-01-01

    Complex conductivity is investigated at 19 GHz and 44 GHz in the normal state in β-pyrochlore materials, AOs 2 O 6 (A = Cs, Rb and K). In Cs material, large enhancement of the quasiparticle (QP) scattering time, τ, is observed at low temperatures, whereas there is no such enhancement in Rb and K materials. This indicates that rattling motion is absent in Cs material, whether in K and Rb materials it plays the role as a scatterer for QPs. In Rb materials, we find charge excitation possibly originated from the rattling motion.

  8. Relaxation and final-state structure in XPS of atoms, molecules, and metals

    International Nuclear Information System (INIS)

    Shirley, D.A.; Martin, R.L.; McFeely, F.R.; Kowalczyk, S.P.; Ley, L.

    1975-03-01

    Photoemission from a many-electron system is a many-electron process, even though the transition operator may affect only one electron directly. Relaxation and ''shake-up'' structure are related by a sum rule. When one is present, the other must be also. Shake-up structure is shown to be accurately predictable in atomic neon and molecular HF if the CI calculations are done carefully. In metals the sum rule also applies but final-state effects usually appear as relaxation energy, which is large even for valence electrons. Finally, in rare-earth metals discrete shake-up structure is observable in the 4p region. (7 figs, 30 refs) (auth)

  9. Smart Intelligent Aircraft Structures (SARISTU) : Proceedings of the Final Project Conference

    CERN Document Server

    Papadopoulos, Michael

    2016-01-01

    The book includes the research papers presented in the final conference of the EU funded SARISTU (Smart Intelligent Aircraft Structures) project, held at Moscow, Russia between 19-21 of May 2015. The SARISTU project, which was launched in September 2011, developed and tested a variety of individual applications as well as their combinations. With a strong focus on actual physical integration and subsequent material and structural testing, SARISTU has been responsible for important progress on the route to industrialization of structure integrated functionalities such as Conformal Morphing, Structural Health Monitoring and Nanocomposites. The gap- and edge-free deformation of aerodynamic surfaces known as conformal morphing has gained previously unrealized capabilities such as inherent de-icing, erosion protection and lightning strike protection, while at the same time the technological risk has been greatly reduced. Individual structural health monitoring techniques can now be applied at the part-manufacturin...

  10. Topological Magnon Bands and Unconventional Superconductivity in Pyrochlore Iridate Thin Films

    Science.gov (United States)

    Laurell, Pontus; Fiete, Gregory A.

    2017-04-01

    We theoretically study the magnetic properties of pyrochlore iridate bilayer and trilayer thin films grown along the [111] direction using a strong coupling approach. We find the ground state magnetic configurations on a mean field level and carry out a spin-wave analysis about them. In the trilayer case the ground state is found to be the all-in-all-out (AIAO) state, whereas the bilayer has a deformed AIAO state. For all parameters of the spin-orbit coupled Hamiltonian we study, the lowest magnon band in the trilayer case has a nonzero Chern number. In the bilayer case we also find a parameter range with nonzero Chern numbers. We calculate the magnon Hall response for both geometries, finding a striking sign change as a function of temperature. Using a slave-boson mean-field theory we study the doping of the trilayer system and discover an unconventional time-reversal symmetry broken d +i d superconducting state. Our study complements prior work in the weak coupling limit and suggests that the [111] grown thin film pyrochlore iridates are a promising candidate for topological properties and unconventional orders.

  11. Quantum phase transitions and anomalous Hall effect in a pyrochlore Kondo lattice

    Science.gov (United States)

    Grefe, Sarah; Ding, Wenxin; Si, Qimiao

    The metallic variant of the pyrochlore iridates Pr2Ir2O7 has shown characteristics of a possible chiral spin liquid state [PRL 96 087204 (2006), PRL 98, 057203 (2007), Nature 463, 210 (2010)] and quantum criticality [Nat. Mater. 13, 356 (2014)]. An important question surrounding the significant anomalous Hall response observed in Pr2Ir2O7 is the nature of the f-electron local moments, including their Kondo coupling with the conduction d-electrons. The heavy effective mass and related thermodynamic characteristics indicate the involvement of the Kondo effect in this system's electronic properties. In this work, we study the effects of Kondo coupling on candidate time-reversal-symmetry-breaking spin liquid states on the pyrochlore lattice. Representing the f-moments as slave fermions Kondo-coupled to conduction electrons, we study the competition between Kondo-singlet formation and chiral spin correlations and determine the zero-temperature phase diagram. We derive an effective chiral interaction between the local moments and the conduction electrons and calculate the anomalous Hall response across the quantum phase transition from the Kondo destroyed phase to the Kondo screened phase. We discuss our results' implications for Pr2Ir2O7 and related frustrated Kondo-lattice systems.

  12. Spin-1/2 Heisenberg antiferromagnet on the pyrochlore lattice: An exact diagonalization study

    Science.gov (United States)

    Chandra, V. Ravi; Sahoo, Jyotisman

    2018-04-01

    We present exact diagonalization calculations for the spin-1/2 nearest-neighbor antiferromagnet on the pyrochlore lattice. We study a section of the lattice in the [111] direction and analyze the Hamiltonian of the breathing pyrochlore system with two coupling constants J1 and J2 for tetrahedra of different orientations and investigate the evolution of the system from the limit of disconnected tetrahedra (J2=0 ) to a correlated state at J1=J2 . We evaluate the low-energy spectrum, two and four spin correlations, and spin chirality correlations for a system size of up to 36 sites. The model shows a fast decay of spin correlations and we confirm the presence of several singlet excitations below the lowest magnetic excitation. We find chirality correlations near J1=J2 to be small at the length scales available at this system size. Evaluation of dimer-dimer correlations and analysis of the nature of the entanglement of the tetrahedral unit shows that the triplet sector of the tetrahedron contributes significantly to the ground-state entanglement at J1=J2 .

  13. Direct Measurement of Surface Dissolution Rates in Potential Nuclear Waste Forms: The Example of Pyrochlore.

    Science.gov (United States)

    Fischer, Cornelius; Finkeldei, Sarah; Brandt, Felix; Bosbach, Dirk; Luttge, Andreas

    2015-08-19

    The long-term stability of ceramic materials that are considered as potential nuclear waste forms is governed by heterogeneous surface reactivity. Thus, instead of a mean rate, the identification of one or more dominant contributors to the overall dissolution rate is the key to predict the stability of waste forms quantitatively. Direct surface measurements by vertical scanning interferometry (VSI) and their analysis via material flux maps and resulting dissolution rate spectra provide data about dominant rate contributors and their variability over time. Using pyrochlore (Nd2Zr2O7) pellet dissolution under acidic conditions as an example, we demonstrate the identification and quantification of dissolution rate contributors, based on VSI data and rate spectrum analysis. Heterogeneous surface alteration of pyrochlore varies by a factor of about 5 and additional material loss by chemo-mechanical grain pull-out within the uppermost grain layer. We identified four different rate contributors that are responsible for the observed dissolution rate range of single grains. Our new concept offers the opportunity to increase our mechanistic understanding and to predict quantitatively the alteration of ceramic waste forms.

  14. Topological Magnon Bands and Unconventional Superconductivity in Pyrochlore Iridate Thin Films.

    Science.gov (United States)

    Laurell, Pontus; Fiete, Gregory A

    2017-04-28

    We theoretically study the magnetic properties of pyrochlore iridate bilayer and trilayer thin films grown along the [111] direction using a strong coupling approach. We find the ground state magnetic configurations on a mean field level and carry out a spin-wave analysis about them. In the trilayer case the ground state is found to be the all-in-all-out (AIAO) state, whereas the bilayer has a deformed AIAO state. For all parameters of the spin-orbit coupled Hamiltonian we study, the lowest magnon band in the trilayer case has a nonzero Chern number. In the bilayer case we also find a parameter range with nonzero Chern numbers. We calculate the magnon Hall response for both geometries, finding a striking sign change as a function of temperature. Using a slave-boson mean-field theory we study the doping of the trilayer system and discover an unconventional time-reversal symmetry broken d+id superconducting state. Our study complements prior work in the weak coupling limit and suggests that the [111] grown thin film pyrochlore iridates are a promising candidate for topological properties and unconventional orders.

  15. Final design of the generic upper port plug structure for ITER diagnostic systems

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Sunil, E-mail: paksunil@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Feder, Russell [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Giacomin, Thibaud; Guirao, Julio; Iglesias, Silvia; Josseaume, Fabien [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Kalish, Michael; Loesser, Douglas [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Maquet, Philippe [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Ordieres, Javier; Panizo, Marcos [NATEC, Ingenieros, Gijón (Spain); Pitcher, Spencer; Portalès, Mickael [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Proust, Maxime [CEA, Cadarache, St. Paul-lez-Durance (France); Ronden, Dennis [FOM Institute DIFFER, Nieuwegein (Netherlands); Serikov, Arkady [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Suarez, Alejandro [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Tanchuk, Victor [NIIEFA, St.-Petersburg (Russian Federation); Udintsev, Victor; Vacas, Christian [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); and others

    2016-01-15

    The generic upper port plug (GUPP) structure in ITER is a 6 m long metal box which deploys diagnostic components into the vacuum vessel. This structure is commonly used for all the diagnostic upper ports. The final design of the GUPP structure, which has successfully passed the final design review in 2013, is described here. The diagnostic port plug is cantilevered to the vacuum vessel with a heavy payload at the front, so called the diagnostic first wall (DFW) and the diagnostic shield module (DSM). Most of electromagnetic (EM) load (∼80%) occurs in DFW/DSM. Therefore, the mounting design to transfer the EM load from DFW/DSM to the GUPP structure is challenging, which should also comply with thermal expansion and tolerance for assembly and manufacturing. Another key design parameter to be considered is the gap between the port plug and the vacuum vessel port. The gap should be large enough to accommodate the remote handling of the heavy port plug (max. 25 t), the structural deflection due to external loads and machine assembly tolerance. At the same time, the gap should be minimized to stop the neutron streaming according to the ALARA (as low as reasonably achievable) principle. With these design constraints, the GUPP structure should also provide space for diagnostic integration as much as possible. This requirement has led to the single wall structure having the gun-drilled water channels inside the structure. Furthermore, intensive efforts have been made on the manufacturing study including material selection, manufacturing codes and French regulation related to nuclear equipment and safety. All these main design and manufacturing aspects are discussed in this paper, including requirements, interfaces, loads and structural assessment and maintenance.

  16. Key insights on the structural characterization of textured Er2O3–ZrO2 nano-oxides prepared by a surfactant-free solvothermal route

    International Nuclear Information System (INIS)

    Julián-López, Beatriz; Luz, Verónica de la; Gonell, Francisco; Cordoncillo, Eloisa; López-Haro, Miguel; Calvino, Jose J.; Escribano, Purificación

    2012-01-01

    Highlights: ► Structural resolution of fluorite vs. pyrochlore in small nanocrystals. ► Simple template-free solvothermal synthesis of Er 2 O 3 –ZrO 2 nanooxides. ► Good control over size, morphology and surface properties (280 m 2 g −1 ). - Abstract: Zirconia-mixed oxides can exhibit cubic fluorite and pyrochlore structure. Their discrimination is not easy in nanooxides with a crystal size close to that of a few unit cells. In this work, high resolution transmission electron microscopy (HRTEM) has been employed to provide key insights on the structural characterization of a nanometric and porous mixed Er 2 O 3 –ZrO 2 oxide. The material was prepared by a simple template-free solvothermal route that provided nanocrystalline powders at low temperature (170 °C) with spherical morphology, and high surface area (∼280 m 2 g −1 ). The porosity was mainly originated from the assembling of organic complexing agents used in the synthesis to limit the crystal growth and to control hydrolysis and condensation reaction rates. The samples were characterized by thermal analysis, X-ray diffraction, scanning electron microscopy and N 2 adsorption measurements. A detailed study by HRTEM was conducted on microtomed samples. It was observed that the material was made of nanocrystals packed into spherical agglomerates. HRTEM simulations indicated that it is not possible to identify the pyrochlore phase in nanoparticles with diameter below 2 nm. In our samples, the analysis of the HRTEM lattice images by means of fast Fourier transform (FFT) techniques revealed well defined spots that can be assigned to different planes of a cubic fluorite-type phase, even in the raw material. Raman spectroscopy was also a powerful technique to elucidate the crystalline phase of the materials with the smallest nanoparticles. HREM and Raman results evidenced that the material is constituted, irrespective of the temperature of the final calcination step, by an ensemble of randomly

  17. Final design of the generic equatorial port plug structure for ITER diagnostic systems

    International Nuclear Information System (INIS)

    Udintsev, V.S.; Maquet, P.; Alexandrov, E.; Casal, N.; Cuenca, D.; Drevon, J.-M.; Feder, R.; Friconneau, J.P.; Giacomin, T.; Guirao, J.; Iglesias, S.; Josseaume, F.; Levesy, B.; Loesser, D.; Ordieres, J.; Quinn, E.; Pak, S.; Penot, C.; Pitcher, C.S.; Portalès, M.

    2015-01-01

    The Diagnostic Generic Equatorial Port Plug (GEPP) is designed to be common to all equatorial port-based diagnostic systems. It is designed to survive throughout the lifetime of ITER for 20 years, 30,000 discharges, and 3000 disruptions. The EPP structure dimensions (without Diagnostic First Walls and Diagnostic Shield Modules) are L2.9 × W1.9 × H2.4 m"3. The length of the fully integrated EPP is 3174 mm. The weight of the EPP structure is about 15 t, whereas the total weight of the integrated EPP may be up to 45 t. The EPP structure provides a flexible platform for a variety of diagnostics. The Diagnostic Shield Module assemblies, or drawers, allow a modular approach with respect to diagnostic integration and maintenance. In the nuclear phase of ITER operations, they will be remotely inserted into the EPP structure in the Hot Cell Facility. The port plug structure must also contribute to the nuclear shielding, or plugging, of the port and further contain circulated water to allow cooling during operation and heating during bake-out. The Final Design of the GEPP has been successfully passed in late 2013 and is now heading toward manufacturing. The final design of the GEPP includes interfaces, manufacturing, R&D, operation and maintenance, load cases and analysis of failure modes.

  18. Nuclear resonance scattering study of iridates, iridium and antimony based pyrochlores

    International Nuclear Information System (INIS)

    Alexeev, P.

    2017-04-01

    This thesis shows the first synchrotron-based Moessbauer spectroscopy studies on iridium containing compounds and first vibrational spectroscopy on Sb containing compounds carried out at the P01 beamline of PETRA III. In this context, two types of X-ray monochromators have been developed: a monochromator for 73 keV photons with medium energy resolution, and a high-resolution backscattering monochromator based on a sapphire crystal. The monochromator for 73 keV X-rays is the key instrument for hyperfine spectroscopy on Iridium compounds, while the sapphire backscattering monochromator is purposed to vibrational spectroscopy on any Moessbauer resonances with the transition energies in the 20-50 keV range. Additionally, the signal detection for nuclear resonance scattering experiments at the beamline was significantly improved during this work, inspired by the high energies and low lifetimes of the employed resonances. The first synchrotron-based hyperfine spectroscopy on Iridium-containing compounds was demonstrated by NRS on 73 keV resonance in "1"9"3Ir. The results can be interpreted by dynamical theory of nuclear resonance scattering. In this work, special emphasis is set onto the electronic and magnetic properties of Ir nuclei in IrO_2 and in Ruddlesden-Popper (RP) phases of strontium iridates Sr_n_+_1Ir_nO_3_n_+_1 (n=0,1). These systems are well-suited for studies with X-ray scattering techniques, since the scattered signal contains vast information about the widely tunable crystallographic and electronic structure of these systems; furthermore, studies with X-rays are less limited by absorption from iridium as it is the case for neutron scattering experiments. The hyperfine parameters in IrO_2, SrIrO_3 and Sr_2IrO_4 have been measured via Nuclear Forward Scattering for the first time. Using the dynamical theory of NRS, the temperature and magnetic field dependence of the electric field gradient and magnetic hyperfine field on Ir nucleus have been determined for

  19. Nuclear resonance scattering study of iridates, iridium and antimony based pyrochlores

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, P.

    2017-04-15

    This thesis shows the first synchrotron-based Moessbauer spectroscopy studies on iridium containing compounds and first vibrational spectroscopy on Sb containing compounds carried out at the P01 beamline of PETRA III. In this context, two types of X-ray monochromators have been developed: a monochromator for 73 keV photons with medium energy resolution, and a high-resolution backscattering monochromator based on a sapphire crystal. The monochromator for 73 keV X-rays is the key instrument for hyperfine spectroscopy on Iridium compounds, while the sapphire backscattering monochromator is purposed to vibrational spectroscopy on any Moessbauer resonances with the transition energies in the 20-50 keV range. Additionally, the signal detection for nuclear resonance scattering experiments at the beamline was significantly improved during this work, inspired by the high energies and low lifetimes of the employed resonances. The first synchrotron-based hyperfine spectroscopy on Iridium-containing compounds was demonstrated by NRS on 73 keV resonance in {sup 193}Ir. The results can be interpreted by dynamical theory of nuclear resonance scattering. In this work, special emphasis is set onto the electronic and magnetic properties of Ir nuclei in IrO{sub 2} and in Ruddlesden-Popper (RP) phases of strontium iridates Sr{sub n+1}Ir{sub n}O{sub 3n+1} (n=0,1). These systems are well-suited for studies with X-ray scattering techniques, since the scattered signal contains vast information about the widely tunable crystallographic and electronic structure of these systems; furthermore, studies with X-rays are less limited by absorption from iridium as it is the case for neutron scattering experiments. The hyperfine parameters in IrO{sub 2}, SrIrO{sub 3} and Sr{sub 2}IrO{sub 4} have been measured via Nuclear Forward Scattering for the first time. Using the dynamical theory of NRS, the temperature and magnetic field dependence of the electric field gradient and magnetic hyperfine field

  20. Synthesis and electrical properties of the pyrochlore-type Gd2-yLayZr2O7 solid solution

    Directory of Open Access Journals (Sweden)

    León, C.

    2008-06-01

    Full Text Available Different compositions in the pyrochlore-type Gd2-yLayZr2O7 solid solution (0 ≤ y ≤ 1 were prepared at room-temperature by mechanically milling stoichiometric mixtures of the corresponding oxides. Irrespective of their lanthanum content, as-prepared powder samples consist of single-phase anion deficient fluorite materials, although long-range ordering of cations and anion vacancies characteristic of pyrochlores was observed in all cases after firing the samples at 1500°C. Interestingly, activation energy for oxygen migration in the series decreases as La-content increases, from 1.13 eV for Gd2Zr2O7 to 0.81 eV for GdLaZr2O7, whereas ionic conductivity was found to be almost La-content independent, at least for y ≤ 0.8 at T = 500°C and y ≤ 0.4 at T = 800°C. These results are explained in terms of weaker ion-ion interactions in better ordered structures (i.e., as La-content increases and highlight the importance of structural ordering/disordering in determining the dynamics of mobile oxygen ions.Partiendo de mezclas estequiométricas de los óxidos correspondientes, se prepararon por molienda mecánica y a temperatura ambiente diferentes composiciones en la solución sólida Gd2-yLayZr2O7 (0 ≤ y ≤ 1 con estructura de tipo pirocloro y conductora de iones oxígeno. Independientemente del contenido de lantano, los polvos extraídos del molino presentaron difractogramas similares al de una fluorita no estequiométrica aunque en todos los casos, el tratamiento térmico a 1500°C indujo la aparición del ordenamiento de largo alcance de cationes y vacancias aniónicas característico de pirocloros. La energía de activación para el proceso de migración de iones oxígeno en la serie disminuye a medida que se incrementa el contenido de lantano, desde 1.13 eV de Gd2Zr2O7 hasta 0.81 eV de GdLaZr2O7, mientras que la conductividad resultó ser prácticamente independiente del mismo hasta y ≤ 0.8 para T = 500°C e y ≤ 0.4 para T = 800

  1. X-ray diffraction study of the Y{sub 2}Ti{sub 2}O{sub 7} pyrochlore disordering sequence under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Soulié, Aurélien, E-mail: aurelien.soulie@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif sur Yvette (France); CEA, DEN, Service de Recherches de Métallurgie Appliqué, Université Paris-Saclay, F-91191 Gif sur Yvette (France); Menut, Denis [CEA, DEN, Service de Recherches de Métallurgie Appliqué, Université Paris-Saclay, F-91191 Gif sur Yvette (France); Crocombette, Jean-Paul [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif sur Yvette (France); Chartier, Alain [CEA, DEN, Service de la Corrosion et du Comportement des Matériaux dans leur Environnement, Laboratoire de Modélisation, de Thermodynamique et de Thermochimie, Université Paris-Saclay, F-91191 Gif sur Yvette (France); Sellami, Neila [Univ. Paris Sud, ICMMO-SP2M, Bât. 410, F-91405 Orsay (France); Sattonnay, Gaël [Univ. Paris-Sud, CSNSM, CNRS, IN2P3, Bât. 108, F-91405 Orsay (France); Monnet, Isabelle [CIMAP, CEA, CNRS, Université de Caen, BP 5133, F-14070 Caen Cedex 5 (France); and others

    2016-11-15

    The disordering sequence of Y{sub 2}Ti{sub 2}O{sub 7} pyrochlore, a nano-oxide phase that strengthens ODS steels under irradiation is studied in the experimental and modeling framework. XRD analysis has been performed considering both swift heavy ion and low energy/low mass ion irradiations. The simulation within molecular dynamics of Frenkel pair accumulation proves able to reproduce the variation of the amorphization fluence with temperature. XRD patterns calculated from the simulations reproduce well the patterns observed experimentally in the literature. Both experiments and calculations point to a first transition from pyrochlore to fluorite before an eventual amorphization. For swift heavy ion irradiations with 93 MeV Xe ions, tracks of direct impact amorphization are visible by HRTEM. Advanced refinement shows that one third of the pyrochlore impacted by an ion transforms into fluorite, while two third are directly amorphized. - Highlights: • A comparison between swift heavy ion and low energy/low mass ion irradiation of Y{sub 2}Ti{sub 2}O{sub 7} pyrochlore is performed. • Simulations of the irradiation with Molecular dynamics reproduce the amorphization dose at low energy/mass ion irradiation. • Advanced refinement of X-ray diffraction patterns gives the evolution of phase fractions in pyrochlore under irradiation. • The disordering sequence a transition from pyrochlore to defect fluorite before an eventual amorphization.

  2. Key insights on the structural characterization of textured Er{sub 2}O{sub 3}-ZrO{sub 2} nano-oxides prepared by a surfactant-free solvothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Julian-Lopez, Beatriz, E-mail: julian@qio.uji.es [Departamento de Quimica Inorganica y Organica, Universitat Jaume I, Avda. Vicente Sos Baynat s/n, 12071 Castellon (Spain); Luz, Veronica de la; Gonell, Francisco; Cordoncillo, Eloisa [Departamento de Quimica Inorganica y Organica, Universitat Jaume I, Avda. Vicente Sos Baynat s/n, 12071 Castellon (Spain); Lopez-Haro, Miguel; Calvino, Jose J. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, Puerto Real, 11510 Cadiz (Spain); Escribano, Purificacion [Departamento de Quimica Inorganica y Organica, Universitat Jaume I, Avda. Vicente Sos Baynat s/n, 12071 Castellon (Spain)

    2012-04-05

    that the material is constituted, irrespective of the temperature of the final calcination step, by an ensemble of randomly oriented nanocrystals with fluorite structure. This study opens new perspectives for the design of synthetic approaches to prepare nanooxides (fluorites and pyrochlores) and the analysis of their crystalline structure.

  3. Structure functions and final-state properties in deeply inelastic electron-proton scattering

    International Nuclear Information System (INIS)

    Kharraziha, H.

    1997-01-01

    In this thesis, we give a description of the detailed structure of the proton and a description of the final-state properties in electron-proton scattering. Qualitative results, in a purely gluonic scenario with the leading log approximation, and quantitative results, where quarks are included and some sub-leading corrections have been made, are presented. The quantitative results are in fair agreement with available experimental data and a Monte Carlo event generator for electron-proton scattering is presented. Further, a computer program for calculating QCD colour factors is presented

  4. Quantum Spin Ice under a [111] Magnetic Field: From Pyrochlore to Kagome.

    Science.gov (United States)

    Bojesen, Troels Arnfred; Onoda, Shigeki

    2017-12-01

    Quantum spin ice, modeled for magnetic rare-earth pyrochlores, has attracted great interest for hosting a U(1) quantum spin liquid, which involves spin-ice monopoles as gapped deconfined spinons, as well as gapless excitations analogous to photons. However, the global phase diagram under a [111] magnetic field remains open. Here we uncover by means of unbiased quantum Monte Carlo simulations that a supersolid of monopoles, showing both a superfluidity and a partial ionization, intervenes the kagome spin ice and a fully ionized monopole insulator, in contrast to classical spin ice where a direct discontinuous phase transition takes place. We also show that on cooling, kagome spin ice evolves towards a valence-bond solid similar to what appears in the associated kagome lattice model [S. V. Isakov et al., Phys. Rev. Lett. 97, 147202 (2006)PRLTAO0031-900710.1103/PhysRevLett.97.147202]. Possible relevance to experiments is discussed.

  5. Cluster-Glass Phase in Pyrochlore X Y Antiferromagnets with Quenched Disorder

    Science.gov (United States)

    Andrade, Eric C.; Hoyos, José A.; Rachel, Stephan; Vojta, Matthias

    2018-03-01

    We study the impact of quenched disorder (random exchange couplings or site dilution) on easy-plane pyrochlore antiferromagnets. In the clean system, order by disorder selects a magnetically ordered state from a classically degenerate manifold. In the presence of randomness, however, different orders can be chosen locally depending on details of the disorder configuration. Using a combination of analytical considerations and classical Monte Carlo simulations, we argue that any long-range-ordered magnetic state is destroyed beyond a critical level of randomness where the system breaks into magnetic domains due to random exchange anisotropies, becoming, therefore, a glass of spin clusters, in accordance with the available experimental data. These random anisotropies originate from off-diagonal exchange couplings in the microscopic Hamiltonian, establishing their relevance to other magnets with strong spin-orbit coupling.

  6. Vadose zone microbial community structure and activity in metal/radionuclide contaminated sediments. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Balkwill, David L.

    2002-08-17

    This final technical report describes the research carried out during the final two months of the no-cost extension ending 11/14/01. The primary goals of the project were (1) to determine the potential for transformation of Cr(VI) (oxidized, mobile) to Cr(III) (reduced, immobile) under unsaturated conditions as a function of different levels and combinations of (a) chromium, (b) nitrate (co-disposed with Cr), and (c) molasses (inexpensive bioremediation substrate), and (2) to determine population structure and activity in experimental treatments by characterization of the microbial community by signature biomarker analysis and by RT-PCR and terminal restriction fragment length polymorphism (T-RFLP) and 16S ribosomal RNA genes. It was determined early in the one-year no-cost extension period that the T-RFLP approach was problematic in regard to providing information on the identities of microorganisms in the samples examined. As a result, it could not provide the detailed information on microbial community structure that was needed to assess the effects of treatments with chromium, nitrate, and/or molasses. Therefore, we decided to obtain the desired information by amplifying (using TR-PCR, with the same primers used for T-RFLP) and cloning 16S rRNA gene sequences from the same RNA extracts that were used for T-RFLP analysis. We also decided to use a restriction enzyme digest procedure (fingerprinting procedure) to place the clones into types. The primary focus of the research carried out during this report period was twofold: (a) to complete the sequencing of the clones, and (b) to analyze the clone sequences phylogenetically in order to determine the relatedness of the bacteria detected in the samples to each other and to previously described genera and species.

  7. Nanostructured KTaTeO6 and Ag-doped KTaTeO6 Defect Pyrochlores: Promising Photocatalysts for Dye Degradation and Water Splitting

    Science.gov (United States)

    Venkataswamy, Perala; Sudhakar Reddy, CH.; Gundeboina, Ravi; Sadanandam, Gullapelli; Veldurthi, Naveen Kumar; Vithal, M.

    2018-03-01

    In this study, the nanostructured parent KTaTeO6 (KTTO) and Ag-doped KTaTeO6 (ATTO) catalysts with defect pyrochlore structure were prepared by solid-state and ion-exchange methods, respectively. The synthesized materials were characterized by various techniques to determine their chemical composition, morphology and microstructural features. The XRD studies show that both KTTO and ATTO have cubic structure (space group Fd3m) with high crystallinity. The doping of Ag altered the BET surface area of parent KTTO. The nano nature of the samples was studied by TEM images. A considerable red-shift in the absorption edge is observed for ATTO compared to KTTO. Incorporation of Ag+ in the KTTO lattice is clearly identified from EDX, elemental mapping and XPS results. Degradation of methyl violet and solar water splitting reactions were used to access the photocatalytic activity of KTTO and ATTO. The results obtained suggest that compared to KTTO, the ATTO showed higher photocatalytic activity in both cases. The favourable properties such as high surface area, more surface hydroxyl groups, stronger light absorption in visible region and narrower band gap energy were supposed to be the reasons for the high activity observed in ATTO.

  8. Atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb1.5O7 nanoparticles synthesized by sol-gel method

    KAUST Repository

    Zhang, Yuan; Zhu, Xinhua; Zhou, Shunhua; Zhu, Jianmin; Liu, Zhiguo; Al-Kassab, Talaat

    2013-01-01

    Here, we report the atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb 1.5O7 (BMN) nanoparticles with mean size of 70 nm, which were synthesized by sol-gel method. The crystallinity, phase formation, morphology, and surface microstructure of the BMN nanoparticles were characterized by X-ray diffraction (XRD), Raman spectra, transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM), respectively. The phase evolution of the BMN nanoparticles investigated by XRD patterns showed that uniform cubic pyrochlore BMN nanoparticles were obtained after calcination at temperature of 800 C, and their structural information was revealed by Raman spectrum. TEM images demonstrated that the BMN nanoparticles had a spherical morphology with an average particle size of 70 nm, and their crystalline nature was revealed by HRTEM images. In addition, HRTEM images also demonstrate a terrace-ledge-kink (TLK) surface structure at the edges of rough BMN nanoparticles, where the terrace was on the (100) plane, and the ledge on the (001) plane. The formation of such a TLK surface structure can be well explained by a theory of periodic bond chains. Due to the surface structural reconstruction in the BMN nanoparticles, the formation of a tetragonal structure in a rough BMN nanoparticle was also revealed by HRTEM image. The BMN nanoparticles exhibited dielectric constants of 50 at 100 kHz and 30 at 1 MHz, and the dielectric loss of 0.19 at 1 MHz. © 2013 Springer Science+Business Media Dordrecht.

  9. Atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb1.5O7 nanoparticles synthesized by sol-gel method

    KAUST Repository

    Zhang, Yuan

    2013-12-24

    Here, we report the atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb 1.5O7 (BMN) nanoparticles with mean size of 70 nm, which were synthesized by sol-gel method. The crystallinity, phase formation, morphology, and surface microstructure of the BMN nanoparticles were characterized by X-ray diffraction (XRD), Raman spectra, transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM), respectively. The phase evolution of the BMN nanoparticles investigated by XRD patterns showed that uniform cubic pyrochlore BMN nanoparticles were obtained after calcination at temperature of 800 C, and their structural information was revealed by Raman spectrum. TEM images demonstrated that the BMN nanoparticles had a spherical morphology with an average particle size of 70 nm, and their crystalline nature was revealed by HRTEM images. In addition, HRTEM images also demonstrate a terrace-ledge-kink (TLK) surface structure at the edges of rough BMN nanoparticles, where the terrace was on the (100) plane, and the ledge on the (001) plane. The formation of such a TLK surface structure can be well explained by a theory of periodic bond chains. Due to the surface structural reconstruction in the BMN nanoparticles, the formation of a tetragonal structure in a rough BMN nanoparticle was also revealed by HRTEM image. The BMN nanoparticles exhibited dielectric constants of 50 at 100 kHz and 30 at 1 MHz, and the dielectric loss of 0.19 at 1 MHz. © 2013 Springer Science+Business Media Dordrecht.

  10. A near-peer teaching program designed, developed and delivered exclusively by recent medical graduates for final year medical students sitting the final objective structured clinical examination (OSCE

    Directory of Open Access Journals (Sweden)

    Sobowale Oluwaseun

    2011-03-01

    Full Text Available Abstract Background The General Medical Council states that teaching doctors and students is important for the care of patients. Our aim was to deliver a structured teaching program to final year medical students, evaluate the efficacy of teaching given by junior doctors and review the pertinent literature. Methods We developed a revision package for final year medical students sitting the Objective Structured Clinical Examination (OSCE. The package was created and delivered exclusively by recent medical graduates and consisted of lectures and small group seminars covering the core areas of medicine and surgery, with a focus on specific OSCE station examples. Students were asked to complete a feedback questionnaire during and immediately after the program. Results One hundred and eighteen completed feedback questionnaires were analysed. All participants stated that the content covered was relevant to their revision. 73.2% stated that junior doctors delivered teaching that is comparable to that of consultant - led teaching. 97.9% stated the revision course had a positive influence on their learning. Conclusions Our study showed that recent medical graduates are able to create and deliver a structured, formal revision program and provide a unique perspective to exam preparation that was very well received by our student cohort. The role of junior doctors teaching medical students in a formal structured environment is very valuable and should be encouraged.

  11. Structure-Reactivity Relationships in Multi-Component Transition Metal Oxide Catalysts FINAL Report

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Eric I. [Yale Univ., New Haven, CT (United States)

    2015-10-06

    The focus of the project was on developing an atomic-level understanding of how transition metal oxide catalysts function. Over the course of several renewals the specific emphases shifted from understanding how local structure and oxidation state affect how molecules adsorb and react on the surfaces of binary oxide crystals to more complex systems where interactions between different transition metal oxide cations in an oxide catalyst can affect reactivity, and finally to the impact of cluster size on oxide stability and reactivity. Hallmarks of the work were the use of epitaxial growth methods to create surfaces relevant to catalysis yet tractable for fundamental surface science approaches, and the use of scanning tunneling microscopy to follow structural changes induced by reactions and to pinpoint adsorption sites. Key early findings included the identification of oxidation and reduction mechanisms on a tungsten oxide catalyst surface that determine the sites available for reaction, identification of C-O bond cleavage as the rate limiting step in alcohol dehydration reactions on the tungsten oxide surface, and demonstration that reduction does not change the favored reaction pathway but rather eases C-O bond cleavage and thus reduces the reaction barrier. Subsequently, a new reconstruction on the anatase phase of TiO2 relevant to catalysis was discovered and shown to create sites with distinct reactivity compared to other TiO2 surfaces. Building on this work on anatase, the mechanism by which TiO2 enhances the reactivity of vanadium oxide layers was characterized and it was found that the TiO2 substrate can force thin vanadia layers to adopt structures they would not ordinarily form in the bulk which in turn creates differences in reactivity between supported layers and bulk samples. From there, the work progressed to studying well-defined ternary oxides where synergistic effects between the two cations can induce

  12. Attitudes towards a final repository for the spent nuclear fuel. Structure and causes

    International Nuclear Information System (INIS)

    Sjoeberg, Lennart

    2008-09-01

    This report presents the results of a questionnaire survey of attitudes towards a final repository for the spent nuclear fuel. The questionnaire was mailed to 3,000 persons. Participants were young and older people in Oskarshamn municipality and Oesthammar municipality as well as in the rest of the country. Fifty-one percent responded. The questionnaire included a large number of questions of possible relevance for understanding the structure of and reasons for the person's attitude towards a final repository. Questions concerning nuclear power were dealt with in a special section. Men were more positively disposed towards a repository than women, older people more than young. The gender differences are mainly attributable to the variation in attitude towards nuclear power and concern about nuclear accidents. In the case of older people, interest was also a factor. Young people were not as interested in the issue. The most important factor in determining the attitude towards a final repository was the benefit it was expected to bring to the municipality. Moral and emotional aspects were also important. Risk played a relatively subordinate role. Social aspects were very important: those who frequently spoke with people who were positively disposed tended to be positive themselves, and vice versa for those who were negative. This factor could explain some of the gender differences in attitude. Attitudes in Oskarshamn were slightly more positive than in Oesthammar, probably due to the fact that the residents in Oskarshamn had a greater sense of participation in the municipality's decision in the matter. Information from SKB was also found to be an important factor for the differences in attitude between the municipalities. Eight percentage points more people had received information in Oskarshamn than in Oesthammar. The difference may be small, but it exists and does appear to be of some importance. Attitudes in Oskarshamn and Oesthammar continued to be much more

  13. First-principles study on cubic pyrochlore iridates Y2Ir2O7 and Pr2Ir2O7

    International Nuclear Information System (INIS)

    Ishii, Fumiyuki; Mizuta, Yo Pierre; Kato, Takehiro; Ozaki, Taisuke; Weng Hongming; Onoda, Shigeki

    2015-01-01

    Fully relativistic first-principles electronic structure calculations based on a noncollinear local spin density approximation (LSDA) are performed for pyrochlore iridates Y 2 Ir 2 O 7 and Pr 2 Ir 2 O 7 . The all-in, all-out antiferromagnetic (AF) order is stablized by the on-site Coulomb repulsion U > U c in the LSDA+U scheme, with U c ∼ 1.1 eV and 1.3 eV for Y 2 Ir 2 O 7 and Pr 2 Ir 2 O 7 , respectively. AF semimetals with and without Weyl points and then a topologically trivial AF insulator successively appear with further increasing U. For U = 1.3 eV, Y 2 Ir 2 O 7 is a topologically trivial narrow-gap AF insulator having an ordered local magnetic moment ∼0.5μ B /Ir, while Pr 2 Ir 2 O 7 is barely a paramagnetic semimetal with electron and hole concentrations of 0.016/Ir, in overall agreements with experiments. With decreasing oxygen position parameter x describing the trigonal compression of IrO 6 octahedra, Pr 2 Ir 2 O 7 is driven through a non-Fermi-liquid semimetal having only an isolated Fermi point of Γ 8 + , showing a quadratic band touching, to a Z 2 topological insulator. (author)

  14. Pseudo-Goldstone Magnons in the Frustrated S=3/2 Heisenberg Helimagnet ZnCr_{2}Se_{4} with a Pyrochlore Magnetic Sublattice

    Directory of Open Access Journals (Sweden)

    Y. V. Tymoshenko

    2017-11-01

    Full Text Available Low-energy spin excitations in any long-range ordered magnetic system in the absence of magnetocrystalline anisotropy are gapless Goldstone modes emanating from the ordering wave vectors. In helimagnets, these modes hybridize into the so-called helimagnon excitations. Here we employ neutron spectroscopy supported by theoretical calculations to investigate the magnetic excitation spectrum of the isotropic Heisenberg helimagnet ZnCr_{2}Se_{4} with a cubic spinel structure, in which spin-3/2 magnetic Cr^{3+} ions are arranged in a geometrically frustrated pyrochlore sublattice. Apart from the conventional Goldstone mode emanating from the (0 0 q_{h} ordering vector, low-energy magnetic excitations in the single-domain proper-screw spiral phase show soft helimagnon modes with a small energy gap of ∼0.17  meV, emerging from two orthogonal wave vectors (q_{h} 0 0 and (0 q_{h} 0 where no magnetic Bragg peaks are present. We term them pseudo-Goldstone magnons, as they appear gapless within linear spin-wave theory and only acquire a finite gap due to higher-order quantum-fluctuation corrections. Our results are likely universal for a broad class of symmetric helimagnets, opening up a new way of studying weak magnon-magnon interactions with accessible spectroscopic methods.

  15. Comparison of the Supercooled Spin Liquid States in the Pyrochlore Magnets Dy2Ti2O7 and Ho2Ti2O7

    Science.gov (United States)

    Eyal, Anna; Eyvazov, Azar B.; Dusad, Ritika; Munsie, Timothy J. S.; Luke, Graeme M.; Davis, J. C. Séamus

    Despite a well-ordered crystal structure and strong magnetic interactions between the Dy or Ho ions, no long-range magnetic order has been detected in the pyrochlore titanates Ho2Ti2O7 and Dy2Ti2O7. The low temperature state in these materials is governed by spin-ice rules. These constrain the Ising like spins in the materials, yet does not result in a global broken symmetry state. To explore the actual magnetic phases, we simultaneously measure the time- and frequency-dependent magnetization dynamics of Dy2Ti2O7 and Ho2Ti2O7 using toroidal, boundary-free magnetization transport techniques. We demonstrate a distinctive behavior of the magnetic susceptibility of both compounds, that is indistinguishable in form from the permittivity of supercooled dipolar liquids. Moreover, we show that the microscopic magnetic relaxation times for both materials increase along a super-Arrhenius trajectory also characteristic of supercooled glass-forming liquids. Both materials therefore exhibit characteristics of a supercooled spin liquid. Strongly-correlated dynamics of loops of spins is suggested as a possible mechanism which could account for these findings. Potential connections to many-body spin localization will also be discussed.

  16. Processing development for ceramic structural components: the influence of a presintering of silicon on the final properties of reaction bonded silicon nitride. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-01

    The influence of a presintering of silicon on the final properties of reaction bonded silicon nitride has been studied using scanning electron and optical microscopy, x-ray diffraction analysis, 4 pt. bend test, and mecury intrusion porosimetry. It has been shown that presintering at 1050/sup 0/C will not affect the final nitrided properties. At 1200/sup 0/C, the oxide layer is removed, promoting the formation of B-phase silicon nitride. Presintering at 1200/sup 0/C also results in compact weight loss due to the volatilization of silicon, and the formation of large pores which severely reduce nitrided strength. The development of the structure of sintered silicon compacts appears to involve a temperature gradient, with greater sintering observed near the surface.

  17. Superconductivity mediated by anharmonic phonons: application to β-pyrochlore oxides

    Science.gov (United States)

    Hattori, Kazumasa; Tsunetsugu, Hirokazu

    2010-03-01

    We investigate three dimensional anharmonic phonons under tetrahedral symmetry and superconductivity mediated by these phonons. Three dimensional anharmonic phonon spectra are calculated directly by solving Schr"odinger equation and the superconducting transition temperature is determined by using the theory of strong coupling superconductivity assuming an isotropic gap function. With increasing the third order anharmonicity b of the tetrahedral potential, we find a crossover in the energy spectrum to a quantum tunneling regime. We obtain strongly enhanced transition temperatures around the crossover point. The first order transition observed in KOs2O6 is discussed in terms of the first excited state energy δ, and the coupling constant λ in the strong coupling theory of superconductivity. Our results suggest that the decrease of λ and increase of δ below the first order transition temperature. We point out that the change in the oscillation amplitude and characterizes this isomorphic transition. The chemical trends of the superconducting transition temperature, λ, and δ in the β-pyrochlore compounds are also discussed.

  18. Observation of magnetic polarons in the magnetoresistive pyrochlore Lu2V2O7

    International Nuclear Information System (INIS)

    Storchak, Vyacheslav G; Brewer, Jess H; Eshchenko, Dmitry G; Mengyan, Patrick W; Zhou Haidong; Wiebe, Christopher R

    2013-01-01

    Materials that exhibit colossal magnetoresistance (CMR) have attracted much attention due to their potential technological applications. One particularly interesting model for the magnetoresistance of low-carrier-density ferromagnets involves mediation by magnetic polarons (MP)—electrons localized in nanoscale ferromagnetic ‘droplets’ by their exchange interaction. However, MP have not previously been directly detected and their size has been difficult to determine from macroscopic measurements. In order to provide this crucial information, we have carried out muon spin rotation measurements on the magnetoresistive semiconductor Lu 2 V 2 O 7 in the temperature range from 2 to 300 K and in magnetic fields up to 7 T. Magnetic polarons with characteristic radius R ≈ 0.4 nm are detected below about 100 K, where Lu 2 V 2 O 7 exhibits CMR; at higher temperature, where the magnetoresistance vanishes, these MP also disappear. This observation confirms the MP-mediated model of CMR and reveals the microscopic size of the MP in magnetoresistive pyrochlores. (paper)

  19. First-principles study of strong correlation effects in pyrochlore iridates

    Energy Technology Data Exchange (ETDEWEB)

    Shinaoka, Hiroshi [Department of Physics, Saitama University (Japan); Hoshino, Shintaro [Department of Basic Science, The University of Tokyo (Japan); Troyer, Matthias [Theoretische Physik, ETH Zuerich (Switzerland); Werner, Philipp [Department of Physics, University of Fribourg (Switzerland)

    2016-07-01

    The pyrochlore iridates A{sub 2}Ir{sub 2}O{sub 7} (A=Pr, Nd, Y, etc.) are an ideal system to study fascinating phenomena induced by strong electron correlations and spin-orbit coupling. In this talk, we study strong correlation effects in the prototype compound Y{sub 2}Ir{sub 2}O{sub 7} using the local density approximation and dynamical mean-field theory (LDA+DMFT). We map out the phase diagram in the space of temperature, onsite Coulomb repulsion U, and filling. Consistent with experiments, we find that an all-in/all-out ordered insulating phase is stable for realistic values of U. We reveal the importance of the hybridization between j{sub eff} = 1/2 and j{sub eff} = 3/2 states under the Coulomb interaction and trigonal crystal field. We demonstrate a substantial band narrowing in the paramagnetic metallic phase and non-Fermi liquid behavior in the electron/hole doped system originating from long-lived quasi-spin moments induced by nearly flat bands. We further compare our results with recent experimental results of Eu{sub 2}Ir{sub 2}O{sub 7} under hydrostatic pressure.

  20. Interface formation and defect structures in epitaxial La2Zr2O7 thin films on (111) Si

    International Nuclear Information System (INIS)

    Seo, J.W.; Fompeyrine, J.; Guiller, A.; Norga, G.; Marchiori, C.; Siegwart, H.; Locquet, J.-P.

    2003-01-01

    We have studied the growth of epitaxial La 2 Zr 2 O 7 thin films on (111) Si. Although the interface structure can be strongly affected by the Si oxidation during the deposition process, epitaxial growth of La 2 Zr 2 O 7 was obtained. A detailed study by means of transmission electron microscopy reveals two types of structures (pyrochlore and fluorite) with the same average chemical composition but strong differences in reactivity and interface formation. The structural complexity of the ordered pyrochlore structure seems to prevent excess oxygen diffusion and interfacial SiO 2 formation

  1. Structure, Raman spectra and defect chemistry modelling of conductive pyrochlore oxides

    DEFF Research Database (Denmark)

    Poulsen, F.W.; Glerup, M.; Holtappels, P.

    2000-01-01

    -O(x) and V-O on the O site, interstitial oxygens O-i", and delocalised electrons and electron holes. Four mass action law expressions govern such a model. The defect model can rationalise why home-valent doping, i.e. substitution of Zr(4+) by Ce(4+), can lead to an increase in ionic conductivity...

  2. Cooper-pair formation by anharmonic rattling modes in the β-pyrochlore superconductor KOs2O6

    Science.gov (United States)

    Chang, Jun; Eremin, Ilya; Thalmeier, Peter

    2009-05-01

    We study the influence of anharmonic rattling phonons in the β-pyrochlore superconductor KOs2O6 using the strong-coupling Eliashberg approach. In particular, by analyzing the specific heat data, we find that the rattling phonon frequency changes discontinuously at the critical temperature of the first-order phase transition. Solving the strong-coupling Eliashberg equations with effective temperature-dependent α2F(ω), we investigate the consequence of this first-order phase transition for the anomalous temperature dependence of the superconducting gap. We discuss our results in the context of the recent experimental data.

