WorldWideScience

Sample records for pyritic ash-flow tuff

  1. Pyritic ash-flow tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Castor, S.B.; Tingley, J.V.; Bonham, H.F. Jr.

    1994-01-01

    The Yucca Mountain site is underlain by a 1,500-m-thick Miocene volcanic sequence that comprises part of the southwestern Nevada volcanic field. Rocks of this sequence, which consists mainly of ash-flow tuff sheets with minor flows and bedded tuff, host precious metal mineralization in several areas as near as 10 km from the site. In two such areas, the Bullfrog and Bare Mountain mining districts, production and reserves total over 60 t gold and 150 t silver. Evidence of similar precious metal mineralization at the Yucca Mountain site may lead to mining or exploratory drilling in the future, compromising the security of the repository. The authors believe that most of the pyrite encountered by drilling at Yucca Mountain was introduced as pyroclastic ejecta, rather than by in situ hydrothermal activity. Pyritic ejecta in ash-flow tuff are not reported in the literature, but there is no reason to believe that the Yucca Mountain occurrence is unique. The pyritic ejecta are considered by us to be part of a preexisting hydrothermal system that was partially or wholly destroyed during eruption of the tuff units. Because it was introduced as ejecta in tuff units that occur at depths of about 1,000 m, such pyrite does not constitute evidence of shallow mineralization at the proposed repository site; however, the pyrite may be evidence for mineralization deep beneath Yucca Mountain or as much as tens of kilometers from it

  2. Pena Blanca uranium deposits and ash-flow tuffs relationship

    International Nuclear Information System (INIS)

    Magonthier, M.

    1987-01-01

    The Pena Blanca uranium deposits (Chihuahua, Mexico) are associated with a Tertiary sequence of ash-flow tuffs. Stratigraphic control is dominant and uranium mineralization occurs in stratiform and fracture-controlled deposits within 44 My-old units: Nopal Rhyolite and Escuadra Rhyolite. These units consist of highly vapor-phase crystallized ash-flow tuffs. They contain sanidine, quartz and granophyric phenocrysts, and minor ferromagnesian silicates. Nopal and Escuadra units are high-silica alkali-rich rhyolites that have a primary potassic character. The trace-element chemistry shows high concentrations in U-Th-Rb-Cs and low contents in Ba-Sr-Eu. These chemical properties imply a genetic relationship between deposits and host-units. The petrochemical study show that the Nopal Rhyolite and Escuadra Rhyolite are the source of U and of hydrothermal solutions [fr

  3. Magmatism, ash-flow tuffs, and calderas of the ignimbrite flareup in the western Nevada volcanic field, Great Basin, USA

    Science.gov (United States)

    Christopher D. Henry,; John, David A.

    2013-01-01

    The western Nevada volcanic field is the western third of a belt of calderas through Nevada and western Utah. Twenty-three calderas and their caldera-forming tuffs are reasonably well identified in the western Nevada volcanic field, and the presence of at least another 14 areally extensive, apparently voluminous ash-flow tuffs whose sources are unknown suggests a similar number of undiscovered calderas. Eruption and caldera collapse occurred between at least 34.4 and 23.3 Ma and clustered into five ∼0.5–2.7-Ma-long episodes separated by quiescent periods of ∼1.4 Ma. One eruption and caldera collapse occurred at 19.5 Ma. Intermediate to silicic lavas or shallow intrusions commonly preceded caldera-forming eruptions by 1–6 Ma in any specific area. Caldera-related as well as other magmatism migrated from northeast Nevada to the southwest through time, probably resulting from rollback of the formerly shallow-dipping Farallon slab. Calderas are restricted to the area northeast of what was to become the Walker Lane, although intermediate and effusive magmatism continued to migrate to the southwest across the future Walker Lane.Most ash-flow tuffs in the western Nevada volcanic field are rhyolites, with approximately equal numbers of sparsely porphyritic (≤15% phenocrysts) and abundantly porphyritic (∼20–50% phenocrysts) tuffs. Both sparsely and abundantly porphyritic rhyolites commonly show compositional or petrographic evidence of zoning to trachydacites or dacites. At least four tuffs have volumes greater than 1000 km3, with one possibly as much as ∼3000 km3. However, the volumes of most tuffs are difficult to estimate, because many tuffs primarily filled their source calderas and/or flowed and were deposited in paleovalleys, and thus are irregularly distributed.Channelization and westward flow of most tuffs in paleovalleys allowed them to travel great distances, many as much as ∼250 km (original distance) to what is now the western foothills of the

  4. High-temperature, large-volume, lavalike ash-flow tuffs without calderas in southwestern Idaho

    Science.gov (United States)

    Ekren, E.B.; McIntyre, David H.; Bennett, Earl H.

    1984-01-01

    Rhyolitic rocks were erupted from vents in and adjacent to the Owyhee Mountains and Owyhee Plateau of southwestern Idaho from 16 m.y. ago to about 10 m.y. ago. They were deposited on a highly irregular surface developed on a variety of basement rocks that include granitic rocks of Cretaceous age, quartz latite and rhyodacite tuffs and lava flows of Eocene age, andesitic and basaltic lava flows of Oligocene age, and latitic and basaltic lava flows of early Miocene age. The rhyolitic rocks are principally welded tuffs that, regardless of their source, have one feature in common-namely internal characteristics indicating en-masse, viscous lavalike flowage. The flowage features commonly include considerable thicknesses of flow breccia at the bases of various cooling units. On the basis of the tabular nature of the rhyolitic deposits, their broad areal extents, and the local preservation of pyroclastic textures at the bases, tops, and distal ends of some of the deposits, we have concluded that the rocks were emplaced as ash flows at extremely high temperatures and that they coalesced to liquids before final emplacement and cooling. Temperatures of l090?C and higher are indicated by iron-titanium oxide compositions. Rhyolites that are about 16 m.y. old are preserved mostly in the downdropped eastern and western flanks of the Silver City Range and they are inferred to have been erupted from the Silver City Range. They rarely contain more than about 2 percent phenocrysts that consist of quartz and subequal amounts of plagioclase and alkali feldspar; commonly, they contain biotite, and they are the only rhyolitic rocks in the area to do so. The several rhyolitic units that are 14 m.y. to about 10 m.y. old contain only pyroxene-principally ferriferous and intermediate pigeonites-as mafic constituents. The rhyolites of the Silver City Range comprise many cooling units, none of which can be traced for great distances. Rocks erupted from the Owyhee Plateau include two sequences

  5. Magnetism and magnetic mineralogy of ash flow tuffs from Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schlinger, C.M.; Veblen, D.R.; Rosenbaum, J.G.

    1991-01-01

    The magnetic susceptibility χ and remanent magnetization of an ash flow sheet are profoundly influenced by cooling history after emplacement. Maxima and minima in χ measured along profiles at Yucca Mountain, Nevada, identify persistent magnetic marker horizons within vitric portions of the Tiva Canyon and underlying Topopah Spring Members of the Paintbrush Tuff. The observed stratigraphic changes in magnetic properties reflect variations in amounts and mineralogy of Fe-Ti oxide phenocrysts, and the presence, shape, size, and mineralogy of magnetic Fe-oxide microcrystals that precipitated at high temperature after emplacement of each sheet. The size variations of the precipitated Fe-oxides, which were established using transmission electron microscopy (TEM) and petrographic observation, are consistent both with variations in magnetic susceptibility measured at the outcrop and with variations in the intensity of remanent magnetization. Several interpretations of the shape anisotropy of the precipitated Fe-oxide are possible, including growth by a dislocation mechanism. Additionally, the observed elongation of precipitated microcrystals is consistent with theoretical predictions for growth in a uniaxial stress field. Susceptibility variations as established at the outcrop, as well as in the borehole, offer a potentially useful tool for stratigraphic correlation of ash flow sheets

  6. A high-pyrite semianthracite of Late Permian age in the Songzao Coalfield, southwestern China: Mineralogical and geochemical relations with underlying mafic tuffs

    Science.gov (United States)

    Dai, S.; Wang, X.; Chen, W.; Li, D.; Chou, C.-L.; Zhou, Y.; Zhu, Chen; Li, H.; Zhu, Xudong; Xing, Y.; Zhang, W.; Zou, J.

    2010-01-01

    The No. 12 Coal (Late Permian) in the Songzao Coalfield, Chongqing, southwestern China, is characteristically high in pyrite and some trace elements. It is uniquely deposited directly above mafic tuff beds. Samples of coal and tuffs have been studied for their mineralogy and geochemistry using inductively coupled plasma-mass spectrometry, X-ray fluorescence, plasma low-temperature ashing plus powder X-ray diffraction, and scanning electron microscopy equipped with energy-dispersive X-ray analysis.The results show that the minerals of the No. 12 Coal are mainly composed of pyrite, clay minerals (kaolinite, chamosite, and illite), ankerite, calcite, and trace amounts of quartz and boehmite. Kaolinite and boehmite were mainly derived from sediment source region of mafic tuffs. Chamosite was formed by the reaction of kaolinite with Fe-Mg-rich fluids during early diagenesis. The high pyrite (Sp,d=8.83%) in the coal was related to marine transgression over peat deposits and abundant Fe derived from the underlying mafic tuff bed. Ankerite and calcite were precipitated from epigenetic fluids.Chemical compositions of incompatible elements indicate that the tuffs were derived from enriched mantle and the source magmas had an alkali-basalt character. Compared to other coals from the Songzao Coalfield and common Chinese coals, the No. 12 Coal has a lower SiO2/Al2O3 (1.13) but a higher Al2O3/Na2O (80.1) value and is significantly enriched in trace elements including Sc (13.5??g/g), V (121??g/g), Cr (33.6??g/g), Co (27.2??g/g), Ni (83.5??g/g), Cu (48.5??g/g), Ga (17.3??g/g), Y (68.3??g/g), Zr (444??g/g), Nb (23.8??g/g), and REE (392??g/g on average). Above mineralogical compositions, as well as similar ratios of selected elements (e.g., SiO2/Al2O3 and Al2O3/Na2O) and similar distribution patterns of incompatible elements (e.g., the mantle-normalized diagram for incompatible elements and chondrite-normalized diagram for rare earth elements) of coal and tuff, indicated that

  7. A high-pyrite semianthracite of Late Permian age in the Songzao Coalfield, southwestern China: Mineralogical and geochemical relations with underlying mafic tuffs

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shifeng; Wang, Xibo; Chen, Wenmei [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, (China); Li, Dahua [Research Center of State Key Laboratory of Coal Resources and Safe Mining, Chongqing 400042, (China); Chou, Chen-Lin [Illinois State Geological Survey (Emeritus), 615 East Peabody Drive, Champaign, IL 61820, (United States); Zhou, Yiping [Yunnan Institute of Coal Geology Prospection, Kunming 650218, (China); Zhu, Changsheng; Li, Hang [Research Center of State Key Laboratory of Coal Resources and Safe Mining, Chongqing 400042, (China); Zhu, Xingwei; Xing, Yunwei; Zhang, Weiguo; Zou, Jianhua [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, (China)

    2010-09-01

    The No. 12 Coal (Late Permian) in the Songzao Coalfield, Chongqing, southwestern China, is characteristically high in pyrite and some trace elements. It is uniquely deposited directly above mafic tuff beds. Samples of coal and tuffs have been studied for their mineralogy and geochemistry using inductively coupled plasma-mass spectrometry, X-ray fluorescence, plasma low-temperature ashing plus powder X-ray diffraction, and scanning electron microscopy equipped with energy-dispersive X-ray analysis. The results show that the minerals of the No. 12 Coal are mainly composed of pyrite, clay minerals (kaolinite, chamosite, and illite), ankerite, calcite, and trace amounts of quartz and boehmite. Kaolinite and boehmite were mainly derived from sediment source region of mafic tuffs. Chamosite was formed by the reaction of kaolinite with Fe-Mg-rich fluids during early diagenesis. The high pyrite (S{sub p,d} 8.83%) in the coal was related to marine transgression over peat deposits and abundant Fe derived from the underlying mafic tuff bed. Ankerite and calcite were precipitated from epigenetic fluids. Chemical compositions of incompatible elements indicate that the tuffs were derived from enriched mantle and the source magmas had an alkali-basalt character. Compared to other coals from the Songzao Coalfield and common Chinese coals, the No. 12 Coal has a lower SiO{sub 2}/Al{sub 2}O{sub 3} (1.13) but a higher Al{sub 2}O{sub 3}/Na{sub 2}O (80.1) value and is significantly enriched in trace elements including Sc (13.5 {mu}g/g), V (121 {mu}g/g), Cr (33.6 {mu}g/g), Co (27.2 {mu}g/g), Ni (83.5 {mu}g/g), Cu (48.5 {mu}g/g), Ga (17.3 {mu}g/g), Y (68.3 {mu}g/g), Zr (444 {mu}g/g), Nb (23.8 {mu}g/g), and REE (392 {mu}g/g on average). Above mineralogical compositions, as well as similar ratios of selected elements (e.g., SiO{sub 2}/Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}/Na{sub 2}O) and similar distribution patterns of incompatible elements (e.g., the mantle-normalized diagram for

  8. Attenuation of pyrite oxidation with a fly ash pre-barrier: Reactive transport modelling of column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, R.; Cama, J.; Nieto, J.M.; Ayora, C.; Saaltink, M.W. [University of Huelva, Huelva (Spain). Dept. of Geology

    2009-09-15

    Conventional permeable reactive barriers (PRBs) for passive treatment of groundwater contaminated by acid mine drainage (AMD) use limestone as reactive material that neutralizes water acidity. However, the limestone-alkalinity potential ceases as inevitable precipitation of secondary metal-phases on grain surfaces occurs, limiting its efficiency. In the present study, fly ash derived from coal combustion is investigated as an alternative alkalinity generating material for the passive treatment of AMD using solution-saturated column experiments. Unlike conventional systems, the utilization of fly ash in a pre-barrier to intercept the non-polluted recharge water before this water reacts with pyrite-rich wastes is proposed. Chemical variation in the columns was interpreted with the reactive transport code RETRASO. In parallel, kinetics of fly ash dissolution at alkaline pH were studied using flow-through experiments and incorporated into the model. In a saturated column filled solely with pyritic sludge-quartz sand (1: 10), oxidation took place at acidic conditions (pH 3.7). According to SO{sub 4}{sup 2-} release and pH, pyrite dissolution occurred favourably in the solution-saturated porous medium until dissolved O{sub 2} was totally consumed. In a second saturated column, pyrite oxidation took place at alkaline conditions (pH 10.45) as acidity was neutralized by fly ash dissolution in a previous level. At this pH Fe release from pyrite dissolution was immediately depleted as Fe-oxy(hydroxide) phases that precipitated on the pyrite grains, forming Fe-coatings (microencapsulation). With time, pyrite microencapsulation inhibited oxidation in practically 97% of the pyritic sludge. Rapid pyrite-surface passivation decreased its reactivity, preventing AMD production in the relatively short term.

  9. PRELIMINARY PALEOMAGNETIC RESULTS FROM OUTFLOW EOCENE-OLIGOCENE ASH FLOW TUFFS FROM THE WESTERN MARGIN OF THE SAN LUIS BASIN: IMPLICATION FOR THE KINEMATIC EVOLUTION OF THE RIO GRANDE RIFT

    Science.gov (United States)

    Mason, S. N.; Geissman, J. W.; Sussman, A. J.

    2009-12-01

    In the Rio Grande rift (RGR), a late Cenozoic continental rift from central Colorado to southern New Mexico, hanging wall margins typically contain en echelon normal fault systems with intervening areas of typically complex structure, called relay zones. Relay zones transfer displacement through complex strain patterns and eventual linkage of faults and hold clues as to how fault zones initiate and grow. The western margin of the RGR at the latitude of the San Luis basin (SLB) exposes laterally continuous Eocene-Oligocene volcanic rocks, well-correlated by 40Ar/39Ar data, and well-preserved rift structures. Ash flow tuffs are usually excellent recorders of the instantaneous geomagnetic field and five ash flow tuffs (ca. 32.3 to 27.3 Ma; including the Saguache Creek, La Jara Canyon, Masonic Park, Fish Canyon, and Carpenter Ridge tuffs) have been sampled in spatial detail along west to east transects of the eastern San Juan volcanic field to the westernmost margin of the RGR at the SLB. Data obtained from our sampling approach will yield a comprehensive definition of relative vertical-axis rotations across the area and will be used to assess the timing of RGR fault linkages. Preliminary paleomagnetic data from the Masonic Park tuff (ca. 28.2 Ma) suggest up to ~17° clockwise rotation between sample locations on the Colorado Plateau and locations to the east, nearest the western margin of the RGR. Preliminary data from the Fish Canyon tuff (ca. 27.8 Ma) show a ~12° clockwise rotation. The relative clockwise vertical-axis rotation of sampling sites in both ash flow tuffs nearest the RGR margin suggests that relay zone development with attending vertical-axis rotation played an important role in the opening of the northern RGR. Our data set is not sufficiently robust at present to test the hypothesis that rotation was taking place concurrently with eruption of these large-volume ash flow tuffs in the early Oligocene, but it is a possibility and if so, the RGR at the

  10. Stratigraphy of the Bandelier Tuff in the Pajarito Plateau. Applications to waste management

    International Nuclear Information System (INIS)

    Crowe, B.M.; Linn, G.W.; Heiken, G.; Bevier, M.L.

    1978-04-01

    The Bandelier Tuff within the Pajarito Plateau consists of a lower sequence of air-fall and ash-flow deposits (Otowi Member) disconformably overlain by an upper sequence of air-fall and ash-flow deposits (Tshirege Member). The ash-flow sequence of the Tshirege Member consists of three cooling units throughout much of the Pajarito Plateau. The lower cooling unit is formed by three to as many as six pyroclastic flow units; the middle and upper cooling units each consist of at least three pyroclastic flow units. The contact between the lower and middle cooling unit coincides with a pyroclastic flow unit contact. This horizon is a prominent stratigraphic marker within distal sections of the Tshirege Member. Major and trace element analyses of unaltered and altered samples of the Bandelier Tuff were determined by neutron activation and delayed neutron activation and delayed neutron activation techniques. Petrographic, granulometric and morphologic characteristics of the Bandelier Tuff were determined to provide background information on the suitability of the Tuff as a medium for radioactive waste disposal. The hydrologic characteristics of the Bandelier Tuff are controlled primarily by secondary features of the Tuff (cooling zones). These features vary with emplacement temperature and transport distance of the Tuff. Primary depositional features provide second order control on transport pathways in distal sections of the Tuff

  11. Fluid flow in 0.5-m scale blocks of Topopah Spring tuff

    International Nuclear Information System (INIS)

    Blair, S. C.; Carlson, S. R.; Constantino, M. S.

    1999-01-01

    A laboratory experiment was conducted on a 0.5-m scale block of Topopah Spring tuff, to measure fluid flow and mechanical deformation properties under conditions that approximate the near-field environment of a potential nuclear waste repository, and to provide an intermediate-scale test case for numerical model validation. The test specimen is a 0.25 x 0.25 x 0.50 m rectangular prism bisected by an artificial (saw-cut) fracture orthogonal to the tuff fabric. Water was supplied by a point source at the center of the fracture under various pressures of up to 0.04 MPa. Both fluid flow and mechanical properties were found to be anisotropic and strongly correlated with the ash flow fabric. Fluid mass-balance measurements revealed that only minor imbibition of water occurred through the fracture surfaces and that flow rates were independent of normal stress to 14.0 MPa and temperature to 140 C. Flow through the fracture occurred largely through uncorrelated porosity that intersected the fracture plane

  12. Degradation of Anthraquinone Dye Reactive Blue 4 in Pyrite Ash Catalyzed Fenton Reaction

    Directory of Open Access Journals (Sweden)

    Milena Becelic-Tomin

    2014-01-01

    Full Text Available Pyrite ash (PA is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4 degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH=2.5; [PA]0=0.2 g L−1; [H2O2]0=5 mM and initial RB4 concentration up to 100 mg L−1. The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes.

  13. Large scale pantelleritic ash flow eruptions during the Late Miocene in central Kenya and evidence for significant environmental impact

    NARCIS (Netherlands)

    Claessens, L.F.G.; Veldkamp, A.; Schoorl, J.M.; Wijbrans, J.R.; Gorp, van W.; MacDonald, R.

    2016-01-01

    In the area south-east of Mount Kenya, four previously unrecorded peralkaline rhyolitic (pantelleritic) ash flow tuffs have been located. These predominantly greyish welded and non-welded tuffs form up to 12 m thick units, which are sometimes characterized by a basal vitrophyre. The four flow units

  14. Geology and petrology of the Woods Mountains Volcanic Center, southeastern California: Implications for the genesis of peralkaline rhyolite ash flow tuffs

    Science.gov (United States)

    McCurry, Michael

    1988-12-01

    The Woods Mountains Volcanic Center is a middle Miocene silicic caldera complex located at the transition from the northern to the southern Basin and Range provinces of the western United States. It consists of a trachyte-trachydacite-rhyolite-peralkaline rhyolite association of lava flows, domes, plugs, pyroclastic rocks, and epiclastic breccia. Volcanism began at about 16.4 Ma, near the end of a local resurgence of felsic to intermediate magmatism and associated crustal extension. Numerous metaluminous high-K trachyte, trachydacite, and rhyolite lava flows, domes, and pyroclastic deposits accumulated from vents scattered over an area of 200 km2 forming a broad volcanic field with an initial volume of about 10 km3. At 15.8 Ma, about 80 km3 of metaluminous to mildly peralkaline high-K rhyolite ash flows were erupted from vents in the western part of fhe field in three closely spaced pulses, resulting in the formation of a trap door caldera 10 km in diameter. The ash flows formed the Wild Horse Mesa Tuff, a compositionally zoned ash flow sheet that originally covered an area of about 600 km2 to a maximum thickness of at least 320 m. High-K trachyte pumice lapilli, some of which are intimately banded with rhyolite, were produced late in the two later eruptions, Intracaldera volcanism from widely distributed vents rapidly filled the caldera with about 10 km3 of high-K, mildly peralkaline, high-silica rhyolite lava flows and pyroclastic deposits. These are interlayered with breccia derived from the caldera scarp. They are intruded by numerous compositionally similar plugs, some of which structurally uplifted and fractured the center of the caldera. The center evolved above a high-K trachyte magma chamber about 10 km in diameter that had developed and differentiated within the upper crust at about 15.8 Ma. Petrological, geochemical, and geophysical data are consistent with the idea that a cap of peralkaline rhyolite magma formed within the trachyte chamber as a result

  15. Geologic character of tuffs in the unsaturated zone at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Scott, R.B.; Spengler, R.W.; Diehl, S.; Lappin, A.R.; Chornack, M.P.

    1982-01-01

    At Yucca Mountain, a potential site for a high-level nuclear waste repository on the Nevada Test Site in southern Nevada, evaluation of the geologic setting and rock physical properties, along with previous regional hydrologic studies, has provided background that can be used for construction of a preliminary conceptual hydrologic model of the unsaturated zone. The 500-m-thick unsaturated portion of Yucca Mountain consists of alternating layers of two contrasting types of tuff. One type consists of highly fractured, densely welded, relatively nonporous but highly transmissive ash-flow tuffs. The other type consists of relatively unfractured, nonwelded, highly porous but relatively nontransmissive, argillic and zeolitic bedded tuffs and ash-flow tuffs. The contrast between these two sets of distinctive physical properties results in a stratified sequence best described as ''physical-property stratigraphy'' as opposed to traditional petrologic stratigraphy of volcanic rocks. The vast majority of recharge through the unsaturated zone is assumed to be vertical; the dominant migration may occur in fractures of densely welded tuffs and in the matrix of nonwelded tuff, but the mode of fluid flow in these unsaturated systems is undetermined. Limited lateral flow of recharge may occur at horizons where local perched water tables may exist above relatively nontransmissive zeolitized nonwelded tuffs. The pervasive north-northwest-striking fractures may control the direction of lateral flow of recharge, if any, in the unsaturated zone, and certainly that direction coincides closely with the observed southeasterly flow direction in the saturated zone under Yucca Mountain. Empirical evaluation of this conceptual hydrologic model has begun. 41 refs., 18 figs., 2 tabs

  16. Geologic character of tuffs in the unsaturated zone at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.B.; Spengler, R.W.; Diehl, S.; Lappin, A.R.; Chornack, M.P.

    1982-12-31

    At Yucca Mountain, a potential site for a high-level nuclear waste repository on the Nevada Test Site in southern Nevada, evaluation of the geologic setting and rock physical properties, along with previous regional hydrologic studies, has provided background that can be used for construction of a preliminary conceptual hydrologic model of the unsaturated zone. The 500-m-thick unsaturated portion of Yucca Mountain consists of alternating layers of two contrasting types of tuff. One type consists of highly fractured, densely welded, relatively nonporous but highly transmissive ash-flow tuffs. The other type consists of relatively unfractured, nonwelded, highly porous but relatively nontransmissive, argillic and zeolitic bedded tuffs and ash-flow tuffs. The contrast between these two sets of distinctive physical properties results in a stratified sequence best described as "physical-property stratigraphy" as opposed to traditional petrologic stratigraphy of volcanic rocks. The vast majority of recharge through the unsaturated zone is assumed to be vertical; the dominant migration may occur in fractures of densely welded tuffs and in the matrix of nonwelded tuff, but the mode of fluid flow in these unsaturated systems is undetermined. Limited lateral flow of recharge may occur at horizons where local perched water tables may exist above relatively nontransmissive zeolitized nonwelded tuffs. The pervasive north-northwest-striking fractures may control the direction of lateral flow of recharge, if any, in the unsaturated zone, and certainly that direction coincides closely with the observed southeasterly flow direction in the saturated zone under Yucca Mountain. Empirical evaluation of this conceptual hydrologic model has begun. 41 refs., 18 figs., 2 tabs.

  17. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  18. Magnetic properties and emplacement of the Bishop tuff, California

    Science.gov (United States)

    Palmer, H.C.; MacDonald, W.D.; Gromme, C.S.; Ellwood, B.B.

    1996-01-01

    Anisotropy of magnetic susceptibility (AMS) and characteristic remanence were measured for 45 sites in the 0.76 Ma Bishop tuff, eastern California. Thirty-three sites were sampled in three stratigraphic sections, two in Owens gorge south of Long Valley caldera, and the third in the Adobe lobe north of Long Valley. The remaining 12 sites are widely distributed, but of limited stratigraphic extent. Weakly indurated, highly porous to dense, welded ash-flow tuffs were sampled. Saturation magnetization vs temperature experiments indicate two principal iron oxide phases: low Ti magnetites with 525-570 ??C Curie temperatures, and maghemite with 610??-640??C Curie temperatures. AF demagnetization spectra of isothermal remanent magnetizations are indicative of magnetite/maghemite predominantly in the multidomain to pseudo-single domain size ranges. Remeasurement of AMS after application of saturating direct fields indicates that randomly oriented single-domain grains are also present. The degree of anisotropy is only a few percent, typical of tuffs. The AMS ellipsoids are oblate with Kmin axes normal to subhorizontal foliation and Kmax axes regionally aligned with published source vents. For 12 of 16 locality means, Kmax axes plunge sourceward, confirming previous observations regarding flow sense. Topographic control on flow emplacement is indicated by the distribution of tuff deposits and by flow directions inferred from Kmax axes. Deposition east of the Benton range occurred by flow around the south end of the range and through two gaps (Benton notch and Chidago gap). Flow down Mammoth pass of the Sierra Nevada is also evident. At least some of the Adobe lobe in the northeast flowed around the west end of Glass mountain. Eastward flow directions in the upper Owens gorge and southeast directions in the lower Owens gorge are parallel to the present canyon, suggesting that the present drainage has been established along the pre-Bishop paleodrainage. Characteristic remanence

  19. Measuring and Modeling Flow in Welded Fractured Tuffs

    International Nuclear Information System (INIS)

    R. Salve; C. Doughty; J.S. Wang

    2001-01-01

    We have carried out a series of in situ liquid-release experiments in conjunction with a numerical modeling study to examine the effect of the rock matrix on liquid flow and transport occurring primarily through the fracture network. Field experiments were conducted in the highly fractured Topopah Spring welded tuff at a site accessed from the Exploratory Studies Facility (ESFS), an underground laboratory in the unsaturated zone at Yucca Mountain, Nevada. During the experiment, wetting-front movement, flow-field evolution, and drainage of fracture flow paths were evaluated. Modeling was used to aid in experimental design, predict experimental results, and study the physical processes accompanying liquid flow through unsaturated fractured welded tuff. Field experiments and modeling suggest that it may not be sufficient to conceptualize the fractured tuff as consisting of a single network of high-permeability fractures embedded in a low-permeability matrix. The need to include a secondary fracture network is demonstrated by comparison to the liquid flow observed in the field

  20. Dacitic ash-flow sheet near Superior and Globe, Arizona

    Science.gov (United States)

    Peterson, Donald W.

    1961-01-01

    Remnants of a dacitic ash-flow sheet near Globe, Miama, and Superia, Arizona cover about 100 square miles; before erosion the area covered by the sheet was at least 400 square miles and perhaps as much as 1,500 square miles. Its maximum thickness is about 2,000 feet, its average thickness is about 500 feet, and its original volume was at least 40 cubic miles. It was erupted on an eroded surface with considerable relief. The main part of the deposit was thought by early workers to be a lava flow. Even after the distinctive character of welded tuffs and related rocks was discovered, the nature and origin of this deposit remained dubious because textures did not correspond to those in other welded tuff bodies. Yet a lava flow as silicic as this dacite would be viscous instead of spreading out as an extensive sheet. The purpose of this investigation has been to study the deposit, resolve the inconsistencies, and deduce its origin and history. Five stratigraphic zones are distinguished according to differences in the groundmass. From bottom to top the zones are basal tuff, vitrophyre, brown zone, gray zone, and white zone. The three upper zones are distinguished by colors on fresh surfaces, for each weathers to a similar shade of light reddish brown. Nonwelded basal tuff grades upward into the vitrophyre, which is a highly welded tuff. The brown and gray zones consist of highly welded tuff with a lithoidal groundmass. Degree of welding decreases progressively upward through the gray and the white zones, and the upper white zone is nonwelded. Textures are clearly outlined in the lower part of the brown zone, but upward they become more diffuse because of increasing devitrification. In the white zone, original textures are essentially obliterated, and the groundmass consists of spherulites and microcrystalline intergrowths. The chief groundmass minerals are cristobalite and sanidine, with lesser quartz and plagioclase. Phenocrysts comprise about 40 percent of the rock

  1. Jurassic ash-flow sheets, calderas, and related intrusions of the Cordilleran volcanic arc in southeastern Arizona: implications for regional tectonics and ore deposits

    Science.gov (United States)

    Lipman, P.W.; Hagstrum, J.T.

    1992-01-01

    Volcanologic, petrologic, and paleomagnetic studies of widespread Jurassic ash-flow sheets in the Huachuca-southern Dragoon Mountains area have led to identification of four large source calderas and associated comagnetic intracaldera intrusions. Stratigraphic, facies, and contact features of the caldera-related tuffs also provide constraints on the locations, lateral displacements, and very existence for some major northwest-trending faults and inferred regional thrusts in southeastern Arizona. Silicic alkalic compositions of the Jurassic caldera-related, ash-flow tuffs; bimodal associated mafic magmatism; and interstratified coarse sedimentary deposits provide evidence for synvolcanic extension and rifting within the Cordilleran magmatic arc. Gold-copper mineralization is associated with subvolcanic intrusions at several of the Jurassic calderas. -from Authors

  2. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  3. Synergistic effect of biogenic Fe3+ coupled to S° oxidation on simultaneous bioleaching of Cu, Co, Zn and As from hazardous Pyrite Ash Waste.

    Science.gov (United States)

    Panda, Sandeep; Akcil, Ata; Mishra, Srabani; Erust, Ceren

    2017-03-05

    Pyrite ash, a waste by-product formed during roasting of pyrite ores, is a good source of valuable metals. The waste is associated with several environmental issues due to its dumping in sea and/or land filling. Although several other management practices are available for its utilization, the waste still awaits and calls for an eco-friendly biotechnological application for metal recovery. In the present study, chemolithotrophic meso-acidophilic iron and sulphur oxidisers were evaluated for the first time towards simultaneous mutli-metal recovery from pyrite ash. XRD and XRF analysis indicated higher amount of Hematite (Fe 2 O 3 ) in the sample. ICP-OES analysis indicated concentrations of Cu>Zn>Co>As that were considered for bioleaching. Optimization studies indicated Cu - 95%, Co - 97%, Zn - 78% and As - 60% recovery within 8days at 10% pulp density, pH - 1.75, 10% (v/v) inoculum and 9g/L Fe 2+ . The productivity of the bioleaching system was found to be Cu - 1696ppm/d (12% dissolution/d), Co - 338ppm/d (12.2% dissolution/d), Zn k 576ppm/d (9.8% dissolution/d) and As - 75ppm/d (7.5% dissolution/d). Synergistic actions for Fe 2+ - S° oxidation by iron and sulphur oxidisers were identified as the key drivers for enhanced metal dissolution from pyrite ash sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Lunar ash flows - Isothermal approximation.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  5. An astronomical age for the Bishop Tuff and concordance with radioisotopic dates

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Zeeden, Christian; Storey, Michael

    2014-01-01

    The Bishop Tuff forms a key stratigraphic horizon for synchronization of Quaternary sedimentary records in North America. The unit stratigraphically overlies the Matuyama-Brunhes geomagnetic polarity reversal by several thousand years; high-precision dating of this tuff may be valuable for regional...... and global correlation of records. The Quaternary time scale is anchored by 40Ar/39Ar ages on lava flows and ash layers where available, with stage boundaries and geomagnetic reversals including astronomically tuned records. However, astronomical dating has not yet validated the high-precision 238U/206Pb...... ages, including new single crystal 40Ar/39Ar sanidine fusion analyses presented here, which demonstrates that concordance through multiple dating techniques is achievable within the Quaternary...

  6. Spatial distribution of damage around faults in the Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah: A mechanical analog for faulting in pyroclastic deposits on Mars

    Science.gov (United States)

    Okubo, Chris H.

    2012-01-01

    Volcanic ash is thought to comprise a large fraction of the Martian equatorial layered deposits and much new insight into the process of faulting and related fluid flow in these deposits can be gained through the study of analogous terrestrial tuffs. This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in fine-grained, poorly indurated volcanic ash by investigating exposures of faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah. The porosity and granularity of the host rock are found to control the style of localized strain that occurs prior to and contemporaneous with faulting. Deformation bands occur in tuff that was porous and granular at the time of deformation, while fractures formed where the tuff lost its porous and granular nature due to silicic alteration. Non-localized deformation of the host rock is also prominent and occurs through compaction of void space, including crushing of pumice clasts. Significant off-fault damage of the host rock, resembling fault pulverization, is recognized adjacent to one analog fault and may reflect the strain rate dependence of the resulting fault zone architecture. These findings provide important new guidelines for future structural analyses and numerical modeling of faulting and subsurface fluid flow through volcanic ash deposits on Mars.

  7. Stabilization of Fly Ash Deposits through Selected Cereal Crops

    Directory of Open Access Journals (Sweden)

    Florica Morariu

    2012-10-01

    Full Text Available Fly ash, a waste product from burning coal in power plants, occupies important spaces and is a major harm forenvironment: water, air, soil and associated ecosystems. New deposits do not have available nutrients for plantgrowth. The study presents a process of stimulating growth of oats in deposits of fly ash, which eliminates listed.Phytostabilization of new deposit is fast after fertilization with sewage sludge-based compost in the presence/absence of native or modified volcanic tuff with grain species, Avena sativa L., and variety Lovrin 1. Experimentalstudies have shown the species adaptability to climatic conditions and a growth rate until the maturity correlated withtype of treatment of upper layers of fly ash deposit. Fly ash with sewage sludge compost treatment 50 t/hadetermined the growth with 75% of the amount of grains vs. the amount of grains harvested from untreated fly ash.Fly ash with sewage sludge compost mixed with modified indigenous volcanic tuff 2.5 t/ha treatment determined thegrowth with 80% vs. the amount of grains harvested from untreated fly ash. If oat straw harvested from fertilizedvariant without modified indigenous volcanic tuff increases in weight are 30% and for fertilized variant in thepresence of tuff increases in weight are 39.8% vs. quantities harvested from untreated fly ash.

  8. New 40Ar/39Ar age of the Bishop Tuff from multiple sites and sediment rate calibration for the Matuyama-Brunhes boundary

    Science.gov (United States)

    Sarna-Wojcicki, A. M.; Pringle, M.S.; Wijbrans, J.

    2000-01-01

    Precise dating of sanidine from proximal ash flow Bishop Tuff and air fall Bishop pumice and ash, California, can be used to derive an absolute age of the Matuyama Reversed-Brunhes Normal (M-B) paleomagnetic transition, identified stratigraphically close beneath the Bishop Tuff and ash at many sites in the western United States. An average age of 758.9 ?? 1.8 ka, standard error of the mean (SEM), was obtained for individual sanidine crystals or groups of several crystals, determined from ???70 individual analyses of sanidine separates from 11 sample groups obtained at five localities. The basal air fall pumice (757.7 ?? 1.8 ka) and overlying ash flow tuff (762.2 ?? 4.7 ka) from near the source yield essentially the same dates within errors of analysis, suggesting that the two units were emplaced close in time. A date on distal Bishop air fall ash bed at Friant, California, ???100 km to the west of the source area, is younger, 750.1 ?? 4.3 ka, but not significantly different within analytical error (??1 standard deviation). Previous dates of the Bishop Tuff, obtained by others using conventional K-Ar and the fission track method on zircons, ranged from ???650 ka to ???1.0 Ma. The most recent, generally accepted date by the K-Ar method on sanidine was 738 ?? 3 ka. We infer, as others before, that many K-Ar dates on sanidine feldspar are too young owing to incomplete degassing of radiogenic Ar during fusion in the K-Ar technique and that many older K-Ar dates are too old owing to detrital or xenocrystic contamination in the larger samples that are necessary for the technique. The new dates are similar to recent 40Ar/39Ar ages of the Bishop Tuff determined on individual samples by others but are derived from a larger proximal sample population and from multiple analysis of each sample. The results provide a definitive and precise age calibration of this widespread chronostratigraphic marker in the western United States and northeastern Pacific Ocean. We calculated the

  9. Preliminary survey of tuff distribution in Esmeralda, Nye, and Lincoln Counties, Nevada

    International Nuclear Information System (INIS)

    Smith, G.V.; Pink, T.S.; Lawrence, J.R.; Woodward, L.A.; Keil, K.; Lappin, A.R.

    1981-02-01

    This report inventories the surface distribution of silicic tuffs in Nye, Esmeralda, and Lincoln Counties, NV, based on a review of available literature. The inventory was taken to provide a data base in evaluating tuff sites for the disposal of high-level nuclear waste. Silicic ash-flow tuffs that are about 11 to 34 million years (my) old are widespread in these counties. These rocks are locally deformed by right-lateral movement along Walker Lane and the Las Vegas Shear Zone, and left-lateral movement along a zone from near the Nevada Test Site (NTS) to the Utah border, and are commonly offset by steeply dipping normal faults. The normal faults that bound horsts, grabens, and tilted-fault blocks of the Basin-and-Range Province began to form 30 my ago; some are still active. Tuff distribution is discussed on a regional basis. Tuff thicknesses and alterations, structural complexity, and proximity to recent faulting, recent volcanism, and mineral resources are discussed for each area. Although the literature on which it is based is often incomplete and sketchy, this report is intended to serve as a basis for future, more detailed work that includes initial field inspection, detailed field and laboratory studies, and extrapolations to the subsurface

  10. Contrasting styles of deep-marine pyroclastic eruptions revealed from Axial Seamount push core records

    Science.gov (United States)

    Portner, Ryan A.; Clague, David A.; Helo, Christoph; Dreyer, Brian M.; Paduan, Jennifer B.

    2015-08-01

    A comprehensive understanding of explosive basaltic eruption processes in the deep-sea relies upon detailed analysis and comparison of the variety of volcaniclastic lithologies on the seafloor, which has been challenged by insufficient sample recovery. A dedicated ROV-based sampling approach using long push cores offers an unparalleled opportunity to fully characterize the diversity of unconsolidated volcaniclastic lithofacies on a recently active seamount. Lithofacies from Axial Seamount record two styles of pyroclastic eruptions, strombolian and phreatomagmatic, at 1.5 km water depth. Strombolian eruptions are represented by abundant fluidal and highly vesicular (up to 50%) vitriclasts within limu o Pele lapilli tuff and tuffaceous mud lithofacies. Lapilli-ash grain size, normal grading, good sorting, rip-up clasts and homogeneous glass geochemistry characterize individual limu o Pele lapilli tuff beds, and imply proximal deposition from a turbidity flow associated with a single eruption (i.e. event bed). Limu o Pele lapilli tuff beds are interbedded with poorly sorted, chemically heterogeneous and bioturbated tuffaceous mud units that preserve reworking and biologic habitation of more distal pyroclastic fallout and dilute turbidity flows. The phreatomagmatic eruption style is preserved by hydrothermal mineral-bearing muddy tuff that exhibits characteristics distinct from lapilli ash and tuffaceous mud lithofacies. Hydrothermal muddy tuff lithofacies are well-sorted and fine-grained with notable components of non-fluidal basaltic ash (∼45%), fluidal ash (∼30%) and accessory lithics (∼25%). Heterogeneous geochemistry of ash shards implies that juvenile components are minimal. The abundance, mineralogy and texture of lithic components (Fe-Mg clays, pyrite, epidote, actinolite, altered glass, basalt/diabase, hydrothermal breccia and agglutinate), and very fine-grain size of basaltic ash, are consistent with phreatomagmatic eruption deposits. A lack of

  11. Analysis of Conservative Tracer Tests in the Bullfrog, Tram, and Prow Pass Tuffs, 1996 to 1998, Yucca Mountain, Nye County, Nevada

    Science.gov (United States)

    Umari, Amjad; Fahy, Michael F.; Earle, John D.; Tucci, Patrick

    2008-01-01

    To evaluate the potential for transport of radionuclides in ground water from the proposed high-level nuclear-waste repository at Yucca Mountain, Nevada, conservative (nonsorbing) tracer tests were conducted among three boreholes, known as the C-hole Complex, and values for transport (or flow) porosity, storage (or matrix) porosity, longitudinal dispersivity, and the extent of matrix diffusion were obtained. The C-holes are completed in a sequence of Miocene tuffaceous rock, consisting of nonwelded to densely welded ash-flow tuff with intervals of ash-fall tuff and volcaniclastic rocks, covered by Quaternary alluvium. The lower part of the tuffaceous-rock sequence includes the Prow Pass, Bullfrog, and Tram Tuffs of the Crater Flat Group. The rocks are pervaded by tectonic and cooling fractures. Paleozoic limestone and dolomite underlie the tuffaceous rocks. Four radially convergent and one partially recirculating conservative (nonsorbing) tracer tests were conducted at the C-hole Complex from 1996 to 1998 to establish values for flow porosity, storage porosity, longitudinal dispersivity, and extent of matrix diffusion in the Bullfrog and Tram Tuffs and the Prow Pass Tuff. Tracer tests included (1) injection of iodide into the combined Bullfrog-Tram interval; (2) injection of 2,6 difluorobenzoic acid into the Lower Bullfrog interval; (3) injection of 3-carbamoyl-2-pyridone into the Lower Bullfrog interval; and (4) injection of iodide and 2,4,5 trifluorobenzoic acid, followed by 2,3,4,5 tetrafluorobenzoic acid, into the Prow Pass Tuff. All tracer tests were analyzed by the Moench single- and dual-porosity analytical solutions to the advection-dispersion equation or by superposition of these solutions. Nonlinear regression techniques were used to corroborate tracer solution results, to obtain optimal parameter values from the solutions, and to quantify parameter uncertainty resulting from analyzing two of the three radially convergent conservative tracer tests

  12. Paleointensity in ignimbrites and other volcaniclastic flows

    Science.gov (United States)

    Bowles, J. A.; Gee, J. S.; Jackson, M. J.