  3. Diffraction and spectroscopic study of pyrochlores Bi{sub 2−x}Fe{sub 1+x}SbO{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qingdi; Blanchard, Peter E.R. [School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Kennedy, Brendan J., E-mail: kennedyb@chem.usyd.edu.au [School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Ling, Chris D.; Liu, Samuel [School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Avdeev, Max [Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia); Aitken, Jade B. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); Institute of Materials Structure Science, KEK, Tsukuba, Ibaraki 305-0801 (Japan); School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Tadich, Anton; Brand, Helen E.A. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2014-03-15

    Highlights: • Fe rich pyrochlores of the type Bi{sub 2−x}Fe{sub 1+x}SbO{sub 7} were prepared by solid state methods. • Structures determined using a combination of neutron and synchrotron X-ray diffraction. • Fe partially occupies the 8-coordinate site. • Dispacive disorder of the Bi cations observed as a consequence of the 6s{sup 2} electrons. • Non-Vegard behaviour seen at low Fe contents due to disorder. -- Abstract: The structural and electronic properties of the series Bi{sub 2−x}Fe{sub 1+x}SbO{sub 7} (0 ⩽ x ⩽ 0.6) were investigated using a combination of diffraction and spectroscopy. Synchrotron and neutron diffraction analysis show that Fe{sup 3+} cations substitute for Bi{sup 3+} onto the A site with increasing x, which was further confirmed by analysis of the Fe K/L-edge X-ray absorption near-edge spectra. The diffraction analysis indicated the presence of displacive disorder along the A{sub 2}O chains, likely the result of the Bi{sup 3+} 6s{sup 2} lone pair, as well as non-Vegard-like behaviour of the lattice parameters in the Fe-poor region. Fe K-edge extended X-ray absorption fine-structure analysis of Bi{sub 2}FeSbO{sub 7} confirmed the displacive disorder of the Bi{sup 3+} cations as well as Sb{sup 5+} and Fe{sup 3+} disorder on the B site.

  4. Enhancement of nondestructive evaluation techniques for magnetic and nonmagnetic structural components (Final report for doctoral fellowship)

    International Nuclear Information System (INIS)

    Chen, Zhenmao

    2000-03-01

    In this report, research works performed in the Structural Safety Engineering Group of OEC/JNC are summarized as the final report of the doctoral fellowship. The main objective of this study is for the enhancement of the nondestructive evaluation techniques for structural components of both magnetic and nonmagnetic material. Studies in three topics have been carried out aiming at the quantitative evaluation of crack with the eddy current testing and the validation of a natural magnetic field based NDE method for detecting mechanical damages in a paramagnetic material. In the first part of the study, an approach to the reconstruction of the natural crack was proposed and implemented with an idealized crack model for its validation. In the second part, the correlation of the natural magnetization and the mechanical damages in the SUS304 stainless steel was investigated by using an experimental approach. In part 3, an inverse method of the measured magnetic fields is proposed for the reconstruction of magnetic charges in the inspected material by using an optimization method and wavelet. As the first work, an approach to the reconstruction of an idealized natural crack of non-vanishing conductivity is proposed with use of signals of eddy current testing. Two numerical models are introduced at first for modeling the natural crack in order to represented it with a set of crack parameters. A method for the rapid prediction of the eddy current testing signals coming from these idealized cracks is given then by extending a knowledge based fast forward solver to the case of a non-vanishing conductivity. Based on this fast forward solver, the inverse algorithm of conjugate gradient method is updated to identify the crack parameters. Several examples are presented finally as a validation of the proposed strategy. The results show that both the two numerical models can give reasonable reconstruction results for signal of low noise. The model concerning the touch of crack

  5. Cofiring behavior and interfacial structure of NiCuZn ferrite/PMN ferroelectrics composites for multilayer LC filters

    International Nuclear Information System (INIS)

    Miao Chunlin; Zhou Ji; Cui Xuemin; Wang Xiaohui; Yue Zhenxing; Li Longtu

    2006-01-01

    The cofiring behavior, interfacial structure and cofiring migration between NiCuZn ferrite and lead magnesium niobate (PMN)-based relaxor ferroelectric materials were investigated via thermomechanical analyzer (TMA), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Mismatched sintering shrinkage between NiCuZn ferrite and PMN was modified by adding an appropriate amount of sintering aids, Bi 2 O 3 , into NiCuZn ferrite. Pyrochlore phase appeared in the mixture of NiCuZn ferrite and PMN, which is detrimental to the final electric properties of LC filters. EDS results indicated that the interdiffusion at the heterogeneous interfaces in the composites, such as Fe, Pb, Zn, existed which can strengthen combinations between ferrite layers and ferroelectrics layers

  6. Two-magnon scattering in the 5d all-in-all-out pyrochlore magnet Cd2Os2O7.

    Science.gov (United States)

    Nguyen, Thi Minh Hien; Sandilands, Luke J; Sohn, C H; Kim, C H; Wysocki, Aleksander L; Yang, In-Sang; Moon, S J; Ko, Jae-Hyeon; Yamaura, J; Hiroi, Z; Noh, Tae Won

    2017-08-15

    5d pyrochlore oxides with all-in-all-out magnetic order are prime candidates for realizing strongly correlated, topological phases of matter. Despite significant effort, a full understanding of all-in-all-out magnetism remains elusive as the associated magnetic excitations have proven difficult to access with conventional techniques. Here we report a Raman spectroscopy study of spin dynamics in the all-in-all-out magnetic state of the 5d pyrochlore Cd 2 Os 2 O 7 . Through a comparison between the two-magnon scattering and spin-wave theory, we confirm the large single ion anisotropy in this material and show that the Dzyaloshinskii-Moriya and exchange interactions play a significant role in the spin-wave dispersions. The Raman data also reveal complex spin-charge-lattice coupling and indicate that the metal-insulator transition in Cd 2 Os 2 O 7 is Lifshitz-type. Our work establishes Raman scattering as a simple and powerful method for exploring the spin dynamics in 5d pyrochlore magnets.Pyrochlore 5d transition metal oxides are expected to have interesting forms of magnetic order but are hard to study with conventional probes. Here the authors show that Raman scattering can be used to measure magnetic excitations in Cd 2 Os 2 O 7 and that it exhibits complex spin-charge-lattice coupling.

  7. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7

    DEFF Research Database (Denmark)

    Harris, M.J.; Bramwell, S.T.; McMorrow, D.F.

    1997-01-01

    We report a detailed study of the pyrochlore Ho2Ti2O7, in which the magnetic ions (Ho3+) are ferromagnetically coupled with J similar to 1 K. We show that the presence of local Ising anisotropy leads to a geometrically frustrated ground state, preventing long-range magnetic order down to at least 0...

  8. Literature Review and Assessment of Nanotechnology for Sensing of Timber Transportation Structures Final Report

    Science.gov (United States)

    Terry Wipf; Brent M. Phares; Micheal Ritter

    2012-01-01

    Recently efforts have been put toward the development of civil structures that have embedded sensors and on-board data processing capabilities, typically termed “smart structures.” The fusion of these smart technologies into infrastructures is intended to give bridge owners/managers better and more timely information on how structures are behaving and when they need...

  9. Survey and analysis of work structure in nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Bauman, M.B.; Pain, R.F.; Van Cott, H.P.; Davidson, M.K.

    1983-06-01

    Work-structure factors are those factors that relate to the way in which work at all levels in a plant is organized, staffed, managed, rewarded, and perceived by plant personnel. Research over many years has demonstrated that these work-structure factors are closely correlated with organizational effectiveness, safety, and profitability. The work structure of ten nuclear power plants was assessed using questionnaires. Structured critical incident interviews were conducted to verify the questionnaire results. The study revealed that a variety of work-structure factor problem areas do exist in nuclear power plants. The study recommends a prioritized set of candidate research issues to be considered as part of EPRI's Work Structure and Performance Research Program

  10. Nonlinear soil-structure interaction analysis of SIMQUAKE II. Final report

    International Nuclear Information System (INIS)

    Vaughan, D.K.; Isenberg, J.

    1982-04-01

    This report describes an analytic method for modeling of soil-structure interaction (SSI) for nuclear power plants in earthquakes and discusses its application to SSI analyses of SIMQUAKE II. The method is general and can be used to simulate a three-dimensional structural geometry, nonlinear site characteristics and arbitrary input ground shaking. The analytic approach uses the soil island concept to reduce SSI models to manageable size and cost. Nonlinear constitutive behavior of the soil is represented by the nonlinear, kinematic cap model. In addition, a debonding-rebonding soil-structure interface model is utilized to represent nonlinear effects which singificantly alter structural response in the SIMQUAKE tests. STEALTH, an explicit finite difference code, is used to perform the dynamic, soil-structure interaction analyses. Several two-dimensional posttest SSI analyses of model containment structures in SIMQUAKE II are performed and results compared with measured data. These analyses qualify the analytic method. They also show the importance of including debonding-rebonding at the soil-structure interface. Sensitivity of structural response to compaction characteristics of backfill material is indicated

  11. Simquake 3: Seismic interactions between building structures and rock-socketed foundations: Final report

    International Nuclear Information System (INIS)

    Howard, G.E.; Chitty, D.E.; Oleck, R.F.

    1988-04-01

    It has long been recognized that soil-structure interaction can significantly influence the earthquake response of massive structures such as nuclear power plant reactor buildings. The linear analysis methods that are widely used to model interaction phenomena can result in often unrecognized safety margins in design for earthquake excitation. Use of improved interaction models which capture nonlinear characteristics of interaction---such as energy dissipation and significant changes in stiffness---can provide realistic predictions of the earthquake loads imposed on nuclear power plant structures and equipment, supplying an improved basis for seismic design review. This report documents the results of a research effort investigating the soil-structure (or structure-media) interaction of reinforced concrete structures founded in backfilled rock sockets. The objectives of the research, which included field testing with semi-scale structural models, were: to examine the influence of the backfilled socket on structural dynamic response; and to develop an experimental data base for the benchmarking of computer simulation procedures

  12. Class I structures license renewal industry report; revision 1. Final report

    International Nuclear Information System (INIS)

    Deng, D.; Renfro, J.; Statton, J.

    1994-07-01

    The U.S. nuclear power industry, through coordination by the Nuclear Management and Resources Council (NUMARC), and sponsorship by the U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI), has evaluated age-related degradation effects for a number of major plant systems, structures, and components, in the license renewal technical Industry Reports (IRs). License renewal applicants may choose to reference these IRs in support of their plant-specific license renewal applications, as an equivalent to the integrated plant assessment provisions of the license renewal rule (10 CFR Part 54). This IR provides the technical basis for license renewal for U.S. nuclear power plant Class I structures, with the IR evaluating which structures are Class I. Seventeen structures are explicitly described and evaluated in this IR. These structures are not necessarily classified as Class I at all plants, therefore the license renewal applicant should consult this IR for correct identification

  13. Unusual spin frozen state in a frustrated pyrochlore system NaCaCo{sub 2}F{sub 7} as observed by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, R.; Brueckner, F.; Klauss, H.H. [IFP, TU Dresden (Germany); Krizan, J.W.; Cava, R.J. [Department of Chemistry, Princeton University, Princeton, NJ (United States)

    2016-07-01

    We present {sup 23}Na -and {sup 19}F NMR results on the magnetically frustrated pyrochlore NaCaCo{sub 2}F{sub 7} with a frustration index of f = θ{sub CW}/T{sub f} ∝ 56. Recent neutron scattering experiments proposed XY like antiferromagnetic spin clusters at low energies in NaCaCo{sub 2}F{sub 7}. {sup 23}Na NMR -spectra reveal the presence of two magnetically non equivalent Na sites in conjunction with the local Co{sup 2+} spin structure. Below 3.6 K both the {sup 23}Na -and {sup 19}F spectra broaden due to the formation of static spin correlations. A huge reduction of the {sup 19}F -and {sup 23}Na NMR signal intensity hints at a quasi-static field distribution in NaCaCo{sub 2}F{sub 7} in this regime. The {sup 19}F spin-lattice relaxation rate {sup 19}(1/T{sub 1}) exhibits a peak at around 2.9 K, at the same temperature range where ac and dc susceptibility data show a broad maximum. The character of the spin fluctuation appears to be isotropic. The overall temperature dependence of {sup 19}(1/T{sub 1}) can be described by the BPP theory considering a fluctuating hyperfine field with an autocorrelation function. The correlation time of the autocorrelation function exhibits an activation behavior further indicating the spin-frozen state. While the present NMR studies suggest the spin frozen state at low temperatures, μSR investigations however reveal the presence of so called persistent spin dynamics down to 20 mK implying an exotic ground state in NaCaCo{sub 2}F{sub 7}.

  14. Final storage of radioactive waste in Germany. Are administrative structures in need of modification?

    International Nuclear Information System (INIS)

    Schneider, Horst

    2011-01-01

    Delays in commissioning the Konrad Mine as a repository for radioactive waste not generating heat, and in exploring the Gorleben salt dome for suitability as a repository for high-level waste generating heat, invite the question whether the legal regulations in place, especially administration and funding of the repository, are suitable for solving current problems or whether they are in need of improvement. The key principles of the back end of the nuclear fuel cycle, final storage included, were laid down as rules in 1976. Execution of the necessary waste management steps, from radioactive waste arisings to their final disposal, was split between private responsibilities and government competences. Final storage, to this day, has been of prime importance. Pursuant to the Atomic Energy Act, the federal government is required to set up facilities for final storage of radioactive waste. The waste management duties incumbent upon private parties, from radioactive waste arisings to delivery, are mainly subject to safety criteria under the Atomic Energy Act and the Radiation Protection Ordinance. As far as administration is concerned, the private parties are free in the way they comply with regulatory requirements. They are required to bear the cost in accordance with the polluter-pays-principle. In the light of the sluggish execution of government tasks from 1976 to this day, the question of improvements has become more acute than ever. This is where assignment offers an approach towards better administration which can be taken at short notice, as assignment implies a reduction in the number of interfaces and clearer responsibilities. However, even the best administration is unable to lead to the repositories required by law if those responsible in government fail to act in accordance with the spirit and letter of the law. (orig.)

  15. The effect of B-site substitution on structural transformation and ionic conductivity in Ho2(ZryTi1−y)2O7

    International Nuclear Information System (INIS)

    Shafique, Muhammad; Kennedy, Brenden J.; Iqbal, Yaseen; Ubic, Rick

    2016-01-01

    Compounds in the pyrochlore system Ho 2 (Zr y Ti 1−y ) 2 O 7 exhibit an order-disorder transition from pyrochlore to a defect-fluorite type structure. Compositions in this system were prepared via mechanical milling, followed by a two-step sintering process. Structural characterization was carried out via Rietveld refinements using neutron powder diffraction data, supported by X-ray diffraction to determine the phase and location of the pyrochlore-fluorite transformation. Unit-cell parameters were determined for the whole series using Rietveld refinements as well as the Nelson–Riley function. The neutron refinement results confirmed that the cation disorder was independent of the anion Frenkel disorder. The relation between the x-parameter in the oxygen 48f position and anion Frenkel disorder was found to be linear for the pyrochlore structure. The ionic conductivity studies were undertaken via AC impedance analysis to determine the electronic behaviour and its relation to the structural change in the temperature range 300°C–700 °C. The trends in ionic conductivity and activation energy were explained structurally via neutron powder diffraction and X-ray diffraction data. The pyrochlore-fluorite boundary composition (at y = 0.5) exhibited the lowest activation energy and highest ionic conductivity. - Highlights: • Ho 2 (Zr y Ti 1-y ) 2 O 7 structure changed from ordered pyrochlore to defect-fluorite at y = 0.6. • Ho 2 (Zr 0.5 Ti 0.5 ) 2 O 7 exhibited high ionic conductivity and low activation energy. • Doping improved stability in ionic conductivity behaviour at lower temperature.

  16. Structural Studies of Bacterial Enzymes and their Relation to Antibiotic Resistance Mechanisms - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β- lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes

  17. Theoretical studies in nuclear reaction and nuclear structure. Final report, January 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Griffin, J.J.

    1977-07-01

    Progress in theoretical research is reported under the following readings: (1) few nuclear reactions, Eikonal approximations, and optical models; (2) pion reactions; (3) nuclear structure by reaction studies; (4) nuclear dynamics

  18. Feasibility demonstration of consolidating porous beryllium/carbon structures. Final report

    International Nuclear Information System (INIS)

    Browning, M.J.; Hoover, G.E.; Mueller, J.J.; Hanes, H.D.

    1977-01-01

    A preliminary feasibility study was initiated to determine if porous beryllium structures could be fabricated by consolidating beryllium-coated microballoons into a rigid structure. The target specifications were to coat nominally 1-mm diameter microspheres with 0.5-mil beryllium coatings and then bond into a structure. Because of the very short time period, it was agreeable to use existing or quickly-available materials. The general approach was to apply coatings to carbon or quartz microspheres. Physical vapor deposition and ''snow-balling'' of fine beryllium powder were the two methods investigated. Once the particles were coated, HIP (pressure bonding) and pressureless sintering were to be investigated as methods for consolidating the microballoons. A low level of effort was to be spent to look at means of fabricating an all-carbon structure

  19. A novel high-temperature commensurate superstructure in a natural bariopyrochlore: A structural study by means of a multiphase crystal structure refinement

    Czech Academy of Sciences Publication Activity Database

    Bindi, L.; Petříček, Václav; Withers, R. L.; Zoppi, M.; Bonazzi, P.

    2006-01-01

    Roč. 179, - (2006), s. 716-725 ISSN 0022-4596 R&D Projects: GA ČR(CZ) GA202/03/0430 Institutional research plan: CEZ:AV0Z10100521 Keywords : pyrochlore * superstructure * X-ray data * multiphase structure refinement * TEM study Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.107, year: 2006

  20. Temperature effects on chemical structure and motion in coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, G.E.

    1996-09-30

    The objective of this project was to apply recently developed, state-of-the-art nuclear magnetic resonance (NMR) techniques to examine in situ changes in the chemical structure and molecular/macromolecular motion in coal as the temperature is increased above room temperature. Although alterations in the chemical structure of coal have been studied previously by {sup 13}C NMR, using quenched samples, the goal of this project was to examine these chemical structural changes, and changes in molecular/macromolecular mobility that may precede or accompany the chemical changes, at elevated temperatures, using modern {sup 13}C and {sup 1}H NMR techniques, especially {sup 1}H dipolar-dephasing techniques and related experiments pioneered in the laboratory for examining pyridine-saturated coals. This project consisted of the following four primary segments and related efforts on matters relevant to the first four tasks. (1) {sup 1}H NMR characterization of coal structure and mobility as a function of temperature variation over a temperature range (30--240 C) for which substantial chemical transformations were not anticipated. (2) {sup 1}H NMR characterization of coal structure, mobility and conversion as a function of temperature variation over a temperature range (240--500 C) for which chemical transformations of coal are known to occur. (3) {sup 13}C NMR investigation of coal structure/mobility as a function of temperature over a temperature range (30--240 C) for which substantial chemical transformations were not anticipated. (4) {sup 13}C NMR investigation of coal structure, dynamics and conversion as a function of temperature variation over a range (240--500 C) for which chemical transformations of coal are known to occur. (5) Related matters relevant to the first four tasks: (a) {sup 1}H CRAMPS NMR characterization of oil shales and their kerogen concentrates; and (b) improved quantitation in {sup 13}C MAS characterization of coals.

  1. Seismic safety margins research program. Phase I final report - Major structure response (Project IV)

    International Nuclear Information System (INIS)

    Benda, B.J.; Johnson, J.J.; Lo, T.Y.

    1981-08-01

    The primary task of the Major Structure Response Project within the Seismic Safety Margins Research Program (SSMRP) was to develop detailed finite element models of the Zion Nuclear Power Plant's containment building and auxiliary-fuel-turbine (AFT) complex. The resulting models served as input to the seismic methodology analysis chain. The containment shell was modeled as a series of beam elements with the shear and bending characteristics of a circular cylindrical shell. Masses and rotary inertias were lumped at nodal points; thirteen modes were included in the analysis. The internal structure was modeled with three-dimensional finite elements, with masses again lumped at selected nodes; sixty modes were included in the analysis. The model of the AFT complex employed thin plate and shell elements to represent the concrete shear walls and floor diaphragms, and beam and truss elements to model the braced frames. Because of the size and complexity of the model, and the potentially large number of degrees of freedom, masses were lumped at a limited number of node points. These points were selected so as to minimize the effect of the discrete mass distribution on structural response. One hundred and thirteen modes were extracted. A second objective of Project IV was to investigate the effects of uncertainty and variability on structural response. To this end, four side studies were conducted. Three of them, briefly summarized in this volume, addressed themselves respectively to an investigation of sources of random variability in the dynamic response of nuclear power plant structures; formulation of a methodology for modeling and evaluating the effects of structural uncertainty on predicted modal characteristics of major nuclear power plant structures and substructures; and a preliminary evaluation of nonlinear responses in shear-wall structures. A fourth side study, reported in detail in this volume, quantified variations in dynamic characteristics and seismic

  2. RATU Nuclear power plant structural safety research programme 1990-1994. Final report

    International Nuclear Information System (INIS)

    Rintamaa, R.; Sarkimo, M.

    1995-12-01

    The major part of nuclear energy research in Finland has been organized as five-year nationally coordinated research programmes. The research programme on the Nuclear Power Plant Structural Safety was carried out during the period from 1990 to 1994. The total volume was about 76 person-years and the expenditure about 49 million FIM. Studies on the structural materials in nuclear power plants created the experimental data and background information necessary for the structural integrity assessments of mechanical components. The research was carried out by developing experimental fracture mechanics methods including statistical analysis methods of material property data, and by studying material ageing and, in particular, mechanisms of material deterioration due to neutron irradiation, corrosion and water chemistry. Besides material studies, new testing methods and sensors for the measurement of loading and water chemistry parameters have been developed

  3. Role of structure in ion movement of glasses. Final report, July 1, 1990--December 31, 1995

    International Nuclear Information System (INIS)

    Jain, H.

    1996-05-01

    The ion movement in inorganic glasses is key to their optimum use in various applications such as solid electrolytes, durable nuclear waste form, stable insulation in electronic devices etc. The primary objective of this project was to understand ion movement in relation to the physical structure of inorganic glasses. Five different glass forming systems were selected for systematically varying different aspects of the structure and determining their influence on ion dynamics: (1) binary Rb and K germanate glass series; (2) mixed (Rb, Ag) and (Rb, K) germanate glass series (3) high purity quartz amorphized by neutron irradiation (4) sodium triborate glasses with different melt conditions and (5) heavy metal fluoride glasses. A two-pronged research program was developed: on the one hand dc ionic conductivity and ac relaxation were measured for a variety of oxide and fluoride glasses as a function of composition, temperature and frequency to characterize long and short range ion transport phenomena. The ion movement was also observed in terms of nuclear spin relaxation rate at University of Dortmund, Germany. On the other hand, the structure was characterized by high resolution x-ray photoelectron spectroscopy (XPS) at Lehigh, infra-red (IR) and Raman spectroscopy at National Hellenic Research Foundation, Athens, Greece, and extended x-ray absorption fine structure (EXAFS) experiments at National Synchrotron Light Source, Brookhaven National Laboratory. The most significant results of the project are briefly summarized

  4. Fluid-structure interaction in BWR suppression pool systems. Final report

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1979-09-01

    The discharge of safety relief valves or a severe loss-of-coolant event in a boiling-water-cooled reactor steam supply system triggers a complex pressure suppression system that is based upon sub-surface steam condensation in large pools of water. The physical problems fall into two categories. The first is referred to as vent clearing and describes the process of expelling non-condensables from the system prior to steam flow. The second category covers a variety of phenomena related to the transient overexpansion of a condensable volume and the subsequent inertially-driven volume decrease. The dynamic loading of either event, depending upon fluid-structural design parameters, can be of concern in safety analysis. This report describes the development of a method for calculating the loads and the structural response for both types of problems. The method is embedded in a computer code, called PELE-IC, that couples a two-dimensional, incompressible eulerian fluid algorithm to a finite element shell algorithm. The fluid physics is based upon the SOLA algorithm, which provideds a trial velocity field using the Navier-Stokes equations that is subsequently corrected iteratively so that incompressibility, fluid-structure interface compatibility, and boundary conditions are satisfied. These fluid and fluid-structure algorithms have been extensively verified through calculations of known solutions from the classical literature, and by comparison to air and steam blowdown experiments

  5. Relationship of Sibling Structure and Interaction to Categorization Ability. Final Report.

    Science.gov (United States)

    Cicirelli, Victor G.; And Others

    This study identified behaviors of sibling pairs interacting on a cognitive task and related these behaviors to sibling structure variables (age and sex of each sibling and age spacing between them) and to measure of cognitive abilities of the younger sibling. Subjects were 160 sibling pairs randomly selected from appropriate subpopulations of…

  6. Competing degrees of freedom in nuclear structure theory. Final Report for 1999-2002

    International Nuclear Information System (INIS)

    Johnson, Calvin W.

    2003-01-01

    The central focus of this research was the interplay between three generic classes of degrees of freedom relevant to nuclear structure theory: single-particle degrees of freedom, collective degrees of freedom, and statistical degrees of freedom, which can be thought of as an incoherent mean field or a thermal bath

  7. Effect of excess Mg and Excess Nb incorporation into the B-site of pyrochlore in the Pb-Mg-Nb-O system

    Directory of Open Access Journals (Sweden)

    Mergen, A.

    2002-12-01

    Full Text Available In the Pb-Mg-Nb-O system, excess Mg and excess Nb incorporation into the B-site of PMN pyrochlore were investigated along the compositons of Pb1.83Mg0.29+xNb1.71-xO6.39-1.5x where x=0.1, 0.2, 0.3, 0.4, 0.522 and Pb1.83Mg0.29-xNb1.71+xO6.39+1.5x where x=0.1, 0.2, 0.29 respectively. Excess Mg incorporation led to the formation of perovskite and excess Nb resulted in formation of Pb2Nb2O7 monoclinic pyrochlore. The densities of the PMN pyrochlore-PMN perovskite mixtures decreased with an increase in Mg concentration. The relative permittivity of the mixtures increased with decreasing pyrochlore content. The effect of pyrochlore on the permittivity follows the Weiner’s mixture rule up to a pyrochlore content of 50 vol%.

    Se investigó la incorporación en lugares B de pirocloro PMN de un exceso de Mg y un exceso de Nb. En el sistema Pb-Mg-Nb-O2 las composiciones analizadas fueron Pb1.83Mg0.29+xNb1.71-xO6.39-1.5x donde x=0.1, 0.2, 0.3, 0.4, 0.522 y en Pb1.83Mg0.29-xNb1.71+xO6.39+1.5x donde x= 0.1, 0.2,0.29. El exceso de Mg condujo a la formación de perovskita y el exceso de Nb resultó en la formación del pirocloro monolínico, Pb2Nb2O7. La densidad de la mezcla de PMN pirocloro-perovskita dismunuye con el aumento de la concentración de Mg. La permitividad dieléctrica de las mezclas aumenta con la disminución del contenido de pirocloro. El efecto del pirocloro sobre la permitividad sigue la regla de mezclas de Weiner hasta conenidos de pirocloro del 50%.

  8. Investigations of the magnetic properties in the pyrochlore Ho{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Schoenemann, Rico; Herrmannsdoerfer, Thomas; Green, Elizabeth Lauren; Wang, Zhaosheng; Wosnitza, Joachim [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Skrotzki, Richard [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Department of Chemistry and Food Chemistry, TU Dresden, Dresden (Germany); Kaneko, Hiroshi; Suzuki, Haruhiko [Faculty of Mathematics and Physics, Kanazawa University, Kanazawa (Japan)

    2013-07-01

    Pyrochlore compounds such as R{sub 2}Ti{sub 2}O{sub 7} (where R is Ho or Dy) have an highly degenerate ground state where the R{sup 3+} moments obey the ''ice rules''. This provides access to study extraordinary physical phenomena, like the formation of magnetic monopoles. Recent publications evidence monopoles which can be probed using high frequency (adiabatic) susceptibility measurements. We performed ac susceptibility measurements on a single-crystal Ho{sub 2}Ti{sub 2}O{sub 7} sample at low temperatures down to 30 mK and magnetic fields up to 14 T. Based on isothermal frequency sweeps we were able to determine spin relaxation rates. Both the real and imaginary parts of the temperature-dependent magnetic susceptibility measurements show the spins freezing below 1 K and provide insight into the magnetic-monopole density.

  9. Sudden Disappearance of the First-Order Transition in β-Pyrochlore KOs2O6 under Low Pressure

    Science.gov (United States)

    Umeo, Kazunori; Kubo, Hirokazu; Yamaura, Jun-ichi; Hiroi, Zenji; Takabatake, Toshiro

    2009-12-01

    We report the first observation of the pressure effect on the first-order transition at Tp = 7.5 K in the β-pyrochlore oxide superconductor KOs2O6 by specific-heat measurement. The peak in the specific heat at Tp disappeared at a low pressure of 0.02 GPa. With increasing pressure up to 0.02 GPa, the coefficient of the T5 dependence of the specific heat increases by 30%. This finding implies that low-energy excitations of phonons are enhanced by the suppression of the first-order transition. However, the specific-heat jump at Tc is unchanged with pressure up to 1 GPa, indicating that the strong coupling superconductivity is rather robust under pressure.

  10. Final Report of Project Nanometer Structures for Fuel Cells and Displays, etc.

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing

    2011-12-15

    Low-energy ion beam bombardment induced self-assembly has been used to form various periodic nano-size wave-ordered structures (WOS). Such WOS can be used as hard etching masks to produce nanowire arrays, trenches etc., on other materials by means of traditional etching or ion sputtering. These periodic nano-size structures have a wide range of applications, including flat panel displays, optical electronics, and clean energy technologies (solar and fuel cells, lithium batteries). In order to achieve high throughput of the above processes, a large area RF-driven multicusp nitrogen ion source has been developed for the application of nitrogen ion beam induced surface modification. An integrated ion beam system, which can house either a large area RF-driven multicusp ion source or a commercially available microwave ion source (Roth & Rau AG Tamiris 400-f) have been designed, manufactured, assembled, and tested.

  11. Final report: ES11: The 23rd Annual Workshop on Electronic Structure Methods

    Energy Technology Data Exchange (ETDEWEB)

    Rappe, Andrew M. [Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Chemistry

    2011-08-31

    ES11: the 23rd Annual Workshop on Electronic Structure Methods was held from June 6-9, 2011 at the University of Pennsylvania. The local organizing committee (see Section II) led by PI Andrew M. Rappe supervised the organization of the conference, before, during, and after the meeting itself. The national organizing committee set the technical program of talks, and provided support and advice in various ways. The conference was well-attended (see Section III). An important feature of this conference was a series of panel discussions (see Section IV) to discuss the field of electronic structure and to set new directions. The technical program was of extraordinarily high quality (see Section V). The host institution, the University of Pennsylvania, provided a supportive environment for this meeting (see Section VI).

  12. Powder-based synthesis of nanocrystalline material components for structural application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ilyuschenko, A.F.; Ivashko, V.S.; Okovity, V.A. [Powder Metallurgy Research Inst., Minsk (Belarus)] [and others

    1998-12-01

    Hydroxiapate spray coatings and substrates for implant production as well as multilayered metal ceramic coatings from nanocrystalline materials are a subject of the investigation. The work aims at the improvement of quality of said objects. This study has investigated the processes of hydroxiapatite powder production. Sizes, shapes and relief of initial HA powder surface are analyzed using SEM and TEM. Modes of HA plasma spraying on a substrate from titanium and associated compositions of traditional and nanocrystalline structure are optimized. The quality of the sprayed samples are studied using X-ray phase analysis and metallographic analysis. The results of investigations of bioceramic coating spraying on titanium are theoretically generalized, taking into account obtained experimental data. The results of investigations of ion-beam technology are presented for spraying multilayered coatings consisting of alternating metal-ceramic layers of nanocrystalline structure.

  13. Definition, development, and demonstration of analytical procedures for the structured assessment approach. Final report

    International Nuclear Information System (INIS)

    1979-01-01

    Analytical procedures were refined for the Structural Assessment Approach for assessing the Material Control and Accounting systems at facilities that contain special nuclear material. Requirements were established for an efficient, feasible algorithm to be used in evaluating system performance measures that involve the probability of detection. Algorithm requirements to calculate the probability of detection for a given type of adversary and the target set are described

  14. Computer-assisted modeling: Contributions of computational approaches to elucidating macromolecular structure and function: Final report

    International Nuclear Information System (INIS)

    Walton, S.

    1987-01-01

    The Committee, asked to provide an assessment of computer-assisted modeling of molecular structure, has highlighted the signal successes and the significant limitations for a broad panoply of technologies and has projected plausible paths of development over the next decade. As with any assessment of such scope, differing opinions about present or future prospects were expressed. The conclusions and recommendations, however, represent a consensus of our views of the present status of computational efforts in this field

  15. Morphological studies at subchondral bone structures in human early arthrosis. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    Quantitative histomorphometric studies using an image analysis system were performed simultaneously on hyaline cartilage, calcified cartilage and subchondral cancellous bone of human tibial heads for detailed information about the pathogenesis of arthrosis. Joint structures need to be fully detected in three dimensions since measurement values are more affected by topographical aspects than by either age, or sex, or arthrosin stage. Mechanical factors were found to affect essentially the initiation and progression of arthrosis. Results are demonstrated in detail. (orig.) [de

  16. Design of passive piezoelectric damping for space structures. Final Report Ph.D. Thesis

    Science.gov (United States)

    Hagood, Nesbitt W., IV; Aldrich, Jack B.; Vonflotow, Andreas H.

    1994-01-01

    Passive damping of structural dynamics using piezoceramic electromechanical energy conversion and passive electrical networks is a relatively recent concept with little implementation experience base. This report describes an implementation case study, starting from conceptual design and technique selection, through detailed component design and testing to simulation on the structure to be damped. About 0.5kg. of piezoelectric material was employed to damp the ASTREX testbed, a 500kg structure. Emphasis was placed upon designing the damping to enable high bandwidth robust feedback control. Resistive piezoelectric shunting provided the necessary broadband damping. The piezoelectric element was incorporated into a mechanically-tuned vibration absorber in order to concentrate damping into the 30 to 40 Hz frequency modes at the rolloff region of the proposed compensator. A prototype of a steel flex-tensional motion amplification device was built and tested. The effective stiffness and damping of the flex-tensional device was experimentally verified. When six of these effective springs are placed in an orthogonal configuration, strain energy is absorbed from all six degrees of freedom of a 90kg. mass. A NASTRAN finite element model of the testbed was modified to include the six-spring damping system. An analytical model was developed for the spring in order to see how the flex-tensional device and piezoelectric dimensions effect the critical stress and strain energy distribution throughout the component. Simulation of the testbed demonstrated the damping levels achievable in the completed system.

  17. Nuclear Structure Studies of Exotic Nuclei with Radioactive Ion Beams A Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Winger, Jeff Allen [Mississippi State Univ., Mississippi State, MS (United States)

    2016-04-21

    Beta-decay spectroscopy provides important information on nuclear structure and properties needed to understand topics as widely varied as fundamental nuclear astrophysics to applied nuclear reactor design. However, there are significant limitations of our knowledge due to an inability to experimentally measure everything. Therefore, it is often necessary to rely on theoretical calculations which need to be vetted with experimental results. The focus of this report will be results from experimental research performed by the Principal Investigator (PI) and his research group at Mississippi State University in which the group played the lead role in proposing, implementing, performing and analyzing the experiment. This research was carried out at both the National Superconduction Cyclotron Laboratory (NSCL) at Michigan State University and the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The primary emphasis of the research was the use of \\bdec spectroscopy as a tool to understand the evolution of nuclear structure in neutron-rich nuclei which could then be applied to improve theory and to increase the overall knowledge of nuclear structure.

  18. Combustion of pulverized coal in vortex structures. Final report, October 1, 1993--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gollahalli, S.R.; Butuk, N.

    1996-03-01

    The objectives of the project were: (i) to understand the effects of heating one of the streams on the characteristics of shear layers, (ii) to investigate the changes in the characteristics of large scale vortex structures in the shear layer caused by the introduction of inert solid particles in one of the feed streams; (iii) to understand the effects of pyrolyzing solids on the shear layer behavior; and (iv) to study the effects of combustion of particles and their pyrolysis products on the shear layer structure, heat release rate, and pollutant emission characteristics. An experimental facility for generating two-dimensional shear layers containing vortex structures has been designed and fabricated. The experimental facility is essentially a low speed wind tunnel designed to (i) provide two gas streams, initially with uniform velocity profiles and isotropic turbulence, mixing at the end of a splitter plate, (ii) introduce vorticity by passively perturbing one of the streams, (iii) allow heating of one of the streams to temperatures high enough to cause pyrolysis of coal particles, and (iv) provide a natural gas flame in one of the streams to result in ignition and burning of coal particles.

  19. Final COMPASS results on the deuteron spin-dependent structure function g1d and the Bjorken sum rule

    Directory of Open Access Journals (Sweden)

    C. Adolph

    2017-06-01

    Full Text Available Final results are presented from the inclusive measurement of deep-inelastic polarised-muon scattering on longitudinally polarised deuterons using a 6LiD target. The data were taken at 160 GeV beam energy and the results are shown for the kinematic range 1(GeV/c24GeV/c2 in the mass of the hadronic final state. The deuteron double-spin asymmetry A1d and the deuteron longitudinal-spin structure function g1d are presented in bins of x and Q2. Towards lowest accessible values of x, g1d decreases and becomes consistent with zero within uncertainties. The presented final g1d values together with the recently published final g1p values of COMPASS are used to again evaluate the Bjorken sum rule and perform the QCD fit to the g1 world data at next-to-leading order of the strong coupling constant. In both cases, changes in central values of the resulting numbers are well within statistical uncertainties. The flavour-singlet axial charge a0, which is identified in the MS‾ renormalisation scheme with the total contribution of quark helicities to the nucleon spin, is extracted at next-to-leading order accuracy from only the COMPASS deuteron data: a0(Q2=3(GeV/c2=0.32±0.02stat±0.04syst±0.05evol. Together with the recent results on the proton spin structure function g1p, the results on g1d constitute the COMPASS legacy on the measurements of g1 through inclusive spin-dependent deep inelastic scattering.

  20. Theoretical studies in nuclear structure. Final progress report, June 1, 1991--July 31, 1996

    International Nuclear Information System (INIS)

    Marshalek, E.R.

    1997-01-01

    The general purview of the project is the theory of collective motion in atomic nuclei. The chief aim is to elucidate the phenomena of (1) anharmonic multiphonon excitations, and (2) collective tilted rotation, both of which are topics of considerable current interest. In the primary stage of an investigation it is often necessary to develop appropriate mathematical tools, as was the case here. In the next stage, the formalism must be tested on simple soluble models. The work described here is mainly concerned with these two stages. The final stage of realistic applications will require more time, manpower and, of course, the necessary funding. Some planning for this last stage has been carried out and anticipated problems axe briefly discussed. As it turns out, both of the above topics can be approached within the unified framework of a theorem that I developed, called the Cranking Bifurcation Theorem (CBT) to be described below. The CBT can be regarded as an outgrowth of the boson expansion method, which provides a general, and, in principal, exact formalism for treating collective excitations. We begin with a brief discussion of the CBT and then continue on to the applications

  1. Nuclear structure studies at intermediate energy. Final report, September 1992--May 1995

    International Nuclear Information System (INIS)

    Hintz, N.M.

    1995-06-01

    This constitutes a final report for a two-year grant ending 31 December, 1993, and an additional grant of $15,000 for the period 1 January 1993 to 30 September 1994. At the beginning of 1993 the group consisted of the Principal Investigator (N.H.), two full-time Research Associates (A.S. and V.S.), one part-time Research Associate (M.F.) and one graduate Research Assistant (D.M.). At present only the Principal Investigator in continuing. This report covers the period from September 1992 to April 1995. During this period experiment E 352, '' 208 Pb and 60 Ni (p,t) reaction at 120 MeV'' was completed at the Indiana University Cyclotron Facility (IUCF). A Ph.D. has been awarded (D.M.) on the basis of this work and LAMPF (Los Alamos Meson Physics Facility) E 1201, ''The 40 Ca, (p,2p) reaction at 800 MeV''. A paper on the 208 Pb (p,t) experiment is being prepared for publication, In addition, five papers by members of this group, and four with other collaborators have been published since our last report (September 1992). At present we have one approved experiment (E 1201 above) in the LAMPF cue, but it is unlikely that it will ever be scheduled

  2. Cladding and Structural Materials for Advanced Nuclear Energy Systems Final Report

    International Nuclear Information System (INIS)

    Was, G.S.; Allen, T.R.; Ila, D.; Levi, C.; Morgan, D.; Motta, A.; Wang, L.; Wirth, B.

    2011-01-01

    The goal of this consortium is to address key materials issues in the most promising advanced reactor concepts that have yet to be resolved or that are beyond the existing experience base of dose or burnup. The research program consists of three major thrusts: (1) high-dose radiation stability of advanced fast reactor fuel cladding alloys, (2) irradiation creep at high temperature, and (3) innovative cladding concepts embodying functionally-graded barrier materials. This NERI-Consortium final report represents the collective efforts of a large number of individuals over a period of three and a half years and included 9 PIs, 4 scientists, 3 post-docs and 12 students from the seven participating institutions and 8 partners from 5 national laboratories and 3 industrial institutions (see table). University participants met semi-annually and participants and partners met annually for meetings lasting 2-3 days and designed to disseminate and discuss results, update partners, address outstanding issues and maintain focus and direction toward achieving the objectives of the program. The participants felt that this was a highly successful program to address broader issues that can only be done by the assembly of a range of talent and capabilities at a more substantial funding level than the traditional NERI or NEUP grant. As evidence of the success, this group, collectively, has published 20 articles in archival journals and made 57 presentations at international conferences on the results of this consortium.

  3. Improved Structure and Fabrication of Large, High-Power KHPS Rotors - Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Corren, Dean [Verdant Power, Inc.; Colby, Jonathan [Verdant Power, Inc.; Adonizio, Mary Ann [Verdant Power, Inc.

    2013-01-29

    Verdant Power, Inc, working in partnership with the National Renewable Energy Laboratory (NREL), Sandia National Laboratories (SNL), and the University of Minnesota St. Anthony Falls Laboratory (SAFL), among other partners, used evolving Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) models and techniques to improve the structure and fabrication of large, high-power composite Kinetic Hydropower System (KHPS) rotor blades. The objectives of the project were to: design; analyze; develop for manufacture and fabricate; and thoroughly test, in the lab and at full scale in the water, the improved KHPS rotor blade.

  4. Energy-related atomic and molecular structure and scattering studies: Final report

    International Nuclear Information System (INIS)

    1987-01-01

    The general goals of the DOE research concerned the use of molecular beams techniques in the study of atomic and molecular polarizabilities and the study of the interactions between electrons and highly polar molecules. Both of these goals are directly relevant to the general problem of the role played by long-range forces in atomic and molecular physics. Details related to this motivation can be found in the published literature. Here we will describe in general terms the work performed under DOE sponsorship in the atomic beams laboratory at NYU. Our original intent was to exploit techniques developed at NYU, mainly in the study of simple atomic systems, to the more complex atomic and molecular systems that are related to DOE interests. These included the developing understanding of the structure of molecular systems, particularly of alkali halide molecules, and the study of the interactions of electrons with such molecules. The structure experiments would serve as critical experimental benchmarks for computational techniques on molecular properties, including both molecular wave functions and derivative properties of them, such as vibrational and rotational constants, but in particular of molecular electric dipole polarizabilities. We believe that we have at least to some extent fulfilled these goals. 16 refs., 1 fig

  5. Improving Robustness Assessment Methodologies for Structures Impacted by Missiles (IRIS-2012) - Final Report

    International Nuclear Information System (INIS)

    Orbovic, Neb; Blahoainu, Andrei; Sagals, Genadis; Tarallo, Francois; Rambach, Jean-Mathieu; Huerta, Alejandro; White, Andrew; Nevander, Olli; ); Riera, Jorge Daniel; Krauthammer, Ted; Krutzik, Norbert; Arros, Jorma; Rouqand, Alain; Stangenberg, Friedhelm; Schwer, Leonard E.

    2014-01-01

    This report documents the results and conclusions of the second phase of the Integrity and Ageing of Components and Structures Working Group (WGIAGE) activity 'Improving Robustness assessment of structures Impacted by missiles', called IRIS-2012. The objective of the activity was to conduct a post-test benchmark study to improve models and evaluation techniques used in IRIS-2010. The benchmark was open to the new participants and some of IRIS-2010 participants did not take part of IRIS-2012. For this reason the team numbers in two benchmarks are different and to make direct comparisons it is necessary to have both lists. For IRIS-2010 benchmark a series of repeated test was performed: two bending rupture tests and three punching rupture tests. For IRIS-2012 and based on recommendation from IRIS-2010, tri-axial tests and Brazilian tensile test were additionally performed in order to calibrate constitutive models. The benchmark was officially launched in February 2012 with the participation of twenty six teams from twenty different institutions (Safety Authorities, TSOs, Utilities, Vendors, Research Institutes and Consulting Companies), from ten different countries from Europe, North America and Asia (plus 1 international organisation). A three day workshop was convened in October 2012 in Ottawa, Ontario, Canada where each participating team presented and discussed their results and performed simulations. Based on IRIS-2010 results and recommendations, OECD/NEA members recognized that there was a need to continue the work on understanding and improving simulation of structural impact. The goal of the new IRIS-2012 benchmark was to: 1) Update and improve existing FE models, for teams that participated in IRIS-2010, or to create new models for new participants. In order to improve FE models it was requested to: Simulate uni-axial unconfined concrete test and tri-axial concrete tests, using the results provided by IRSN, as well as the Brazilian test (concrete tensile

  6. Micromagnetic Code Development of Advanced Magnetic Structures Final Report CRADA No. TC-1561-98

    Energy Technology Data Exchange (ETDEWEB)

    Cerjan, Charles J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shi, Xizeng [Read-Rite Corporation, Fremont, CA (United States)

    2017-11-09

    The specific goals of this project were to: Further develop the previously written micromagnetic code DADIMAG (DOE code release number 980017); Validate the code. The resulting code was expected to be more realistic and useful for simulations of magnetic structures of specific interest to Read-Rite programs. We also planned to further the code for use in internal LLNL programs. This project complemented LLNL CRADA TC-840-94 between LLNL and Read-Rite, which allowed for simulations of the advanced magnetic head development completed under the CRADA. TC-1561-98 was effective concurrently with LLNL non-exclusive copyright license (TL-1552-98) to Read-Rite for DADIMAG Version 2 executable code.

  7. Lightweight concrete materials and structural systems for water tanks for thermal storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buckman, R.W. Jr.; Elia, G.G.; Ichikawa, Y.

    1980-12-01

    Thermally efficient hot water storage tanks were designed, fabricated and evaluated. The tanks were made using cellular concrete at a nominal density of 100 lb/ft/sup 3/ for the structural elements and at a 30 lb/ft/sup 3/ density for the insulating elements. Thermal performance testing of the tanks was done using a static decay test since the test procedure specified in ASHRAE 94-77 was not experimentally practical. A series of composition modifications to the cellular concrete mix were investigated and the addition of alkaline resistant glass fibers was found to enhance the mechanical properties at no sacrifice in thermal behavior. Economic analysis indicated that cellular concrete provides a cost-effective insulating material. The total portability of the plant for producing cellular concrete makes cellular concrete amenable to on-site fabrication and uniquely adaptable to retrofit applications.

  8. Characterization of radon penetration of different structural domains of concrete. Final project report

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.

    1996-05-01

    This report documents the research activities by Rogers and Associates Engineering Corporation on grant DE-FG03-93ER61600 during the funded project period from August 1993 to April 1996. The objective of this research was to characterize the mechanisms and rates of radon gas penetration of the different structural domains of the concrete components of residential floor slabs, walls, and associated joints and penetrations. The research was also to characterize the physical properties of the concretes in these domains to relate their radon resistance to their physical properties. These objectives support the broader goal of characterizing which, if any, concrete domains and associated properties constitute robust barriers to radon and which permit radon entry, either inherently or in ways that could be remediated or avoided

  9. Final Report: Sampling-Based Algorithms for Estimating Structure in Big Data.

    Energy Technology Data Exchange (ETDEWEB)

    Matulef, Kevin Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The purpose of this project was to develop sampling-based algorithms to discover hidden struc- ture in massive data sets. Inferring structure in large data sets is an increasingly common task in many critical national security applications. These data sets come from myriad sources, such as network traffic, sensor data, and data generated by large-scale simulations. They are often so large that traditional data mining techniques are time consuming or even infeasible. To address this problem, we focus on a class of algorithms that do not compute an exact answer, but instead use sampling to compute an approximate answer using fewer resources. The particular class of algorithms that we focus on are streaming algorithms , so called because they are designed to handle high-throughput streams of data. Streaming algorithms have only a small amount of working storage - much less than the size of the full data stream - so they must necessarily use sampling to approximate the correct answer. We present two results: * A streaming algorithm called HyperHeadTail , that estimates the degree distribution of a graph (i.e., the distribution of the number of connections for each node in a network). The degree distribution is a fundamental graph property, but prior work on estimating the degree distribution in a streaming setting was impractical for many real-world application. We improve upon prior work by developing an algorithm that can handle streams with repeated edges, and graph structures that evolve over time. * An algorithm for the task of maintaining a weighted subsample of items in a stream, when the items must be sampled according to their weight, and the weights are dynamically changing. To our knowledge, this is the first such algorithm designed for dynamically evolving weights. We expect it may be useful as a building block for other streaming algorithms on dynamic data sets.

  10. Pretreatment of flaxseed protein isolate by high hydrostatic pressure: Impacts on protein structure, enzymatic hydrolysis and final hydrolysate antioxidant capacities.

    Science.gov (United States)

    Perreault, Véronique; Hénaux, Loïc; Bazinet, Laurent; Doyen, Alain

    2017-04-15

    The effect of high hydrostatic pressure (HHP) on flaxseed protein structure and peptide profiles, obtained after protein hydrolysis, was investigated. Isolated flaxseed protein (1%, m/v) was subjected to HHP (600MPa, 5min or 20min at 20°C) prior to hydrolysis with trypsin only and trypsin-pronase. The results demonstrated that HHP treatment induced dissociation of flaxseed proteins and generated higher molecular weight aggregates as a function of processing duration. Fluorescence spectroscopy showed that HHP treatment, as well as processing duration, had an impact on flaxseed protein structure since exposition of hydrophobic amino acid tyrosine was modified. Except for some specific peptides, the concentrations of which were modified, similar peptide profiles were obtained after hydrolysis of pressure-treated proteins using trypsin. Finally, hydrolysates obtained using trypsin-pronase had a greater antioxidant capacity (ORAC) than control samples; these results confirmed that HHP enhanced the generation of antioxidant peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Thermoelectric-Driven Liquid-Metal Plasma-Facing Structures (TELS) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ruzic, David [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-12-17

    The Thermoelectric-Driven Liquid-Metal Plasma-Facing Structures (TELS) project was able to establish the experimental conditions necessary for flowing liquid metal surfaces in order to be utilized as surfaces facing fusion relevant energetic plasma flux. The work has also addressed additional developments along with progressing along the timeline detailed in the proposal. A no-cost extension was requested to conduct other relevant experiment- specifically regarding the characterization droplet ejection during energetic plasma flux impact. A specially designed trench module, which could accommodate trenches with different aspect ratios was fabricated and installed in the TELS setup and plasma gun experiments were performed. Droplet ejection was characterized using high speed image acquisition and also surface mounted probes were used to characterize the plasma. The Gantt chart below had been provided with the original proposal, indicating the tasks to be performed in the third year of funding. These tasks are listed above in the progress report outline, and their progress status is detailed below.

  12. STRUCTURAL FLUCTUATIONS, ELECTRICAL RESPONSE AND THE RELIABILITY OF NANOSTRUCTURES (FINAL REPORT)

    Energy Technology Data Exchange (ETDEWEB)

    Philip J. Rous; Ellen D. Williams; Michael S. Fuhrer

    2006-07-31

    The goal of the research supported by DOE-FG02-01ER45939 was to synthesize a number of experimental and theoretical approaches to understand the relationship between morphological fluctuations, the electrical response and the reliability (failure) of metallic nanostructures. The primary focus of our work was the study of metallic nanowires which we regard as prototypical of nanoscale interconnects. Our research plan has been to link together these materials properties and behaviors by understanding the phenomenon of, and the effects of electromigration at nanometer length scales. The thrust of our research has been founded on the concept that, for nanostructures where the surface-to-volume ratio is necessarily high, surface diffusion is the dominant mass transport mechanism that governs the fluctuations, electrical properties and failure modes of nanostructures. Our approach has been to develop experimental methods that permit the direct imaging of the electromagnetic distributions within nanostructures, their structural fluctuations and their electrical response. This experimental research is complemented by a parallel theoretical and computational program that describes the temporal evolution of nanostructures in response to current flow.

  13. Surface structure and stereochemical properties of self-assembled monolayer materials. Final Report

    International Nuclear Information System (INIS)

    Scoles, Giacinto

    2006-01-01

    This document reports the progress the authors have made in support of their proposal to generate well-characterized, well-ordered organic surfaces and to impinge upon the array of oriented organic molecules a well-collimated beam of radical atoms at a well-defined angle of incidence. Using the intensity of helium atom diffraction from the organic surface as a measure of the number of unreacted molecules at the surface, the authors will measure the rate of the reaction. They will then vary the angle of incidence of the reactive atom beam and repeat the measurement. In this manner they plan to map out the reactivity of the molecules on the surface as a function of the angle of incidence of the reactive moiety. To carry out this experiment requires that two fields of research be brought together: (1) molecular beam technology and (2) the science/art of growing well-ordered organic surfaces. The first half of this report describes recent helium diffraction results from molecular beam deposited organic monolayers (structural layer characterization work). The second half reports progress in constructing and characterizing the reactive atom (oxygen) beam source.

  14. Super Ball Bot - Structures for Planetary Landing and Exploration, NIAC Phase 2 Final Report

    Science.gov (United States)

    SunSpiral, Vytas; Agogino, Adrian; Atkinson, David

    2015-01-01

    Small, light-weight and low-cost missions will become increasingly important to NASA's exploration goals. Ideally teams of small, collapsible, light weight robots, will be conveniently packed during launch and would reliably separate and unpack at their destination. Such robots will allow rapid, reliable in-situ exploration of hazardous destination such as Titan, where imprecise terrain knowledge and unstable precipitation cycles make single-robot exploration problematic. Unfortunately landing lightweight conventional robots is difficult with current technology. Current robot designs are delicate, requiring a complex combination of devices such as parachutes, retrorockets and impact balloons to minimize impact forces and to place a robot in a proper orientation. Instead we are developing a radically different robot based on a "tensegrity" structure and built purely with tensile and compression elements. Such robots can be both a landing and a mobility platform allowing for dramatically simpler mission profile and reduced costs. These multi-purpose robots can be light-weight, compactly stored and deployed, absorb strong impacts, are redundant against single-point failures, can recover from different landing orientations and can provide surface mobility. These properties allow for unique mission profiles that can be carried out with low cost and high reliability and which minimizes the inefficient dependance on "use once and discard" mass associated with traditional landing systems. We believe tensegrity robot technology can play a critical role in future planetary exploration.

  15. Analysis of forces on core structures during a loss-of-coolant accident. Final report

    International Nuclear Information System (INIS)

    Griggs, D.P.; Vilim, R.B.; Wang, C.H.; Meyer, J.E.

    1980-08-01

    There are several design requirements related to the emergency core cooling which would follow a hypothetical loss-of-coolant accident (LOCA). One of these requirements is that the core must retain a coolable geometry throughout the accident. A possible cause of core damage leading to an uncoolable geometry is the action of forces on the core and associated support structures during the very early (blowdown) stage of the LOCA. An equally unsatisfactory design result would occur if calculated deformations and failures were so extensive that the geometry used for calculating the next stages of the LOCA (refill and reflood) could not be known reasonably well. Subsidiary questions involve damage preventing the operation of control assemblies and loss of integrity of other needed safety systems. A reliable method of calculating these forces is therefore an important part of LOCA analysis. These concerns provided the motivation for the study. The general objective of the study was to review the state-of-the-art in LOCA force determination. Specific objectives were: (1) determine state-of-the-art by reviewing current (and projected near future) techniques for LOCA force determination, and (2) consider each of the major assumptions involved in force determination and make a qualitative assessment of their validity

  16. Effects of sintering temperature on the pyrochlore phase in PZT nanotubes and their transformation to the perovskite phase by coating with PbO multilayers.

    Science.gov (United States)

    Han, Jin Kyu; Choi, Yong Chan; Jeon, Do Hyen; Lee, Min Ku; Bu, Sang Don

    2014-11-01

    We report the phase evolution of Pb(Zr0.52Ti0.48)O3 nanotubes (PZT-NTs), from the pyrochlore to perovskite phase, with an outer diameter of about 420 nm and a wall thickness of about 10 nm. The PZT-NTs were fabricated in pores of porous anodic alumina membrane (PAM) using a spin coating of PZT sol-gel solution and subsequent annealing at 500-700 degrees C in oxygen gas. The pyrochlore phase was found to be formed at 500 degrees C, and also found not to be transformed into the perovskite phase, even though annealing was performed at higher temperatures to 700 degrees C. Elementary distribution analysis of PZT-NTs embedded in PAM reveal that Pb diffusion from nanotubes into pore walls of PAM is one of the main reasons. By employing firstly an additional PbO coating on the pyrochlore nanotubes and then subsequent annealing at 700 degrees C, we have successfully achieved an almost pure perovskite phase in nanotubes. These results suggest that PbO acts as a Pb-compensation agent in the Pb- deficient PZT-NTs. Moreover, our method can be used in the synthesis of all metal-oxide materials, including volatile elements.

  17. Synthesis and characterization of Bi{sub 1.56}Sb{sub 1.48}Co{sub 0.96}O{sub 7} pyrochlore sun-light-responsive photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Naceur, Benhadria, E-mail: nacer1974@yahoo.fr [Laboratory of Inorganic Materials Chemistry and Application, Department of Materials Engineering, University of Science and Technology of Oran (USTO M.B), BP 1505, El M’naouar, 31000 Oran (Algeria); Abdelkader, Elaziouti, E-mail: elaziouti_a@yahoo.com [Laboratory of Inorganic Materials Chemistry and Application, Department of Materials Engineering, University of Science and Technology of Oran (USTO M.B), BP 1505, El M’naouar, 31000 Oran (Algeria); Dr Moulay Tahar University, Saida (Algeria); Nadjia, Laouedj, E-mail: nlaouedj@yahoo.fr [Laboratory of Inorganic Materials Chemistry and Application, Department of Materials Engineering, University of Science and Technology of Oran (USTO M.B), BP 1505, El M’naouar, 31000 Oran (Algeria); Dr Moulay Tahar University, Saida (Algeria); Sellami, Mayouf, E-mail: Mourad7dz@yahoo.fr [Laboratory of Inorganic Materials Chemistry and Application, Department of Materials Engineering, University of Science and Technology of Oran (USTO M.B), BP 1505, El M’naouar, 31000 Oran (Algeria); Noureddine, Bettahar, E-mail: nbettahar2001@yahoo.fr [Laboratory of Inorganic Materials Chemistry and Application, Department of Materials Engineering, University of Science and Technology of Oran (USTO M.B), BP 1505, El M’naouar, 31000 Oran (Algeria)

    2016-02-15

    Graphical abstract: Heterogeneous photo Fenton process with dye sensitized mechanism of RhB by Bi{sub 1.56}Sb{sub 1.48}Co{sub 0.96}O{sub 7} compound. - Highlights: • Bi{sub 1.56}Sb{sub 1.48}Co{sub 0.96}O{sub 7} (BSCO) catalyst was synthesized by improved solid state reaction method. • BSCO/H{sub 2}O{sub 2}/UVA and BSCO/H{sub 2}O{sub 2}/SL catalyst systems exhibit excellent photocatalytic activities for rhodamine B. • The photocatalytic degradation was preceded via heterogeneous photo Fenton mechanism process. • ·OH radicals are the main reactive species for the degradation of RhB. - Abstract: Novel nanostructure pyrochlore Bi{sub 1.56}Sb{sub 1.48}Co{sub 0.96}O{sub 7} was successfully synthesized via solid state reaction method in air. The as-synthesized photocatalyst was characterized by X-ray diffraction, Scanning electron microscopy and UV–vis diffuse reflectance spectroscopy techniques. The results showed that the BSCO was crystallized with the pyrochlore-type structure, cubic crystal system and space group Fd3m. The average particle size and band gap for BSCO were D = 76.29 nm and E{sub g} = 1.50 eV respectively. Under the optimum conditions for discoloration of the dye: initial concentration of 20 mg L{sup −1} RhB, pH 7, 25 °C, 0.5 mL H{sub 2}O{sub 2} and BSCO/dye mass ration of 1 g L{sup −1}, 97.77 and 90.16% of RhB were removed with BSCO/H{sub 2}O{sub 2} photocatalytic system within 60 min of irradiation time under UVA- and SL irradiations respectively. Pseudo-second-order kinetic model gave the best fit, with highest correlation coefficients (R{sup 2} ≥ 0.99). On the base of these results, the mechanism of the enhancement of the discoloration efficiency was discussed. .

  18. The Goettingen high-Tc superconductivity research pool: the effects of structure and structural defects on the performance of high-Tc superconductors. Final reports

    International Nuclear Information System (INIS)

    1992-02-01

    The compilation presents the final reports prepared by the various teams of the Goettingen research pool for high-Tc superconductivity. The reports are entitled: Structure and phase transition in high-Tc superconductors (Krebs/Freyhardt). Preparation and critical properties of high-Tc superconductors (Freyhardt/Heinemann/Zimmermann). EMC measurements in high-Tc superconductors (Bormann/Noelting). Phase analysis of the various phases observed in the preparation of high-Tc superconductors (Faupel/Hehenkamp). Positron annihilation in high-Tc superconductors (Hehenkamp). Preparation and characterization of thin films consisting of superconducting oxide ceramics (v. Minnigerode/Samwer). High-Tc superconductivity in monocrystals (Winzer/Beuermann). Microwave conductivity in high-Tc superconductors (Helberg). High-resolution structural analyses in high-Tc superconductors (Kupcik/Bente). Synthesis, structural analyses and spectroscopy of high-Tc superconductors (Bente). Synthesis, monocrystal growing, crystal structure of high-Tc superconductors (Schwarzmann). Ion-beam-aided studies in high-Tc superconductors (Uhrmacher). (orig./MM) [de

  19. Final Report for Geometric Analysis for Data Reduction and Structure Discovery DE-FG02-10ER25983, STRIPES award # DE-SC0004096

    Energy Technology Data Exchange (ETDEWEB)

    Vixie, Kevin R. [Washington State Univ., Pullman, WA (United States)

    2014-11-27

    This is the final report for the project "Geometric Analysis for Data Reduction and Structure Discovery" in which insights and tools from geometric analysis were developed and exploited for their potential to large scale data challenges.

  20. Micromechanical Structures Fabrication; FINAL

    International Nuclear Information System (INIS)

    Rajic, S

    2001-01-01

    Work in materials other than silicon for MEMS applications has typically been restricted to metals and metal oxides instead of more ''exotic'' semiconductors. However, group III-V and II-VI semiconductors form a very important and versatile collection of material and electronic parameters available to the MEMS and MOEMS designer. With these materials, not only are the traditional mechanical material variables (thermal conductivity, thermal expansion, Young's modulus, etc.) available, but also chemical constituents can be varied in ternary and quaternary materials. This flexibility can be extremely important for both friction and chemical compatibility issues for MEMS. In addition, the ability to continually vary the bandgap energy can be particularly useful for many electronics and infrared detection applications. However, there are two major obstacles associated with alternate semiconductor material MEMS. The first issue is the actual fabrication of non-silicon micro-devices and the second impediment is communicating with these novel devices. We have implemented an essentially material independent fabrication method that is amenable to most group III-V and II-VI semiconductors. This technique uses a combination of non-traditional direct write precision fabrication processes such as diamond turning, ion milling, laser ablation, etc. This type of deterministic fabrication approach lends itself to an almost trivial assembly process. We also implemented a mechanical, electrical, and optical self-aligning hybridization technique for these alternate-material MEMS substrates

  1. Local atomic and electronic structure in glassy metallic alloys. Final report, March 1, 1979-May 31, 1982

    International Nuclear Information System (INIS)

    Messmer, R.P.; Wong, J.

    1982-01-01

    The research results reported, represent the first coordinated experimental-theoretical effort to arrive at important local atomic and electronic structure information in glassy alloys. During the three years covered by the contract, significant experimental and theoretical developments have taken place both in the general technical community and at General Electric which have had an important impact on the approach to this problem. This is particularly true in the theoretical area where two important advances, the development of a general Xα-LCAO approach, and the development of a general and accurate effective potential approach for density functional methods, have allowed us to construct a new computational capability which combines these two advances. Two subsections briefly review the experimental and theoretical technical developments, respectively. These developments have changed initial perspectives regarding research on local atomic and electronic structure in glassy metallic alloys. Section II presents a synopsis of our accomplishments during the contract period and Section III contains a more detailed discussion of some of these accomplishments, namely those portions of the work which have been published or submitted for publication at the time of writing this final report

  2. Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore Yb2 Ti2 O7 in a Magnetic Field

    Science.gov (United States)

    Thompson, J. D.; McClarty, P. A.; Prabhakaran, D.; Cabrera, I.; Guidi, T.; Coldea, R.

    2017-08-01

    The frustrated pyrochlore magnet Yb2 Ti2 O7 has the remarkable property that it orders magnetically but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe, in addition to dispersive magnons, a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low- and high-field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set of dispersion relations combined with magnetization measurements, we reevaluate the spin Hamiltonian, finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.

  3. Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore Yb_{2}Ti_{2}O_{7} in a Magnetic Field.

    Science.gov (United States)

    Thompson, J D; McClarty, P A; Prabhakaran, D; Cabrera, I; Guidi, T; Coldea, R

    2017-08-04

    The frustrated pyrochlore magnet Yb_{2}Ti_{2}O_{7} has the remarkable property that it orders magnetically but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe, in addition to dispersive magnons, a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low- and high-field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set of dispersion relations combined with magnetization measurements, we reevaluate the spin Hamiltonian, finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.

  4. Anomalous pressure dependence of the superconducting transition temperature in the β-Pyrochlore KOs2O6

    Science.gov (United States)

    Miyoshi, Kiyotaka; Takaichi, Yuta; Takeuchi, Jun

    2009-03-01

    DC magnetic measurements have been performed for β-pyrochlore superconductor KOs2O6 (Tc = 9.6 K) under pressure for the precise determination of the pressure dependence of Tc, using a miniature diamond anvil cell combined with a commercial SQUID magnetometer. It is found that the critical temperature Tc shows a maximum of ~10 K at P=0.5 GPa. The maximum of Tc is higher than that for CsOs2O6 and RbOs2O6, in both of which Tc is known to increase and saturate at Tcm = 8.8 K by the application of pressure, suggesting the enhanced superconductivity due to the rattling of K ions in an oversized cage of Os-O network. For the further application of pressure, Tc decreases linearly but the decreasing rate appears to be suddenly changed at P~2 GPa and Tc~8 K. The sharp bend of the Tc — P line probably corresponds to the transition concerning to the rattling motion which occurs at Tp=7.5 K at ambient pressure, suggesting the positive pressure dependence of Tp.

  5. Signatures of a gearwheel quantum spin liquid in a spin-1/2 pyrochlore molybdate Heisenberg antiferromagnet

    Science.gov (United States)

    Iqbal, Yasir; Müller, Tobias; Riedl, Kira; Reuther, Johannes; Rachel, Stephan; Valentí, Roser; Gingras, Michel J. P.; Thomale, Ronny; Jeschke, Harald O.

    2017-12-01

    We theoretically investigate the low-temperature phase of the recently synthesized Lu2Mo2O5N2 material, an extraordinarily rare realization of a S =1 /2 three-dimensional pyrochlore Heisenberg antiferromagnet in which Mo5 + are the S =1 /2 magnetic species. Despite a Curie-Weiss temperature (ΘCW) of -121 (1 ) K, experiments have found no signature of magnetic ordering or spin freezing down to T*≈0.5 K. Using density functional theory, we find that the compound is well described by a Heisenberg model with exchange parameters up to third nearest neighbors. The analysis of this model via the pseudofermion functional renormalization group method reveals paramagnetic behavior down to a temperature of at least T =| ΘCW|/100 , in agreement with the experimental findings hinting at a possible three-dimensional quantum spin liquid. The spin susceptibility profile in reciprocal space shows momentum-dependent features forming a "gearwheel" pattern, characterizing what may be viewed as a molten version of a chiral noncoplanar incommensurate spiral order under the action of quantum fluctuations. Our calculated reciprocal space susceptibility maps provide benchmarks for future neutron scattering experiments on single crystals of Lu2Mo2O5N2 .

  6. Synthesis and structural characterization of Ce-doped bismuth titanate

    International Nuclear Information System (INIS)

    Pavlovic, Nikolina; Srdic, Vladimir V.

    2009-01-01

    Ce-modified bismuth titanate nanopowders Bi 4-x Ce x Ti 3 O 12 (x ≤ 1) have been synthesized using a coprecipitation method. DTA/TG, FTIR, XRD, SEM/EDS and BET methods were used in order to investigate the effect of Ce-substitution on the structure, morphology and sinterability of the obtained powders. The phase structure investigation revealed that after calcinations at 600 deg. C powder without Ce addition exhibited pure bismuth titanate phase; however, powders with Ce (x = 0.25, 0.5 and 0.75) had bismuth titanate pyrochlore phase as the second phase. The strongest effect of Ce addition on the structure was noted for the powder with the highest amount of Ce (x = 1) having a cubic pyrochlore structure. The presence of pure pyrochlore phase was explained by its stabilization due to the incorporation of cerium ions in titanate structure. Ce-modified bismuth titanate ceramic had a density over 95% of theoretical density and the fracture in transgranular manner most probably due to preferable distribution of Ce in boundary region

  7. Structure of final states with a high transverse momentum$\\pi^{0}$ in proton-proton collisions

    CERN Document Server

    Darriulat, Pierre; Eggert, Karsten; Holder, M; McDonald, K T; Modis, T; Navarria, Francesco Luigi; Seiden, A; Strauss, J; Vesztergombi, G; Williams, E G H; Darriulat, P; Dittmann, P; Eggert, K; Holder, M; Mcdonald, K T; Modis, T; Navarria, F L; Seiden, A; Strauss, J; Vesztergombi, G; Williams, E G H

    1976-01-01

    A study of the final state structure in proton-proton collisions is presented ( square root s=53 GeV) where a large transverse momentum pi /sup 0/(p/sub t/>2 GeV/c) is produced at an angle of 90 degrees . Charged secondaries have been detected and momentum analysed in the split field magnet detector at the CERN Intersecting Storage Rings. The large angular coverage of this detector extends over +or-2.5 units of rapidity and +or-30 degrees of azimuth with respect to the trigger pi /sup 0/, both towards and away from it. In each of these directions, charged particle distributions are presented in rapidity and momentum. In the hemisphere containing the trigger pi /sup 0/ the cross section for inclusive production of large transverse momentum rho /sup +or-/ mesons has been measured. In the opposite hemisphere the data exhibit several features predicted by hard scattering quark- parton models: coplanarity and short-range rapidity correlation for the large transverse momentum secondaries as well as a transverse mom...

  8. Structural Health and Prognostics Management for Offshore Wind Plants; Final Report of Sandia R&D Activities.

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel Todd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Wind Energy Technologies Dept.

    2015-04-01

    This final report is a compilation of resear ch efforts - funded by the US Department of Energy Wind and Water Power Technolog ies Office over a four-year period from FY11 through FY14. The goals of this re search program were to develop and evaluate technical innovati ons with promise for maxi mizing revenues and reducing levelized cost of energy (LCOE) for offs hore wind plants - more specifically the goals of the Structural H ealth and Prognostics Management (SHPM) program were to reduce O&M costs and increase energy capture through use of SHPM-based technologies. A technology roadmap was deve loped at the start of the project to guide the research efforts. This roadmap identified and outlined six major research thrust areas each having five stages of ma turity. Research was conducted in each of these thrust areas, as documented throughout this report, although a major focus was on development of damage detection strategi es for the most frequent blade damage conditions and damage mitigation and life-exte nsion strategies via changes in turbine operations (smart loads management). Th e work summarized in this compilation report is the product of the work of many researchers. A summary of the major findings, status of the SHPM Technology Ro admap and recommendations for future work are also provided.

  9. High-pressure synthesis and characterization of the effective pseudospin S =1 /2 XY pyrochlores R2P t2O7 (R =Er ,Yb )

    Science.gov (United States)

    Cai, Y. Q.; Cui, Q.; Li, X.; Dun, Z. L.; Ma, J.; dela Cruz, C.; Jiao, Y. Y.; Liao, J.; Sun, P. J.; Li, Y. Q.; Zhou, J. S.; Goodenough, J. B.; Zhou, H. D.; Cheng, J.-G.

    2016-01-01

    We report on the high-pressure syntheses and detailed characterizations of two effective pseudospin S =1 /2 XY pyrochlores E r2P t2O7 and Y b2P t2O7 via x-ray/neutron powder diffraction, dc and ac magnetic susceptibility, and specific-heat measurements down to 70 mK. We found that both compounds undergo long-range magnetic transitions at TN ,C≈0.3 K , which are ascribed to an antiferromagnetic- and ferromagnetic-type order for E r2P t2O7 and Y b2P t2O7 , respectively, based on the field dependence of their transition temperatures as well as the systematic comparisons with other similar pyrochlores R2B2O7 (R =Er ,Yb ;B =Sn ,Ti ,Ge ). The observed TN of E r2P t2O7 is much lower than that expected from the relationship of TN versus the ionic radius of B4 + derived from the series of E r2B2O7 , while the TC of Y b2P t2O7 is the highest among the series of ferromagnetic compounds Y b2B2O7 (B =Sn ,Pt ,Ti ). Given the monotonic variation of the lattice constant as a function of the B -cation size across these two series of R2B2O7 (R =Er ,Yb ), the observed anomalous values of TN ,C in the Pt-based XY pyrochlores imply that another important factor beyond the nearest-neighbor R -R distance is playing a role. In light of the anisotropic exchange interactions Jex={Jz z,J±,J±±,Jz ± } for the S =1 /2 XY pyrochlores, we have rationalized these observations by considering a weakened (enhanced) antiferromagnetic planar J± (ferromagnetic Ising-like Jz z) due to strong Pt 5 d -O 2 p hybridization within the plane perpendicular to the local [111] direction.

  10. Preparation, optical, and photocatalytic studies of defect pyrochlores: KCr{sub 0.33}W{sub 1.67}O{sub 6} and A{sub x}Cr{sub 0.33}W{sub 1.67}O{sub 6}{center_dot}nH{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, G.; Veldurthi, Naveen Kumar [Osmania University, Department of Chemistry (India); Prasad, Muvva D. [University of Hyderabad, School of Chemistry (India); Muniratnam, N. R. [Centre for Materials Electronics Technology (C-MET) (India); Prasad, G. [Osmania University, Department of Physics (India); Vithal, M., E-mail: mugavithal@gmail.com [Osmania University, Department of Chemistry (India)

    2013-09-15

    Nano sized defect pyrochlores of compositions KCr{sub 0.33}W{sub 1.67}O{sub 6} and A{sub x}Cr{sub 0.33}W{sub 1.67}O{sub 6}{center_dot}nH{sub 2}O (A = Sn, Ag, Bi, Sm, Eu, and Gd) have been synthesized by sol-gel and ion exchange methods, respectively. These oxides were characterized by thermogravimetric analysis, powder X-ray diffraction, energy dispersive spectra, transmission electron microscopy, UV-Vis diffuse reflectance spectra, Raman spectra, and Fourier transform infrared spectra. Spontaneous exchange of K{sup +} with A ion is accompanied by insertion of water also into the lattice. KCr{sub 0.33}W{sub 1.67}O{sub 6} and A{sub x}Cr{sub 0.33}W{sub 1.67}O{sub 6}{center_dot}nH{sub 2}O crystallize in cubic lattice and isomorphous with KSbWO{sub 6}. The optical properties of Cr{sup 3+} were investigated. Substitution of K{sup +} by A ion leads to a shift of absorption onset to longer wavelengths marginally. The Raman spectra of all the samples are characteristic of defect pyrochlore system. The photocatalytic degradation of methylene blue aqueous solution was investigated using these oxides. The results obtained were fitted with the Langmuir-Hinshelwood model to study the degradation kinetics. Both Sn{sup 2+} and Bi{sup 3+}-doped KCr{sub 0.33}W{sub 1.67}O{sub 6} exhibit higher photoactivity in the degradation of methylene blue. The structure/composition of the photocatalyst remains the same even after fourth cycle of photodegradation.

  11. NERI FINAL TECHNICAL REPORT, DE-FC07-O5ID14647. OPTIMIZATION OF OXIDE COMPOUNDS FOR ADVANCED INERT MATRIX MATERIALS

    International Nuclear Information System (INIS)

    Nino, Juan C.

    2009-01-01

    In order to reduce the current excesses of plutonium (both weapon grade and reactor grade) and other transuranium elements, a concept of inert matrix fuel (IMF) has been proposed for an uranium free transmutation of fissile actinides which excludes continuous uranium-plutonium conversion in thermal reactors and advanced systems. Magnesium oxide (MgO) is a promising candidate for inert matrix (IM) materials due to its high melting point (2827 C), high thermal conductivity (13 W/K · m at 1000 C), good neutronic properties, and irradiation stability However, MgO reacts with water and hydrates easily, which prevents it from being used in light water reactors (LWRs) as an IM. To improve the hydration resistance of MgO-based inert matrix materials, Medvedev and coworkers have recently investigated the introduction of a secondary phase that acts as a hydration barrier. An MgO-ZrO 2 composite was specifically studied and the results showed that the composite exhibited improved hydration resistance than pure MgO. However, ZrO 2 is insoluble in most acids except HF, which is undesirable for fuel reprocessing. Moreover, the thermal conductivity of ZrO 2 is low and typically less than 3 W · m -1 · K -1 at 1000 C. In search for an alternative composite strategy, Nd 2 Zr 2 O 7 , an oxide compound with pyrochlore structure, has been proposed recently as a corrosion resistant phase, and MgO-Nd 2 Zr 2 O 7 composites have been investigated as potential IM materials. An adequate thermal conductivity of 6 W · m - 1 · K -1 at 1000 C for the MgO-Nd 2 Zr 2 O 7 composite with 90 vol% MgO was recently calculated and reported. Other simulations proposed that the MgO-pyrochlore composites could exhibit higher radiation stability than previously reported. Final optimization of the composite microstructure was performed on the 70 vol% MgO-Nd 2 Zr 2 O 7 composite that burnup calculations had shown to have the closest profile to that of MOX fuel. Theoretical calculations also indicated that

  12. NERI FINAL TECHNICAL REPORT, DE-FC07-O5ID14647, OPTIMIZATION OF OXIDE COMPOUNDS FOR ADVANCED INERT MATRIX MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    PI: JUAN C. NINO, ASSOCIATE PROFESSOR

    2009-01-11

    In order to reduce the current excesses of plutonium (both weapon grade and reactor grade) and other transuranium elements, a concept of inert matrix fuel (IMF) has been proposed for an uranium free transmutation of fissile actinides which excludes continuous uranium-plutonium conversion in thermal reactors and advanced systems. Magnesium oxide (MgO) is a promising candidate for inert matrix (IM) materials due to its high melting point (2827 C), high thermal conductivity (13 W/K {center_dot} m at 1000 C), good neutronic properties, and irradiation stability However, MgO reacts with water and hydrates easily, which prevents it from being used in light water reactors (LWRs) as an IM. To improve the hydration resistance of MgO-based inert matrix materials, Medvedev and coworkers have recently investigated the introduction of a secondary phase that acts as a hydration barrier. An MgO-ZrO{sub 2} composite was specifically studied and the results showed that the composite exhibited improved hydration resistance than pure MgO. However, ZrO{sub 2} is insoluble in most acids except HF, which is undesirable for fuel reprocessing. Moreover, the thermal conductivity of ZrO{sub 2} is low and typically less than 3 W {center_dot} m{sup -1} {center_dot} K{sup -1} at 1000 C. In search for an alternative composite strategy, Nd{sub 2}Zr{sub 2}O{sub 7}, an oxide compound with pyrochlore structure, has been proposed recently as a corrosion resistant phase, and MgO-Nd{sub 2}Zr{sub 2}O{sub 7} composites have been investigated as potential IM materials. An adequate thermal conductivity of 6 W {center_dot} m{sup -} 1 {center_dot} K{sup -1} at 1000 C for the MgO-Nd{sub 2}Zr{sub 2}O{sub 7} composite with 90 vol% MgO was recently calculated and reported. Other simulations proposed that the MgO-pyrochlore composites could exhibit higher radiation stability than previously reported. Final optimization of the composite microstructure was performed on the 70 vol% MgO-Nd{sub 2}Zr{sub 2}O{sub 7

  13. A new triclinic modification of the pyrochlore-type KOs 2O 6 superconductor

    Science.gov (United States)

    Katrych, S.; Gu, Q. F.; Bukowski, Z.; Zhigadlo, N. D.; Krauss, G.; Karpinski, J.

    2009-03-01

    A new modification of KOs 2O 6, the representative of a new structural type (Pearson symbol a P18, a=5.5668(1) Å, b=6.4519(2) Å, c=7.2356(2) Å, α=65.377(3)°, β=70.572(3)°, γ=75.613(2)° space group P-1, no. 2 was synthesized employing high pressure technique. Its structure was determined by single-crystal X-ray diffraction. The structure can be described as two OsO 6 octahedral chains relating to each other through inversion and forming big voids with K atoms inside. Quantum chemical calculations were performed on the novel compound and structurally related cubic compound. High-pressure X-ray study showed that cubic KOs 2O 6 phase was stable up to 32.5(2) GPa at room temperature.

  14. A new triclinic modification of the pyrochlore-type KOs2O6 superconductor

    International Nuclear Information System (INIS)

    Katrych, S.; Gu, Q.F.; Bukowski, Z.; Zhigadlo, N.D.; Krauss, G.; Karpinski, J.

    2009-01-01

    A new modification of KOs 2 O 6 , the representative of a new structural type (Pearson symbol aP18, a=5.5668(1) A, b=6.4519(2) A, c=7.2356(2) A, α=65.377(3) o , β=70.572(3) o , γ=75.613(2) o space group P-1, no. 2 was synthesized employing high pressure technique. Its structure was determined by single-crystal X-ray diffraction. The structure can be described as two OsO 6 octahedral chains relating to each other through inversion and forming big voids with K atoms inside. Quantum chemical calculations were performed on the novel compound and structurally related cubic compound. High-pressure X-ray study showed that cubic KOs 2 O 6 phase was stable up to 32.5(2) GPa at room temperature. - Graphical abstract: A new modification of KOs 2 O 6 , the representative of a new structural type (Pearson symbol aP18, a=5.5668(1) A, b=6.4519(2) A, c=7.2356(2) A, α=65.377(3) o , β=70.572(3) o , γ=75.613(2) o space group P-1, no. 2 was synthesized employing high pressure technique. The structure can be described as two OsO 6 octahedral chains relating to each other through inversion and forming big voids with K atoms inside

  15. Absence of magnetic long-range order in Y2CrSbO7 : Bond-disorder-induced magnetic frustration in a ferromagnetic pyrochlore

    Science.gov (United States)

    Shen, L.; Greaves, C.; Riyat, R.; Hansen, T. C.; Blackburn, E.

    2017-09-01

    The consequences of random nonmagnetic-ion dilution for the pyrochlore family Y2(M 1 -xN x)2O7 (M = magnetic ion, N = nonmagnetic ion) have been investigated. As a first step, we experimentally examine the magnetic properties of Y2CrSbO7 (x =0.5 ), in which the magnetic sites (Cr3 +) are percolative. Although the effective Cr-Cr spin exchange is ferromagnetic, as evidenced by a positive Curie-Weiss temperature, ΘCW ≃19.5 K , our high-resolution neutron powder diffraction measurements detect no sign of magnetic long-range order down to 2 K. In order to understand our observations, we construct a lattice model to numerically study the bond disorder introduced by the ionic size mismatch between M and N , which reveals that the bond disorder percolates at xb ≃0.23 , explaining the absence of magnetic long-range order. This model could be applied to a series of frustrated magnets with a pyrochlore sublattice, for example, the spinel compound Zn (Cr1 -xGax )2O4 , wherein a Néel to spin glass phase transition occurs between x =0.2 and 0.25 [Lee et al., Phys. Rev. B 77, 014405 (2008), 10.1103/PhysRevB.77.014405]. Our study stresses the non-negligible role of bond disorder on magnetic frustration, even in ferromagnets.

  16. PDF analysis on re-crystallized structure from amorphous BiT

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Yasuhiro [Japan Atomic Energy Research Institute, Synchrotron Radiation Research Center, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)]. E-mail: yoneda@spring8.or.jp; Kohara, Shinji [Synchrotron Radiation Research Laboratory, Japan Synchrotron Radiation, Research Institute, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hamazaki, Shin' ichi [Department of Electronics, Iwaki Meisei University, Iino 5-5-1, Chuohdai, Fukushima 970-8551 (Japan); Takashige, Masaaki [Department of Electronics, Iwaki Meisei University, Iino 5-5-1, Chuohdai, Fukushima 970-8551 (Japan); Mizuki, Jun' ichiro [Japan Atomic Energy Research Institute, Synchrotron Radiation Research Center, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2005-08-15

    A glass sample of composition Bi{sub 4}Ti{sub 3}O{sub 12} was prepared by rapid quenching. The as-quenched sample was confirmed to be amorphous by synchrotron X-ray measurements. The crystallization process of the amorphous sample was also investigated by high-energy X-ray diffraction and by atomic pair distribution function analysis. The perovskite layer in the crystal Bi{sub 4}Ti{sub 3}O{sub 12} is transformed to a pyrochlore structure in the amorphous sample. The amorphous sample first crystallized to a metastable phase by acquiring long-range ordering of the pyrochlore structure at T {sub cryst1}, and then secondary crystallized into a reverted Bi{sub 4}Ti{sub 3}O{sub 12} structure at T {sub cryst2}.

  17. Formation of secondary phases during deep geological final disposal of research reactor fuel elements. Structure and phase analysis

    International Nuclear Information System (INIS)

    Neumann, Andreas

    2012-01-01

    For the assessment of a confident und sustainable final disposal of high level radioactive waste - fuel elements of german research reactors also account for such waste - in suitable, deep geological facilities, processes of the alteration of the disposed of waste and therefore the formation of the corrosion products, i. e. secondary phases must be well understood considering an accident scenario of a potential water inflow. In order to obtain secondary phases non-irradiated research reactor fuel elements (FR-BE) consisting of UAl x -Al were subjected to magnesium chloride rich brine (brine 2, salt repository) and to clay pore solution, respectively and furthermore of the type U 3 Si 2 -Al were solely subjected to magnesium chloride rich brine. Considering environmental aspects of final repositories the test conditions of the corrosion experiments were adjusted in a way that the temperature was kept constant at 90 C and a reducing anaerobic environment was ensured. As major objective of this research secondary phases, obtained from the autoclave experiments after appropriate processing and grain size separation have been identified and quantified. Powder X-ray diffraction (PXRD) and the application of Rietveld refinement methods allowed the identification of the corrosion products and a quantitative assessment of crystalline and amorphous contents. Scanning and transmission electron microscopy were additionally applied as a complementary method for the characterisation of the secondary phases. The qualitative phase analysis of the preprocessed secondary phases of the systems UAl x -Al and U 3 Si 2 -Al in brine 2 shows many similarities. Lesukite - an aluminium chloro hydrate - was observed for the first time considering the given experimental conditions. Further on different layered structures of the LDH type, iron oxyhydroxide and possibly iron chlorides, uncorroded residues of nuclear fuel and elementary iron were identified as well. Depending on preceding

  18. A novel high-temperature commensurate superstructure in a natural bariopyrochlore: A structural study by means of a multiphase crystal structure refinement

    International Nuclear Information System (INIS)

    Bindi, L.; Petricek, V.; Withers, R.L.; Zoppi, M.; Bonazzi, P.

    2006-01-01

    Additional X-ray diffraction effects yielding an eightfold commensurate superstructure [a=20.974(5)A] of the ideal pyrochlore structure were observed after annealing at 873K of a thallium-doped bariopyrochlore single crystal. Electron diffraction indicated the coexistence of two cubic phases, the pyrochlore structure and a new F-centred, cubic phase. The superstructure was solved and refined in the space group F4-bar 3m. The two phases were combined together and refined as independently diffracting to R=0.0628. The resulting unit-cell content is (A,-bar ) 20 Nb 16 Ti 2 O 53 (Z=8), with A=Ba, Tl, Ce, Th. For some atomic positions of the superstructure, third- and fourth-order anharmonic ADP's were used to account for the specific density shape having a continuous character as typical for ionic conductors. There are three distinct clusters in the superstructure, leading to a new structure type no longer strictly of pyrochlore-structure type

  19. Influence of initial annealing on structure evolution and magnetic properties of 3.4% Si non-oriented steel during final annealing

    Energy Technology Data Exchange (ETDEWEB)

    Simões Mendanha Pedrosa, Josiane [Department of Physics, Federal University of Ouro Preto, Ouro Preto MG-3540000 (Brazil); Costa Paolinelli, Sebastião da [Research Department Aperam South America, Praça Primeiro de Maio, 9, Timóteo MG-35180018 (Brazil); Barros Cota, André, E-mail: abcota@ufop.br [Department of Physics, Federal University of Ouro Preto, Ouro Preto MG-3540000 (Brazil)

    2015-11-01

    The effect of the initial annealing on structure evolution and magnetic properties during the final annealing of a 3.4% Si non-oriented grain steel was evaluated. Half of the samples were submitted to initial annealing at 1030 °C before cold rolling and all samples were subjected to final annealing process at temperatures from 540 °C to 1100 °C. The magnetic induction and core loss in the final samples, the microstructure by optical microscopy and the crystallographic texture by X-ray diffraction and EBSD were evaluated. The results show that the samples without initial annealing presented better magnetic properties than the samples with initial annealing, due to the higher ratio between Eta fiber and Gamma fiber volume fractions (Eta/Gamma ratio) in their structure after final annealing. - Highlights: • Texture and magnetic properties of 3.4% Si non-oriented electrical steel were measured. • Without initial annealing, better texture and magnetic properties were obtained. • Good texture and magnetic properties are obtained with Steckel hot band structure.

  20. Development of a design basis tornado and structural design criteria for the Nevada Test Site, Nevada. Final report

    International Nuclear Information System (INIS)

    McDonald, J.R.; Minor, J.E.; Mehta, K.C.

    1975-06-01

    In order to evaluate the ability of critical facilities at the Nevada Test Site to withstand the possible damaging effects of extreme winds and tornadoes, parameters for the effects of tornadoes and extreme winds and structural design criteria for the design and evaluation of structures were developed. The meteorological investigations conducted are summarized, and techniques used for developing the combined tornado and extreme wind risk model are discussed. The guidelines for structural design include methods for calculating pressure distributions on walls and roofs of structures and methods for accommodating impact loads from wind-driven missiles. Calculations for determining the design loads for an example structure are included

  1. High aspect ratio lead zirconate titanate tube structures: I. Template assisted fabrication - vacuum infiltration method

    Directory of Open Access Journals (Sweden)

    Vladimír Kovaľ

    2012-03-01

    Full Text Available Polycrystalline Pb(Zr0.52Ti0.48O3 (PZT microtubes are fabricated by a vacuum infiltration method. The method is based on repeated infiltration of precursor solution into macroporous silicon (Si templates at a sub-atmospheric pressure. The pyrolyzed PZT tubes of a 2-µm outer diameter, extending to over 30 µm in length were released from the template using a selective isotropic-pulsed XeF2 reactive ion etching of silicon. Free-standing microtubes, partially anchored at the bottom of the Si template, were then crystallized in pure oxygen atmosphere at 750 °C for 2 min using a rapid thermal annealer. The perovskite phase of the final PZT tubes was confirmed by X-ray diffraction (XRD analysis. The XRD spectrum also revealed a small amount of the pyrochlore phase in the structure and signs of possible fluoride contamination caused most likely by the XeF2 etching process. The surface morphology was examined using scanning electron microscopy. It was demonstrated that the whole surface of the pore walls was conformally coated during the repeated infiltration of templates, resulting in straight tubes with closed tips formed on the opposite ends as replicas of the pore bottoms. These high aspect ratio ferroelectric structures are suggested as building units for developing miniaturized electronic devices, such as memory storage (DRAM trenched capacitors, piezoelectric scanners and actuators, and are of fundamental value for the theory of ferroelectricity in systems with low dimensionality.

  2. The Application of Structured Job Analysis Information Based on the Position Analysis Questionnaire (PAQ). Final Report No. 9.

    Science.gov (United States)

    McCormick, Ernest J.

    The Position Analysis Questionnaire (PAQ) is a job analysis instrument consisting of 187 job elements organized into six divisions. The PAQ was used in the eight studies summarized in this final report. The studies were: (1) ratings of the attribute requirements of PAQ job elements, (2) a series of principal components analyses of these attribute…

  3. The crystal chemistry and structural analysis of uranium oxide hydrates. Final report, May 15, 1995--December 31, 1997

    International Nuclear Information System (INIS)

    Miller, M.L.; Ewing, R.C.

    1998-01-01

    The purpose of this research program was to develop a thorough understanding of the crystal-chemical and crystal-structural systematics of uranyl oxide hydrates which are the initial corrosion products of the UO 2 in spent nuclear fuel and the principal phases in which actinides occur in the near surface environment. The scope of this program has been expanded to include all inorganic phases in which U 6+ plays a significant structural role; currently 183 phases with known crystal structures

  4. Assessment of the effects of microbially influenced degradation on a massive concrete structure. Final report, Report 5

    International Nuclear Information System (INIS)

    Rogers, R.D.

    1995-01-01

    There is a need to estimate the effect of environmental conditions on construction materials to be used in the repository at Yucca Mountain. Previous reports from this project have demonstrated that it is important to develop an understanding of microbially influenced degradation (MID) development and its influence on massive concrete structures. Further, it has been shown that the most effective way to obtain quantitative data on the effects of MID on the structural integrity of repository concrete is to study manmade, analog structures known to be susceptible to MID. The cooling tower shell located at the Ohaaki Power Station near Wairakei, New Zealand is such a structure

  5. Corrosion protection of Arctic offshore structures: Final report. [Effects of temperature and salinity on required cathodic protection current

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W.M.; Rogers, J.C.; Feyk, C.; Theuveny, B.

    1985-10-01

    Results are presented for a research program on corrosion prevention for Arctic offshore structures which are in contact with sea ice for a significant portion of the year. The electrical method most adaptable for structure protection involves the injection of impressed current from several remote anodes buried just beneath the sea floor. The electrical resistivity of annual sea ice as a function of temperature and salinity is presented. Details of the interface layers formed between sea ice and steel in the presence of current injection are shown. A computer program was developed to enable the calculation of protective current density into the structure, in the presence of ice rubble and ridges around the structure. The program and the results of an example calculation are given for a caisson- retained island structure. 81 refs., 103 figs., 3 tabs.

  6. Full-scale tank car rollover tests - survivability of top fittings and top fittings protective structures : final report.