    2011-12-01

    Ash flow tuffs (ignimbrites) are common worldwide, frequently contain fine-grained magnetite hosted in the glassy matrix, and often have high-quality 40Ar/39Ar ages. This makes them attractive candidates for paleointensity studies, potentially allowing for a substantial increase in the number of well-dated paleointensity estimates. However, the timing and nature of remanence acquisition in ignimbrites are not sufficiently understood to allow confident interpretation of paleointensity data from ash flows. The remanence acquisition may be a complex function of mineralogy and thermal history. Emplacement conditions and post-emplacement processes vary considerably between and within tuffs and may potentially affect the ability to recover ancient field intensity information. To better understand the relevant magnetic recording assemblage(s) and remanence acquisition processes we have collected samples from two well-documented historical ignimbrites, the 1980 ash flows at Mt. St. Helens (MSH), Washington, and the 1912 flows from Mt. Katmai in the Valley of Ten Thousand Smokes (VTTS), Alaska. Data from these relatively small, poorly- to non-welded historical flows are compared to the more extensive and more densely welded 0.76 Ma Bishop Tuff. This sample set enables us to better understand the geologic processes that destroy or preserve paleointensity information so that samples from ancient tuffs may be selected with care. Thellier-type paleointensity experiments carried out on pumice blocks sampled from the MSH flows resulted in a paleointensity of 55.8 μT +/- 0.8 (1 standard error). This compares favorably with the actual value of 56.0 μT. Excluded specimens of poor technical quality were dominantly from sites that were either emplaced at low temperature (600°C) temperatures does not corrupt the paleointensity signal, and additional data will be presented which explores this more fully.

  13. Modeling of flow through fractured tuff at Fran Ridge

    International Nuclear Information System (INIS)

    Eaton, R.R.; Ho, C.K.; Glass, R.J.; Nicholl, M.J.; Arnold, B.W.

    1996-01-01

    Numerical studies have modeled an infiltration experiment at Fran Ridge, using the TOUGH2 code, to aid in the selection of computational models for waste repository performance assessment. This study investigates the capabilities of TOUGH2 to simulate transient flows through highly fractured tuff, and provides a possible means of calibrating hydrologic parameters such as effective fracture aperture and fracture-matrix connectivity. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The field experiments involved the infiltration of dyed ponded water in highly fractured tuff. The infiltration observed in the experiment was subsequently modeled using Fran Ridge fracture frequencies, obtained during post-experiment site excavation. Comparison of the TOUGH2 results obtained using the two conceptual models gives insight into their relative strengths and weaknesses

  14. Ongoing hydrothermal heat loss from the 1912 ash-flow sheet, Valley of Ten Thousand Smokes, Alaska

    Science.gov (United States)

    Hogeweg, N.; Keith, T.E.C.; Colvard, E.M.; Ingebritsen, S.E.

    2005-01-01

    The June 1912 eruption of Novarupta filled nearby glacial valleys on the Alaska Peninsula with ash-flow tuff (ignimbrite), and post-eruption observations of thousands of steaming fumaroles led to the name 'Valley of Ten Thousand Smokes' (VTTS). By the late 1980s most fumarolic activity had ceased, but the discovery of thermal springs in mid-valley in 1987 suggested continued cooling of the ash-flow sheet. Data collected at the mid-valley springs between 1987 and 2001 show a statistically significant correlation between maximum observed chloride (Cl) concentration and temperature. These data also show a statistically significant decline in the maximum Cl concentration. The observed variation in stream chemistry across the sheet strongly implies that most solutes, including Cl, originate within the area of the VTTS occupied by the 1912 deposits. Numerous measurements of Cl flux in the Ukak River just below the ash-flow sheet suggest an ongoing heat loss of ???250 MW. This represents one of the largest hydrothermal heat discharges in North America. Other hydrothermal discharges of comparable magnitude are related to heat obtained from silicic magma bodies at depth, and are quasi-steady on a multidecadal time scale. However, the VTTS hydrothermal flux is not obviously related to a magma body and is clearly declining. Available data provide reasonable boundary and initial conditions for simple transient modeling. Both an analytical, conduction-only model and a numerical model predict large rates of heat loss from the sheet 90 years after deposition.

  15. U-Pb (SHRIMP II) Age of zircons from ash tuffs of the upper vendian Chernyi Kamen formation (Sylvitsa group, Middle Urals)

    International Nuclear Information System (INIS)

    Ronkin, Yu.L.; Grazhdankin, D.V.; Maslov, A.V.; Mizens, G.A.; Matukov, D.I.; Krupenin, M.T.; Petrov, G.A.; Lepikhina, O.P.; Kornilova, A.Yu.

    2006-01-01

    To make more precise the model of correlation of the Middle Urals western slope upper vendian layers with the White Sea remote layers one carried out the SHRIMP-II procedure base U-Pb-dating of the volcanogenic zircons from the ash tuffs and of the volcanogenic zircon enclosing argillites of the Middle Urals Chernyi Kamen formation. The obtained age value of the studied zircons equal to 557+-13 million years is in line with the geological data [ru

  16. Radionuclide transfer onto ground surface in surface water flow. 2. Undisturbed tuff rock

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu

    1994-09-01

    Radionuclide migration with ground surface water flow is considered to be one of path ways in the scenario for environmental migration of the radionuclide leaked from LLRW depository. To study the radionuclide migration demonstratively, a ground surface radionuclide migration test was carried out by simulating radioactive solution flowing on the sloped tuff rock surface. Tuff rock sample of 240 cm in length taken from the Shimokita district was used to test the transfer of 60 Co, 85 Sr and 137 Cs onto the sample surface from the flowing radioactive solution under restricted infiltration condition at flow rates of 25, 80, 160ml/min and duration of 56h. The concentration change of the radionuclides in effluent was nearly constant as a function of elapsed time during the experimental period, but decreased with lower flow rates. Among the three radionuclides, 137 Cs was greatly decreased its concentration to 30% of the inflow. Adsorbed distribution of the radionuclides concentration on the ground surface decreased gradually with the distance from the inlet, and showed greater gradient at lower flow rate. Analyzing the result by the migration model, where a vertical advection distribution and two-dimensional diffusion in surface water are adopted with a first order adsorption reaction, value of migration parameters was obtained relating to the radionuclide adsorption and the surface water flow, and the measured distribution could be well simulated by adopting the value to the model. By comparing the values with the case of loamy soil layer, all values of the migration parameters showed not so great difference between two samples for 60 Co and 85 Sr. For 137 Cs, reflecting a few larger value of adsorption to the tuff rock, larger ability to reduce the concentration of flowing radioactive solution could be indicated than that to the loamy soil surface by estimation for long flowed distance. (author)

  17. Update report on fracture flow in saturated tuff: Dynamic transport task for the Nevada Nuclear Waste Investigations

    International Nuclear Information System (INIS)

    Janecky, D.R.; Rundberg, R.S.; Ott, M.; Mitchell, A.

    1990-11-01

    This report summarizes the results of continuing experiments on the behavior of tracers during fracture flow in saturated, welded tuff. These experiments were completed during the past year as part of the Dynamic Transport Task of geochemical investigations for the Yucca Mountain Project sponsored by the US Department of Energy. These experiments are designed to investigate the effects of fluid movement in fractures when coupled with matrix diffusion and sorption but isolated from the effects of capillary suction and two-phase flow characteristic of unsaturated conditions. The experiments reported here are continuations of experimental efforts reported previously. The behavior of three tracers [HTO (tritiated water), TcO 4 - (pertechnetate), and sulforhodamine B dye] have been investigated during flow through a saturated column of densely welded tuff from the Topopah Spring Member of the Paintbrush Tuff, Yucca Mountain, Nye County, southern Nevada. 31 refs., 26 figs., 2 tabs

  18. Stonewall Mountain Volcanic Center, southern Nevada: Stratigraphic, structural, and facies relations of outflow sheets, near-vent tuffs, and intracaldera units

    Science.gov (United States)

    Weiss, Steven I.; Noble, Donald C.

    1989-05-01

    Directly south and southeast of Stonewall Mountain, Nevada, a depression and north facing caldera scarp were formed during and(or) after eruption of the Spearhead Member of the late Miocene Stonewall Flat Tuff. Abundant large lithic and juvenile blocks are present in the Spearhead Member within 0.5 km of this topographic margin but absent elsewhere in the ash-flow sheet, consistent with eruption from vents in the Stonewall Mountain area. Within about 100,000 years, comendite tuff of the overlying Civet Cat Canyon Member of the Stonewall Flat Tuff buried the depression and associated scarp. The Civet Cat Canyon Member is traceable continuously to the north from an outflow sheet capping northwestern Pahute Mesa, into near-vent tuff on the southeastern flank of Stonewall Mountain. Proximal outflow-sheet tuff locally exhibits strong rheomorphic disruption and is overlain without a cooling break by surge, flow, and fall deposits of trachytic composition. Much of Stonewall Mountain is composed of welded tuff and megabreccia interpreted as intracaldera tuff of the Civet Cat Canyon Member, strongly suggesting that the vent area of the member was largely within Stonewall Mountain. Welded tuff of trachytic composition comprises an important part of the intracaldera Civet Cat Canyon Member, which was intruded by dikes and plugs of trachyte and rhyolite. Juvenile inclusions of basalt dispersed in near-vent facies trachyte tuff provide direct evidence for the high-level involvement of basaltic magma in the evolution of the highly potassic Stonewall Mountain center. Complex discordant compaction foliations and the widespread presence of megabreccia within the intracaldera tuff suggest, following Foley (1978), cauldron subsidence by piecemeal collapse during eruption of the Civet Cat Canyon Member. The elevation of intracaldera tuff and intrusions in Stonewall Mountain above the surrounding ashflow sheet suggests a significant amount of magmatic uplift, perhaps involving the

  19. Lunar ash flow with heat transfer.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    The most important heat-transfer process in the ash flow under consideration is heat convection. Besides the four important nondimensional parameters of isothermal ash flow (Pai et al., 1972), we have three additional important nondimensional parameters: the ratio of the specific heat of the gas, the ratio of the specific heat of the solid particles to that of gas, and the Prandtl number. We reexamine the one dimensional steady ash flow discussed by Pai et al. (1972) by including the effects of heat transfer. Numerical results for the pressure, temperature, density of the gas, velocities of gas and solid particles, and volume fraction of solid particles as function of altitude for various values of the Jeffreys number, initial velocity ratio, and two different gas species (steam and hydrogen) are presented.

  20. Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia): Implications for paleoenvironmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Widodo, Sri [Department of Mining Engineering, Moslem University of Indonesia, Jln. Urip Sumoharjo, Makassar (Indonesia); Oschmann, Wolfgang [Institute of Geosciece, J.W. Goethe-University, Altenhoeferallee 1, D-60438 Frankfurt a.M. (Germany); Bechtel, Achim; Sachsenhofer, Reinhard F. [Department of Applied Geoscience and Geophysics, University of Leoben, Peter-Tunner-Str.5, A-8700 Leoben (Austria); Anggayana, Komang [Department of Mining Engineering, Bandung Institute of Technology, Jln. Ganesa 10, I-40132 Bandung (Indonesia); Puettmann, Wilhelm [Institute of Atmospheric and Environmental Sciences, Dapartment of Analytical Enviromental Chemistry, J.W. Goethe-University, Altenhoeferallee 1, D-60438 Frankfurt a.M. (Germany)

    2010-03-01

    Thirteen Miocene coal samples from three active open pit and underground coal mines in the Kutai Basin (East Kalimantan, Indonesia) were collected. According to our microscopical and geochemical investigations, coal samples from Sebulu and Centra Busang coal mines yield high sulfur and pyrite contents as compared to the Embalut coal mine. The latter being characterized by very low sulfur (< 1%) and pyrite contents. The ash, mineral, total sulfur, iron (Fe) and pyrite contents of most of the coal samples from the Sebulu and Centra Busang coal mines are high and positively related in these samples. Low contents of ash, mineral, total sulfur, iron (Fe) and pyrite have been found only in sample TNT-32 from Centra Busang coal mine. Pyrite was the only sulfur form that we could recognize under reflected light microscope (oil immersion). Pyrite occurred in the coal as framboidal, euhedral, massive, anhedral and epigenetic pyrite in cleats/fractures. High concentration of pyrite argues for the availability of iron (Fe) in the coal samples. Most coal samples from the Embalut coal mine show lower sulfur (< 1 wt.%) and pyrite contents as found within Centra Busang and Sebulu coals. One exception is the coal sample KTD-38 from Embalut mine with total sulfur content of 1.41 wt.%. The rich ash, mineral, sulfur and pyrite contents of coals in the Kutai Basin (especially Centra Busang and Sebulu coals) can be related to the volcanic activity (Nyaan volcanic) during Tertiary whereby aeolian material was transported to the mire during or after the peatification process. Moreover, the adjacent early Tertiary deep marine sediment, mafic igneous rocks and melange in the center of Kalimantan Island might have provided mineral to the coal by uplift and erosion. The inorganic matter in the mire might also originate from the ground and surface water from the highland of central Kalimantan. (author)

  1. Observation of time dependent dispersion in laboratory scale experiments with intact tuff

    International Nuclear Information System (INIS)

    Rundberg, R.S.; Triay, I.R.; Ott, M.A.; Mitchell, A.J.

    1989-01-01

    The migration of radionuclides through intact tuff was studied using tuff from Yucca Mountain, Nevada. The tuff samples were both highly zeolitized ash-fall tuff from the Calico Hills and densely welded devitrified tuff from the Topopah Springs member of the Paintbrush tuff. Tritiated water and pertechnetate were used as conservative tracers. The sorbing tracers 85 Sr, 137 Cs, and 133 Ba were used with the devitrified tuff only. Greater tailing in the elution curves of the densely welded tuff samples was observed that could be fit by adjusting the dispersion coefficient in the conventional Advection Dispersion Equation, ADE. The curves could be fit using time dependent dispersion as was previously observed for sediments and alluvium by Dieulin, Matheron, and de Marsily. The peak of strontium concentration was expected to arrive after 1.5 years based on the conventional ADE and assuming a linear K d of 26 ml/g. The observed elution had significant strontium in the first sample taken at 2 weeks after injection. The peak in the strontium elution occurred at 5 weeks. The correct arrival time for the strontium peak was achieved using a one dimensional analytic solution with time dependent dispersion. The dispersion coefficient as a function of time used to fit the conservative tracers was found to predict the peak arrival of the sorbing tracers. The K d used was the K d determined by the batch method on crushed tuff. 23 refs., 9 figs., 2 tabs

  2. Measuring and modeling water imbibition into tuff

    International Nuclear Information System (INIS)

    Peters, R.R.; Klavetter, E.A.; George, J.T.; Gauthier, J.H.

    1986-01-01

    Yucca Mountain (Nevada) is being investigated as a potential site for a high-level-radioactive-waste repository. The site combines a partially saturated hydrologic system and a stratigraphy of fractured, welded and nonwelded tuffs. The long time scale for site hydrologic phenomena makes their direct measurement prohibitive. Also, modeling is difficult because the tuffs exhibit widely varying, and often highly nonlinear hydrologic properties. To increase a basic understanding of both the hydrologic properties of tuffs and the modeling of flow in partially saturated regimes, the following tasks were performed, and the results are reported: (1) Laboratory Experiment: Water imbibition into a cylinder of tuff (taken from Yucca Mountain drill core) was measured by immersing one end of a dry sample in water and noting its weight at various times. The flow of water was approximately one-dimensional, filling the sample from bottom to top. (2) Computer Simulation: The experiment was modeled using TOSPAC (a one-dimensional, finite-difference computer program for simulating water flow in partially saturated, fractured, layered media) with data currently considered for use in site-scale modeling of a repository in Yucca Mountain. The measurements and the results of the modeling are compared. Conclusions are drawn with respect to the accuracy of modeling transient flow in a partially saturated, porous medium using a one-dimensional model and currently available hydrologic-property data

  3. Identification of potential groundwater flow paths using geological and geophysical data

    International Nuclear Information System (INIS)

    Pohlmann, K.; Andricevic, R.

    1994-09-01

    This project represents the first phase in the development of a methodology for generating three-dimensional equiprobable maps of hydraulic conductivity for the Nevada Test Site (NTS). In this study, potential groundwater flow paths were investigated for subsurface tuffs at Yucca Flat by studying how these units are connected. The virtual absence of site-specific hydraulic conductivity data dictates that as a first step a surrogate attribute (geophysical logs) be utilized. In this first phase, the connectivity patterns of densely welded ash-flow tuffs were studied because these tuffs are the most likely to form zones of high hydraulic conductivity. Densely welded tuffs were identified based on the response shown on resistivity logs and this information was transformed into binary indicator values. The spatial correlation of the indicator data was estimated through geostatistical methods. Equiprobable three-dimensional maps of the distribution of the densely-welded and nonwelded tuffs (i.e., subsurface heterogeneity) were then produced using a multiple indicator simulation formalism. The simulations demonstrate that resistivity logs are effective as soft data for indicating densely welded tuffs. The simulated welded tuffs reproduce the stratigraphic relationships of the welded tuffs observed in hydrogeologic cross sections, while incorporating the heterogeneity and anisotropy that is expected in this subsurface setting. Three-dimensional connectivity of the densely welded tuffs suggests potential groundwater flow paths with lengths easily over 1 km. The next phase of this investigation should incorporate other geophysical logs (e.g., gamma-gamma logs) and then calibrate the resulting soft data maps with available hard hydraulic conductivity data. The soft data maps can then augment the hard data to produce the final maps of the spatial distribution of hydraulic conductivity that can be used as input for numerical solution of groundwater flow and transport

  4. Felsic tuff from Rutland Island – A pyroclastic flow deposit in ...

    Indian Academy of Sciences (India)

    : • white massive tuff with ill-defined bedding contacts (facies-A) and. • dominantly green tuff exhibiting well-developed turbidite sequence with up-section change from a massive unit to plane laminated units to ripple drift lamination (facies-B).

  5. Behaviour of Onobrychis Viciifolia Growing on Fly Ash Experimental Parcels

    Directory of Open Access Journals (Sweden)

    Florica Morariu

    2011-05-01

    Full Text Available Studies were conducted to identify a treatment method for upper layers of fly ash to cover them with vegetation. Fixing plant layer acts against erosion/washes of fly ash deposits. Studies emphasized the need of use of an organic fertilizer mixed with inorganic materials such as volcanic tuff and, also, the need of selecting a plant species compatible with the treated culture medium. The use of an amended variant of compost and modified volcanic tuff of fly ash layers shows that the selected leguminous species, Onobrychis viciifolia, installs itself quickly on the third level of Braun - Blanquet scale. The reduction of toxic heavy metals bioaccumulation from the aerial plant tissues such as lead and nickel of 72-79%, and copper and zinc of 50-68%, respectively, allows obtaining of a safe biomass for wildlife visiting the area.

  6. Mercury adsorption characteristics of HBr-modified fly ash in an entrained-flow reactor.

    Science.gov (United States)

    Zhang, Yongsheng; Zhao, Lilin; Guo, Ruitao; Song, Na; Wang, Jiawei; Cao, Yan; Orndorff, William; Pan, Wei-ping

    2015-07-01

    In this study, the mercury adsorption characteristics of HBr-modified fly ash in an entrained-flow reactor were investigated through thermal decomposition methods. The results show that the mercury adsorption performance of the HBr-modified fly ash was enhanced significantly. The mercury species adsorbed by unmodified fly ash were HgCl2, HgS and HgO. The mercury adsorbed by HBr-modified fly ash, in the entrained-flow reactor, existed in two forms, HgBr2 and HgO, and the HBr was the dominant factor promoting oxidation of elemental mercury in the entrained-flow reactor. In the current study, the concentration of HgBr2 and HgO in ash from the fine ash vessel was 4.6 times greater than for ash from the coarse ash vessel. The fine ash had better mercury adsorption performance than coarse ash, which is most likely due to the higher specific surface area and longer residence time. Copyright © 2015. Published by Elsevier B.V.

  7. Mechanical characterization of densely welded Apache Leap tuff

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1991-06-01

    An empirical criterion is formulated to describe the compressive strength of the densely welded Apache Leap tuff. The criterion incorporates the effects of size, L/D ratio, loading rate and density variations. The criterion improves the correlation between the test results and the failure envelope. Uniaxial and triaxial compressive strengths, Brazilian tensile strength and elastic properties of the densely welded brown unit of the Apache Leap tuff have been determined using the ASTM standard test methods. All tuff samples are tested dry at room temperature (22 ± 2 degrees C), and have the core axis normal to the flow layers. The uniaxial compressive strength is 73.2 ± 16.5 MPa. The Brazilian tensile strength is 5.12 ± 1.2 MPa. The Young's modulus and Poisson's ratio are 22.6 ± 5.7 GPa and 0.20 ± 0.03. Smoothness and perpendicularity do not fully meet the ASTM requirements for all samples, due to the presence of voids and inclusions on the sample surfaces and the sample preparation methods. The investigations of loading rate, L/D radio and cyclic loading effects on the compressive strength and of the size effect on the tensile strength are not conclusive. The Coulomb strength criterion adequately represents the failure envelope of the tuff under confining pressures from 0 to 62 MPa. Cohesion and internal friction angle are 16 MPa and 43 degrees. The brown unit of the Apache Leap tuff is highly heterogeneous as suggested by large variations of the test results. The high intrinsic variability of the tuff is probably caused by the presence of flow layers and by nonuniform distributions of inclusions, voids and degree of welding. Similar variability of the properties has been found in publications on the Topopah Spring tuff at Yucca Mountain. 57 refs., 32 figs., 29 tabs

  8. The 15 September 1991 pyroclastic flows at Unzen Volcano (Japan): a flow model for associated ash-cloud surges

    Science.gov (United States)

    Fujii, Toshitsugu; Nakada, Setsuya

    1999-04-01

    Large-scale collapse of a dacite dome in the late afternoon of 15 September 1991 generated a series of pyroclastic-flow events at Unzen Volcano. Pyroclastic flows with a volume of 1×10 6 m 3 (as DRE) descended the northeastern slope of the volcano, changing their courses to the southeast due to topographic control. After they exited a narrow gorge, an ash-cloud surge rushed straight ahead, detaching the main body of the flow that turned and followed the topographic lows to the east. The surge swept the Kita-Kamikoba area, which had been devastated by the previous pyroclastic-flow events, and transported a car as far as 120 m. Following detachment, the surge lost its force after it moved several hundred meters, but maintained a high temperature. The deposits consist of a bottom layer of better-sorted ash (unit 1), a thick layer of block and ash (unit 2), and a thin top layer of fall-out ash (unit 3). Unit 2 overlies unit 1 with an erosional contact. The upper part of unit 2 grades into better-sorted ash. At distal block-and-ash flow deposits, the bottom part of unit 2 also consists of better-sorted ash, and the contact with the unit 1 deposits becomes ambiguous. Video footage of cascading pyroclastic flows during the 1991-1995 eruption, traveling over surfaces without any topographic barriers, revealed that lobes of ash cloud protruded intermittently from the moving head and sides, and that these lobes surged ahead on the ground surface. This fact, together with the inspection by helicopter shortly after the events, suggests that the protruded lobes consisted of better-sorted ash, and resulted in the deposits of unit 1. The highest ash-cloud plume at the Oshigadani valley exit, and the thickest deposition of fall-out ash over Kita-Kamikoba and Ohnokoba, indicate that abundant ash was also produced when the flow passed through a narrow gorge. In the model presented here, the ash clouds from the pyroclastic flows were composed of a basal turbulent current of high

  9. The enormous Chillos Valley Lahar: An ash-flow-generated debris flow from Cotopaxi Volcano, Ecuador

    Science.gov (United States)

    Mothes, P.A.; Hall, M.L.; Janda, R.J.

    1998-01-01

    The Chillos Valley Lahar (CVL), the largest Holocene debris flow in area and volume as yet recognized in the northern Andes, formed on Cotopaxi volcano's north and northeast slopes and descended river systems that took it 326 km north-northwest to the Pacific Ocean and 130+ km east into the Amazon basin. In the Chillos Valley, 40 km downstream from the volcano, depths of 80-160 m and valley cross sections up to 337000m2 are observed, implying peak flow discharges of 2.6-6.0 million m3/s. The overall volume of the CVL is estimated to be ???3.8 km3. The CVL was generated approximately 4500 years BP by a rhyolitic ash flow that followed a small sector collapse on the north and northeast sides of Cotopaxi, which melted part of the volcano's icecap and transformed rapidly into the debris flow. The ash flow and resulting CVL have identical components, except for foreign fragments picked up along the flow path. Juvenile materials, including vitric ash, crystals, and pumice, comprise 80-90% of the lahar's deposit, whereas rhyolitic, dacitic, and andesitic lithics make up the remainder. The sand-size fraction and the 2- to 10-mm fraction together dominate the deposit, constituting ???63 and ???15 wt.% of the matrix, respectively, whereas the silt-size fraction averages less than ???10 wt.% and the clay-size fraction less than 0.5 wt.%. Along the 326-km runout, these particle-size fractions vary little, as does the sorting coefficient (average = 2.6). There is no tendency toward grading or improved sorting. Limited bulking is recognized. The CVL was an enormous non-cohesive debris flow, notable for its ash-flow origin and immense volume and peak discharge which gave it characteristics and a behavior akin to large cohesive mudflows. Significantly, then, ash-flow-generated debris flows can also achieve large volumes and cover great areas; thus, they can conceivably affect large populated regions far from their source. Especially dangerous, therefore, are snowclad volcanoes

  10. Hydraulic characterization of hydrothermally altered Nopal tuff

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.T.; Meyer-James, K.A. [Southwest Research Institute, San Antonio, TX (United States); Rice, G. [George Rice and Associates, San Antonio, TX (United States)

    1995-07-01

    Understanding the mechanics of variably saturated flow in fractured-porous media is of fundamental importance to evaluating the isolation performance of the proposed high-level radioactive waste repository for the Yucca Mountain site. Developing that understanding must be founded on the analysis and interpretation of laboratory and field data. This report presents an analysis of the unsaturated hydraulic properties of tuff cores from the Pena Blanca natural analog site in Mexico. The basic intent of the analysis was to examine possible trends and relationships between the hydraulic properties and the degree of hydrothermal alteration exhibited by the tuff samples. These data were used in flow simulations to evaluate the significance of a particular conceptual (composite) model and of distinct hydraulic properties on the rate and nature of water flow.

  11. Hydraulic characterization of hydrothermally altered Nopal tuff

    International Nuclear Information System (INIS)

    Green, R.T.; Meyer-James, K.A.; Rice, G.

    1995-07-01

    Understanding the mechanics of variably saturated flow in fractured-porous media is of fundamental importance to evaluating the isolation performance of the proposed high-level radioactive waste repository for the Yucca Mountain site. Developing that understanding must be founded on the analysis and interpretation of laboratory and field data. This report presents an analysis of the unsaturated hydraulic properties of tuff cores from the Pena Blanca natural analog site in Mexico. The basic intent of the analysis was to examine possible trends and relationships between the hydraulic properties and the degree of hydrothermal alteration exhibited by the tuff samples. These data were used in flow simulations to evaluate the significance of a particular conceptual (composite) model and of distinct hydraulic properties on the rate and nature of water flow

  12. Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry

    Science.gov (United States)

    Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.

    2011-01-01

    The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.

  13. Volcanic ash and its enigma: A case study from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.

    An ash layer occurs between 10-35 cm depth in sediment cores from the Central Indian Ocean basin. Morphology, major, trace and rare earth element composition of glass shards from the ash layer suggest that the Youngest Toba Tuff of ~74 ka from...

  14. Fossil and active fumaroles in the 1912 eruptive deposits, Valley of ten thousand smokes, Alaska

    Science.gov (United States)

    Keith, T.E.C.

    1991-01-01

    Fumaroles in the ash-flow sheet emplaced during the 1912 eruption of Novarupta were intensely active throughout the Valley of Ten Thousand Smokes (VTTS) when first studied in 1917. Fumarole temperatures recorded in 1919 were as hot as 645??C. Influx of surface waters into the hot ash-flow sheet provided the fluid flow to sustain the fumaroles but also enhanced cooling so that by the mid-1930's vigorous activity survived only in the vent region. Configuration and distribution of high-temperature fissure fumaroles tens of meters long, that are prevalent in the middle and upper VTTS, were controlled largely by sintering and degree of welding, which in turn controlled fracturing and permeability of the ash-flow tuff. One fracture type developed parallel to the enclosing valley walls during compaction of the ash-flow sheet. Another type extends across the VTTS nearly perpendicular to the flow direction. A third type of randomly oriented fractures developed as cooling contraction cracks during vapor-phase devitrification. In distal parts of the ash-flow sheet where the tuff is nonwelded, prominent fumaroles have irregular funnel-shaped morphologies. Fumarole distribution in the nonwelded part of the ash-flow sheet is concentrated above pre-emplacement river channels. The hottest, longest-lived fumaroles occurred in the upper VTTS near the 1912 vent where the ash-flow sheet is thicker, more indurated, and on average more mafic (richer in dacite and andesite) in contrast to the thinner, nonwelded rhyolitic tuff in the distal part of the sheet. Fumarolic activity was less intense in the distal part of the tuff because of lower emplacement temperatures, more diffuse fumarole conduits in the nonwelded tuff, and the thinness of the ash-flow sheet. Chemical leaching of ash-flow tuff by hot rising fluids took place adjacent to fumarolic conduits in deep parts of the fumaroles. Deposition of incrustation minerals, the components of which were carried upward by fumarolic gases

  15. A preliminary guidebook for identifying stratigraphic contacts at the Nevada Test Site

    International Nuclear Information System (INIS)

    Pawloski, G.A.; McKague, H.L.; Wagoner, J.L.; McKinnis, W.B.

    1992-01-01

    Lithologic variation, regional depositional trends, and the lack of written guidelines have resulted in inconsistencies in the recognition of stratigraphic contacts in drill holes at the Nevada Test Site (NTS). Stratigraphic identification, based on mineralogy of discrete samples, can be augmented by geophysical logs and downhole movies to more accurately and consistently locate contacts between units. Criteria are established for locating the base of the Pahute Mesa ash-flow tuff, the top of the Ammonia Tanks ash-flow tuff, the top of the Ammonia Tanks bedded tuff, and the top and the base of the Rainier Mesa Tuff

  16. Relation of ash composition to the uses of coal

    Energy Technology Data Exchange (ETDEWEB)

    Fieldner, A C; Selvig, W A

    1926-02-01

    The effects of coal ash and ash components on the utilization of coal for coke and gas production, steam generation, water gas production, smithing, and domestic uses were described in a review of literature. Calcite, gypsum, and pyrite which occur in high amounts in coal, increase the ash fusibility of the coal and render it unsuitable for many industrial and domestic uses. As a rule, coal ash of high Si content and low Fe content would not be readily fusible. High amounts of ash in coal also have the effect of reducing the heating value of the coal.

  17. The Effect of Water Vapor on the Thermal Decomposition of Pyrite in N2 Atmosphere

    Directory of Open Access Journals (Sweden)

    Nesrin BOYABAT

    2009-03-01

    Full Text Available In this study, the effect of water vapor on the thermal decomposition of pyrite mineral in nitrogen atmosphere has been investigated in a horizontal tube furnace. Temperature, time and water vapor concentration were used as experimental parameters. According to the data obtained at nitrogen/ water vapor environment, it was observed that the water vapor on the decomposition of pyrite increased the decomposition rate. The decomposition reaction is well represented by the "shrinking core" model and can be divided into two regions with different rate controlling step. The rate controlling steps were determined from the heat transfer through the gas film for the low conversions, while it was determined from the mass transfer through product ash layer for the high conversions. The activation energies of this gas and ash film mechanisms were found to be 77 and 81 kJ/mol-1, respectively.

  18. Studies of ancient concrete as analogs of cementitious sealing materials for a repository in tuff

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D.M.; Langton, C.A.

    1989-03-01

    The durability of ancient cementitious materials has been investigated to provide data applicable to determining the resistance to weathering of concrete materials for sealing a repository for storage of high-level radioactive waste. Because tuff and volcanic ash are used in the concretes in the vicinity of Rome, the results are especially applicable to a waste repository in tuff. Ancient mortars, plasters, and concretes collected from Rome, Ostia, and Cosa dating to the third century BC show remarkable durability. The aggregates used in the mortars, plasters, and concretes included basic volcanic and pyroclastic rocks (including tuff), terra-cotta, carbonates, sands, and volcanic ash. The matrices of ancient cementitious materials have been characterized and classified into four categories: (1) hydraulic hydrated lime and hydrated lime cements, (2) hydraulic aluminous and ferruginous hydrated lime cements ({plus_minus} siliceous components), (3) pozzolana/hydrated lime cements, and (4) gypsum cements. Most of the materials investigated are in category (3). The materials were characterized to elucidate aspects of the technology that produced them and their response to the environmental exposure throughout their centuries of existence. Their remarkable properties are the result of a combination of chemical, mineralogical, and microstructural factors. Their durability was found to be affected by the matrix mineralogy, particle size, and porosity; aggregate type, grading and proportioning; and the methodology of placement. 30 refs.

  19. Evidence for a welded tuff in the Rhyolite of Calico Hills

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Hunter, W.C.

    1994-01-01

    A welded pyroclastic deposit has been identified in the Rhyolite of Calico Hills near Yucca Mountain, Nevada, where only lava flows and nonwelded pyroclastic deposits were previously described. Field data from Fortymile Wash show that nonwelded, bedded tuff grades upward into partially welded massive ruff, and thence into densely welded vitrophyre. Petrographic data show a progressive decrease in inter- and intragranular porosity and amount of vapor-phase minerals, with increasing welding. Pumice fragments are first deformed, then develop diffuse boundaries which become increasingly obscure with progressive welding. The most densely welded rock is a perlitic vitrophyre. The origin of this welded tuff is not clear, as it could represent an ignimbrite or a tuff fused beneath a thick lava flow

  20. The international INTRAVAL project. Phase 2, working group 1 report. Flow and tracer experiments in unsaturated tuff and soil. Las Cruces trench and Apache Leap tuff studies

    International Nuclear Information System (INIS)

    Nicholson, T.J.; Guzman-Guzman, A.; Hills, R.; Rasmussen, T.C.

    1997-01-01

    The Working Group 1 final report summaries two test case studies, the Las Cruces Trench (LCT), and Apache Leap Tuff Site (ALTS) experiments. The objectives of these two field studies were to evaluate models for water flow and contaminant transport in unsaturated, heterogeneous soils and fractured tuff. The LCT experiments were specifically designed to test various deterministic and stochastic models of water flow and solute transport in heterogeneous, unsaturated soils. Experimental data from the first tow LCT experiments, and detailed field characterisation studies provided information for developing and calibrating the models. Experimental results from the third experiment were held confidential from the modellers, and were used for model comparison. Comparative analyses included: point comparisons of water content; predicted mean behavior for water flow; point comparisons of solute concentrations; and predicted mean behavior for tritium transport. These analyses indicated that no model, whether uniform or heterogeneous, proved superior. Since the INTRAVAL study, however, a new method has been developed for conditioning the hydraulic properties used for flow and transport modelling based on the initial field-measured water content distributions and a set of scale-mean hydraulic parameters. Very good matches between the observed and simulated flow and transport behavior were obtained using the conditioning procedure, without model calibration. The ALTS experiments were designed to evaluate characterisation methods and their associated conceptual models for coupled matrix-fracture continua over a range of scales (i.e., 2.5 centimeter rock samples; 10 centimeter cores; 1 meter block; and 30 meter boreholes). Within these spatial scales, laboratory and field tests were conducted for estimating pneumatic, thermal, hydraulic, and transport property values for different conceptual models. The analyses included testing of current conceptual, mathematical and physical

  1. Source and Extent of Volcanic Ashes at the Permian-Triassic Boundary in South China and Its implications

    Science.gov (United States)

    Wang, M.; Zhong, Y. T.; Hou, Y. L.; He, B.

    2017-12-01

    Highly correlated with the Permian-Triassic Boundary (PTB) Mass Extinction in stratigraphic section, volcanic ashes around the P-T Boundary in South China have been suggested to be a likely cause of the PTB Mass Extinction. So the nature, source and extent of these volcanic ashes have great significance in figuring out the cause of the PTB Mass Extinction. In this study, we attempt to constrain the source and extent of the PTB volcanic ashes in South China by studying pyroclastic sedimentary rocks and the spatial distribution of tuffs and ashes in South China. The detrital zircons of tuffaceous sandstones from Penglaitan section yield an age spectrum peaked at 252Ma, with ɛHf(t) values varying from -20 to -5 ,and have Nb/Hf, Th/Nb and Hf/Th ratios similar to those from arc/orogenic-related settings. Coarse tuffaceous sandstones imply that their source is in limited distance. Those pyroclastic sedimentary rocks in Penglaitan are well correlated with the PTB volcanic ashes in Meishan GSSP section in stratigraphy. In the spatial distribution, pyroclastic sedimentary rocks and tuffs distribute only in southwest of South China, while finer volcanic ashes are mainly in the northern part. This spatial distribution suggests the source of tuffs and ashes was to the south or southwest of South China. Former studies especially that of Permian-Triassic magmatism in Hainan Island have supported the existence of a continental arc related to the subduction and closure of Palaeo-Tethys on the southwestern margin of South China during Permian to early Triassic. It is suggested that the PTB ashes possibly derived from this Paleo-Tethys continental arc. The fact that volcanic ashes haven't been reported or found in PTB stratum in North China or Northwest China implies a limited extent of the volcanism, which thus is too small to cause the PTB mass extinction.

  2. Chemical composition of overland flow produced on soils covered with vegetative ash

    Directory of Open Access Journals (Sweden)

    M.B. Bodí

    2013-05-01

    Full Text Available The objective of this study was to ascertain the differences between the soluble elements of ash obtained under laboratory conditions and the dissolved in overland flow from soils covered with a layer of ash. The overland flow was obtained during series of rainfall simulations over soils covered with two different types of ash. This study indicates that the soluble elements released from ash can modify water quality increasing its pH, electrical conductivity and especially cation content. The nutrients solubilised are not necessarily the same as the elemental composition of ash itself. Runoff composition depends on the volume of water produced, on the solubility of the ash components and on the chemical interactions with water from rainfall and soil. After the first intense rain event, most of the elements are solubilised and lixiviated or washed out, however, some of them may increase in the runoff or soil water some weeks later due to chemical interactions with water from rainfall and soil nutrients.

  3. Stratigraphy, structure, and some petrographic features of Tertiary volcanic rocks at the USW G-2 drill hole, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Maldonado, F.; Koether, S.L.

    1983-01-01

    A continuously cored drill hole penetrated 1830.6 m of Tertiary volcanic strata comprised of the following in descending order: Paintbrush Tuff, tuffaceous beds of Calico Hills, Crater Flat Tuff, lava and flow breccia (rhyodacitic), tuff of Lithic Ridge, bedded and ash-flow tuff, lava and flow breccia bedded tuff, conglomerate and ash-flow tuff, and older tuffs of USW G-2. Comparison of unit thicknesses at USW G-2 to unit thicknesses at previously drilled holes at Yucca Mountain indicate: (1) thickening of the Paintbrush Tuff members and tuffaceous beds of Calico Hills toward the northern part of Yucca Mountain; (2) thickening of the Prow Pass Member but thinning of the Bullfrog Member and Tram unit; (3) thinning of the tuff of Lithic Ridge; (4) presence of about 280 m of lava and flow breccia not previously penetrated by any drill hole; and (5) presence of an ash-flow tuff unit at the bottom of the drill hole not previously intersected, apparently the oldest unit penetrated at Yucca Mountain to date. Petrographic features of some of the units include: (1) decrease in quartz and K-feldspar and increases in biotite and plagioclase with depth in the tuffaceous beds of Calico Hills; (2) an increase in quartz phenocrysts from the top to the bottom members of the Crater Flat Tuff; (3) a low quartz content in the tuff of Lithic Ridge, suggesting tapping of the magma chamber at quartz-poor levels; (4) a change in zeolitic alteration from heulandite to clinoptilolite to mordenite with increasing depth; (5) lavas characterized by a rhyolitic top and dacitic base, suggesting reverse compositional zoning; and (6) presence of hydrothermal mineralization in the lavas that could be related to an itrusive under Yucca Mountain or to volcanism associated with the Timber Mountain-Claim Canyon caldera complex. A fracture analysis of the core resulted in tabulation of 7848 fractures, predominately open and high angle

  4. A novel bioreactor system for simultaneous mutli-metal leaching from industrial pyrite ash: Effect of agitation and sulphur dosage.

    Science.gov (United States)

    Panda, Sandeep; Akcil, Ata; Mishra, Srabani; Erust, Ceren

    2018-01-15

    Simultaneous multi-metal leaching from industrial pyrite ash is reported for the first time using a novel bioreactor system that allows natural diffusion of atmospheric O 2 and CO 2 along with the required temperature maintenance. The waste containing economically important metals (Cu, Co, Zn & As) was leached using an adapted consortium of meso-acidophilic Fe 2+ and S oxidising bacteria. The unique property of the sample supported adequate growth and activity of the acidophiles, thereby, driving the (bio) chemical reactions. Oxido-reductive potentials were seen to improve with time and the system's pH lowered as a result of active S oxidation. Increase in sulphur dosage (>1g/L) and agitation speed (>150rpm) did not bear any significant effect on metal dissolution. The consortium was able to leach 94.01% Cu (11.75% dissolution/d), 98.54% Co (12.3% dissolution/d), 75.95% Zn (9.49% dissolution/d) and 60.80% As (7.6% dissolution/d) at 150rpm, 1g/L sulphur, 30°C in 8days. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Advanced One-Dimensional Entrained-Flow Gasifier Model Considering Melting Phenomenon of Ash

    Directory of Open Access Journals (Sweden)

    Jinsu Kim

    2018-04-01

    Full Text Available A one-dimensional model is developed to represent the ash-melting phenomenon, which was not considered in the previous one-dimensional (1-D entrained-flow gasifier model. We include sensible heat of slag and the fusion heat of ash in the heat balance equation. To consider the melting of ash, we propose an algorithm that calculates the energy balance for three scenarios based on temperature. We also use the composition and the thermal properties of anorthite mineral to express ash. gPROMS for differential equations is used to solve this algorithm in a simulation; the results include coal conversion, gas composition, and temperature profile. Based on the Texaco pilot plant gasifier, we validate our model. Our results show good agreement with previous experimental data. We conclude that the sensible heat of slag and the fusion heat of ash must be included in the entrained flow gasifier model.