    Science.gov (United States)

    2016-05-01

    Full-scale rollover crash tests were performed on three non-pressure tank carbodies to validate previous analytical work and : determine the effectiveness of two different types of protective structures in protecting the top fittings. The tests were ...

  7. Degradation Factor Approach for Impacted Composite Structural Assessment: MSFC Center Director's Discretionary Fund Final Report, Project No. 96-17

    Science.gov (United States)

    Ortega, R.; Price, J. M.; Fox, D.

    2000-01-01

    This technical memorandum documents the results of the research to develop a concept for assessing the structural integrity of impacted composite structures using the strength degradation factor in conjunction with available finite element tools. For this purpose, a literature search was conducted, a plan for conducting impact testing on two laminates was developed, and a finite element model of the impact process was created. Specimens for the impact testing were fabricated to support the impact testing plan.

  8. Self-assembled, rare earth tantalate pyrochlore nanoparticles for superior flux pinning in YBa2Cu3O7-δ films

    International Nuclear Information System (INIS)

    Harrington, S A; Durrell, J H; Wimbush, S C; Kursumovic, A; MacManus-Driscoll, J L; Maiorov, B; Wang, H; Lee, J H

    2009-01-01

    Addition of pyrochlore rare earth tantalate phases, RE 3 TaO 7 (RTO, where RE = rare earth, Er, Gd and Yb) to YBa 2 Cu 3 O 7-δ (YBCO) is shown to vastly improve pinning, without being detrimental to the superconducting transition temperature. The closely lattice matched to RTO phase provides a lower interfacial energy with YBCO than BaZrO 3 (BZO) and produces very fine (∼5 nm) particles with high linearity in their self-assembly along c. Critical current densities of 0.86, 0.38 MA cm -2 at 1 and 3 T (for fields) parallel to the c axis were recorded at 77 K in 0.5-1.0 μm thick films and a transition temperature of 92 K was observed even in the highest level doped sample (8 mol%). (rapid communication)

  9. Spin correlations in the pyrochlore slab compounds Ba2Sn2Ga10-7pZnCr7pO22

    International Nuclear Information System (INIS)

    Bonnet, P; Payen, C; Mutka, H; Danot, M; Fabritchnyi, P; Stewart, J R; Mellergaard, A; Ritter, C

    2004-01-01

    The low-temperature properties of a diluted antiferromagnetic pyrochlore slab of S = 3/2 spins are investigated through a study of the frustrated oxides Ba 2 Sn 2 Ga 10-7p ZnCr 7p O 22 (p>0.85). Powder neutron diffraction and 119 Sn Moessbauer absorption show no evidence of long-range magnetic order above 1.5 K. As in SrCr 9q Ga 12-9q O 19 , diffuse magnetic scattering, indicative of short range spin-spin correlations, is observed at low temperature. The dependence of the low-temperature sub-Curie bulk susceptibility to weak site depletion is the inverse of that observed in SrCr 9q Ga 12-9q O 19

  10. Theoretical research in nuclear structure and nuclear collective motion. Final report, March 1, 1986 - February 28, 1997

    International Nuclear Information System (INIS)

    1997-01-01

    Since what follows is the final report that the author will ever submit to DOE, it seems appropriate to him that it should be a long-term review, since he has received support from DOE and its predecessor agencies since 1957. The report also contains some material from the earliest years of his career. The next three sections contain an account of what the author thinks he has accomplished in the areas of quantum electrodynamics, nuclear forces, meson pair theory, low energy theory, lie algebra, many body theory, and many more physics topic. There follows a bibliography, consistently referred to in the previous sections and a Curriculum vitae for completeness

  11. Final report WP 4.2 : Support Structure Concepts for Deep Water Sites: Deliverable D4.2.8 (WP4: offshore foundations and support structures)

    NARCIS (Netherlands)

    De Vries, W.E.; Vemula, N.K.; Passon, P.; Fischer, T.; Kaufer, D.; Matha, D.; Schmidt, B.; Vorpahl, F.

    2011-01-01

    With the number of offshore wind farms rapidly increasing, in a wide variety of site conditions and using different turbine sizes, the need for alternative support structures other than the conventional monopile structure is apparent and several projects have been realised using other support

  12. Structural response of Paks NPP WWER-440 MW main building complex to blast input motion. Final report

    International Nuclear Information System (INIS)

    1999-01-01

    The Soviet standard design units WWER-440/213 type installed in Paks NPP were not originally designed for a Safe Shutdown Earthquake. At the time of selection of Paks site on the basis of historical earthquake data was supposed that the maximum earthquake is of grade V according MSK-64 scale. This seismicity level had not required any special measures to account for seismic event effects on the Main Building Complex Structure. Current site seismicity studies reveal that the seismic hazard for the site significantly exceeds the originally estimated. In addition the safety rules and seismic code requirements became more rugged. As a part of the activities to increase the seismic safety of the Paks NPP the study on dynamic behaviour of the Main Building Complex Structure has been performed with support of IAEA. The explosion full scale tests were carried out for determining the dynamic behaviour of the structure and for assessment of the Soil Structure Interaction (SSI) effects in the modelling and analysis procedures, used in the dynamic response analyses. The objective of the project was to evaluate the blast response of the WWER-440/213 Main Building Complex at Paks NPP, based on the data available for the soil properties, recorded free-field blast input motion, and structural design. The scope of EQE-Bulgaria study was to conduct a state-of-the-art SSI analysis with a multiple foundations supported model of the Main Building Complex to assess the structure blast response. The analysis was focused on a modelling technique that assess realistically the SSI effects on the dynamic response of a structure supported on multiple foundation instead of simplified, but more conservative techniques. The scope of research was covered splitting the study into the following steps: development of a twin units model for Main Building Complex structure; development of a Low Strain Soil Properties Model; development of SSI Parameters consisting of a Multiple Foundations System

  13. Final COMPASS results on the deuteron spin-dependent structure function g(1)(d) and the Bjorken sum rule

    Czech Academy of Sciences Publication Activity Database

    Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.; Badelek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bodlák, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.U.; Cicuttin, A.; Crespo, M.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O.; Dhara, L.; Donskov, S. V.; Doshita, N.; Dreisbach, Ch.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giarra, J.; Giordano, A.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse-Perdekapm, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Yu.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jarý, V.; Joosten, R.; Jörg, P.; Kabuss, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, M.; Meyer, W.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W. D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rossiyskaya, N. S.; Ryabchikov, D.; Rybnikov, A.; Rychter, A.; Salač, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolík, J.; Srnka, Aleš; Steffen, D.; Stolarski, M.; Subrt, O.; Šulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Thiel, A.; Tosello, F.; Tskhay, V.; Uhl, S.; Vauth, A.; Veloso, J.; Virius, M.; Vondra, J.; Wallner, S.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Ter Wolbeek, J.; Zaremba, K.; Závada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.; Zink, A.

    2017-01-01

    Roč. 769, JUNE (2017), s. 34-41 ISSN 0370-2693 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : COMPASS * deep inelastic scattering * spin * structure function * parton helicity distributions Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Nuclear physics Impact factor: 4.807, year: 2016

  14. Polarization Decay Fit for Assured Cathodic Protection of Steel Structures: Final Report on Project F12-AR03

    Science.gov (United States)

    2016-09-01

    other technical reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default. DoD Corrosion Prevention and...vii Unit Conversion Factors...structure. Therefore, polarization data can erroneously show increases or decreases in decay rates purely due to passing rain storms or the

  15. Guided waves based SHM systems for composites structural elements: statistical analyses finalized at probability of detection definition and assessment

    Science.gov (United States)

    Monaco, E.; Memmolo, V.; Ricci, F.; Boffa, N. D.; Maio, L.

    2015-03-01

    Maintenance approaches based on sensorised structures and Structural Health Monitoring systems could represent one of the most promising innovations in the fields of aerostructures since many years, mostly when composites materials (fibers reinforced resins) are considered. Layered materials still suffer today of drastic reductions of maximum allowable stress values during the design phase as well as of costly and recurrent inspections during the life cycle phase that don't permit of completely exploit their structural and economic potentialities in today aircrafts. Those penalizing measures are necessary mainly to consider the presence of undetected hidden flaws within the layered sequence (delaminations) or in bonded areas (partial disbonding); in order to relax design and maintenance constraints a system based on sensors permanently installed on the structure to detect and locate eventual flaws can be considered (SHM system) once its effectiveness and reliability will be statistically demonstrated via a rigorous Probability Of Detection function definition and evaluation. This paper presents an experimental approach with a statistical procedure for the evaluation of detection threshold of a guided waves based SHM system oriented to delaminations detection on a typical wing composite layered panel. The experimental tests are mostly oriented to characterize the statistical distribution of measurements and damage metrics as well as to characterize the system detection capability using this approach. Numerically it is not possible to substitute part of the experimental tests aimed at POD where the noise in the system response is crucial. Results of experiments are presented in the paper and analyzed.

  16. Structural, hyperfine and Raman properties of RE2FeSbO7 compounds

    International Nuclear Information System (INIS)

    Berndt, G.; Silva, K.L.; Ivashita, F.F.; Paesano, A.; Blanco, M.C.; Miner, E.V.P.; Carbonio, R.E.; Dantas, S.M.; Ayala, A.P.; Isnard, O.

    2015-01-01

    Highlights: • We prepared monophasic RE 2 FeSbO 7 pyrochlores. • RE 2 FeSbO 7 compounds were characterized regarding crystallographic, vibrational and hyperfine properties. • We find out that a site disorder takes place for the RE’s of larger ionic radii. • Lattice parameters, Raman bands and quadrupole splittings were shown to depend correlatedly on the RE ionic radius. - Abstract: Pyrochlores of the RE 2 FeSbO 7 type were synthesized by ball-milling followed by annealing in free atmosphere at high temperatures. The samples prepared were characterized by X-ray diffraction, Raman spectroscopy and 57 Fe Mössbauer spectroscopy, at room temperature. The results showed that RE 2 FeSbO 7 compounds have a cubic structure, i.e., Fd-3m (#227) space group, and that a site disorder takes place for the RE’s of larger ionic radii. Lattice parameters, Raman bands and quadrupole splittings were shown to depend correlatedly on the RE ionic radius. This behavior is discussed in terms of the pyrochlore crystallographic structure

  17. Project investigation and analysis of soil-structure interaction effects in seismic response of NPPs EBO, EMO, Slovakia. Final report

    International Nuclear Information System (INIS)

    Juhasova, E.

    1999-01-01

    The work described in this report was devoted to investigation of expected seismic response of the structures of WWER-440/213 type NPPs, namely Mochovce and Bohunice. Special attention was devoted to the properties of subsoil materials and the transfer of seismic waves from the bedrock to the foundation structures. Theoretical background was elaborated and discussed for wave propagation of surface waves. Alternative procedure was derived for non-linear media accounting for complex modulus theory. Material characteristics of subsoils were investigated for both NPPs. The obtained results were used as a basis for forecasting and calculation of expected seismic response when the time history records from Paks explosion were used an input. It was pointed out that the used procedure, together with previous calculation of subsoil transfer characteristics completed well the comparison with experimental results

  18. Manufacturing Steps for Commercial Production of Nano-Structure Capacitors Final Report CRADA No. TC02159.0

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, T. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schena, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-29

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and TroyCap LLC, to develop manufacturing steps for commercial production of nano-structure capacitors. The technical objective of this project was to demonstrate high deposition rates of selected dielectric materials which are 2 to 5 times larger than typical using current technology.

  19. Effect of Starting As-cast Structure on the Microstructure-Texture Evolution During Subsequent Processing and Finally Ridging Behavior of Ferritic Stainless Steel

    Science.gov (United States)

    Modak, Pranabananda; Patra, Sudipta; Mitra, Rahul; Chakrabarti, Debalay

    2018-06-01

    Effect of the initial as-cast structure on the microstructure-texture evolution during thermomechanical processing of 409L grade ferritic stainless steel was studied. Samples from the regions of cast slab having `columnar,' `equiaxed,' and a mixture of `columnar' and `equiaxed' grains were subjected to two different processing schedules: one with intermediate hot-band annealing before cold-rolling followed by final annealing, and another without any hot-band annealing. EBSD study reveals that large columnar crystals with cube orientation are very difficult to deform and recrystallize uniformly. Resultant variations in ferrite grain structure and retention of cube-textured band in cold-rolled and annealed sheet contribute to ridging behavior during stretch forming. Initial equiaxed grain structure is certainly beneficial to reduce or even eliminate ridging defect by producing uniform ferrite grain structure, free from any texture banding. Application of hot-band annealing treatment is also advantageous as it can maximize the evolution of beneficial gamma-fiber texture and eliminate the ridging defect in case of completely `equiaxed' starting structure. Such treatment reduces the severity of ridging even if the initial structure contains typically mixed `columnar-equiaxed' grains.

  20. Environmentally-assisted cracking in austenitic light water reactor structural materials. Final report of the KORA-I project

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.-P.; Ritter, S

    2009-03-15

    The following document is the final report of the KORA-I project, which was performed at the Paul Scherrer Institute (PSI) between 2006 and 2008 and was funded by the Swiss Nuclear Safety Inspectorate (ENSI). The three sub-projects of KORA-I covered the experimental characterisation of the effect of the reactor coolant environment on fatigue initiation and crack growth in austenitic stainless steels under boiling and pressurised water reactor conditions, the experimental evaluation of the potential and limits of the electrochemical noise measurement technique for the early detection of stress corrosion cracking initiation in austenitic stainless steels under boiling water reactor/normal water chemistry conditions, as well as the characterisation of the stress corrosion crack growth behaviour in the fusion line region of an Alloy 182-low-alloy reactor pressure vessel steel dissimilar metal weld. The main scientific results and major conclusions of the three sub-projects are discussed in three independent parts of this report. (author)

  1. Environmentally-assisted cracking in austenitic light water reactor structural materials. Final report of the KORA-I project

    International Nuclear Information System (INIS)

    Seifert, H.-P.; Ritter, S.

    2009-03-01

    The following document is the final report of the KORA-I project, which was performed at the Paul Scherrer Institute (PSI) between 2006 and 2008 and was funded by the Swiss Nuclear Safety Inspectorate (ENSI). The three sub-projects of KORA-I covered the experimental characterisation of the effect of the reactor coolant environment on fatigue initiation and crack growth in austenitic stainless steels under boiling and pressurised water reactor conditions, the experimental evaluation of the potential and limits of the electrochemical noise measurement technique for the early detection of stress corrosion cracking initiation in austenitic stainless steels under boiling water reactor/normal water chemistry conditions, as well as the characterisation of the stress corrosion crack growth behaviour in the fusion line region of an Alloy 182-low-alloy reactor pressure vessel steel dissimilar metal weld. The main scientific results and major conclusions of the three sub-projects are discussed in three independent parts of this report. (author)

  2. Final Technical Report for Quantum Embedding for Correlated Electronic Structure in Large Systems and the Condensed Phase

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Garnet Kin-Lic [Princeton Univ., NJ (United States)

    2017-04-30

    This is the final technical report. We briefly describe some selected results below. Developments in density matrix embedding. DMET is a quantum embedding theory that we introduced at the beginning of the last funding period, around 2012-2013. Since the first DMET papers, which demonstrated proof-of- principle calculations on the Hubbard model and hydrogen rings, we have carried out a number of different developments, including: Extending the DMET technology to compute broken symmetry phases, including magnetic phases and super- conductivity (Pub. 13); Calibrating the accuracy of DMET and its cluster size convergence against other methods, and formulation of a dynamical cluster analog (Pubs. 4, 10) (see Fig. 1); Implementing DMET for ab-initio molecular calculations, and exploring different self-consistency criteria (Pubs. 9, 14); Using embedding to defi ne quantum classical interfaces Pub. 2; Formulating DMET for spectral functions (Pub. 7) (see Fig. 1); Extending DMET to coupled fermion-boson problems (Pub. 12). Together with these embedding developments, we have also implemented a wide variety of impurity solvers within our DMET framework, including DMRG (Pub. 3), AFQMC (Pub. 10), and coupled cluster theory (CC) (Pub. 9).

  3. An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments. Final report

    International Nuclear Information System (INIS)

    Pfiffner, Susan

    2010-01-01

    The objective of this research was to examine the importance of microbial community structure in influencing uranium reduction rates in subsurface sediments. If the redox state alone is the key to metal reduction, then any organisms that can utilize the oxygen and nitrate in the subsurface can change the geochemical conditions so metal reduction becomes an energetically favored reaction. Thus, community structure would not be critical in determining rates or extent of metal reduction unless community structure influenced the rate of change in redox. Alternatively, some microbes may directly catalyze metal reduction (e.g., specifically reduce U). In this case the composition of the community may be more important and specific types of electron donors may promote the production of communities that are more adept at U reduction. Our results helped determine if the type of electron donor or the preexisting community is important in the bioremediation of metal-contaminated environments subjected to biostimulation. In a series of experiments at the DOE FRC site in Oak Ridge we have consistently shown that all substrates promoted nitrate reduction, while glucose, ethanol, and acetate always promoted U reduction. Methanol only occasionally promoted extensive U reduction which is possibly due to community heterogeneity. There appeared to be limitations imposed on the community related to some substrates (e.g. methanol and pyruvate). Membrane lipid analyses (phospholipids and respiratory quinones) indicated different communities depending on electron donor used. Terminal restriction fragment length polymorphism and clone libraries indicated distinct differences among communities even in treatments that promoted U reduction. Thus, there was enough metabolic diversity to accommodate many different electron donors resulting in the U bioimmobilization.

  4. Comparative analysis of structural concrete quality assurance practices on nine nuclear power plant construction projects. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.L. Jr.

    1978-06-01

    The basic objective of this research effort was to perform a comparative analysis of the Quality Assurance practices related to the structural concrete phase on nine nuclear power plant projects which are (or have been) under construction in the United States in the past ten years. This analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects. For those aspects of the Quality Assurance system which can be considered managerial in nature (i.e., organizational relationships, types of Quality Assurance programs, corrective action procedures, etc.) an attempt has been made to present the alternative approaches that were identified. For those aspects of the Quality Assurance system which are technical in nature (i.e., the frequency of testing for slump, compressive strength, etc.) an attempt has been made to present a comparative analysis between projects and in relation to the recommended or mandated practices presented in the appropriate industry codes and standards.

  5. Comparative analysis of structural concrete quality assurance practices on nine nuclear power plant construction projects. Final report

    International Nuclear Information System (INIS)

    Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.L. Jr.

    1978-06-01

    The basic objective of this research effort was to perform a comparative analysis of the Quality Assurance practices related to the structural concrete phase on nine nuclear power plant projects which are (or have been) under construction in the United States in the past ten years. This analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects. For those aspects of the Quality Assurance system which can be considered managerial in nature (i.e., organizational relationships, types of Quality Assurance programs, corrective action procedures, etc.) an attempt has been made to present the alternative approaches that were identified. For those aspects of the Quality Assurance system which are technical in nature (i.e., the frequency of testing for slump, compressive strength, etc.) an attempt has been made to present a comparative analysis between projects and in relation to the recommended or mandated practices presented in the appropriate industry codes and standards

  6. Structure and Thermal Expansion of YSZ and La2Zr2O7 Above 1500°C from Neutron Diffraction on Levitated Samples

    International Nuclear Information System (INIS)

    Ushakov, Sergey V.; Neuefeind, Joerg C.

    2015-01-01

    High-temperature time-of-flight neutron diffraction experiments were performed in this paper on cubic yttria-stabilized zirconia (YSZ, 10 mol% YO 1.5 ) and lanthanum zirconate (LZ) prepared by laser melting. Three spheroids of each composition were aerodynamically levitated and rotated in argon flow and heated with a CO 2 laser. Unit cell, positional and atomic displacement parameters were obtained by Rietveld analysis. Below ~1650°C the mean thermal expansion coefficient (TEC) for YSZ is higher than for LZ (13 ± 1 vs. 10.3 ± 0.6) × 10 -6 /K. From ~1650°C to the onset of melting of LZ at ~2250°C, TEC for YSZ and LZ are similar and within (7 ± 2) × 10 -6 /K. LZ retains the pyrochlore structure up to the melting temperature with Zr coordination becoming closer to perfectly octahedral. Congruently melting LZ is La deficient. The occurrence of thermal disordering of oxygen sublattice (Bredig transition) in defect fluorite structure was deduced from the rise in YSZ TEC to ~25 × 10 -6 /K at 2350°C–2550°C with oxygen displacement parameters (U iso ) reaching 0.1 Å 2 , similar to behavior observed in UO 2 . Acquisition of powder-like high-temperature neutron diffraction data from solid-levitated samples is feasible and possible improvements are outlined. Finally, this methodology should be applicable to a wide range of materials for high-temperature applications.

  7. FINAL TECHNICAL REPORT Synthetic, Structural and Mechanistic Investigations of Olefin Polymerization Catalyzed by Early Transition Metal Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bercaw, John E. [California Institute of Technology

    2014-05-23

    The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the active and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.

  8. Final Project Report: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Wessel, Silvia [Ballard Materials Products; Harvey, David [Ballard Materials Products

    2013-06-28

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications that target operational lifetimes of 5,000 hours and 40,000 hours by 2015, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different structural compositions and under different fuel cell conditions remains an area not well understood. The focus of this project was to address catalyst durability by using a dual path approach that coupled an extensive range of experimental analysis and testing with a multi-scale modeling approach. With this, the major technical areas/issues of catalyst and catalyst layer performance and durability that were addressed are: 1. Catalyst and catalyst layer degradation mechanisms (Pt dissolution, agglomeration, Pt loss, e.g. Pt in the membrane, carbon oxidation and/or corrosion). a. Driving force for the different degradation mechanisms. b. Relationships between MEA performance, catalyst and catalyst layer degradation and operational conditions, catalyst layer composition, and structure. 2. Materials properties a. Changes in catalyst, catalyst layer, and MEA materials properties due to degradation. 3. Catalyst performance a. Relationships between catalyst structural changes and performance. b. Stability of the three-phase boundary and its effect on

  9. Structural determination of new solid solutions [Y2-x Mx ][Sn2-x Mx ]O7-3x/2 (M = Mg or Zn by Rietveld method

    Directory of Open Access Journals (Sweden)

    Mohamed Douma

    2010-12-01

    Full Text Available New [Y2-x Mx][Sn2-x Mx]O7-3x/2 (0 ≤x≤ 0.30 for M = Mg and 0 ≤x≤ 0.36 for M = Zn solid solutions with the pyrochlore structure were synthesized via high-temperature solid-state reaction method. Powder X-ray diffraction (PXRD patterns and Fourier transform infrared (FT-IR spectra showed that these materials are new non-stoichiometric solid solutions with the pyrochlore type structure. The structural parameters for the solids obtained were successfully determined by Rietveld refinement based on the analysis of the PXRD diagrams. Lattice parameter (a of these solid solutions decreases when x increases in both series. All samples obtained have the pyrochlore structure Fd-3m, no. 227 (origin at center -3m with M2+ (M = Mg2+ or Zn2+ cations in Y3+ and Sn4+ sites, thus creating vacancies in the anionic sublattice.

  10. Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials. Final Report

    International Nuclear Information System (INIS)

    Lindle, Dennis W.

    2011-01-01

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate 'real' waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.

  11. Use of Video-Projected Structured Clinical Examination (ViPSCE) instead of the traditional oral (Viva) examination in the assessment of final year medical students.

    Science.gov (United States)

    El Shallaly, Gamal; Ali, Eltayeb

    2004-03-01

    Assessment of medical students using the traditional oral (viva) system has been marred by being highly subjective, non-structured, and biased. The use of the objective structured clinical examination (OSCE) would circumvent these disadvantages. The OSCE is, however, costly and time-consuming particularly if used for assessment of large numbers of students. The need for another form of examination that enjoys the advantages of the OSCE while avoiding its disadvantages in the face of limited resources has been the inspiration behind this innovative approach. (1) To identify the characteristics of the new Video-Projected Structured Clinical Examination (ViPSCE). (2) To compare the acceptability of ViPSCE and OSCE by students and tutors. (3) To compare the time-effectiveness of ViPSCE and OSCE. We used a slide video projection to assess the surgical knowledge, problem solving and management abilities of 112 final year medical students at Alazhari University, Khartoum, Sudan. Students completed evaluation forms at the end of the examination. The administration of the ViPSCE was smooth and straightforward. Feedback of the students showed that they preferred the ViPSCE to both traditional oral (viva) examination and OSCE. The examination time was 2 hours using video projection compared to the 6 hours that it used to take a class of 112 students to complete a classical OSCE. The ViPSCE is a better replacement for the traditional oral exam. It is much less time- consuming than traditional OSCE.

  12. A novel isomorphic phase transition in β-pyrochlore oxide KOs2O6: a study using high resolution neutron powder diffraction

    Science.gov (United States)

    Sasai, Kenzo; Kofu, Maiko; Ibberson, Richard M.; Hirota, Kazuma; Yamaura, Jun-ichi; Hiroi, Zenji; Yamamuro, Osamu

    2010-01-01

    We have carried out adiabatic calorimetric and neutron powder diffraction experiments on the β-pyrochlore oxide KOs2O6, which has a superconducting transition at Tc = 9.6 K and another novel transition at Tp = 7.6 K. A characteristic feature of this compound is that the K ions exhibit rattling vibrations in the cages formed by O atoms even at very low temperatures. The temperature and entropy of the Tp transition is in good agreement with previous data measured using a heat relaxation method, indicating that the present sample is of high purity and the transition entropy, 0.296 J K-1 mol-1, does not depend on the calorimetric method used. The neutron powder diffraction data show no peak splitting nor extra peaks over the temperature range between 2 and 295 K, suggesting that the Tp transition is a rather unusual isomorphic transition. Rietveld analysis revealed an anomalous expansion of the lattice and a deformation of the O atom cage below 7.6 K. In the low-temperature phase, the distribution of scattering density corresponding to the K ions becomes broader whilst maintaining its maximum at the cage center. Based on these findings, we suggest that the Tp transition is due to the expansion of the cage volume and cooperative condensation of the K ions into the ground state of the rattling motion.

  13. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gurney, Kevin R. [Arizona Univ., Mesa, AZ (United States)

    2015-01-12

    This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.

  14. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    DeTar, Carleton [P.I.

    2012-12-10

    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  15. A conceptual design and structural stabilities of in-pit assembly tools for the completion of final sector assembly at tokamak hall

    International Nuclear Information System (INIS)

    Nam, K.O.; Park, H.K.; Kim, D.J.; Ahn, H.J.; Kim, K.K.; Im, K.; Shaw, R.

    2010-01-01

    The final assembly of main components of the International Thermonuclear Experimental Reactor (ITER) tokamak, Vacuum Vessel (VV) and Toroidal Field Coils (TFCs), is achieved by the sequential assembly of the nine sub-assembled 40 o sectors in tokamak pit. Each sub-assembled 40 o sector is composed of one VV 40 o sector, two TFCs, and in-between Vacuum Vessel Thermal Shield (VVTS) segments. Sub-assembly is carried out in the assembly building and then the sub-assembled sectors are transferred into tokamak pit, in sequence, to complete sector assembly. The role of in-pit assembly tool is to support and align the sub-assembled sectors in tokamak pit. It also plays the role of reference datum during assembly until the completion of main components assembly. Korea Domestic Agency (KO DA) has developed the conceptual design of most ITER purpose-built assembly tools under the collaboration with the ITER Organization. Among the conceptual designs carried out, this paper describes the function, the structure, the selected material and the design results of the in-pit assembly tools comprising central column, radial beams and their supports, TF inner supports and in-pit working floor. The results of structural analysis using ANSYS for the various loading cases are given as well. The resultant stresses and deflections turned out to fall within the allowable ranges.

  16. Narrative Finality

    Directory of Open Access Journals (Sweden)

    Armine Kotin Mortimer

    1981-01-01

    Full Text Available The cloturai device of narration as salvation represents the lack of finality in three novels. In De Beauvoir's Tous les hommes sont mortels an immortal character turns his story to account, but the novel makes a mockery of the historical sense by which men define themselves. In the closing pages of Butor's La Modification , the hero plans to write a book to save himself. Through the thrice-considered portrayal of the Paris-Rome relationship, the ending shows the reader how to bring about closure, but this collective critique written by readers will always be a future book. Simon's La Bataille de Pharsale , the most radical attempt to destroy finality, is an infinite text. No new text can be written. This extreme of perversion guarantees bliss (jouissance . If the ending of De Beauvoir's novel transfers the burden of non-final world onto a new victim, Butor's non-finality lies in the deferral to a future writing, while Simon's writer is stuck in a writing loop, in which writing has become its own end and hence can have no end. The deconstructive and tragic form of contemporary novels proclaims the loss of belief in a finality inherent in the written text, to the profit of writing itself.

  17. Attitudes towards a final repository for the spent nuclear fuel. Structure and causes; Attityd till slutfoervar av anvaent kaernbraensle. Struktur och orsaker

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, Lennart (Stockholm School of Economics (Sweden). Center for Risk Research)

    2008-09-15

    This report presents the results of a questionnaire survey of attitudes towards a final repository for the spent nuclear fuel. The questionnaire was mailed to 3,000 persons. Participants were young and older people in Oskarshamn municipality and Oesthammar municipality as well as in the rest of the country. Fifty-one percent responded. The questionnaire included a large number of questions of possible relevance for understanding the structure of and reasons for the person's attitude towards a final repository. Questions concerning nuclear power were dealt with in a special section. Men were more positively disposed towards a repository than women, older people more than young. The gender differences are mainly attributable to the variation in attitude towards nuclear power and concern about nuclear accidents. In the case of older people, interest was also a factor. Young people were not as interested in the issue. The most important factor in determining the attitude towards a final repository was the benefit it was expected to bring to the municipality. Moral and emotional aspects were also important. Risk played a relatively subordinate role. Social aspects were very important: those who frequently spoke with people who were positively disposed tended to be positive themselves, and vice versa for those who were negative. This factor could explain some of the gender differences in attitude. Attitudes in Oskarshamn were slightly more positive than in Oesthammar, probably due to the fact that the residents in Oskarshamn had a greater sense of participation in the municipality's decision in the matter. Information from SKB was also found to be an important factor for the differences in attitude between the municipalities. Eight percentage points more people had received information in Oskarshamn than in Oesthammar. The difference may be small, but it exists and does appear to be of some importance. Attitudes in Oskarshamn and Oesthammar continued to be much

  18. Systematic investigation of drip stains on apparel fabrics: The effects of prior-laundering, fibre content and fabric structure on final stain appearance.

    Science.gov (United States)

    de Castro, Therese C; Taylor, Michael C; Kieser, Jules A; Carr, Debra J; Duncan, W

    2015-05-01

    Bloodstain pattern analysis is the investigation of blood deposited at crime scenes and the interpretation of that pattern. The surface that the blood gets deposited onto could distort the appearance of the bloodstain. The interaction of blood and apparel fabrics is in its infancy, but the interaction of liquids and apparel fabrics has been well documented and investigated in the field of textile science (e.g. the processes of wetting and wicking of fluids on fibres, yarns and fabrics). A systematic study on the final appearance of drip stains on torso apparel fabrics (100% cotton plain woven, 100% polyester plain woven, blend of polyester and cotton plain woven and 100% cotton single jersey knit) that had been laundered for six, 26 and 52 cycles prior to testing was investigated in the paper. The relationship between drop velocity (1.66±0.50m/s, 4.07±0.03m/s, 5.34±0.18m/s) and the stain characteristics (parent stain area, axes 1 and 2 and number of satellite stains) for each fabric was examined using analysis of variance. The experimental design and effect of storing blood were investigated on a reference sample, which indicated that the day (up to five days) at which the drops were generated did not affect the bloodstain. The effect of prior-laundering (six, 26 and 52 laundering cycles), fibre content (cotton vs. polyester vs. blend) and fabric structure (plain woven vs. single jersey knit) on the final appearance of the bloodstain were investigated. Distortion in the bloodstains produced on non-laundered fabrics indicated the importance of laundering fabrics to remove finishing treatments before conducting bloodstain experiments. For laundered fabrics, both the cotton fabrics and the blend had a circular to oval stain appearance, while the polyester fabric had a circular appearance with evidence of spread along the warp and weft yarns, which resulted in square-like stains at the lowest drop velocity. A significant (pfibre content (pfibres/yarns, while for the

  19. Final Report

    DEFF Research Database (Denmark)

    Heiselberg, Per; Brohus, Henrik; Nielsen, Peter V.

    This final report for the Hybrid Ventilation Centre at Aalborg University describes the activities and research achievement in the project period from August 2001 to August 2006. The report summarises the work performed and the results achieved with reference to articles and reports published...

  20. Lattice dynamical investigation of the Raman and infrared wave numbers and heat capacity properties of the pyrochlores R2Zr2O7 (R = La, Nd, Sm, Eu)

    Science.gov (United States)

    Nandi, S.; Jana, Y. M.; Gupta, H. C.

    2018-04-01

    A short-range electrostatic forcefield model has been applied for the first time to investigate the Raman and infrared wave numbers in pyrochlore zirconates R2Zr2O7 (R3+ = La, Nd, Sm, Eu). The calculations of phonons involve five stretching and four bending force constants in the Wilson GF matrix method. The calculated phonon wave numbers are in reasonable agreement with the observed spectra in infrared and Raman excitation zones for all of these isomorphous compounds. The contributions of force constants to each mode show a similar trend of variation for all of these compounds. Furthermore, to validate the established forcefield model, we calculated the standard thermodynamic functions, e.g., molar heat capacity, entropy and enthalpy, and compared the results with the previous experimental data for each compound. Using the derived wave numbers for the acoustic and optical modes, the total phonon contribution to the heat capacity was calculated for all these zirconate compounds. The Schottky heat capacity contributions were also calculated for the magnetic compounds, Nd2Zr2O7, Sm2Zr2O7 and Eu2Zr2O7, taking account of crystal-field level schemes of the lanthanide ions. The derived total heat capacity and the integrated values of molar entropy and molar enthalpy showed satisfactory correlations at low temperatures with the experimental results available in the literature for these compounds. At higher temperatures, the discrepancies may be caused by the anharmonic effects of vibrations, phonon dispersion, distribution of phonon density of states, etc.

  1. First-principles calculation of structural and energetic properties for A2Ti2O7 (A = Lu, Er, Y, Gd, Sm, Nd, La)

    International Nuclear Information System (INIS)

    Zhang, Z.L.; Xiao, H.Y.; Zu, Xiaotao T.; Gao, Fei; Weber, William J.

    2009-01-01

    A first-principles method has been employed to investigate the structural and energetic properties for A2Ti2O7 (A = Lu, Er, Y, Gd, Sm, Nd, La), including the formation energies of the cation antisite-pair, the anion Frenkel pair that defines anion-disorder, and the coupled cation antisite-pair/anion-Frenkel. It is proposed that the interaction may have more significant influence on the radiation resistance behavior of titanate pyrochlores, although the interactions are relatively much stronger than the interactions. It is found that the defect formation energies are not simple functions of the A-site cation radii. The formation energy of the cation antisite-pair increases continuously as the A-site cation varies from Lu to Gd, and then decreases continuously with the variation of the A-site cation from Gd to La, in excellent agreement with the radiation-resistance trend of the titanate pyrochlores. The band gaps in these pyrochlores were also measured, and the band gap widths changed continuously with cation radius.

  2. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stinis, Panos [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-07

    This is the final report for the work conducted at the University of Minnesota (during the period 12/01/12-09/18/14) by PI Panos Stinis as part of the "Collaboratory on Mathematics for Mesoscopic Modeling of Materials" (CM4). CM4 is a multi-institution DOE-funded project whose aim is to conduct basic and applied research in the emerging field of mesoscopic modeling of materials.

  3. FINAL REPORT: DOE CONTRACT NUMBER FG0205ER64026 Biological Neutron Scattering: A Collaboration with the Oak Ridge Center for Structural Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, Jill [Univ. of Utah, Salt Lake City, UT (United States)

    2011-01-12

    The overarching goal of this project was to promote applications of small-angle scattering in structural molecular biology by providing model examples of cutting edge applications that demonstrate the unique capabilities and potential of the DOE national user facilities at Oak Ridge, especially the newly commissioned BioSANS. The approach taken was three-fold: (1) to engage in high impact collaborative research projects that would benefit from small-angle neutron scattering to both demonstrate the power of the technique while expanding the potential user community; (2) to provide access to scattering facilities established at the University of Utah to as broad a set of researchers as possible to increase the expertise in small-angle scattering generally; and (3) to develop new methods and tools for small-angle scattering. To these ends, three major research collaborations were pursued that resulted in a significant body of published work where neutron scattering and contrast variation played a major role. These major collaborations involved studies of protein complexes involved in (1) bacterial transcription regulation and adaptive response (a DOE/BER priority area); (2) regulation of cardiac muscle; and (3) neuronal disorders. In addition, to broaden the impact of the project, smaller collaborative efforts were supported that used either small-angle X-ray or neutron scattering. Finally, the DOE supported facilities at the University of Utah were made available to researchers on a service basis and a number of independent groups took advantage of this opportunity. In all of this work, there was an emphasis on the training of students and post docs in scattering techniques, and a set of publications (a book chapter, a review, and an encyclopedia article) were produced to guide the non-specialist potential user of scattering techniques in successful applications of the techniques. We also developed a suite of user friendly web-based computational tools currently

  4. Folded Basinal Compartments of the Southern Mongolian Borderland: A Structural Archive of the Final Consolidation of the Central Asian Orogenic Belt

    Directory of Open Access Journals (Sweden)

    Dickson Cunningham

    2017-01-01

    Full Text Available The Central Asian Orogenic Belt (CAOB records multiple Phanerozoic tectonic events involving consolidation of disparate terranes and cratonic blocks and subsequent reactivation of Eurasia’s continental interior. The final amalgamation of the CAOB terrane collage involved diachronous closure of the Permian-Triassic Solonker suture in northernmost China and the Jurassic Mongol-Okhotsk suture in northeast Mongolia and eastern Siberia. The distribution, style, and kinematics of deformation associated with these two terminal collision events is poorly documented in southern Mongolia and northernmost China because these regions were later tectonically overprinted by widespread Cretaceous basin and range-style crustal extension and Miocene-recent sinistral transpressional mountain building. These younger events structurally compartmentalized the crust into uplifted crystalline basement blocks and intermontane basins. Consequently, widespread Cretaceous and Late Cenozoic clastic sedimentary deposits overlie older Permian-Jurassic sedimentary rocks in most basinal areas and obscure the deformation record associated with Permian-Triassic Solonker and Jurassic Mongol-Okhotsk collisional suturing. In this report, satellite image mapping of basinal compartments that expose folded Permian-Jurassic sedimentary successions that are unconformably overlapped by Cretaceous-Quaternary clastic sediments is presented for remote and poorly studied regions of southern Mongolia and two areas of the Beishan. The largest folds are tens of kilometers in strike length, east-west trending, and reveal north-south Late Jurassic shortening (present coordinates. Late Jurassic fold vergence is dominantly northerly in the southern Gobi Altai within a regional-scale fold-and-thrust belt. Local refolding of older Permian north-south trending folds is also evident in some areas. The folds identified and mapped in this study provide new evidence for the regional distribution and

  5. The Structure Difference in the Southern Margin of the Dangerous Grounds: Implications for the Final Evolution of the South China Sea

    Science.gov (United States)

    Xi, P.; Shen, C.; Zhao, Z.; Xie, X.; Mei, L.; Gong, J.; Huang, X.

    2015-12-01

    We interpret two multi-channel seismic reflection profiles, more than 900 km across the entire Dangerous Grounds, locating in east and west of the southern margin of the South China Sea respectively. Eight Cenozoic sequence boundaries are determined as well as three tectono-stratigraphic units. Detailed analysis of extensional features and unconformities revealed the tectonic in the east and west. Early extension (syn-rifting sequence) occurred in the two profiles during continental rifting, which lasted from Palaeocene to Early Oligocene, and resulted in formation of half-grabens and rotated fault-blocks. Late extension (drift-rifting sequence) has the significant difference in the both profiles. The eastern Dangerous Grounds entered rifting-depression stage and some compressional deformation occurred in the Reed Bank basin at about the beginning of Early Miocene, probably resulting from the collision of the Dangerous Grounds and the Sabah-Cagayan Arc. The western Dangerous Grounds was still in rifting until the end of Early Miocene, forming the MMU or DRU which is strongly erosional and represents a major break in sedimentation and/or erosion in partial area. Denudation fold and inverted fault can be distinguished blow the MMU, indicating the cessation of the South China Sea accompanied the NW compression, while the boundary corresponding the MMU is nearly a plano-conformity in the east. The thermal sag (post-rifting sequence) is characterized by non-faulted draping strata in the whole area. The different structure in east and west may be related to the final evolution of the SCS. When the proto-SCS closed in a scissor fashion plus the clockwise rotation of Borneo, the initial collision (c.20Ma) appeared in east part building the NW foreland basin system from Palawan Trough to Reed Bank in a short-live process, while the west part was drifting southwards until c.15Ma to form the even more remarkable foreland system from Borneo Trough to deep-water Sarawak.

  6. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    John Ross

    2003-04-30

    The Final Technical Report summarizes research accomplishments and Publications in the period of 5/1/99 to 4/30/03 done on the grant. Extensive progress was made in the period covered by this report in the areas of chemical kinetics of non-linear systems; spatial structures, reaction - diffusion systems, and thermodynamic and stochastic theory of electrochemical and general systems.

  7. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jarillo-Herrero, Pablo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-02-07

    This is the final report of our research program on electronic transport experiments on Topological Insulator (TI) devices, funded by the DOE Office of Basic Energy Sciences. TI-based electronic devices are attractive as platforms for spintronic applications, and for detection of emergent properties such as Majorana excitations , electron-hole condensates , and the topological magneto-electric effect . Most theoretical proposals envision geometries consisting of a planar TI device integrated with materials of distinctly different physical phases (such as ferromagnets and superconductors). Experimental realization of physics tied to the surface states is a challenge due to the ubiquitous presence of bulk carriers in most TI compounds as well as degradation during device fabrication.

  8. Steering Charge Kinetics of Tin Niobate Photocatalysts: Key Roles of Phase Structure and Electronic Structure.

    Science.gov (United States)

    Huang, Shushu; Wang, Chunyan; Sun, Hao; Wang, Xiaojing; Su, Yiguo

    2018-05-23

    Tin niobate photocatalysts with the phase structures of froodite (SnNb 2 O 6 ) and pyrochlore (Sn 2 Nb 2 O 7 ) were obtained by a facile solvothermal method in order to explore the impact of phase structure and electronic structure on the charge kinetics and photocatalytic performance. By employing tin niobate as a model compound, the effects of phase structure over electronic structure, photocatalytic activity toward methyl orange solution and hydrogen evolution were systematically investigated. It is found that the variation of phase structure from SnNb 2 O 6 to Sn 2 Nb 2 O 7 accompanied with modulation of particle size and band edge potentials that has great consequences on photocatalytic performance. In combination with the electrochemical impedance spectroscopy (EIS), transient photocurrent responses, transient absorption spectroscopy (TAS), and the analysis of the charge-carrier dynamics suggested that variation of electronic structure has great impacts on the charge separation and transfer rate of tin niobate photocatalysts and the subsequent photocatalytic performance. Moreover, the results of the X-ray photoelectron spectroscopy (XPS) indicated that the existent of Sn 4+ species in Sn 2 Nb 2 O 7 could result in a decrease in photocatalytic activity. Photocatalytic test demonstrated that the SnNb 2 O 6 (froodite) catalyst possesses a higher photocatalytic activity toward MO degradation and H 2 evolution compared with the sample of Sn 2 Nb 2 O 7 (pyrochlore). On the basis of spin resonance measurement and trapping experiment, it is expected that photogenerated holes, O 2 -• , and OH • active species dominate the photodegradation of methyl orange.

  9. Crystal structures of orthorhombic, hexagonal, and cubic compounds of the Sm(x)Yb(2−x)TiO5 series

    International Nuclear Information System (INIS)

    Aughterson, Robert D.; Lumpkin, Gregory R.; Reyes, Massey de los; Sharma, Neeraj; Ling, Christopher D.; Gault, Baptiste; Smith, Katherine L.; Avdeev, Maxim; Cairney, Julie M.

    2014-01-01

    A series of single phase compounds with nominal stoichiometry Sm (x) Yb (2−x) TiO 5 (x=2, 1.4, 1, 0.6, and 0) have been successfully fabricated to generate a range of crystal structures covering the most common polymorphs previously discovered in the Ln 2 TiO 5 series (Ln=lanthanides and yttrium). Four of the five samples have not been previously fabricated in bulk, single phase form so their crystal structures are refined and detailed using powder synchrotron and single crystal x-ray diffraction, neutron diffraction and transmission electron microscopy. Based on the phase information from diffraction data, there are four crystal structure types in this series; orthorhombic Pnma, hexagonal P6 3 /mmc, cubic (pyrochlore-like) Fd-3m and cubic (fluorite-like) Fm-3m. The cubic materials show modulated structures with variation between long and short range ordering and the variety of diffraction techniques were used to describe these complex crystal structure types. - Graphical abstract: A high resolution image of the compound Sm 0.6 Yb 1.4 TiO 5 showing contrast from lattice fringes and the corresponding fast Fourier transform (FFT) of the HREM image with pyrochlore related diffraction spots marked “P” and fluorite marked “F”. The crystal is oriented down the [1 1 0] zone axis based on the Fd-3m structure. The ideal crystal structure (no vacancies) of the cubic, pyrochlore-like (Sm 0.6 Yb 1.4 TiO 5 ). - Highlights: • First fabrication of bulk single-phase material with stoichiometry Sm 2 TiO 5 . • Systematic study of crystal structure types within Ln 2 TiO 5 series (Ln=lanthanides). • A novel technique using IFFT of HREM images to study cubic structures

  10. Full-gap superconductivity with strong electron correlations in the β-pyrochlore KOs2O6

    International Nuclear Information System (INIS)

    Kasahara, Y.; Shimono, Y.; Kato, T.; Hashimoto, K.; Shibauchi, T.; Matsuda, Y.; Yonezawa, S.; Muraoka, Y.; Yamaura, J.; Nagao, Y.; Hiroi, Z.

    2008-01-01

    To elucidate the superconducting gap structure and the influence of rattling motion on quasiparticle dynamics in the superconducting state of KOs 2 O 6 , the thermal conductivity and microwave surface impedance were measured at low temperatures. The magnetic field dependence of thermal conductivity and temperature dependence of penetration depth demonstrate full-gap superconductivity in KOs 2 O 6 . The quasiparticle scattering time is strongly enhanced in the superconducting state, indicating a strong electron inelastic scattering in the normal state. These results highlight that KOs 2 O 6 is unique among superconductors with strong electron correlations

  11. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, Scott [Purdue Univ., West Lafayette, IN (United States)

    2016-08-30

    The overall objectives of this research effort were to expand the capabilities of spectroscopic and ion chemistry tools for the structural characterization of polyatomic ions of relevance to the broad mission of the Department of Energy. Mass spectrometry currently plays an important role in virtually all of the molecular sciences by virtue of the value of the accurate measurement of mass and the structural information that can be derived from various structural probes based on, for example, ion chemistry, ion mobility, and ion spectroscopy. Mass spectrometry has long played important roles in supporting the missions of the Department of Energy and its predecessor agencies, particularly in the area of isotopic analysis of nuclides. Molecular mass spectrometry has played increasingly important roles is many aspects of the production and use of energy as the nation has diversified its energy portfolio. There is an ongoing need for the expansion of the measurement capabilities associated with molecular mass spectrometry that involves both technological developments as well as improved understanding of the chemical and physical processes that take place upon ionization and ion analysis in a mass spectrometer. Advances in mass spectrometry have impacted science broadly and further advances will be required to meet the needs of current energy and environmental research. This program has historically focused on the structural characterization of polyatomic ions, usually within the context of a tandem mass spectrometry experiment. A wide variety of physical and chemical processes can take place within a mass spectrometer and advantage can be taken of such processes to enhance the quality and quantity of information that can be derived for a given chemical system of interest. For example, ions can undergo interactions with neutral molecules/atoms, light, surfaces, electrons, or oppositely charged ions. The outcomes of all such interactions can be sensitive to the structures

  12. Schedulability Analysis for Java Finalizers

    DEFF Research Database (Denmark)

    Bøgholm, Thomas; Hansen, Rene Rydhof; Søndergaard, Hans

    2010-01-01

    Java finalizers perform clean-up and finalisation of objects at garbage collection time. In real-time Java profiles the use of finalizers is either discouraged (RTSJ, Ravenscar Java) or even disallowed (JSR-302), mainly because of the unpredictability of finalizers and in particular their impact...... on the schedulability analysis. In this paper we show that a controlled scoped memory model results in a structured and predictable execution of finalizers, more reminiscent of C++ destructors than Java finalizers. Furthermore, we incorporate finalizers into a (conservative) schedulability analysis for Predictable Java...... programs. Finally, we extend the SARTS tool for automated schedulability analysis of Java bytecode programs to handle finalizers in a fully automated way....

  13. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Robert C. [Texas A& M University; Kamon, Teruki [Texas A& M University; Toback, David [Texas A& M University; Safonov, Alexei [Texas A& M University; Dutta, Bhaskar [Texas A& M University; Dimitri, Nanopoulos [Texas A& M University; Pope, Christopher [Texas A& M University; White, James [Texas A& M University

    2013-11-18

    Overview The High Energy Physics Group at Texas A&M University is submitting this final report for our grant number DE-FG02-95ER40917. This grant has supported our wide range of research activities for over a decade. The reports contained here summarize the latest work done by our research team. Task A (Collider Physics Program): CMS & CDF Profs. T. Kamon, A. Safonov, and D. Toback co-lead the Texas A&M (TAMU) collider program focusing on CDF and CMS experiments. Task D: Particle Physics Theory Our particle physics theory task is the combined effort of Profs. B. Dutta, D. Nanopoulos, and C. Pope. Task E (Underground Physics): LUX & NEXT Profs. R. Webb and J. White(deceased) lead the Xenon-based underground research program consisting of two main thrusts: the first, participation in the LUX two-phase xenon dark matter search experiment and the second, detector R&D primarily aimed at developing future detectors for underground physics (e.g. NEXT and LZ).

  14. SBIR PHASE I FINAL REPORT: Adoption of High Performance Computational (HPC) Modeling Software for Widespread Use in the Manufacture of Welded Structures

    Energy Technology Data Exchange (ETDEWEB)

    Brust, Frederick W. [Engineering Mechanics Corporation of Columbus (Emc2), Columbus, OH (United States); Punch, Edward F. [Engineering Mechanics Corporation of Columbus (Emc2), Columbus, OH (United States); Kurth, Elizabeth A. [Engineering Mechanics Corporation of Columbus (Emc2), Columbus, OH (United States); Kennedy, James C. [Engineering Mechanics Corporation of Columbus (Emc2), Columbus, OH (United States)

    2013-12-02

    Many US manufacturing companies have moved fabrication and production facilities off shore because of cheaper labor costs. A key aspect in bringing these jobs back to the US is the use of technology to render US-made fabrications more efficient overall with higher quality. A new initiative of the current administration has the goal of enhancing competitiveness to retain manufacturing jobs in the US. One significant competitive advantage that has emerged in the US over the last two decades is the use of virtual design for fabrication of large structures in the light and heavy materials industries. Industries that have used virtual design and analysis tools have reduced material parts size, developed environmentally-friendly fabrication processes, improved product quality and performance, and reduced manufacturing costs. Indeed, Caterpillar Inc. (CAT), one of the partners in this effort, continues to have a large fabrication presence in the US because of the use of weld fabrication modeling to optimize fabrications by controlling weld residual stresses and distortions and improving fatigue, corrosion, and fracture performance. This report describes Engineering Mechanics Corporation of Columbus (Emc2's) DOE SBIR Phase I results which extended an existing, state-of-the-art software code, VFT, currently used to design and model large welded structures prior to fabrication - to a broader range of products with widespread applications for small and medium-sized enterprises (SMEs). VFT helps control distortion, can minimize and/or control residual stresses, control welding microstructure, and pre-determine welding parameters such as weld-sequencing, pre-bending, thermal-tensioning, etc. VFT uses material properties, consumable properties, etc. as inputs. Through VFT, manufacturing companies can avoid costly design changes after fabrication. This leads to the concept of joint design/fabrication where these important disciplines are intimately linked to minimize

  15. Fundamental aspects of actinide-zirconium pyrochlore oxides: Systematic comparison of the Pu, Am, Cm, Bk and Cf systems

    International Nuclear Information System (INIS)

    Haire, R.G.; Raison, P.E.

    2000-01-01

    Zirconium- and hafnium-based oxide materials have gained attraction for various nuclear applications. These materials have features in common with one of the early, well-publicized inorganic ceramics for immobilizing nuclear waste. Our interests have addressed the fundamental structural and chemical properties of these oxide systems. We pursued both the crystal chemical constraints of the oxide matrices, as well as the importance of the chemistry of the f-elements. By incorporating five actinide elements in our studies, we were able to compare systematically the materials science of these materials with the fundamental chemistry and electronic configurations of these actinides employed. It is expected that this basic information will be useful technologically in the realm of tailor-made materials for different applications

  16. FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Juergen Eckert; Anthony K. Cheetham (Principal Investigator)

    2011-03-11

    Hydrogen storage systems based on the readily reversible adsorption of H{sub 2} in porous materials have a number of very attractive properties with the potential to provide superior performance among candidate materials currently being investigated were it not for the fact that the interaction of H{sub 2} with the host material is too weak to permit viable operation at room temperature. Our study has delineated in quantitative detail the structural elements which we believe to be the essential ingredients for the future synthesis of porous materials, where guest-host interactions are intermediate between those found in the carbons and the metal hydrides, i.e. between physisorption and chemisorption, which will result in H{sub 2} binding energies required for room temperature operation. The ability to produce porous materials with much improved hydrogen binding energies depends critically on detailed molecular level analysis of hydrogen binding in such materials. However, characterization of H{sub 2} sorption is almost exclusively carried by thermodynamic measurements, which give average properties for all the sites occupied by H{sub 2} molecules at a particular loading. We have therefore extensively utilized the most powerful of the few molecular level experimental probes available to probe the interactions of hydrogen with porous materials, namely inelastic neutron scattering (INS) spectroscopy of the hindered rotations of the hydrogen molecules adsorbed at various sites, which in turn can be interpreted in a very direct way in by computational studies. This technique can relate spectral signatures of various H{sub 2} molecules adsorbed at binding sites with different degrees of interaction. In the course of this project we have synthesized a rather large number of entirely new hybrid materials, which include structural modifications for improved interactions with adsorbed hydrogen. The results of our systematic studies on many porous materials provide detailed

  17. Structural and Stratigraphic Controls on Methane Hydrate occurrence and distribution: Gulf of Mexico, Walker Ridge 313 and Green Canyon 955: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Priyank [Oklahoma State Univ., Stillwater, OK (United States)

    2017-09-01

    The goal of this project was to determine structural and stratigraphic controls on hydrate occurrence and distribution in Green Canyon (GC) 955 and Walker Ridge (WR) 313 blocks using seismic and well data. Gas hydrate was discovered in these blocks in coarse- and fine-grained sediments during the 2009 Joint Industrial project (JIP) Leg 11 drilling expedition. Although the immediate interest of the exploration community is exclusively hydrate which is present in coarse–grained sediments, factors that control hydrate and free gas distribution in the two blocks and whether coarse and fine-grained hydrate-bearing units are related in any manner, formed the core of this research. The project spanned from 10/01/2012 to 07/31/2016. In the project, in both the leased blocks, the interval spanning the gas hydrate stability zone (GHSZ) was characterized using a joint analysis of sparse Ocean Bottom Seismic (OBS) and dense, surface–towed multichannel seismic (MCS) data. The project team had the luxury of calibrating their results with two well logs. Advance processing methods such as depth migration and full-waveform inversion (FWI) were used for seismic data analysis. Hydrate quantification was achieved through interpretation of the FWI velocity field using appropriate rock physics models at both blocks. The seismic modeling/inversion methodology (common to both GC955 and WR313 blocks) was as follows. First, the MCS data were depth migrated using a P-wave velocity (VP) model constructed using inversion of reflection arrival times of a few (four in both cases) key horizons carefully picked in the OBS data to farthest possible offsets. Then, the resolution of the traveltime VP model was improved to wavelength scale by inverting OBS gathers up to the highest frequency possible (21.75 Hz for GC955 and 17.5 for WR313) using FWI. Finally, the hydrate saturation (or the volume fraction) was estimated at the well location assuming one of the other hydrate morphology (filling the

  18. FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    PETER, GARY F. [UNIVERSITY OF FLORIDA

    2014-07-16

    Excellent progress was made in standardizing three complementary methods: Magnetic resonance imaging, x-ray micro CT, and MALDI imaging linear ion trap mass spectroscopy to image biomass and chemical, anatomical and functional changes that occur during pretreatment and hydrolysis. Magnetic resonance microscopy provides excellent images with as low as 5 uM resolution with hydrated biomass samples. We visualized dramatic changes in signal associated with the hydrolysis of the carbohydrates by strong acids. Quantitative diffusion approaches were used to probe more subtle structural changes in biomass. Diffusion tensor calculations reflect diffusion anisotropy and fractional anisotropy maps clearly show the longer range diffusion within the vessels compared to within the fiber cells. The diffusion is increased along the cell walls of the vessels. Suggesting that further research with NMR imaging should be pursued. X-ray CT provides excellent images at as low as 3.5 uM resolution from dried biomass. Small increases in surface area, and decreases in local density have been quantified in with wood after mild pretreatments; these changes are expected to be underestimates of the hydrated wood, due to the ~12% shrinkage that occurs upon drying untreated wood. MALDI-MS spectra show high ion intensities at most mass to charge ratios in untreated and pretreated woody material. MALDI-MSn is required to improve specificity and reduce background for imaging. MALDI-TOF is not specific enough for carbohydrate identification. Using MALDI-LIT/MSn we can readily identify oligomeric glucans and xylans and their fragmentation patterns as well as those of the glucuronic acid side chains of birch 4-O-methyl glucuronxylan. Imaging of glucan and xylan oligomers show that many contain isobaric ions with different distributions, indicating again that MSn is needed for accurate imaging of lignocellulosic materials. We are now starting to integrate the three imaging methods by using the same set

  19. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Blasie; W.F. DeGrado; J.G. Saven; M.J. Therien

    2012-05-24

    The overall objective is to create robust artificial protein modules as scaffolds to control both (a) the conformation of novel cofactors incorporated into the modules thereby making the modules possess a desired functionality and (b) the organization of these functional modules into ordered macroscopic ensembles, whose macroscopic materials properties derive from the designed microscopic function of the modules. We focus on two specific types of cofactors for imparting functionality in this project; primarily nonlinear optical (NLO) chromophores designed to exhibit extraordinary molecular hyperpolarizabilities, as well as donor-bridge-acceptor cofactors designed to exhibit highly efficient, 'through-bonds' light-induced electron transfer (LIET) over nano-scale distances. The ensembles range from 2-D to 3-D, designed to possess the degree of orientational and positional order necessary to optimize their macroscopic response, the latter ranging from liquid-crystalline or glass-like to long-range periodic. Computational techniques, firmly based in statistical thermodynamics, are utilized for the design the artificial protein modules, based on robust {alpha}-helical bundle motifs, necessarily incorporating the desired conformation, location, and environment of the cofactor. Importantly, this design approach also includes optimization of the interactions between the modules to promote their organization into ordered macroscopic ensembles in 2-D and 3-D via either directed-assembly or self-assembly. When long-range periodic order is required, the design can be optimized to result a specified lattice symmetry. The structure and functionality of the individual modules are fully characterized at the microscopic level, as well as that of the ensembles at the macroscopic level, employing modern experimental physical-chemical and computational techniques. These include, for example, multi-dimensional NMR, various pump-probe transient spectroscopies to ultrafast time

  20. Structural support conceptual studies for a Yin-Yang magnet of a tandem mirror reactor. Final report, September 1979-August 1980

    International Nuclear Information System (INIS)

    Ojalvo, I.U.; Erickson, J.L.

    1980-07-01

    An investigation was made as to whether the TMR Yin-Yang coils will require elaborate external structural restraints. The approach taken was to use a simple coil case of compact design and to add and modify structural members to transfer loads from one coil to the other. The design considerations are described

  1. Modular fabrication and characterization of complex silicon carbide composite structures Advanced Reactor Technologies (ART) Research Final Report (Feb 2015 – May 2017)

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, Hesham [General Atomics, San Diego, CA (United States)

    2017-08-03

    Advanced ceramic materials exhibit properties that enable safety and fuel cycle efficiency improvements in advanced nuclear reactors. In order to fully exploit these desirable properties, new processing techniques are required to produce the complex geometries inherent to nuclear fuel assemblies and support structures. Through this project, the state of complex SiC-SiC composite fabrication for nuclear components has advanced significantly. New methods to produce complex SiC-SiC composite structures have been demonstrated in the form factors needed for in-core structural components in advanced high temperature nuclear reactors. Advanced characterization techniques have been employed to demonstrate that these complex SiC-SiC composite structures provide the strength, toughness and hermeticity required for service in harsh reactor conditions. The complex structures produced in this project represent a significant step forward in leveraging the excellent high temperature strength, resistance to neutron induced damage, and low neutron cross section of silicon carbide in nuclear applications.

  2. Raman effect in ferroelectric Cd2Nb2O7 and in other crystals with pyrochlorine-type structure

    International Nuclear Information System (INIS)

    Pisarev, R.V.; Sinij, I.G.; Kuz'minov, E.G.; Myl'nikova, I.E.

    1976-01-01

    Vibrational structure of cadmium and lead pyroniobates and a number of other crystals with a pyrochlore structure has been investigated by Raman scattering. The scattering has been studied using a double monochromator, HeNe laser, and a photons counter. In the Raman spectrum of cadmium and lead pyroniobates three frequency band1 can be distinguished. In the spectrum of rhombohedral lead pyroniobate the band structure in resolved much better than in the spectrum of cubic cadmium pyroniobate. The spectrum of lead pyroniobate crystals doped with magnesium and zinc ions has a medium (in the sense of complexity) structure, because big lead ions deteriorate the pyrochlore structure but doping of lead pyroniobate with Mg 2+ and Zn 2+ ions improves it. More than six bands in the Raman spectrum is associated with the presence of impurities in cubic cadmium pyroniobate that deteriorate its cubic structure. The decrease of temperature leads to a big change of the Cd 2 Nb 2 O 7 spectrum. However, the spectrum of Pb 2 Nb 2 O 7 -Zn cubic crystal measured ar temperatures below 100 deg K remais unchanged. The chages of the Cd 2 Nb 2 O 7 spectrum are associated with phase transitions at 200 and 85 K and also with ferroelectric transition at 185 K

  3. Characterisation and dissolution studies on the uranium pyrochlore mineral betafite (Ca,U)_2(Nb,Ti,Ta)_2O_7

    International Nuclear Information System (INIS)

    McMaster, S.; Ram, R.; Tardio, J.; Bhargava, S.

    2014-01-01

    The pyrochlore group mineral, betafite (nominally (Ca,U)_2(Nb,Ti,Ta)_2O_7); is a refractory uranium mineral found in many ore deposits, including the currently mined deposit at Rössing, Namibia and the currently unmined deposit at Saima Massif, China. The decreasing abundance of “easy to leach” uranium minerals (i.e. uraninite), has led to interest in the extraction of uranium from refractory uranium minerals such as betafite. In the current study, three naturally occurring betafite mineral samples (obtained from Ambatofotsky and Miarinarivo, Madagascar (BAM and BMM respectively) and Silver Crater Mine, Canada (BSC)) were characterised using ex-situ high temperature X-Ray Diffraction (XRD), multi acid digestion / ICP-MS analysis (composition) and X-Ray Photoelectron Spectroscopy (XPS). Dissolution of the three samples was also investigated under conditions similar to those used in commercial tank based uranium leaching processes. XRD analysis showed that all three samples were highly metamict. Samples BMM and BSC showed no assignable diffraction lines before heat treating, whereas the XRD pattern obtained for sample BAM contained diffraction lines that confirmed the presence of crystalline anatase (TiO_2). Heat treatment studies on the samples showed that the betafite in the samples was converted into a crystalline form at 700°C in all 3 samples. Gangue minerals, rutile, Nb-rutile, UTiNb_2O_1_0, and studitite were also found to be present in the heat treated samples. Multi acid digestion ICP-MS analysis showed the natural samples contained between 16 and 26% w/w uranium as well as all the major elements present typically in betafite. XPS analysis was conducted on the unheated betafite samples. XPS analysis showed that the uranium in the samples was predominately in U"5"+ oxidation state. Some U"6"+ was also identified though this was most likely restricted to the outer surface of the samples. Dissolution studies (batch mode) were conducted under the following

  4. High Performance Parallel Processing (HPPP) Finite Element Simulation of Fluid Structure Interactions Final Report CRADA No. TC-0824-94-A

    Energy Technology Data Exchange (ETDEWEB)

    Couch, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ziegler, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-24

    This project was a muki-partner CRADA. This was a partnership between Alcoa and LLNL. AIcoa developed a system of numerical simulation modules that provided accurate and efficient threedimensional modeling of combined fluid dynamics and structural response.

  5. Long-term Bat Monitoring on Islands, Offshore Structures, and Coastal Sites in the Gulf of Maine, mid-Atlantic, and Great Lakes—Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Trevor [Stantec Consulting Services Inc., Topsham, ME (United States); Pelletier, Steve [Stantec Consulting Services Inc., Topsham, ME (United States); Giovanni, Matt [Stantec Consulting Services Inc., Topsham, ME (United States)

    2016-01-15

    This report summarizes results of a long-term regional acoustic survey of bat activity at remote islands, offshore structures, and coastal sites in the Gulf of Maine, Great Lakes, and mid-Atlantic coast.

  6. Defining the Interactions of Cellobiohydrolase with Substrate through Structure Function Studies: Cooperative Research and Development Final Report, CRADA Number CRD-10-409

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, G. T.; Himmel, M. E.

    2013-07-01

    NREL researchers will use their expertise and skilled resources in numerical computational modeling to generate structure-function relationships for improved cellulase variant enzymes to support the development of cellulases with improved performance in biomass conversion.

  7. Cassini's Grand Finale Overview

    Science.gov (United States)

    Spilker, L. J.

    2017-12-01

    After 13 years in orbit, the Cassini-Huygens Mission to Saturn ended in a science-rich blaze of glory. Cassini sent back its final bits of unique science data on September 15, 2017, as it plunged into Saturn's atmosphere, vaporizing and satisfying planetary protection requirements. Cassini's final phase covered roughly ten months and ended with the first time exploration of the region between the rings and planet. In late 2016 Cassini transitioned to a series of 20 Ring Grazing orbits with peripases just outside Saturn's F ring, providing close flybys of tiny ring moons, including Pan, Daphnis and Atlas, and high-resolution views of Saturn's A and F rings. A final Titan flyby in late April 2017 propelled Cassini across Saturn's main rings and into its Grand Finale orbits. Comprised of 22 orbits, Cassini repeatedly dove between Saturn's innermost rings and upper atmosphere to answer fundamental questions unattainable earlier in the mission. The last orbit turned the spacecraft into the first Saturn atmosphere probe. The Grand Finale orbits provided highest resolution observations of both the rings and Saturn, and in-situ sampling of the ring particle composition, Saturn's atmosphere, plasma, and innermost radiation belts. The gravitational field was measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the deeper atmosphere, and mass of the rings. The magnetic field provided insight into the physical nature of the magnetic dynamo and structure of the internal magnetic field. The ion and neutral mass spectrometer sampled the upper atmosphere for molecules that escape the atmosphere in addition to molecules originating from the rings. The cosmic dust analyzer directly sampled the composition from different parts of the main rings for the first time. Fields and particles instruments directly measured the plasma environment between the rings and planet. Science highlights and new mysteries collected in the Grand

  8. National Academy of Sciences and Academy of Sciences of the USSR workshop on structure of the eucaryotic genome and regulation of its expression. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report provides a brief overview of the Workshop on Structure of the Eukaryotic Genome and Regulation of its Expression held in Tbilisi, Georgia, USSR. The report describes the presentations made at the meeting but also goes on to describe the state of molecular biology and genetics research in the Soviet Union and makes recommendations on how to improve future such meetings.

  9. Final Environmental Assessment: Construction of Maintenance and Storage Facility, Perimeter Fence Upgrade and Demolition of Three Buildings and Two Structures Gila River Air Force Space Surveillance Station Arizona

    Science.gov (United States)

    2012-11-01

    Estrella mountain range is approximately six miles west of the Installation and the Sacaton mountain range lie approximate- ly six miles to the southeast...Structures 3-4 Figure 5. Geological Map of Gila River AFSSS and Vicinity Sierra Estrella Range Sacaton Range EA — Construct Maintenance & Storage

  10. Structuralism.

    Science.gov (United States)

    Piaget, Jean

    Provided is an overview of the analytical method known as structuralism. The first chapter discusses the three key components of the concept of a structure: the view of a system as a whole instead of so many parts; the study of the transformations in the system; and the fact that these transformations never lead beyond the system but always…

  11. Comparative analysis of structural concrete Quality Assurance practices on nine nuclear and three fossil fuel power plant construction projects. Final summary report

    International Nuclear Information System (INIS)

    Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.J. Jr.

    1978-12-01

    A summary of two reports, COO/4120-1 and COO/4120-2, is given. A comparative analysis was made of the Quality Assurance practices related to the structural concrete phase on nine nuclear and three fossil fuel power plant projects which are (or have been) under construction in the United States in the past ten years. For the nuclear projects the analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. For the fossil projects the analysis identified the response of each Quality Assurance program to criteria similar to those which were applicable in the nuclear situation. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects

  12. Study of the defect structure of ''pure'' and doped nonstoichiometric CeO2. Final report, January 1, 1965--May 31, 1977

    International Nuclear Information System (INIS)

    Blumenthal, R.N.

    1977-11-01

    The defect structure and transport properties of defects in nonstoichiometric oxides was studied based on their electrical and thermodynamic behavior. Similar studies were also made on doped-nonstoichiometric oxides to determine the effect of the ionic radii, valence and concentration of the dopant cation on the nonstoichiometric defect structure and the transport properties of these defects. The thermodynamic and electrical property study on ''pure'' and doped-nonstoichiometric CeO 2 /sub -x/ is reviewed. The combined study of the electrical conductivity, ionic transference, and thermodynamic measurements initiated on CaO-doped CeO 2 as a function of temperature, oxygen pressure and CaO content is discussed. The results of similar measurements on CeO 2 doped with other oxides (e.g., ThO 2 , Ta 2 O 5 , etc.) which have cations with different valences and ionic radii are also discussed. The primary objective of these studies was to determine the effect of ionic radii, valence and concentration of the dopant cation on (1) the nonstoichiometric behavior, (2) the thermodynamic quantities ΔantiH/sub O 2 / and ΔantiS/sub O 2 /, (3) the nonstoichiometric defect structure, (4) the electronic and ionic conductivities, and (5) the mobility of electrons and oxygen vacancies in doped CeO 2 /sub -x/

  13. Cooperative Research and Development Agreement Final Report for Cooperative Research and Development Agreement Number ORNL93-0237 Adhesive Bonding Technologies for Automotive Structural Composites; TOPICAL

    International Nuclear Information System (INIS)

    Boeman, R.G.

    2001-01-01

    In 1993, the Oak Ridge National Laboratory (ORNL) entered into a Cooperative Research and Development Agreement (CRADA) with the Automotive Composites Consortium (ACC) to conduct research and development that would overcome technological hurdles to the adhesive bonding of current and future automotive materials. This effort is part of a larger Department of Energy (DOE) program to promote the use of lighter weight materials in automotive structures for the purpose of increasing fuel efficiency and reducing environmental pollutant emissions. In accomplishing this mission, the bonding of similar and dissimilar materials was identified as being of primary importance to the automotive industry since this enabling technology would give designers the freedom to choose from an expanded menu of low mass materials for component weight reduction. The research undertaken under this CRADA addresses the following areas of importance: bulk material characterization, structural fracture mechanics, modeling/characterization, process control and nondestructive evaluation (PC/NDE), manufacturing demonstration, and advanced processing. For the bulk material characterization task, the individual material properties of the adherends and adhesives were characterized. This included generating a database of mechanical and physical properties, after identifying and developing standard test methods to obtain properties. The structural fracture mechanics task concentrated on test development to characterize the fracture toughness of adhesively bonded joints subjected to Mode I, Mode II and mixed-mode conditions. Standard test procedures for quantifying an adhesive/adherend system's resistance to crack growth were developed for use by industry. In the modeling/characterization task, fracture mechanics-based design guidelines and predictive methodologies have been developed which will facilitate iteration on design concepts for bonded joints while alleviating the need for extensive testing

  14. Final Report Grant No. DE-FG02-98ER20307 Lipopolysaccharide Structures and Genes Required for Root Nodule Development August 1, 2004 to July 31, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Noel, K. Dale [Marquette Univ., Milwaukee,WI (United States)

    2008-12-07

    This project dealt with the plant-bacterial symbiosis that gives rise to root nodules on leguminous plants in which the bacteria carry out nitrogen fixation. Nitrogen fixation, like carbon dioxide fixation, is essential for life on planet earth, and this symbiosis is estimated to account for half of all nitrogen fixed on land. Aside from being important for the sustenance of global life, this ability allows legumes to grow without nitrogen fertilizers. Basic studies such as this project are aimed at understanding the symbiosis well enough that eventually it can be engineered into important crop species so that they no longer depend on nitrogen fertilizer for growth. The production and distribution of excessive fertilizer needed for optimal crop yields is responsible for a significant portion of the energy costs in agriculture. The specific aims of this work were to further the understanding of a bacterial factor that is essential for the symbiotic infection process. This factor is a bacterial surface molecule, lipopolysaccharide O antigen. In this project we showed that, not only the presence, but the specific structure of this molecule is crucial for infection. Although the success of bacterial infections in many pathogenic and mutualistic interactions have been shown to depend on intact O antigen, it has been very rare to establish that specific features of the structure are important. One of the features in this case is the presence of one additional methyl group on one sugar in the O antigen. It is very surprising that such a minor change should have an observable effect. This work sets the stage for biochemical studies of possible plant receptors that may be involved. During the course of this grant period, we developed a method of testing the importance of this bacterial component at stages of nodule development beyond the step that is blocked by null mutation. The method works adequately for this purpose and is being improved. It has implications for testing

  15. Verification of analysis methods for predicting the behaviour of seismically isolated nuclear structures. Final report of a co-ordinated research project 1996-1999

    International Nuclear Information System (INIS)

    2002-06-01

    This report is a summary of the work performed under a co-ordinated research project (CRP) entitled Verification of Analysis Methods for Predicting the Behaviour of Seismically isolated Nuclear Structures. The project was organized by the IAEA on the recommendation of the IAEA's Technical Working Group on Fast Reactors (TWGFR) and carried out from 1996 to 1999. One of the primary requirements for nuclear power plants and facilities is to ensure safety and the absence of damage under strong external dynamic loading from, for example, earthquakes. The designs of liquid metal cooled fast reactors (LMFRs) include systems which operate at low pressure and include components which are thin-walled and flexible. These systems and components could be considerably affected by earthquakes in seismic zones. Therefore, the IAEA through its advanced reactor technology development programme supports the activities of Member States to apply seismic isolation technology to LMFRs. The application of this technology to LMFRs and other nuclear plants and related facilities would offer the advantage that standard designs may be safely used in areas with a seismic risk. The technology may also provide a means of seismically upgrading nuclear facilities. Design analyses applied to such critical structures need to be firmly established, and the CRP provided a valuable tool in assessing their reliability. Ten organizations from India, Italy, Japan, the Republic of Korea, the Russian Federation, the United Kingdom, the United States of America and the European Commission co-operated in this CRP. This report documents the CRP activities, provides the main results and recommendations and includes the work carried out by the research groups at the participating institutes within the CRP on verification of their analysis methods for predicting the behaviour of seismically isolated nuclear structures

  16. Application of 2-1/4 Cr-1 Mo as a structural material in saturated steam cycle LMFBR systems. Final report

    International Nuclear Information System (INIS)

    Licina, G.J.; Busboom, H.J.; Ring, P.J.; Roy, P.; Schmidt, C.G.; Spalaris, C.N.

    1982-02-01

    The suitability and incentives were examined for using 2-1/4Cr-1Mo steel as a structural material for the entire primary and secondary sodium systems in a 1000 MWe pool-type Liquid Metal Fast Breeder Reactor. The critical properties, advantages and disadvantages of 2-1/4Cr-1Mo, and data needed for design were described for each major component in the reactor. The relative importance of alloy properties to the successful use of ferritics in LMFBR was identified. Licensing issues, likely to surface if ferritic alloys were to be used for critical reactor components, were discussed

  17. Prediction of the behavior of structural materials under irradiation through modeling of the microstructure. Progress report, November 1, 1980-October 31, 1981. Final report

    International Nuclear Information System (INIS)

    Wolfer, W.G.

    1981-10-01

    The research carried out over the period of about three years falls into three categories: effects of point-defect interactions on the formation of voids, dislocation loops, and network dislocations, during irradiation, and the consequences on the mechanical properties of structural materials; the development of a new mathematical tool to describe the evolution of systems far from a thermodynamic equilibrium state; and the development and exploration of a new technique to measure mechanically and non-destructively the creep damage, or the grain-boundary cavity formation, which is the cause of high-temperature stress rupture

  18. Structural change of the mining components supplying industry, and innovative employment and qualification policies. A special study prepared on behalf of IKS. Final report

    International Nuclear Information System (INIS)

    Weber, B.

    1992-01-01

    The potentials and deficiencies of the mining components supplying industry are assessed by means of an industry study. Development prospects are derived for the mining sector. While individual solutions are neglected, methods which support the mining companies' efforts at diversifying and at opening up new markets are discussed placing emphasis on a sociocompatible implementation of the inevitable structural change and on the maintenance of a qualified industrial basis in communities dominated by the mining components supplying industry. The possibilities of cooperation between the companies are discussed, and conceivable future prospects are derived for the mining sector. (HS) [de

  19. Analytic studies on pollutant deposition through domestic coal combustion -influence of the current structural change on pollution in an urban region. Final report

    International Nuclear Information System (INIS)

    Engewald, W.; Knobloch, T.; Asperger, A.

    1996-01-01

    In the present paper the author reports on the continuation of an OEKOR part project in which he had undertaken a chemical characterisation of emissions from domestic brown coal combustion. On the basis of a partitioning by land use of the Greater Leipzig region he initiated long-term observations of local pollution levels for the various structural types of land. The aim of the work was to facilitate a comprehensive analysis of local air quality in terms of VOC levels. The current concern about VOCs results from the toxicological risk they have been proven to pose to the human organism and from their relevance to the chemistry of the atmosphere (e.g., as precursors of ground-level ozone and other oxidising agents). The task to be accomplished was broken down into the following main steps: Development and trial of a sampling and analysis method for determining an as wide a spectrum of environmental VOCs as possible; elaboration of a measuring strategy for obtaining results of high representativeness and power; installation and operation of pollution monitoring sites in selected structural types of area characteristic of Leipzig; execution of measuring campaigns of several weeks each at selected sites during both winter and summer periods. (orig./MSK) [de

  20. Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications, Phase 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Wilkens, C.A.; Yeckley, R.L. [Norton Co., Northboro, MA (United States)

    1993-08-01

    The program goals were to develop and demonstrate significant improvements in processing methods, process controls and non-destructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1,370{degrees}C. The program focused on a Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} high temperature ceramic composition and hot-isostatic-pressing as the method of densification. Stage I had as major objectives: (1) comparing injection molding and colloidal consolidation process routes, and selecting one route for subsequent optimization, (2) comparing the performance of water milled and alcohol milled powder and selecting one on the basis of performance data, and (3) adapting several NDE methods to the needs of ceramic processing. The NDE methods considered were microfocus X-ray radiography, computed tomography, ultrasonics, NMR imaging, NMR spectroscopy, fluorescent liquid dye penetrant and X-ray diffraction residual stress analysis. The colloidal consolidation process route was selected and approved as the forming technique for the remainder of the program. The material produced by the final Stage II optimized process has been given the designation NCX 5102 silicon nitride. According to plan, a large number of specimens were produced and tested during Stage III to establish a statistically robust room temperature tensile strength database for this material. Highlights of the Stage III process demonstration and resultant database are included in the main text of the report, along with a synopsis of the NCX-5102 aqueous based colloidal process. The R and D accomplishments for Stage I are discussed in Appendices 1--4, while the tensile strength-fractography database for the Stage III NCX-5102 process demonstration is provided in Appendix 5. 4 refs., 108 figs., 23 tabs.

  1. AISI/DOE Technology Roadmap Program: TRP 9732Steel Processing Properties and Their Effect on Impact Deformation of Lightweight Structures; FINAL

    International Nuclear Information System (INIS)

    Srdan Simunovic; Gustavo Aramayo

    2002-01-01

    The objective of the research was to perform a comprehensive computational analysis of the effects of material and process modeling approaches on performance of Ultra Light Steel Auto Body (ULSAB) vehicle models. The research addressed numerous material related effects, impact conditions as well as analyzed the performance of the ULSAB vehicles in crashes against designs representing the current US vehicle fleet. Crash modeling simulations show a clear effect of strain-rate sensitivity on high strength steel (HSS) intensive vehicle. The influence of a strain-rate model can be an incremental sensitivity due to the increased flow stress when similar structure collapse modes are predicted. However, significant differences in crash energy management capacity can be predicted if the change in loading on members alters the predicted collapse mode of the structure. From the material substitution study it can be concluded that HSS material substitution cannot be performed on the basis of the material yield point only and that, especially for advanced HSS vehicle designs, the entire region of material plastic response has to be considered. However, the problem of modeling of the overall dynamic crush process still remains open and requires further experimental and theoretical investigation. Crash modeling simulations show a moderate effect of forming on overall crash performance. The design is the determining factor on the vehicle performance and, therefore, the results of this research cannot provide measures that can be used in a general case. However, it has been shown that for materials that have modest strain hardening, the forming effect is observable and that when more complex forming operations are used, especially in combination with rapid strain hardening materials, forming effects should be taken in the consideration in the computational crash models. crash compatibility study between ULSAB and cars of similar geometric characteristics have shown that the U LSAB

  2. Morphological studies at subchondral bone structures in human early arthrosis. Final report; Morphologische Studien an subchondralen Knochenstrukturen bei humanen Frueharthrosen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    Quantitative histomorphometric studies using an image analysis system were performed simultaneously on hyaline cartilage, calcified cartilage and subchondral cancellous bone of human tibial heads for detailed information about the pathogenesis of arthrosis. Joint structures need to be fully detected in three dimensions since measurement values are more affected by topographical aspects than by either age, or sex, or arthrosin stage. Mechanical factors were found to affect essentially the initiation and progression of arthrosis. Results are demonstrated in detail. (orig.) [Deutsch] Um detaillierte Aussagen ueber die Pathogenese der Arthrose machen zu koennen, wurden hyaliner Knorpel, Kalkknorpel und subchondrale Spongiosa menschlicher Tibiakoepfe gleichzeitig mit Hilfe eines Bildanalysesystems quantitativ histomorphometrisch untersucht. Eine umfangreiche dreidimensionale Erfassung der Gelenkstrukturen ist erforderlich, da sich topographische Aspekte wesentlich staerker auf die Messwerte auswirken als Alter, Geschlecht oder Arthrosestadium. Insgesamt zeigt sich ein wesentlicher Einfluss mechanischer Faktoren auf die Arthroseinitiierung und -progredienz. Die Ergebnisse werden detailliert dargestellt. (orig.)

  3. Final COMPASS results on the spin-dependent structure functions $g_1^p$ and $g_1^d$ in the deep-inelastic and nonperturbative regions

    CERN Document Server

    Badelek, Barbara

    2018-01-01

    This paper summarizes the COMPASS Collaboration legacy on measurements of the proton and deuteron spin-dependent structure functions, $g_1^p$ and $g_1^d$ at $Q^2 1$ (GeV/c)$^2$. In both regions and at the lowest measured $x, g^d_1 (x)$ is consistent with zero while $g^p_1 (x)$ is positive. This is the first time that the spin effects are observed at such low values of $x$. The NLO QCD fit of $g_1$ world data gives well constrained quark helicity distributions; gluons are poorly determined. Quark helicity contribution to nucleon spin is $0.26 < \\Delta \\Sigma < 0.36$. From the COMPASS data alone the Bjorken sum rule is verified to $9\\%$ accuracy and the extracted flavour-singlet axial charge is $a_0 (Q^2 = 3 (\\text{GeV/}c)^2) = 0.32 \\pm 0.02_{stat.} \\pm 0.04_{syst.} \\pm 0.05_{evol.}$.

  4. Analysis of structure and specific functional groups involved in acetylcholinesterase catalysis and inhibition. Final report, 14 June 1991-13 September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.

    1994-10-01

    The interactions of substrates, inhibitors and antibodies with Torpedo and mammalian acetylcholinesterases and butyrylcholinesterases have been studied by enzyme kinetic analyses, site-specific mutagenesis, molecular modeling, and peptide and antibody titrations. The high yield expression systems we developed have enabled us to obtain sufficient wild-type and mutant enzymes for the kinetic and physical studies. These studies have benefited from the availability of a three-dimensional X-ray-derived structure of acetylcholinesterase which allows for interpretations at an atomic level of resolution. Three distinct regions in the enzyme appear responsible for conferring selectivity: the acyl pocket defined primarily by phenylalanines 295 and 297, the choline subsite primarily defined by tryptophan 86, tyrosine 337 and glutamate 202 and the peripheral anionic site defined by tryptophan 286, tyrosine 72, tyrosine 124 and aspartate 74. Through site-specific mutagenesis we have been able to modify acyl pocket specificity, selectivity toward neutral and charged substrates, substrate inhibition, organophosphate reactivity, organophosphate aging and oxime reactivation. These studies have important implications in developing superior antidotes for organophosphate poisoning and in using recombinant acetylcholinesterase as an antidote.

  5. Final COMPASS results on the spin-dependent structure functions $g_1^p$ and $g_1^d$ in the deep-inelastic and nonperturbative regions

    CERN Document Server

    Badelek, Barbara

    2017-01-01

    This paper summarizes the COMPASS Collaboration legacy on measurements of the proton and deuteron spin-dependent structure functions, $g_1^p$ and $g_1^d$ at $Q^2 1$ (GeV/c)$^2$. In both regions and at the lowest measured $x, g^d_1 (x)$ is consistent with zero while $g^p_1 (x)$ is positive. This is the first time that the spin effects are observed at such low values of $x$. The NLO QCD fit of $g_1$ world data gives well constrained quark helicity distributions; gluons are poorly determined. Quark helicity contribution to nucleon spin is $0.26 < \\Delta \\Sigma < 0.36$. From the COMPASS data alone the Bjorken sum rule is verified to $9\\%$ accuracy and the extracted flavour-singlet axial charge is $a_0 (Q^2 = 3 (\\text{GeV/}c)^2) = 0.32 \\pm 0.02_{stat.} \\pm 0.04_{syst.} \\pm 0.05_{evol.}$.

  6. The influence of chromium on structure and mechanical properties of B2 nickel aluminide alloys. Ph.D. Thesis - Florida Univ., 1991 Final Report

    Science.gov (United States)

    Cotton, James Dean

    1992-01-01

    Major obstacles to the use of NiAl-based alloys and composites are low ductility and toughness. These shortcomings result in part from a lack of sufficient slip systems to accommodate plastic deformation of polycrystalline material (von Mises Criterion). It has been reported that minor additions of chromium to polycrystalline NiAl cause the predominant slip system to shift from the usual. If true, then a major step toward increasing ductility in this compound may be realized. The purpose of the present study was to verify this phenomenon, characterize it with respect to chromium level and Ni to Al ratio, and correlate any change in slip system with microstructure and mechanical properties. Compression and tensile specimens were prepared from alloys containing 0 to 5 percent chromium and 45 to 55 percent aluminum. Following about one percent strain, transmission electron microscopy foils were produced and the slip systems determined using the g x b = 0 invisibility criterion. Contrary to previous results, chromium was found to have no effect on the preferred slip system of any of the alloys studied. Possible reasons for the inconsistency of the current results with previous work are considered. Composition-structure-property relationships are discerned for the alloys, and good correlation are demonstrated in terms of conventional strengthening models for metallic systems.

  7. In Situ Immobilization of Uranium in Structured Porous Media via Biomineralization at the Fracture/Matrix Interface - Subproject to Co-PI Eric E. Roden. Final report

    International Nuclear Information System (INIS)

    Roden, Eric E.

    2007-01-01

    Although the biogeochemical processes underlying in situ bioremediation technologies are increasingly well understood, field-scale heterogeneity (both physical and biogeochemical) remains a major obstacle to successful field-scale implementation. In particular, slow release of contamination from low-permeability regions (primarily by diffusive/dispersive mass transfer) can hinder the effectiveness of remediation. The research described in this report was conducted in conjunction with a project entitled ''In Situ Immobilization of Uranium in Structured Porous Media via Biomineralization at the Fracture/Matrix Interface'', which was funded through the Field Research element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. Timothy Scheibe (Pacific Northwest National Laboratory) was the overall PI/PD for the project, which included Scott Brooks (Oak Ridge National Laboratory) and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The overall goal of the project was to evaluate strategies that target bioremediation at interfaces between high- and low-permeability regions of an aquifer in order to minimize the rate of contaminant transfer into high-permeability/high fluid flow zones. The research was conducted at the Area 2 site of the Field Research Center (FRC) at Oak Ridge National Laboratory (ORNL). Area 2 is a shallow pathway for migration of contaminated groundwater to seeps in the upper reach of Bear Creek at ORNL, mainly through a ca. 1 m thick layer of gravel located 4-5 m below the ground surface. Hydrological tracer studies indicate that the gravel layer receives input of uranium from both upstream sources and from diffusive mass transfer out of highly contaminated fill and saprolite materials above and below the gravel layer. We sought to test the hypothesis that injection of electron donor into this

  8. Influence of casting conditions on durability and structural performance of HPC-AR : optimization of self-consolidating concrete to guarantee homogeneity during casting of long structural elements : final report.

    Science.gov (United States)

    2017-05-01

    This report is a summary of the research done on dynamic segregation of self-consolidating concrete (SCC) including the casting of pre-stressed beams at Coreslab Structures. SCC is a highly flowable concrete that spreads into place with little to no ...

  9. XPS-and-DFT analyses of the Pb 4f — Zn 3s and Pb 5d — O 2s overlapped ambiguity contributions to the final electronic structure of bulk and thin-film Pb-modulated zincite

    Energy Technology Data Exchange (ETDEWEB)

    Zatsepin, D.A. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation); Boukhvalov, D.W., E-mail: danil@hanyang.ac.kr [Department of Chemistry, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Theoretical Physics and Applied Mathematics Department, Ural Federal University,Mira Street 19, 620002 Yekaterinburg (Russian Federation); Gavrilov, N.V. [Institute of Electrophysics, Russian Academy of Sciences, Ural Branch, 620990 Yekaterinburg (Russian Federation); Kurmaev, E.Z. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation); Zatsepin, A.F. [Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation); Cui, L. [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Shur, V. Ya.; Esin, A.A. [Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave, 620000 Yekaterinburg (Russian Federation)

    2017-05-31

    Highlights: • Two modes of ZnO:Pb in the bulk and surface morphologies were established: the high- and low-interaction. • It was shown the ambiguity contribution of Pb 4f − Zn 3s and Pb 5d − O 2s states into final electronic structure. • The main type of defects is PbO-like with some PbO{sub 2}-like contributions. • An applied wurzite-like structural model well agrees with experimental data obtained for zincite. - Abstract: The electronic structures of zincite Pb-modulated bulk and thin-films were studied via X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) techniques. Both XPS data and DFT-calculations allowed the derivation of two different Pb-embedding scenarios into the ZnO-hosts. These included the high-interaction mode of Pb-impurity with initial zinc-oxygen host-lattice for the bulk morphology, accompanied with low Pb-metal losses; and the low-interaction mode for thin-films, where there was intake of Pb-impurities into the hollows of the surface. Despite dissimilar mechanisms of Pb-impurity accumulation and distribution in the bulk and thin-films zincite host-matrices, the strong Pb 4f — Zn 3s and Pb 5d — O 2s overlapped ambiguity contribution to the appropriate core-level structure and valence bands was established by XPS analysis and reproduced with the help of DFT-calculations. It was shown that the microscopic structure of the embedded lead-impurity played a crucial role in the Pb ion-beam stimulated synthesis of secondary lead-oxygen phases via large-area defect fabrication, and the difference among zincite and wurzite polymorphs played almost no role in this case.

  10. CARBOXYLATE SUBSTITUTION PATTERN AS STRUCTURAL DIRECTIVE FOR THE FINAL PRODUCTS: SYNTHESIS, STRUCTURE AND PROPERTIES OF [Fe4Ca2O2(μ2-HCCl2COO10(μ3-HCCl2COO2(THF6

    Directory of Open Access Journals (Sweden)

    Denis Prodius

    2008-12-01

    Full Text Available A novel hexanuclear iron-calcium-oxo complex has been synthesized and characterized by different physico-chemical methods and X-ray single crystal structural analysis: [Fe4Ca2O2(μ2-HCCl2COO10(μ3-HCCl2COO2(THF6].The molecular structure shows that there are two types of coordination for COO- anions: bidentate and tridentate.The corresponding variable temperature susceptibility measurement shows that in the complex there exists an antiferromagnetic interaction (|J12| = |J34| = -71.86 cm-1. The iron(III high spin state (5/2 is proved by Mössbauer spectroscopy. High magnetic EPR measurements of 1 indicates the presence of S=0 ground state with low-lying S=1 excited state centred around g = 2.0054 ±0.0001.

  11. Advancement and testing of analysis techniques for the determination of the structural dynamic behavior of containment structures. Final report; Weiterentwicklung und Erprobung von Analysemethoden zur Bestimmung des strukturdynamischen Verhaltens von Containmentstukturen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Juergen; Bahr, Ludwig; Arndt, Jens; Heckoetter, Christian; Grebner, Hans

    2014-11-15

    Within the framework of project RS1197, analysis methods have been further developed and tested for the determination of the structural dynamic loading and the maximum load-bearing capacity of containment structures with a focus on the quantification of safety margins against failures due to loads resulting from selected internal and external hazards. The analyses comprised a model containment structure of prestressed reinforced concrete under internal pressure loading until reaching failure pressure, an outer containment structure made of reinforced concrete under local impact loads that may occur during a targeted aircraft crash, and a steel containment under local peak loads from internal pressure and temperature loads due to core melt scenarios with a local hydrogen combustion. GRS participated in the international ''Standard Problem Exercise 3'' on the issue ''Performance of Containment Vessel under Severe Accident Conditions''. Together with the cooperation partners, aspects of the global containment behaviour were considered based on the example of the Sandia 1:4 model containment of prestressed concrete, which was loaded by rising internal pressure until failure. Complex analysis models were developed, calculating the behaviour of the prestressing tendons under consideration of the frictional contact with the cladding tubes. Compared with corresponding measurement values, the analysis results show that the stresses near the tensioning device and the deformation of the inner surface can be realistically modelled as a function of the internal pressure. In the experiment, global structural failure of the containment model was caused by tendon rupture at about 3.64 times the design pressure. With the developed analysis models of a generic structure of an outer reinforced concrete containment, simulations were carried out for various aircraft crash scenarios as contact problems with explicit impactor simulation. For this

  12. AgLnSb/sub 2/O/sub 7/ compounds with weberite structure

    Energy Technology Data Exchange (ETDEWEB)

    Lopatin, S S; Aver' yanova, L N; Belyaev, I N; Zvyagintsev, B I; Dyatlov, Eh V [Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR)

    1982-11-01

    The interaction between AgSbO/sub 3/ and LnSbO/sub 4/ in the solid phase at 1100-1150 deg C has been investigated. AgLnSb/sub 2/O/sub 7/ compounds with weberite crystal structure are formed in Ln=La, Pr, Nd, Sm cases but in Ln=Eu, Cd, Dy, Er cases the formation of termary oxides of the indicated composition has not been observed. Inasmuch as compounds of the general formula A/sub 2/B/sub 2/O/sub 7/ with average cation radii Rsub(B) >0.60 A and 1.65 <= Rsub(A)/Rsub(B) <= 2.20 can crystallize in weberite, pyrochlore and laminated perovskite-like structurer, conditions of the existence of the above mentioned structures depending on A and B dimensions and electronegativity are discussed.