  6. Hydrothermal uranium vein deposits in Marysvale volcanic field, Utah

    International Nuclear Information System (INIS)

    Rasmussen, J.D.; Cunningham, C.G.; Steven, T.A.; Rye, R.O.; Romberger, S.B.

    1984-01-01

    Hydrothermal uranium veins are exposed over a 300 m (980 ft) vertical range in mines of the Central Mining area, near Marysvale, Utah. They cut 23 Ma quartz monzonite, 21 Ma granite, and 19 Ma rhyolite ash-flow tuff. The veins formed 18-19 Ma, in an area 1 km (0.6 mi) across, above the center of a composite magma chamber at least 12 x 6 km across that fed a sequence of 21-14 Ma hypabyssal granitic stocks, and rhyolitic lava flows, ash-flow tuffs, and volcanic domes. Intrusive pressure uplifted and fractured the roof; molybdenite-bearing, uranium-rich glassy dikes were intruded; and a breccia pipe and uranium-bearing veins were formed. The veins appear to have been deposited near the surface above a concealed rhyolite stock, where they filled high-angle fault zones and flat-lying to concave-downward pull-apart fractures. Low pH and fO 2 hydrothermal fluids at temperatures near 200 0 C (392 0 F) permeated the fractured rocks; these fluids were rich in fluorine and potassium, and contained uranium as uranous-fluoride complexes. Fluid-wall rock interaction increased fluid pH, causing precipitation of uranium minerals. At the deepest exposed levels, wall rocks were altered to kaolinite and sericite, and uraninite, coffinite, jordisite, fluorite, molybdenite, quartz, and pyrite (with delta 34 S near zero per mil) were deposited. The fluids were progressively oxidized higher in the system; iron in the wall rocks was oxidized to hematite, and sooty uraninite and umohoite were deposited

  7. Gene flow of common ash (Fraxinus excelsior L. in a fragmented landscape.

    Directory of Open Access Journals (Sweden)

    Devrim Semizer-Cuming

    Full Text Available Gene flow dynamics of common ash (Fraxinus excelsior L. is affected by several human activities in Central Europe, including habitat fragmentation, agroforestry expansion, controlled and uncontrolled transfer of reproductive material, and a recently introduced emerging infectious disease, ash dieback, caused by Hymenoscyphus fraxineus. Habitat fragmentation may alter genetic connectivity and effective population size, leading to loss of genetic diversity and increased inbreeding in ash populations. Gene flow from cultivated trees in landscapes close to their native counterparts may also influence the adaptability of future generations. The devastating effects of ash dieback have already been observed in both natural and managed populations in continental Europe. However, potential long-term effects of genetic bottlenecks depend on gene flow across fragmented landscapes. For this reason, we studied the genetic connectivity of ash trees in an isolated forest patch of a fragmented landscape in Rösenbeck, Germany. We applied two approaches to parentage analysis to estimate gene flow patterns at the study site. We specifically investigated the presence of background pollination at the landscape level and the degree of genetic isolation between native and cultivated trees. Local meteorological data was utilized to understand the effect of wind on the pollen and seed dispersal patterns. Gender information of the adult trees was considered for calculating the dispersal distances. We found that the majority of the studied seeds (55-64% and seedlings (75-98% in the forest patch were fathered and mothered by the trees within the same patch. However, we determined a considerable amount of pollen flow (26-45% from outside of the study site, representing background pollination at the landscape level. Limited pollen flow was observed from neighbouring cultivated trees (2%. Both pollen and seeds were dispersed in all directions in accordance with the local

  8. Gene flow of common ash (Fraxinus excelsior L.) in a fragmented landscape.

    Science.gov (United States)

    Semizer-Cuming, Devrim; Kjær, Erik Dahl; Finkeldey, Reiner

    2017-01-01

    Gene flow dynamics of common ash (Fraxinus excelsior L.) is affected by several human activities in Central Europe, including habitat fragmentation, agroforestry expansion, controlled and uncontrolled transfer of reproductive material, and a recently introduced emerging infectious disease, ash dieback, caused by Hymenoscyphus fraxineus. Habitat fragmentation may alter genetic connectivity and effective population size, leading to loss of genetic diversity and increased inbreeding in ash populations. Gene flow from cultivated trees in landscapes close to their native counterparts may also influence the adaptability of future generations. The devastating effects of ash dieback have already been observed in both natural and managed populations in continental Europe. However, potential long-term effects of genetic bottlenecks depend on gene flow across fragmented landscapes. For this reason, we studied the genetic connectivity of ash trees in an isolated forest patch of a fragmented landscape in Rösenbeck, Germany. We applied two approaches to parentage analysis to estimate gene flow patterns at the study site. We specifically investigated the presence of background pollination at the landscape level and the degree of genetic isolation between native and cultivated trees. Local meteorological data was utilized to understand the effect of wind on the pollen and seed dispersal patterns. Gender information of the adult trees was considered for calculating the dispersal distances. We found that the majority of the studied seeds (55-64%) and seedlings (75-98%) in the forest patch were fathered and mothered by the trees within the same patch. However, we determined a considerable amount of pollen flow (26-45%) from outside of the study site, representing background pollination at the landscape level. Limited pollen flow was observed from neighbouring cultivated trees (2%). Both pollen and seeds were dispersed in all directions in accordance with the local wind directions

  9. Hydraulic Characterization of Overpressured Tuffs in Central Yucca Flat, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K.J. Halford; R.J. Laczniak; D.L. Galloway

    2005-10-07

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  10. Chemistry and phase evolution during roasting of toxic thallium-bearing pyrite.

    Science.gov (United States)

    Lopez-Arce, Paula; Garcia-Guinea, Javier; Garrido, Fernando

    2017-08-01

    In the frame of a research project on microscopic distribution and speciation of geogenic thallium (Tl) from contaminated mine soils, Tl-bearing pyrite ore samples from Riotinto mining district (Huelva, SW Spain) were experimentally fired to simulate a roasting process. Concentration and volatility behavior of Tl and other toxic heavy metals was determined by quantitative ICP-MS, whereas semi-quantitative mineral phase transitions were identified by in situ thermo X-Ray Diffraction (HT-XRD) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS) analyses after each firing temperature. Sample with initial highest amount of quartz (higher Si content), lowest quantity of pyrite and traces of jarosite (lower S content) developed hematite and concentrated Tl (from 10 up to 72 mg kg -1 ) after roasting at 900 °C in an oxidizing atmosphere. However, samples with lower or absent quartz content and higher pyrite amount mainly developed magnetite, accumulating Tl between 400 and 500 °C and releasing Tl from 700 up to 900 °C (from 10-29 mg kg -1 down to 4-1 mg kg -1 ). These results show the varied accumulative, or volatile, behaviors of one of the most toxic elements for life and environment, in which oxidation of Tl-bearing Fe sulfides produce Fe oxides wastes with or without Tl. The initial chemistry and mineralogy of pyrite ores should be taken into account in coal-fired power stations, cement or sulfuric acid production industry involving pyrite roasting processes, and steel, brick or paint industries, which use iron ore from roasted pyrite ash, where large amounts of Tl entail significant environmental pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A natural analogue for high-level waste in tuff: Chemical analysis and modeling of the Valles site

    International Nuclear Information System (INIS)

    Stockman, H.W.; Krumhansl, J.L.; Ho, C.K.; Kovach, L.; McConnell, V.S.

    1995-01-01

    The contact between an obsidian flow and a steep-walled tuff canyon was examined as an analogue for a high-level waste repository. The analogue site is located in the Valles Caldera in New Mexico, where a massive obsidian flow filled a paleocanyon in the Battleship Rock Tuff. The obsidian flow provided a heat source, analogous to waste panels or an igneous intrusion in a repository, and caused evaporation and migration of water. The tuff and obsidian samples were analyzed for major and trace elements and mineralogy by INAA, XRF, x-ray diffraction, and scanning electron microscopy and electron microprobe. Samples were also analyzed for D/H and 39 Ar/ 40 Ar isotopic composition. Overall, the effects of the heating event seem to have been slight and limited to the tuff nearest the contact. There is some evidence of devitrification and migration of volatiles in the tuff within 10 m of the contact, but variations in major and trace element chemistry are small and difficult to distinguish from the natural (pre-heating) variability of the rocks

  12. Experimental leaching of uranium from tuffaceous rocks

    International Nuclear Information System (INIS)

    Goodell, P.C.; Trentham, R.C.

    1980-07-01

    The premise to be tested in this work is that felsic volcanic rocks particularly ash-flow tuffs, can serve as source rocks for certain uranium deposits. The applicability of this idea to several geologic environments is investigated. A genetic model is developed dealing with the behavior of uranium during and subsequent to ash-flow tuff deposition. It is based upon previously described investigations, geologic logic, data presented here, and speculation. Ash-flow tuff sequences described in the literature show significant alkali element variation, particularly in thick tuff units. Some variation is attributed to initial magma variations, whereas additional change may be produced during cooling and degassing of the tuff. Uranium variations have been documented in tuff sequences which are assumed to represent magmatic compositions. Uranium may be released during the initial degassing, during hydrothermal alteration, and/or during later diagenesis. Experimental studies have been designed and carried out to simulate natural leaching conditions such as might occur during diagenesis. Synthetic ground waters have been pumped through pulverized uraniferous vitrophyres. Major and minor element contents have been determined. The most significant chemical changes take place quickly, within a matter of days. Several starting and product leachant solutions were analyzed fluorimetrically for uranium. They show significant increases in uranium contents, from less than 1 ppB at the start to greater than 10 ppB maximu. Such leachant solutions might be significant transport agents of uranium given geologic time. Leaching at low temperatures appears to involve a thin surface reaction and diffusion layer. Both dissolution and ion exchange influence the leachant composition. It is also concluded that glassy ash-flow tuffs may serve as uranium source rocks during low temperature diagenetic changes

  13. Thermal decomposition of pyrite

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Popovic, S.

    1992-01-01

    Thermal decomposition of natural pyrite (cubic, FeS 2 ) has been investigated using X-ray diffraction and 57 Fe Moessbauer spectroscopy. X-ray diffraction analysis of pyrite ore from different sources showed the presence of associated minerals, such as quartz, szomolnokite, stilbite or stellerite, micas and hematite. Hematite, maghemite and pyrrhotite were detected as thermal decomposition products of natural pyrite. The phase composition of the thermal decomposition products depends on the terature, time of heating and starting size of pyrite chrystals. Hematite is the end product of the thermal decomposition of natural pyrite. (author) 24 refs.; 6 figs.; 2 tabs

  14. Impact of super-distal ash fallout on tropical hydrology and landscape: a case study from the YTT deposits of the Perak river, Malaysia

    Science.gov (United States)

    Gatti, E.; Saidin, M.; Gibbard, P.; Oppenheimer, C.

    2011-12-01

    The Younger Toba Tuff eruption, approximately 73 ka ago, is the largest known for the Quaternary and its climate, environmental and human consequences are keenly debated (Oppenheimer, 2011).While the distribution (Rose and Chesner, 1987; Rose and Chesner, 1990; Chesner et al., 1991; Schulz et al., 2002; Von Rad et al., 2002) , geochemical properties (Shane et al., 1995; Westgate et al., 1998) and volcanic significance (Rampino and Self, 1982; Rampino and Self, 1993; Rampino and Ambrose, 2000; Oppenheimer, 2002; Mason et al., 2004)of the YTT have been widely studied, few attention has been given to the significance of the distal volcanic ash deposits within their receiving basin context. Although several studies exist on the impact of pyroclastic flows on proximal rivers and lakes (Collins and Dunne, 1986; Thompson et al., 1986; Hayes et al., 2002; Németh and Cronin, 2007), only few address the issues of the dynamic of preservation of super-distal fine ash deposits in rivers (also due to the lack of direct data on super-eruptions). It has also been demonstrated that models of the styles and timing of distal volcanoclastic re-sedimentation are more complicated than those developed for proximal settings of stratovolcanoes (Kataoka et al., 2009). We present an analysis of the taphonomy (intended as accumulation and preservation) of distal volcanic ash in fluvial and lacustrian contexts in newly discovered Toungest Toba Tuff sites in the Lenggong valley, western Peninsular Malaysia. The paper aims to characterise the nature of distal tephras in fluvial environments towards a stratigraphic distinction between primary ash and secondary ash, characterisation of the pre-ash fall receiving environment in term of fluvial dynamic and landscape morphology, and assessment of the time of recovery.

  15. Two-dimensional, steady-state model of ground-water flow, Nevada Test Site and vicinity, Nevada-California

    International Nuclear Information System (INIS)

    Waddell, R.K.

    1982-01-01

    Characteristics of the flow system are principally determined by locations of low-hydraulic-conductivity rocks (barriers); by amounts of recharge originating in the Spring Mountains, Pahranagat, Timpahute, and Sheep Ranges, and in Pahute Mesa; and by amount of flow into the study area from Gold Flat and Kawich Valley. Discharge areas (Ash Meadows, Oasis Valley, Alkali Flat, and Furnace Creek Ranch) are upgradient from barriers. Analyses of sensitivity of hydraulic head with respect to model-parameter variations indicate that the flux terms having the greatest impact on model output are recharge on Pahute Mesa, underflow from Gold Flat and Kawich Valley, and discharge at Ash Meadows. The most important transmissivity terms are those for rocks underlying the Amargosa Desert (exclusive of Amargosa Flat area), the Eleana Formation along the west side of Yucca Flat, and the Precambrian and Cambrian clastic rocks underlying the Groom Range. Sensitivities of fluxes derived from simulated heads and head sensitivities were used to determine the parameters that would most affect predictions of radionuclide transport from a hypothetical nuclear repository in the southwest quadrant of the Nevada Test Site. The important parameters for determining flux through western Jackass Flats and Yucca Mountain are recharge to and underflow beneath Pahute Mesa; and transmissivities of the Eleana Formation, clastic rocks underlying the Groom Range, tuffs underlying Fortymile Canyon, and tuffs beneath Yucca Mountain. In the eastern part of Jackass Flats, the important parameters are transmissivities of the Eleana Formation; clastic rocks underlying the Groom Range; transmissivity of tuffs beneath Fortymile Canyon; and recharge or discharge terms for Pahute Mesa, Ash Meadows, and the Sheep Range. Transmissivities of rocks beneath the Amargosa Desert are important for flux calculations there

  16. Oxidation of pyrite: Consequences and significance

    Directory of Open Access Journals (Sweden)

    Dimitrijević Mile D.

    2002-01-01

    Full Text Available This paper presents the most important studies on the oxidation of pyrite particularly in aqueous solutions. The consequences of pyrite oxidation was examined, as well as its importance, from both the technical-technological and environmental points of view. The oxidation of pyrite was considered in two parts. The spontaneous oxidation of pyrite in nature was described in the first part, with this part comprising pyrite oxidation in deposits depots and mines. It is explained how way natural electrochemical processes lead to the decomposition of pyrite and other minerals associated with pyrite. The oxidation of pyrite occurring during technological processes such as grinding, flotation and leaching, was shown in the second part. Particular emphasis was placed on the oxidation of pyrite during leaching. This part includes the leaching of sulphide and oxide ores, the leaching of pyrite coal and the leaching of refractory gold-bearing ores (pressure oxidation, bacterial oxidation, oxidation by means of strong oxidants and the electrolysis of pyrite suspensions. Various mechanisms of pyrite oxidation and of the galvanic interaction of pyrite with other sulphide minerals are shown.

  17. Laboratory investigation of constitutive property up-scaling in volcanic tuffs

    International Nuclear Information System (INIS)

    Tidwell, V.C.

    1996-08-01

    One of the critical issues facing the Yucca Mountain site characterization and performance assessment programs is the manner in which property up-scaling is addressed. Property up-scaling becomes an issue whenever heterogeneous media properties are measured at one scale but applied at another. A research program has been established to challenge current understanding of property up-scaling with the aim of developing and testing improved models that describe up-scaling behavior in a quantitative manner. Up-scaling of constitutive rock properties is investigated through physical experimentation involving the collection of suites of gas-permeability data measured over a range of discrete scales. To date, up-scaling studies have been performed on a series of tuff and sandstone (used as experimental controls) blocks. Samples include a welded, anisotropic tuff (Tiva Canyon Member of the Paintbrush Tuff, upper cliff microstratigraphic unit), and a moderately welded tuff (Tiva Canyon Member of the Paintbrush Tuff, Caprock microstratigraphic unit). A massive fluvial sandstone (Berea Sandstone) was also investigated as a means of evaluating the experimental program and to provide a point of comparison for the tuff data. Because unsaturated flow is of prime interest to the Yucca Mountain Program, scoping studies aimed at investigating the up-scaling of hydraulic properties under various saturated conditions were performed to compliment these studies of intrinsic permeability. These studies focused on matrix sorptivity, a constitutive property quantifying the capillarity of a porous medium. 113 refs

  18. The influence of salinity of fly ash mixtures on energy looses during flow in pipelines

    Directory of Open Access Journals (Sweden)

    И. Собота

    2017-06-01

    Full Text Available In Polish mining for backfilling the fly ash mixtures are used. Last time for fly ash mixtures preparation the saline water from mine have been used, to thanks to that the saline water missing the surface waters. Usage of saline water for fly ash mixture preparation causes the changes in energy looses during the flow in pipelines. The paper presents the results of energy looses measurement іn laboratory pipeline installation with diameter D =50 mm. The measurements have been performed for different fly ash – saline water proportions. Tested fly-ash from Siersza power plant has typical properties (grain size distribution curve, density for ashes used for backfilling mixtures preparation. Increase of fluid (water salinity modifies fluid viscosity. Brine in comparison with pure water retains as liquid with increased viscosity. Increased viscosity can influence on the mixture ash-brine properties for example causing flocculation effect. Also changeable salinity has an influence on proper determination of resistance (frictional coefficient λ during mixtures flow in pipelines because it depends on Reynolds number which depends on liquid viscosity. Increase of fly-ash concentrations in fly-ash – brine mixtures cause increase of energy losses.

  19. Evenly-spaced columns in the Bishop Tuff as relicts of hydrothermal convection

    Science.gov (United States)

    Randolph-Flagg, N. G.; Breen, S. J.; Hernandez, A.; Self, S.; Manga, M.

    2015-12-01

    A few square km of the Bishop Tuff in eastern California, USA have evenly spaced erosional columns. These columns are more resistant to erosion due to the precipitation of the low-temperature zeolite (120-200 ºC), mordenite, which is not found in the surrounding tuff. Similar features observed in the Bandelier Tuff were hypothesized to form when cold water from above infiltrated into the still-hot tuff interior. This water would become gravitationally unstable and produced convection with steam upwellings and liquid water downwellings. These downwellings became cemented with mordenite while the upwellings were too dry for chemical reactions. We use two methods to quantitatively assess this hypothesis. First, scaling that ignores the effects of latent heat and mineral precipitation suggests the Rayleigh number (Ra, a measure of convective vigor) for this system is ~103 well above the critical Ra of 4π2. Second, to account for the effect of multiphase flow and latent heat, we use two-dimensional numerical models in the finite difference code HYDROTHERM. We find that the geometry of flow is consistent with field observations and confirm that geometry is sensitive to permeability and topography. These tests suggest a few things about low-pressure hydrothermal systems. 1) The geometry of at least some convection appears to be broadly captured by linear stability theory that ignores reactive transport, heterogeneity of host rock, and the effects of latent heat. 2) Topographic flow sets the wavelength of convection meaning that these columns formed somewhere without topography—probably a lake. Finally, these observations imply a wet paleoclimate in the Eastern Sierra namely that, in the aftermath of the Long Valley eruption, either rain or snow was able to pool in the caldera before the tuff cooled on the order of a hundred years after the eruption.

  20. Numerical simulation of air- and water-flow experiments in a block of variably saturated, fractured tuff from Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Kwicklis, E.M.; Healy, R.W.; Thamir, F.; Hampson, D.

    1998-01-01

    Numerical models of water movement through variably saturated, fractured tuff have undergone little testing against experimental data collected from relatively well-controlled and characterized experiments. This report used the results of a multistage experiment on a block of variably saturated, fractured, welded tuff and associated core samples to investigate if those results could be explained using models and concepts currently used to simulate water movement in variably saturated, fractured tuff at Yucca Mountain, Nevada, the potential location of a high-level nuclear-waste repository. Aspects of the experiment were modeled with varying degrees of success. Imbibition experiments performed on cores of various lengths and diameters were adequately described by models using independently measured permeabilities and moisture-characteristic curves, provided that permeability reductions resulting from the presence of entrapped air were considered. Entrapped gas limited maximum water saturations during imbibition to approximately 0.70 to 0,80 of the fillable porosity values determined by vacuum saturation. A numerical simulator developed for application to fluid flow problems in fracture networks was used to analyze the results of air-injection tests conducted within the tuff block through 1.25-cm-diameter boreholes. These analyses produced estimates of transmissivity for selected fractures within the block. Transmissivities of other fractures were assigned on the basis of visual similarity to one of the tested fractures. The calibrated model explained 53% of the observed pressure variance at the monitoring boreholes (with the results for six outliers omitted) and 97% of the overall pressure variance (including monitoring and injection boreholes) in the subset of air-injection tests examined

  1. Hydraulics of subaqueous ash flows as deduced from their deposits

    Science.gov (United States)

    Doronzo, Domenico M.; Dellino, Pierfrancesco

    2012-09-01

    Subaqueous ash flows are gravity currents consisting of a mixture of sea water and ash particles. Also called volcaniclastic turbidity currents (VTCs), they can be generated because of remobilization of pyroclastic fall deposits, which are emplaced into the sea around a volcanic island, as well as far away, during an explosive eruption. The VTC upper part is the turbulent transport system for the flow, whereas the viscous basal one is the depositional system. Typical sequences of VTC deposits are characterized by cross-laminations, planar and convolute laminations, and massive beds, which reflect the stratified nature of the flow. Here, the analysis of some VTC hydraulic parameters is presented in order to depict flow behavior and sedimentation during deposition. A reverse engineering approach is proposed, which consists of calculating hydraulic parameters by starting from deposit features. The calculated values show that a VTC is homogeneously-turbulent for most of the thickness, but is viscous at its base. First, cross-laminations are directly acquired over the rough pre-existing seafloor, then planar or convolute laminations aggrade over the newly formed substrate. Finally, fine-grained suspended particles gently settle and cap the flow deposit.

  2. An investigation of the mechanical and hydrologic behavior of tuff fractures under saturated conditions

    International Nuclear Information System (INIS)

    Voss, C.F.; Shotwell, L.R.

    1990-04-01

    The mechanical and hydrologic behavior of natural fractures in a partially welded tuff rock were investigated. Tuff cores, each containing part of the same natural fracture oriented subparallel to the core axis, were subjected a range of stress and hydraulic gradients while simultaneously monitoring changes in the fracture aperture and volumetric flow rate. The fractures were tested in three configurations: intact, mated, and offset. Fracture deformation was nonlinear over the stress range tested with permanent deformation and hysteresis occurring with each loading cycle. The offset samples had larger permanent deformation and significantly reduced normal stiffness at lower stress levels. The cubic flow law appears to be valid for the relatively undisturbed tuff fractures at the scale tested. The cubic law did not explain the observed hydraulic behavior of the offset fractures. 6 refs., 10 figs., 2 tabs

  3. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Wei, Dawei

    1996-01-01

    This project seeks to advance the fundamental understanding of the physico-chemical processes occurring at the pyrite/aqueous interface, in the context of coal cleaning, coal desulfurization, and acid mine drainage. Central to this research is the use of synthetic microsize particles of pyrite as model microelectrodes to investigate the semiconductor electrochemistry of pyrite. The research focuses on: (a) the synthesis of microsize particles of pyrite in aqueous solution at room temperature, (b) the formation of iron sulfide complex, the precursor of FeS or FeS{sub 2}, and (c) the relationship between the semiconductor properties of pyrite and its interfacial electrochemical behavior in the dissolution process. In Chapter 2, 3 and 4, a suitable protocol for preparing microsize particles of pyrite in aqueous solution is given, and the essential roles of the precursors elemental sulfur and ``FeS`` in pyrite formation are investigated. In Chapter 5, the formation of iron sulfide complex prior to the precipitation of FeS or FeS{sub 2} is investigated using a fast kinetics technique based on a stopped-flow spectrophotometer. The stoichiometry of the iron sulfide complex is determined, and the rate and formation constants are also evaluated. Chapter 6 provides a summary of the semiconductor properties of pyrite relevant to the present study. In Chapters 7 and 8, the effects of the semiconductor properties on pyrite dissolution are investigated experimentally and the mechanism of pyrite dissolution in acidic aqueous solution is examined. Finally, a summary of the conclusions from this study and suggestions for future research are presented in Chapter 9.

  4. Predicting flow through low-permeability, partially saturated, fractured rock: A review of modeling and experimental efforts at Yucca Mountain

    International Nuclear Information System (INIS)

    Eaton, R.R.; Bixler, N.E.; Glass, R.J.

    1989-01-01

    Current interest in storing high-level nuclear waste in underground repositories has resulted in an increased effort to understand the physics of water flow through low-permeability rock. The US Department of Energy is investigating a prospective repository site located in volcanic ash (tuff) hundreds of meters above the water table at Yucca Mountain, Nevada. Consequently, mathematical models and experimental procedures are being developed to provide a better understanding of the hydrology of this low-permeability, partially saturated, fractured rock. Modeling water flow in the vadose zone in soils and in relatively permeable rocks such as sandstone has received considerable attention for many years. The treatment of flow (including nonisothermal conditions) through materials such as the Yucca Mountain tuffs, however, has not received the same level of attention, primarily because it is outside the domain of agricultural and petroleum technology. This paper reviews the status of modeling and experimentation currently being used to understand and predict water flow at the proposed repository site. Several areas of research needs emphasized by the review are outlined. The extremely nonlinear hydraulic properties of these tuffs in combination with their heterogeneous nature makes it a challenging and unique problem from a computational and experimental view point. 101 refs., 14 figs., 1 tab

  5. On conditions and parameters important to model sensitivity for unsaturated flow through layered, fractured tuff

    International Nuclear Information System (INIS)

    Prindle, R.W.; Hopkins, P.L.

    1990-10-01

    The Hydrologic Code Intercomparison Project (HYDROCOIN) was formed to evaluate hydrogeologic models and computer codes and their use in performance assessment for high-level radioactive-waste repositories. This report describes the results of a study for HYDROCOIN of model sensitivity for isothermal, unsaturated flow through layered, fractured tuffs. We investigated both the types of flow behavior that dominate the performance measures and the conditions and model parameters that control flow behavior. We also examined the effect of different conceptual models and modeling approaches on our understanding of system behavior. The analyses included single- and multiple-parameter variations about base cases in one-dimensional steady and transient flow and in two-dimensional steady flow. The flow behavior is complex even for the highly simplified and constrained system modeled here. The response of the performance measures is both nonlinear and nonmonotonic. System behavior is dominated by abrupt transitions from matrix to fracture flow and by lateral diversion of flow. The observed behaviors are strongly influenced by the imposed boundary conditions and model constraints. Applied flux plays a critical role in determining the flow type but interacts strongly with the composite-conductivity curves of individual hydrologic units and with the stratigraphy. One-dimensional modeling yields conservative estimates of distributions of groundwater travel time only under very limited conditions. This study demonstrates that it is wrong to equate the shortest possible water-travel path with the fastest path from the repository to the water table. 20 refs., 234 figs., 10 tabs

  6. Mineralization and trace element distribution in pyrite using EMPA in exploration drill holes from Cheshmeh Zard gold district, Khorasan Razavi Province, Iran

    Directory of Open Access Journals (Sweden)

    Zahra Alaminia

    2015-10-01

    systems were recognized east of Arghash. The estimated resources are about 2 million metric tons of potential ore with an average of 1.9 g/t Au (Samadi, 2001;Ashrafpour et al., 2012. Multiple intrusive events are recognized in the region including Precambrian to post-Oligocene-Miocene igneous rocks (Alaminia et al., 2013a. This includes the Arghash diorite pluton, upper Cretaceous granitoids (minor diorite, mainly quartz monzodiorite and granodiorite, early Eocene granite and several lamprophyre and small intrusions of quartz monzodiorite porphyries. Volcanicsinclude andesite, dacite, pillow basalt and tuffs. Sedimentary rocks are conglomerate and minor limestone. Gold veins are hosted by intermediate to silicic volcanic rocks, tuffs, granite, granodiorite, and conglomerate. Veins consist of calcite and quartz. The main alteration zones mapped at the surface and underground are sericite-quartz-pyrite-calcite, withsilicified, propylitic, argillic, and carbonate zones. The mineralization associated with sericiticalteration and silicificationoccurs asveinlets and disseminated in the propylitic zone. Gangue minerals are quartz, chalcedony, calcite, adularia, illite, and kaolinite. Mineralization occurs as veinlets, breccia filling and disseminated. The veinlets are comprised of pyrite, arsenopyrite, minor chalcopyrite, sphalerite, galena, magnetite and hematite. Pyrite is the main sulfide mineral in the hypogene ore. Samples were collected with the objective of studying the pyrite in the Au (III vein systems. All samples were therefore pyrite rich. The paragenesiswas determined to show four stages of mineralization based on the following microscopic observations: 1. an initial pyrite veinlet stage with associated quartz, chlorite, epidote. Pyrite is fine to medium grained, anhedral and gold-poor. 2. a second pyritic stage (polymetallic sulfide stage contains pyrite, chalcopyrite, galena, sphalerite, quartz and chalcedony, minor adularia and arsenopyrite. 3. An As

  7. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  8. Lithostratigraphy of the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Moyer, T.C.; Geslin, J.K.

    1995-01-01

    Lithostratigraphic relations within the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) were reconstructed from analysis of core samples and observation of outcrop exposures. The Calico Hills Formation is composed of five nonwelded pyroclastic units (each formed of one or more pyroclastic-flow deposits) that overlie an interval of bedded tuff and a basal volcaniclastic sandstone unit. The Prow Pass Tuff is divided into four pyroclastic units and an underlying interval of bedded tuff. The pyroclastic units of the Prow Pass Tuff are distinguished by the sizes and amounts of their pumice and lithic clasts and their degree of welding. Pyroclastic units of the Prow Pass Tuff are distinguished from those of the Calico Hills Formation by their phenocryst assemblage, chemical composition, and ubiquitous siltstone lithic clasts. Downhole resistivity tends to mirror the content of authigenic minerals, primarily zeolites, in both for-mations and may be useful for recognizing the vitric-zeolite boundary in the study area. Maps of zeolite distribution illustrate that the bedded tuff and basal sandstone units of the Calico Hills Formation are altered over a wider area than the pyroclastic units of both the Calico Hills Formation and the upper Prow Pass Tuff

  9. Lithostratigraphy of the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, T.C.; Geslin, J.K. [Science Applications International Corp., Las Vegas, NV (United States)

    1995-07-01

    Lithostratigraphic relations within the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) were reconstructed from analysis of core samples and observation of outcrop exposures. The Calico Hills Formation is composed of five nonwelded pyroclastic units (each formed of one or more pyroclastic-flow deposits) that overlie an interval of bedded tuff and a basal volcaniclastic sandstone unit. The Prow Pass Tuff is divided into four pyroclastic units and an underlying interval of bedded tuff. The pyroclastic units of the Prow Pass Tuff are distinguished by the sizes and amounts of their pumice and lithic clasts and their degree of welding. Pyroclastic units of the Prow Pass Tuff are distinguished from those of the Calico Hills Formation by their phenocryst assemblage, chemical composition, and ubiquitous siltstone lithic clasts. Downhole resistivity tends to mirror the content of authigenic minerals, primarily zeolites, in both for-mations and may be useful for recognizing the vitric-zeolite boundary in the study area. Maps of zeolite distribution illustrate that the bedded tuff and basal sandstone units of the Calico Hills Formation are altered over a wider area than the pyroclastic units of both the Calico Hills Formation and the upper Prow Pass Tuff.

  10. Hydrogeologic and environmental impact of amjhore pyrite mines, India

    Science.gov (United States)

    Choubey, Vishnu D.; Rawat, Rajendra K.

    1991-01-01

    Drainage from active and inactive pyrite mines has produced chemical and physical pollution of both ground- and surface water in Amjhore region. In the present case, chemical pollution is caused by exposing pyrite minerals to oxidation or leaching, resulting in undesirable concentrations of dissolved materials. Pyrite mining suddenly exposed large quantities of sulfides to direct contact with oxygen, and oxidation proceeds rapidly, resulting in acidity and release of metal (Fe) and sulfates to the water system, eventually resulting in water pollution in the region. The magnitude and impact of the problem is just being recognized and, as the present and the future projected demand for clean water is of top priority, the present studies were undertaken. Mine drainage includes water flowing from the surface and underground mines and runoff or seepage from the pyrite mines. This article describes the various hydrologic factors that control acid water formation and its transport. The mine drainage is obviously a continuing source of pollution and, therefore, remedial measures mainly consisting of a double-stage limestone-lime treatment technique have been suggested. The present results will be used to develop an alternative and more effective abatement technology to mitigate acid production at the source, namely, the technique of revegetation of the soil cover applied to the waste mine dump material. Water quality change is discussed in detail, with emphasis on acidity formed from exposed pyrite material and on increase in dissolved solids. Preventive and treatment measures are recommended.

  11. Hydrologic mechanisms governing fluid flow in partially saturated, fractured, porous tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Narasimhan, T.N.

    1984-10-01

    In contrast to the saturated zone where fluid moves rapidly along fractures, the fractures (with apertures large relative to the size of matrix pores) will desaturate first during drainage process and the bulk of fluid flow would be through interconnected pores in the matrix. Within a partially drained fracture, the presence of a relatively continuous air phase will produce practically an infinite resistance to liquid flow in the direction parallel to the fracture. The residual liquid will be held by capillary force in regions around fracture contact areas where the apertures are small. Normal to the fracture surfaces, the drained portion of the fractures will reduce the effective area for liquid flow from one matrix block to another matrix block. A general statistical theory is constructed for flow along the fracture and for flow between the matrix blocks to the fractures under partially saturated conditions. Results are obtained from an aperture distribution model for fracture saturation, hydraulic conductivity, and effective matrix-fracture flow areas as functions of pressure. Drainage from a fractured tuff column is simulated. The parameters for the simulations are deduced from fracture surface characteristics, spacings and orientations based on core analyses, and from matrix characteristics curve based on laboratory measurements. From the cases simulated for the fractured, porous column with discrete vertical and horizontal fractures and porous matrix blocks explicitly taken into account, it is observed that the highly transient changes from fully saturated conditions to partially saturated conditions are extremely sensitive to the fracture properties. However, the quasi-steady changes of the fluid flow of a partially saturated, fractured, porous system could be approximately simulated without taking the fractures into account. 22 references, 16 figures

  12. Pyrite oxidation at circumneutral pH

    Science.gov (United States)

    Moses, Carl O.; Herman, Janet S.

    1991-02-01

    Previous studies of pyrite oxidation kinetics have concentrated primarily on the reaction at low pH, where Fe(III) has been assumed to be the dominant oxidant. Studies at circumneutral pH, necessitated by effective pH buffering in some pyrite oxidation systems, have often implicitly assumed that the dominant oxidant must be dissolved oxygen (DO), owing to the diminished solubility of Fe(III). In fact, Fe(III)(aq) is an effective pyrite oxidant at circumneutral pH, but the reaction cannot be sustained in the absence of DO. The purpose of this experimental study was to ascertain the relative roles of Fe(III) and DO in pyrite oxidation at circumneutral pH. The rate of pyrite oxidation was first-order with respect to the ratio of surface area to solution volume. Direct determinations of both Fe(II) (aq)> and Fe(III) (aq) demonstrated a dramatic loss of Fe(II) from the solution phase in excess of the loss for which oxidation alone could account. Based on rate data, we have concluded that Fe(II) is adsorbed onto the pyrite surface. Furthermore, Fe(II) is preferred as an adsorbate to Fe(III), which we attribute to both electrostatic and acid-base selectivity. We also found that the rate of pyrite oxidation by either Fe(III) (aq) or DO is reduced in the presence of aqueous Fe(II), which leads us to conclude that, under most natural conditions, neither Fe(III) (aq) nor DO directly attacks the pyrite surface. The present evidence suggests a mechanism for pyrite oxidation that involves adsorbed Fe( II ) giving up electrons to DO and the resulting Fe(III) rapidly accepting electrons from the pyrite. The adsorbed Fe is, thus, cyclically oxidized and reduced, while it acts as a conduit for electrons traveling from pyrite to DO. Oxygen is transferred from the hydration sphere of the adsorbed Fe to pyrite S. The cycle of adsorbed Fe oxidation and reduction and the successive addition of oxygen to pyrite S continues until a stable sulfoxy species dissociates from the surface. Prior

  13. Three-dimensional modeling of flow through fractured tuff at Fran Ridge

    International Nuclear Information System (INIS)

    Eaton, R.R.; Ho, C.K.; Glass, RJ.; Nicholl, M.J.; Arnold, B.W.

    1996-09-01

    Numerical studies have been made of an infiltration experiment at Fran Ridge using the TOUGH2 code to aid in the selection of computational models for performance assessment. The exercise investigates the capabilities of TOUGH2 to model transient flows through highly fractured tuff and provides a possible means of calibration. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The infiltration test modeled involved the infiltration of dyed ponded water for 36 minutes. The 205 gallon infiltration of water observed in the experiment was subsequently modeled using measured Fran Ridge fracture frequencies, and a specified fracture aperture of 285 microm. The dual permeability formulation predicted considerable infiltration along the fracture network, which was in agreement with the experimental observations. As expected, al fracture penetration of the infiltrating water was calculated using the equivalent continuum model, thus demonstrating that this model is not appropriate for modeling the highly transient experiment. It is therefore recommended that the dual permeability model be given priority when computing high-flux infiltration for use in performance assessment studies

  14. Three-dimensional modeling of flow through fractured tuff at Fran Ridge

    International Nuclear Information System (INIS)

    Eaton, R.R.; Ho, C.K.; Glass, R.J.; Nicholl, M.J.; Arnold, B.W.

    1996-01-01

    Numerical studies have been made of an infiltration experiment at Fran Ridge using the TOUGH2 code to aid in the selection of computational models for performance assessment. The exercise investigates the capabilities of TOUGH2 to model transient flows through highly fractured tuff and provides a possible means of calibration. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The infiltration test modeled involved the infiltration of dyed ponded water for 36 minutes. The 205 gallon filtration of water observed in the experiment was subsequently modeled using measured Fran Ridge fracture frequencies, and a specified fracture aperture of 285 μm. The dual permeability formulation predicted considerable infiltration along the fracture network, which was in agreement with the experimental observations. As expected, minimal fracture penetration of the infiltrating water was calculated using the equivalent continuum model, thus demonstrating that this model is not appropriate for modeling the highly transient experiment. It is therefore recommended that the dual permeability model be given priority when computing high-flux infiltration for use in performance assessment studies

  15. Quality characteristics of Greek fly ashes and potential uses

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Grammelis, P.; Kakaras, E. [Institute for Solid Fuels Technology and Applications, Ptolemais (Greece); Karangelos, D.; Anagnostakis, M.; Hinis, E. [Nuclear Engineering Section, Mechanical Engineering Department, National Technical University of Athens, Athens (Greece)

    2007-01-15

    The main characteristics of fly ash from Greek coal-fired boilers are presented in this paper in relation to its exploitation potential. Both fuel and fly ash samples were collected and analyzed according to the ASTM Standards. Apart from the typical analyses (proximate, ultimate, ash analysis and calorific value), an ICP-AES spectrometer was used for the analysis of heavy metals in the ash. Experimental measurements in order to determine the radioactivity content of raw fuel and the fly ash were carried out as well. A representative fly ash sample from Ptolemais power plant was evaluated and tested as filler in Self-Compacting Concrete (SCC). Ashes from the Greek brown coal are classified in type C, most of the fly ash being produced in Ptolemais of Northern Greece, while the rest in Megalopolis. Ptolemais fly ash is rich in calcium compounds, while Megalopolis fly ash contains more pyrite. Increased heavy metal concentrations are observed in the fly ash samples of Greek coal. Greek fly ash appears to have not only pozzolanic but also hydraulic behaviour. Furthermore, Greek fly ash, depending on its origin, may have relatively high natural radioactivity content, reaching in the case of Megalopolis fly ash 1 kBq kg{sup -1} of {sup 226}Ra. The laboratory results showed that fly ashes can be a competitive substitute to conventional limestone filler material in SCC. Fly ash is mostly used in Greece in cement industry replacing cement clinker and aiming to the production of special types of Portland cements. However, a more aggressive utilisation strategy should be developed, since low quantities of the total produced fly ash are currently further utilised. (author)

  16. Development of waste packages for tuff

    International Nuclear Information System (INIS)

    Rothman, A.J.

    1982-01-01

    The objective of this program is to develop nuclear waste packages that meet the Nuclear Regulatory Commission's requirements for a licensed repository in tuff at the Nevada Test Site. Selected accomplishments for FY82 are: (1) Selection, collection of rock, and characterization of suitable outcrops (for lab experiments); (2) Rock-water interactions (Bullfrog Tuff); (3) Corrosion tests of ferrous metals; (4) Thermal modeling of waste package in host rock; (5) Preliminary fabrication tests of alternate backfills (crushed tuff); (6) Reviewed Westinghouse conceptual waste package designs for tuff and began modification for unsaturated zone; and (7) Waste Package Codes (BARIER and WAPPA) now running on our computer. Brief discussions are presented for rock-water interactions, corrosion tests of ferrous metals, and thermal and radionuclide migration modelling

  17. The influence of salinity of fly ash mixtures on energy looses during flow in pipelines

    OpenAIRE

    И. Собота

    2017-01-01

    In Polish mining for backfilling the fly ash mixtures are used. Last time for fly ash mixtures preparation the saline water from mine have been used, to thanks to that the saline water missing the surface waters. Usage of saline water for fly ash mixture preparation causes the changes in energy looses during the flow in pipelines. The paper presents the results of energy looses measurement іn laboratory pipeline installation with diameter D =50 mm. The measurements have been performed for dif...