  13. Structural and Functional Bases of Formational, Institutional and Procedural Mechanism Using Power Resources of Stalin’s Totalitarian Regime in Western Ukraine at the Final Stage of the Second World War

    Directory of Open Access Journals (Sweden)

    Oksana Yuriivna DOKASH

    2015-02-01

    Full Text Available The presented scientific, theoretical and practical aspects of the topic are considered an important prerequisite for understanding the causes and results of the mass use of the deportation repressive tool in the intensive consolidation of Stalin’s totalitarian regime in “class hostile environment” and the consequences of such a policy for the western region development, particularly at modern stage, including the Ukrainian political nation-building and the independent Ukrainian state, which is now experiencing challenges and threats that are rooted in the totalitarian past.Stalinism, as a particular political regime, was established in the western regions of Ukraine at the final stages of World War II and can be defined as a kind of left extremist totalitarianism.The main components of the efficiency of the Stalinist totalitarian regime based on the mass use of political violence and terror through the branched structure of repressive secret police. Functions of the NKVS, NKVD, prosecutors, and courts followed the strategic objectives of Stalin’s totalitarian regime in a hostile social and national environment in Western Ukraine in the complex military and political conditions of the final phase of World War II. Effective and timely implementation of policy priorities of Stalinism in the region allowed to create an appropriate institutional and procedural system, which was based on the large-scale use of political violence and employed such characteristic tools as terror, repression, deportation.

  14. Further development of the structure mechanics analysis method for the calculation of the structure reliability of passive components, phase II. Final report; Weiterentwicklung der strukturmechanischen Analysemethodik zur Bestimmung der Strukturzuverlaessigkeit passiver Komponenten, Phase II. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Grebner, H.; Wang, Y.; Schmipfke, T.; Sievers, J.

    2010-06-15

    Within the framework of research project RS 1163 the computer code PROST for the quantitative assessment of the structural reliability of pipe components has been further developed. Thereby models were provided and tested for the consideration of the damage mechanism 'corrosion' to determine leak and break probabilities in cylindrical structures of ferritic and austenitic reactor steels. These models are now additionally available to the model for the consideration of the damage mechanism 'fatigue'. Furthermore, the application range of the code was extended to complex geometries in regards to loading and boundary conditions. Additional code modules were developed to be able to include the results of finite element (FE) calculations. The extended analysis method was tested, amongst others, in the context of calculations for a cracked feedwater nozzle of a steam generator under thermal-mechanical cyclic loading. The stress on cracks was calculated with the FE-method. For the determination of leak probabilities the crack growth due to fatigue was estimated taking into account the ''mixed-mode'' - loading within the J-integral vector approach. Altogether, the analyses show that with the provided flexible probabilistic analysis method quantitative determination of leak probabilities of a detected or postulated crack in a complex structure geometry under thermal-mechanical loading as function of the operating time in the range of very small probability values (<1.0 E-8) to large values (>1.0 E-2) are possible. The next development steps should comprise especially the improvement of the accuracy of the method to determine break probabilities and also the consideration of approaches on crack formation due to the damage mechanisms 'fatigue' and 'corrosion', based on evaluations of national and international operating experiences.

  15. Coal surface structure and thermodynamics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.; Wernett, P.C.; Glass, A.S.; Quay, D.; Roberts, J.

    1994-05-01

    Coals surfaces were studied using static surface adsorption measurements, low angle x-ray scattering (LAXS), inverse gas chromatography (IGC) and a new {sup 13}C NMR relaxation technique. A comparison of surface areas determined by hydrocarbon gas adsorption and LAXS led to the twin conclusions that the hydrocarbons had to diffuse through the solid to reach isolated pores and that the coal pores do not form interconnected networks, but are largely isolated. This conclusion was confirmed when IGC data for small hydrocarbons showed no discontinuities in their size dependence as usually observed with porous solids. IGC is capable of providing adsorption thermodynamics of gases on coal surfaces. The interactions of non-polar molecules and coal surfaces are directly proportioned to the gas molecular polarizability. For bases, the adsorption enthalpy is equal to the polarizability interaction plus the heat of hydrogen bond formation with phenol. Amphoteric molecules have more complex interactions. Mineral matter can have highly specific effects on surface interactions, but with most of the molecules studied is not an important factor.

  16. Ethical aspects of final disposal. Final report

    International Nuclear Information System (INIS)

    Baltes, B.; Leder, W.; Achenbach, G.B.; Spaemann, R.; Gerhardt, V.

    2003-01-01

    In fulfilment of this task the Federal Environmental Ministry has commissioned GRS to summarise the current national and international status of ethical aspects of the final disposal of radioactive wastes as part of the project titled ''Final disposal of radioactive wastes as seen from the viewpoint of ethical objectives''. The questions arising from the opinions, positions and publications presented in the report by GRS were to serve as a basis for an expert discussion or an interdisciplinary discussion forum for all concerned with the ethical aspects of an answerable approach to the final disposal of radioactive wastes. In April 2001 GRS held a one-day seminar at which leading ethicists and philosophers offered statements on the questions referred to above and joined in a discussion with experts on issues of final disposal. This report documents the questions that arose ahead of the workshop, the specialist lectures held there and a summary of the discussion results [de

  17. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Schuur, Edward [Northern Arizona Univ., Flagstaff, AZ (United States); Luo, Yiqi [Univ. of Oklahoma, Norman, OK (United States)

    2016-12-01

    This final grant report is a continuation of the final grant report submitted for DE-SC0006982 as the Principle Investigator (Schuur) relocated from the University of Florida to Northern Arizona University. This report summarizes the original project goals, as well as includes new project activities that were completed in the final period of the project.

  18. Cassini's Grand Finale Science Highlights

    Science.gov (United States)

    Spilker, Linda

    2017-10-01

    After 13 years in orbit, the Cassini-Huygens Mission to Saturn ended in a science-rich blaze of glory. Cassini returned its final bits of unique science data on September 15, 2017, as it plunged into Saturn's atmosphere satisfying planetary protection requirements. Cassini's Grand Finale covered a period of roughly five months and ended with the first time exploration of the region between the rings and planet.The final close flyby of Titan in late April 2017 propelled Cassini across Saturn’s main rings and into its Grand Finale orbits; 22 orbits that repeatedly dove between Saturn’s innermost rings and upper atmosphere making Cassini the first spacecraft to explore this region. The last orbit turned the spacecraft into the first Saturn upper atmospheric probe.The Grand Finale orbits provided highest resolution observations of both the rings and Saturn, and in-situ sampling of the ring particle composition, Saturn's atmosphere, plasma, and innermost radiation belts. The gravitational field was measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the deeper atmosphere, and mass of the rings. The magnetic field provided insight into the physical nature of the magnetic dynamo and structure of the internal magnetic field. The ion and neutral mass spectrometer sampled the upper atmosphere for molecules that escape the atmosphere in addition to molecules originating from the rings. The cosmic dust analyzer directly sampled the composition from different parts of the main rings for the first time. Fields and particles instruments directly measured the plasma environment between the rings and planet.Science highlights and new mysteries gleaned to date from the Grand Finale orbits will be discussed.The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017

  19. Orange-red emitting Gd2Zr2O7:Sm3+: Structure-property correlation, optical properties and defect spectroscopy

    Science.gov (United States)

    Gupta, Santosh K.; Reghukumar, C.; Sudarshan, K.; Ghosh, P. S.; Pathak, Nimai; Kadam, R. M.

    2018-05-01

    Local structure analysis of dopant ion, understanding host to dopant energy transfer dynamics and defects characterization in a doped material which plays an important role in the designing a highly efficient opto-electronic material. In this connection a new Sm3+ doped Gd2Zr2O7 pyrochlore material was synthesized using gel-combustion technique and was characterized systematically using X-ray diffraction (XRD), time resolved photoluminescence spectroscopy (TRPLS), positron annihilation lifetime spectroscopy (PALS) and density functional theory (DFT) based ab-initio calculation. Based on DFT site selective energetics calculation and luminescence decay measurement, it was observed that the Sm3+ was distributed at both Gd3+ and Zr4+ site with higher Sm3+ fraction at the Gd3+ site. PALS was used to probe the presence of defects in the phosphor. In this work intense orange-red emission is realized through manipulating the energy transfer from host defect emission (oxygen vacancies) to Sm3+ which allows color emission from green in undoped to orange-red in doped samples. Effect of dopant concentration and annealing temperature was probed using TRPLS and PALS. These all information is highly important for researcher looking to achieve pyrochlore based phosphor materials with high quantum yield.

  20. DIMEC - Final Report

    DEFF Research Database (Denmark)

    Conrad, Finn

    1997-01-01

    Final report of the research project DIMEC - Danish InfoMechatronic Control supported by the Danish Technical Research Council, STVF.......Final report of the research project DIMEC - Danish InfoMechatronic Control supported by the Danish Technical Research Council, STVF....

  1. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Glasser, Alan H. [Fusion Theory and Computation Inc., Kingston, WA (United States)

    2018-02-02

    Final technical report on DE-SC0016106. This is the final technical report for a portion of the multi-institutional CEMM project. This report is centered around 3 publications and a seminar presentation, which have been submitted to E-Link.

  2. The XPS study of the structure of uranium-containing ceramics

    Directory of Open Access Journals (Sweden)

    Teterin Anton Yu.

    2010-01-01

    Full Text Available The samples of the (Ca0.5GdU0.5Zr2O7 and (Ca0.5GdU0.5(ZrTiO7 ceramics with the fluorite and pyrochlore structures used as matrixes for the long-lived high-level radioactive waste disposal were studied with the X-ray photoelectron spectroscopy method. On the basis of the X-ray photoelectron spectroscopy parameters of the outer and core electrons from the binding energy range of 0-1250 eV the oxidation states of the included metal ions were determined, the quantitative elemental and ionic analysis was done, and the orderliness (monophaseness was evaluated. The obtained data agree with the X-ray diffraction and the scanning electron microscopy results.

  3. The VIMOS Public Extragalactic Redshift Survey (VIPERS). The growth of structure at 0.5 < z < 1.2 from redshift-space distortions in the clustering of the PDR-2 final sample

    Science.gov (United States)

    Pezzotta, A.; de la Torre, S.; Bel, J.; Granett, B. R.; Guzzo, L.; Peacock, J. A.; Garilli, B.; Scodeggio, M.; Bolzonella, M.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Branchini, E.; Coupon, J.; De Lucia, G.; Koda, J.; Ilbert, O.; Mohammad, F.; Moutard, T.; Moscardini, L.

    2017-07-01

    We present measurements of the growth rate of cosmological structure from the modelling of the anisotropic galaxy clustering measured in the final data release of the VIPERS survey. The analysis is carried out in configuration space and based on measurements of the first two even multipole moments of the anisotropic galaxy auto-correlation function, in two redshift bins spanning the range 0.5 rate with negligible bias down to separations of 5 h-1 Mpc. Interestingly, the application to real data shows a weaker sensitivity to the details of non-linear RSD corrections compared to mock results. We obtain consistent values for the growth rate times the matter power spectrum normalisation parameter of fσ8 = 0.55 ± 0.12 and 0.40 ± 0.11 at effective redshifts of z = 0.6 and z = 0.86 respectively. These results are in agreement with standard cosmology predictions assuming Einstein gravity in a ΛCDM background. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/

  4. Final focus nomenclature

    International Nuclear Information System (INIS)

    Erickson, R.

    1986-01-01

    The formal names and common names for all devices in the final focus system of the SLC are listed. The formal names consist of a device type designator, microprocessor designator, and a four-digit unit number

  5. Final focus test beam

    International Nuclear Information System (INIS)

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration

  6. WMO Marine Final Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Final reports of the World Meteorological Organization (WMO) Commission for Marine Meteorology, Commission for Synoptic Meteorology, and Commission for Basic...

  7. Transacsys PLC - Final Results

    CERN Multimedia

    2002-01-01

    Final results from Transacsys PLC. A subsidary of this company was set up to develop the CERN EDH system into a commercial product but incurred too much financial loss so the project was cancelled (1/2 page).

  8. Final focus nomenclature

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, R.

    1986-08-08

    The formal names and common names for all devices in the final focus system of the SLC are listed. The formal names consist of a device type designator, microprocessor designator, and a four-digit unit number. (LEW)

  9. Data breaches. Final rule.

    Science.gov (United States)

    2008-04-11

    This document adopts, without change, the interim final rule that was published in the Federal Register on June 22, 2007, addressing data breaches of sensitive personal information that is processed or maintained by the Department of Veterans Affairs (VA). This final rule implements certain provisions of the Veterans Benefits, Health Care, and Information Technology Act of 2006. The regulations prescribe the mechanisms for taking action in response to a data breach of sensitive personal information.

  10. Structural, photoluminescence and radioluminescence properties of Eu{sup 3+} doped La{sub 2}Hf{sub 2}O{sub 7} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wahid, Kareem; Pokhrel, Madhab; Mao, Yuanbing, E-mail: yuanbing.mao@utrgv.edu

    2017-01-15

    This study presents the structural, optical, and radioluminescent characterization of newly synthesized europium-doped lanthanum hafnate (La{sub 2}Hf{sub 2}O{sub 7}:xmol%Eu{sup 3+}, x=0 to 35) nanoparticles (NPs) for use as phosphors and scintillation materials. Samples prepared through a combined co-precipitation and molten salt synthetic process were found to crystalize in the pyrochlore phase, a radiation tolerant structure related to the fluorite structure. These samples exhibit red luminescence under ultraviolet and X-ray excitation. Under these excitations, the optical intensity and quantum yield of the La{sub 2}Hf{sub 2}O{sub 7}:xmol%Eu{sup 3+} NPs depend on the Eu{sup 3+} concentration and are maximized at 5%. It is proposed that there is a trade-off between the quenching due to defect states/cross-relaxation and dopant concentration. An optimal dopant concentration allows the La{sub 2}Hf{sub 2}O{sub 7}:5 mol%Eu{sup 3+} NPs to show the best luminescent properties of all the samples. - Graphical abstract: Incident X-ray and UV photons interact with La{sub 2}Hf{sub 2}O{sub 7}: xmol%Eu{sup 3+}(x=1–35) nanoparticles (NPs) to yield strong red luminescence centered at 612 nm. Colored spheres inside NP diagram represent pyrochlore coordination environment of La{sub 2}Hf{sub 2}O{sub 7}:xmol%Eu{sup 3+}. Blue, red, yellow, green and black spheres represent hafnium(IV) atoms, lanthanum(III)/europium(III) atoms, oxygen atoms at 48f site, oxygen atoms at 8b site and oxygen vacancies, respectively. - Highlights: • La{sub 2}Hf{sub 2}O{sub 7}:xmol%Eu{sup 3+} (x=0–35) nanoparticles with weakly-ordered pyrochlore structures were synthesized. • Optically and X-ray excited emission spectra showed strong luminescence centered at 612 nm. • Photoluminescence quantum yield increases with doping concentration up to 5% and decreases at higher concentrations.

  11. Regional final energy consumptions

    International Nuclear Information System (INIS)

    2011-01-01

    This report comments the differences observed between the French regions and also between these regions and national data in terms of final energy consumption per inhabitant, per GDP unit, and per sector (housing and office building, transport, industry, agriculture). It also comments the evolutions during the last decades, identifies the most recent trends

  12. Deep inelastic final states

    International Nuclear Information System (INIS)

    Girardi, G.

    1980-11-01

    In these lectures we attempt to describe the final states of deep inelastic scattering as given by QCD. In the first section we shall briefly comment on the parton model and give the main properties of decay functions which are of interest for the study of semi-inclusive leptoproduction. The second section is devoted to the QCD approach to single hadron leptoproduction. First we recall basic facts on QCD log's and derive after that the evolution equations for the fragmentation functions. For this purpose we make a short detour in e + e - annihilation. The rest of the section is a study of the factorization of long distance effects associated with the initial and final states. We then show how when one includes next to leading QCD corrections one induces factorization breaking and describe the double moments useful for testing such effects. The next section contains a review on the QCD jets in the hadronic final state. We begin by introducing the notion of infrared safe variable and defining a few useful examples. Distributions in these variables are studied to first order in QCD, with some comments on the resummation of logs encountered in higher orders. Finally the last section is a 'gaullimaufry' of jet studies

  13. The 'final order' problem

    NARCIS (Netherlands)

    Teunter, RH; Haneveld, WKK

    1998-01-01

    When the service department of a company selling machines stops producing and supplying spare parts for certain machines, customers are offered an opportunity to place a so-called final order for these spare parts. We focus on one customer with one machine. The customer plans to use this machine up

  14. Synthesis, structural and luminescence properties of Bi3+ co-doped Y2Sn2O7:Tb nanoparticles

    International Nuclear Information System (INIS)

    Nigam, S.; Sudarsan, V.; Vatsa, R.K.

    2010-01-01

    Full text: In recent years, advanced materials derived from Pyrochlore-type oxides (A 2 B 2 O 7 ) have been of extensive scientific and technological interest. Chemical substitution of A or B sites of pyrochlore oxide by rare earth ions is a widely used approach to prepare thermally stable, lanthanide ion doped luminescent materials. Due to the higher symmetry around the A and B sites in the lattice lanthanide ions like Eu 3+ and Tb 3+ when incorporated at the A or B sites give very poor luminescence. This problem can be avoided by incorporating other ions like Bi 3+ in the lattice so that the lattice gets distorted and luminescent intensity from the lanthanide ions increases. The present study deals with the synthesis and characterization of Bi 3+ co-doped Y 2 Sn 2 O 7 :Tb nanoparticles. For the preparation of Tb 3+ and Bi 3+ doped Y 2 Sn 2 O 7 nano-materials, Sn metal, Bi(NO 3 ) 3 , Tb 4 O 7 , Y 2 CO 3 , were used as starting materials. The solution containing Y 3+ , Sn 4+ ,and Bi 3+ -Tb 3+ in ethylene glycol medium was slowly heated up to 120 deg C and then subjected to urea hydrolysis. The obtained precipitate after washing was heated to 700 deg C. As prepared samples are amorphous in nature and 700 deg C heated sample showed well crystalline pyrochlore structure as revealed by the XRD studies. Average particles size is calculated from the width of the X-ray diffraction peaks and found to be ∼ 5 nm. TEM images of the nanoparticles obtained at 700 deg C shows very fine spherical particles having a diameter in the range of 2-5 nm. Luminescence measurements were carried out for as prepared and 700 deg C heated samples of 2.5%Tb doped Y 2 Sn 2 O 7 nanoparticles. Green emission characteristic 5 D 4 7 F 5 transition of Tb 3+ has been observed from as prepared sample but on heating to 700 deg C the emission characteristic of Tb 3+ ions got completely removed . However, there is a significant improvement in Tb 3+ emission from 2.5% Bi 3+ co-doped Y 2 Sn 2 O 7 :Tb 3

  15. Self-assembly of three-dimensional open structures using patchy colloidal particles.

    Science.gov (United States)

    Rocklin, D Zeb; Mao, Xiaoming

    2014-10-14

    Open structures can display a number of unusual properties, including a negative Poisson's ratio, negative thermal expansion, and holographic elasticity, and have many interesting applications in engineering. However, it is a grand challenge to self-assemble open structures at the colloidal scale, where short-range interactions and low coordination number can leave them mechanically unstable. In this paper we discuss the self-assembly of three-dimensional open structures using triblock Janus particles, which have two large attractive patches that can form multiple bonds, separated by a band with purely hard-sphere repulsion. Such surface patterning leads to open structures that are stabilized by orientational entropy (in an order-by-disorder effect) and selected over close-packed structures by vibrational entropy. For different patch sizes the particles can form into either tetrahedral or octahedral structural motifs which then compose open lattices, including the pyrochlore, the hexagonal tetrastack and the perovskite lattices. Using an analytic theory, we examine the phase diagrams of these possible open and close-packed structures for triblock Janus particles and characterize the mechanical properties of these structures. Our theory leads to rational designs of particles for the self-assembly of three-dimensional colloidal structures that are possible using current experimental techniques.

  16. In-situ high temperature irradiation setup for temperature dependent structural studies of materials under swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Kulriya, P.K.; Kumari, Renu; Kumar, Rajesh; Grover, V.; Shukla, R.; Tyagi, A.K.; Avasthi, D.K.

    2015-01-01

    An in-situ high temperature (1000 K) setup is designed and installed in the materials science beam line of superconducting linear accelerator at the Inter-University Accelerator Centre (IUAC) for temperature dependent ion irradiation studies on the materials exposed with swift heavy ion (SHI) irradiation. The Gd 2 Ti 2 O 7 pyrochlore is irradiated using 120 MeV Au ion at 1000 K using the high temperature irradiation facility and characterized by ex-situ X-ray diffraction (XRD). Another set of Gd 2 Ti 2 O 7 samples are irradiated with the same ion beam parameter at 300 K and simultaneously characterized using in-situ XRD available in same beam line. The XRD studies along with the Raman spectroscopic investigations reveal that the structural modification induced by the ion irradiation is strongly dependent on the temperature of the sample. The Gd 2 Ti 2 O 7 is readily amorphized at an ion fluence 6 × 10 12 ions/cm 2 on irradiation at 300 K, whereas it is transformed to a radiation-resistant anion-deficient fluorite structure on high temperature irradiation, that amorphized at ion fluence higher than 1 × 10 13 ions/cm 2 . The temperature dependent ion irradiation studies showed that the ion fluence required to cause amorphization at 1000 K irradiation is significantly higher than that required at room temperature irradiation. In addition to testing the efficiency of the in-situ high temperature irradiation facility, the present study establishes that the radiation stability of the pyrochlore is enhanced at higher temperatures

  17. CMS Is Finally Completed

    CERN Multimedia

    2008-01-01

    Yet another step in the completion of the Large Hadron Collider was taken yesterday morning, as the final element of the Compact Muon Solenoid was lowered nearly 100 meters bellow ground. After more than eight years of work at the world's most powerful particle accelerator, scientists hope that they will be able to start initial experiments with the LHC until the end of this year.

  18. Catarse e Final Feliz

    Directory of Open Access Journals (Sweden)

    Myriam Ávila

    2001-12-01

    Full Text Available Resumo: É a certeza de que nada mais – ou nada importante – pode acontecer após o final de um conto que permite o acontecimento da catarse. Se na maioria das narrativas existe algum tipo de dénouement, em algumas delas isso acontece de maneira especialmente satisfatória e afirmativa. O conto de fadas é uma dessas formas narrativas onde o efeito catártico é extremo e preenche objetivos específicos, de acordo com Bruno Bettelheim. Hollywood mimetizou essa forma como estratégia de sedução, iniciando a tradição do final feliz no cinema. A partir do conto de fadas Cinderela, em diferentes versões, juntamente com a animação homônima da Disney e ainda duas versões do filme Sabrina, será traçada aqui uma relação entre a catarse e o final feliz nos contos de fada, bem como seu uso pela indústria cultural. Palavras-chave: catarse, contos de fada, Hollywood

  19. Technical Report - FINAL

    Energy Technology Data Exchange (ETDEWEB)

    Barbara Luke, Director, UNLV Engineering Geophysics Laboratory

    2007-04-25

    Improve understanding of the earthquake hazard in the Las Vegas Valley and to assess the state of preparedness of the area's population and structures for the next big earthquake. 1. Enhance the seismic monitoring network in the Las Vegas Valley 2. Improve understanding of deep basin structure through active-source seismic refraction and reflection testing 3. Improve understanding of dynamic response of shallow sediments through seismic testing and correlations with lithology 4. Develop credible earthquake scenarios by laboratory and field studies, literature review and analyses 5. Refine ground motion expectations around the Las Vegas Valley through simulations 6. Assess current building standards in light of improved understanding of hazards 7. Perform risk assessment for structures and infrastructures, with emphasis on lifelines and critical structures 8. Encourage and facilitate broad and open technical interchange regarding earthquake safety in southern Nevada and efforts to inform citizens of earthquake hazards and mitigation opportunities

  20. Final Technical Report

    International Nuclear Information System (INIS)

    Diedhiou, Papa Madiallacke

    2010-01-01

    The established training programme, covering three months is structured over 2 main components: 1. Induced mutagenesis for the genetic improvement of Jatropha; 2. Genotyping using molecular markers in order to link phenotypic diversity to genotype.

  1. Process for treatment of pyrochlore concentrates

    International Nuclear Information System (INIS)

    Charlot, G.

    1976-01-01

    A continuous process is described for extraction of niobium, rare earths and thorium from niobium ore concentrates which includes digesting the ore with a hot solution containing 13 to 16 moles of sulphuric acid per liter, diluting the solution to a concentration of 10 to 13 moles of sulphuric acid per liter, separating the insolubles from the solution which includes alkaline earth sulphates and the sulphates of thorium and rare earths that are present, reducing titanium in solution to the trivalent state and diluting the solution to a concentration of 5 to 7 moles of sulphuric acid per liter, separating the precipitated niobium oxide and sulphates of thorium and rare earths, and then concentrating the resulting solution to the level desired for recycle to the digestion stage. 10 Claims, No Drawings

  2. Mono pile foundation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lyngesen, S.; Brendstrup, C.

    1997-02-01

    The use of mono piles as foundations for maritime structures has been developed during the last decades. The installation requirements within the offshore sector have resulted in equipment enabling driving of piles up to 3-4 m to large penetration depths. The availability of this equipment has made the use of large mono piles feasible as foundations for structures like wind turbines. The mono pile foundations consists of three parts; the bare pile, a conical transition and a boat landing. All parts are prefitted at the yard in order to minimise the installation work that has to be carried out offshore. The study of a mono pile foundations for a 1.5 MW wind turbine has been conducted for two locations, Horns Rev and Roedsand. Three different water depths: 5, 8 and 11 m have been investigated in the study. The on-site welding between pile and conical transition is performed by an automatic welding machine. Final testing and eventually repair of the weld are conducted at least 16 hours after welding. This is followed by final installation of J-tube, tie-in to subsea cables and installation of the impressed current system for corrosive protection of the mono pile. The total cost for procurement and installation of the mono pile using the welded connection is estimated. The price does not include procurement and installation of access platform and boat landing. These costs are estimated to 250.000 DKK. Depending on water depth the cost of the pile ranges from 2,2 to 2,7 million DKK. Procurement and fabrication of the pile are approx. 75% of the total costs. The remaining 25% are due to installation. The total costs are very sensitive to the unit price of pile steel. During the project it became obvious that ice load has a very large influence on the dimensions of the mono pile. (EG)

  3. DANAERO MW: Final Report

    DEFF Research Database (Denmark)

    Troldborg, Niels; Bak, Christian; Aagaard Madsen, Helge

    This report describes the results of the EUDP funded DANAERO MW II project carried out by DTU Wind Energy (formerly Risø DTU) and the industrial partners, LM Wind Power, Vestas Wind Systems A/S and Siemens Wind Power. An overview of the data available from the project as well as the results from...... analysis of the data is given with the main objective to explore in detail the influence of atmospheric and wake turbulence on MW turbine performance, loading and stability. Finally, validation and demonstration of simulation codes are carried out....

  4. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  5. Cosmology Without Finality

    Science.gov (United States)

    Mahootian, F.

    2009-12-01

    The rapid convergence of advancing sensor technology, computational power, and knowledge discovery techniques over the past decade has brought unprecedented volumes of astronomical data together with unprecedented capabilities of data assimilation and analysis. A key result is that a new, data-driven "observational-inductive'' framework for scientific inquiry is taking shape and proving viable. The anticipated rise in data flow and processing power will have profound effects, e.g., confirmations and disconfirmations of existing theoretical claims both for and against the big bang model. But beyond enabling new discoveries can new data-driven frameworks of scientific inquiry reshape the epistemic ideals of science? The history of physics offers a comparison. The Bohr-Einstein debate over the "completeness'' of quantum mechanics centered on a question of ideals: what counts as science? We briefly examine lessons from that episode and pose questions about their applicability to cosmology. If the history of 20th century physics is any indication, the abandonment of absolutes (e.g., space, time, simultaneity, continuity, determinacy) can produce fundamental changes in understanding. The classical ideal of science, operative in both physics and cosmology, descends from the European Enlightenment. This ideal has for over 200 years guided science to seek the ultimate order of nature, to pursue the absolute theory, the "theory of everything.'' But now that we have new models of scientific inquiry powered by new technologies and driven more by data than by theory, it is time, finally, to relinquish dreams of a "final'' theory.

  6. Final Technical Report

    International Development Research Centre (IDRC) Digital Library (Canada)

    Tommy Ngai

    2014-03-31

    Mar 31, 2014 ... framework, based on the Kirkpatrick model (Kirkpatrick, D.L. ..... organizations provide education and training services in water and sanitation. .... Although this resulted in slightly more complicated administrative processes, the new structure ..... water and sanitation supplies in rural sub-Saharan Africa.

  7. Final report for DESC0004031

    Energy Technology Data Exchange (ETDEWEB)

    Kitchin, John [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-08-08

    In this project we aim to develop new multicomponent oxide-based electrocatalysts for the oxygen evolution reaction using combined theoretical and experimental approaches. We use density functional theory to compute the electronic structure and reactivity proxies of model oxide materials. From the understanding generated from these calculations, we synthesize materials and characterize their oxygen evolution activity. We use in situ spectroscopic methods to characterize oxide electrodes under reaction conditions. We also develop new data sharing strategies to facilitate the reuse of our data by others. Our work has several potential impacts of interest to DOE. First, the discovery of new oxygen evolution electrocatalysts directly affects the efficiency of many energy-related processes from hydrogen generation to air separation and electrochemical fuel synthesis. Second, we have identified new ways to promote the oxygen evolution reaction for some materials through the electrolyte. This opens new pathways to improving the efficiency of processes involving oxygen evolution. The ability to characterize electrodes under operating conditions enables new insights into the actual structure and composition of the materials, which we are finding are not the same as the as prepared materials. Finally, DOE has significant need and interest in improving the ability to share data among researchers.

  8. Final Scientific EFNUDAT Workshop

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive.EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluationCross section measurementsExperimental techniquesUncertainties and covariancesFission propertiesCurrent and future facilities  International Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden) Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco CalvianiSamuel AndriamonjeEric BerthoumieuxCarlos GuerreroRoberto LositoVasilis Vlachoudis Workshop Assistant: Géraldine Jean

  9. AIPM Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John Mookken

    2006-06-30

    The final AIPM project report consists of six sections. Each section includes information on the original AIPM project and extension work on the high temperature design. The first section (1) provides an overview of the program and highlights the significant targets to meet at the end of the program. The next section (2) summarizes the significant technical accomplishments by the SEMIKRON AIPM team during the course of the project. Greater technical details are provided in a collection of all the quarterly reports which can be found in the appendix. Section three (3) presents some the more significant technical data collected from technology demonstrators. Section four (4) analyzes the manufacturing cost or economic aspects of producing 100,000 units/yr. Section five (5) describes the commercialization efforts of the AIPM technology into the automotive market. The last section (6) recommends follow on work that will build on the efforts and achievements of the AIPM program.

  10. Chernobyl: the final warning

    International Nuclear Information System (INIS)

    Gale, R.P.; Hauser, Thomas.

    1988-01-01

    Following the Chernobyl accident in 1986, a book has been written with firstly an introduction to the basic principles and development of nuclear power, followed by a brief review of previous nuclear power plant accidents and then a short account of the Chernobyl accident itself. The main text of the book however contains the personal story of Dr. Robert Peter Yale, head of the Bone Marrow Transplant Unit at the UCLA Medical Center in Los Angeles who travelled to Russia six times to help the victims of the Chernobyl accident. The final part of the book discusses the safety of nuclear power and the dangers of the proliferation of nuclear weapons. (U.K.)

  11. Cosmological Final Focus Systems

    International Nuclear Information System (INIS)

    Irwin, J

    2004-01-01

    We develop the many striking parallels between the dynamics of light streams from distant galaxies and particle beams in accelerator final focus systems. Notably the deflections of light by mass clumps are identical to the kicks arising from the long-range beam-beam interactions of two counter-rotating particle beams (known as parasitic crossings). These deflections have sextupolar as well as quadrupolar components. We estimate the strength of such distortions for a variety of circumstances and argue that the sextupolar distortions from clumping within clusters may be observable. This possibility is enhanced by the facts that (1) the sextupolar distortions of background galaxies is a factor of 5 smaller than the quadrupolar distortion, (2) the angular orientation of the sextupolar and quadrupolar distortions from a mass distribution would be correlated, appearing as a slightly curved image, (3) these effects should be spatially clumped on the sky

  12. Multimuon final states

    International Nuclear Information System (INIS)

    Crespo, J.-M.

    1980-04-01

    Multimuon final states have been detected by 3 experiments in the interactions of the muon beams of CERN (280 GeV) and FNAL (210 GeV) with heavy targets. For the first time production of J/PSI (3100) by space-like photons has been observed and its dependence on ν, Q 2 and t compared to Vector Dominance and photon-gluon fusion models. Also a clear signal has been seen for 3μ above QED tridents (outside J/PSI mass range) and 2μ events which are well described by charm production. An upper limit for the production of the T by high energy muons has been set

  13. Stardust Final Conference

    CERN Document Server

    Minisci, Edmondo; Summerer, Leopold; McGinty, Peter

    2018-01-01

    Space debris and asteroid impacts pose a very real, very near-term threat to Earth. In order to help study and mitigate these risks, the Stardust program was formed in 2013. This training and research network was devoted to developing and mastering techniques such as removal, deflection, exploitation, and tracking. This book is a collection of many of the topics addressed at the Final Stardust Conference, describing the latest in asteroid monitoring and how engineering efforts can help us reduce space debris. It is a selection of studies bringing together specialists from universities, research institutions, and industry, tasked with the mission of pushing the boundaries of space research with innovative ideas and visionary concepts. Topics covered by the Symposium: Orbital and Attitude Dynamics Modeling Long Term Orbit and Attitude Evolution Particle Cloud Modeling and Simulation Collision and Impact Modelling and Simulation, Re-entry Modeling and Simulation Asteroid Origins and Characterization Orbit and A...

  14. Final technical report

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Nielsen, Jakob Skov

    gas jet chamber and laser beam path from the final focusing mirror. The project consists of three phases: Phase 1: Fundamental studies of cutting front mechanisms, beam propagation, nozzle design and chemical reactions in the cut kerf with special emphasize on high laser powers and thick sections...... cutting nozzle which can be adjusted independently to the laser beam has been developed. The position of the focus relative the workpiece can be adjusted to cutting applications with relatively large processing windows, i.e. both mild and stainless steels, and of a broad thickness range. A build-in auto......This project entails research with the goal to extend laser cutting of steel based metals to thickness above 20 mm and laser powers in the 10 kW range, with adequate accuracy and economically viable cutting speeds. The technical approach is to develop mirror based cutting heads with truly coaxial...

  15. Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Reeder, Richard [Stony Brook Univ., NY (United States); Phillips, Brian [Stony Brook Univ., NY (United States)

    2017-10-18

    A variety of calcifying organisms produce a transient or metastable amorphous calcium carbonate (ACC) precursor phase that is assembled and subsequently transformed into a crystalline biomineral, typically calcite or aragonite. The complex shapes, hierarchical structures, and unique physical properties of the biominerals that result from this calcification pathway have stimulated interest in adapting these concepts for the design and creation of bio-inspired functional materials in the laboratory. ACC also forms as a reactive precursor in diverse inorganic systems and is likely to play a much broader role in calcium carbonate formation. Knowledge of the structure, composition, and behavior of this metastable phase is critical for establishing a structural and mechanistic framework for calcium carbonate formation and its role in biogeochemical processes, including carbon cycling. Minor additives, such as magnesium, phosphorus, and organic macromolecules, are known to play important roles in controlling ACC stability, transformation kinetics, and selection of final crystalline polymorph. Molecular water also occurs in many types of ACC and is thought to play a structural role in its stability and transformation behavior. One of the major challenges that remain unresolved is identification of the structural basis for the role of these minor additives and molecular water. The absence of long-range order in ACC, and other amorphous phases, has posed a challenge for study by techniques commonly used for crystalline solids. Preliminary studies in our group show that the combination of two techniques, synchrotron X-ray-based pair distribution function (PDF) analysis and nuclear magnetic resonance (NMR) spectroscopy can provide entirely new insight to structural properties of synthetic ACC over length scales that are most relevant for understanding its transformation properties. Building on preliminary experiments, we propose a systematic study of synthesis, structure, and

  16. PHENIX reports. Final report

    International Nuclear Information System (INIS)

    1998-01-01

    The various tasks outlined in the Statement of Work for the PHENIX Program have been accomplished. Reports were generated which cover the work done. This report is a compilation of the following reports: Progress Report for May 1998; Progress Report for April 1998; PHENIX FEA Mount/Electron Shield Structural Analysis report; Progress Report for February 1998; Progress Report for March 1998; and Progress Report for December 1997 and January 1998

  17. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Aristos Aristidou Natureworks); Robert Kean (NatureWorks); Tom Schechinger (IronHorse Farms, Mat); Stuart Birrell (Iowa State); Jill Euken (Wallace Foundation & Iowa State)

    2007-10-01

    The two main objectives of this project were: 1) to develop and test technologies to harvest, transport, store, and separate corn stover to supply a clean raw material to the bioproducts industry, and 2) engineer fermentation systems to meet performance targets for lactic acid and ethanol manufacturers. Significant progress was made in testing methods to harvest corn stover in a “single pass” harvest mode (collect corn grain and stover at the same time). This is technically feasible on small scale, but additional equipment refinements will be needed to facilitate cost effective harvest on a larger scale. Transportation models were developed, which indicate that at a corn stover yield of 2.8 tons/acre and purchase price of $35/ton stover, it would be unprofitable to transport stover more than about 25 miles; thus suggesting the development of many regional collection centers. Therefore, collection centers should be located within about 30 miles of the farm, to keep transportation costs to an acceptable level. These collection centers could then potentially do some preprocessing (to fractionate or increase bulk density) and/or ship the biomass by rail or barge to the final customers. Wet storage of stover via ensilage was tested, but no clear economic advantages were evident. Wet storage eliminates fire risk, but increases the complexity of component separation and may result in a small loss of carbohydrate content (fermentation potential). A study of possible supplier-producer relationships, concluded that a “quasi-vertical” integration model would be best suited for new bioproducts industries based on stover. In this model, the relationship would involve a multiyear supply contract (processor with purchase guarantees, producer group with supply guarantees). Price will likely be fixed or calculated based on some formula (possibly a cost plus). Initial quality requirements will be specified (but subject to refinement).Producers would invest in harvest

  18. Development of the analytic methodology for the consideration of complex load assumptions in case of high-dynamical impact on reinforced concrete structures. Final report; Weiterentwicklung der Analysemethodik zur Beruecksichtigung komplexer Lastannahmen bei hochdynamischen Einwirkungen auf Stahlbetonstrukturen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Heckoetter, Christian; Sievers, Juergen

    2016-08-15

    Within the framework of project RS1509 sponsored by the German Ministry BMWi GRS investigated different phenomena which might occur during the impact of deformable, liquid-filled, rigid or partially deformable missiles as well as during the detonation of high-explosives on reinforced concrete structures. The safety-related significance of the research work lies in the evaluation of analysis methods utilized for the assessment of the load-bearing capacity of nuclear building structures subjected to targeted external hazards. In this context participation in Phase III of the VTT IMPACT project and the CSNI activity IRIS2012 contributed to achievement of the objectives. Within the framework of the IMPACT project participation a test series dealing with partially liquid-filled missiles was specified, from which first experiments have already been performed. One focus of the research work was the examination of impact and blast tests with reinforced concrete target structures. Failure modes of the reinforced concrete slabs in impact tests include bending failure, punching failure, cracking, spalling, scabbing, penetration and perforation. The focus of the selected blast tests was related to the local damage modes of scabbing and perforation. The numerical simulations on the tests have been performed by using the analysis codes AUTODYN /ANS 10/ and LSDYNA /LST 14/. Regarding application of findings from test analyses to real structures the impact of missiles with more complex geometries on reinforced concrete structures was examined. Beside simulation of the full-scale test carried out at SNL with a military aircraft of type F4-Phantom, numerical studies with simplified impactor models of a civilian aircraft of type Airbus A320 and jet-engines of type CFM56, used e.g. in the A320 were carried out. Exemplarily, the impact of these models on a generic reactor building structure was examined. Future research work will address the simulation of induced vibrations of

  19. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Held, Isaac [Princeton Univ., NJ (United States); Balaji, V. [Princeton Univ., NJ (United States); Fueglistaler, Stephan [Princeton Univ., NJ (United States)

    2016-09-19

    We have constructed and analyzed a series of idealized models of tropical convection interacting with large-scale circulations, with 25-50km resolution and with 1-2km cloud resolving resolution to set the stage for rigorous tests of convection closure schemes in high resolution global climate models. Much of the focus has been on the climatology of tropical cyclogenesis in rotating systems and the related problem of the spontaneous aggregation of convection in non-rotating systems. The PI (Held) will be delivering the honorary Bjerknes lecture at the Fall 2016 AGU meeting in December on this work. We have also provided new analyses of long-standing issues related to the interaction between convection and the large-scale circulation: Kelvin waves in the upper troposphere and lower stratosphere, water vapor transport into the stratosphere, and upper tropospheric temperature trends. The results of these analyses help to improve our understanding of processes, and provide tests for future high resolution global modeling. Our final goal of testing new convections schemes in next-generation global atmospheric models at GFDL has been left for future work due to the complexity of the idealized model results meant as tests for these models uncovered in this work and to computational resource limitations. 11 papers have been published with support from this grant, 2 are in review, and another major summary paper is in preparation.

  20. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, Mayda [Northwestern University

    2013-11-01

    This work is focused on the design and construction of novel beam diagnostic and instrumentation for charged particle accelerators required for the next generation of linear colliders. Our main interest is in non-invasive techniques. The Northwestern group of Velasco has been a member of the CLIC Test Facility 3 (CTF3) collaboration since 2003, and the beam instrumentation work is developed mostly at this facility1. This 4 kW electron beam facility has a 25-170 MeV electron LINAC. CTF3 performed a set of dedicated measurements to finalize the development of our RF-Pickup bunch length detectors. The RF-pickup based on mixers was fully commissioned in 2009 and the RF-pickup based on diodes was finished in time for the 2010-11 data taking. The analysis of all the data taken in by the summer of 2010 was finish in time and presented at the main conference of the year, LINAC 2010 in Japan.

  1. Acoustic Separation Technology; FINAL

    International Nuclear Information System (INIS)

    Fred Ahrens; Tim Patterson

    2002-01-01

    Today's restrictive environmental regulations encourage paper mills to close their water systems. Closed water systems increase the level of contaminants significantly. Accumulations of solid suspensions are detrimental to both the papermaking process and the final products. To remove these solids, technologies such as flotation using dissolved air (DAF), centrifuging, and screening have been developed. Dissolved Air Flotation systems are commonly used to clarify whitewater. These passive systems use high pressure to dissolve air into whitewater. When the pressure is released, air micro-bubbles form and attach themselves to fibers and particles, which then float to the surface where they are mechanically skimmed off. There is an economic incentive to explore alternatives to the DAF technology to drive down the cost of whitewater processing and minimize the use of chemicals. The installed capital cost for a DAF system is significant and a typical DAF system takes up considerable space. An alternative approach, which is the subject of this project, involves a dual method combining the advantages of chemical flocculation and in-line ultrasonic clarification to efficiently remove flocculated contaminants from a water stream

  2. AIMES Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Daniel S [Univ. of Illinois, Urbana-Champaign, IL (United States). National Center for Supercomputing Applications (NCSA); Jha, Shantenu [Rutgers Univ., New Brunswick, NJ (United States); Weissman, Jon [Univ. of Minnesota, Minneapolis, MN (United States); Turilli, Matteo [Rutgers Univ., New Brunswick, NJ (United States)

    2017-01-31

    This is the final technical report for the AIMES project. Many important advances in science and engineering are due to large-scale distributed computing. Notwithstanding this reliance, we are still learning how to design and deploy large-scale production Distributed Computing Infrastructures (DCI). This is evidenced by missing design principles for DCI, and an absence of generally acceptable and usable distributed computing abstractions. The AIMES project was conceived against this backdrop, following on the heels of a comprehensive survey of scientific distributed applications. AIMES laid the foundations to address the tripartite challenge of dynamic resource management, integrating information, and portable and interoperable distributed applications. Four abstractions were defined and implemented: skeleton, resource bundle, pilot, and execution strategy. The four abstractions were implemented into software modules and then aggregated into the AIMES middleware. This middleware successfully integrates information across the application layer (skeletons) and resource layer (Bundles), derives a suitable execution strategy for the given skeleton and enacts its execution by means of pilots on one or more resources, depending on the application requirements, and resource availabilities and capabilities.

  3. Effects of vegetation of radon transport processes in soil: The origins and pathways of {sup 222}Rn entering into basement structures. Final report, March 15, 1987--May 15, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Borak, T.B.

    1992-08-01

    The entry rate of {sup 22}Rn into a basement structure was measured continuously. These measurements demonstrated that radon entry did not vanish even when the structure was slightly pressurized. This persistent entry has been determined to be dominated by diffusion through the floor and walls and a combination of diffusion and convection through the floor-wall joint. The highest indoor radon concentrations occurred during calm periods when the pressure differentials between the inside and outside of the structure were small. The objectives of this work were to identify the origins of the radon and investigate the entry pathways. The radon could originate either in the concrete or in the soil surrounding the structure. Entry pathways into the basement were through the concrete floor and walls as well as through the floor-wall joint. The contributions of the origins and entry pathways were determined by continuously measuring the radon entry rate into the basement, using a trace gas system, and the flux density through portions of the floor and walls. Radon entry through the floor-wall joint could be controlled using a baseboard barrier system. Results indicated that, during calm conditions with wind speeds less than 1 m s{sup {minus}1}, 25 % of the radon enters through the floor-wall joint and 75 % enters through the concrete. About 30 % of the radon originated in the concrete floor and walls. A method for in-situ determination of the diffusion length and emanation fraction of radon in concrete was developed. For the concrete used in the structure, the average diffusion length and emanation fraction were 27{plus_minus}4 cm and 0.19{plus_minus}0.02 respectively.

  4. Addressing the final consumer

    International Nuclear Information System (INIS)

    Zoellner, W.