  18. The Adsorption of Cu Species onto Pyrite Surface and Its Effect on Pyrite Flotation

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2016-01-01

    Full Text Available The adsorption of Cu species onto pyrite surface and its effect on flotation were investigated by using microflotation tests, first-principle calculations, and XPS surface analysis. The results indicated that the flotation of pyrite appears to be activated with CuSO4 only at alkaline pH, while being depressed at acidic and neutral pH. The adsorption of copper ions on pyrite surface was pH-dependent, and the adsorption magnitude of copper ions at alkaline pH is higher than that at acidic and neutral pH due to a strong interaction between O atom in Cu(OH2 and surface Fe atom except for the interaction between Cu atom and surface S atom. At acidic and neutral pH, there is only an interaction between Cu atom and surface S atom. The adsorption was relatively weak, and more copper ions in solution precipitated the collector and depressed the flotation of pyrite. XPS analysis confirmed that more copper ionic species (Cu(I and Cu(II are adsorbed on the pyrite surface at alkaline pH than that at acidic and neutral pH.

  19. Preliminary thermal expansion screening data for tuffs

    International Nuclear Information System (INIS)

    Lappin, A.R.

    1980-03-01

    A major variable in evaluating the potential of silicic tuffs for use in geologic disposal of heat-producing nuclear wastes is thermal expansion. Results of ambient-pressure linear expansion measurements on a group of tuffs that vary treatly in porosity and mineralogy are presente here. Thermal expansion of devitrified welded tuffs is generally linear with increasing temperature and independent of both porosity and heating rate. Mineralogic factors affecting behavior of these tuffs are limited to the presence or absence of cristobalite and altered biotite. The presence of cristobalite results in markedly nonlinear expansion above 200 0 C. If biotite in biotite-hearing rocks alters even slightly to expandable clays, the behavior of these tuffs near the boiling point of water can be dominated by contraction of the expandable phase. Expansion of both high- and low-porosity tuffs containing hydrated silicic glass and/or expandable clays is complex. The behavior of these rocks appears to be completely dominated by dehydration of hydrous phases and, hence, should be critically dependent on fluid pressure. Valid extrapolation of the ambient-pressure results presented here to depths of interest for construction of a nuclear-waste repository will depend on a good understanding of the interaction of dehydration rates and fluid pressures, and of the effects of both micro- and macrofractures on the response of tuff masss

  20. Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion, Inst. of Coal Chemistry

    2000-10-01

    The thermal behaviour of pure pyrite was studied under nitrogen and hydrogen atmospheres in a pressurized thermal balance. The transfer of pyrite in coal during pyrolysis and hydropyrolysis was investigated in a fixed-bed reactor. The results suggest that the indigenous hydro-carbon with hydrogen donor ability in coal can promote the reduction of pyrite in pyrolysis. At low temperatures, organic sulfur removal is almost the same in pyrolysis and hydropyrolysis of two coals. It is likely that indigenous hydrogen in coal is the dominant factor in organic sulfur elimination in the low-temperature stage. An increase of organic sulfur in pyrolysis of Hongmiao coal indicates that the lack of the indigenous hydrogen may be the key factor determining the transformation of pyritic sulfur into organic sulfur. Oxygen affects the conversion of pyrite into organic sulfur through the competitive consumption of hydrogen. 12 refs., 5 figs., 1 tab.

  1. Ash-flow tuff distribution and fault patterns as indicators of rotation of late-tertiary regional extension, Nevada test site

    International Nuclear Information System (INIS)

    Ander, H.D.

    1983-01-01

    Isopach and structure contour maps generated for Yucca Flat as well as fault pattern analyses of the Nevada Test Site (NTS) can aid in more efficient site selection and site characterization necessary for containment. Furthermore, these geologic studies indicate that most of the alluvial deposition in Yucca Flat was controlled by north-trending faults responding to a regional extension direction oriented approximately 20 0 to 30 0 west of the N50 0 W direction observed today. The Yucca Flat basin-forming Carpetbag and Yucca fault systems seem to be deflected at their southern ends into the northeast-trending Cane Spring and Mine Mountain fault systems. Left-lateral strike-slip displacement of approx. 1.4 km found on these northeasterly faults requires that most of the displacement on the combined fault systems occurred in an extension field oriented approximately N80 0 W. Fault movement in this extensional field postdates the Ammonia Tanks tuff (approx. 11 My) and was strongly active during deposition of some 1100 meters of alluvium in Yucca Flat. Time of rotation of regional extension to the presently active N50 0 W direction is unknown; however, it occurred so recently that it has not greatly modified fault displacement patterns extant at the NTS

  2. Mixture proportioning of fly ash-concretes based on mortar strength and flow data

    International Nuclear Information System (INIS)

    Nusrat, A.; Tahir, M.A.

    2008-01-01

    A method of mixture proportioning of fly ash concretes is presented. The method is based on the strength and flow data of a minimum of nine fly ash-cement mortars. The essence of the method is that three fly ash-binder ratios are to be combined with three water-binder ratios in the range of interest. The strength and water demand data are analyzed for constructing mixture proportion charts. The strength vs. water-binder ratio charts are prepared by down-scaling the 50-mm mortar strength to the 150-mm standard concrete cylinders. The method is illustrated with the help of examples. The trial mixtures proportioned using the proposed methods have reasonably achieved the 28 day target strengths. (author)

  3. Pyrite in the Mesoarchean Witwatersrand Supergroup, South Africa

    OpenAIRE

    2012-01-01

    Ph.D. Petrographic, chemical and multiple sulfur isotope analyses were conducted on pyrite from argillaceous, arenaceous and rudaceous sedimentary rocks from the Mesoarchean Witwatersrand Supergroup. Following detailed petrographic analyses, four paragenetic associations of pyrite were identified. These include: 1) Detrital pyrite (derived from an existing rock via weathering and/or erosion). 2) Syngenetic pyrite (formed at the same time as the surrounding sediment). 3) Diagenetic pyrite (...

  4. Epithermal uranium deposits in a volcanogenic context: the example of Nopal 1 deposit, Sierra de Pena Blanca, Mexico

    Science.gov (United States)

    Calas, G.; Angiboust, S.; Fayek, M.; Camacho, A.; Allard, T.; Agrinier, P.

    2009-12-01

    The Peña Blanca molybdenum-uranium field (Chihuahua, Mexico) exhibits over 100 airborne anomalies hosted in tertiary ignimbritic ash-flow tuffs (44 Ma) overlying the Pozos conglomerate and a sequence of Cretaceous carbonate rocks. Uranium occurrences are associated with breccia zones at the intersection of two or more fault systems. Periodic reactivation of these structures associated with Basin and Range and Rio Grande tectonic events resulted in the mobilization of U and other elements by meteoric fluids heated by geothermal activity. Trace element geochemistry (U, Th, REE) provides evidence for local mobilization of uranium under oxidizing conditions. In addition, O- and H-isotope geochemistry of kaolinite, smectite, opal and calcite suggests that argillic alteration proceeded at shallow depth with meteoric water at 25-75 °C. Focussed along breccia zones, fluids precipitated several generations of pyrite and uraninite together with kaolinite, as in the Nopal 1 mine, indicating that mineralization and hydrothermal alteration of volcanic tuffs are contemporaneous. Low δ34S values (~ -24.5 ‰) of pyrites intimately associated with uraninite suggest that the reducing conditions at the origin of the U-mineralization arise from biological activity. Later, the uplift of Sierra Pena Blanca resulted in oxidation and remobilization of uranium, as confirmed by the spatial distribution of radiation-induced defect centers in kaolinites. These data show that tectonism and biogenic reducing conditions can play a major role in the formation and remobilization of uranium in epithermal deposits. By comparison with the other uranium deposits at Sierra Pena Blanca and nearby Sierra de Gomez, Nopal 1 deposit is one of the few deposits having retained a reduced uranium mineralization.

  5. The Tala Tuff, La Primavera caldera Mexico. Pre-eruptive conditions and magma processes before eruption

    Science.gov (United States)

    Sosa-Ceballos, G.

    2015-12-01

    La Primavera caldera, Jalisco Mexico, is a Pleistocenic volcanic structure formed by dome complexes and multiple pyroclastic flows and fall deposits. It is located at the intersection of the Chapala, Colima, and Tepic grabens in western Mexico. The first volcanic activity associated to La Primavera started ~0.1 Ma with the emission of pre-caldera lavas. The caldera collapse occurred 95 ka and is associated to the eruption of ~20 km3of pumice flows known as the Tala tuff (Mahood 1980). The border of the caldera was replaced by a series of domes dated in 75-30 ky, which partially filled the inner depression of the caldera with pyroclastic flows and falls. For more than a decade the Federal Commission of Electricity in Mexico (CFE) has prospected and evaluated the geothermal potential of the Cerritos Colorados project at La Primavera caldera. In order to better understand the plumbing system that tapped the Tala tuff and to investigate its relation with the potential geothermal field at La Primavera we performed a series of hydrothermal experiments and studied melt inclusions hosted in quartz phenocrysts by Fourier Infra red stectroscopy (FTIR). Although some post caldera products at La Primavera contain fayalite and quartz (suggesting QFM conditions) the Tala tuff does not contain fayalite and we ran experiments under NNO conditions. The absence of titanomagnetite does not allowed us to calculate pre-eruptive temperature. However, the stability of quartz and plagioclase, which are natural phases, suggest that temperature should be less than 750 °C at a pressure of 200 MPa. The analyses of H2O and CO2 dissolved in melt inclusions yielded concentrations of 2-5 wt.% and 50-100 ppm respectively. This data confirm that the pre-eruptive pressure of the Tala tuff is ~200 MPa and in addition to major elements compositions suggest that the Tala tuff is either, compositionally zoned or mixed with other magma just prior to eruption.

  6. Geochemistry of volcanic ashes, thermal waters and gases ejected during the 1979 eruption of Ontake Volcano, Japan

    International Nuclear Information System (INIS)

    Sugiura, Tumomu; Sugisaki, Ryuichi; Mizutani, Yoshihiko; Kusakabe, Minoru.

    1980-01-01

    Ontake Volcano suddenly began to erupt on its south-western flank near the summit at 05sup(h)20sup(m) on Oct. 28, 1979, forming several new craters and ejecting large amounts of volcanic ash and steam. Up to that time, the volcano had been believed to be dormant, though there were weak geothermal activities at a part of the south-western flank of the volcano, Jigokudani. This paper reports some results obtained by preliminary examination of volcanic ashes, thermal waters and gases collected on and around Ontake Volcano during the early stage of eruptive activity. The volcanic ashes are homogeneous in chemical and mineralogical compositions, and similar in chemical composition to the pre-historic volcanic ashes. The ashes contain pyrite, anhydrite, cristobalite and clay minerals. The sulfur isotopic equilibrium temperature is estimated to be about 400 0 C for pyrite-anhydrite pairs in the volcanic ashes. The estimated temperature is apparently too high for the temperature of phreatic explosion. The interpretation of this isotopic data remains unsettled. The thermal waters collected from the boiling pools in craters are enriched in D and 18 O. The isotopic enrichment is probably caused by evaporation of water at the surface of boiling pool. The hydrogen and oxygen isotopic data also suggest that spring waters issuing around Ontake Volcano are meteoric in origin. Nigorigo Hot Spring, about 4 km north-west of Ontake Volcano, showed significant increase in the concentrations of major dissolved chemical components soon after the eruption, but since then no significant change in chemical and isotopic composition has been observed. (author)

  7. New fission-track ages of mio-pliocene tuffs in the Sierras Pampeanas and Precordillera of Argentina

    International Nuclear Information System (INIS)

    Tabbutt, K.; Naeser, C.W.; Jordan, T.E.; Cerveny, P.F.

    1989-01-01

    Fission-track dates were determined for 18 volcanic tuff horizons located in nine Neogene foreland basin sequences distributed throughout the Precordillera and Sierras Pampeanas of Northwestern Argentina, an area of nearly horizontal subduction. These and other data indicate that a lower age limit for the sedimentary sequences studied is approximately 17 Ma. Therefore these fission-track dates constrain both the history of volcanic activity and the time of deposition in several foreland basins from the middle Miocene to Recent. Although the dates range from 3.6±0.8 Ma to 17.0±1.9 Ma, there is a marked increase in the number of ashes younger than 9 Ma. This implies that two distinct episodes of volcanic activity affected the region. The source of some of these tuffs is unknown but they are probably limited to the 'flat-slab' region between 27 deg and 32 deg S. Tuffs at Rio Blanco and Santa Florentina that are spatially associated with the Mogotes dacite domes of the Famatina Range represented magmatism bracketed from about 7 to 4 Ma in the region underlain by the flat-subducted plate. The stratigraphic relations in the basins show that the faulting that uplifted Sierra de Famatina was contemporaneous with the volcanism which reached the surface along the bounding faults. (Author) [es

  8. Evaluation of the CO2 sequestration capacity for coal fly ash using a flow-through column reactor under ambient conditions

    International Nuclear Information System (INIS)

    Jo, Ho Young; Ahn, Joon-Hoon; Jo, Hwanju

    2012-01-01

    Highlights: ► A conceptual in-situ mineral carbonation method using a coal ash pond is proposed. ► CO 2 uptake occurred by carbonation reaction of CO 2 with Ca 2+ ions from coal fly ash. ► The CO 2 sequestration capacity was affected by the solid dosage. ► Seawater can be used as a solvent for mineral carbonation of coal fly ash. - Abstract: An in-situ CO 2 sequestration method using coal ash ponds located in coastal regions is proposed. The CO 2 sequestration capacity of coal fly ash (CFA) by mineral carbonation was evaluated in a flow-through column reactor under various conditions (solid dosage: 100–330 g/L, CO 2 flow rate: 20–80 mL/min, solvent type: deionized (DI) water, 1 M NH 4 Cl solution, and seawater). The CO 2 sequestration tests were conducted on CFA slurries using flow-through column reactors to simulate more realistic flow-through conditions. The CO 2 sequestration capacity increased when the solid dosage was increased, whereas it was affected insignificantly by the CO 2 flow rate. A 1 M NH 4 Cl solution was the most effective solvent, but it was not significantly different from DI water or seawater. The CO 2 sequestration capacity of CFA under the flow-through conditions was approximately 0.019 g CO 2 /g CFA under the test conditions (solid dosage: 333 g/L, CO 2 flow rate: 40 mL/min, and solvent: seawater).

  9. The Nopal 1 Uranium Deposit: an Overview

    Science.gov (United States)

    Calas, G.; Allard, T.; Galoisy, L.

    2007-05-01

    The Nopal 1 natural analogue is located in the Pena Blanca uranium district, about 50 kms north of Chihuahua City, Mexico. The deposit is hosted in tertiary ignimbritic ash-flow tuffs, dated at 44 Ma (Nopal and Colorados formations), and overlying the Pozos conglomerate formation and a sequence of Cretaceous carbonate rocks. The deposit is exposed at the ground surface and consists of a near vertical zone extending over about 100 m with a diameter of 40 m. An interesting characteristic is that the primary mineralization has been exposed above the water table, as a result of the uplift of the Sierra Pena Blanca, and subsequently oxidized with a remobilization of hexavalent uranium. The primary mineralization has been explained by various genetic models. It is associated to an extensive hydrothermal alteration of the volcanic tuffs, locally associated to pyrite and preserved by an intense silicification. Several kaolinite parageneses occur in fissure fillings and feldspar pseudomorphs, within the mineralized breccia pipe and the barren surrounding rhyolitic tuffs. Smectites are mainly developed in the underlying weakly welded tuffs. Several radiation-induced defect centers have been found in these kaolinites providing a unique picture of the dynamics of uranium mobilization (see Allard et al., this session). Another evidence of this mobilization is given by the spectroscopy of uranium-bearing opals, which show characteristic fluorescence spectra of uranyl groups sorbed at the surface of silica. By comparison with the other uranium deposits of the Sierra Pena Blanca and the nearby Sierra de Gomez, the Nopal 1 deposit is original, as it is one of the few deposits hving retained a reduced uranium mineralization.

  10. Frictional properties of jointed welded tuff

    International Nuclear Information System (INIS)

    Teufel, L.W.

    1981-07-01

    The results of the experiments on simulated joints in welded tuff from the Grouse Canyon Member of the Belted Range Tuff warrant the following conclusions: (1) The coefficient of friction of the joints is independent of normal stress at a given sliding velocity. (2) The coefficient of friction increases with both increasing time of stationary contact and decreasing sliding velocity. (3) Time and velocity dependence of friction is due to an increase in the real area of contact on the sliding surface, caused by asperity creep. (4) Joints in water-saturated tuff show a greater time and velocity dependence of friction than those in dehydrated tuff. (5) The enhanced time and velocity dependence of friction with water saturation is a result of increased creep at asperity contacts, which is in turn due to a reduction in the surface indentation hardness by hydrolytic weakening and/or stress corrosion cracking

  11. THE DEPRESSION OF PYRITE FLOTATION BY THIOBACILLUS FERROOXIDANS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The experimental studies on the microbial flotation of a pure pyrite sample using Thiobacillus ferrooxidans was conducted in the laboratory. The results indicate that Thiobacillus ferrooaidans has strong depression effect on the flotation of pyrite. Thiobacillus f errooxidans can adsorb on the surface of pyrite in a very short time (a few min. ), changing the surface from hydrophobic into hydrophilic and making the pyrite particles to lose their floatability. Therefore, Thiobacillus ferrooxidans is an effective microbial depressant of pyrite. It has also been pointed out that the depression of pyrite by Thiobacillus ferrooxidans is caused by the adsorption of the microbial colloids, but not by the oxidation effect.

  12. Laboratory analysis of fluid flow and solute transport through a variably saturated fracture embedded in porous tuff

    International Nuclear Information System (INIS)

    Chuang, Y.; Haldeman, W.R.; Rasmussen, T.C.; Evans, D.D.

    1990-02-01

    Laboratory techniques are developed that allow concurrent measurement of unsaturated matrix hydraulic conductivity and fracture transmissivity of fractured rock blocks. Two Apache Leap tuff blocks with natural fractures were removed from near Superior, Arizona, shaped into rectangular prisms, and instrumented in the laboratory. Porous ceramic plates provided solution to block tops at regulated pressures. Infiltration tests were performed on both test blocks. Steady flow testing of the saturated first block provided estimates of matrix hydraulic conductivity and fracture transmissivity. Fifteen centimeters of suction applied to the second block top showed that fracture flow was minimal and matrix hydraulic conductivity was an order of magnitude less than the first block saturated matrix conductivity. Coated-wire ion-selective electrodes monitored aqueous chlorided breakthrough concentrations. Minute samples of tracer solution were collected with filter paper. The techniques worked well for studying transport behavior at near-saturated flow conditions and also appear to be promising for unsaturated conditions. Breakthrough curves in the fracture and matrix, and a concentration map of chloride concentrations within the fracture, suggest preferential flows paths in the fracture and substantial diffusion into the matrix. Average travel velocity, dispersion coefficient and longitudinal dispersivity in the fracture are obtained. 67 refs., 54 figs., 23 tabs

  13. Method of synthesizing pyrite nanocrystals

    Science.gov (United States)

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  14. Pyrite footprinting of RNA

    International Nuclear Information System (INIS)

    Schlatterer, Jörg C.; Wieder, Matthew S.; Jones, Christopher D.; Pollack, Lois; Brenowitz, Michael

    2012-01-01

    Highlights: ► RNA structure is mapped by pyrite mediated · OH footprinting. ► Repetitive experiments can be done in a powdered pyrite filled cartridge. ► High · OH reactivity of nucleotides imply dynamic role in Diels–Alderase catalysis. -- Abstract: In RNA, function follows form. Mapping the surface of RNA molecules with chemical and enzymatic probes has revealed invaluable information about structure and folding. Hydroxyl radicals ( · OH) map the surface of nucleic acids by cutting the backbone where it is accessible to solvent. Recent studies showed that a microfluidic chip containing pyrite (FeS 2 ) can produce sufficient · OH to footprint DNA. The 49-nt Diels–Alder RNA enzyme catalyzes the C–C bond formation between a diene and a dienophile. A crystal structure, molecular dynamics simulation and atomic mutagenesis studies suggest that nucleotides of an asymmetric bulge participate in the dynamic architecture of the ribozyme’s active center. Of note is that residue U42 directly interacts with the product in the crystallized RNA/product complex. Here, we use powdered pyrite held in a commercially available cartridge to footprint the Diels–Alderase ribozyme with single nucleotide resolution. Residues C39 to U42 are more reactive to · OH than predicted by the solvent accessibility calculated from the crystal structure suggesting that this loop is dynamic in solution. The loop’s flexibility may contribute to substrate recruitment and product release. Our implementation of pyrite-mediated · OH footprinting is a readily accessible approach to gleaning information about the architecture of small RNA molecules.

  15. Mechanical excavator performance in Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Ozdemir, L.; Hansen, F.D.

    1991-01-01

    A research effort of four phases is in progress at the Colorado School of Mines. The overall program will evaluate the cutability of welded tuff and other lithologies likely to be excavated at Yucca Mountain in the site characterization process. Several mechanical systems are considered with emphasis given to the tunnel boring machine. The research comprises laboratory testing, linear drag bit and disc cutter tests and potentially large-scale laboratory demonstrations to support potential use of a tunnel boring machine in welded tuff. Preliminary estimates of mechanical excavator performance in Yucca Mountain tuff are presented here. As phases of the research project are completed, well quantified estimates will be made of performance of mechanical excavators in the Yucca Mountain tuffs. 3 refs., 2 tabs

  16. Mechanical excavator performance in Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Ozdemir, L.; Hansen, F.D.

    1991-01-01

    A research effort of four phases is in progress at the Colorado School of Mines. The overall program will evaluate the cutability of welded tuff and other lithologies likely to be excavated at Yucca Mountain in the site characterization process. Several mechanical systems are considered with emphasis given to the tunnel boring machine. The research comprises laboratory testing, linear drag bit and disc cutter tests, and potentially large-scale lab. demonstrations to support potential use of a tunnel boring machine in welded tuff. Preliminary estimates of mechanical excavator performance in Yucca Mountain tuff are presented here. As phases of the research project are completed, well-quantified estimates will be made of performance of mechanical excavators in the Yucca Mountain tuffs

  17. Fracture coatings in Topopah Spring Tuff along drill hole wash

    International Nuclear Information System (INIS)

    Carlos, B.A.; Chipera, S.J.; Bish, D.L.

    1994-01-01

    Fracture-lining minerals are being studied as part of site characterization to determine the suitability of Yucca Mountain, Nevada as a potential high level nuclear waste repository. Fracture coatings in the Paintbrush Group provide information on potential flow paths above the water table both toward and away from the potential repository and provide information on the distribution of fracture-lining minerals needed to model thermal effects of waste emplacement. Fracture coatings within the predominantly non-zeolitic Paintbrush Group vary both with depth and laterally across Yucca Mountain, whereas fracture coatings in tuffs below the Paintbrush Group are related to the mineralogy of the tuffs and follow a consistent pattern of distribution with predominantly quartz, calcite, and manganese oxides in the devitrified intervals and mordenite and clinoptilolite in the zeolitic intervals. The zeolites stellerite and heulandite are more abundant in fractures in the Topopah Spring Tuff in drill holes USW G-1 and UE-25 a number-sign l, located along Drill Hole Wash (at the northern end of Yucca Mountain) than in core from other parts of Yucca Mountain. Buesch et al. (2) present evidence for a complex fault system along Drill Hole Wash. To investigate the possibility that the abundant fracture-lining zeolites in USW G-1 and UE-25 a number-sign 1 are related to the Drill Hole Wash fault, the Topopah Spring Tuff was examined in drill cores from USW UZ-14, USW G-1, USW NRG-7/7a, and UE-25 a number-sign l

  18. Permeability and fluid chemistry studies of the Topopah Spring Member of the Paintbrush Tuff, Nevada Test Site: Part II

    International Nuclear Information System (INIS)

    Moore, D.E.; Morrow, C.A.; Byerlee, J.D.

    1985-03-01

    The Topopah Spring Member of the Paintbrush Tuff is being considered as a possible emplacement horizon for the disposal of nuclear waste. The permeability and pore-fluid chemistry of the Topopah Spring Member have been investigated experimentally. The work reported here represents a continuation of previous permeability studies on the Topopah Spring Member. Three experiments were run, to test the effect of pore pressure, sample orientation, and flow direction on permeability and pore fluid chemistry. In the experiments, water flowed either up or down a temperature gradient established across the tuff sample in response to a small pore pressure gradient. The maximum temperature of the gradient was 150 0 C, and the minimum was 43 to 45 0 C. The confining pressure was 100 bars, corresponding to a disposal depth of 400 meters. J13 water was the starting pore fluid. The heated tuff samples showed few changes in permeability from their initial, room-temperature values. In addition, the fluids discharged from both the low and high-temperature sides of the tuff samples were dilute, nearly neutral solutions whose compositions did not differ greatly from the starting J13 compositions. 16 refs., 14 figs., 4 tabs

  19. About a double process of soil acidification under the influence of recent volcanic ashes. Example of the Soufriere of Guadeloupe, after the 1976-1977 eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Cabidoche, Y.M.; Sobesky, O.; Feller, C.; Larque, P.

    1987-04-21

    A fast and durable acidification was observed in Andisols, after the ash-deposits of the 1976-1977 Soufriere eruptions. This phenomenon is due to an original connection of a double process, concerning with the initial ash composition: an immediate aluminic acidity coming from the inter-layer Al smectites, a gradual protonic acidification due to oxydation of pyrites.

  20. Geologic Reconnaissance of the Antelope-Ashwood Area, North-Central Oregon: With Emphasis on the John Day Formation of Late Oligocene and Early Miocene Age

    Science.gov (United States)

    Peck, Dallas L.

    1964-01-01

    This report briefly describes the geology of an area of about 750 square miles in Jefferson, Wasco, Crook, and Wheeler Counties, Oregon. About 16,000 feet of strata that range in age from pre-Tertiary to Quaternary are exposed. These include the following units: pre-Tertiary slate, graywacke, conglomerate, and meta-andesite; Clarno Formation of Eocene age - lava flows, volcanic breccia, tuff, and tuffaceous mudstone, chiefly of andesitic composition; John Day Formation of late Oligocene and early Miocene age - pyroclastic rocks, flows, and domes, chiefly of rhyolitic composition; Columbia River Basalt of middle Miocene age - thick, columnar jointed flows of very fine grained dense dark-gray basalt; Dalles Formation of Pliocene age - bedded tuffaceous sandstone, siltstone, and conglomerate; basalt of Pliocene or Pleistocene age - lava flows of porous-textured olivine basalt; and Quaternary loess, landslide debris, and alluvium. Unconformities separate pre-Tertiary rocks and Clarno Formation, Clarno and John Day Formations, John Day Formation and Columbia River Basalt, and Columbia River Basalt and Dalles Formation. The John Day Formation, the only unit studied in detail, consists of about 4,000 feet of tuff, lapilli tuff, strongly to weakly welded rhyolite ash flows, and less abundant trachyandesite flows and rhyolite flows and domes. The formation was divided into nine mappable members in part of the area, primarily on the basis of distinctive ledge-forming welded ash-flow sheets. Most of the sheets are composed of stony rhyolite containing abundant lithophysae and sparse phenocrysts. One sheet contains 10 to 20 percent phenocrysts, mostly cryptoperthitic soda sanidine, but including less abundant quartz, myrmekitic intergrowths of quartz and sanidine, and oligoclase. The rhyolitic ash flows and lava flows were extruded from nearby vents, in contrast to some of the interbedded air-fall tuff and lapilli tuff of dacitic and andesitic composition that may have been

  1. The effects of trace element content on pyrite oxidation rates

    Science.gov (United States)

    Gregory, D. D.; Lyons, T.; Cliff, J. B.; Perea, D. E.; Johnson, A.; Romaniello, S. J.; Large, R. R.

    2017-12-01

    Pyrite acts as both an important source and sink for many different metals and metalloids in the environment, including many that are toxic. Oxidation of pyrite can release these elements while at the same time producing significant amounts of sulfuric acid. Such issues are common in the vicinity of abandoned mines and smelters, but, as pyrite is a common accessory mineral in many different lithologies, significant pyrite oxidation can occur whenever pyritic rocks are exposed to oxygenated water or the atmosphere. Accelerated exposure to oxygen can occur during deforestation, fracking for petroleum, and construction projects. Geochemical models for pyrite oxidation can help us develop strategies to mitigate these deleterious effects. An important component of these models is an accurate pyrite oxidation rate; however, current pyrite oxidation rates have been determined using relatively pure pyrite. Natural pyrite is rarely pure and has a wide range of trace element concentrations that may affect the oxidation rate. Furthermore, the position of trace elements within the mineral lattice can also affect the oxidation rate. For example, elements such as Ni and Co, which substitute into the pyrite lattice, are thought to stabilize the lattice and thus prevent pyrite oxidation. Alternatively, trace elements that are held within inclusions of other minerals could form a galvanic cell with the surrounding pyrite, thus enhancing pyrite oxidation rates. In this study, we present preliminary analyses from three different pyrite oxidation experiments each using natural pyrite with different trace element compositions. These results show that the pyrite with the highest trace element concentration has approximately an order of magnitude higher oxidation rate compared to the lowest trace element sample. To further elucidate the mechanisms, we employed microanalytical techniques to investigate how the trace elements are held within the pyrite. LA-ICPMS was used to determine the

  2. Permeameter studies of water flow through cement and clay borehole seals in granite, basalt and tuff

    International Nuclear Information System (INIS)

    South, D.L.; Daemen, J.J.K.

    1986-10-01

    Boreholes near a repository must be sealed to prevent rapid migration of radionuclide-contaminated water to the accessible environment. The objective of this research is to assess the performance of borehole seals under laboratory conditions, particularly with regard to varying stress fields. Flow through a sealed borehole is compared with flow through intact rock. Cement or bentonite seals have been tested in granite, basalt, and welded tuff. The main conclusion is that under laboratory conditions, existing commercial materials can form high quality seals. Triaxial stress changes about a borehole do not significantly affect seal performance if the rock is stiffer than the seal. Temperature but especially moisture variations (drying) significantly degrade the quality of cement seals. Performance partially recovers upon resaturation. A skillfully sealed borehole may be as impermeable as the host rock. Analysis of the influence of relative seal-rock permeabilities shows that a plug with permeability one order of magnitude greater than that of the rock results in a flow increase through the hole and surrounding rock of only 1-1/2 times compared to the undisturbed rock. Since a borehole is only a small part of the total rock mass, the total effect is even less pronounced. The simplest and most effective way to decrease flow through a rock-seal system is to increase the seal length, assuming it can be guaranteed that no dominant by-pass flowpath through the rock exists

  3. Permeameter studies of water flow through cement and clay borehole seals in granite, basalt and tuff

    Energy Technology Data Exchange (ETDEWEB)

    South, D.L.; Daemen, J.J.K.

    1986-10-01

    Boreholes near a repository must be sealed to prevent rapid migration of radionuclide-contaminated water to the accessible environment. The objective of this research is to assess the performance of borehole seals under laboratory conditions, particularly with regard to varying stress fields. Flow through a sealed borehole is compared with flow through intact rock. Cement or bentonite seals have been tested in granite, basalt, and welded tuff. The main conclusion is that under laboratory conditions, existing commercial materials can form high quality seals. Triaxial stress changes about a borehole do not significantly affect seal performance if the rock is stiffer than the seal. Temperature but especially moisture variations (drying) significantly degrade the quality of cement seals. Performance partially recovers upon resaturation. A skillfully sealed borehole may be as impermeable as the host rock. Analysis of the influence of relative seal-rock permeabilities shows that a plug with permeability one order of magnitude greater than that of the rock results in a flow increase through the hole and surrounding rock of only 1-1/2 times compared to the undisturbed rock. Since a borehole is only a small part of the total rock mass, the total effect is even less pronounced. The simplest and most effective way to decrease flow through a rock-seal system is to increase the seal length, assuming it can be guaranteed that no dominant by-pass flowpath through the rock exists.

  4. Natural language solution to a Tuff problem

    International Nuclear Information System (INIS)

    Langkopf, B.S.; Mallory, L.H.

    1984-01-01

    A scientific data base, the Tuff Data Base, is being created at Sandia National Laboratories on the Cyber 170/855, using System 2000. It is being developed for use by scientists and engineers investigating the feasibility of locating a high-level radioactive waste repository in tuff (a type of volcanic rock) at Yucca Mountain on and adjacent to the Nevada Test Site. This project, the Nevada Nuclear Waste Storage Investigations (NNWSI) Project, is managed by the Nevada Operations Office of the US Department of Energy. A user-friendly interface, PRIMER, was developed that uses the Self-Contained Facility (SCF) command SUBMIT and System 2000 Natural Language functions and parametric strings that are schema resident. The interface was designed to: (1) allow users, with or without computer experience or keyboard skill, to sporadically access data in the Tuff Data Base; (2) produce retrieval capabilities for the user quickly; and (3) acquaint the users with the data in the Tuff Data Base. This paper gives a brief description of the Tuff Data Base Schema and the interface, PRIMER, which is written in Fortran V. 3 figures

  5. Geology and regional setting of the Al Masane ancient mine area, southeastern Arabian Shield, Kingdom of Saudi Arabia

    Science.gov (United States)

    Conway, Clay M.

    1985-01-01

    Stratiform zinc-copper massive-sulfide deposits at Al Masane occur in thin dolomitic interbeds within Proterozoic felsic crystal tuff and mafic flows and volcaniclastics. These strata dip steeply westward and are underlain by shale and shaly graywacke to the east and overlain by lapilli crystal tuff to the west. This section is part of the Habawnah fold or mineral belt that extends from the Wadi Wassat area southward into Yemen. Western parts of the Habawnah fold belt, including the Al Masane area, are characterized by a bimodal assemblage of of phenocryst-poor basalts and sodic rhyolite crystal tuff, and by zinc-copper mineral deposits. Strata in the eastern part of the belt, mostly east of the Ashara fault zone, contain abundant phenocryst-rich mafic volcanic rocks, little felsic crystal tuff, and barren or locally nickeliferous massive pyrite deposits.

  6. Evaluation of tuff as a medium for a nucolear waste repository: interim status report on the properties of tuff

    International Nuclear Information System (INIS)

    Johnstone, J.K.; Wolfsberg, K.

    1980-07-01

    This report is the second in a series of summary briefings to the National Academy of Science's (NAS) Committee on Radioactive Waste Management dealing with feasibility of disposal of heat-producing radioactive waste in silicic tuff. The interim status of studies of tuff properties determined on samples obtained from Yucca Mountain and Rainier Mesa (G-tunnel) located on the Nevada Test Site (NTS) are discussed. In particular, progress is described on resolving issues identified during the first briefing to the NAS which include behavior of water in tuff when heated, the effect of the presence or absence of water and joints on the thermal/physical properties of tuff and the detailed/complex sorptive properties of highly altered and unaltered tuff. Initial correlations of thermal/physical and sorptive properties with the highly variable porosity and mineralogy are described. Three in-situ, at-depth field experiments, one nearly completed and two just getting underway are described. In particular, the current status of mineralogy and petrology, geochemistry, thermal and mechanical, radiation effects and water behavior studies are described. The goals and initial results of a Mine Design Working Group are discussed. Regional factors such as seismicity, volcanism and hydrology are not discussed

  7. Geochemical and Pb, Sr, and O isotopic study of the Tiva Canyon Tuff and Topopah Spring Tuff, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Neymark, L.A.; Marshall, B.D.; Kwak, L.M.; Futa, Kiyoto; Mahan, S.A.

    1995-01-01

    Yucca Mountain is currently being studied as a potential site for an underground repository for high-level radioactive waste. One aspect of the site characterization studies is an evaluation o the resource potential at Yucca Mountain. Geochemical and isotopic signatures of past alteration of the welded tuffs that underlie Yucca Mountain provide a means of assessing the probability of hydrothermal ore deposits being present within Yucca Mountain. In this preliminary report, geochemical and isotopic measurements of altered Tiva Canyon Tuff and Topopah Spring Tuff collected from fault zones exposed on the east flank of Yucca Mountain and from one drill core are compared to their unaltered equivalents sampled both in outcrop and drill core. The geochemistry and isotopic compositions of unaltered Tiva Canyon Tuff and Topopah Spring Tuff (high-silica rhyolite portions) are fairly uniform; these data provide a good baseline for comparisons with the altered samples. Geochemical analyses indicate that the brecciated tuffs are characterized by addition of calcium carbonate and opaline silica; this resulted in additions of calcium and strontium,increases in oxygen-18 content, and some redistribution of trace elements. After leaching the samples to remove authigenic carbonate, no differences in strontium or lead isotope compositions between altered and unaltered sections were observed. These data show that although localized alteration of the tuffs has occurred and affected their geochemistry, there is no indication of additions of exotic components. The lack of evidence for exotic strontium and lead in the most severely altered tuff samples at Yucca Mountain strongly implies a similar lack of exotic base or precious metals

  8. Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    1999-07-01

    The thermal decomposition and reduction behaviour of pure pyrite crystals were studied under nitrogen and hydrogen atmospheres. Decomposition of pyrite in coal during pyrolysis and hydropyrolysis, and the behaviour of organic sulphur, are discussed. Temperature and pressure effects are considered. 7 refs., 6 figs., 1 tab.

  9. Status of image analysis methods to delineate stratigraphic position in the Topopah Spring Member of the Paintbrush Tuff, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Campbell, K.; Broxton, D.E.; Spaw, J.

    1989-10-01

    The Topopah Spring Member of the Paintbrush Tuff is an ash-flow cooling unit that is the candidate host rock for a potential high-level nuclear waste repository at Yucca Mountain, Nevada. The repository workings will be mostly confined to the member's rhyolitic portion, which is chemically homogenous but texturally variable. This report describes the status of work to develop a useful internal stratigraphy for the rhyolitic portion of the member; our approach is to use an image analysis technique to map textural variations within the member as a function of stratigraphic height. Fifteen petrographic thin sections of Topopah Spring rhyolitic tuff were studied in each of two drill holes (USW GU-3 and USW G-4). Digital color images were collected in transmitted light for two scenes 1 cm on a side for each thin section. Objects within a scene were classified by color, and measurements of area, elongation, and roughness were determined for each object. Summary statistics were compiled for all measurements for each color component within a scene, and each variable was statistically examined for correlations with stratigraphic position. Our initial studies using image analysis have not yet produced a useful method for determining stratigraphic position within the Topopah Spring Member. Simplifications made in this preliminary application of image analysis may be largely responsible for these negative results. The technique deserves further investigation, and more detailed analysis of existing data is recommended. 9 refs., 11 figs., 4 tabs

  10. Moessbauer investigation of gold-bearing pyrite-rich concentrates

    International Nuclear Information System (INIS)

    Wagner, F.E.; Harris, D.C.

    1994-01-01

    A gold-bearing pyrite-rich concentrate of a refractory ore from the Golden Bear mine, northwestern British Columbia, and a pyrite-rich concentrate from Newhawk's west zone, Brucejack Lake area, northern British Columbia, containing 38 and 316 ppm Au and 0.57% and 0.19% As, respectively, have been investigated using 197 Au and 57 Fe Moessbauer spectroscopy. In the Golden Bear sample, the gold is mainly chemically bound in the pyrite with minor amounts present as an Au-Ag alloy, whereas in the Newhawk sample, the gold occurs mainly as an Au-Ag alloy with a composition close to Au 0.5 Ag 0.5 and is only partly bound in the pyrite. Having mean isomer shifts of +3.2 and +4.0 mm/s with respect to a Pt metal source, the gold in pyrite exhibits shifts similar to those observed for gold in arsenopyrite. The nature of the lattice sites occupied by the gold in pyrite is discussed. (orig.)

  11. Evaluation of the CO{sub 2} sequestration capacity for coal fly ash using a flow-through column reactor under ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Ho Young, E-mail: hyjo@korea.ac.kr [Department of Earth and Environmental Sciences, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Ahn, Joon-Hoon; Jo, Hwanju [Department of Earth and Environmental Sciences, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer A conceptual in-situ mineral carbonation method using a coal ash pond is proposed. Black-Right-Pointing-Pointer CO{sub 2} uptake occurred by carbonation reaction of CO{sub 2} with Ca{sup 2+} ions from coal fly ash. Black-Right-Pointing-Pointer The CO{sub 2} sequestration capacity was affected by the solid dosage. Black-Right-Pointing-Pointer Seawater can be used as a solvent for mineral carbonation of coal fly ash. - Abstract: An in-situ CO{sub 2} sequestration method using coal ash ponds located in coastal regions is proposed. The CO{sub 2} sequestration capacity of coal fly ash (CFA) by mineral carbonation was evaluated in a flow-through column reactor under various conditions (solid dosage: 100-330 g/L, CO{sub 2} flow rate: 20-80 mL/min, solvent type: deionized (DI) water, 1 M NH{sub 4}Cl solution, and seawater). The CO{sub 2} sequestration tests were conducted on CFA slurries using flow-through column reactors to simulate more realistic flow-through conditions. The CO{sub 2} sequestration capacity increased when the solid dosage was increased, whereas it was affected insignificantly by the CO{sub 2} flow rate. A 1 M NH{sub 4}Cl solution was the most effective solvent, but it was not significantly different from DI water or seawater. The CO{sub 2} sequestration capacity of CFA under the flow-through conditions was approximately 0.019 g CO{sub 2}/g CFA under the test conditions (solid dosage: 333 g/L, CO{sub 2} flow rate: 40 mL/min, and solvent: seawater).

  12. Assessing the impact of preload on pyrite-rich sediment and groundwater quality.

    Science.gov (United States)

    Karikari-Yeboah, Ohene; Addai-Mensah, Jonas

    2017-02-01

    Pyrite-rich sediments would, invariably, undergo redox reactions which would lead to acidic aqueous environment containing solubilized toxic metal species. When such sediments are subjected to preload, a technique employed by geotechnical engineers to improve the load-bearing capacity of highly compressible formation, transient flow of pore water, accompanied by acidity transfer, would occur as a response. Despite the concomitant environmental and socio-economic significance, to date, there has been limited interdisciplinary research on the underpinning geotechnical engineering and geo-environmental science issues for pyrite-rich sediments under preload. In this study, we investigate the effect of pyrite-rich sediment pore water transfer under preload surcharge on the receiving environment and the impact on the groundwater speciation and quality. Sediment samples were obtained at close depth intervals from boreholes established within pristine areas and those subjected to the preload application. Soil and pore water samples were subjected to solid/solution speciation, moisture contents, soil pH and the Atterberg Limits' analyses using standard analytical techniques and methods. Standpipes were also installed in the boreholes for groundwater sampling and in situ monitoring of water quality parameters. It is shown that the imposition of preload surcharge over pyritic sediment created a reducing environment rich in SO 4 2- , iron oxide minerals and organic matter. This reducing environment fostered organic carbon catabolism to generate excess pyrite and bicarbonate alkalinity, which would invariably impact adversely on soil quality and plant growth. These were accompanied by increase in pH, dissolved Al, Ca, Mg and K species beneath the surcharge.

  13. Pyrite-coated granite cobbles at Lee Bay, Stewart Island

    International Nuclear Information System (INIS)

    Brathwaite, R.L.; Skinner, D.N.B.; Faure, K.; Edwards, E.