    1994-01-01

    Market economy structures for the gas supply in the new Laender now being established, the next task is to secure the future for natural gas supply companies. This forms the background to the present constribution on natural gas marketing with a special emphasis on natural gas advertising in 1994. The device industry and skilled trades are considered particularly important partners. Adverts and posters alone will not do the job. For this reason, futher media are being developed such as an ''infomobile'', a natural gas circus, and fairs and exhibitions. (BWI) [de

  5. Final Report of the Final Meeting of Project Coordinators

    International Nuclear Information System (INIS)

    Cordero Calderon, Carlos F.

    1996-06-01

    The Costa Rican Electricity Institute has always been worried of the verification of the good state of the works and thus to guarantee their operation. For that reason, it has established different sorts of auscultation of the Arenal's Dam. Some investigations have been done to find new methods to improve and to eliminate risks in different works or projects. The Arenal's Dam is one of the greatest engineering works in Costa Rica, it has the Arenal, Corobici and Sandillal Hydroelectric Plants. Furthermore, the irrigation system in the Tempisque River Valley, in the Guanacaste province. One special characteristic of the Site of the Dam, is the near location of the Arenal Volcano, in full activity and located at 6 Km. from the dam. This report has two goals, one is the traditional permanent measurements report for the project, and the other, is to present it as a final work of the Project Arcal XVIII, to the International Atomic Energy Agency. This report analyses the geo-hydraulic, structural and topographic auscultation, as well as the activities accomplished during the ARCAL XVIII /8/018, Application of Tracer Techniques for Leakage in Dams and Damming Project, based on information gathered through the geo-chemical auscultation, until June 1996. (author).30 ills., 80 charts, 35 tabs

  6. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Judy D. Wall

    2009-02-27

    Bioremediation of radionuclides and metals in the subsurface necessitate an understanding of the metabolic capacities and interactions of the anaerobic microorganisms that are found there, including members of the sulfate-reducing bacteria (SRB). Genetic investigation into the pathway of reductant flow to U(VI) in the SRB belonging to the genus Desulfovibrio has been the focus of this project. In Dv. desulfuricans strain G20, we confirmed the importance of the tetraheme cytochrome c3 by disruption of the gene encoding that cytochrome, cycA, and demonstrated a decrease in the ability of the mutant (I2) to reduce U(VI). We found that the cytochrome c3 was necessary for electrons from pyruvate to reach sulfate or fumarate as terminal electron acceptors. It was not needed for electrons from lactate to reach sulfate, from which we infer that a different pathway is used for the electrons from these two substrates. Cyrstal structure of the tetraheme cytochrome c3 was obtained and site-directed mutations of the protein indicated a binding site for metals at heme 4 of the structure. Kinetic studies for oxidation of reduced cytochrome c3 with U(VI) or molybdate revealed a preference for U(VI) as a substrate. Evidence for a role for sodium gradients in the energetic scheme for this soil organism was obtained.

  7. World Cup Final

    Science.gov (United States)

    2006-01-01

    On July 9, hundreds of millions of fans worldwide will be glued to their television sets watching the final match of the 2006 FIFA World Cup, played in Berlin's Olympic stadium (Olympiastadion). The stadium was originally built for the 1936 Summer Olympics. The Olympic Stadium seats 76,000,; its roof rises 68 meters over the seats and is made up of transparent panels that allow sunlight to stream in during the day. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 12.1 by 15.9 kilometers (7.5 by 9.5 miles) Location: 52.5 degrees North latitude, 13.3 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: October 15, 2005

  8. MTX final report

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E.B. [ed.; Allen, S.L.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Fenstermacher, M.E.; Foote, J.H.; Hoshino, K. [and others

    1994-01-01

    The MTX experiment was proposed in 1986 to apply high frequency microwaves generated by a free-electron laser (FEL) to electron cyclotron resonance heating (ECRH) in a high field, high density tokamak. As the absorption of microwaves at the electron cyclotron resonance requires high frequencies, the opportunity of applying a free-electron laser has appeal as the device is not limited to frequencies in the microwave or long millimeter wavelength regions, in contrast to many other sources. In addition, the FEL is inherently a high power source of microwaves, which would permit single units of 10 MW or more, optimum for reactors. Finally, it was recognized early in the study of the application of the FEL based on the induction linear accelerator, that the nonlinear effects associated with the intense pulses of microwaves naturally generated would offer several unique opportunities to apply ECRH to current drive, MHD control, and other plasma effects. It was consequently decided to adapt the induction accelerator based FEL to heating and controlling the tokamak, and to conduct experiments on the associated physics. To this end, the Alcator C tokamak was moved from the Massachusetts Institute of Technology (MIT) to the Lawrence Livermore National Laboratory where it was installed in Building 431 and operated from March, 1989, until the conclusion of the experiment in October, 1992. The FEL, based on the ETA-11 accelerator and IMP wiggler was brought into operation by the LLNL Electron Beam Group and power injected into the tokamak during an experimental run in the Fall, 1989. Following an upgrade by the MTX group, a second experimental run was made lasting from the Winter, 1992 through the end of the experiment. Significant contributions to the ECRH experiments were made by the Japan Atomic Energy Research Institute (JAERI).

  9. MTX final report

    International Nuclear Information System (INIS)

    Hooper, E.B.; Allen, S.L.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Fenstermacher, M.E.; Foote, J.H.; Hoshino, K.

    1994-01-01

    The MTX experiment was proposed in 1986 to apply high frequency microwaves generated by a free-electron laser (FEL) to electron cyclotron resonance heating (ECRH) in a high field, high density tokamak. As the absorption of microwaves at the electron cyclotron resonance requires high frequencies, the opportunity of applying a free-electron laser has appeal as the device is not limited to frequencies in the microwave or long millimeter wavelength regions, in contrast to many other sources. In addition, the FEL is inherently a high power source of microwaves, which would permit single units of 10 MW or more, optimum for reactors. Finally, it was recognized early in the study of the application of the FEL based on the induction linear accelerator, that the nonlinear effects associated with the intense pulses of microwaves naturally generated would offer several unique opportunities to apply ECRH to current drive, MHD control, and other plasma effects. It was consequently decided to adapt the induction accelerator based FEL to heating and controlling the tokamak, and to conduct experiments on the associated physics. To this end, the Alcator C tokamak was moved from the Massachusetts Institute of Technology (MIT) to the Lawrence Livermore National Laboratory where it was installed in Building 431 and operated from March, 1989, until the conclusion of the experiment in October, 1992. The FEL, based on the ETA-11 accelerator and IMP wiggler was brought into operation by the LLNL Electron Beam Group and power injected into the tokamak during an experimental run in the Fall, 1989. Following an upgrade by the MTX group, a second experimental run was made lasting from the Winter, 1992 through the end of the experiment. Significant contributions to the ECRH experiments were made by the Japan Atomic Energy Research Institute (JAERI)

  10. Phase B - final definition and preliminary design study for the initial Atmospheric Cloud Physics Laboratory (ACPL): A spacelab mission payload. Work breakdown structure for phase C/D DR-MA-06 (preliminary issue)

    Science.gov (United States)

    1976-01-01

    The Work Breakdown Structure (WBS) and Dictionary (DR-MA-06) for initial and subsequent flights of the Atmospheric Cloud Physics Laboratory (ACPL) is presented. An attempt is made to identify specific equipment and components in each of the eleven subsystems; they are listed under the appropriate subdivisions of the WBS. The reader is cautioned that some of these components are likely to change substantially during the course of the study, and the list provided should only be considered representative.

  11. LDRD final report :

    Energy Technology Data Exchange (ETDEWEB)

    Brost, Randolph C.; McLendon, William Clarence,

    2013-01-01

    Modeling geospatial information with semantic graphs enables search for sites of interest based on relationships between features, without requiring strong a priori models of feature shape or other intrinsic properties. Geospatial semantic graphs can be constructed from raw sensor data with suitable preprocessing to obtain a discretized representation. This report describes initial work toward extending geospatial semantic graphs to include temporal information, and initial results applying semantic graph techniques to SAR image data. We describe an efficient graph structure that includes geospatial and temporal information, which is designed to support simultaneous spatial and temporal search queries. We also report a preliminary implementation of feature recognition, semantic graph modeling, and graph search based on input SAR data. The report concludes with lessons learned and suggestions for future improvements.

  12. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bohdan W. Oppenheim; Rudolf Marloth

    2007-10-26

    Executive Summary The document contains Final Technical Report on the Industrial Assessment Center Program at Loyola Marymount University in Los Angeles, covering the contract period of 9/1/2002 to 11/30/2006, under the contract DE-FC36-02GO 12073. The Report describes six required program tasks, as follows: TASK 1 is a summary of the assessments performed over the life of the award: 77 assessments were performed, 595 AR were recommended, covering a very broad range of manufacturing plants. TASK 2 is a description of the efforts to promote and increase the adoption of assessment recommendations and employ innovative methods to assist in accomplishing these goals. The LMU IAC has been very successful in accomplishing the program goals, including implemented savings of $5,141,895 in energy, $10,045,411 in productivity and $30,719 in waste, for a total of $15,218,025. This represents 44% of the recommended savings of $34,896,392. TASK 3 is a description of the efforts promoting the IAC Program and enhancing recruitment efforts for new clients and expanded geographic coverage. LMU IAC has been very successful recruiting new clients covering Southern California. Every year, the intended number of clients was recruited. TASK 4 describes the educational opportunities, training, and other related activities for IAC students. A total of 38 students graduated from the program, including 2-3 graduate students every semester, and the remainder undergraduate students, mostly from the Mechanical Engineering Department. The students received formal weekly training in energy (75%) and productivity (25). All students underwent extensive safety training. All students praised the IAC experience very highly. TASK 5 describes the coordination and integration of the Center activities with other Center and IAC Program activities, and DOE programs. LMU IAC worked closely with MIT, and SDSU IAC and SFSU IAC, and enthusiastically supported the SEN activities. TASK 6 describes other tasks

  13. Final report. [Nonlinear magnetohydrodynamics

    International Nuclear Information System (INIS)

    Montgomery, D.C.

    1998-01-01

    This is a final report on the research activities carried out under the above grant at Dartmouth. During the period considered, the grant was identified as being for nonlinear magnetohydrodynamics, considered as the most tractable theoretical framework in which the plasma problems associated with magnetic confinement of fusion plasmas could be studied. During the first part of the grant's lifetime, the author was associated with Los Alamos National Laboratory as a consultant and the work was motivated by the reversed-field pinch. Later, when that program was killed at Los Alamos, the problems became ones that could be motivated by their relation to tokamaks. Throughout the work, the interest was always on questions that were as fundamental as possible, compatible with those motivations. The intent was always to contribute to plasma physics as a science, as well as to the understanding of mission-oriented confined fusion plasmas. Twelve Ph.D. theses were supervised during this period and a comparable number of postdoctoral research associates were temporarily supported. Many of these have gone on to distinguished careers, though few have done so in the context of the controlled fusion program. Their work was a combination of theory and numerical computation, in gradually less and less idealized settings, moving from rectangular periodic boundary conditions in two dimensions, through periodic straight cylinders and eventually, before the grant was withdrawn, to toroids, with a gradually more prominent role for electrical and mechanical boundary conditions. The author never had access to a situation where he could initiate experiments and relate directly to the laboratory data he wanted. Computers were the laboratory. Most of the work was reported in referred publications in the open literature, copies of which were transmitted one by one to DOE at the time they appeared. The Appendix to this report is a bibliography of published work which was carried out under the

  14. Europium-Doped Lanthanum Hafnate Nanoparticles: Structure, Photoluminescence, and Radioluminescence

    Science.gov (United States)

    Wahid, Kareem; Pokhrel, Madhab; Mao, Yuanbing

    Due to their novel physical properties, nanostructured phosphors are of interest for radiation-based imaging and therapeutics. Herein, the structural and luminescent properties of europium-doped lanthanum hafnate (La2Hf2O7:xmol%Eu3+, x = 0 - 35) nanoparticles are investigated for use as scintillators. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy confirm samples prepared through a combined co-precipitation and low-temperature molten salt synthetic process homogenously form spherical nanocrystals of 36 nm in the ordered pyrochlore phase. Ultraviolet and X-ray excitation of these samples induce strong red emissions in the 580 - 590 and 612 - 630 nm range corresponding to the 5D0->7 F1 magnetic dipole and 5D0->7 F2 electric dipole transitions of Eu3+. Optical response and quantum yield are optimized at 5% Eu3+; a proposed trade-off between quenching mechanisms (defect-states/cross-relaxation) and dopant concentration is discussed. Owing to their high density, large effective atomic number, and bright luminescence, these La2Hf2O7:xmol%Eu3+ nanoparticles warrant further investigation for scintillator applications. The authors thank the support from the Defense Threat Reduction Agency of the U.S. Department of Defense (award #HDTRA1- 10-1-0114).

  15. Technical Report: Final

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela D.; Wang, Cheng-Yu

    2014-09-30

    The objective of this work was to develop catalyzed nanoporous materials that have superior hydrogen uptake between 300K and 400K and moderate pressures. Platinum nanoparticles were introduced to both activated carbons (ACs) and microporous metal organic frameworks (MMOFs) in order to dissociate molecular hydrogen into an active hydrogen species that diffuses from the catalyst to weakly chemisorbs to the AC/MMOF support; this combined sequence is referred to as the hydrogen spillover mechanism. For all materials studied, maximum excess hydrogen uptake was 1-1.4 wt% (excess) at 300K, falling short of DOE storage goals (5.5 wt% by 2015). Select Pt/AC materials (after in situ catalyst activation) had high uptake (up to 1.4 wt%) at low pressure which significantly exceeded that expected for physisorption. The uptake was not correlated to size of Pt catalyst, but appeared to be associated with high surface activity of the AC support and the methodology of catalyst doping. Multiple techniques were explored to introduce Pt nanoparticles into MMOFs, but most led to significant structural degradation. Ultimately, a ‘pre-bridge’ (PB) technique was used to introduce Pt/AC catalysts into MMOFs, as the PB technique led to virtually non-detectable changes in structure. At high pressure, hydrogen spillover of ~1 wt% (excess) to a PB-MMOF was very slow (i.e. >80 hours at 70-80 bar), which can be attributed to high diffusion barriers in a complex three-surface domain material (Pt, AC, MMOF) as well as unexpected evidence for mechanical instability of the undoped MMOF precursor. In a low-pressure comparison study of three PB-MMOFs, we found evidence that the doping technique may introduce defects which may contribute to enhanced adsorption at 300K. However, we could not rule out the effect of active Pt sites, as common predictors of adsorption generally favored the materials without Pt. Furthermore, spectroscopic evidence provided definitive evidence of weak hydrogen

  16. CZT DTRA final report

    Energy Technology Data Exchange (ETDEWEB)

    Voss, L. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-01

    The objective of the project is to understand the physical origin of electronic noise injected by the electrical contacts in CZT and CdTe, and moreover to understand how it impacts the current- voltage (IV) relationships of these materials. This understanding is critical to enabling the next crucial enhancement in the performance of CZT radiation detectors, as there have recently been impressive advancements in the growth of CZT crystals, particularly at our commercial partner Redlen Technologies. Redlen scientists have successfully reduced the size of the transport-inhibiting tellurium precipitates to be <3 micrometers, such that, with sufficiently high fields, it is possible to achieve resolution of <1% at 662 keV using suitable electrode geometries. In contrast to the excellent progress in crystal growth, practitioners in the field of radiation detection have been fabricating rather routine contacts on CZT for nearly two decades; there is no basic understanding of the semiconductor physics of the contacts, and consequently no breakthrough progress in this area. Our objective is to resolve this inadequacy in CZT diode fabrication on the basis of a science-based study, such that CZT detectors can achieve their full promise in performance as superior contacts will enable use of higher fields with lower leakage current – thereby enhancing the resolution that is possible while eliminating the well-known “tailing” effect suffered by the photopeak. Our approach is to develop methods that reduce or eliminate leakage currents in CZT devices through “engineering” the surfaces with novel treatments and structures. This includes using high density plasma etching, doping via ion implantation and metal diffusion, rapid thermal annealing, amorphous semiconductor and dielectric films, and controlled oxide growth. Using these methods, sources of injected and generated noise at the surface can be eliminated via plasma etching and film deposition or oxide growth, while

  17. IRRSUD Project - Final report

    CERN Document Server

    Loyer, F

    2002-01-01

    IRRSUD is an irradiation facility which makes use of the low energy (0.5 MeV/n - 1 MeV/n) beams from the GANIL IRRSUD injectors. It is financed by the group GARI (Group of Ion Research Applications) and was established as a joint-venture of GANIL and CIRIL to develop the applied physics and ion based industrial applications. Among research directions framed by IRRSUD one can mention; the nano-technologies i.e. utilisation of the modifications induced in materials exposed to ion bombardment; realization of microporous membranes and low-D materials; aging of materials by irradiation. Also, the low energy ions issued from the injector matches very well the fission fragments in reactors. In addition IRRSUD could be used as testing facility for injectors.. The report is structured as follows: 1. Outline; 1.2. Project's main features; 1.3. Ion beam characterization; 2. Technical solutions; 2.1. Denominations; 2.2. Beam optics; 2.3. Beam bending magnets; 2.4. Beam instrumentation; 2.5. Current supply; 2.6. Vacuum sy...

  18. RESTRAT Final Report

    International Nuclear Information System (INIS)

    Zeevaert, T.; Bousher, A.; Brendler, V.; Nordlinder, S.; Hedemann Jensen, P.

    1999-01-01

    The RESTRAT project has been carried out by the Belgian Nuclear Research Centre SCK-CEN in the framework of the Fourth Radiation Protection Research Framework Programme by the European Commission. The main objective of this project is to develop a methodology for ranking restoration options as a function of site- and contamination characteristics. A manual has been produced in which this methodology is explained and applied to major classes of site restoration cases. In this report a summary is given of the scientific work achieved. The development of the methodology has been based on analyses of existing restoration techniques and contaminated sites and has been structured in following steps: identification of relevant cases, representative for important classes of contaminated sites and characterisation of the sites; characterisation of relevant restoration techniques; development of a risk assessment methodology (model) and application to the example cases; development of the ranking methodology of restoration options and application to the example cases; formulation of conclusions and elaboration of the manual

  19. Final LDRD report :

    Energy Technology Data Exchange (ETDEWEB)

    Kronawitter, Coleman X.; Antoun, Bonnie R.; Mao, Samuel S.

    2012-01-01

    The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuelsthose chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

  20. Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jin [University of California Santa Cruz; Zhao, Yiping [University of Georgia at Athens

    2014-12-05

    In this entire project period from 2005-2014, we have made significant progress in developing novel nanostructures of metal oxides (MOs) for solar hydrogen generation based on photoelectrochemical (PEC). Materials investigated are focused on 1D and 0D MO nanostructures of TiO2, WO3, ZnO, and Fe2O3 in conjunction with quantum dot (QD) sensitization and chemical doping (N or H) to alter their electronic band structures for both visible light absorption and for facilitating interfacial charge transport. In addition, we have used plasmonic metal nanostructures to enhance the PEC performance by improving light absorption of QDs via enhanced scattering of the plamonic metal. Most importantly, we have discovered a multipronged strategy for improving PEC performance: using plasmonic metal nanostructure to enhance light absorption, QDs to improve charge transfer, and chemical doping to increase charge transport in metal oxides for PEC. The combination is critical for overall high efficiency of PEC. This strategy is developed and demonstrated for the first time to our best knowledge.

  1. RESTRAT Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Zeevaert, T.; Bousher, A.; Brendler, V.; Nordlinder, S.; Hedemann Jensen, P

    1999-08-15

    The RESTRAT project has been carried out by the Belgian Nuclear Research Centre SCK-CEN in the framework of the Fourth Radiation Protection Research Framework Programme by the European Commission. The main objective of this project is to develop a methodology for ranking restoration options as a function of site- and contamination characteristics. A manual has been produced in which this methodology is explained and applied to major classes of site restoration cases. In this report a summary is given of the scientific work achieved. The development of the methodology has been based on analyses of existing restoration techniques and contaminated sites and has been structured in following steps: identification of relevant cases, representative for important classes of contaminated sites and characterisation of the sites; characterisation of relevant restoration techniques; development of a risk assessment methodology (model) and application to the example cases; development of the ranking methodology of restoration options and application to the example cases; formulation of conclusions and elaboration of the manual.

  2. Relationship between urban structures for using areas and climatic conditions, using the example of the city of Leipzig region. Final report; Beziehungen zwischen urbanen Flaechennutzungsstrukturen und klimatischen Verhaeltnissen am Beispiel der Stadtregion Leipzig. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U.

    1997-08-01

    Based on the continuous stationary measurements of climate carried out since the summer of 1992 at various sites in the Leipzig area and for mobile air temperature and humidity measurements carried out for in situ weather in the city area at selected test areas, relationships were carried out between urban structures for using areas and climatic conditions of the air layer near the ground in the city of Leipzig region. The data on the sealing of the functional types of structures obtained in the context of a further part project were used as an important indicator for the use of areas. A basic precondition for these city climate investigations is the preparation of the extensive data obtained in the form of tables and graphs. (orig./KW) [Deutsch] Auf der Basis der seit Sommer 1992 an verschiedenen Standorten im Raum Leipzig kontinuierlich vorgenommenen stationaeren Klimamessungen und bei autochthonen Wetterlagen im Stadtgebiet und in ausgewaehlten Testgebieten durchgefuehrten mobilen Lufttemperatur- und -feuchtemessungen wurden Beziehungen zwischen urbanen Flaechennutzungsstrukturen und klimatischen Verhaeltnissen der bodennahen Luftschicht in der Stadtregion Leipzig erarbeitet. Als wesentlicher Indikator fuer die Flaechennutzung fanden die im Rahmen eines weiteren Teilvorhabens gewonnenen Angaben zur Versiegelung der funktionalen Strukturtypen Verwendung. Eine Grundvoraussetzung fuer diese stadtklimatischen Untersuchungen stellt die Aufarbeitung des gewonnenen umfangreichen Datenmaterials in Form von Tabellen und Grafiken dar. (orig./KW)

  3. Final Performance Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Houldin, Joseph [Delaware Valley Industrial Resource Center, Philadelphia, PA (United States); Saboor, Veronica [Delaware Valley Industrial Resource Center, Philadelphia, PA (United States)

    2016-03-30

    about assessing a company’s technical assets, broadening our view of the business to go beyond what they make or what NAICS code they have…to better understand their capacity, capability, and expertise, and to learn more about THEIR customers. Knowing more about the markets they serve can often provide insight into their level of technical knowledge and sophistication. Finally, in the spirit of realizing the intent of the Accelerator we strove to align and integrate the work and activities supported by the five funding agencies to leverage each effort. To that end, we include in the Integrated Work Plan a graphic that illustrates that integration. What follows is our summary report of the project, aggregated from prior reports.

  4. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Griffith

    2007-01-01

    In this project we provide an example of how to develop multi-tiered models to go across levels of biological organization to provide a framework for relating results of studies of low doses of ionizing radiation. This framework allows us to better understand how to extrapolate laboratory results to policy decisions, and to identify future studies that will increase confidence in policy decisions. In our application of the conceptual Model we were able to move across multiple levels of biological assessment for rodents going from molecular to organism level for in vitro and in vivo endpoints and to relate these to human in vivo organism level effects. We used the rich literature on the effects of ionizing radiation on the developing brain in our models. The focus of this report is on disrupted neuronal migration due to radiation exposure and the structural and functional implications of these early biological effects. The cellular mechanisms resulting in pathogenesis are most likely due to a combination of the three mechanisms mentioned. For the purposes of a computational model, quantitative studies of low dose radiation effects on migration of neuronal progenitor cells in the cerebral mantle of experimental animals were used. In this project we were able to show now results from studies of low doses of radiation can be used in a multidimensional framework to construct linked models of neurodevelopment using molecular, cellular, tissue, and organ level studies conducted both in vitro and in vivo in rodents. These models could also be linked to behavioral endpoints in rodents which can be compared to available results in humans. The available data supported modeling to 10 cGy with limited data available at 5 cGy. We observed gradual but non-linear changes as the doses decreased. For neurodevelopment it appears that the slope of the dose response decreases from 25 cGy to 10 cGy. Future studies of neurodevelopment should be able to better define the dose response in

  5. CEEM Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, John [Univ. of California, Santa Barbara, CA (United States)

    2014-11-26

    The mission of the Center for Energy Efficient Materials (CEEM) was to serve the Department of Energy and the nation as a center of excellence dedicated to advancing basic research in nano-structured materials and devices for applications to solar electricity, thermoelectric conversion of waste heat to electricity, and solidstate lighting. The foundation of CEEM was based on the unique capabilities of UCSB and its partner institutions to control, synthesize, characterize, model, and apply materials at the nanoscale for more efficient sustainable energy resources. This unique expertise was a key source of the synergy that unified the research of the Center. Although the Center’s focus was basic research, It’s longer-term objective has been to transfer new materials and devices into the commercial sector where they will have a substantial impact on the nation’s need for efficient sustainable energy resources. As one measure of the impact of the Center, two start-up companies were formed based on its research. In addition, Center participants published a total of 210 archival journal articles, of which 51 were exclusively sponsored by the DOE grant. The work of the Center was structured around four specific tasks: Organic Solar Cells, Solid-State Lighting, Thermoelectrics, and High Efficiency Multi-junction Photovoltaic devices. A brief summary of each follows – detailed descriptions are in Sections 4 & 5 of this report. Research supported through CEEM led to an important shift with respect to the choice of materials used for the fabrication of solution deposited organic solar cells. Solution deposition opens the opportunity to manufacture solar cells via economically-viable high throughput tools, such as roll to roll printing. Prior to CEEM, most organic semiconductors utilized for this purpose involved polymeric materials, which, although they can form thin films reliably, suffer from batch to batch variations due to the statistical nature of the chemical

  6. Final LDRD report :

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, Andrea; Miller, James Edward; Allendorf, Mark D.; Coker, Eric Nicholas; Ermanoski, Ivan; Hogan, Roy E.,; McDaniel, Anthony H.

    2014-01-01

    Despite rapid progress, solar thermochemistry remains high risk; improvements in both active materials and reactor systems are needed. This claim is supported by studies conducted both prior to and as part of this project. Materials offer a particular large opportunity space as, until recently, very little effort apart from basic thermodynamic analysis was extended towards understanding this most fundamental component of a metal oxide thermochemical cycle. Without this knowledge, system design was hampered, but more importantly, advances in these crucial materials were rare and resulted more from intuition rather than detailed insight. As a result, only two basic families of potentially viable solid materials have been widely considered, each of which has significant challenges. Recent efforts towards applying an increased level of scientific rigor to the study of thermochemical materials have provided a much needed framework and insights toward developing the next generation of highly improved thermochemically active materials. The primary goal of this project was to apply this hard-won knowledge to rapidly advance the field of thermochemistry to produce a material within 2 years that is capable of yielding CO from CO2 at a 12.5 % reactor efficiency. Three principal approaches spanning a range of risk and potential rewards were pursued: modification of known materials, structuring known materials, and identifying/developing new materials for the application. A newly developed best-of-class material produces more fuel (9x more H2, 6x more CO) under milder conditions than the previous state of the art. Analyses of thermochemical reactor and system efficiencies and economics were performed and a new hybrid concept was reported. The larger case for solar fuels was also further refined and documented.

  7. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 5: flight service and inspection. Final report

    International Nuclear Information System (INIS)

    Kizer, J.A.

    1981-10-01

    Inspections of the C-130 composite-reinforced center wings were conducted over the flight service monitoring period of more than six years. Twelve inspections were conducted on each of the two C-130H airplanes having composite reinforced center wing boxes. Each inspection consisted of visual and ultrasonic inspection of the selective boron-epoxy reinforced center wings which included the inspection of the boron-epoxy laminates and the boron-epoxy reinforcement/aluminum structure adhesive bondlines. During the flight service monitoring period, the two C-130H aircraft accumulated more than 10,000 flight hours and no defects were detected in the inspections over this period. The successful performance of the C-130H aircraft with composite-reinforced center wings allowed the transfer of the responsibilities of inspecting and maintaining these two aircraft to the U. S. Air Force

  8. Frustrated pyrochlore oxides, Y2Mn2O7, Ho2Mn2O7, and Yb2Mn2O7: Bulk magnetism and magnetic microstructure

    DEFF Research Database (Denmark)

    Greedan, J.E.; Raju, N.P.; Maignan, A.

    1996-01-01

    The bulk magnetic properties, including de and ac susceptibilities and heat capacity, of the pyrochlore oxides Ho2Mn2O7 and Yb2Mn2O7 are reported and compared with those of the previously studied Y2Mn2O7. In the latter case the magnetic Mn4+ ions occupy the 16c sites in Fd3m which define...... for all three materials are reported for the Q range 10(-2) Angstrom(-1) to 2x10(-1) Angstrom(-1) and the temperature range 6-100 K. Data for the full Q range can be fitted for all three materials to a model consisting of a Lorentzian and a Lorentzian-squared term, i.e., I(Q)=A/(Q(2)+1/xi(1)(2))+B/(Q(2......)+1/xi(2)(2))(2), a cross section commonly found in spin-glass-like materials. A surprising result is that the correlation lengths xi(1) and xi(2) are unequal and in general xi(2)>xi(1). xi(1) remains finite reaching maximum values which range from 10 to 20 Angstrom depending on the compound, while xi(2...

  9. Simulation of phenomena at crack-like leaks and breaks in piping with consideration of fluid-structure interaction. Final report; Simulation der Phaenomene bei rissartigen Lecks und Bruechen in Rohrleitungen unter Beruecksichtigung der Fluid-Struktur-Kopplung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, J.; Grebner, H.; Bahr, L.; Heckmann, K.; Arndt, J.; Pallas-Moner, G.

    2013-11-15

    The evaluation of fluid flow rates through crack-like leaks in pressurized components plays an important role for assessments on break preclusion, especially leak-before-break considerations. In the framework of project RS1194 various calculation methods for the simulation of structure mechanical and thermo-hydraulic phenomena due to flows through crack-like leaks in the coolant circuit were examined and validated on selected leak rate experiments. Besides large program systems as ATHLET, CFX and ADINA also several simplified evaluation methods included in the GRS program WinLeck were applied especially for the determination of leak rates. For the validation of analysing methods, tests were selected previously conducted at the former Nuclear Research Centre (KfK) at Karlsruhe and the Power Plant Union (KWU). The review of experimental results already at disposal in regards to availability of measure d values of thermo-hydraulic parameters like flow-through rates, spatial distributions of pressure, temperature and aggregate state of the medium, velocity of the medium as well as leak openings, displacements and structure strains indicated, that the experiments in terms of quantification of thermo-hydraulic and structure mechanical phenomena as well as appropriate coupling effects do not provide sufficiently meaningful results. Due to missing experiments for validation of 3d numerical flow simulation in crack-like leaks experiments with flow through a Venturi orifice, which are relevant in this context, were chosen. Experiments with single phase flow were considered as well as ones with two phase flow. The post-calculations of the single phase flow showed a good agreement between the calculation results and the appropriate measured data. In the two phase flow, despite tests with various model variations, no satisfying agreement between calculation and test could be reached. According to the authors' opinion is the model approach available in CFX for the

  10. MAPPING FLOW LOCALIZATION PROCESSES IN DEFORMATION OF IRRADIATED REACTOR STRUCTURAL ALLOYS - FINAL REPORT. Nuclear Energy Research Initiative Program No. MSF99-0072. Period: August 1999 through September 2002. (ORNL/TM-2003/63)

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, K.

    2003-09-26

    Metals that can sustain plastic deformation homogeneously throughout their bulk tend to be tough and malleable. Often, however, if a metal has been hardened it will no longer deform uniformly. Instead, the deformation occurs in narrow bands on a microscopic scale wherein stresses and strains become concentrated in localized zones. This strain localization degrades the mechanical properties of the metal by causing premature plastic instability failure or by inducing the formation of cracks. Irradiation with neutrons hardens a metal and makes it more prone to deformation by strain localization. Although this has been known since the earliest days of radiation damage studies, a full measure of the connection between neutron irradiation hardening and strain localization is wanting, particularly in commercial alloys used in the construction of nuclear reactors. Therefore, the goal of this project is to systematically map the extent of involvement of strain localization processes in plastic deformation of three reactor alloys that have been neutron irradiated. The deformation processes are to be identified and related to changes in the tensile properties of the alloys as functions of neutron fluence (dose) and degree of plastic strain. The intent is to define the role of strain localization in radiation embrittlement phenomena. The three test materials are a tempered bainitic A533B steel, representing reactor pressure vessel steel, an annealed 316 stainless steel and annealed Zircaloy-4 representing reactor internal components. These three alloys cover the range of crystal structures usually encountered in structural alloys, i.e. body-centered cubic (bcc), face-centered cubic (fcc), and close-packed hexagonal (cph), respectively. The experiments were conducted in three Phases, corresponding to the three years duration of the project. Phases 1 and 2 addressed irradiations and tensile tests made at near-ambient temperatures, and covered a wide range of neutron fluences

  11. Analytic studies on pollutant deposition through domestic coal combustion - influence of the current structural change on pollution in an urban region. Final report; Analytische Untersuchungen zum Schadstoffeintrag durch den Hausbrand - Auswirkungen des gegenwaertigen Strukturwandels auf die urbane Belastungssituation. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Engewald, W.; Knobloch, T.; Asperger, A.

    1996-12-31

    In the present paper the author reports on the continuation of an OEKOR part project in which he had undertaken a chemical characterisation of emissions from domestic brown coal combustion. On the basis of a partitioning by land use of the Greater Leipzig region he initiated long-term observations of local pollution levels for the various structural types of land. The aim of the work was to facilitate a comprehensive analysis of local air quality in terms of VOC levels. The current concern about VOCs results from the toxicological risk they have been proven to pose to the human organism and from their relevance to the chemistry of the atmosphere (e.g., as precursors of ground-level ozone and other oxidising agents). The task to be accomplished was broken down into the following main steps: Development and trial of a sampling and analysis method for determining an as wide a spectrum of environmental VOCs as possible; elaboration of a measuring strategy for obtaining results of high representativeness and power; installation and operation of pollution monitoring sites in selected structural types of area characteristic of Leipzig; execution of measuring campaigns of several weeks each at selected sites during both winter and summer periods. (orig./MSK) [Deutsch] In Fortsetzung eines vom Berichterstatter bearbeiteten OeKOR-Teilprojekts zur chemischen Charakterisierung von Emissionen aus dem Hausbrand von Braunkohle galt es, auf der Basis einer an der Flaechennutzung ausgerichteten Untergliederung der Stadtregion Leipzig in unterschiedliche Strukturtypen langfristige Immissionsbeobachtungen zu beginnen mit dem Ziel, eine Zustandsanalyse des Umweltmediums Luft bezueglich des Gehalts an fluechtigen organischen Verbindungen (VOC) in ihrer gesamten Breite zu ermoeglichen. Das verstaerkte Interesse an diesen Verbindungen resultiert aus dem fuer eine Reihe von VOC belegten toxikologischen Gefahrenpotential fuer den menschlichen Organismus sowie ihrer atmosphaerenchemischen

  12. Monazite-type ceramics for conditioning of minor actinides. Structural characterization and properties

    International Nuclear Information System (INIS)

    Babelot, Carole

    2013-01-01

    The minor actinides (MA) neptunium, americium, and curium are mainly responsible for the long-term radiotoxicity of the High Active Waste (HAW) generated during the nuclear power operation. If these long-lived radionuclides are removed from the HAW by partitioning and converted by neutron fission (transmutation) into shorter-lived or stable elements, the remaining waste loses most of its long-term radiotoxicity. Thus, partitioning and transmutation (P and T) are considered as attractive options for reducing the burden on geological disposals. As an alternative, these separated MA can also be conditioned (P and C strategy) in specifically adapted ceramics to ensure their safe final disposal over long periods. At the moment, spent fuel elements are foreseen either for direct disposal in deep geological repositories or for reprocessing. The highly active liquid waste that is produced during reprocessing is conditioned industrially using a vitrification process before final disposal. Although the widely used borosilicate glasses meet most of the specifications needed, ceramic host matrices appear to be even more suitable in terms of resistance to corrosion. The development of new materials based on tailor-made highly specific ceramics with extremely stable behavior would make it possible to improve the final storage of long-lived high-level radiotoxic waste. In the framework of this PhD research project, monazite-type ceramics were chosen as promising host matrices for the conditioning of trivalent actinides. The focus on the monazite-type ceramics is justified by their properties such as high chemical durability. REPO 4 ceramics are named monazite for RE = La - Gd (monoclinic symmetry) and xenotime for RE = Tb - Lu and Y (tetragonal symmetry). The objective of this study is to contribute to the understanding of the alteration behavior of such ceramics under the repository conditions. REPO 4 (with RE = La, Eu) is prepared by hydrothermal synthesis at 200 C. Structural

  13. Monazite-type ceramics for conditioning of minor actinides. Structural characterization and properties

    Energy Technology Data Exchange (ETDEWEB)

    Babelot, Carole

    2013-07-01

    . Structural and morphological characteristics (using X-ray diffraction (XRD) and scanning electron microscope (SEM)) combined with physical and thermal properties of samples (using thermogravimetry, differential scanning calorimetry (TG-DSC) and dilatometry) are realized in order to study the behavior of monazite-type powder and pellets. The access to short-range-order spectroscopy (time resolved laser fluorescence spectroscopy (TRLFS) and extended X-ray absorption fine structure (EXAFS)) permits to understand the structure of ceramic waste forms at the molecular level. La-monazite matrices being doped with Eu (III) (as a non-radioactive chemical homologue for Am (III)) and Cm (III), TRLFS is used to explore the local structural environment of Eu and Cm within the monazite crystal structure. Eu (III) and Cm (III) are substituted on the La site of LaPO{sub 4}. The single site of Cm (III) is found in four slightly different environments which is assumed to be due to a difference in the four La sites within a LaPO4 unit cell. Structural parameters of the Eu (III) species were also analyzed by EXAFS. The nearest neighbors of Eu (III) are modeled as 9.5 oxygen atoms (N{sub O1} = 4 at r(EuO1) = 2.37 Aa, N{sub O2} = 4 at r(Eu-O2) = 2.53 Aa, and N{sub O3} = 1.5 at r(Eu-O3) = 2.83 Aa). An essential parameter that describes the stability of the host phases is their dissolution rate obtained under conditions of relevance for final repositories. In this context, a set-up is developed and tested on crushed pellets. Normalized weight losses of lanthanumphosphates and europium-doped lanthanum-phosphates, measured in acidic media at 90 C, are interpreted and compared against the previous findings from the literature. The normalized dissolution rate for La and Eu within (La, Eu)PO{sub 4} is between 1.10{sup -5} and 1.10{sup -4} g.m{sup -2}.d{sup -1}, whereas the rate of Na, Cs and Sr in phosphate glass at room temperature in deionized water is about 1.10{sup -2} g.m{sup -2}.d{sup -1}. Another

  14. Integrated sequence analysis. Final report

    International Nuclear Information System (INIS)

    Andersson, K.; Pyy, P.

    1998-02-01

    The NKS/RAK subprojet 3 'integrated sequence analysis' (ISA) was formulated with the overall objective to develop and to test integrated methodologies in order to evaluate event sequences with significant human action contribution. The term 'methodology' denotes not only technical tools but also methods for integration of different scientific disciplines. In this report, we first discuss the background of ISA and the surveys made to map methods in different application fields, such as man machine system simulation software, human reliability analysis (HRA) and expert judgement. Specific event sequences were, after the surveys, selected for application and testing of a number of ISA methods. The event sequences discussed in the report were cold overpressure of BWR, shutdown LOCA of BWR, steam generator tube rupture of a PWR and BWR disturbed signal view in the control room after an external event. Different teams analysed these sequences by using different ISA and HRA methods. Two kinds of results were obtained from the ISA project: sequence specific and more general findings. The sequence specific results are discussed together with each sequence description. The general lessons are discussed under a separate chapter by using comparisons of different case studies. These lessons include areas ranging from plant safety management (design, procedures, instrumentation, operations, maintenance and safety practices) to methodological findings (ISA methodology, PSA,HRA, physical analyses, behavioural analyses and uncertainty assessment). Finally follows a discussion about the project and conclusions are presented. An interdisciplinary study of complex phenomena is a natural way to produce valuable and innovative results. This project came up with structured ways to perform ISA and managed to apply the in practice. The project also highlighted some areas where more work is needed. In the HRA work, development is required for the use of simulators and expert judgement as

  15. Dependence of liquefaction behavior on coal characteristics. Part VI. Relationship of liquefaction behavior of a set of high sulfur coals to chemical structural characteristics. Final technical report, March 1981 to February 1984

    Energy Technology Data Exchange (ETDEWEB)

    Neill, P. H.; Given, P. H.

    1984-09-01

    The initial aim of this research was to use empirical mathematical relationships to formulate a better understanding of the processes involved in the liquefaction of a set of medium rank high sulfur coals. In all, just over 50 structural parameters and yields of product classes were determined. In order to gain a more complete understanding of the empirical relationships between the various properties, a number of relatively complex statistical procedures and tests were applied to the data, mostly selected from the field of multivariate analysis. These can be broken down into two groups. The first group included grouping techniques such as non-linear mapping, hierarchical and tree clustering, and linear discriminant analyses. These techniques were utilized in determining if more than one statistical population was present in the data set; it was concluded that there was not. The second group of techniques included factor analysis and stepwise multivariate linear regressions. Linear discriminant analyses were able to show that five distinct groups of coals were represented in the data set. However only seven of the properties seemed to follow this trend. The chemical property that appeared to follow the trend most closely was the aromaticity, where a series of five parallel straight lines was observed for a plot of f/sub a/ versus carbon content. The factor patterns for each of the product classes indicated that although each of the individual product classes tended to load on factors defined by specific chemical properties, the yields of the broader product classes, such as total conversion to liquids + gases and conversion to asphaltenes, tended to load largely on factors defined by rank. The variance explained and the communalities tended to be relatively low. Evidently important sources of variance have still to be found.

  16. TARGET 2 and Settlement Finality

    Directory of Open Access Journals (Sweden)

    Ivan MANGATCHEV

    2011-03-01

    Full Text Available This article examines how TARGET 2 as system implements the idea of settlement finality regulated by Directive 98/26 EC of the European parliament and of the Council of 19 May 1998 on settlement finality in payment and securities settlement systems (Settlement Finality Directive and Directive 2009/44/EC of the European parliament and of the Council of 6 May 2009 amending Directive 98/26/EC on settlement finality in payment and securities settlement systems and Directive 2002/47/EC on financial collateral arrangements as regards linked systems and credit claims (Directive 2009/44/EC. As the title of the arti and finality of the settlement in this system.

  17. Neurons to algorithms LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Rothganger, Fredrick H.; Aimone, James Bradley; Warrender, Christina E.; Trumbo, Derek

    2013-09-01

    Over the last three years the Neurons to Algorithms (N2A) LDRD project teams has built infrastructure to discover computational structures in the brain. This consists of a modeling language, a tool that enables model development and simulation in that language, and initial connections with the Neuroinformatics community, a group working toward similar goals. The approach of N2A is to express large complex systems like the brain as populations of a discrete part types that have specific structural relationships with each other, along with internal and structural dynamics. Such an evolving mathematical system may be able to capture the essence of neural processing, and ultimately of thought itself. This final report is a cover for the actual products of the project: the N2A Language Specification, the N2A Application, and a journal paper summarizing our methods.

  18. Final focus system for TLC

    International Nuclear Information System (INIS)

    Oide, K.

    1988-11-01

    A limit of the chromaticity correction for the final focus system of a TeV Linear Collider (TLC) is investigated. As the result, it becomes possible to increase the aperture of the final doublet with a small increase of the horizontal β function. The new optics design uses a final doublet of 0.5 mm half-aperture and 1.4 T pole-tip field. The length of the system is reduced from 400 m to 200 m by several optics changes. Tolerances for various machine errors with this optics are also studied. 5 refs., 7 figs., 2 tabs

  19. Grid integration of electric-powered vehicles in existing and future energy supply structures. Advances in systems analyses 1. Final report; Netzintegration von Fahrzeugen mit elektrifizierten Antriebssystemen in bestehende und zukuenftige Energieversorgungsstrukturen. Advances in System Analyses 1. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Linssen, Jochen; Bickert, Stefan; Hennings, Wilfried [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energie- und Klimaforschung, Systemforschung und Technologische Entwicklung (IEK-STE); and others

    2012-07-01

    The research project examines whether a fleet of vehicles with electric propulsion system (xEV) can be integrated into existing and future energy supply systems for effective integration of fluctuating power production as well as for energy storage. A multi-sectoral, system-wide scenario analysis is performed to evaluate the grid integration of electric vehicles. The effect of an xEV fleet and the impacts of various battery charging scenarios, including the option of feeding power back into the grid, are addressed by detailed technical and economic models and summarized by an energy system model. The suitability of different powertrain concepts is analysed, giving consideration to their individual applications by users. Based on the results of a German nationwide survey of mobility patterns and analyses of 47 test subjects, individual driving profiles for private cars are drawn up and stored in a database. They are used as input for the vehicle energy model. This model calculates the energy requirements of different xEV concepts and facilitates optimized powertrain design and battery sizing for the respective applications. The results show that if the batteries are charged overnight it is possible to cover a major fraction of daily driving distances by electric power. Additional charging during the day does not significantly improve this fraction. The auxiliaries have a greater influence on the vehicle's energy demand than individual driving patterns. Battery lifetime is extended by recharging the battery as required and preferably as late as possible before the next trip. In most cases, using the batteries for grid services reduces battery lifetime and leads to higher specific costs. Models of the transmission grid and typical distribution grids are developed. It is shown that charging one million xEV in 2020 and six million in 2030 (as envisaged by the German Federal Government) is technically feasible without major structural modifications of the transmission

  20. Grid integration of electric-powered vehicles in existing and future energy supply structures. Advances in systems analyses 1. Final report; Netzintegration von Fahrzeugen mit elektrifizierten Antriebssystemen in bestehende und zukuenftige Energieversorgungsstrukturen. Advances in System Analyses 1. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Linssen, Jochen; Bickert, Stefan; Hennings, Wilfried [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energie- und Klimaforschung, Systemforschung und Technologische Entwicklung (IEK-STE)] [and others

    2012-07-01

    The research project examines whether a fleet of vehicles with electric propulsion system (xEV) can be integrated into existing and future energy supply systems for effective integration of fluctuating power production as well as for energy storage. A multi-sectoral, system-wide scenario analysis is performed to evaluate the grid integration of electric vehicles. The effect of an xEV fleet and the impacts of various battery charging scenarios, including the option of feeding power back into the grid, are addressed by detailed technical and economic models and summarized by an energy system model. The suitability of different powertrain concepts is analysed, giving consideration to their individual applications by users. Based on the results of a German nationwide survey of mobility patterns and analyses of 47 test subjects, individual driving profiles for private cars are drawn up and stored in a database. They are used as input for the vehicle energy model. This model calculates the energy requirements of different xEV concepts and facilitates optimized powertrain design and battery sizing for the respective applications. The results show that if the batteries are charged overnight it is possible to cover a major fraction of daily driving distances by electric power. Additional charging during the day does not significantly improve this fraction. The auxiliaries have a greater influence on the vehicle's energy demand than individual driving patterns. Battery lifetime is extended by recharging the battery as required and preferably as late as possible before the next trip. In most cases, using the batteries for grid services reduces battery lifetime and leads to higher specific costs. Models of the transmission grid and typical distribution grids are developed. It is shown that charging one million xEV in 2020 and six million in 2030 (as envisaged by the German Federal Government) is technically feasible without major structural modifications of the

  1. Finally

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Broadband in Rural India is not just about connectivity. Broadband in Rural India is not just about connectivity. It is about transforming rural areas of S. Asia.

  2. HINTS Puerto Rico: Final Report

    Science.gov (United States)

    This final report describes HINTS implementation in Puerto Rico. The report addresses sampling; staffing, training and management of data collection; calling protocol; findings from the CATI Operations, and sample weights.