    2014-01-01

    On the west side of Lee Bay on the northeast coast of Stewart Island, ventifact cobbles of pyrite-coated granite occur on the beach near the high tide mark and appear to be derived from a sand-cemented gravel deposit that forms a low bank at the back of the beach. The pyrite coat (up to 1 mm thick) completely covers the granitic cobbles and is zoned, with an inner zone of fine-grained colloform pyrite and an outer framboidal zone. Framboidal pyrite is typically formed in anoxic sedimentary environments. Subrounded grains of hematite, ilmenite with hematite blebs, magnetite, feldspar, biotite, quartz and zircon are present in the outer framboidal zone, with some ilmenite and hematite grains being partially replaced by pyrite. The assemblage of ilmenite-hematite-magnetite-biotite-zircon is similar both in mineralogy and size range to that found in heavy mineral beach sands. Sulphur isotope values of the pyrite coat are consistent with formation of the pyrite by microbial sulphate reduction of seawater sulphate. The framboidal texture together with the presence of grains of beach sand in the pyrite coating indicate that it was deposited in a low-temperature sedimentary environment. (author)

  14. Evaporative water loss from welded tuff

    International Nuclear Information System (INIS)

    Hadley, G.R.; Turner, J.R. Jr.

    1980-04-01

    Welded tuff is one of the many candidate rocks presently being considered as a host medium for the disposal of radioactive waste. In the case where the disposal site lies above the water table, the host rock will in general be only partially saturated. This condition leads to a number of mass transfer processes of interest, including evaporative drying, two-phase water flow due to pressure gradients, capillary movement, plus others. Although these processes have all been known about for decades, it is not clear at this time what the relative importance of each is with regard to geologic media in a waste disposal environment. In particular, there seems to be no data available for tuff that would allow an investigator to sort out mechanisms. This work is intended to be a start in that direction. This paper reports the measurement of water loss rate for welded tuff at various temperatures due to the action of evaporative drying. The initial saturation was unknown, but the average initial water content was found to be 7% by weight. The resulting data show that the water loss rate declines monotonically with time at a given temperature and increases with increasing temperature as expected. Somewhat surprising, however, is the fact that over 90% of the water from a sample was lost by evaporation at room temperature within 72 hours. All the water loss data, including that taken at temperatures as high as 150 0 C, are explained to within a factor of two by a simple evaporation front model. The latter assumes the water is lost by the molecular diffusion of water vapor from a receding evaporation front. The motion of the evaporation front seems to depend on mass balance rather than energy balance. Capillary forces and the resulting liquid diffusion are evidently not strong enough to wash out the evaporation front, since the front model seems to fit the data well

  15. Thermal behaviors of mechanically activated pyrites by thermogravimetry (TG)

    International Nuclear Information System (INIS)

    Hu Huiping; Chen Qiyuan; Yin Zhoulan; Zhang Pingmin

    2003-01-01

    The thermal decompositions of mechanically activated and non-activated pyrites were studied by thermogravimetry (TG) at the heating rate of 10 K min -1 in argon. Results indicate that the initial temperature of thermal decomposition (T di ) in TG curves for mechanically activated pyrites decreases gradually with increasing the grinding time. The specific granulometric surface area (S G ), the structural disorder of mechanically activated pyrites were analyzed by X-ray diffraction laser particle size analyzer, and X-ray powder diffraction analysis (XRD), respectively. The results show that the S G of mechanically activated pyrites remains almost constant after a certain grinding time, and lattice distortions (ε) rise but the crystallite sizes (D) decrease with increasing the grinding time. All these results imply that the decrease of T di in TG curves of mechanically activated pyrites is mainly caused by the increase of lattice distortions ε and the decrease of the crystallite sizes D of mechanically activated pyrite with increasing the grinding time. The differences in the reactivity between non-activated and mechanically activated pyrites were observed using characterization of the products obtained from 1 h treatment of non-activated and mechanically activated pyrites at 713 K under inert atmosphere and characterization of non-activated and mechanically activated pyrites exposed to ambient air for a certain period

  16. Effect of moisture on tuff stone degradation

    NARCIS (Netherlands)

    Lubelli, B.A.; Nijland, T.G.

    2016-01-01

    Tuff stone elements with a large length/width ratio often suffer damage in the form of cracks parallel to the surface and spalling of the outer layer. The response of tuff to moisture might be a reason for this behaviour. This research aimed at verifying if differential dilation between parts with

  17. Preliminary evaluation of alterant geophysical tomography in welded tuff

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Daily, W.D.

    1985-01-01

    The ability of alterant geophysical tomography to delineate flow paths in a welded tuff rock mass has been preliminarily evaluated based on the results of a field experiment. Electromagnetic measurements were made before, during and after a water-based, dye tracer flowed through the rock mass. Alterant geophysical tomographs were generated and compared with independent evidence - borescope logs, neutron logs and dyed rock samples. Anomalies present in the tomograph match the location and orientation of fractures mapped with a borescope. The location of tracer-stained fractures coincides with the location of some image anomalies; other geophysical anomalies exist where tracer-stained fractures were not observed, perhaps due to poor core recovery. Additional drilling to locate stained flow paths and other experiments are planned so that the applicability of the technique can be further evaluated

  18. Ordovician ash geochemistry and the establishment of land plants

    Directory of Open Access Journals (Sweden)

    Parnell John

    2012-08-01

    Full Text Available Abstract The colonization of the terrestrial environment by land plants transformed the planetary surface and its biota, and shifted the balance of Earth’s biomass from the subsurface towards the surface. However there was a long delay between the formation of palaeosols (soils on the land surface and the key stage of plant colonization. The record of palaeosols, and their colonization by fungi and lichens extends well back into the Precambrian. While these early soils provided a potential substrate, they were generally leached of nutrients as part of the weathering process. In contrast, volcanic ash falls provide a geochemically favourable substrate that is both nutrient-rich and has high water retention, making them good hosts to land plants. An anomalously extensive system of volcanic arcs generated unprecedented volumes of lava and volcanic ash (tuff during the Ordovician. The earliest, mid-Ordovician, records of plant spores coincide with these widespread volcanic deposits, suggesting the possibility of a genetic relationship. The ash constituted a global environment of nutrient-laden, water-saturated soil that could be exploited to maximum advantage by the evolving anchoring systems of land plants. The rapid and pervasive inoculation of modern volcanic ash by plant spores, and symbiotic nitrogen-fixing fungi, suggests that the Ordovician ash must have received a substantial load of the earliest spores and their chemistry favoured plant development. In particular, high phosphorus levels in ash were favourable to plant growth. This may have allowed photosynthesizers to diversify and enlarge, and transform the surface of the planet.

  19. Wet vs dry bottom ash handling compared: one plant's experience

    Energy Technology Data Exchange (ETDEWEB)

    Cianci, V. [Magaldi R & D, Salerno (Italy)

    2007-06-15

    A multi-unit coal-fired power station where both dry and wet bottom ash handling systems are employed provides an opportunity for detailed comparison of the two approaches. The study reported in the article was carried out at a plant which has four 314 MWe coal fired units. It was designed for baseload operation and the wet system, coexisting with the dry Magaldi Ash Cooler (MAC) system has high dependability. The design is in fact a hybrid of water impounded hopper system and a submerged chain conveyor (SCC) system for both bottom ash and pyrites handling. Dry ash technology was introduced in 2004. The dry system resulted in water saving of about 258,000 m{sup 3} per year. It also reduces ash disposal costs and increases boiler efficiency due to recovery of much of the heat leaving the boiler. A net thermal power saving of 1316 KWt per MAC system is made. The study also showed that the Superbelt (a steel mesh belt conveyor coupled with overlapping steel plates) applied to dry ash conveying, as in the MAC system, is much more dependable than a chain conveying system, for both wet and dry systems. By 2008 all four units of the plant will be replaced with dry MAC systems. 9 figs., 2 tabs.

  20. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Mower, T.E.; Higgins, J.D.; Yang, In C.; Peters, C.A.

    1994-01-01

    The hydrologic system in the unsaturated tuff at Yucca Mountain, Nevada, is being evaluated for the US Department of Energy by the Yucca Mountain Project Branch of the US Geological Survey as a potential site for a high-level radioactive-waste repository. Part of this investigation includes a hydrochemical study that is being made to assess characteristics of the hydrologic system such as: traveltime, direction of flow, recharge and source relations, and types and magnitudes of chemical reactions in the unsaturated tuff. In addition, this hydrochemical information will be used in the study of the dispersive and corrosive effects of unsaturated-zone water on the radioactive-waste storage canisters. This report describes the design and validation of laboratory experimental procedures for extracting representative samples of uncontaminated pore water from welded and nonwelded, unsaturated tuffs from the Nevada Test Site

  1. Conceptualization of a hypothetical high-level nuclear waste repository site in unsaturated, fractured tuff

    International Nuclear Information System (INIS)

    Parsons, A.M.; Olague, N.E.; Gallegos, D.P.

    1991-01-01

    Under the sponsorship of the US Nuclear Regulatory Commission (NRC), Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal and isolation of high-level nuclear wastes (HLW) in alternative geologic media. As part of this exercise, SNL created a conceptualization of ground-water flow and radionuclide transport in the far field of a hypothetical HLW repository site located in unsaturated, fractured tuff formations. This study provides a foundation for the development of conceptual mathematical, and numerical models to be used in this performance assessment methodology. This conceptualization is site specific in terms of geometry, the regional ground-water flow system, stratigraphy, and structure in that these are based on information from Yucca Mountain located on the Nevada Test Site. However, in terms of processes in unsaturated, fractured, porous media, the model is generic. This report also provides a review and evaluation of previously proposed conceptual models of unsaturated and saturated flow and solute transport. This report provides a qualitative description of a hypothetical HLW repository site in fractured tuff. However, evaluation of the current knowledge of flow and transport at Yucca Mountain does not yield a single conceptual model. Instead, multiple conceptual models are possible given the existing information

  2. Conceptualization of a hypothetical high-level nuclear waste repository site in unsaturated, fractured tuff

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, A.M.; Olague, N.E.; Gallegos, D.P. [Sandia National Labs., Albuquerque, NM (USA)

    1991-01-01

    Under the sponsorship of the US Nuclear Regulatory Commission (NRC), Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal and isolation of high-level nuclear wastes (HLW) in alternative geologic media. As part of this exercise, SNL created a conceptualization of ground-water flow and radionuclide transport in the far field of a hypothetical HLW repository site located in unsaturated, fractured tuff formations. This study provides a foundation for the development of conceptual mathematical, and numerical models to be used in this performance assessment methodology. This conceptualization is site specific in terms of geometry, the regional ground-water flow system, stratigraphy, and structure in that these are based on information from Yucca Mountain located on the Nevada Test Site. However, in terms of processes in unsaturated, fractured, porous media, the model is generic. This report also provides a review and evaluation of previously proposed conceptual models of unsaturated and saturated flow and solute transport. This report provides a qualitative description of a hypothetical HLW repository site in fractured tuff. However, evaluation of the current knowledge of flow and transport at Yucca Mountain does not yield a single conceptual model. Instead, multiple conceptual models are possible given the existing information.

  3. Laboratory studies of radionuclide migration in tuff

    International Nuclear Information System (INIS)

    Rundberg, R.S.; Mitchell, A.J.; Ott, M.A.; Thompson, J.L.; Triay, I.R.

    1989-01-01

    The movement of selected radionuclides has been observed in crushed tuff, intact tuff, and fractured tuff columns. Retardation factors and dispersivities were determined from the elution profiles. Retardation factors have been compared with those predicted on the basis of batch sorption studies. This comparison forms a basis for either validating distribution coefficients or providing evidence of speciation, including colloid formation. Dispersivities measured as a function of velocity provide a means of determining the effect of sorption kinetics or mass transfer on radionuclide migration. Dispersion is also being studied in the context of scaling symmetry to develop a basis for extrapolating from the laboratory scale to the field. 21 refs., 6 figs., 2 tabs

  4. Numerical Simulation of Tuff Dissolution and Precipitation Experiments: Validation of Thermal-Hydrologic-Chemical (THC) Coupled-Process Modeling

    Science.gov (United States)

    Dobson, P. F.; Kneafsey, T. J.

    2001-12-01

    As part of an ongoing effort to evaluate THC effects on flow in fractured media, we performed a laboratory experiment and numerical simulations to investigate mineral dissolution and precipitation. To replicate mineral dissolution by condensate in fractured tuff, deionized water equilibrated with carbon dioxide was flowed for 1,500 hours through crushed Yucca Mountain tuff at 94° C. The reacted water was collected and sampled for major dissolved species, total alkalinity, electrical conductivity, and pH. The resulting steady-state fluid composition had a total dissolved solids content of about 140 mg/L; silica was the dominant dissolved constituent. A portion of the steady-state reacted water was flowed at 10.8 mL/hr into a 31.7-cm tall, 16.2-cm wide vertically oriented planar fracture with a hydraulic aperture of 31 microns in a block of welded Topopah Spring tuff that was maintained at 80° C at the top and 130° C at the bottom. The fracture began to seal within five days. A 1-D plug-flow model using the TOUGHREACT code developed at Berkeley Lab was used to simulate mineral dissolution, and a 2-D model was developed to simulate the flow of mineralized water through a planar fracture, where boiling conditions led to mineral precipitation. Predicted concentrations of the major dissolved constituents for the tuff dissolution were within a factor of 2 of the measured average steady-state compositions. The fracture-plugging simulations result in the precipitation of amorphous silica at the base of the boiling front, leading to a hundred-fold decrease in fracture permeability in less than 6 days, consistent with the laboratory experiment. These results help validate the use of the TOUGHREACT code for THC modeling of the Yucca Mountain system. The experiment and simulations indicate that boiling and concomitant precipitation of amorphous silica could cause significant reductions in fracture porosity and permeability on a local scale. The TOUGHREACT code will be used

  5. The Influence Of Calcite On The Ash Flow Temperature For Semi-Anthracite Coal From Donbas District

    Directory of Open Access Journals (Sweden)

    Čarnogurská Mária

    2014-12-01

    Full Text Available This paper presents the results of research focused on the lowering of ash flow temperature at semianthracite coal from Donbas district by means of additive (calcite dosing. Ash fusion temperatures were set for two coal samples (A, B and for five various states (samples of ash without any additives, with 1%, with 3%, with 5% and with 7% of the additive in total. The macroscopicphotographic method was used for identifying all specific temperatures. Obtained outputs prove that A type coal has a lower value of sphere temperature than B type coal in the whole scope of percentage representation of the additive. The flow temperature dropped in total from 1489 °C to 1280 °C, i.e. by 14% during the test of coal of type A with 7% of the additive; while it was near 10% for coal of type B (from 1450 °C to 1308 °C. Numerical simulations of the process showed that it is not effective to add an additive with a grain size lower than 280 μm by means of wastevapour burners.

  6. Fracture-lining minerals in the lower Topopah Spring Tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Carlos, B.A.; Bish, D.L.; Chipera, S.J.

    1991-01-01

    Fracture-lining minerals in the lower Topopah Spring Member of the Paintbrush Tuff at Yucca Mountain, Nevada, are being examined to characterize potential flow paths within and away from the candidate repository horizon. Fracture coatings within this interval can be divided into five categories based on rock matrix and type of fracture. Fracture coatings in the densely welded tuff above the basal vitrophyre, near the candidate repository horizon, include (1) those related to lithophysal cavities; (2) mordenite and manganese oxides on nearly planar fractures; (3) later fracture coatings consisting of zeolites, smectite, and calcite. Fracture-coating minerals in the vitrophyre are fine-grained and consist of smectite and a variety of zeolites. The non- to partially-welded vitric and/or zeolitic stuff below the vitrophyre contains fractures mostly lined by cristobalite and clinoptilolite. 13 refs., 2 figs., 1 tab

  7. Recognition of primary and diagenetic magnetizations to determine the magnetic polarity record and timing of deposition of the moat-fill rocks of the Oligocene Creede Caldera, Colorado

    Science.gov (United States)

    Reynolds, Richard L.; Rosenbaum, Joseph G.; Sweetkind, Donald S.; Lanphere, Marvin A.; Robert, Andrew P.; Verosub, Kenneth L.

    2000-01-01

    Sedimentary and volcaniclastic rocks of the Oligocene Creede Formation fill the moat of the Creede caldera, which formed at about 26.9 Ma during the eruption of the Snowshoe Mountain Tuff. Paleomagnetic and rock magnetic studies of two cores (418 and 703 m long) that penetrated the lower half of the Creede Formation, in addition to paleomagnetic and isotopic dating studies of stratigraphically bracketing volcanic units, provide information on the age and the time span of sedimentation of the caldera fill. Normal polarity magnetization are found in Snowshoe Mountain Tuff beneath the moat sediments; in detrital-magnetite-bearing graded tuffs near the bottom of the moat fill; in an ash-fall deposit about 200 m stratigraphically about the top of core 2; and in postcaldera lava flows of the Fisher Dacite that overlie the Creede Formation. Normal polarity also characterizes detrital-magnetite-bearing tuff and sandstone unites within the caldera moat rocks that did not undergo severe sulfidic alteration. The combination of initially low magnitude of remanent magnetization and the destructive effects of subsequent diagenetic sulfidization on detrital iron oxides results in a poor paleomagnetic record for the fine-grained sedimentary rocks of the Creede Formation. these fine-grained rocks have either normal or revered polarity magnetizations that are carried by magnetite and/or maghemite. Many more apparent reversals are found that can be accommodated by any geomagnetic polarity time scale over the interval spanned by the ages of the bracketing extrusive rocks. Moreover, opposite polarity magnetization are found in specimens separated by only a few centimeters, without intervening hiatuses, and by specimens in several tuff beds, each of which represents a single depositional event. These polarity changes cannot, therefore, be attributed to detrital remanent magnetization. Many polarity changes are apparently related to chemical remanent magnetizations carried by

  8. Radioisotope conveyor ash meter

    International Nuclear Information System (INIS)

    Savelov, V.D.

    1994-01-01

    Radioisotope conveyor ash meter realizes persistent measuring of ashiness of coal and products of its enrichment on the belt conveyor without contact. The principle of ash meter acting is based on functional dependence of the gamma radiation flows backscattering intensity of radioisotope sources from the ash volume content in the controlled fuel. Facility consists from the ashiness transducer and the processing and control device

  9. A performance assessment methodology for high-level radioactive waste disposal in unsaturated, fractured tuff

    International Nuclear Information System (INIS)

    Gallegos, D.P.

    1991-07-01

    Sandia National Laboratories, has developed a methodology for performance assessment of deep geologic disposal of high-level nuclear waste. The applicability of this performance assessment methodology has been demonstrated for disposal in bedded salt and basalt; it has since been modified for assessment of repositories in unsaturated, fractured tuff. Changes to the methodology are primarily in the form of new or modified ground water flow and radionuclide transport codes. A new computer code, DCM3D, has been developed to model three-dimensional ground-water flow in unsaturated, fractured rock using a dual-continuum approach. The NEFTRAN 2 code has been developed to efficiently model radionuclide transport in time-dependent velocity fields, has the ability to use externally calculated pore velocities and saturations, and includes the effect of saturation dependent retardation factors. In order to use these codes together in performance-assessment-type analyses, code-coupler programs were developed to translate DCM3D output into NEFTRAN 2 input. Other portions of the performance assessment methodology were evaluated as part of modifying the methodology for tuff. The scenario methodology developed under the bedded salt program has been applied to tuff. An investigation of the applicability of uncertainty and sensitivity analysis techniques to non-linear models indicate that Monte Carlo simulation remains the most robust technique for these analyses. No changes have been recommended for the dose and health effects models, nor the biosphere transport models. 52 refs., 1 fig

  10. Carrier-microencapsulation using Si-catechol complex for suppressing pyrite floatability

    Energy Technology Data Exchange (ETDEWEB)

    Jha, R.K.T.; Satur, J.; Hiroyoshi, N.; Ito, M.; Tsunekawa, M. [Hokkaido University, Hokkaido (Japan). Graduate School of Engineering

    2008-11-15

    Pyrite (FeS{sub 2}) is a common sulfide mineral associated with valuable metal minerals and coal, and it is rejected as a gangue mineral using physical separation techniques such as froth flotation and discharged into tailing pond. In the flotation, pyrite is frequently entrapped in the froth due to its hydrophobic nature. Formation of acid mine drainage due to the air-oxidation of pyrite in the tailing pond is also a serious problem. The authors have proposed carrier-microencapsulation (CME) as a method for suppressing both the floatability and oxidation of pyrite. In this method, pyrite is coated with a thin layer of metal oxide or hydroxide using catechol solution as a carrier combined with metal ions. The layer converts the pyrite surface from hydrophobic to hydrophilic and acts as a protective coating against oxidation. The present study demonstrates the effect of CME using Si-catechol complex to suppress the pyrite floatability: The bubble pick-up experiments showed that attachment of pyrite particles to air bubble is suppressed by the CME treatment at pH 4-10, Si-catechol complex concentration over 0.5 mol m{sup -3} and treatment time within 2 min. The Hallimond tube flotation experiments showed that the pyrite floatability is suppressed by the CME treatment even in the presence of typical flotation collectors such as kerosene and xanthate. SEM-EDX analysis confirmed that Si present on the pyrite surface treated by Si-catechol complex, implying that SiO{sub 2} or SiOH{sub 4} layer formed by the CME treatment convert the pyrite surface hydrophobic to hydrophilic.

  11. Pretest thermal analysis of the Tuff Water Migration/In-Situ Heater Experiment

    International Nuclear Information System (INIS)

    Bulmer, B.M.

    1980-02-01

    This report describes the pretest thermal analysis for the Tuff Water Migration/In-Situ Heater Experiment to be conducted in welded tuff in G-tunnel, Nevada Test Site. The parametric thermal modeling considers variable boiling temperature, tuff thermal conductivity, tuff emissivity, and heater operating power. For nominal tuff properties, some near field boiling is predicted for realistic operating power. However, the extent of boiling will be strongly determined by the ambient (100% water saturated) rock thermal conductivity. In addition, the thermal response of the heater and of the tuff within the dry-out zone (i.e., bounded by boiling isotherm) is dependent on the temperature variation of rock conductivity as well as the extent of induced boiling

  12. Selective separation of pyrite and chalcopyrite by biomodulation.

    Science.gov (United States)

    Chandraprabha, M N; Natarajan, K A; Modak, Jayant M

    2004-09-01

    Selective separation of pyrite from other associated ferrous sulphides at acidic and neutral pH has been a challenging problem. This paper discusses the utility of Acidithiobacillus ferrooxidans for the selective flotation of chalcopyrite from pyrite. Consequent to interaction with bacterial cells, pyrite remained depressed even in the presence of potassium isopropyl xanthate collector while chalcopyrite exhibited significant flotability. However, when the minerals were conditioned together, the selectivity achieved was poor due to the activation of pyrite surface by the copper ions in solution. The selectivity was improved when the sequence of conditioning with bacterial cells and collector was reversed, since the bacterial cells were able to depress collector interacted pyrite effectively, while having negligible effect on chalcopyrite. The observed behaviour is analysed and discussed in detail. The separation obtained was significant both at acidic and alkaline pH. This selectivity achieved was retained when the minerals were interacted with both bacterial cells and collector simultaneously.

  13. Petrology of tuff units from the J-13 drill site, Jackass Flats, Nevada

    International Nuclear Information System (INIS)

    Heiken, G.H.; Bevier, M.L.

    1979-01-01

    The J-13 drill hole, located in Jackass Flats, Nevada Test Site, has penetrated 125 m of alluvium and 932 m of tuff. Most of the tuff deposits consist of welded tuffs; glass phases in the tuffs have been replaced by authigenic minerals, mainly K-feldspar, silica, and zeolites. The zonation of authigenic minerals, with depth, indictes that alteration of glass phases and filling of vugs occurred during welding and compaction of tuff units soon after deposition and by interaction with groundwater. Zonation of authigenic minerals in tuff deposits at Jackass Flats is similar to mineral zonation in tuffs elsewhere at the Nevada Test Site and in tuff deposits of west Texas. All appear to have been developed by leaching of glass phases and deposition of authigenic minerals in open hydrologic systems. 10 figures, 38 tables

  14. First phase of small diameter heater experiments in tuff

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1983-01-01

    As part of the Nevada Nuclear Waste Storage Investigations (NNWSI) project, we have undertaken small diameter heater experiments in the G-Tunnel Underground Facility on the Nevada Test Site (NTS). These experiments are to evaluate the thermal and hydrothermal behavior which might be encountered if heat producing nuclear waste were disposed of in welded and nonwelded tuffs. The two Phase I experiments discussed have focused on vertical borehole emplacements. In each experiment, temperatures were measured along the surface of the 10.2-cm-dia heater and the 12.7-cm-dia boreholes. For each experiment, measurements were compared with computer model representations. Maximum temperatures reached were: 196 0 C for the welded tuff after 21 days of operations at 800W and 173 0 C for the nonwelded tuff after 35 days of operations at 500W. Computed results indicate that the same heat transfer model (includes conduction and radiation only) can describe the behavior of both tuffs using empirical techniques to describe pore water vaporization. Hydrothermal measurements revealed heat-indiced water migration. Results indicated that small amounts of liquid water migrated into the welded tuff borehole early in the heating period. Once the rock-wall temperatures exceeded 94 0 C, in both tuffs, there was mass transport of water vapor as evidence indicated condensation cooler regions. Borehole pressures remained essentially ambient during the thermal periods

  15. Retention and reduction of uranium on pyrite surface

    International Nuclear Information System (INIS)

    Eglizaud, N.

    2006-12-01

    In the hypothesis of a storage of the spent fuel in a deep geological formation, understanding the uranium dispersion in the environment is important. Pyrite is a reducing mineral present in the Callovo-Oxfordian argilites, the geological formation actually studied for such a storage. However, pyrite impact on uranium migration has already been poorly studied. The aim of the study was to understand the mechanisms of uranium(VI) retention and reduction on the pyrite surface (FeS 2 ). Solution chemistry was therefore coupled with solid spectroscopic studies (XPS and Raman spectroscopy). All uranium-pyrite interactions experiments were performed under an anoxic atmosphere, in a glove box. Pyrite dissolution under anoxic conditions releases sulfoxy-anions and iron(II), which can then be adsorbed on the pyrite surface. This adsorption was confirmed by interaction experiments using iron(II) isotopic dilution. Uranium(VI) is retained by an exchange reaction with iron(II) adsorbed on sulphur sites, with a maximal amount of sorbed uranium at pH ≥ 5.5. Cobalt(II) and europium(III) are also adsorbed on the pyrite surface above pH 5.5 confirming then that reduction is not required for species to adsorb on pyrite. When the concentration of uranium retained is lower than 4 x 10 -9 mol g -1 , an oxidation-reduction reaction leads to the formation of a uranium (VI) (IV) mixed oxide and to solid sulphur (d.o. ≥ -I). During this reaction, iron remains mostly at the +II oxidation degree. The reaction products seem to passivate the pyrite surface: at higher amounts of retained uranium, the oxidation-reduction reaction is no longer observed. The surface is saturated by the retention of (3.4 ± 0.8) x 10 -7 mol L -1 of uranium(VI). Modelling of uranium sorption at high surface coverage (≥ 4 x 10 -9 mol g -1 ) by the Langmuir model yields an adsorption constant of 8 x 10 7 L mol -1 . Finally, a great excess of uranium(VI) above the saturation concentration allows the observation of

  16. Chemical Interactions of Hydraulic Fracturing Biocides with Natural Pyrite

    Science.gov (United States)

    Consolazio, Nizette A.

    In conjunction with horizontal drilling, hydraulic fracturing or fracking has enabled the recovery of natural gas from low permeable shale formations. In addition to water, these fracking fluids employ proppants and up to 38 different chemical additives to improve the efficiency of the process. One important class of additives used in hydraulic fracturing is biocides. When applied appropriately, they limit the growth of harmful microorganisms within the well, saving energy producers 4.5 billion dollars each year. However, biocides or their harmful daughter products may return to the surface in produced water, which must then be appropriately stored, treated and disposed of. Little is known about the effect of mineral-fluid interactions on the fate of the biocides employed in hydraulic fracturing. In this study, we employed laboratory experiments to determine changes in the persistence and products of these biocides under controlled environments. While many minerals are present in shale formations, pyrite, FeS2(s) is particularly interesting because of its prevalence and reactivity. The FeII groups on the face of pyrite may be oxidized to form FeIII phases. Both of these surfaces have been shown to be reactive with organic compounds. Chlorinated compounds undergo redox reactions at the pyrite-fluid interface, and sulfur-containing compounds undergo exceptionally strong sorption to both pristine and oxidized pyrite. This mineral may significantly influence the degradation of biocides in the Marcellus Shale. Thus, the overall goal of this study was to understand the effect of pyrite on biocide reactivity in hydraulic fracturing, focusing on the influence of pyrite on specific functional groups. The first specific objective was to demonstrate the effect of pyrite and pyrite reaction products on the degradation of the bromine-containing biocide, DBNPA. On the addition of pyrite to DBNPA, degradation rates of the doubly brominated compound were found to increase

  17. Geochronology and correlation of Tertiary volcanic and intrusive rocks in part of the southern Toquima Range, Nye County, Nevada

    Science.gov (United States)

    Shawe, Daniel R.; Snee, Lawrence W.; Byers, Frank M.; du Bray, Edward A.

    2014-01-01

    Extensive volcanic and intrusive igneous activity, partly localized along regional structural zones, characterized the southern Toquima Range, Nevada, in the late Eocene, Oligocene, and Miocene. The general chronology of igneous activity has been defined previously. This major episode of Tertiary magmatism began with emplacement of a variety of intrusive rocks, followed by formation of nine major calderas and associated with voluminous extrusive and additional intrusive activity. Emplacement of volcanic eruptive and collapse megabreccias accompanied formation of some calderas. Penecontemporaneous volcanism in central Nevada resulted in deposition of distally derived outflow facies ash-flow tuff units that are interleaved in the Toquima Range with proximally derived ash-flow tuffs. Eruption of the Northumberland Tuff in the north part of the southern Toquima Range and collapse of the Northumberland caldera occurred about 32.3 million years ago. The poorly defined Corcoran Canyon caldera farther to the southeast formed following eruption of the tuff of Corcoran Canyon about 27.2 million years ago. The Big Ten Peak caldera in the south part of the southern Toquima Range Tertiary volcanic complex formed about 27 million years ago during eruption of the tuff of Big Ten Peak and associated air-fall tuffs. The inferred Ryecroft Canyon caldera formed in the south end of the Monitor Valley adjacent to the southern Toquima Range and just north of the Big Ten Peak caldera in response to eruption of the tuff of Ryecroft Canyon about 27 million years ago, and the Moores Creek caldera just south of the Northumberland caldera developed at about the same time. Eruption of the tuff of Mount Jefferson about 26.8 million years ago was accompanied by collapse of the Mount Jefferson caldera in the central part of the southern Toquima Range. An inferred caldera, mostly buried beneath alluvium of Big Smoky Valley southwest of the Mount Jefferson caldera, formed about 26.5 million years

  18. Volcanic ash in feed coal and its influence on coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O' Connor, J.T.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the

  19. Numerical studies of fluid and heat flow near high-level nuclear waste packages emplaced in partially saturated fractured tuff

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1984-11-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous rock. Formation parameters were chosen as representative of the potential repository horizon in the Topopah Spring Unit of the Yucca Mountain tuffs. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator ''TOUGH'' used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions for handling the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 35 refs., 14 figs., 4 tabs

  20. Correlation and stratigraphic eruption age of the pyroclastic flow deposits and wide spread volcanic ashes intercalated in the Pliocene-Pleistocene strata, central Japan

    International Nuclear Information System (INIS)

    Nagahashi, Yoshitaka; Satoguchi, Yasufumi; Yoshikawa, Shusaku

    2000-01-01

    Three pyroclastic flow deposits in the Takayama and Omine area, central Honshu, are correlated to the distal widespread volcanic ashes intercalated in the Plio-Pleistocene boundary strata in central Japan. The correlation is based on these stratigraphic relationships, facies, magnetostratigraphy, petrographic properties such as mineral assemblage, refractive index and chemical composition of the volcanic glasses and orthopyroxene. As the result of these correlation, the eruption age of the proximal pyroclastic flow deposits have become clear. And precise correlation between proximal eruption units and distal depositional units is now possible. Ho-Kd 39 Tephra erupted at about 1.76 Ma, forming a co-ignimbrite ash, which deposited in the Kanto sedimentary basin. Eb-Fukuda Tephra erupted at about 1.75 Ma, and distal volcaniclastic deposit sedimented in the Kinki, Niigata and Kanto sedimentary basins. The eruptional and depositional phase are divided into the stage 1, stage 2 (early), stage 2 (late) and stage 3. Stage 1 is phreato-plinian type eruption phase, forming distal ash fall deposit. Stage 2 (early) is plinian pumice fall, intra-plinian pyroclastic flow and plinian pumice fall eruption phase, forming distal ash fall. Stage 2 (late) is final eruptional phase of the biggest pyroclastic flow of the Eb-Fukuda Tephra, forming a co-ignimbrite ash fall. Stage 3 is resedimented stage after the end of the explosive eruption. It is notable that resedimented volcaniclastic deposit reached Osaka sedimentary basin 300 km away from the eruption center. Om-SK110 Tephra erupted at about 1.65 Ma, divided into the stage 1, stage 2 and stage 3. Stage 1 is eruption phase of the plinian pumice fall and first pyroclastic flow. Stage 2 is pauses in eruption activity. Stage 3 is second pyroclastic flow phase, it is inferred that the pyroclastic flow of the stage 3 directly entered the Niigata sedimentary basin and simultaneously formed a co-ignimbrite ash. (author)

  1. Retention and reduction of uranium on pyrite surface; Retention et reduction de l'uranium a la surface de la pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Eglizaud, N

    2006-12-15

    In the hypothesis of a storage of the spent fuel in a deep geological formation, understanding the uranium dispersion in the environment is important. Pyrite is a reducing mineral present in the Callovo-Oxfordian argilites, the geological formation actually studied for such a storage. However, pyrite impact on uranium migration has already been poorly studied. The aim of the study was to understand the mechanisms of uranium(VI) retention and reduction on the pyrite surface (FeS{sub 2}). Solution chemistry was therefore coupled with solid spectroscopic studies (XPS and Raman spectroscopy). All uranium-pyrite interactions experiments were performed under an anoxic atmosphere, in a glove box. Pyrite dissolution under anoxic conditions releases sulfoxy-anions and iron(II), which can then be adsorbed on the pyrite surface. This adsorption was confirmed by interaction experiments using iron(II) isotopic dilution. Uranium(VI) is retained by an exchange reaction with iron(II) adsorbed on sulphur sites, with a maximal amount of sorbed uranium at pH {>=} 5.5. Cobalt(II) and europium(III) are also adsorbed on the pyrite surface above pH 5.5 confirming then that reduction is not required for species to adsorb on pyrite. When the concentration of uranium retained is lower than 4 x 10{sup -9} mol g{sup -1}, an oxidation-reduction reaction leads to the formation of a uranium (VI) (IV) mixed oxide and to solid sulphur (d.o. {>=} -I). During this reaction, iron remains mostly at the +II oxidation degree. The reaction products seem to passivate the pyrite surface: at higher amounts of retained uranium, the oxidation-reduction reaction is no longer observed. The surface is saturated by the retention of (3.4 {+-} 0.8) x 10{sup -7} mol L{sup -1} of uranium(VI). Modelling of uranium sorption at high surface coverage ({>=} 4 x 10{sup -9} mol g{sup -1}) by the Langmuir model yields an adsorption constant of 8 x 10{sup 7} L mol{sup -1}. Finally, a great excess of uranium(VI) above the

  2. Detailed petrographic descriptions and microprobe data for drill holes USW-G2 and UE25b-1H, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Broxton, D.; Vaniman, D.; Caporuscio, F.; Arney, B.; Heiken, G.

    1982-10-01

    Drill holes USW-G2 and UE25b-1H at Yucca Mountain, Nevada penetrate a thick sequence of volcanic rocks consisting of voluminous ash-flow tuffs, intercalated with thin bedded tuffs and minor lavas. This report provides detailed petrologic descriptions that were summarized in an earlier report. Microprobe analyses of feldspars and mafic phenocrysts as well as secondary feldspars are tabulated for these drill holes for the first time in this report

  3. Genesis of uranium-gold pyritic conglomerates

    International Nuclear Information System (INIS)

    Myers, W.B.

    1981-01-01

    The ancient pyritic ore conglomerates have a common origin best exemplified by the Witwatersrand deposits. All contain detrital pyrite and uraninite, which are unstable in modern oxygenated environments and were deposited in a reducing atmosphere. The Rand reefs are not similar to modern gold placers. Placers result from the near incapacity of streams and currents to transport coarse gold. Placers as rich as Rand reef occur only in narrow paystreaks within 15 kilometers of a coarse-gold source. The board dispersion of gold in the reefs is due to solution transport of metal complexed as aurous sulfide, leached anoxygenically from crustal rocks, probably from sea-floor basalt, and precipitated by a slow reaction driven by the radioactive decay of detrital uraninite. Radiolysis of water on shallow marine unconformities resulted in diffusion of hydrogen to the atmosphere and a slight excess of hydroxyl free radical in the reef environment. The mild oxidizing tendency slowly dissolved uranium, precipitated gold, and oxygenated thucholite. These actions define a maturing process. A uraninite placer accumulating on an unconformity becomes progressively converted to a gold reef with little residual uraninite. The most mature reefs tend to grade toward the thucholite-seam type, very thin but exceedingly rich in gold. A combination of chemical attack and physical reworking accounts for the general thinness of mature reefs. Pyrite, like uraninite, decreases in abundance with increasing maturity; buffering by pyrite moderated the oxidative depletion of uranium. Where pyrite was scanty or absent, uraninite was completely dissolved by the effects of radiolysis and no ore formed

  4. DISTRIBUTION OF THE TEMPERATURE IN THE ASH-GAS FLOW DURING KORYAKSKY VOLCANO ERUPTION IN 2009

    Science.gov (United States)

    Gordeev, E.; Droznin, V.

    2009-12-01

    The observations of the ash-gas plumes during the Koryaksky eruption in March 2009 by the high resolution thermovision camera allowed obtaining thermal distributions inside the ash-gas flows. The plume structure is formed by single emissions. They rise at the rate of 5.5-7 m/s. The plume structure in general is represented as 3 zones: 1. a zone of high heat exchange; 2. a zone of floating up; 3. a zone of lateral movement. The plume temperature within the zone of lateral movement exceeds the atmospheric temperature by 3-5 oC, within the zone of floating up it exceeds by 20 oC. Its rate within the zone of floating up comprises 5-7 m/s. At the boundary between the zones of high heat exchange and floating up where we know the plume section, from heat balance equation we can estimate steam rate and heat power of the fluid thermal flow. Power of the overheated steam was estimated as Q=35 kg/s. It forms the ash-gas plume from the eruption and has temperature equal to 450 oC. The total volume of water steam produced during 100 days of eruption was estimated 3*105 t, its energy - 109 MJ.

  5. Carbon mineralization and pyrite oxidation in groundwater: Importance for silicate weathering in boreal forest soils and stream base-flow chemistry

    International Nuclear Information System (INIS)

    Klaminder, J.; Grip, H.; Moerth, C.-M.; Laudon, H.

    2011-01-01

    Research highlights: → Organic compounds is mineralized during later transport in deep groundwater aquifers. → Carbonic acid generated by this process stimulates dissolution of silicate minerals. → Protons derived from pyrite oxidation also affects weathering in deep groundwater. → The identified weathering mechanisms affect base-flow chemistry in boreal streams. - Abstract: What role does mineralized organic C and sulfide oxidation play in weathering of silicate minerals in deep groundwater aquifers? In this study, how H 2 CO 3 , produced as a result of mineralization of organic matter during groundwater transport, affects silicate weathering in the saturated zone of the mineral soil along a 70 m-long boreal hillslope is demonstrated. Stream water measurements of base cations and δ 18 O are included to determine the importance of the deep groundwater system for downstream surface water. The results suggest that H 2 CO 3 generated from organic compounds being mineralized during the lateral transport stimulates weathering at depths between 0.5 and 3 m in the soil. This finding is indicated by progressively increasing concentrations of base cations-, silica- and inorganic C (IC) in the groundwater along the hillslope that co-occur with decreasing organic C (OC) concentrations. Protons derived from sulfide oxidation appear to be an additional driver of the weathering process as indicated by a build-up of SO 4 2- in the groundwater during lateral transport and a δ 34 S per mille value of +0.26-3.76 per mille in the deep groundwater indicating S inputs from pyrite. The two identified active acids in the deep groundwater are likely to control the base-flow chemistry of streams draining larger catchments (>1 km 2 ) as evident by δ 18 O signatures and base cation concentrations that overlap with that of the groundwater.

  6. Carbon mineralization and pyrite oxidation in groundwater: Importance for silicate weathering in boreal forest soils and stream base-flow chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Klaminder, J., E-mail: jonatan.klaminder@emg.umu.se [Department of Forest Ecology and Management, SLU, SE-901 83 Umea (Sweden)] [Department of Ecology and Environmental Science, Umea University, SE-901 87 (Sweden); Grip, H. [Department of Forest Ecology and Management, SLU, SE-901 83 Umea (Sweden); Moerth, C.-M. [Department of Geological Sciences, Stockholm University, 106 91 Stockholm (Sweden); Laudon, H. [Department of Forest Ecology and Management, SLU, SE-901 83 Umea (Sweden)

    2011-03-15

    Research highlights: {yields} Organic compounds is mineralized during later transport in deep groundwater aquifers. {yields} Carbonic acid generated by this process stimulates dissolution of silicate minerals. {yields} Protons derived from pyrite oxidation also affects weathering in deep groundwater. {yields} The identified weathering mechanisms affect base-flow chemistry in boreal streams. - Abstract: What role does mineralized organic C and sulfide oxidation play in weathering of silicate minerals in deep groundwater aquifers? In this study, how H{sub 2}CO{sub 3}, produced as a result of mineralization of organic matter during groundwater transport, affects silicate weathering in the saturated zone of the mineral soil along a 70 m-long boreal hillslope is demonstrated. Stream water measurements of base cations and {delta}{sup 18}O are included to determine the importance of the deep groundwater system for downstream surface water. The results suggest that H{sub 2}CO{sub 3} generated from organic compounds being mineralized during the lateral transport stimulates weathering at depths between 0.5 and 3 m in the soil. This finding is indicated by progressively increasing concentrations of base cations-, silica- and inorganic C (IC) in the groundwater along the hillslope that co-occur with decreasing organic C (OC) concentrations. Protons derived from sulfide oxidation appear to be an additional driver of the weathering process as indicated by a build-up of SO{sub 4}{sup 2-} in the groundwater during lateral transport and a {delta}{sup 34}S per mille value of +0.26-3.76 per mille in the deep groundwater indicating S inputs from pyrite. The two identified active acids in the deep groundwater are likely to control the base-flow chemistry of streams draining larger catchments (>1 km{sup 2}) as evident by {delta}{sup 18}O signatures and base cation concentrations that overlap with that of the groundwater.