  3. Smart roadside initiative : final report.

    Science.gov (United States)

    2015-09-01

    This is the Final Report for the Smart Roadside Initiative (SRI) prototype system deployment project. The SRI prototype was implemented at weigh stations in Grass Lake, Michigan and West Friendship, Maryland. The prototype was developed to integrate ...

  4. Integrated sequence analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, K.; Pyy, P

    1998-02-01

    The NKS/RAK subprojet 3 `integrated sequence analysis` (ISA) was formulated with the overall objective to develop and to test integrated methodologies in order to evaluate event sequences with significant human action contribution. The term `methodology` denotes not only technical tools but also methods for integration of different scientific disciplines. In this report, we first discuss the background of ISA and the surveys made to map methods in different application fields, such as man machine system simulation software, human reliability analysis (HRA) and expert judgement. Specific event sequences were, after the surveys, selected for application and testing of a number of ISA methods. The event sequences discussed in the report were cold overpressure of BWR, shutdown LOCA of BWR, steam generator tube rupture of a PWR and BWR disturbed signal view in the control room after an external event. Different teams analysed these sequences by using different ISA and HRA methods. Two kinds of results were obtained from the ISA project: sequence specific and more general findings. The sequence specific results are discussed together with each sequence description. The general lessons are discussed under a separate chapter by using comparisons of different case studies. These lessons include areas ranging from plant safety management (design, procedures, instrumentation, operations, maintenance and safety practices) to methodological findings (ISA methodology, PSA,HRA, physical analyses, behavioural analyses and uncertainty assessment). Finally follows a discussion about the project and conclusions are presented. An interdisciplinary study of complex phenomena is a natural way to produce valuable and innovative results. This project came up with structured ways to perform ISA and managed to apply the in practice. The project also highlighted some areas where more work is needed. In the HRA work, development is required for the use of simulators and expert judgement as

  5. Review and Perspectives of Aurivillius Structures as a Lead-Free Piezoelectric System

    Directory of Open Access Journals (Sweden)

    Alberto Moure

    2018-01-01

    Full Text Available According to the EU-Directives 2002/95/EC, 2002/96/EC, lead-based piezoceramics must be substituted in the future with more environmentally friendly alternatives, only when a reliable alternative is found. This is why an increasing interest has grown in the research community to find lead free piezoelectric materials that fulfil the requirements for this substitution. Different families of compounds have been shown to be possible candidates for this use, such as bismuth and niobates based perovskites, pyrochlores, etc. However, a material with piezoelectric coefficients similar to those of PZT (lead zirconate titanate, Pb[ZrxTi1-x]O3 has not been yet found. Besides, each of these families has its specific characteristics in terms of remnant polarization, coercive field or application temperature. Thus, the choice of each material should be made according to the specific needs of the application. In this sense, Aurivillius-type structure materials (also known as Bismuth Layered Structure Ferroelectrics, BLSF can take advantage of their specific properties for uses as Lead Free Piezoelectric systems. Some of them have a high Curie temperature, which make them good candidates to be used as high temperature piezoelectrics; high coercive fields, which facilitates their use as actuators; or a high switching fatigue resistance, which can be useful for future applications as Ferroelectric Random Access Memories (FERAM.

  6. Genetic structure of natural populations: Final technical report

    International Nuclear Information System (INIS)

    Ayala, F.J.

    1987-01-01

    We determined the LD 50 for individuals with any one of four genetic constitutions. The LD 50 was in kR units (S and F refer to the two common alleles found in natural populations and N is a mull allele) S/S 5.31, F/F 4.61, S/F 4.19, N/N 3.16. These results are as expected under the hypothesis the SOD is involved in radio-resistance and the degree of protection is a function of SOD specific activity. S codes for an allozyme that has the highest in vitro specific activity while N reduces the amount of enzyme to 3.5% of the normal level. Natural selection experiments in population cages were carried out for 13 generations. In control populations, the frequency of the S allele decreases from the initial frequency of 0.50 to an equilibrium value 0.1 to 0.2 in about 10 generations. In populations with the larvae receiving 4 KR in each generation, s reaches an equilibrium frequency of 0.6; when the irradiation was no longer applied, the frequency of S started declining, eventually reaching 0.1 to 0.2. These results corroborate the hypothesis that SOD protects against irradiation and that the degree of protection is correlated by the in vitro specific activity of the allozymes. 29 refs., 4 tabs

  7. Final disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kroebel, R [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Projekt Wiederaufarbeitung und Abfallbehandlung; Krause, H [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Abt. zur Behandlung Radioaktiver Abfaelle

    1978-08-01

    This paper discusses the final disposal possibilities for radioactive wastes in the Federal Republic of Germany and the related questions of waste conditioning, storage methods and safety. The programs in progress in neighbouring CEC countries and in the USA are also mentioned briefly. The autors conclude that the existing final disposal possibilities are sufficiently well known and safe, but that they could be improved still further by future development work. The residual hazard potential of radioactive wastes from fuel reprocessing after about 1000 years of storage is lower that of known inorganic core deposits.

  8. Mechanism of mechanochemical synthesis of complex oxides and the peculiarities of their nano-structurization determining sintering

    Directory of Open Access Journals (Sweden)

    Zyryanov V.V.

    2005-01-01

    Full Text Available A mechanism of superfast mechanosynthesis reaction for oxide systems is proposed on the base of a dynamics study. The threshold effect and linear dependence of the chemical response on the effective temperature of the reaction zone are established. Major factors are determined: molecular mass of reagents, enthalpy and difference of reagents in Mohs’s hardness, which also influence the composition of the primary product. Primary acts are characterized by a superfast roller mechanism of mass transfer with the formation of a transient dynamic state (D*. Secondary acts slowly approximate the composition of the product to the composition of the starting mixture by diffusion mass transfer in a deformation mixing regime with a contribution of a rotation (roller mechanism. The list of structure types for complex oxides derived by mechanosynthesis includes perovskites, fluorites, pyrochlors, sheelites, and some other ones. Powders of crystal products display multilevel structurization. In all studied complex oxides strong disordering of the “anti-glass” type was observed. The mechanism of sintering was studied in BaTiO3 powders of different origin and in metastable complex oxides derived by mechanosynthesis. The major contribution in shrinkage belongs to rearrangements of crystalline particles as a whole. Structure transformations accompany, as a rule, sintering of inhomogeneous powders derived by mechanosynthesis.

  9. Bisphenol A; Final Test Rule

    Science.gov (United States)

    EPA is issuing a final rule, under section 4 of the Toxic Substances Control Act (TSCA) requiring manufacturers and processors of bisphenol A, hereinafter BPA, (4.4’-isopropylidenediphenol, CAS No. 80-05—7) to conduct a 90-day inhalation study.

  10. MINIMARS conceptual design: Final report

    International Nuclear Information System (INIS)

    Lee, J.D.

    1986-09-01

    This volume contains the following sections: (1) fueling systems; (2) blanket; (3) alternative blanket concepts; (4) halo scraper/direct converter system study and final conceptual design; (5) heat-transport and power-conversion systems; (6) tritium systems; (7) minimars air detritiation system; (8) appropriate radiological safety design criteria; and (9) cost estimate

  11. SLC Final Performance and Lessons

    International Nuclear Information System (INIS)

    Phinney, Nan

    2000-01-01

    The Stanford Linear Collider (SLC) was the first prototype of a new type of accelerator, the electron-positron linear collider. Many years of dedicated effort were required to understand the physics of this new technology and to develop the techniques for maximizing performance. Key issues were emittance dilution, stability, final beam optimization and background control. Precision, non-invasive diagnostics were required to measure and monitor the beams throughout the machine. Beam-based feedback systems were needed to stabilize energy, trajectory, intensity and the final beam size at the interaction point. variety of new tuning techniques were developed to correct for residual optical or alignment errors. The final focus system underwent a series of refinements in order to deliver sub-micron size beams. It also took many iterations to understand the sources of backgrounds and develop the methods to control them. The benefit from this accumulated experience was seen in the performance of the SLC during its final run in 1997-98. The luminosity increased by a factor of three to 3*10 30 and the 350,000 Z data sample delivered was nearly double that from all previous runs combined

  12. Final storage of radioactive waste

    International Nuclear Information System (INIS)

    Ziehm, Cornelia

    2015-01-01

    As explained in the present article, operators of nuclear power plants are responsible for the safe final disposal of the radioactive wastes they produce on the strength of the polluter pays principle. To shift the burden of responsibility for safe disposal to society as a whole would violate this principle and is therefore not possible. The polluter pays principle follows from more general principles of the fair distribution of benefits and burdens. Instances of its implementation are to be found in the national Atomic Energy Law as well as in the European Radioactive Waste and Spent Fuel Management Directive. The polluters in this case are in particular responsible for financing the installation and operation of final disposal sites. The reserves accumulated so far for the decommissioning and dismantling of nuclear power plants and disposal of radioactive wastes, including the installation and operation of final disposal sites, should be transferred to a public-law fund. This fund should be supplemented by the polluters to cover further foreseeable costs not covered by the reserves accumulated so far, including a realistic cost increase factor, appropriate risk reserves as well as the costs of the site selection procedure and a share in the costs for the safe closure of the final disposal sites of Morsleben and Asse II. This would merely be implementing in the sphere of atomic law that has long been standard practice in other areas of environmental law involving environmental hazards.

  13. CLIC crab cavity final report

    CERN Document Server

    Burt, G et al

    2013-01-01

    A high gradient 12 GHz, normal‐conducting travelling‐wave structure, with a high group‐velocity to minimise the effects of beam loading, has been developed. Appropriate input coupler and wakefield damping processes have been incorporated and two ‘undamped’ structures have been fabricated, one in the UK by Shakespeare Engineering Ltd and the other by VDL at CERN. Systematic high gradient tests are planned at SLAC and CERN, to study breakdown differences between deflecting and accelerating structures.

  14. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  15. NONLINEAR DYNAMICAL SYSTEMS - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Philip Holmes

    2005-12-31

    This document is the final report on the work completed on DE-FG02-95ER25238 since the start of the second renewal period: Jan 1, 2001. It supplements the annual reports submitted in 2001 and 2002. In the renewal proposal I envisaged work in three main areas: Analytical and topological tools for studying flows and maps Low dimensional models of fluid flow Models of animal locomotion and I describe the progess made on each project.

  16. Exterior insulating shutter final prototype design. Final report, Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Dike, G.A.; Kinney, L.F.

    1982-12-01

    The final prototype shutter described uses sliding panels composed of inch-thick thermax sandwiched between 60 mil thick ultraviolet-resistant plastic on the outside, and 20 mil stryrene on the inside. The shuter system was shown to have an effective R-value of 6 using ASHRAE procedures to convert from still air conditions to 15 mph wind conditions in a simulated cold environment. Tests were performed for cyclical operation, vulnerability to ice and wind, thermal performance, and air infiltration. Marketing efforts are described. Cost effectiveness is determined via present value analysis. (LEW)

  17. The Structural Integrity Centre

    International Nuclear Information System (INIS)

    Tomkins, B.

    1987-01-01

    The paper concerns the development and work of the Structural Integrity Centre (SIC) at Risley Nuclear Laboratories, United Kingdom. The centre was set up to provide authoritative advice to plant designers and operators on the integrity and life assessment of structures and components across the reactor projects in the United Kingdom. A description is given of the structure and role of the SIC, as well as the Structural Integrity Assessment work. The assessment methods are described for thermally loaded structures and welded structures. Finally, defect significance assessment and environmental effects are outlined. (U.K.)

  18. Final Report: Correctness Tools for Petascale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Mellor-Crummey, John [Rice Univ., Houston, TX (United States)

    2014-10-27

    In the course of developing parallel programs for leadership computing systems, subtle programming errors often arise that are extremely difficult to diagnose without tools. To meet this challenge, University of Maryland, the University of Wisconsin—Madison, and Rice University worked to develop lightweight tools to help code developers pinpoint a variety of program correctness errors that plague parallel scientific codes. The aim of this project was to develop software tools that help diagnose program errors including memory leaks, memory access errors, round-off errors, and data races. Research at Rice University focused on developing algorithms and data structures to support efficient monitoring of multithreaded programs for memory access errors and data races. This is a final report about research and development work at Rice University as part of this project.

  19. AstroNet-II International Final Conference

    CERN Document Server

    Masdemont, Josep

    2016-01-01

    These are the proceedings of the "AstroNet-II International Final Conference". This conference was one of the last milestones of the Marie-Curie Research Training Network on Astrodynamics "AstroNet-II", that has been funded by the European Commission under the Seventh Framework Programme. The aim of the conference, and thus this book, is to communicate work on astrodynamics problems to an international and specialised audience. The results are presented by both members of the network and invited specialists. The topics include: trajectory design and control, attitude control, structural flexibility of spacecraft and formation flying. The book addresses a readership across the traditional boundaries between mathematics, engineering and industry by offering an interdisciplinary and multisectorial overview of the field.

  20. DYNAMICS OF POLYMERS AT INTERFACES; FINAL

    International Nuclear Information System (INIS)

    SMITH, G.S.; MAJEWSKI, J.

    1999-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project addresses fundamental questions concerning the behavior of polymers at interfaces: (1) What processes control the formation of an adsorbed layer on a clean surface? (2) What processes control the displacement of preadsorbed polymers? (3) Can one accurately predict the structure of polymer layers? To answer these questions, using neutron reflectivity, we have studied adsorbed layers of the polymer poly(methyl methacrylate) (PMMA) onto a quartz substrate. The polymer density profiles were derived from the neutron reflectivity data. We have shown that dry films exhibit behavior predicted by mean-field theory in that the equilibrated layer thickness scales with the molecular weight of the polymer. Also, we find that the profiles of the polymers in solution qualitatively agree with those predicted by reflected random walk (RRW) theories, yet the profiles are not in quantitative agreement

  1. Research into Flexibility Services. Final Report

    International Nuclear Information System (INIS)

    2005-03-01

    The Dutch Office for Energy Regulation (DTe) is currently investigating the Dutch gas flexibility market. DTe is concerned that Gasunie is dominant in the market. In order to take a view of Gasunie's market position, DTe needs to first define the market for gas flexibility services and then explore whether Gasunie is dominant in the market (or markets). DTe has commissioned Frontier to undertake the respective formal analysis. This report summarises the findings by Frontier. On the basis of this report and a formal consultation process, We follow a three-step approach to the study: (1) We first define the relevant markets for gas flexibility (Section 3); (2) We then analyse the structure of the markets for flexibility that we have defined (Section 4); (3) Finally, we assess whether Gasunie is dominant in the relevant markets, taking account of market shares and other competitive effects (Section 5). This document is the Final Report, which contains our views as to the market definition for gas flexibility and the position of Gasunie in the market. The remainder of this document is set out as follows: Section 2 provides an overview of aspects of the Dutch gas industry relevant to this study; Section 3 sets out our approach to defining the market and de-Mops our conclusions on the markets for gas flexibility; Section 4 provides our view as to the structure of the relevant flexibility markets as defined in Section 3; Section 5 reports our assessment as to whether Gasunie is dominant in the relevant markets, taking account of market shares and other competitive effects; Section 6 sets out our conclusions about the competitive assessment. We include three annexes that set out details related to the market definition and analysis of dominance

  2. Final amplifier design and mercury

    International Nuclear Information System (INIS)

    Rose, E.A.; Hanson, D.E.

    1991-01-01

    The final amplifier for the Mercury KrF excimer facility is being designed. The design exercise involves extensive modeling to predict amplifier performance. Models of the pulsed-power system, including a Child-Langmuir diode with closure, electron-beam energy deposition, KrF laser kinetics, amplified spontaneous emission (ASE), a time-dependent laser extraction in the presence of ASE are presented as a design package. The design exercise indicates that the energy objective of Phase I -- 100 joules -- will be met

  3. Virtualized Network Control. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Nasir [Univ. of New Mexico, Albuquerque, NM (United States)

    2013-02-01

    This document is the final report for the Virtualized Network Control (VNC) project, which was funded by the United States Department of Energy (DOE) Office of Science. This project was also informally referred to as Advanced Resource Computation for Hybrid Service and TOpology NEtworks (ARCHSTONE). This report provides a summary of the project's activities, tasks, deliverable, and accomplishments. It also provides a summary of the documents, software, and presentations generated as part of this projects activities. Namely, the Appendix contains an archive of the deliverables, documents, and presentations generated a part of this project.

  4. [Experimental nuclear physics]. Final report

    International Nuclear Information System (INIS)

    1991-04-01

    This is the final report of the Nuclear Physics Laboratory of the University of Washington on work supported in part by US Department of Energy contract DE-AC06-81ER40048. It contains chapters on giant dipole resonances in excited nuclei, nucleus-nucleus reactions, astrophysics, polarization in nuclear reactions, fundamental symmetries and interactions, accelerator mass spectrometry (AMS), ultra-relativistic heavy ions, medium energy reactions, work by external users, instrumentation, accelerators and ion sources, and computer systems. An appendix lists Laboratory personnel, a Ph. D. degree granted in the 1990-1991 academic year, and publications. Refs., 41 figs., 7 tabs

  5. [Experimental nuclear physics]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-04-01

    This is the final report of the Nuclear Physics Laboratory of the University of Washington on work supported in part by US Department of Energy contract DE-AC06-81ER40048. It contains chapters on giant dipole resonances in excited nuclei, nucleus-nucleus reactions, astrophysics, polarization in nuclear reactions, fundamental symmetries and interactions, accelerator mass spectrometry (AMS), ultra-relativistic heavy ions, medium energy reactions, work by external users, instrumentation, accelerators and ion sources, and computer systems. An appendix lists Laboratory personnel, a Ph. D. degree granted in the 1990-1991 academic year, and publications. Refs., 41 figs., 7 tabs.

  6. Size effects on structural and dielectric properties of PZT thin films at compositions around the morpho tropic phase boundary

    International Nuclear Information System (INIS)

    Lima, Elton Carvalho; Araujo, Eudes Borges; Souza Filho, Antonio Gomes de; Bdikin, Igor

    2011-01-01

    Full text: The demand for portability in consumer electronics has motivated the understanding of size effects on ferroelectric thin films. The actual comprehension of these effects in ferroelectrics is unsatisfactory, since the polarization interacts more strongly than other order parameters such as strain and charge. As a result, extrinsic effects are produced if these variables are uncontrolled and problems such as ferroelectric paraelectric phase transition at nanometers scale remains an unsolved issue. In the present work, the effects of thickness and compositional fractions on the structural and dielectric properties of PbZr 1-x Ti x O 3 (PZT) thin films were studied at a composition around the morphotropic phase boundary (x = 0.50). For this purpose, thin films with different thicknesses and different PbO excess were deposited on Si(100) and Pt=T iO 2 =SiO 2 =Si substrates by a chemical method and crystallized in electric furnace at 700 deg C for 1 hour. The effects of substrate, pyrolysis temperature and excess lead addition in the films are reported. For films with 10 mol% PbO in excess, the pyrolysis in the regime of 300 deg C for 30 minutes was observed to yield PZT pyrochlore free thin films deposited on Pt=T iO 2 =SiO 2 =Si substrate. Out this condition, the transformation from amorphous to the pyrochlore metastable phase is kinetically more favorable that a transformation to the perovskite phase, which is thermodynamically stable. Rietveld refinements based on X-ray diffraction results showed that films present a purely tetragonal phase and that this phase does not change when the film thickness decreases. The dielectric permittivity measurements showed a monoclinic → tetragonal phase transition at 198K. Results showed that the dielectric permittivity (ε) increases continuously from 257 to 463, while the thickness of the PZT films increases from 200 to 710 nm. These results suggests that interface pinning centers can be the responsible mechanism by

  7. Cathodic Protection Field Trials on Prestressed Concrete Components, Final Report

    Science.gov (United States)

    1998-01-01

    This is the final report in a study to demonstrate the feasibility of using cathodic protection (CP) on concrete bridge structures containing prestressed steel. The interim report, FHWA-RD-95-032, has more details on the installation of selected CP s...

  8. 14 CFR 1214.1105 - Final ranking.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Final ranking. 1214.1105 Section 1214.1105... Recruitment and Selection Program § 1214.1105 Final ranking. Final rankings will be based on a combination of... preference will be included in this final ranking in accordance with applicable regulations. ...

  9. Final disposition of MTR fuel

    International Nuclear Information System (INIS)

    Jonnson, Erik B.

    1996-01-01

    The final disposition of power reactor fuel has been investigated for a long time and some promising solutions to the problem have been shown. The research reactor fuels are normally not compatible with the zirkonium clad power reactor fuel and can thus not rely on the same disposal methods. The MTR fuels are typically Al-clad UAl x or U 3 Si 2 , HEU resp. LEU with essentially higher remaining enrichment than the corresponding power reactor fuel after full utilization of the uranium. The problems arising when evaluating the conditions at the final repository are the high corrosion rate of aluminum and uranium metal and the risk for secondary criticality due to the high content on fissionable material in the fully burnt MTR fuel. The newly adopted US policy to take back Foreign Research Reactor Spent Fuel of US origin for a period of ten years have given the research reactor society a reasonable time to evaluate different possibilities to solve the back end of the fuel cycle. The problem is, however, complicated and requires a solid engagement from the research reactor community. The task would be a suitable continuation of the RERTR program as it involves both the development of new fuel types and collecting data for the safe long-term disposal of the spent MTR fuel. (author)

  10. Interim and final storage casks

    International Nuclear Information System (INIS)

    Stumpfrock, L.; Kockelmann, H.

    2012-01-01

    The disposal of radioactive waste is a huge social challenge in Germany and all over the world. As is well known the search for a site for a final repository for high-level waste in Germany is not complete. Therefore, interim storage facilities for radioactive waste were built at plant sites in Germany. The waste is stored in these storage facilities in appropriate storage and transport casks until the transport in a final repository can be carried out. Licensing of the storage and transport casks aimed for use in the public space is done according to the traffic laws and for handling in the storage facility according to nuclear law. Taking into account the activity of the waste to be stored, different containers are in use, so that experience is available from the licensing and operation in interim storage facilities. The large volume of radioactive waste to be disposed of after the shut-down of power generation in nuclear power stations makes it necessary for large quantities of licensed storage and transport casks to be provided soon.

  11. Space tug applications. Final report

    International Nuclear Information System (INIS)

    1996-01-01

    This article is the final report of the conceptual design efforts for a 'space tug'. It includes preliminary efforts, mission analysis, configuration analysis, impact analysis, and conclusions. Of the several concepts evaluated, the nuclear bimodal tug was one of the top candidates, with the two options being the NEBA-1 and NEBA-3 systems. Several potential tug benefits were identified during the mission analysis. The tug enables delivery of large (>3,500 kg) payloads to the outer planets and it increases the GSO delivery capability by 20% relative to current systems. By providing end of life disposal, the tug can be used to extend the life of existing space assets. It can also be used to reboost satellites which were not delivered to their final orbit by the launch system. A specific mission model is the key to validating the tug concept. Once a mission model can be established, mission analysis can be used to determine more precise propellant quantities and burn times. In addition, the specific payloads can be evaluated for mass and volume capability with the launch systems. Results of the economic analysis will be dependent on the total years of operations and the number of missions in the mission model. The mission applications evaluated during this phase drove the need for large propellant quantities and thus did not allow the payloads to step down to smaller and less expensive launch systems

  12. Les structures et le mobilier du site d’habitat Hallstatt final-La Tène ancienne d'Allaines Mervilliers (Eure-et-Loir Buildings and effects from the hallstatt D-Early La Tène site of Allaines Mervilliers (Eure-et-Loir

    Directory of Open Access Journals (Sweden)

    Diane Casadei

    2006-12-01

    Full Text Available Découverte de structures d’habitat sur poteaux et d’une fosse Hallstatt final-La Tène ancienne dans le cadre d’une opération d’archéologie préventive en 1998, à Allaines Mervilliers (Eure-et-Loir. Il s’agit de deux bâtiments rectangulaires à six trous de poteau, d’un bâtiment rectangulaire à trois nefs et d’un bâtiment circulaire. Ces deux derniers sont inédits pour cette époque en région Centre. Le bâtiment rectangulaire à trois nefs est composé de deux rangées centrales de trois trous de poteau et de deux rangées latérales de quatre trous de poteau. Les trous de poteau centraux présentent un remplissage stratifié dont la couche supérieure a livré l’essentiel de l’abondant mobilier découvert. On décompte par exemple dans les vestiges en céramique 56 individus-vases différents. Le bâtiment circulaire est composé d’une couronne de neuf trous de poteau présentant également un remplissage stratifié. On a découvert moins de mobilier dans cette structure que dans le bâtiment précédent, mais il se singularise aussi par la présence d’ossements humains.The discovery of settlement structureson posts and of a pit Hallstatt D-early La Tène during a rescue archaeology operation in 1998, in Allaines Mervilliers (Eure-et-Loir. It concerned two rectangular buildings of six post holes, a rectangular building in three naves and a circular building. The latter two are new for this period in the Centre region.The rectangular building in three naves consisted of two central rows of three post holes and two lateral rows of four post holes. The central holes of post introduce a stratified fill, the upper layer of which produced the majority of the abundant finds. From the ceramic remains it was estimated that there were fifty-six individuals in different vases. The circular building consisted of a ring of nine post holes also producing a stratified fill. Fewer articles were discovered in this structure than

  13. Synthesis of BZN-(α) and BZN-(β) pyrochloric ceramics by the solid state relation; Sintese das ceramicas pirocloricas BZN-α e BZN-β pela relacao em estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Farias, F.C.; Alves, A.G.; Alves, Y.M.; Pereira, F.M.M.; Barroso, M.B., E-mail: werleyfarias@gmail.com [Universidade Federal do Cariri (UFCA), Juazeiro do Norte, CE (Brazil); Pereira, C.A.; Saraiva, I.R. [Faculdade DeVry Fanor (FANOR), Fortaleza, CE (Brazil); Conde, W.S.; Sombra, A.B. [Laboratorio de Telecomunicacoes e Ciencia e Engenharia de Materiais (LOCEM), CE (Brazil)

    2016-07-01

    The ceramics the base of Bi{sub 2}O{sub 3}-ZnO-Nb{sub 2}O{sub 5} (BZN) have two main phases, Bi{sub 1,5}ZnNb{sub 1,5}O{sub 7} (α) and Bi{sub 2}Zn{sub 2/3}Nb{sub 4/3}O{sub 7} (β) with cubic and monoclinic crystal structures, respectively. This study was aimed to summarize the BZN-α phase and BZN-β chemically homogeneous and observe the phase transformations that occur in the system, using the ceramic method. They were characterized by scanning electron microscopy (SEM), X-Ray Diffraction (XRD), and the Rietveld method in structural refinement and Infrared Spectroscopy. The BZN-α phase is presented in pure sintering temperatures used, although BZN-β phase has brought the remaining stages of its formation process, as Bi{sub 5}Nb{sub 3}O{sub 15} and BiNbO{sub 4}. For BZN-α were observed absorptions at 469 and 328 cm{sup -1}, attributed to the metal-oxygen stretch the BZN-β showed absorption bands at wavelengths of 601, 515, 447 and 328 cm{sup -1}, also being assigned metal-oxygen bond. (author)

  14. Workplace immersion in the final year of an undergraduate medicine course: the views of final year students and recent graduates.

    Science.gov (United States)

    Sen Gupta, Tarun; Hays, Richard; Woolley, Torres; Kelly, Gill; Jacobs, Harry

    2014-06-01

    Most medical schools require formal competence assessment of students immediately prior to graduation, but variation exists in the approach to endpoint assessments. This article reports perceptions of senior students and graduates from a school with a six-year program which has introduced final year workplace immersion placements following a barrier examination at the end of the penultimate Year 5. Final year students (22) and recent graduates (4) attended focus groups and in-depth interviews exploring their perceptions of the value of the curriculum experience during the final two years, the structure and timing of assessment, and their preparation for internship. Participants felt that the penultimate year was more pressured, and focused on passing "artificial" examinations. In contrast, the final year was more relaxed, building skills for postgraduate work and later career development. As a result, students felt well prepared for internship with some indication that the self-directed nature of the final year promoted a lifelong learning approach. The final year workplace immersion model was regarded positively by senior students of this medical school. This model may be a better way of preparing students to be junior doctors than a traditional final year heavy on theoretical learning and assessment.

  15. Preliminary study Malaa. Final report

    International Nuclear Information System (INIS)

    1996-03-01

    Factors of importance for a possible localization of a deep nuclear waste repository at Malaa in northern Sweden are mapped in this study. The geologic structures in the area have been reviewed, mostly from already existing knowledge. Existing infrastructure and necessary improvements are discussed, as well as land use and environment, employment and other social effects. 47 refs, 41 figs, 8 tabs

  16. Regulation - renewable energies finally liberated?

    International Nuclear Information System (INIS)

    Blosseville, Thomas

    2016-01-01

    Within the context defined by the new French policy for energy transition, notably in terms of share of renewable energies in final energy consumption, France seems to be somehow late in the development of these energies: about 1 GW of wind energy are installed each year when the expected pace would be 1,5 GW, and the photovoltaic market is shrinking. As the legal context is important, this article proposes an overview of the evolution of the French policy during the last four years which started with interesting measures. Recently, the government showed its will to liberate renewable energies from several constraints. Some legal procedures tend to slow down the development. Some advances could therefore be made, for example to make rules less complex and numerous. The different situations of the wind and biogas sectors are evoked, as well as new opportunities created by a new decree on investment planning

  17. UMTRA project: Canonsburg final design

    International Nuclear Information System (INIS)

    Thiers, G.R.; Guros, F.B.; Smith, E.S.

    1984-01-01

    Final design for on-site stabilization of over 300,000 cubic yards of abandoned mill tailings in Canonsburg, Pennsylvania, is being completed this Fall. This paper describes design criteria, design procedures, and difficulties encountered for the following required elements: 1. Encapsulation cell; 2. Durability of erosion protection material; 3. Flood control berm; 4. Sedimentation pond; 5. Wastewater treatment plant. The 70,000 cubic yards of the tailings for which radiation levels exceed 100 picocuries per gram will be placed on a 2-ft-thick compacted clay liner and encased by a 3-ft-thick compacted clay cover. The remaining tailings will be covered with at least two feet of clay to prevent radon escape and to reduce rainfall infiltration. Erosion protection will be provided for the encapsulation cell, the drainage swales, and from potential meandering of nearby Chartiers Creek

  18. Final strip mine regs released

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-12

    The final interim surface mining regulations were published by the Office of Surface Mining on 12 December. Among the requirements are that the operation should minimize disturbances to the prevailing hydrological balance in order to prevent long-term adverse changes in water quality and quantity, in the depth of ground water and in the location of surface water drainage channels. Regulations for sedimentation ponds are retained but exemption may be granted to allow the pH to rise above 9 if manganese levels (4 mg/l) cannot be met. The 24-hour frequency event for which effluent limitations must be applied has been reduced from 25 years to 10 years. Large sedimentation ponds must be constructed to withstand, at a minimum, a 100-year frequency, 6-hour duration storm. The regulations are to take effect on the 3rd of May 1978.

  19. Phase I Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xijia [National Energy Technology Lab. (NETL), Albany, OR (United States); Fetvedt, Jeremy [National Energy Technology Lab. (NETL), Albany, OR (United States); Dimmig, Walker [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2017-10-15

    This Final Scientific Report addresses the accomplishments achieved during Phase I of DE- FE0023985, Coal Syngas Combustor Development for Supercritical CO2 Power Cycles. The primary objective of the project was to develop a coal syngas-fueled combustor design for use with high-pressure, high-temperature, oxy-fuel, supercritical CO2 power cycles, with particular focus given to the conditions required by the Allam Cycle. The primary goals, from the Statement of Project Objectives, were to develop: (1) a conceptual design of a syngas-fueled combustor-turbine block for a 300MWe high-pressure, oxy-fuel, sCO2 power plant; (2) the preliminary design of a 5MWt test combustor; and (3) the definition of a combustor test program. Accomplishments for each of these goals are discussed in this report.

  20. Transparent nanoscale floating gate memory using self-assembled bismuth nanocrystals in Bi(2) Mg(2/3) Nb(4/3) O(7) (BMN) pyrochlore thin films grown at room temperature.

    Science.gov (United States)

    Jung, Hyun-June; Yoon, Soon-Gil; Hong, Soon-Ku; Lee, Jeong-Yong

    2012-07-03

    Bismuth nanocrystals for a nanoscale floating gate memory device are self-assembled in Bi(2) Mg(2/3) Nb(4/3) O(7) (BMN) dielectric films grown at room temperature by radio-frequency sputtering. The TEM cross-sectional image shows the "real" structure grown on a Si (001) substrate. The image magnified from the dotted box (red color) in the the cross-sectional image clearly shows bismuth nanoparticles at the interface between the Al(2) O(3) and HfO(2) layer (right image). Nanoparticles approximately 3 nm in size are regularly distributed at the interface. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. French Modular Impoundment: Final Cost and Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Drown, Peter [French Development Enterprises, LLC, North Billerica, MA (United States); French, Bill [French Development Enterprises, LLC, North Billerica, MA (United States)

    2017-05-17

    This report comprises the Final Cost and Performance Report for the Department of Energy Award # EE0007244, the French Modular Impoundment (aka the “French Dam”.) The French Dam is a system of applying precast modular construction to water control structures. The “French Dam” is a term used to cover the construction means/methods used to construct or rehabilitate dams, diversion structures, powerhouses, and other hydraulic structures which impound water and are covered under FDE’s existing IP (Patents # US8414223B2; US9103084B2.)

  2. UV laser micromachining of piezoelectric ceramic using a pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    Zeng, D.W.; Xie, C.S.; Li, K.; Chan, H.L.W.; Choy, C.L.; Yung, K.C.

    2004-01-01

    UV laser (λ=355 nm) ablation of piezoelectric lead zirconate titanate (PZT) ceramics in air has been investigated under different laser parameters. It has been found that there is a critical pulse number (N=750). When the pulse number is smaller than the critical value, the ablation rate decreases with increasing pulse number. Beyond the critical value, the ablation rate becomes constant. The ablation rate and concentrations of O, Zr and Ti on the ablated surface increase with the laser fluence, while the Pb concentration decreases due to the selective evaporation of PbO. The loss of the Pb results in the formation of a metastable pyrochlore phase. ZrO 2 was detected by XPS in the ablated zone. Also, the concentrations of the pyrochlore phase and ZrO 2 increase with increasing laser fluence. These results clearly indicate that the chemical composition and phase structure in the ablated zone strongly depend on the laser fluence. The piezoelectric properties of the cut PZT ceramic samples completely disappear due to the loss of the Pb and the existence of the pyrochlore phase. After these samples were annealed at 1150 C for 1 h in a PbO-controlled atmosphere, their phase structure and piezoelectric properties were recovered again. Finally, 1-3 and concentric-ring 2-2 PZT/epoxy composites were fabricated by UV laser micromachining and their thickness modes were measured by impedance spectrum analysis and a d 33 meter. Both composites show high piezoelectric properties. (orig.)

  3. Northeast Oregon Hatchery Project final siting report. Final report

    International Nuclear Information System (INIS)

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed

  4. Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Mark A.; Ebbinghaus, Bartley B.; Navrotsky, Alexandra

    2001-03-01

    The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpies of formation of actinide substituted zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stabilities of these materials.

  5. Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms - Final Report

    International Nuclear Information System (INIS)

    Williamson, Mark A.; Ebbinghaus, Bartley B.; Navrotsky, Alexandra

    2001-01-01

    The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpies of formation of actinide substituted zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stabilities of these materials

  6. Technical Report --Final Work Accomplishment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Heui

    2007-11-19

    The main goal of this project was to understand the solution structure of nonlinear boundary value problems arising in self-similar solutions of nonlinear systems of multidimensional conservation laws. This project further extended to study on biocomplex systems including Morphogen gradients systems (reaction-diffusion systems) and tumor growth and its treatment model problems (free boundary, conservation of mass and reaction-diffusion systems). The list of publications and the summary of those publications are listed.

  7. Final Report: ''Energetics of Nanomaterials''

    International Nuclear Information System (INIS)

    Navrotsky, Alexandra; Ross, Nancy; Woodfield, Brian F

    2016-01-01

    Nanomaterials, solids with very small particle size, form the basis of new technologies that are revolutionizing fields such as energy, lighting, electronics, medical diagnostics, and drug delivery. These nanoparticles are different from conventional bulk materials in many ways we do not yet fully understand. This project focused on their structure and thermodynamics and emphasized the role of water in nanoparticle surfaces. Using a unique and synergistic combination of high-tech techniques-namely oxide melt solution calorimetry, cryogenic heat capacity measurements, and inelastic neutron scattering-this work has identified differences in structure, thermodynamic stability, and water behavior on nanoparticles as a function of composition and particle size. The systematics obtained increase the fundamental understanding needed to synthesize, retain, and apply these technologically important nanomaterials and to predict and tailor new materials for enhanced functionality, eventually leading to a more sustainable way of life. Highlights are reported on the following topics: surface energies, thermochemistry of nanoparticles, and changes in stability at the nanoscale; heat capacity models and the gapped phonon spectrum; control of pore structure, acid sites, and thermal stability in synthetic γ-aluminas; the lattice contribution is the same for bulk and nanomaterials; and inelastic neutron scattering studies of water on nanoparticle surfaces.

  8. Structural dynamics

    CERN Document Server

    Strømmen, Einar N

    2014-01-01

    This book introduces to the theory of structural dynamics, with focus on civil engineering structures that may be described by line-like beam or beam-column type of systems, or by a system of rectangular plates. Throughout this book the mathematical presentation contains a classical analytical description as well as a description in a discrete finite element format, covering the mathematical development from basic assumptions to the final equations ready for practical dynamic response predictions. Solutions are presented in time domain as well as in frequency domain. Structural Dynamics starts off at a basic level and step by step brings the reader up to a level where the necessary safety considerations to wind or horizontal ground motion induced dynamic design problems can be performed. The special theory of the tuned mass damper has been given a comprehensive treatment, as this is a theory not fully covered elsewhere. For the same reason a chapter on the problem of moving loads on beams has been included.

  9. IRIS Final Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    M. D. Carelli

    2003-11-03

    OAK-B135 This NERI project, originally started as the Secure Transportable Autonomous Light Water Reactor (STAR-LW) and currently known as the International Reactor Innovative and Secure (IRIS) project, had the objective of investigating a novel type of water-cooled reactor to satisfy the Generation IV goals: fuel cycle sustainability, enhanced reliability and safety, and improved economics. The research objectives over the three-year (1999-2002) program were as follows: First year: Assess various design alternatives and establish main characteristics of a point design; Second year: Perform feasibility and engineering assessment of the selected design solutions; Third year: Complete reactor design and performance evaluation, including cost assessment These objectives were fully attained and actually they served to launch IRIS as a full fledged project for eventual commercial deployment. The program did not terminate in 2002 at the end of the NERI program, and has just entered in its fifth year. This has been made possible by the IRIS project participants which have grown from the original four member, two-countries team to the current twenty members, nine countries consortium. All the consortium members work under their own funding and it is estimated that the value of their in-kind contributions over the life of the project has been of the order of $30M. Currently, approximately 100 people worldwide are involved in the project. A very important constituency of the IRIS project is the academia: 7 universities from four countries are members of the consortium and five more US universities are associated via parallel NERI programs. To date, 97 students have worked or are working on IRIS; 59 IRIS-related graduate theses have been prepared or are in preparation, and 41 of these students have already graduated with M.S. (33) or Ph.D. (8) degrees. This ''final'' report (final only as far as the NERI program is concerned) summarizes the work performed

  10. Outstanding Junior Investigator Award. Final report

    International Nuclear Information System (INIS)

    Ellison, J.A.

    1995-01-01

    The OJI supported research of J. Ellison has been concentrated in two areas: study of Wγ and Zγ production at the Tevatron, which probes the trilinear boson coupling; design, fabrication and testing of silicon microstrip detectors for the D0 upgrade silicon tracking system. The Wγ analysis using data from the first D0 run (∼14 pb -1 integrated luminosity) has been completed - J. Ellison and a postdoctoral research working with him (B. Choudhary) were responsible for the muon channel analysis. This analysis is an important test of the Standard Model (SM), since it probes the nature of the WWγ coupling, which is related to the W boson magnetic dipole and electric quadrupole moments. Any deviation from the SM value of the WWγ coupling would be an indication of either composite structure of the W or higher order loop corrections involving physics beyond the SM. The analysis has resulted in the world's most sensitive limits on the WWγ coupling parameters. In addition the author has also worked on an analysis of Zγ production which has yielded sensitive limits on the ZZγ and Zγγ couplings. The work on the D0 Silicon Tracker has also made very good progress. The team led by J. Ellison includes two postdoctoral researchers (A. Bischoff and C. Boswell), one graduate student (M. Mason) and three undergraduate students. They have fully evaluated proptotype detectors which were designed at UCR and have completed a detailed simulation study of the detector performance for different strip geometries. The results were used to optimize the design of the final D0 detectors, for which UR has sole responsibility. The author has completed the mask design for the 3-chip barrel detectors and production of the final detectors as now begun

  11. Spacecraft fabrication and test MODIL. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T.T.

    1994-05-01

    This report covers the period from October 1992 through the close of the project. FY 92 closed out with the successful briefing to industry and with many potential and important initiatives in the spacecraft arena. Due to the funding uncertainties, we were directed to proceed as if our funding would be approximately the same as FY 92 ($2M), but not to make any major new commitments. However, the MODIL`s FY 93 funding was reduced to $810K and we were directed to concentrate on the cryocooler area. The cryocooler effort completed its demonstration project. The final meetings with the cryocooler fabricators were very encouraging as we witnessed the enthusiastic reception of technology to help them reduce fabrication uncertainties. Support of the USAF Phillips Laboratory cryocooler program was continued including kick-off meetings for the Prototype Spacecraft Cryocooler (PSC). Under Phillips Laboratory support, Gill Cruz visited British Aerospace and Lucas Aerospace in the United Kingdom to assess their manufacturing capabilities. In the Automated Spacecraft & Assembly Project (ASAP), contracts were pursued for the analysis by four Brilliant Eyes prime contractors to provide a proprietary snap shot of their current status of Integrated Product Development. In the materials and structure thrust the final analysis was completed of the samples made under the contract (``Partial Automation of Matched Metal Net Shape Molding of Continuous Fiber Composites``) to SPARTA. The Precision Technologies thrust funded the Jet Propulsion Laboratory to prepare a plan to develop a Computer Aided Alignment capability to significantly reduce the time for alignment and even possibly provide real time and remote alignment capability of systems in flight.

  12. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Science.gov (United States)

    2010-07-01

    ... coolers, and final-cooler cooling towers. 61.134 Section 61.134 Protection of Environment ENVIRONMENTAL... Standard: Naphthalene processing, final coolers, and final-cooler cooling towers. (a) No (“zero”) emissions are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke by...

  13. Vibration-based structural health monitoring of harbor caisson structure

    Science.gov (United States)

    Lee, So-Young; Lee, So-Ra; Kim, Jeong-Tae

    2011-04-01

    This study presents vibration-based structural health monitoring method in foundation-structure interface of harbor caisson structure. In order to achieve the objective, the following approaches are implemented. Firstly, vibration-based response analysis method is selected and structural health monitoring (SHM) technique is designed for harbor caisson structure. Secondly, the performance of designed SHM technique for harbor structure is examined by FE analysis. Finally, the applicability of designed SHM technique for harbor structure is evaluated by dynamic tests on a lab-scaled caisson structure.

  14. Final storage of radioactive waste

    International Nuclear Information System (INIS)

    Albrecht, E.; Kolditz, H.; Thielemann, K.; Duerr, K.; Klarr, K.; Kuehn, K.; Staupendahl, G.; Uerpmann, E.P.; Bechthold, W.; Diefenbacher, W.

    1974-12-01

    The present report - presented by the Gesellschaft fuer Strahlen- und Umweltforschung mbH, Muenchen in cooperation with the Gesellschaft fuer Kernforschung mbH, Karlsruhe - gives a survey of the 1973 work in the field of final storage of radioactive wastes. The mining and constructional work carried out aboveground and underground in the saline of Asse near Remlingen with a view to repair, maintenance and expansion for future tasks is discussed. Storage of slightly active wastes on the 750 m floor and the tentative storage of medium-activity wastes on the 490 m floor were continued in the time under review. In September, the multiple transport container S 7 V, developped in the GfK for transports of 7 200 l iron-hooped drums containing medium activity wastes, were employed in Asse for the first time. With two transports a week between Karlsruhe Nuclear Research Centre and the Asse mine, 14 drums were stored per week with a total of 233 drums at the end of the year. The report also gives information on the present state of research in the fields of mountain engineering geology and hydrology, and its results. In addition, new storage methods are mentioned which are still in the planning stage. (orig./AK) [de

  15. Customized PEC modules. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Martin B. (DTI, Taastrup (Denmark))

    2012-07-01

    The purpose of the project ''Customized PEC modules'' was to move from the production hand-made individual DSCs (dye-sensitized solar cells) in the laboratory to the production of DSC modules in a semi-automated process. At the same time allowing sufficient variation in the product's specification for real tailoring of the product to the application. The tailoring can be related to the module's electrical output and size, but also to the possibility of designing patterns for decoration or communication purposes by playing around with the shape, size and layout of the individual cells forming the module. This was to be accomplished mainly by screen printing of DSC components on glass substrates at Mekoprint. For reaching this goal the work was divided into a number of steps. The central part of the work done was in the initial conception activity and the following manufacturing activity. An activity regarding optimization included several tasks of optimization and adaptation of the existing laboratory process for manufacturing of the DSCs. Finally, work focused on international activities was done. All the steps needed for the production of customized DSC modules have been demonstrated in this project. In combination with the development of a high performing printable sealant and sealing method all the prerequisites for producing customized DSC modules have been demonstrated. (LN)

  16. Archaeology audit program final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-04-15

    In order to review oil and gas companies' archaeological management systems, the British Columbia Oil and Gas Commission (OGC) introduced its archaeology audit program (AAP) in April 2008. As part of this audit, twenty six oil and gas companies were selected for an office documentation review and a corresponding field audit. This document presented and described these audit results. The purpose of the final audit report was to provide information to assist oil and gas companies to improve their management systems by increasing the emphasis of the preservation of cultural resources. This report presented an overview of the AAP scope and methodology and provided examples from the audit of both good management practices encountered and practices in which opportunities for improvement to archaeological management systems could be implemented. Recommendations to address improvement opportunities were also discussed. It was concluded that the oil and gas companies subject to the audit were found to have met or exceeded OGC expectations for maintaining archaeological management systems. 2 tabs., 7 figs.

  17. Final disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1995-10-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK).

  18. Final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK)

  19. Lithium Oxysilicate Compounds Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Apblett, Christopher A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coyle, Jaclyn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    In this study, the structure and composition of lithium silicate thin films deposited by RF magnetron co-sputtering is investigated. Five compositions ranging from Li2Si2O5 to Li8SiO6 were confirmed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and structure analysis on the evolution of non-bridging oxygens in the thin films was conducted with fourier transform infrared (FTIR) spectroscopy. It was found that non-bridging oxygens (NBOs) increased as the silicate network breaks apart with increasing lithium content which agrees with previous studies on lithium silicates. Thin film impurities were examined with x-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectroscopy (TOFSIMS) and traced back to target synthesis. This study utilizes a unique synthesis technique for lithium silicate thin films and can be referred to in future studies on the ionic conductivity of lithium silicates formed on the surface of silicon anodes in lithium ion batteries.

  20. 32 CFR 536.64 - Final offers.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Final offers. 536.64 Section 536.64 National... UNITED STATES Investigation and Processing of Claims § 536.64 Final offers. (a) When claims personnel... less than the amount claimed, a settlement authority will make a written final offer within his or her...