  7. A Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash of the Whetstone Horizon in the Radnice Basin, Czech Republic

    DEFF Research Database (Denmark)

    Opluštil, Stanislav; Pšenicka, Josef; Libertín, Milan

    2009-01-01

    represent the pre- eruption vegetation of the swamp, which resulted from accumulation of peat in a high-ash, planar (rheotrophic) mire situated in a narrow palaeovalley containing an active ¿uvial system. A tuff bed (the Belka) at the base of the volcaniclastic Whetstone Horizon was exposed in two......The precursory mire of the Middle Pennsylvanian (Bolsovian) Lower Radnice Coal was buried in situ by volcanic ash, preserving the taxonomic composition, spatial distribution, vertical strati¿cation, and synecology of this peat-forming ecosystem in extraordinary detail. Plant fossil remains...

  8. Enhancement of Biofilm Formation on Pyrite by Sulfobacillus thermosulfidooxidans

    Directory of Open Access Journals (Sweden)

    Qian Li

    2016-07-01

    Full Text Available Bioleaching is the mobilization of metal cations from insoluble ores by microorganisms. Biofilms can enhance this process. Since Sulfobacillus often appears in leaching heaps or reactors, this genus has aroused attention. In this study, biofilm formation and subsequent pyrite dissolution by the Gram-positive, moderately thermophilic acidophile Sulfobacillus thermosulfidooxidans were investigated. Five strategies, including adjusting initial pH, supplementing an extra energy source or ferric ions, as well as exchanging exhausted medium with fresh medium, were tested for enhancement of its biofilm formation. The results show that regularly exchanging exhausted medium leads to a continuous biofilm development on pyrite. By this way, multiply layered biofilms were observed on pyrite slices, while only monolayer biofilms were visible on pyrite grains. In addition, biofilms were proven to be responsible for pyrite leaching in the early stages.

  9. Fabrication and characterization of PDLLA/pyrite composite bone ...

    Indian Academy of Sciences (India)

    Polylactic acid; Chinese herbal medicine; pyrite; scaffold; bone regeneration; cell culture. 1. Introduction ... research focuses on the direct cellular level effect of pyrite on bone cells. ..... optimal scaffold from the results of this paper. Although the.

  10. The effect of saturation of the mechanical properties of tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Karakouzian, M.; Hudyma, N.

    1996-01-01

    This study investigates the effect of saturation on the mechanical properties, namely compressive strength and Young's Modulus, of Tiva Canyon welded tuff and Topopah Spring welded tuff from the Nevada Test Site. Unconfined compression tests on air dried and saturated specimens show that saturation lowers both the average compressive strength and the average Young's Modulus of Topopah Spring and Tiva Canyon tuff specimens. Saturation increases the variability of the mechanical properties of Topopah Spring tuff and the variability of the compressive strength of Tiva Canyon tuff

  11. Nucleic acid interactions with pyrite surfaces

    International Nuclear Information System (INIS)

    Mateo-Marti, E.; Briones, C.; Rogero, C.; Gomez-Navarro, C.; Methivier, Ch.; Pradier, C.M.; Martin-Gago, J.A.

    2008-01-01

    The study of the interaction of nucleic acid molecules with mineral surfaces is a field of growing interest in organic chemistry, origin of life, material science and biotechnology. We have characterized the adsorption of single-stranded peptide nucleic acid (ssPNA) on a natural pyrite surface, as well as the further adsorption of ssDNA on a PNA-modified pyrite surface. The characterization has been performed by means of reflection absorption infrared spectroscopy (RAIRS), atomic force microscopy (AFM) and X-ray photoemission spectroscopy (XPS) techniques. The N(1s) and S(2p) XPS core level peaks of PNA and PNA + DNA have been decomposed in curve-components that we have assigned to different chemical species. RAIRS spectra recorded for different concentrations show the presence of positive and negative adsorption bands, related to the semiconducting nature of the surface. The combination of the information gathered by these techniques confirms that PNA adsorbs on pyrite surface, interacting through nitrogen-containing groups of the nucleobases and the iron atoms of the surface, instead of the thiol group of the molecule. The strong PNA/pyrite interaction inhibits further hybridization of PNA with complementary ssDNA, contrary to the behavior reported on gold surfaces

  12. Nucleic acid interactions with pyrite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mateo-Marti, E. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejon de Ardoz, Madrid (Spain)], E-mail: mateome@inta.es; Briones, C.; Rogero, C. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejon de Ardoz, Madrid (Spain); Gomez-Navarro, C. [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049-Madrid (Spain); Methivier, Ch.; Pradier, C.M. [Laboratoire de Reactivite de Surface, UMR CNRS 7609. Universite Pierre et Marie Curie, 4, Pl Jussieu, 75005-Paris (France); Martin-Gago, J.A. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejon de Ardoz, Madrid (Spain); Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049-Madrid (Spain)

    2008-09-03

    The study of the interaction of nucleic acid molecules with mineral surfaces is a field of growing interest in organic chemistry, origin of life, material science and biotechnology. We have characterized the adsorption of single-stranded peptide nucleic acid (ssPNA) on a natural pyrite surface, as well as the further adsorption of ssDNA on a PNA-modified pyrite surface. The characterization has been performed by means of reflection absorption infrared spectroscopy (RAIRS), atomic force microscopy (AFM) and X-ray photoemission spectroscopy (XPS) techniques. The N(1s) and S(2p) XPS core level peaks of PNA and PNA + DNA have been decomposed in curve-components that we have assigned to different chemical species. RAIRS spectra recorded for different concentrations show the presence of positive and negative adsorption bands, related to the semiconducting nature of the surface. The combination of the information gathered by these techniques confirms that PNA adsorbs on pyrite surface, interacting through nitrogen-containing groups of the nucleobases and the iron atoms of the surface, instead of the thiol group of the molecule. The strong PNA/pyrite interaction inhibits further hybridization of PNA with complementary ssDNA, contrary to the behavior reported on gold surfaces.

  13. Source of arsenic-bearing pyrite in southwestern Vermont, USA: Sulfur isotope evidence

    Energy Technology Data Exchange (ETDEWEB)

    Mango, Helen, E-mail: helen.mango@castleton.edu [Department of Natural Sciences, Castleton State College, 233 South Street, Castleton, VT 05735 (United States); Ryan, Peter, E-mail: pryan@middlebury.edu [Department of Geology, Middlebury College, 276 Bicentennial Way, Middlebury, VT 05753 (United States)

    2015-02-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ{sup 34}S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to > 2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from − 5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in {sup 34}S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ{sup 34}S and arsenic content in the Taconic pyrite, suggesting that uptake of arsenic by pyrite increased as the environment became more reducing. This increased anoxia may have been due to a rise in sea level and/or tectonic activity during the late Cambrian and Ordovician. Low-grade metamorphism appears to have little effect on sulfur isotope composition, but does correlate with lower arsenic content in pyrite. New groundwater wells drilled in this region should therefore avoid gray and black slates and phyllites that contain sedimentary/diagenetic pyrite with heavy δ{sup 34}S values. - Highlights: • Pyrite is the source of arsenic in groundwater in the Taconic region of Vermont, USA. • As-bearing pyrite δ{sup 34}S = – 5.2 to 63‰ with higher {sup 34}S as environment becomes more anoxic. • High sea level, tectonic activity create anoxia, with incorporation of As into pyrite. • New wells should avoid slate/phyllite containing sedimentary pyrite with heavy δ{sup 34}S.

  14. Source of arsenic-bearing pyrite in southwestern Vermont, USA: Sulfur isotope evidence

    International Nuclear Information System (INIS)

    Mango, Helen; Ryan, Peter

    2015-01-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ 34 S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to > 2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from − 5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in 34 S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ 34 S and arsenic content in the Taconic pyrite, suggesting that uptake of arsenic by pyrite increased as the environment became more reducing. This increased anoxia may have been due to a rise in sea level and/or tectonic activity during the late Cambrian and Ordovician. Low-grade metamorphism appears to have little effect on sulfur isotope composition, but does correlate with lower arsenic content in pyrite. New groundwater wells drilled in this region should therefore avoid gray and black slates and phyllites that contain sedimentary/diagenetic pyrite with heavy δ 34 S values. - Highlights: • Pyrite is the source of arsenic in groundwater in the Taconic region of Vermont, USA. • As-bearing pyrite δ 34 S = – 5.2 to 63‰ with higher 34 S as environment becomes more anoxic. • High sea level, tectonic activity create anoxia, with incorporation of As into pyrite. • New wells should avoid slate/phyllite containing sedimentary pyrite with heavy δ 34 S

  15. Tertiary volcanic rocks and uranium in the Thomas Range and northern Drum Mountains, Juab County, Utah

    Science.gov (United States)

    Lindsey, David A.

    1982-01-01

    The Thomas Range and northern Drum Mountains have a history of volcanism, faulting, and mineralization that began about 42 m.y. (million years) ago. Volcanic activity and mineralization in the area can be divided into three stages according to the time-related occurrence of rock types, trace-element associations, and chemical composition of mineral deposits. Compositions of volcanic rocks changed abruptly from rhyodacite-quartz latite (42-39 m.y. ago) to rhyolite (38-32 m.y. ago) to alkali rhyolite (21 and 6-7 m.y. ago); these stages correspond to periods of chalcophile and siderophile metal mineralization, no mineralization(?), and lithophile metal mineralization, respectively. Angular unconformities record episodes of cauldron collapse and block faulting between the stages of volcanic activity and mineralization. The youngest angular unconformity formed between 21 and 7 m.y. ago during basin-and-range faulting. Early rhyodacite-quartz latite volcanism from composite volcanoes and fissures produced flows, breccias, and ash-flow tuff of the Drum Mountains Rhyodacite and Mt. Laird Tuff. Eruption of the Mt. Laird Tuff about 39 m.y. ago from an area north of Joy townsite was accompanied by collapse of the Thomas caldera. Part of the roof of the magma chamber did not collapse, or the magma was resurgent, as is indicated by porphyry dikes and plugs in the Drum Mountains. Chalcophile and siderophile metal mineralization, resulting in deposits of copper, gold, and manganese, accompanied early volcanism. Te middle stage of volcanic activity was characterized by explosive eruption of rhyolitic ash-flow tuffs and collapse of the Dugway Valley cauldron. Eruption of the Joy Tuff 38 m.y. ago was accompanied by subsidence of this cauldron and was followed by collapse and sliding of Paleozoic rocks from the west wall of the cauldron. Landslides in The Dell were covered by the Dell Tuff, erupted 32 m.y. ago from an unknown source to the east. An ash flow of the Needles Range

  16. Degradation of Diclofenac by sonosynthesis of pyrite nanoparticles.

    Science.gov (United States)

    Khabbaz, M; Entezari, M H

    2017-02-01

    The aim of this work is to evaluate the ability of synthesized pyrite nanoparticles (NPs) on the degradation of Diclofenac (DCF) as a model pharmaceutical pollutant. Pyrite NPs were synthesized by sonication with 20 kHz apparatus under optimum conditions. The effects of pyrite loading (0.02-0.20 g/L), DCF concentration (10-50 mg/L) and initial pH (2-10) on the degradation were investigated. The results revealed that the NPs have a great activity in the degradation of DCF with 25 mg/L concentration. A first-order kinetic model was found to match the experimental data. Complete degradation (100%) of DCF was achieved by pyrite within 3 min and 20 min in acidic and natural pH, respectively. To gain an understanding of the degradation mechanism and the role of pyrite, a UV-Vis spectrophotometer was employed to follow the DCF concentration. In addition, the Chemical Oxygen Demand (COD) and the amounts of ammonium and chloride ions verified complete degradation of DCF in both pH values. The results demonstrated that Fe 2+ ions were generated by the pyrite surface and the hydroxyl radical (OH) was formed by Fe 2+ ions through the Fenton reaction. Based on using radical scavengers in the degradation process, OH was mainly responsible for the fast degradation of DCF. COD measurements confirmed that DCF finally degraded to further oxidized forms (NH 4 + , Cl - ). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Pyrite oxidation under simulated acid rain weathering conditions.

    Science.gov (United States)

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-09-01

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  18. Multiphase flow modelling of volcanic ash particle settling in water using adaptive unstructured meshes

    Science.gov (United States)

    Jacobs, C. T.; Collins, G. S.; Piggott, M. D.; Kramer, S. C.; Wilson, C. R. G.

    2013-02-01

    Small-scale experiments of volcanic ash particle settling in water have demonstrated that ash particles can either settle slowly and individually, or rapidly and collectively as a gravitationally unstable ash-laden plume. This has important implications for the emplacement of tephra deposits on the seabed. Numerical modelling has the potential to extend the results of laboratory experiments to larger scales and explore the conditions under which plumes may form and persist, but many existing models are computationally restricted by the fixed mesh approaches that they employ. In contrast, this paper presents a new multiphase flow model that uses an adaptive unstructured mesh approach. As a simulation progresses, the mesh is optimized to focus numerical resolution in areas important to the dynamics and decrease it where it is not needed, thereby potentially reducing computational requirements. Model verification is performed using the method of manufactured solutions, which shows the correct solution convergence rates. Model validation and application considers 2-D simulations of plume formation in a water tank which replicate published laboratory experiments. The numerically predicted settling velocities for both individual particles and plumes, as well as instability behaviour, agree well with experimental data and observations. Plume settling is clearly hindered by the presence of a salinity gradient, and its influence must therefore be taken into account when considering particles in bodies of saline water. Furthermore, individual particles settle in the laminar flow regime while plume settling is shown (by plume Reynolds numbers greater than unity) to be in the turbulent flow regime, which has a significant impact on entrainment and settling rates. Mesh adaptivity maintains solution accuracy while providing a substantial reduction in computational requirements when compared to the same simulation performed using a fixed mesh, highlighting the benefits of an

  19. Comparison Analysis of Coal Biodesulfurization and Coal's Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    Science.gov (United States)

    Hong, Fen-Fen; He, Huan; Liu, Jin-Yan; Tao, Xiu-Xiang; Zheng, Lei; Zhao, Yi-Dong

    2013-01-01

    Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal's pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32%) and jarosite (18.99%) were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34%) and elemental sulfur (50.72%) but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process. PMID:24288464

  20. Reactivity of a tuff-bearing concrete: CL-40 CON-14

    International Nuclear Information System (INIS)

    Scheetz, B.E.; Roy, D.M.

    1989-04-01

    Samples of a tuff-bearing concrete have been altered in J-13 groundwater and in the vapor phase over deionized water at 200/degree/C. Crushed and intact discs of the concrete have been studied. The glassy tuff component of the tuff was more extensively reacted than the welded devitrified tuff. The original concrete was formulated to be expansive on curing through the formation of the calcium alumino-sulfate hydrate phase, ettringite. An x-ray diffraction examination of the altered crushed samples shows that the ettringite is no longer present. The original, poorly crystalline calcium-silicate-hydrate has recrystallized to tobermorite. In the rocking autoclave experiments with crushed material, which are the experiments expected to have the fastest reaction rates, the tobermorite has been replaced by a mineral of the gyrolite-truscottite group at the longer reaction times. The disc experiments in J-13 groundwater are characterized by prominent dissolution of the tuff aggregate. Alteration in the vapor phase experiments is primarily in the form of overgrowths on the discs. 10 refs., 27 figs., 12 tabs

  1. Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash

    Science.gov (United States)

    Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming

    2014-04-01

    In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.

  2. Pyrite Iron Sulfide Solar Cells Made from Solution Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Law, Matt [Univ. of California, Irvine, CA (United States)

    2017-03-21

    This document summarizes research done under the SunShot Next Generation PV II project entitled, “Pyrite Iron Sulfide Solar Cells Made from Solution,” award number DE-EE0005324, at the University of California, Irvine, from 9/1/11 thru 11/30/16. The project goal was to develop iron pyrite (cubic FeS2) as an absorber layer for solution-processible p-n heterojunction solar cells with a pathway to >20% power conversion efficiency. Project milestones centered around seven main Tasks: (1) make device-quality pyrite thin-films from solar ink; (2) develop an ohmic bottom contact with suitable low resistivity; (3) produce a p-n heterojunction with VOC > 400 mV; (4) make a solar cell with >5% power conversion efficiency; (5) use alloying to increase the pyrite band gap to ~1.2-1.4 eV; (6) produce a p-n heterojunction with VOC > 500 mV; and finally (7) make a solar cell with >10% power conversion efficiency. In response to project findings, the Tasks were amended midway through the project to focus particular effort on passivating the surface of pyrite in order to eliminate excessively-strong surface band bending believed to be responsible for the low VOC of pyrite diodes. Major project achievements include: (1) development and detailed characterization of several new solution syntheses of high-quality thin-film pyrite, including two “molecular ink” routes; (2) demonstration of Mo/MoS2 bilayers as good ohmic bottom contacts to pyrite films; (3) fabrication of pyrite diodes with a glass/Mo/MoS2/pyrite/ZnS/ZnO/AZO layer sequence that show VOC values >400 mV and as high as 610 mV at ~1 sun illumination, although these high VOC values ultimately proved irreproducible; (4) established that ZnS is a promising n-type junction partner for pyrite; (5) used density functional theory to show that the band gap of pyrite can be increased from ~1.0 to a more optimal 1.2-1.3 eV by alloying with oxygen; (6) through extensive measurements of ultrahigh

  3. Bulk and mechanical properties of the Paintbrush tuff recovered from borehole USW NRG-7/7A: Data report. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Martin, R.J.; Boyd, P.J.; Noel, J.S.; Price, R.H.

    1995-05-01

    An integral part of the licensing procedure for the potential nuclear waste repository at Yucca Mountain, Nevada, involves prediction of the in situ rheology for the design and construction of the facility and the emplacement of canisters containing radioactive waste. The data used to model the thermal and mechanical behavior of the repository and surrounding lithologies include dry and saturated bulk densities, average grain density, porosity, compressional and shear wave velocities, elastic moduli, and compressional and tensional fracture strengths. In this study, a suite of experiments was performed on cores recovered from the USW NRG-717A borehole drilled in support of the Exploratory Studies Facility (ESF) at Yucca Mountain. USW NRG-7/7A was drilled to a depth of 1,513.4 feet through five thermal/mechanical units of Paintbrush tuff and terminating in the tuffaceous beds of the Calico IEUS. The thermal/mechanical stratigraphy was defined by Orfiz et al. to group rock horizons of similar properties for the purpose of simplifying modeling efforts. The relationship between the geologic stratigraphy and the thermal/mechanical stratigraphy is presented. The tuff samples in this study have a wide range of welding characteristics, and a smaller range of mineralogy and petrology characteristics. Generally, the samples are silicic, ash-fall tuffs that exhibit large variability in their elastic and strength properties

  4. THE PENA BLANCA NATURAL ANALOGUE PERFORMANCE ASSESSMENT MODEL

    Energy Technology Data Exchange (ETDEWEB)

    G. Saulnier and W. Statham

    2006-04-16

    The Nopal I uranium mine in the Sierra Pena Blanca, Chihuahua, Mexico serves as a natural analogue to the Yucca Mountain repository. The Pena Blanca Natural Analogue Performance Assessment Model simulates the mobilization and transport of radionuclides that are released from the mine and transported to the saturated zone. The Pena Blanca Natural Analogue Performance Assessment Model uses probabilistic simulations of hydrogeologic processes that are analogous to the processes that occur at the Yucca Mountain site. The Nopal I uranium deposit lies in fractured, welded, and altered rhyolitic ash-flow tuffs that overlie carbonate rocks, a setting analogous to the geologic formations at the Yucca Mountain site. The Nopal I mine site has the following analogous characteristics as compared to the Yucca Mountain repository site: (1) Analogous source--UO{sub 2} uranium ore deposit = spent nuclear fuel in the repository; (2) Analogous geology--(i.e. fractured, welded, and altered rhyolitic ash-flow tuffs); (3) Analogous climate--Semiarid to arid; (4) Analogous setting--Volcanic tuffs overlie carbonate rocks; and (5) Analogous geochemistry--Oxidizing conditions Analogous hydrogeology: The ore deposit lies in the unsaturated zone above the water table.

  5. THE PENA BLANCA NATURAL ANALOGUE PERFORMANCE ASSESSMENT MODEL

    International Nuclear Information System (INIS)

    G. Saulnier; W. Statham

    2006-01-01

    The Nopal I uranium mine in the Sierra Pena Blanca, Chihuahua, Mexico serves as a natural analogue to the Yucca Mountain repository. The Pena Blanca Natural Analogue Performance Assessment Model simulates the mobilization and transport of radionuclides that are released from the mine and transported to the saturated zone. The Pena Blanca Natural Analogue Performance Assessment Model uses probabilistic simulations of hydrogeologic processes that are analogous to the processes that occur at the Yucca Mountain site. The Nopal I uranium deposit lies in fractured, welded, and altered rhyolitic ash-flow tuffs that overlie carbonate rocks, a setting analogous to the geologic formations at the Yucca Mountain site. The Nopal I mine site has the following analogous characteristics as compared to the Yucca Mountain repository site: (1) Analogous source--UO 2 uranium ore deposit = spent nuclear fuel in the repository; (2) Analogous geology--(i.e. fractured, welded, and altered rhyolitic ash-flow tuffs); (3) Analogous climate--Semiarid to arid; (4) Analogous setting--Volcanic tuffs overlie carbonate rocks; and (5) Analogous geochemistry--Oxidizing conditions Analogous hydrogeology: The ore deposit lies in the unsaturated zone above the water table

  6. Greigite: a true intermediate on the polysulfide pathway to pyrite

    Directory of Open Access Journals (Sweden)

    Benning Liane G

    2007-03-01

    Full Text Available Abstract The formation of pyrite (FeS2 from iron monosulfide precursors in anoxic sediments has been suggested to proceed via mackinawite (FeS and greigite (Fe3S4. Despite decades of research, the mechanisms of pyrite formation are not sufficiently understood because solid and dissolved intermediates are oxygen-sensitive and poorly crystalline and therefore notoriously difficult to characterize and quantify. In this study, hydrothermal synchrotron-based energy dispersive X-ray diffraction (ED-XRD methods were used to investigate in situ and in real-time the transformation of mackinawite to greigite and pyrite via the polysulfide pathway. The rate of formation and disappearance of specific Bragg peaks during the reaction and the changes in morphology of the solid phases as observed with high resolution microscopy were used to derive kinetic parameters and to determine the mechanisms of the reaction from mackinawite to greigite and pyrite. The results clearly show that greigite is formed as an intermediate on the pathway from mackinawite to pyrite. The kinetics of the transformation of mackinawite to greigite and pyrite follow a zero-order rate law indicating a solid-state mechanism. The morphology of greigite and pyrite crystals formed under hydrothermal conditions supports this conclusion and furthermore implies growth of greigite and pyrite by oriented aggregation of nanoparticulate mackinawite and greigite, respectively. The activation enthalpies and entropies of the transformation of mackinawite to greigite, and of greigite to pyrite were determined from the temperature dependence of the rate constants according to the Eyring equation. Although the activation enthalpies are uncharacteristic of a solid-state mechanism, the activation entropies indicate a large increase of order in the transition state, commensurate with a solid-state mechanism.

  7. Mineralogic studies of tuff for high-level waste disposal

    International Nuclear Information System (INIS)

    Vaniman, D.; Bish, D.; Broxton, D.; Byers, F.; Carlos, B.; Levy, S.

    1986-01-01

    The volcanic rocks at Yucca Mountain, Nevada, consist predominantly of tuff that originated 12 to 14 million years ago as flows and airfalls of hot volcanic particulates. On cooling these units formed two major rock types: crystallized zones formed mostly of feldspar and silica minerals, and zones of glass. Alteration of glass to zeolite minerals occurred largely during structural tilting of Yucca Mountain in the ∼1-3 million years following the major eruptions. The compositions of zeolites formed from glasses strongly indicate open-system chemical exchange. Superimposed on this general alteration of glasses are areas of local high-temperature alteration. High-temperature alteration ended by 11 million years ago. Zeolites such as clinoptilolite persisted during high-temperature alteration at temperatures up to 100 degree C, suggesting that clinoptilolite at Yucca Mountain close to the thermally disturbed zone around a repository may also survive heating to temperatures at least this high. The mineralogic data from tuff at Yucca Mountain will ultimately be used by the Department of Energy Nevada Nuclear Waste storage Investigations for (1) defining the mineralogic component in estimating waste element travel times away from the repository and (2) determining the past history of alteration and the anticipated stability of minerals near the repository

  8. Magnetic Fabrics and Source Implications of Chisulryoung Ignimbrites, South Korea

    Directory of Open Access Journals (Sweden)

    Hoabin Hong

    2016-08-01

    Full Text Available The anisotropy of magnetic susceptibility (AMS of late Cretaceous ash-flow tuffs in Chisulryoung Volcanic Formation, southeastern Korea was studied to define the primary pyroclastic flow azimuth. AMS data revealed a dominant oblate fabric with a tight clustering of k3 (minimum axis of magnetic susceptibility and shallow dispersal of k1 (maximum axis of magnetic susceptibility and k2 (intermediate axis of magnetic susceptibility. Dominance of oblate fabrics indicates clast imbrications imposed by compaction and welding. Flow azimuth inferred from AMS data indicates the nearby intrusive welded tuff (IWT as the source of calderas for ignimbrites. Such an inference is supported by geologic investigations, in which the IWT displays eutaxitic textures nearly parallel to its subvertical contacts. The results are compatible with a unique prolate fabric and an anomalously high inclination observed for the IWT, possibly produced by rheomorphic flows as the welded tuff is squeezed along the rough-surfaced dyke walls due to agglutination.

  9. Investigation of pyrite as a contributor to slagging in eastern bituminous coals. Quarterly progress report 9, October 1-December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Bryers, R.W.

    1984-06-01

    The objective of this program is to examine slags formed as a result of firing coals with varying concentration levels, size distribution, and orientation of pyrite with regard to mineral matter in the coal in a laboratory furnace. The program tasks are: (1) selection of eight candidate coals; (2) chemical characterization of the coal samples and identification of the pyrite size, distribution, and orientation with respect to other mineral matter and concentration levels; (3) testing of the candidate coals in a laboratory furnace; (4) chemical and physical characterization of the slag and fly ash samples created by the impurities in the coal sample; (5) influence of coal beneficiation on furnace slagging; and (6) analysis of data and identification of parameters influencing the contribution of pyrite to slagging problems. Washing of the Upper Freeport coal from Indiana County, Pennsylvania, was completed by the last quarter of 1983. The washed product was characterized for mineral content, and a combustion test was performed. Kentucky No. 9 from Henderson County, Kentucky, selected as the sixth coal to be investigated, was characterized using size and gravity fractionation techniques and was combusted in the laboratory furnace to evaluate its slagging and fouling potential. The remaining two coals to be characterized and combusted were identified as Illinois No. 5 and Lower Kittanning from Clarion County, Pennsylvania. 80 figures, 27 tables.

  10. Anisotropy of the Topopah Spring Member Tuff

    International Nuclear Information System (INIS)

    Martin, R.J. III; Boyd, P.J.; Haupt, R.W.; Price, R.H.

    1992-07-01

    Mechanical properties of the tuffaceous rocks within Yucca Mountain are needed for near and far-field modeling of the potential nuclear waste repository. If the mechanical properties are significantly anisotropic (i.e., direction-dependent), a more complex model is required. Relevant data from tuffs tested in earlier studies indicate that elastic and strength properties are anisotropic. This scoping study confirms the elastic anisotropy and concludes some tuffs are transversely isotropic. An approach for sampling and testing the rock to determine the magnitude of the anisotropy is proposed

  11. Transport of neptunium through Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Triay, I.R.; Robinson, B.A.; Mitchell, A.J.; Overly, C.M.; Lopez, R.M.

    1993-01-01

    Neptunium has a high solubility in groundwaters from Yucca Mountain [1]. Uranium in nuclear reactors produces 237 Np which has a half-life of 2.1 4 x 10 6 years. Consequently, the transport of 237 Np through tuffs is of major importance in assessing the performance of a high-level nuclear waste repository at Yucca Mountain. The objective of this work is to determine the amount of Np retardation that is provided by the minerals in Yucca Mountain tuffs as a function of groundwater chemistry

  12. Mechanical tunnel excavation in welded tuff

    International Nuclear Information System (INIS)

    Sperry, P.E.

    1991-01-01

    The Technical Review Board for the US high-level radioactive waste facility at Yucca Mountain has recommended maximum use of open-quotes the most modern mechanical excavation techniques...in order to reduce disturbance to the rock walls and to achieve greater economy of time and cost.close quotes Tunnels for the waste repository at Yucca Mountain can be economically constructed with mechanical excavation equipment. This paper presents the results of mechanical excavation of a tunnel in welded tuff, similar to the tuffs of Yucca Mountain. These results are projected to excavation of emplacement drifts in Yucca Mountain using a current state-of-the-art tunnel boring machine (TBM)

  13. Ash transformation during co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    2007-01-01

    Co-firing straw with coal in pulverized fuel boilers can cause problems related to fly ash utilization, deposit formation, corrosion and SCR catalyst deactivation due to the high contents of Cl and K in the ash. To investigate the interaction between coal and straw ash and the effect of coal...... quality on fly ash and deposit properties, straw was co-fired with three kinds of coal in an entrained flow reactor. The compositions of the produced ashes were compared to the available literature data to find suitable scaling parameters that can be used to predict the composition of ash from straw...... and coal co-firing. Reasonable agreement in fly ash compositions regarding total K and fraction of water soluble K was obtained between co-firing in an entrained flow reactor and full-scale plants. Capture of potassium and subsequent release of HCl can be achieved by sulphation with SO2 and more...

  14. METHODS FOR PORE WATER EXTRACTION FROM UNSATURATED ZONE TUFF, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    K.M. SCOFIELD

    2006-01-01

    Assessing the performance of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, requires an understanding of the chemistry of the water that moves through the host rock. The uniaxial compression method used to extract pore water from samples of tuffaceous borehole core was successful only for nonwelded tuff. An ultracentrifugation method was adopted to extract pore water from samples of the densely welded tuff of the proposed repository horizon. Tests were performed using both methods to determine the efficiency of pore water extraction and the potential effects on pore water chemistry. Test results indicate that uniaxial compression is most efficient for extracting pore water from nonwelded tuff, while ultracentrifugation is more successful in extracting pore water from densely welded tuff. Pore water splits taken from a single nonwelded tuff core during uniaxial compression tests have shown changes in pore water chemistry with increasing pressure for calcium, chloride, sulfate, and nitrate, while the chemistry of pore water splits from welded and nonwelded tuffs using ultracentrifugation indicates that there is no significant fractionation of solutes

  15. Measuring geomechanical properties of Topopah Spring Tuff at the 1-meter scale

    International Nuclear Information System (INIS)

    Blair, S.C.; Berge, P.A.

    1994-11-01

    The Yucca Mountain Site Characterization Project is studying physical and chemical properties of Topopah Spring tuff and coupled thermal, mechanical, hydrological, and geochemical processes expected in the near-field environment of the potential waste repository at Yucca Mountain, Nevada. Investigating the suitability of Topopah Spring tuff as a host rock for radioactive waste disposal includes measuring mechanical properties. Since heterogeneities vary with scale, from vugs and cracks at the hand-sample scale to fractures and vertical variations in degree of welding at the outcrop scale, mechanical properties of the tuff depend on scale. The Lawrence Livermore National Laboratory has planned a Large Block Test (LBT) to investigate rock mass properties and coupled processes at elevated temperatures in Topopah Spring tuff at the scale of a few meters. This paper describes planned laboratory experiments in support of the LBT, to measure elastic properties and mechanical behavior of Topopah Spring tuff at the scale of a few cm to 1 m. The laboratory experiments will include measurement of stress-strain behavior, acoustic emissions during heating, and elastic wave velocities in small blocks of tuff

  16. The effect of lizardite surface characteristics on pyrite flotation

    International Nuclear Information System (INIS)

    Feng Bo; Feng Qiming; Lu Yiping

    2012-01-01

    Highlights: ► Two kinds of lizardite samples have different effect on the flotation of pyrite. ► Acid leaching changed the surface characteristics of lizardite mineral. ► The leached lizardite has less magnesium on its surface. ► The electro-kinetic behavior of lizardite aqueous suspensions is mainly a function of the Mg/Si atomic ratio on mineral surface. - Abstract: The effect of lizardite surface characteristics on pyrite flotation has been investigated through flotation tests, adsorption tests, zeta potential measurements, FTIR study, X-ray photoelectron spectroscopy (XPS) and sedimentation tests. The flotation results show that at pH value 9, where flotation of nickel sulfide ores is routinely performed, two kinds of lizardite samples (native lizardite and leached lizardite) have different effects on the flotation of pyrite. The native lizardite adheres to the surface of pyrite and reduces pyrite flotation recovery while the leached lizardite does not interfere with pyrite flotation. Infrared analyses and XPS tests illustrate that acid leaching changed the surface characteristics of lizardite mineral and the leached lizardite has less magnesium on its surface. It has been determined that the electro-kinetic behavior of lizardite aqueous suspensions is mainly a function of the Mg/Si atomic ratio on lizardite surface. So, the low isoelectric point observed in the leached sample has been linked to values of this ratio lower than that of the native lizardite.

  17. Fabrication and characterization of PDLLA/pyrite composite bone ...

    Indian Academy of Sciences (India)

    Keywords. Polylactic acid; Chinese herbal medicine; pyrite; scaffold; bone regeneration; cell culture. ... Pyrite (FeS2, named as Zi-Ran-Tong in Chinese medicine), as a traditional Chinesemedicine, has been used in the Chinese population to treat bone diseases and to promote bone healing. The mechanical properties of ...

  18. Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah

    Science.gov (United States)

    Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.

    1998-01-01

    Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in

  19. Contrasting perspectives on the Lava Creek Tuff eruption, Yellowstone, from new U-Pb and 40Ar/39Ar age determinations

    Science.gov (United States)

    Wilson, Colin J. N.; Stelten, Mark E.; Lowenstern, Jacob B.

    2018-06-01

    The youngest major caldera-forming event at Yellowstone was the 630-ka eruption of the Lava Creek Tuff. The tuff as mapped consists of two major ignimbrite packages (members A and B), linked to widespread coeval fall deposits and formation of the Yellowstone Caldera. Subsequent activity included emplacement of numerous rhyolite flows and domes, and development of two structurally resurgent domes (Mallard Lake and Sour Creek) that accommodate strain due to continual uplift/subsidence cycles. Uplifted lithologies previously mapped on and adjacent to Sour Creek dome were thought to include the 2.08-Ma Huckleberry Ridge Tuff, cropping out beneath Lava Creek Tuff members A and B. Mapped outcrops of this Huckleberry Ridge Tuff material were sampled as welded ignimbrite (sample YR345) on Sour Creek dome, and at nearby Bog Creek as welded ignimbrite (YR311) underlain by an indurated lithic lag breccia containing blocks of another welded ignimbrite (YR324). Zircon near-rim U-Pb analyses from these samples yield weighted mean ages of 661 ± 13 ka (YR345: 95% confidence), 655 ± 11 ka (YR311), and 664 ± 15 ka (YR324) (combined weighted mean of 658.8 ± 6.6 ka). We also studied two samples of ignimbrite previously mapped as Huckleberry Ridge Tuff on the northeastern perimeter of the Yellowstone Caldera, 12 km ENE of Sour Creek dome. Sanidines from these samples yield 40Ar/39Ar age estimates of 634.5 ± 6.8 ka (8YC-358) and 630.9 ± 4.1 ka (8YC-359). These age data show that all these units represent previously unrecognized parts of the Lava Creek Tuff and do not have any relationship to the Huckleberry Ridge Tuff. Our observations and data imply that the Lava Creek eruption was more complex than is currently assumed, incorporating two tuff units additional to those currently mapped, and which themselves are separated by a time break sufficient for cooling and some reworking. The presence of a lag breccia suggests that a source vent lay nearby (Caldera boundary in this area

  20. Contrasting perspectives on the Lava Creek Tuff eruption, Yellowstone, from new U–Pb and 40Ar/39Ar age determinations

    Science.gov (United States)

    Wilson, Colin J. N.; Stelten, Mark; Lowenstern, Jacob B.

    2018-01-01

    The youngest major caldera-forming event at Yellowstone was the ~ 630-ka eruption of the Lava Creek Tuff. The tuff as mapped consists of two major ignimbrite packages (members A and B), linked to widespread coeval fall deposits and formation of the Yellowstone Caldera. Subsequent activity included emplacement of numerous rhyolite flows and domes, and development of two structurally resurgent domes (Mallard Lake and Sour Creek) that accommodate strain due to continual uplift/subsidence cycles. Uplifted lithologies previously mapped on and adjacent to Sour Creek dome were thought to include the ~ 2.08-Ma Huckleberry Ridge Tuff, cropping out beneath Lava Creek Tuff members A and B. Mapped outcrops of this Huckleberry Ridge Tuff material were sampled as welded ignimbrite (sample YR345) on Sour Creek dome, and at nearby Bog Creek as welded ignimbrite (YR311) underlain by an indurated lithic lag breccia containing blocks of another welded ignimbrite (YR324). Zircon near-rim U–Pb analyses from these samples yield weighted mean ages of 661 ± 13 ka (YR345: 95% confidence), 655 ± 11 ka (YR311), and 664 ± 15 ka (YR324) (combined weighted mean of 658.8 ± 6.6 ka). We also studied two samples of ignimbrite previously mapped as Huckleberry Ridge Tuff on the northeastern perimeter of the Yellowstone Caldera, ~ 12 km ENE of Sour Creek dome. Sanidines from these samples yield 40Ar/39Ar age estimates of 634.5 ± 6.8 ka (8YC-358) and 630.9 ± 4.1 ka (8YC-359). These age data show that all these units represent previously unrecognized parts of the Lava Creek Tuff and do not have any relationship to the Huckleberry Ridge Tuff. Our observations and data imply that the Lava Creek eruption was more complex than is currently assumed, incorporating two tuff units additional to those currently mapped, and which themselves are separated by a time break sufficient for cooling and some reworking. The presence of a lag breccia suggests that a source

  1. Drycon dry ash conveyor: dry bottom ash handling system with reduced operating costs and improved plant efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The Drycon dry bottom ash extraction system is designed to remove bottom ash beneath the furnace, cooling it without any need of water. Fresh air in countercurrent flow to the ash is used for the ash cooling. Data presented show how savings of time and costs can be achieved with this system and how a boiler efficiency can be increased using this technology. Considerable advantages in the reliability of operation with new improvements of the design are described. 7 figs.

  2. Meteorological Controls on Local and Regional Volcanic Ash Dispersal.

    Science.gov (United States)

    Poulidis, Alexandros P; Phillips, Jeremy C; Renfrew, Ian A; Barclay, Jenni; Hogg, Andrew; Jenkins, Susanna F; Robertson, Richard; Pyle, David M

    2018-05-02

    Volcanic ash has the capacity to impact human health, livestock, crops and infrastructure, including international air traffic. For recent major eruptions, information on the volcanic ash plume has been combined with relatively coarse-resolution meteorological model output to provide simulations of regional ash dispersal, with reasonable success on the scale of hundreds of kilometres. However, to predict and mitigate these impacts locally, significant improvements in modelling capability are required. Here, we present results from a dynamic meteorological-ash-dispersion model configured with sufficient resolution to represent local topographic and convectively-forced flows. We focus on an archetypal volcanic setting, Soufrière, St Vincent, and use the exceptional historical records of the 1902 and 1979 eruptions to challenge our simulations. We find that the evolution and characteristics of ash deposition on St Vincent and nearby islands can be accurately simulated when the wind shear associated with the trade wind inversion and topographically-forced flows are represented. The wind shear plays a primary role and topographic flows a secondary role on ash distribution on local to regional scales. We propose a new explanation for the downwind ash deposition maxima, commonly observed in volcanic eruptions, as resulting from the detailed forcing of mesoscale meteorology on the ash plume.

  3. Comparison Analysis of Coal Biodesulfurization and Coal’s Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Fen-Fen Hong

    2013-01-01

    Full Text Available Acidithiobacillus ferrooxidans (A. ferrooxidans was applied in coal biodesulfurization and coal’s pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal’s pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal’s pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32% and jarosite (18.99% were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34% and elemental sulfur (50.72% but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process.

  4. Geology of the UE12t No. 3 vertical drill hole, area 12, Nevada Test Site

    International Nuclear Information System (INIS)

    Terry, S.S.

    1975-11-01

    The UE12t No. 3 vertical drill hole, located near the north end of Rainier Mesa, was drilled to a total depth of 663 m (2,176 ft). The UE12t No. 3 vertical hole was drilled to further evaluate the subsurface stratigraphy northwest of the t-tunnel complex area in preparation for mining of the U12t.03 (Husky Pup) drift. The drill hole is collared in the Rainier Mesa Member of the Timber Mountain Tuff and penetrates down the stratigraphic section through the Paintbrush Tuff, the welded Grouse Canyon Member of the Belted Range Tuff, tunnel beds 5-3, the Tub Spring Member of the Belted Range Tuff, tunnel bed 2, Crater Flat Tuff, tunnel bed 1, Redrock Valley Tuff, and bottoms in older Tertiary tuffaceous and Paleozoic quartzite rubble having a partially argillized, tuffaceous, soillike matrix. The tuff of Dead Horse Flat and the bedded and ash-flow tuffs of Area 20 were not differentiated in the logging of this drill hole. Stratigraphy, structure, engineering geology, and physical properties and their relation to tunneling are discussed

  5. Spectral Induced Polarization of Disseminated Pyrite Particles in Soil

    Science.gov (United States)

    Slater, L. D.; Kessouri, P.; Seleznev, N. V.

    2017-12-01

    Disseminated metallic particles in soil, particularly pyrite, occur naturally or are enhanced by anthropogenic activities. Detecting their presence and quantifying their concentration and location is of interest for numerous applications such as remediation of hydrocarbon contamination, mine tailings assessment, detection of oil traps, and archaeological studies. Because pyrite is a semiconductor, spectral induced polarization (SIP) is a promising geophysical method for sensing it in porous media. Previous studies have identified relations between pyrite properties (e.g., volumetric content, grain size) and SIP parameters (e.g., chargeability, relaxation time). However, the effect of pyrite grains in porous media on the SIP response is not fully understood over the entire low-frequency range. We tested the relationship between the presence of pyrite grains and the change in electrical properties of the medium through an extended series of laboratory measurements: (1) variation of grain size, (2) variation of grain concentration, (3) variation of electrolyte conductivity, (4) change in the diffusion properties of the host medium. For the fourth set of measurements, we compared sand columns to agar gel columns. Our experimental design included more than 20 different samples with multiple repeats to ensure representative results. We confirm the strong relation between grain size and relaxation time and that between grain concentration and chargeability in both the sand and agar gel samples. Furthermore, our results shed light on the significance of the diffusion coefficient and the recently hypothesized role of pyrite grains as resistors at frequencies lower than the relaxation frequency.

  6. Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue

    Science.gov (United States)

    Rolison, John M.; Stirling, Claudine H.; Middag, Rob; Gault-Ringold, Melanie; George, Ejin; Rijkenberg, Micha J. A.

    2018-04-01

    The chemical response of the Precambrian oceans to rising atmospheric O2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shift in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the 'Great Oxidation Event' around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in parallel with the permanent rise

  7. Effects of mineralogy on sorption of strontium and cesium onto Calico Hills Tuff

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Case, F.I.; O'Kelley, G.D.; Land, J.F.

    1990-04-01

    The sorption properties of tuff formations at the proposed site for the high-level nuclear waste repository at Yucca Mountain, Nevada, have been extensively studied. Sorption and desorption measurements were made of strontium and cesium onto clinoptilolite and Calico Hills Tuff. The object was to see whether there was a correlation between sorption of strontium and cesium onto Calico Hills Tuff and the sorption of strontium and cesium onto clinoptilolite based on the content of clinoptilolite in the Calico Hills Tuff. 13 refs., 10 figs., 6 tabs

  8. The reaction of acid mine drainage with fly ash from coal combustion

    International Nuclear Information System (INIS)

    Kim, A.G.

    1999-01-01

    The placement of alkaline fly ash in abandoned, reclaimed or active surface coal mines is intended to reduce the amount of acid mine drainage (AMD) produced at such sites by neutralization, inhibition of acid forming bacteria, encapsulation of the pyrite or water diversion. A continuing concern with this application is the potential release of trace elements from the fly ash when it is placed in contact with AMD. To investigate the possible release of antimony, arsenic, barium, boron, cadmium, chromium, cobalt, copper, lead, nickel, selenium, and zinc from fly ash, a series of column leaching tests were conducted. A one kg fly ash sample, placed in a 5-cm by 1 m acrylic columns, was leached at a nominal rate of 250 mL/d for between 30 and 60 days. The leachant solutions were deionized water, and dilute solutions of sulfuric acid and ferric chloride. Leaching tests have been completed on 28 fly ash samples. leachate data, analyzed as the mass extracted with respect to the concentration in the solid, indicate that the release of trace elements is variable, with only barium and zinc extracted at greater than 50 pct of the amount present in the original sample. As a comparison, water quality changes have been monitored at three sites where fly ash grout was injected after reclamation to control AMD. When compared before and after grouting, small increases in pH and decreases in acidity at discharge points were observed. Concentrations of trace metals were found to be comparable in treated and untreated areas. When grouted and ungrouted areas were compared, the effect of the fly ash was shown to be localized in the areas of injection. These studies indicated that when fly ash is used as a reagent to control of AMD, the release of trace elements is relatively small

  9. Air-injection testing in vertical boreholes in welded and nonwelded Tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    LeCain, G.D.

    1997-12-31

    Air-injection tests, by use of straddle packers, were done in four vertical boreholes (UE-25 UZ-No.16, USW SD-12, USW NRG-6, and USW NRG-7a) at Yucca Mountain, Nevada. The geologic units tested were the Tiva Canyon Tuff, nonwelded tuffs of the Paintbrush Group, Topopah Spring Tuff, and Calico Hills Formation. Air-injection permeability values of the Tiva Canyon Tuff ranged from 0.3 x 10{sup -12} to 54.0 x 10{sup -12} m{sup 2}(square meter). Air-injection permeability values of the Paintbrush nonwelded tuff ranged from 0.12 x 10{sup -12} to 3.0 x 10{sup -12} m{sup 2}. Air-injection permeability values of the Topopah Spring Tuff ranged from 0.02 x 10{sup -12} to 33.0 x 10{sup -12} m{sup 2}. The air-injection permeability value of the only Calico Hills Formation interval tested was 0.025 x 10{sup -12} m{sup 2}. The shallow test intervals of the Tiva Canyon Tuff had the highest air-injection permeability values. Variograms of the air-injection permeability values of the Topopah Spring Tuff show a hole effect; an initial increase in the variogram values is followed by a decrease. The hole effect is due to the decrease in permeability with depth identified in several geologic zones. The hole effect indicates some structural control of the permeability distribution, possibly associated with the deposition and cooling of the tuff. Analysis of variance indicates that the air-injection permeability values of borehole NRG-7a of the Topopah Spring Tuff are different from the other boreholes; this indicates areal variation in permeability.

  10. Silane-based coatings on the pyrite for remediation of acid mine drainage.

    Science.gov (United States)

    Diao, Zenghui; Shi, Taihong; Wang, Shizhong; Huang, Xiongfei; Zhang, Tao; Tang, Yetao; Zhang, Xiaying; Qiu, Rongliang

    2013-09-01

    Acid mine drainage (AMD) resulting from the oxidation of pyrite and other metal sulfides has caused significant environmental problems, including acidification of rivers and streams as well as leaching of toxic metals. With the goal of controlling AMD at the source, we evaluated the potential of tetraethylorthosilicate (TEOS) and n-propyltrimethoxysilane (NPS) coatings to suppress pyrite oxidation. The release of total Fe and SO4(-2) from uncoated and coated pyrite in the presence of a chemical oxidizing agent (H2O2) or iron-oxidizing bacteria (Acidithiobacillus ferrooxidans) was measured. Results showed that TEOS- and NPS-based coatings reduced chemical oxidation of pyrite by as much as 59 and 96% (based on Fe release), respectively, while biological oxidation of pyrite was reduced by 69 and 95%, respectively. These results were attributed to the formation of a dense network of Fe-O-Si and Si-O-Si bonds on the pyrite surface that limited permeation of oxygen, water, and bacteria. Compared with results for TEOS-coated pyrite, higher pH and lower concentrations of total Fe and SO4(-2) were observed for oxidation of NPS-coated pyrite, which was attributed to its crack-free morphology and the presence of hydrophobic groups on the NPS-based coating surface. The silane-based NPS coating was shown to be highly effective in suppressing pyrite oxidation, making it a promising alternative for remediation of AMD at its source. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Validation of a continuous flow method for the determination of soluble iron in atmospheric dust and volcanic ash.

    Science.gov (United States)

    Simonella, Lucio E; Gaiero, Diego M; Palomeque, Miriam E

    2014-10-01

    Iron is an essential micronutrient for phytoplankton growth and is supplied to the remote areas of the ocean mainly through atmospheric dust/ash. The amount of soluble Fe in dust/ash is a major source of uncertainty in modeling-Fe dissolution and deposition to the surface ocean. Currently in the literature, there exist almost as many different methods to estimate fractional solubility as researchers in the field, making it difficult to compare results between research groups. Also, an important constraint to evaluate Fe solubility in atmospheric dust is the limited mass of sample which is usually only available in micrograms to milligrams amounts. A continuous flow (CF) method that can be run with low mass of sediments (solubility studies on dust/ash. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. In-situ tuff water migration/heater experiment: experimental plan

    International Nuclear Information System (INIS)

    Johnstone, J.K.

    1980-08-01

    Tuffs on the Nevada Test Site (NTS) are currently under investigation as a potential isolation medium for heat-producing nuclear wastes. The National Academy of Sciences has concurred in our identification of the potentially large water content (less than or equal to 40 vol %) of tuffs as one of the important issues affecting their suitability for a repository. This Experimental Plan describes an in-situ experiment intended as an initial assessment of water generation/migration in response to a thermal input. The experiment will be conducted in the Grouse Canyon Welded Tuff in Tunnel U12g (G-Tunnel) located in the north-central region of the NTS. While the Grouse Canyon Welded Tuff is not a potential repository medium, it has physical, thermal, and mechanical properties very similar to those tuffs currently under consideration and is accessible at depth (400 m below the surface) in an existing facility. Other goals of the experiment are to support computer-code and instrumentation development, and to measure in-situ thermal properties. The experimental array consists of a central electrical heater, 1.2 m long x 10.2 cm diameter, surrounded by three holes for measuring water-migration behavior, two holes for measuring temperature profiles, one hole for measuring thermally induced stress in the rock, and one hole perpendicular to the heater to measure displacement with a laser. This Experimental Plan describes the experimental objectives, the technical issues, the site, the experimental array, thermal and thermomechanical modeling results, the instrumentation, the data-acquisition system, posttest characterization, and the organizational details

  13. Fission-track dating of pumice from the KBS Tuff, East Rudolf, Kenya

    Science.gov (United States)

    Hurford, A.J.; Gleadow, A.J.W.; Naeser, C.W.

    1976-01-01

    Fission-track dating of zircon separated from two pumice samples from the KBS Tuff in the Koobi Fora Formation, in Area 131, East Rudolf, Kenya, gives an age of 2.44??0.08 Myr for the eruption of the pumice. This result is compatible with the previously published K-Ar and 40Ar/ 39Ar age spectrum estimate of 2.61??0.26 Myr for the KBS Tuff in Area 105, but differs from the more recently published K-Ar date of 1.82??0.04 Myr for the KBS Tuff in Area 131. This study does not support the suggestion that pumice cobbles of different ages occur in the KBS Tuff. ?? 1976 Nature Publishing Group.

  14. Fitful and protracted magma assembly leading to a giant eruption, Youngest Toba Tuff, Indonesia

    Science.gov (United States)

    Reid, Mary R; Vazquez, Jorge A.

    2017-01-01

    The paroxysmal eruption of the 74 ka Youngest Toba Tuff (YTT) of northern Sumatra produced an extraordinary 2800 km3 of non-welded to densely welded ignimbrite and co-ignimbrite ash-fall. We report insights into the duration of YTT magma assembly obtained from ion microprobe U-Th and U-Pb dates, including continuous age spectra over >50% of final zircon growth, for pumices and a welded tuff spanning the compositional range of the YTT. A relatively large subpopulation of zircon crystals nucleated before the penultimate caldera-related eruption at 501 ka, but most zircons yielded interior dates 100-300 ka thereafter. Zircon nucleation and growth was likely episodic and from diverse conditions over protracted time intervals of >100 to >500 ka. Final zircon growth is evident as thin rim plateaus that are in Th/U chemical equilibrium with hosts, and that give crystallization ages within tens of ka of eruption. The longevity and chemical characteristics of the YTT zircons, as well as evidence for intermittent zircon isolation and remobilization associated with magma recharge, is especially favored at the cool and wet eutectoid conditions that characterize at least half of the YTT, wherein heat fluxes could dissolve major phases but have only a minor effect on larger zircon crystals. Repeated magma recharge may have contributed to the development of compositional zoning in the YTT but, considered together with limited allanite, quartz, and other mineral dating and geospeedometry, regular perturbations to the magma reservoir over >400 ka did not lead to eruption until 74 ka ago.

  15. Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada

    Science.gov (United States)

    Bryan, C.R.; Helean, K.B.; Marshall, B.D.; Brady, P.V.

    2009-01-01

    Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (???60 wt%) and quartz polymorphs (???35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10-16 to 10-17 mol s-1 kg tuff-1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10-15 to 10-16 mol s-1 kg tuff-1 for percolation fluxes of 15 mm a-1 and 1 mm a-1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a-1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (???50 mg L-1) may inhibit feldspar dissolution. ?? 2009 Elsevier Ltd. All rights reserved.

  16. Analysis of the 2006 block-and-ash flow deposits of Merapi Volcano, Java, Indonesia, using high-spatial resolution IKONOS images and complementary ground based observations

    Science.gov (United States)

    Thouret, Jean-Claude; Gupta, Avijit; Liew, Soo Chin; Lube, Gert; Cronin, Shane J.; Surono, Dr

    2010-05-01

    On 16 June 2006 an overpass of IKONOS coincided with the emplacement of an active block-and-ash flow fed by a lava dome collapse event at Merapi Volcano (Java, Indonesia). This was the first satellite image recorded for a moving pyroclastic flow. The very high-spatial resolution data displayed the extent and impact of the pyroclastic deposits emplaced during and prior to, the day of image acquisition. This allowed a number of features associated with high-hazard block-and-ash flows emplaced in narrow, deep gorges to be mapped, interpreted and understood. The block-and-ash flow and surge deposits recognized in the Ikonos images include: (1) several channel-confined flow lobes and tongues in the box-shaped valley; (2) thin ash-cloud surge deposit and knocked-down trees in constricted areas on both slopes of the gorge; (3) fan-like over bank deposits on the Gendol-Tlogo interfluves from which flows were re-routed in the Tlogo secondary valley; (4) massive over bank lobes on the right bank from which flows devastated the village of Kaliadem 0.5 km from the main channel, a small part of this flow being re-channeled in the Opak secondary valley. The high-resolution IKONOS images also helped us to identify geomorphic obstacles that enabled flows to ramp and spill out from the sinuous channel, a process called flow avulsion. Importantly, the avulsion redirected flows to unexpected areas away from the main channel. In the case of Merapi we see that the presence of valley fill by previous deposits, bends and man-made dams influence the otherwise valley-guided course of the flows. Sadly, Sabo dams (built to ameliorate the effect of high sediment load streams) can actually cause block-and-ash flows to jump out of their containing channel and advance into sensitive areas. Very-high-spatial resolution satellite images are very useful for mapping and interpreting the distribution of freshly erupted volcanic deposits. IKONOS-type images with 1-m resolution provide opportunities to

  17. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Wei, D.

    1996-01-01

    This project is concerned with the physiochemical processes occuring at the pyrite/aqueous interface, in the context of coal cleaning, desulfurization, and acid mine drainage. The use of synthetic particles of pyrite as model electrodes to investigate the semiconductor electrochemistry of pyrite is employed.

  18. Modelling the reactive-path between pyrite and radioactive nuclides

    International Nuclear Information System (INIS)

    Kang Mingliang; Wu Shijun; Dou Shunmei; Chen Fanrong; Yang Yongqiang

    2008-01-01

    The mobility of redox sensitive nuclides is largely dependent on their valence state. The radionuclides that make the dominant contributions to final dose calculations are redox sensitive. Almost all the radionuclides (except 129 I) have higher mobility at high valence state, and correspond to immobilization at low valence state due to the much lower solubility. Pyrite is an ubiquitous and stable mineral in geological environment, and would be used as a low-cost long time reductant for the immobilization of radionuclides. However, pyrite oxidation is supposed to generate acid, which will enhance the mobility of nuclides. In this paper, the reaction path of the reactions between radionuclides (U, Se and Tc) and pyrite in the groundwater from Wuyi well in Beishan area of China has been simulated using geochemical modeling software. According to the results, pyrite can reduce high valence nuclides to a dinky-level effectively, with the pH slightly increasing under anaerobic condition that is common in deep nuclear waste repositories. (authors)

  19. Practical considerations of pyrite oxidation control in uranium tailings

    International Nuclear Information System (INIS)

    1984-05-01

    The problems posed by the oxidation of pyrite in uranium tailings include the generation of sulfuric acid and acid sulfate metal salts. These have substantial negative impacts on watercourse biota by themselves, and the lowered pH levels tend to mobilize heavy metals present in the tailings the rate of oxidation of pyrite at lower pH levels is catalyzed by sulfur and iron oxidizing bacteria present in soils. No single clear solution to the problems came from this study. Exclusion of air is a most important preventative of bacterial catalysis of oxidation. Bactericides, chemically breaking the chain of integrated oxidation reactions, maintaining anaerobic conditions, or maintaining a neutral or alkaline pH all reduce the oxidation rate. Removal of pyrite by flotation will reduce but not eliminate the impact of pyrite oxidation. Controlled oxidation of the remaining sulfide in the flotation tails would provide an innocuous tailing so far as acidity generation is concerned

  20. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits

    Science.gov (United States)

    Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; Singh, B.; Foster, J.

    2009-01-01

    Laser ablation ICP-MS imaging of gold and other trace elements in pyrite from four different sediment- hosted gold-arsenic deposits has revealed two distinct episodes of gold enrichment in each deposit: an early synsedimentary stage where invisible gold is concentrated in arsenian diagenetic pyrite along with other trace elements, in particular, As, Ni, Pb, Zn, Ag, Mo, Te, V, and Se; and a later hydrothermal stage where gold forms as either free gold grains in cracks in overgrowth metamorphic and/or hydrothermal pyrite or as narrow gold- arsenic rims on the outermost parts of the overgrowth hydrothermal pyrite. Compared to the diagenetic pyrites, the hydrothermal pyrites are commonly depleted in Ni, V, Zn, Pb, and Ag with cyclic zones of Co, Ni, and As concentration. The outermost hydrothermal pyrite rims are either As-Au rich, as in moderate- to high- grade deposits such as Carlin and Bendigo, or Co-Ni rich and As-Au poor as in moderate- to low-grade deposits such as Sukhoi Log and Spanish Mountain. The early enrichment of gold in arsenic-bearing syngenetic to diagenetic pyrite, within black shale facies of sedimentary basins, is proposed as a critical requirement for the later development of Carlin-style and orogenic gold deposits in sedimentary environments. The best grade sediment-hosted deposits appear to have the gold climax event, toward the final stages of deformation-related hydrothermal pyrite growth and fluid flow. ?? 2009 Society of Economic Geologists, Inc.

  1. Recrystallization Experiments of Pyrite From Circulating Hydrothermal Solution by Thermal Convection

    Science.gov (United States)

    Tanaka, K.; Isobe, H.

    2005-12-01

    Pyrite is one of the most common accessory minerals in many rocks and generally occurs in hydrothermal deposit. However, pyrite morphology and association with other sulfide minerals is not well known with respect to the solution condition, especially with the hydrothermal solution under circulation. In this study, recrystallization experiments of pyrite from circulating hydrothermal solution by thermal convection were carried out. A rectangular circuit (42.6 cm by 17.3 cm) of SUS316 pressure tubing with 5 mm in inner diameter was used as a reaction vessel. The volume of the circuit is approximately 24 ml. Long sides of the rectangular circuit were held to be 20 degrees inclination. One of the long sides was heated by an electric furnace. Solution in the circuit evaporates in the high temperature tubing and the vapor condenses in room temperature tubing. The solution backs to the bottom of the high temperature tubing. Thus, thermal convection of the solution produces circulation in the circuit. Starting material was filled in the high temperature tubing. The lower half was filled with mixture of 2 g of powdered natural pyrite and 4 g of quartz grains. The upper half was filled with quartz grains only. 9 ml of 5 mol/l NH4Cl solution was sealed in the circuit with the starting material. Temperature gradient of the sample was monitored by 6 thermocouples. Maximum temperature was controlled at 350°C. Experimental durations are 3, 5, 10 and 30 days. After the experiments, the run products are fixed with resin and cut every 2 cm. Thin sections of vertical cross-sections are made and observed by microscope and SEM. Tiny pyrite crystals occurred at the upper outside of the furnace, where temperature should be much lower than 200°C. In the lower half of the starting material, pyrite decomposed and pyrrhotite formed around pyrite grains. At higher temperature area, pyrite decomposition and pyrrhotite formation is remarkable. Circulating sulfur-bearing solution provided by

  2. Enhanced bioleaching on attachment of indigenous acidophilic bacteria to pyrite surface

    Science.gov (United States)

    Wi, D. W.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    In recent years, bioleaching has been widely applied on an industrial scale due to the advantages of low cost and environment friendliness. The direct contact mechanism of bioleaching assumes the action of a metal sulfide-attached cell oxidizing the mineral by an enzyme system with oxygen to sulfate and metal cations. Fundamental surface properties of sulfide particles and leaching-bacteria in bioleaching play the key role in the efficiency of this process. The aim of this work is to investigate of direct contact bioleaching mechanism on pyrite through attachment properties between indigenous acidophilic bacteria and pyrite surfaces. The bacteria were obtained from sulfur hot springs, Hatchobaru thermal electricity plant in Japan. And pyrite was collected from mine waste from Gwang-yang abandoned gold mines, Korea. In XRD analyses of the pyrite, x-ray diffracted d-value belong to pyrite was observed. The indigenous acidophilic bacteria grew well in a solution and over the course of incubation pH decreased and Eh increased. In relation to a bacterial growth-curve, the lag phase was hardly shown while the exponential phase was very fast. Bioleaching experiment result was showed that twenty days after the indigenous acidophilic bacteria were inoculated to a pyrite-leaching medium, the bacterial sample had a greater concentration of Fe and Zn than within the control sample. In SEM-EDS analyses, rod-shaped bacteria and round-shaped microbes were well attached to the surface of pyrite. The size of the rod-shaped bacteria ranged from 1.05~1.10 ? to 4.01~5.38 ?. Round-shaped microbes were more than 3.0 ? in diameter. Paired cells of rod-shaped bacteria were attached to the surface of pyrite linearly.

  3. Spectroscopic study of cystine adsorption on pyrite surface: From vacuum to solution conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arenillas, M.; Mateo-Marti, E., E-mail: mateome@cab.inta-csic.es

    2015-09-08

    Highlights: • Successful adsorption of cystine on pyrite surface under several conditions. • Detailed XPS spectroscopic characterization of cystine adsorption on pyrite surface. • Spectroscopy evidence, oxidation and anoxic conditions adjust molecular adsorption. • Molecular chemistry on pyrite is driven depending on the surrounding conditions. • The cystine/pyrite(100) model is in good agreement with Wächtershäuser’s theory. - Abstract: We characterized the adsorption of cystine molecules on pyrite surface via X-ray photoelectron spectroscopy. Anoxic conditions were simulated under ultra-high-vacuum conditions. In contrast, to simulate oxidation conditions, the molecules were adsorbed on pyrite surface from solution. A novel comparative analysis revealed remarkable differences with respect to molecular adsorption and surface chemistry induced by environmental conditions. Molecular adsorption under anoxic conditions was observed to be more favorable, concentrating a large number of molecules on the surface and two different chemical species. In contrast, the presence of oxygen induced an autocatalytic oxidation process on the pyrite surface, which facilitated water binding on pyrite surface and partially blocked molecular adsorption. Pyrite is a highly reactive surface and contains two crucial types of surface functional groups that drive molecular chemistry on the surface depending on the surrounding conditions. Therefore, the system explored in this study holds interesting implications for supporting catalyzed prebiotic chemistry reactions.

  4. Spectroscopic study of cystine adsorption on pyrite surface: From vacuum to solution conditions

    International Nuclear Information System (INIS)

    Sanchez-Arenillas, M.; Mateo-Marti, E.

    2015-01-01

    Highlights: • Successful adsorption of cystine on pyrite surface under several conditions. • Detailed XPS spectroscopic characterization of cystine adsorption on pyrite surface. • Spectroscopy evidence, oxidation and anoxic conditions adjust molecular adsorption. • Molecular chemistry on pyrite is driven depending on the surrounding conditions. • The cystine/pyrite(100) model is in good agreement with Wächtershäuser’s theory. - Abstract: We characterized the adsorption of cystine molecules on pyrite surface via X-ray photoelectron spectroscopy. Anoxic conditions were simulated under ultra-high-vacuum conditions. In contrast, to simulate oxidation conditions, the molecules were adsorbed on pyrite surface from solution. A novel comparative analysis revealed remarkable differences with respect to molecular adsorption and surface chemistry induced by environmental conditions. Molecular adsorption under anoxic conditions was observed to be more favorable, concentrating a large number of molecules on the surface and two different chemical species. In contrast, the presence of oxygen induced an autocatalytic oxidation process on the pyrite surface, which facilitated water binding on pyrite surface and partially blocked molecular adsorption. Pyrite is a highly reactive surface and contains two crucial types of surface functional groups that drive molecular chemistry on the surface depending on the surrounding conditions. Therefore, the system explored in this study holds interesting implications for supporting catalyzed prebiotic chemistry reactions

  5. Issues related to field testing in tuff

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1982-01-01

    This paper has brought out the unique properties of tuffs and related them to needs associated with their use as a host rock for a high level nuclear waste repository. Major issues of temperature, pore water, joints, and depositional patterns have been identified and related responses and impacts outlined in Table 1. Planned experiments have been outlined and their relationships to the rock mechanics issues summarized in Table 2. The conclusions from this paper are: (1) tuff is a complex rock and basic phenomenological understanding is incomplete; and (2) available field test facilities will be used for a series of experiments designed to improve phenomenological understanding and support repository design efforts

  6. Particulate Pyrite Autotrophic Denitrification (PPAD) for Remediation of Nitrate-contaminated Groundwater

    Science.gov (United States)

    Tong, S.; Rodriguez-Gonzalez, L. C.; Henderson, M.; Feng, C.; Ergas, S. J.

    2015-12-01

    The rapid movement of human civilization towards urbanization, industrialization, and increased agricultural activities has introduced a large amount of nitrate into groundwater. Nitrate is a toxic substance discharged from groundwater to rivers and leads to decreased dissolved oxygen and eutrophication. For this experiment, an electron donor is needed to convert nitrate into non-toxic nitrogen gas. Pyrite is one of the most abundant minerals in the earth's crust making it an ideal candidate as an electron donor. The overall goal of this research was to investigate the potential for pyrite to be utilized as an electron donor for autotrophic denitrification of nitrate-contaminated groundwater. Batch studies of particulate pyrite autotrophic denitrification (PPAD) of synthetic groundwater (100 mg NO3--N L-1) were set up with varying biomass concentration, pyrite dose, and pyrite particle size. Reactors were seeded with mixed liquor volatile suspended solids (VSS) from a biological nitrogen removal wastewater treatment facility. PPAD using small pyrite particles (exhibited substantial nitrate removal rate, lower sulfate accumulation (5.46 mg SO42-/mg NO3--N) and lower alkalinity consumption (1.70 mg CaCO3/mg NO3--N) when compared to SOD (7.54 mg SO42-/mg NO3--N, 4.57 mg CaCO3/mg NO3--N based on stoichiometric calculation). This research revealed that the PPAD process is a promising technique for nitrate-contaminated groundwater treatment and promoted the utilization of pyrite in the field of environmental remediation.

  7. The advance of Kos Plateau Tuff ignimbrite into the marine realm of the Kalymnos Basin, SE Aegean Sea.

    Science.gov (United States)

    Markakis, Emmanouil; Anastasakis, George

    2013-04-01

    The 161 ka Kos Plateau Tuff (KPT) eruption is considered to be the largest explosive Quaternary event in the eastern Mediterranean. It produced pumice rafts followed by "non-welded ignimbrites" that are up to 30m thick, especially widespread on Kos island and covering an area of > 80 Km2 that includes mainly islands and present marine regions. Pyroclastic flows travelled from the proposed vent, that lies between and around Yali and Nisyros islands, across present land and sea, the total volume of the tuff has been estimated as at least 100km3. KPT products principally consist of rhyolitic ash and pumice. Post 2010 Athens University oceanographic missions have mapped the seafloor around the volcanic islands of the SE Aegean Sea. Here we present new data on seafloor morphology and Upper Quaternary seafloor stratigraphy of the Kalymnos basin that extends over an area over 70km2 and map the advance and deposition of the KPT that was previously unknown in this region. The Kalymnos basin is roughly triangular in shape and essentially consists of two sedimentation depocenters: a) a roughly elliptical 400 m deep northern segment that is developed sub-parallel to Kalymnos Island and its W-SW shelf; b) a rather physiographically complex western sector developed NE of Astipalea island and reaching depths of over 620m. High resolution sparker profiles from the west Kos-Kalymnos shelf reveal an outstanding seismic stratigraphy of stacked and prograded coastal clinoform packets capped by erosional transgressive surfaces that record Quaternary eustatic lowstands deposits of sea level with clinoforms developing during forced regression and the erosional surfaces during transgression. We show that a massive gravity flow deposit is intercalated with the shelf sediments. Above it low sea level MIS 6 and 2 sedimentary sequences are fully developed and below stage 8-10 sediments are erratically preserved over stages 12 and 16 sediments. This gravity flow deposit swept across the shelf

  8. Bottom ash handling: why the outlook is dry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    The author believes that dry systems are the way forward for bottom ash handling at coal fired power plants. The first two commercial installations of Clyde Bergemann's DRYCON system, in China, are due to enter operation shortly. The DRY ash CONveyor (DRYCON) employs fresh air flow to cool the ash, returning reheat energy to the boiler. It also addresses some problems encountered with previous dry technologies whilst increasing ash capacity and enhancing ash cooking. The advantages of the DRYCON over the wet submerged scraper conveyor are listed. 7 figs.

  9. The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering

    International Nuclear Information System (INIS)

    Sasaki, K.; Tsunekawa, M.; Ohtsuka, T.; Konno, H.

    1998-01-01

    The paper investigates the role of the sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering in order to clarify the effects of the bacteria on the dissolution behavior of pyrite and the formation of secondary minerals using Raman spectroscopy and powder X-ray diffraction (XRD) in addition to solution analysis. It was found that T. thiooxidans, when present with the iron-oxidizing bacteria Thiobacillus ferrooxidans, enhanced the dissolution of Fe and S species for pyrite, whereas T. thiooxidans alone did not oxidize pyrite. Enhancement of the consumption of elemental sulfur and regeneration of Fe(II) ions were also observed with T. thiooxidans together with T. ferrooxidans, while this did not occur with T. ferrooxidans alone

  10. Mechanisms of interaction between arsenian pyrite and aqueous arsenite under anoxic and oxic conditions

    Science.gov (United States)

    Qiu, Guohong; Gao, Tianyu; Hong, Jun; Luo, Yao; Liu, Lihu; Tan, Wenfeng; Liu, Fan

    2018-05-01

    Pyrite affects the conversion and migration processes of arsenic in soils and waters. Adsorption and redox reactions of arsenite (As(III)) occur on the surface of pyrite, and the interaction processes are influenced by the arsenic incorporated into pyrite. This work examined the effects of arsenic content, pH and oxygen on the interaction between arsenian pyrite and aqueous As(III) and investigated the underlying mechanisms. The results indicated that arsenic incorporation led to a high content of Fe(III) in pyrite, and that As(III) was mainly adsorbed on pyrite surface and part of As(III) was oxidized to As(V) by the newly formed intermediates including hydroxyl radicals and hydrogen peroxide. The oxidation rate increased with increasing arsenic content in the pyrite and the presence of air (oxygen), and first decreased and then increased with increasing pH from 3.0 to 11.0. Hydroxyl radicals and hydrogen peroxide significantly contributed to the oxidation of pyrite and aqueous As(III) in acidic and alkaline solutions, respectively. Although pyrite oxidation increased with increasing arsenic content as indicated by the elevated concentrations of elemental S and SO42-, the percentage of released arsenic in total arsenic of the arsenian pyrite decreased due to the adsorption of arsenic on the surface of newly formed ferric (hydr)oxides, especially the ferric arsenate precipitate formed in high pH solutions. The present study enables a better understanding of the important interaction process of dissolved arsenite and natural pyrites in the study of groundwater contamination, arsenic migration/sequestration, and acid mine drainage formation.

  11. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  12. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite

    International Nuclear Information System (INIS)

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-01-01

    Highlights: • An exothermic reaction occurs at about 200 °C between pyrite and ammonium nitrate (emulsion explosives). • The essence of reaction between emulsion explosives and pyrite is reaction between ammonium nitrate and pyrite. • The excellent thermal stability of emulsion explosives does not mean it was also showed when pyrite was added. • A new overall reaction has been proposed as: • 14FeS_2(s) + 91NH_4NO_3(s) → 52NO(g) + 26SO_2(g) + 6Fe_2O_3(s) + 78NH_3(g) + 26N_2O(g) + 2FeSO_4(s) + 65H_2O(g). - Abstract: The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG–DSC–MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10 K/min from room temperature to 350 °C, exothermic reactions occurred at about 200 °C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO_2, NH_3, SO_2 and N_2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals.

  13. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhi-Xiang; Wang, Qian [School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013 (China); Fu, Xiao-Qi, E-mail: xzx19820708@163.com [School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 (China)

    2015-12-30

    Highlights: • An exothermic reaction occurs at about 200 °C between pyrite and ammonium nitrate (emulsion explosives). • The essence of reaction between emulsion explosives and pyrite is reaction between ammonium nitrate and pyrite. • The excellent thermal stability of emulsion explosives does not mean it was also showed when pyrite was added. • A new overall reaction has been proposed as: • 14FeS{sub 2}(s) + 91NH{sub 4}NO{sub 3}(s) → 52NO(g) + 26SO{sub 2}(g) + 6Fe{sub 2}O{sub 3}(s) + 78NH{sub 3}(g) + 26N{sub 2}O(g) + 2FeSO{sub 4}(s) + 65H{sub 2}O(g). - Abstract: The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG–DSC–MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10 K/min from room temperature to 350 °C, exothermic reactions occurred at about 200 °C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO{sub 2}, NH{sub 3}, SO{sub 2} and N{sub 2}O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals.

  14. The determination of uranium in pyrite samples

    International Nuclear Information System (INIS)

    Jacobs, J.J.

    1979-01-01

    An existing method for the determination of uranium in rocks and minerals is examined for the determination of uranium in materials containing pyrite. The results are comparable with those obtained by a spectrophotometric method, the precision (relative standard deviation) of the method for standards with U 3 O 8 contents of 1500 and 300 p.p.m. being 0,03 and 0,08 respectively when prepared in pyrite, and 0,15 and 0,06 respectively when made up with inert diluent. Full details of the procedure are given in accompanying appendices [af

  15. Pyrite sulfur isotopes reveal glacial-interglacial environmental changes

    Science.gov (United States)

    Pasquier, Virgil; Sansjofre, Pierre; Rabineau, Marina; Revillon, Sidonie; Houghton, Jennifer; Fike, David A.

    2017-06-01

    The sulfur biogeochemical cycle plays a key role in regulating Earth’s surface redox through diverse abiotic and biological reactions that have distinctive stable isotopic fractionations. As such, variations in the sulfur isotopic composition (δ34S) of sedimentary sulfate and sulfide phases over Earth history can be used to infer substantive changes to the Earth’s surface environment, including the rise of atmospheric oxygen. Such inferences assume that individual δ34S records reflect temporal changes in the global sulfur cycle; this assumption may be well grounded for sulfate-bearing minerals but is less well established for pyrite-based records. Here, we investigate alternative controls on the sedimentary sulfur isotopic composition of marine pyrite by examining a 300-m drill core of Mediterranean sediments deposited over the past 500,000 y and spanning the last five glacial-interglacial periods. Because this interval is far shorter than the residence time of marine sulfate, any change in the sulfur isotopic record preserved in pyrite (δ34Spyr) necessarily corresponds to local environmental changes. The stratigraphic variations (>76‰) in the isotopic data reported here are among the largest ever observed in pyrite, and are in phase with glacial-interglacial sea level and temperature changes. In this case, the dominant control appears to be glacial-interglacial variations in sedimentation rates. These results suggest that there exist important but previously overlooked depositional controls on sedimentary sulfur isotope records, especially associated with intervals of substantial sea level change. This work provides an important perspective on the origin of variability in such records and suggests meaningful paleoenvironmental information can be derived from pyrite δ34S records.

  16. Laboratory determined suction potential of Topopah Spring tuff at high temperatures

    International Nuclear Information System (INIS)

    Daily, W.; Lin, Wunan.

    1991-01-01

    The purpose of this work is to experimentally determine the capillary suction potential of Topopah Spring tuff from Yucca Mountain, Nye County, Nevada. This data can be used to help characterize the unsaturated hydraulic properties of the densely welded tuff at this site. 7 refs., 4 figs., 1 tab

  17. Impact of coal fly ash addition on ash transformation and deposition in a full-scale wood suspension-firing boiler

    DEFF Research Database (Denmark)

    Wu, Hao; Bashir, Muhammad Shafique; Jensen, Peter Arendt

    2013-01-01

    Ash transformation and deposition during pulverized wood combustion in a full-scale power plant boiler of 800 MWth were studied with and without the addition of coal fly ash. The transient ash deposition behavior was characterized by using an advanced deposit probe system at two boiler locations...... constant after a few hours. The formed deposits, especially those at the location with low flue gas temperatures, contained a considerable amount of K2SO4, KCl, and KOH/K2CO3. With the addition of a large amount (about 4 times of the mass flow of wood ash) of coal fly ash to the boiler, these alkali...

  18. Action time effect of lime on its depressive ability for pyrite

    Institute of Scientific and Technical Information of China (English)

    Tichang Sun

    2004-01-01

    Two sample groups of bulk concentrates consisting mainly of pyrite and chalcopyrite from Daye and Chenghchao Mines in Hubei Province of China were used to investigate the effect of the action time of lime on its depressive ability for pyrite. The experimental results conducted with different samples and collectors showed that the action time between lime and pyrite markedly influences the depressive ability of lime. The depressive ability of lime increased with the action time increasing. It was also proved that the depressive results obtained at a large lime dosage after a shorter action time are similar to those obtained at a small lime dosage after a longer action time. The increase of depressive ability of lime after a longer action time is because that there are different mechanisms in different action time. The composition on the surface of pyrite acted for different time with lime was studied by using ESCA (Electron Spectroscopic Chemical Analysis). The results showed that iron hydroxide and calcium sulphate formed on the pyrite surface at the presence of lime in the pulp but the amounts of iron hydroxide and calcium sulphate were different at different action time. At the beginning action time the compound formed on the pyrite surface was mainly calcium sulphate and almost no iron hydroxide formed; but with the action time increasing, iron hydroxide formed. The longer the action time, the more iron hydroxide and the less calcium sulphate formed. It was considered that the stronger depressive ability of lime after a longer action time is because more iron hydroxide forms on the pyrite surface.

  19. Measurement of unsaturated hydraulic conductivity and chemical transport in Yucca Mountain Tuff: Milestone Report 3044-WBS1.2.3.4.1.4.1

    International Nuclear Information System (INIS)

    Conca, J.L.

    1993-12-01

    Hydraulic conductivities, K, were experimentally determined as a function of volumetric water content, θ, in tuff from the Yucca Mountain site. In addition, the retardation factor, R f , in Yucca Mountain tuff with respect to selenium, as the selenite species, was measured under unsaturated conditions. These data were used to determine the feasibility of applying a new unsaturated flow technology (UFA) to further hydrologic studies at Yucca Mountain. The UFA directly measures K(θ) rapidly in Yucca Mountain tuff and is shown to agree well with traditional methods. Hysteresis does not appear important during this testing. Hydraulic steady-state is achieved fastest during desaturation from a saturated state. Imbibition into dry tuff requires a long time for steady-state to occur because of slow filling of the diffusion porosity which can take a few weeks. The existing UFA is a prototype, and a new design of the next generation UFA is completed that eliminates some of the earlier problems. These preliminary investigations demonstrates that the UFA is a useful investigate technique that should be used to compliment existing techniques for hydrogeochemical characterization at Yucca Mountain and other arid sites

  20. Mineralogy, geochemistry and petrogenesis of volcanic tuffs from Ataraws, Jordan

    International Nuclear Information System (INIS)

    Al-Fugha, H.

    1997-01-01

    Magistracy are common in tuff and paralytic's materials of Pleistocene age in western Jordan. The dominant phases are olivine, augite, plagioclase, magnetite and ilmenite. Chemical analysis of the whole rocks samples indicate alkali olivine magma origin. Low concentration of Li and Rb in Tuff samples are used as an argument against the contamination of the basaltic magma during its journey to the surface. The Mg O and mg- values (Mg/Mg+Fe 2+ ) in samples from volcano exhibit different degrees of fractionation, which are indicated by the varying concentrations of incompatible trace elements (Ba, Rb, Sr). The thermometric evacuation of tuff formation by using pyroxenes thermometers revealed a temperature range between 1022-1083 deg. and pressure of 5-10 K bars. The low Mg-ratio (Mg/Mg+Fe 2+ ) is due to fractional crystallization of olivine and pyroxene in tuff samples. The variation of incompatible elements imply derivation from a peridotite source in the upper mantle with low degree of melting (<20%).The volcanic activity took place in phases corresponding to rifting sinistral displacement along the Jordan Rift. (author). 11 refs., 6 tabs, 6 figs

  1. Borehole stability in densely welded tuffs

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1992-07-01

    The stability of boreholes, or more generally of underground openings (i.e. including shafts, ramps, drifts, tunnels, etc.) at locations where seals or plugs are to be placed is an important consideration in seal design for a repository (Juhlin and Sandstedt, 1989). Borehole instability or borehole breakouts induced by stress redistribution could negate the effectiveness of seals or plugs. Breakout fractures along the wall of repository excavations or exploratory holes could provide a preferential flowpath for groundwater or gaseous radionuclides to bypass the plugs. After plug installation, swelling pressures exerted by a plug could induce radial cracks or could open or widen preexisting cracks in the rock at the bottom of the breakouts where the tangential compressive stresses have been released by the breakout process. The purpose of the work reported here is to determine experimentally the stability of a circular hole in a welded tuff sample subjected to various external boundary loads. Triaxial and biaxial borehole stability tests have been performed on densely welded Apache Leap tuff samples and Topopah Spring tuff samples. The nominal diameter of the test hole is 13.3 or 14.4 mm for triaxial testing, and 25.4 mm for biaxial testing. The borehole axis is parallel to one of the principal stress axes. The boreholes are drilled through the samples prior to applying external boundary loads. The boundary loads are progressively increased until breakouts occur or until the maximum load capacity of the loading system has been reached. 74 refs

  2. Geotechnical instrumentation requirements for atdepth testing and repository monitoring in tuff

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1983-01-01

    This paper outlines geotechnical instrumentation requirements for the possible establishment of a nuclear waste repository in tuff on the Nevada Test Site (NTS). The Nuclear Regulatory Commission (NRC) has specified a continuing program to confirm performance during the operational period of the repository, which could last 50 years. Minimum required geotechnical measurements for confirmation of performance include thermal and thermomechanical responses; changes in stress, strain, and displacements; and pore pressure and groundwater flow characteristics. Conditions expected in tuff are: maximum rock temperatures of less than 250 0 C, stresses less than 100 MPa, strains between + or -0.01 mm/mm, and pore pressures less than 35 KPa in the unsaturated zone where hydraulic head is not the primary contributor. The paper describes instrumentation needed to make the desired measurements. In general, the instrumentation and data system are required to be stable and reliable for tens of years. Designs must consider requirements for temperature stability, temperature expansion compensation, moisture resistance, and long-term durability in mining-type environments. Severe requirements such as these suggest consideration of techniques for in-situ replacement of instrumentation. State-of-the-art instrumentation is briefly described along with a discussion of needs for refinement, replacement/recalibration and instrumentation development

  3. The bioaccumulation of heavy metals in barley (Hordeum vulgare L cultivated on fly ash dump mixed with compost and natural zeolite materials

    Directory of Open Access Journals (Sweden)

    Smaranda Mâșu

    2012-10-01

    Full Text Available The physic-chemical characteristics of the upper layers of fly ash dumps are very important when phytostabilizationplant selection is carried out. Plants with topsoil well developed roots, like cereals are used to stabilize fly ash dumpsin order to eliminate the deflation, erosion, etc. These plant species could be used in thephytostabilization/phytoextraction variant taking into account their metal hyper accumulation capacity, and also inphytostabilization variant by adequate topsoil treatments when a decrease mobility of metals from soil to plants isachieved and thus a less toxic crop is obtained. This study presents a comparative analysis of the metalbioaccumulation degree in plant tissues (grain and straw of barley cultivated on fly ash variants treated withdifferent quantities of compost in the absence/presence of natural zeolite materials, indigenous volcanic tuff. Theaddition of plant debris and sewage sludge compost mixed with natural zeolite materials has lowered thebioaccumulation of Cr with 49%, of Cu with 29%, Fe with more than 77.5%, in grains and straw when compared tountreated fly ash. Barley plants does not allow for Pb and Ni transfer from the fly ash in the aerial part of tissue.

  4. Sulfur isotope evidence for the contemporary formation of pyrite in a coastal acid sulfate soil

    International Nuclear Information System (INIS)

    Bush, R.T.; Sullivan, L.A.; Prince, K.; White, I.

    2000-01-01

    The sulfur isotopic composition of pyrite (FeS 2 ), greigite (Fe 3 S 4 ) and pore-water sulfate was determined for a typical coastal acid sulfate soil (ASS). Greigite occurs only in the partially oxidised upper-most pyrite sediments as blackish clusters within vertical fissures and other macro-pores. The concentration of pyrite was an order of magnitude greater than greigite in this layer, continuing through the underlying reduced estuarine sediments. δ 34 S of pyrite (0.45 per mil) associated with greigite accumulations were distinctly different to the bulk average for pyrite (-3.7 per mil), but similar to greigite (0.9 per mil). Greigite is meta-stable under reducing conditions, readily transforming to pyrite. The transformation of iron monosulfides (including greigite) to pyrite is a sulfur-isotope conservative process and therefore, these observations indicate that pyrite is forming from greigite at the oxic/anoxic boundary

  5. Laboratory testing of cement grouting of fractures in welded tuff

    International Nuclear Information System (INIS)

    Sharpe, C.J.; Daemen, J.J.

    1991-03-01

    Fractures in the rock mass surrounding a repository and its shafts, access drifts, emplacement rooms and holes, and exploratory or in-situ testing holes, may provide preferential flowpaths for the flow of groundwater or air, potentially containing radionuclides. Such cracks may have to be sealed. The likelihood that extensive or at least local grouting will be required as part of repository sealing has been noted in numerous publications addressing high level waste repository closing. The objective of this work is to determine the effectiveness of fracture sealing (grouting) in welded tuff. Experimental work includes measurement of intact and fracture permeability under various normal stresses and injection pressures. Grout is injected into the fractures. The effectiveness of grouting is evaluated in terms of grout penetration and permeability reduction, compared prior to and after grouting. Analysis of the results include the effect of normal stress, injection pressure, fracture roughness, grout rheology, grout bonding, and the radial extent of grout penetration. Laboratory experiments have been performed on seventeen tuff cylinders with three types of fractures: (1) tension induced cracks, (2) natural fractures, and (3) sawcuts. Prior to grouting, the hydraulic conductivity of the intact rock and of the fractures is measured under a range of normal stresses. The surface topography of the fracture is mapped, and the results are used to determine aperture distributions across the fractures. 72 refs., 76 figs., 25 tabs

  6. Microprobe channeling analysis of pyrite crystals

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Ryan, C.G.

    1992-01-01

    Nuclear microprobe analysis has provided much useful information about the composition of microscopic inclusions in minerals, mainly through the use of Particle Induced X-ray Emission (PIXE). However this technique, while powerful, does not provide any direct information about the chemical state, in particular the lattice location, of the elements in the mineral. This information is often of crucial importance in understanding the ore genesis. The technique of ion channeling may be used to identify lattice location, but many minerals occur as microscopic crystals. Therefore it is necessary to utilize a nuclear microprobe with the technique of Channeling Contrast Microscopy (CCM). As many minerals contain interesting trace elements, it is necessary to measure both the yield of backscattered particles and the induced x-rays to get a clear picture of the lattice location of the elements in the crystal. CCM with PIXE was used to analyse natural pyrite crystals containing a variety of substitutional and non-substitutional elements and natural pyrite crystals from a gold bearing ore. In the latter case, evidence was obtained for two habits for Au in the 400 μm crystals: one as inclusions of Au rich minerals, the other substituted on the pyrite lattice sites. 31 refs., 3 tabs., 6 figs

  7. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, J.; Jay, W.H.

    1998-01-01

    Full text: Pyritic ores (pyrite and arsenopyrite) containing gold concentrations in excess of 50g Au/t can be processed to recover the gold by the removal of the sulphur from the ore. This may be achieved by roasting (producing sulphur dioxide emissions), pressure oxidation (expensive and suitable for large high grade deposits), pressure leaching (still currently being developed) or bacterial oxidation. The bacterial oxidation process is a well known process in nature but has only recently come under investigation as a economically viable and relatively clean method of gold recovery from deep low grade sulphidic ores. Samples were obtained from the Wiluna Gold Mine in Western Australia consisting of the original ore, six successive bacterial reactors and the final products. Moessbauer experiments have been performed at room temperature, liquid nitrogen and liquid helium temperatures, and in applied magnetic fields. The main components of the iron phases which were present during the bacterial treatment were pyrite and arsenopyrite which were readily oxidised by the bacteria. Ferric sulfates and ferric arsenates were identified as by-products of the process with a small amount of the oxyhydroxide goethite. These results are in contrast to the similar study of the Fairview Mine in South Africa where principally Fe(II) species were observed

  8. XAS studies on selenite reduction by pyrite

    International Nuclear Information System (INIS)

    Kang Mingliang; Liu Chunli; Chen Fanrong; Charlet, Laurnet

    2012-01-01

    The interaction of aqueous Se (IV) with pyrite were systematically investigated in light of thermodynamic calculations and X-ray Absorption Spectroscopy (XAS). The results from the speciation study reveal that the reduction product is Se (O) when natural pyrite reacts with Se (N) at pH≤5.65, while small amount of FeSeO 3 or iron selenides may be formed at pH 6.1. At pH≥6.94, due to the precipitation of Fe (Ⅲ) -oxyhydroxide, the formation of the thermodynamically most stable species, FeSe 2 , is inhibited. However, when the reactive nanopyrite-greigite was used for reaction, the thermodynamically most stable species, FeSe 2 , was found for the first time as the predominant product in the present study, suggesting that 79 Se can be immobilized in its most insoluble form, FeSe 2 , in Fe (Ⅱ) -sulfide containing environment. This study confirms that pyrite can significantly attenuate the mobility of Se by reductive precipitation, and that the reaction process does not produce protons under acidic or neutral condition when Se (O) is formed. (authors)

  9. G-Tunnel welded tuff mining experiment data summary

    International Nuclear Information System (INIS)

    Zimmerman, R.M.; Bellman, R.A. Jr.; Mann, K.L.; Zerga, D.P.; Fowler, M.

    1990-03-01

    Designers and analysts of radioactive waste repositories must be ably to predict the mechanical behavior of the host rock. Sandia National Laboratories elected to conduct a mine-by in welded tuff so that predictive-type information could be obtained regarding the response of the rock to a drill and blast excavation process, where smooth blasting techniques were used. Included in the study were evaluations of and recommendations for various measurement systems that might be used in future mine by efforts. This report summarizes all of the data obtained in the welded tuff mining experiment. 6 refs., 29 figs., 12 tabs

  10. Insights into a 20-ha multi-contaminated brownfield megasite: An environmental forensics approach

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, J.R., E-mail: jgallego@uniovi.es; Rodríguez-Valdés, E.; Esquinas, N.; Fernández-Braña, A.; Afif, E.

    2016-09-01

    Here we addressed the contamination of soils in an abandoned brownfield located in an industrial area. Detailed soil and waste characterisation guided by historical information about the site revealed pyrite ashes (a residue derived from the roasting of pyrite ores) as the main environmental risk. In fact, the disposal of pyrite ashes and the mixing of these ashes with soils have affected a large area of the site, thereby causing heavy metal(loid) pollution (As and Pb levels reaching several thousands of ppm). A full characterisation of the pyrite ashes was thus performed. In this regard, we determined the bioavailable metal species present and their implications, grain-size distribution, mineralogy, and Pb isotopic signature in order to obtain an accurate conceptual model of the site. We also detected significant concentrations of pyrogenic benzo(a)pyrene and other PAHs, and studied the relation of these compounds with the pyrite ashes. In addition, we examined other waste and spills of minor importance within the study site. The information gathered offered an insight into pollution sources, unravelled evidence from the industrial processes that took place decades ago, and identified the co-occurrence of contaminants by means of multivariate statistics. The environmental forensics study carried out provided greater information than conventional analyses for risk assessment purposes and for the selection of clean-up strategies adapted to future land use. - Highlights: • Complex legacy of contamination afflicts 20-ha brownfield • As and Pb highest soil pollutants • Forensic study reveals main waste and spills. • Comprehensive study of pyrite ashes (multi-point source of pollution) • Co-occurrence of PAH also linked to pyrite ashes.

  11. Insights into a 20-ha multi-contaminated brownfield megasite: An environmental forensics approach

    International Nuclear Information System (INIS)

    Gallego, J.R.; Rodríguez-Valdés, E.; Esquinas, N.; Fernández-Braña, A.; Afif, E.

    2016-01-01

    Here we addressed the contamination of soils in an abandoned brownfield located in an industrial area. Detailed soil and waste characterisation guided by historical information about the site revealed pyrite ashes (a residue derived from the roasting of pyrite ores) as the main environmental risk. In fact, the disposal of pyrite ashes and the mixing of these ashes with soils have affected a large area of the site, thereby causing heavy metal(loid) pollution (As and Pb levels reaching several thousands of ppm). A full characterisation of the pyrite ashes was thus performed. In this regard, we determined the bioavailable metal species present and their implications, grain-size distribution, mineralogy, and Pb isotopic signature in order to obtain an accurate conceptual model of the site. We also detected significant concentrations of pyrogenic benzo(a)pyrene and other PAHs, and studied the relation of these compounds with the pyrite ashes. In addition, we examined other waste and spills of minor importance within the study site. The information gathered offered an insight into pollution sources, unravelled evidence from the industrial processes that took place decades ago, and identified the co-occurrence of contaminants by means of multivariate statistics. The environmental forensics study carried out provided greater information than conventional analyses for risk assessment purposes and for the selection of clean-up strategies adapted to future land use. - Highlights: • Complex legacy of contamination afflicts 20-ha brownfield • As and Pb highest soil pollutants • Forensic study reveals main waste and spills. • Comprehensive study of pyrite ashes (multi-point source of pollution) • Co-occurrence of PAH also linked to pyrite ashes

  12. Chalcopyrite Dissolution at 650 mV and 750 mV in the Presence of Pyrite

    Directory of Open Access Journals (Sweden)

    Yubiao Li

    2015-08-01

    Full Text Available The dissolution of chalcopyrite in association with pyrite in mine waste results in the severe environmental issue of acid and metalliferous drainage (AMD. To better understand chalcopyrite dissolution, and the impact of chalcopyrite’s galvanic interaction with pyrite, chalcopyrite dissolution has been examined at 75 °C, pH 1.0, in the presence of quartz (as an inert mineral and pyrite. The presence of pyrite increased the chalcopyrite dissolution rate by more than five times at Eh of 650 mV (SHE (Cu recovery 2.5 cf. 12% over 132 days due to galvanic interaction between chalcopyrite and pyrite. Dissolution of Cu and Fe was stoichiometric and no pyrite dissolved. Although the chalcopyrite dissolution rate at 750 mV (SHE was approximately four-fold greater (Cu recovery of 45% within 132 days as compared to at 650 mV in the presence of pyrite, the galvanic interaction between chalcopyrite and pyrite was negligible. Approximately all of the sulfur from the leached chalcopyrite was converted to S0 at 750 mV, regardless of the presence of pyrite. At this Eh approximately 60% of the sulfur associated with pyrite dissolution was oxidised to S0 and the remaining 40% was released in soluble forms, e.g., SO42−.

  13. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes.

    Science.gov (United States)

    Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C

    2014-02-15

    The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite.

    Science.gov (United States)

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-12-30

    The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG-DSC-MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10K/min from room temperature to 350°C, exothermic reactions occurred at about 200°C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO2, NH3, SO2 and N2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Geohydrology of volcanic tuff penetrated by test well UE-25b#1, Yucca Mountain, Nye County, Nevada

    Science.gov (United States)

    Lahoud, R.G.; Lobmeyer, D.H.; Whitfield, M.S.

    1984-01-01

    Test well UE-25bNo1, located on the east side of Yucca Mountain in the southwestern part of the Nevada Test Site, was drilled to a total depth of 1,220 meters and hydraulically tested as part of a program to evaluate the suitability of Yucca Mountain as a nuclear-waste repository. The well penetrated almost 46 meters of alluvium and 1,174 meters of Tertiary volcanic tuffs. The composite hydraulic head for aquifers penetrated by the well was 728.9 meters above sea level (471.4 meters below land surface) with a slight decrease in loss of hydraulic head with depth. Average hydraulic conductivities for stratigraphic units determined from pumping tests, borehole-flow surveys, and packer-injection tests ranged from less than 0.001 meter per day for the Tram Member of the Crater Flat Tuff to 1.1 meters per day for the Bullfrog Member of the Crater Flat Tuff. The small values represented matrix permeability of unfractured rock; the large values probably resulted from fracture permeability. Chemical analyses indicated that the water is a soft sodium bicarbonate type, slightly alkaline, with large concentrations of dissolved silica and sulfate. Uncorrected carbon-14 age dates of the water were 14,100 and 13,400 years. (USGS)

  16. Radiobiological waste treatment-ashing treatment and immobilization with cement

    Energy Technology Data Exchange (ETDEWEB)

    Shengtao, Feng; Li, Gong; Li, Cheng; Benli, Wang; Lihong, Wang [China Inst. for Radiation Protection, Taiyuan, Shanxi (China)

    1997-02-01

    This report describes the results of the study on the treatment of radioactive biological waste in the China Institute for Radiation Protection (CIRP). The possibility of radiobiological waste treatment was investigated by using a RAF-3 type rapid ashing apparatus together with the immobilization of the resulted ash. This rapid ashing apparatus, developed by CIRP, is usually used for pretreatment of samples prior to chemical analysis and physical measurements. The results show that it can ash 3 kg of animal carcasses a batch, the ashing time is 5-7 h and the ash content is less than 4 wt%. The ashing temperature not exceeding 450 deg. C was used without any risk of high losses of radionuclides. The ash from the rapid ashing apparatus was demonstrated to be immobilized with ordinary silicate cement. The optimum cement/ash/water formulation of the cemented waste form was 35 {+-} 5 wt% cement, 29 {+-} 2 wt% water, and 36 {+-} 6 wt% ash. The performance of the waste form was in compliance with the technical requirements except for impact resistance. Mixing additives in immobilization formulations can improve the performance of the cemented ash waste form. The additives chosen were DH{sub 4A} flow promoter as a cement additive and vermiculite or zeolite as a supplement. The recommended formulation, i.e. an improved formulation of the cemented ash waste form is that additives DH{sub 4A} flow promoter and vermiculite (or zeolite) are added on the ground of optimum cement/ash/water formulation of the cemented waste form, the dosage of water, DH{sub 4A} and vermiculite (or zeolite) is 70 wt%, 0.5 wt% and {<=} 5 wt% of the cement dosage, respectively. The cemented ash waste forms obtained meet all the requirements for disposal. (author). 12 refs, 7 figs, 13 tabs.

  17. Radiobiological waste treatment-ashing treatment and immobilization with cement

    International Nuclear Information System (INIS)

    Feng Shengtao; Gong Li; Cheng Li; Wang Benli; Wang Lihong

    1997-01-01

    This report describes the results of the study on the treatment of radioactive biological waste in the China Institute for Radiation Protection (CIRP). The possibility of radiobiological waste treatment was investigated by using a RAF-3 type rapid ashing apparatus together with the immobilization of the resulted ash. This rapid ashing apparatus, developed by CIRP, is usually used for pretreatment of samples prior to chemical analysis and physical measurements. The results show that it can ash 3 kg of animal carcasses a batch, the ashing time is 5-7 h and the ash content is less than 4 wt%. The ashing temperature not exceeding 450 deg. C was used without any risk of high losses of radionuclides. The ash from the rapid ashing apparatus was demonstrated to be immobilized with ordinary silicate cement. The optimum cement/ash/water formulation of the cemented waste form was 35 ± 5 wt% cement, 29 ± 2 wt% water, and 36 ± 6 wt% ash. The performance of the waste form was in compliance with the technical requirements except for impact resistance. Mixing additives in immobilization formulations can improve the performance of the cemented ash waste form. The additives chosen were DH 4A flow promoter as a cement additive and vermiculite or zeolite as a supplement. The recommended formulation, i.e. an improved formulation of the cemented ash waste form is that additives DH 4A flow promoter and vermiculite (or zeolite) are added on the ground of optimum cement/ash/water formulation of the cemented waste form, the dosage of water, DH 4A and vermiculite (or zeolite) is 70 wt%, 0.5 wt% and ≤ 5 wt% of the cement dosage, respectively. The cemented ash waste forms obtained meet all the requirements for disposal. (author). 12 refs, 7 figs, 13 tabs

  18. The timing and origin of pre- and post-caldera volcanism associated with the Mesa Falls Tuff, Yellowstone Plateau volcanic field

    Science.gov (United States)

    Stelten, Mark E.; Champion, Duane E.; Kuntz, Mel A.

    2018-01-01

    We present new sanidine 40Ar/39Ar ages and paleomagnetic data for pre- and post-caldera rhyolites from the second volcanic cycle of the Yellowstone Plateau volcanic field, which culminated in the caldera-forming eruption of the Mesa Falls Tuff at ca. 1.3 Ma. These data allow for a detailed reconstruction of the eruptive history of the second volcanic cycle and provide new insights into the petrogenesis of rhyolite domes and flows erupted during this time period. 40Ar/39Ar age data for the biotite-bearing Bishop Mountain flow demonstrate that it erupted approximately 150 kyr prior to the Mesa Falls Tuff. Integrating 40Ar/39Ar ages and paleomagnetic data for the post-caldera Island Park rhyolite domes suggests that these five crystal-rich rhyolites erupted over a centuries-long time interval at 1.2905 ± 0.0020 Ma (2σ). The biotite-bearing Moonshine Mountain rhyolite dome was originally thought to be the downfaulted vent dome for the pre-caldera Bishop Mountain flow due to their similar petrographic and oxygen isotope characteristics, but new 40Ar/39Ar dating suggest that it erupted near contemporaneously with the Island Park rhyolite domes at 1.2931 ± 0.0018 Ma (2σ) and is a post-caldera eruption. Despite their similar eruption ages, the Island Park rhyolite domes and the Moonshine Mountain dome are chemically and petrographically distinct and are not derived from the same source. Integrating these new data with field relations and existing geochemical data, we present a petrogenetic model for the formation of the post-Mesa Falls Tuff rhyolites. Renewed influx of basaltic and/or silicic recharge magma into the crust at 1.2905 ± 0.0020 Ma led to [1] the formation of the Island Park rhyolite domes from the source region that earlier produced the Mesa Falls Tuff and [2] the formation of Moonshine Mountain dome from the source region that earlier produced the biotite-bearing Bishop Mountain flow. These magmas were stored in the crust for less than a few thousand

  19. Ash after forest fires. Effects on soil hydrology and erosion

    Science.gov (United States)

    Bodí, Merche B.

    2013-04-01

    Hillslopes were though to be most susceptible to enhanced hydro-geomorphological responses immediately following burning, with susceptibility declining during the first months or years depending on the soil and vegetation recovery. However, Cerdà (1998) found some indices in that immediately after the fire, the thin wettable ash layer that typically covers the ground could absorb rainfall and prevent or delay the onset of overland flow and associated erosion. Therefore the time lag while ash remains on the ground become of crucial importance to protect the soil after a wildfire. The effect of this ash layer was rarely been considered in detail because ash has often been reduced or redistributed by wind or water erosion before the onset of monitoring and thus the data collection typically begun some weeks or month after the fire. The first papers focussed only on ash and its hydrological effects were published by Cerdà and Doerr (2008) and by Woods and Balfour (2008). The results showed that the soil covered with ash indeed reduced and delayed surface runoff, reduced soil splash detachment and produced lower sediment yield compared to bare terrain. However, these findings arose more questions, as for instance: Why in other research there were indices that ash reduces infiltration? what is the mechanism by which why ash reduces overland flow? The research went further with Bodí PhD. First of all, it was crucial the agreement on the fact that the material "ash" is very variable depending on the original vegetation and the type and temperature of combustion. Therefore ash properties are different between wildfires even and within a fire. This is the main reason of its different effects and thus ash not always reduces runoff and sediment yield. In this way, depending on the nature of ash, it can increase overland flow if it is crusted (usually it contains a high content of calcium carbonate), it is water repellent (with high contents of organic carbon and specially

  20. Calorimetric investigation on mechanically activated storage energy mechanism of sphalerite and pyrite

    International Nuclear Information System (INIS)

    Xiao Zhongliang; Chen Qiyuan; Yin Zhoulan; Hu Huiping; Wu Daoxin

    2005-01-01

    The structural changes of mechanically activated sphalerite and pyrite under different grinding conditions were determined by X-ray powder diffraction (XRD), laser particle size analyzer and elemental analysis. The storage energy of mechanically activated sphalerite and pyrite was measured by a calorimetric method. A thermochemical cycle was designed so that mechanically activated and non-activated minerals reached the same final state when dissolved in the same oxidizing solvent. The results show that the storage energy of mechanically activated sphalerite and pyrite rises with increased in grinding time, and reaches a maximum after a certain grinding period. The storage energy of mechanically activated pyrite decreases when heated under inert atmosphere. The storage energy of mechanically activated sphalerite and pyrite remains constant when treated below 573 K under inert atmosphere. The percentage of the storage energy caused by surface area increase during mechanical activation decreases with increasing grinding time. These results support our opinion that the mechanically activated storage energy of sphalerite is closely related to lattice distortions, and the mechanically activated storage energy of pyrite is mainly caused by the formation of reactive sites on the surface

  1. Chemistry and mineralogy of some Plio-Pleistocene tuffs from the Shungura Formation, southwest Ethiopia

    Science.gov (United States)

    Martz, A. M.; Brown, F. H.

    1981-09-01

    The Shungura Formation of southwestern Ethiopia has yielded many tens of thousands of vertebrate fossils including hominids and microvertebrates, and in addition has also yielded fossil wood, pollen, and invertebrates. Widespread tuffs have made subdivision and detailed mapping of the formation possible, have provided material for potassium-argon dating, and have allowed direct lithostratigraphic correlation with the Koobi Fora Formation in northern Kenya. The basis for correlation between the two formations is the distinctive chemistry of the tuffs, but systematic chemical variation within some tuffs invalidates some statistical correlation techniques. Here chemical analysis of glass separates and minerals from tuffs of the Shungura and Usno Formations are presented which may allow further ties to be established when data become available on other tuffs of the Koobi Fora Formation. The tuffs consist primarily of glass, but also contain phenocrysts of anorthoclase, hedenbergitic pyroxene, sodic amphibole, ilmenite, titanomagnetite, chevkinite, quartz, zircon, and rarely orthopyroxene and plagioclase. The glasses show evidence of alkali loss during hydration, and are not now peralkaline, although it is likely that they were initially. The source volcanoes were most likely situated within the Ethiopian rift valley, or on its margins.

  2. Interpretation of geophysical well-log measurements in drill hole UE25a-1, Nevada Test Site, Radioactive Waste Program

    International Nuclear Information System (INIS)

    Hagstrum, J.T.; Daniels, J.J.; Scott, J.H.

    1980-01-01

    An exploratory hole (UE25a-1) was drilled at Nevada Test Site (NTS) to determine the suitability of pyroclastic deposits as storage sites for radioactive waste. Studies have been conducted to investigate the stratigraphy, structure, mineralogy, petrology, and physical properties of the tuff units encountered in the drill hole. This report deals with the interpretation of physical properties for the tuff units from geophysical well-log measurements. The ash-flow and bedded tuff sequences at NTS comprise complex lithologies of variously welded tuffs with superimposed crystallization and altered zones. To characterize these units, resistivity, density, neutron, gamma-ray, induced polarization, and magnetic susceptibility geophysical well-log measurements were made. Although inherently subjective, a consistent interpretation of the well-log measurements was facilitated by a computer program designed to interpret well logs either individually or simultaneously. The broad features of the welded tuff units are readily distinguished by the geophysical well-log measurements. However, many details revealed by the logs indicate that more work is necessary to clarify the casual elements of well-log response in welded tuffs

  3. Thermal conductivity of silicic tuffs: predictive formalism and comparison with preliminary experimental results

    International Nuclear Information System (INIS)

    Lappin, A. R.

    1980-07-01

    Performance of both near- and far-field thermomechanical calculations to assess the feasibility of waste disposal in silicic tuffs requires a formalism for predicting thermal conductivity of a broad range of tuffs. This report summarizes the available thermal conductivity data for silicate phases that occur in tuffs and describes several grain-density and conductivity trends which may be expected to result from post-emplacement alteration. A bounding curve is drawn that predicts the minimum theoretical matrix (zero-porosity) conductivity for most tuffs as a function of grain density. Comparison of experimental results with this curve shows that experimental conductivities are consistently lower at any given grain density. Use of the lowered bounding curve and an effective gas conductivity of 0.12 W/m 0 C allows conservative prediction of conductivity for a broad range of tuff types. For the samples measured here, use of the predictive curve allows estimation of conductivity to within 15% or better, with one exception. Application and possible improvement of the formalism are also discussed

  4. Infiltration and Seepage Through Fractured Welded Tuff

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Ghezzehei; P.F. Dobson; J.A. Rodriguez; P.J. Cook

    2006-06-20

    The Nopal I mine in Pena Blanca, Chihuahua, Mexico, contains a uranium ore deposit within fractured tuff. Previous mining activities exposed a level ground surface 8 m above an excavated mining adit. In this paper, we report results of ongoing research to understand and model percolation through the fractured tuff and seepage into a mined adit both of which are important processes for the performance of the proposed nuclear waste repository at Yucca Mountain. Travel of water plumes was modeled using one-dimensional numerical and analytical approaches. Most of the hydrologic properly estimates were calculated from mean fracture apertures and fracture density. Based on the modeling results, we presented constraints for the arrival time and temporal pattern of seepage at the adit.

  5. Infiltration and Seepage Through Fractured Welded Tuff

    International Nuclear Information System (INIS)

    T.A. Ghezzehei; P.F. Dobson; J.A. Rodriguez; P.J. Cook

    2006-01-01

    The Nopal I mine in Pena Blanca, Chihuahua, Mexico, contains a uranium ore deposit within fractured tuff. Previous mining activities exposed a level ground surface 8 m above an excavated mining adit. In this paper, we report results of ongoing research to understand and model percolation through the fractured tuff and seepage into a mined adit both of which are important processes for the performance of the proposed nuclear waste repository at Yucca Mountain. Travel of water plumes was modeled using one-dimensional numerical and analytical approaches. Most of the hydrologic properly estimates were calculated from mean fracture apertures and fracture density. Based on the modeling results, we presented constraints for the arrival time and temporal pattern of seepage at the adit

  6. Central San Juan caldera cluster: Regional volcanic framework

    Science.gov (United States)

    Lipman, Peter W.

    2000-01-01

    Eruption of at least 8800 km3 of dacitic-rhyolitic magma as 9 major ash-slow sheets (individually 150-5000 km3) was accompanied by recurrent caldera subsidence between 28.3 and about 26.5 Ma in the central San Juan Mountains, Colorado. Voluminous andesitic-decitic lavas and breccias were erupted from central volcanoes prior to the ash-flow eruptions, and similar lava eruptions continued within and adjacent to the calderas during the period of explosive volcanism, making the central San Juan caldera cluster an exceptional site for study of caldera-related volcanic processes. Exposed calderas vary in size from 10 to 75 km in maximum diameter, the largest calderas being associated with the most voluminous eruptions. After collapse of the giant La Garita caldera during eruption if the Fish Canyon Tuff at 17.6 Ma, seven additional explosive eruptions and calderas formed inside the La Garita depression within about 1 m.y. Because of the nested geometry, maximum loci of recurrently overlapping collapse events are inferred to have subsided as much as 10-17 km, far deeper than the roof of the composite subvolcanic batholith defined by gravity data, which represents solidified caldera-related magma bodies. Erosional dissection to depths of as much as 1.5 km, although insufficient to reach the subvolcanic batholith, has exposed diverse features of intracaldera ash-flow tuff and interleaved caldera-collapse landslide deposits that accumulated to multikilometer thickness within concurrently subsiding caldera structures. The calderas display a variety of postcollapse resurgent uplift structures, and caldera-forming events produced complex fault geometries that localized late mineralization, including the epithermal base- and precious-metal veins of the well-known Creede mining district. Most of the central San Juan calderas have been deeply eroded, and their identification is dependent on detailed geologic mapping. In contrast, the primary volcanic morphology of the

  7. Actinide transport in Topopah Spring Tuff: Pore size, particle size, and diffusion

    International Nuclear Information System (INIS)

    Buchholtz ten Brink, M.; Phinney, D.L.; Smith, D.K.

    1991-04-01

    Diffusive transport rates for aqueous species in a porous medium are a function of sorption, molecular diffusion, and sample tortuosity. With heterogeneous natural samples, an understanding of the effect of multiple transport paths and sorption mechanisms is particularly important since a small amount of radioisotope traveling via a faster-than-anticipated transport path may invalidate the predictions of transport codes which assume average behavior. Static-diffusion experiments using aqueous 238 U tracer in tuff indicated that U transport was faster in regions of greater porosity and that apparent diffusion coefficients depended on the scale (m or μm) over which concentration gradients were measured in Topopah Spring Tuff. If a significant fraction of actinides in high-level waste are released to the environment in forms that do not sorb to the matrix, they may be similarly transported along fast paths in porous regions of the tuff. To test this, aqueous diffusion rates in tuff were measured for 238 U and 239 Pu leached from doped glass. Measured transport rates and patterns were consistent in both systems with a dual-porosity transported moeld. In addition, filtration or channelling of actinides associated with colloidal particles may significantly affect the radionuclide transport rate in Topopah Spring tuff. 9 refs., 7 figs

  8. Properties of Controlled Low Strength Material with Circulating Fluidized Bed Combustion Ash and Recycled Aggregates

    Science.gov (United States)

    Weng, Tsai-Lung; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi

    2018-01-01

    This study aims to investigate the effect of adding circulating fluidized bed combustion (CFBC) ash, desulfurization slag, air-cooled blast-furnace slag and coal bottom ash to the controlled low-strength material (CLSM). Test methods include slump flow test, ball drop test, water soluble chloride ion content measurement, compressive strength and length change measurement. The results show that (1) the use of CFBC hydration ash with desulfurization slag of slump flow is the best, and the use of CFBC hydration ash with coal bottom ash and slump flow is the worst; (2) CFBC hydration ash with desulfurization slag and chloride ion content is the highest; (3) 24 h ball drop test (diameter ≤ 76 mm), and test results are 70 mm to 76 mm; (4) CFBC hydration ash with desulfurization slag and compression strength is the highest, with the coal bottom ash being the lowest; increase of CFBC hydration ash can reduce compressive strength; and (5) the water-quenched blast furnace slag and CFBC hydration ash would expand, which results in length changes of CLSM specimens. PMID:29724055

  9. Characterization of crushed tuff for the evaluation of the fate of tracers in transport studies in the unsaturated zone

    International Nuclear Information System (INIS)

    Polzer, W.L.; Fuentes, H.R.; Raymond, R.; Bish, D.L.; Gladney, E.S.; Lopez, E.A.

    1987-03-01

    Results of field-scale (caisson) transport studies under unsaturated moisture and steady and nonsteady flow conditions indicate variability and a lack of conservation of mass in solute transport. The tuff materials used in that study were analyzed for the presence of tracers and of freshly precipitated material to help explain the variability and lack of conservation of mass. Selected tuff samples were characterized by neutron activation analysis for tracer identification, by x-ray diffraction for mineral identification, by petrographic analysis for identification of freshly precipitated material, and by x-ray fluorescence analysis for identification of major and trace elements. The results of these analyses indicate no obvious presence of freshly precipitated material that would retard tracer movement. The presence of the nonsorbing tracers (bromide and iodide) suggest the retention of these tracers in immobile water. The presence of the nonsorbing tracers (bromide and iodide) suggest the retention of these tracers in immobile water. The presence of sorbing and nonsorbing tracers on the tuff at some locations (even cesium at the 415-cm depth) and not at others suggests variability in transport. 15 refs., 14 figs., 9 tabs

  10. Waste pyritic coal as a raw material for energetic industry

    Energy Technology Data Exchange (ETDEWEB)

    Gasiorek, J. [Institute of Inorganic Chemistry, Poznan (Poland). Dept. of Research and Technology

    1997-11-01

    Results are presented of large laboratory studies on coal desulphurisation with foam flotation method improved by application of bioadsorption of Thiobacillus ferrooxidans bacteria to the modification of superficial properties of pyrite particulates from hydrophobic to hydrophillic ones. Results of coal desulfurization with and without bioadsorption have been compared. Bioadsorption improved pyritic sulfur removal by 30% (for coal from `Sierza mine`, coal size 0.3 to 0.102 mm, S pyritic content 1.69%) after 6-week adaptation of bacteria and 30 min of bioadsorption. Bacteria concentration in 5% water suspension of coal reached 22 {mu}g of biomass cm{sup -3}. 12 refs., 4 figs., 1 tab.

  11. Application of fuel cell for pyrite and heavy metal containing mining waste

    Science.gov (United States)

    Keum, H.; Ju, W. J.; Jho, E. H.; Nam, K.

    2015-12-01

    Once pyrite and heavy metal containing mining waste reacts with water and air it produces acid mine drainage (AMD) and leads to the other environmental problems such as contamination of surrounding soils. Pyrite is the major source of AMD and it can be controlled using a biological-electrochemical dissolution method. By enhancing the dissolution of pyrite using fuel cell technology, not only mining waste be beneficially utilized but also be treated at the same time by. As pyrite-containing mining waste is oxidized in the anode of the fuel cell, electrons and protons are generated, and electrons moves through an external load to cathode reducing oxygen to water while protons migrate to cathode through a proton exchange membrane. Iron-oxidizing bacteria such as Acidithiobacillus ferrooxidans, which can utilize Fe as an electron donor promotes pyrite dissolution and hence enhances electrochemical dissolution of pyrite from mining waste. In this study mining waste from a zinc mine in Korea containing 17 wt% pyrite and 9% As was utilized as a fuel for the fuel cell inoculated with A. ferrooxidans. Electrochemically dissolved As content and chemically dissolved As content was compared. With the initial pH of 3.5 at 23℃, the dissolved As concentration increased (from 4.0 to 13 mg/L after 20 d) in the fuel cell, while it kept decreased in the chemical reactor (from 12 to 0.43 mg/L after 20 d). The fuel cell produced 0.09 V of open circuit voltage with the maximum power density of 0.84 mW/m2. Dissolution of As from mining waste was enhanced through electrochemical reaction. Application of fuel cell technology is a novel treatment method for pyrite and heavy metals containing mining waste, and this method is beneficial for mining environment as well as local community of mining areas.

  12. Adsorption and desorption characteristics of crystal violet in bottom ash column

    Directory of Open Access Journals (Sweden)

    Puthiya Veetil Nidheesh

    2012-06-01

    Full Text Available This study described adsorption of Crystal Violet (CV by bottom ash in fixed-bed column mode. Equilibrium of adsorption was studied in batch mode for finding adsorption capacity of bottom ash. In fixed bed column adsorption, the effects of bed height, feed flow rate, and initial concentration were studied by assessing breakthrough curve. The slope of the breakthrough curve decreased with increasing bed height. The breakthrough time and exhaustion time were decreased with increasing influent CV concentration and flow rates. The effect of bed depth, flow rate and CV concentration on the adsorption column design parameters were analyzed. Bed depth service time (BDST model was applied for analysis of crystal violet adsorption in the column. The adsorption capacity of bottom ash was calculated at 10% breakthrough point for different flow rates and concentrations. Desorption studies reveals that recovery of CV from bottom ash was effective by using CH3COOH than H2SO4, NaOH, HCl and NaCl solutions.

  13. ADSORPTION AND DESORPTION CHARACTERISTICS OF CRYSTAL VIOLET IN BOTTOM ASH COLUMN

    Directory of Open Access Journals (Sweden)

    Puthiya Veetil Nidheesh

    2012-01-01

    Full Text Available This study described adsorption of Crystal Violet (CV by bottom ash in fixed-bed column mode. Equilibrium of adsorption was studied in batch mode for finding adsorption capacity of bottom ash. In fixed bed column adsorption, the effects of bed height, feed flow rate, and initial concentration were studied by assessing breakthrough curve. The slope of the breakthrough curve decreased with increasing bed height. The breakthrough time and exhaustion time were decreased with increasing influent CV concentration and flow rates. The effect of bed depth, flow rate and CV concentration on the adsorption column design parameters were analyzed. Bed depth service time (BDST model was applied for analysis of crystal violet adsorption in the column. The adsorption capacity of bottom ash was calculated at 10% breakthrough point for different flow rates and concentrations. Desorption studies reveals that recovery of CV from bottom ash was effective by using CH3COOH than H2SO4, NaOH, HCl and NaCl solutions.

  14. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Simon, G.; Huang, H.; Penner-Hahn, J.E.; Kesler, S.E.; Kao, L.S. [Univ. of Michigan, Ann Arbor, MI (United States)

    1999-07-01

    XANES measurements on gold-bearing arsenian pyrite from the Twin Creeks Carlin-type gold deposits show that gold is present as both Au{sup 0} and Au{sup 1+} and arsenic is present as As{sup 1{minus}}. Au{sup 0} is attributed to sub-micrometer size inclusions of free gold, whereas Au{sup 1+} is attributed to gold in the lattice of the arsenian pyrite. STEM observations suggest that As{sup 1{minus}} is probably concentrated in angstrom-scale, randomly distributed layers with a marcasite or arsenopyrite structure. Ionic gold (Au{sup 1+}) could be concentrated in these layers as well, and is present in both twofold- and fourfold-coordinated forms, with fourfold-coordinated Au{sup 1+} more abundant. Twofold-coordinated Au{sup 1+} is similar to gold in Au{sub 2}S in which it is linearly coordinated to two sulfur atoms. The nature of fourfold-coordinated Au{sup 1+} is not well understood, although it might be present as an Au-As-S compound where gold is bonded in fourfold coordination to sulfur and arsenic atoms, or in vacancy positions on a cation site in the arsenian pyrite. Au{sup 1+} was probably incorporated into arsenian pyrite by adsorption onto pyrite surfaces during crystal growth. The most likely compound in the case of twofold-coordinated Au{sup 1+} was probably a tri-atomic surface complex such as S{sub pyrite}-Au{sup 1+}-S{sub bi-sulfide}H or Au{sup 1+}-S-Au{sup 1+}. The correlation between gold and arsenic might be related to the role of arsenic in enhancing the adsorption of gold complexes of this type on pyrite surfaces, possibly through semiconductor effects.

  15. TBM performance prediction in Yucca Mountain welded tuff from linear cutter tests

    International Nuclear Information System (INIS)

    Gertsch, R.; Ozdemir, L.; Gertsch, L.

    1992-01-01

    This paper discusses performance prediction which were developed for tunnel boring machines operating in welded tuff for the construction of the experimental study facility and the potential nuclear waste repository at Yucca Mountain. The predictions were based on test data obtained from an extensive series of linear cutting tests performed on samples of Topopah String welded tuff from the Yucca Mountain Project site. Using the cutter force, spacing, and penetration data from the experimental program, the thrust, torque, power, and rate of penetration were estimated for a 25 ft diameter tunnel boring machine (TBM) operating in welded tuff. The result show that the Topopah Spring welded tuff (TSw2) can be excavated at relatively high rates of advance with state-of-the-art TBMs. The result also show, however, that the TBM torque and power requirements will be higher than estimated based on rock physical properties and past tunneling experience in rock formations of similar strength

  16. Effect of inversion layer at iron pyrite surface on photovoltaic device

    Science.gov (United States)

    Uchiyama, Shunsuke; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2018-03-01

    Iron pyrite has great potential as a thin-film solar cell material because it has high optical absorption, low cost, and is earth-abundant. However, previously reported iron pyrite solar cells showed poor photovoltaic characteristics. Here, we have numerically simulated its photovoltaic characteristics and band structures by utilizing a two-dimensional (2D) device simulator, ATLAS, to evaluate the effects of an inversion layer at the surface and a high density of deep donor defect states in the bulk. We found that previous device structures did not consider the inversion layer at the surface region of iron pyrite, which made it difficult to obtain the conversion efficiency. Therefore, we remodeled the device structure and suggested that removing the inversion layer and reducing the density of deep donor defect states would lead to a high conversion efficiency of iron pyrite solar cells.

  17. Pyrite oxidation in unsaturated aquifer sediments. Reaction stoichiometry and rate of oxidation

    DEFF Research Database (Denmark)

    Andersen, Martin Søgaard; Larsen, Flemming; Postma, Diederik Jan

    2001-01-01

    The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase in the inc......The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase...... in the incubation bags became depleted in O2 and enriched in CO2 and N2 and was interpreted as due to pyrite oxidation in combination with calcite dissolution. Sediment incubation provides a new method to estimate low rates of pyrite oxidation in unsaturated zone aquifer sediments. Oxidation rates of up to 9.4â10......-10 mol FeS2/gâs are measured, and the rates are only weakly correlated with the sediment pyrite content. The reactivity of pyrite, including the inhibition by FeOOH layers formed on its surface, apparently has a major effect on the rate of oxidation. The code PHREEQC 2.0 was used to calculate...

  18. 40Ar/39Ar age spectra from the KBS Tuff, Koobi Fora Formation

    International Nuclear Information System (INIS)

    McDougall, I.

    1981-01-01

    40 Ar/ 39 Ar age spectra on anorthoclase phenocrysts from three pumice clasts in the KBS Tuff yield nearly ideal flat patterns, providing good evidence that the samples have remained undisturbed since crystallization. The ages are concordant at 1.88 = 0.02 Myr, and confirm that the KBS Tuff, a key marker bed in the Koobi Fora Formation, northern Kenya, is now very well dated. These results resolve the conflict between earlier 40 Ar/ 39 Ar and conventional K-Ar dating measurements on the KBS Tuff. (author)

  19. 40Ar/39Ar age spectra from the KBS Tuff, Koobi Fora Formation.

    Science.gov (United States)

    McDougall, Ian

    1981-11-12

    40 Ar/ 39 Ar age spectra on anorthoclase phenocrysts from three pumice clasts in the KBS Tuff yield nearly ideal flat patterns, providing good evidence that the samples have remained undisturbed since crystallization. The ages are concordant at 1.88±0.02 Myr, and confirm that the KBS Tuff, a key marker bed in the Koobi Fora Formation, northern Kenya, is now very well dated. These results resolve the conflict between earlier 40 Ar/ 39 Ar and conventional K-Ar dating measurements on the KBS Tuff.

  20. Geohydrologic data collected from shallow neutron-access boreholes and resultant-preliminary geohydrologic evaluations, Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Blout, D.O.; Hammermeister, D.P.; Loskot, C.L.; Chornack, M.P.

    1994-01-01

    In cooperation with the US Department of Energy, 74 neutron-access boreholes were drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada. Drilling, coring, sample collection and handling, and lithologic and preliminary geohydrologic data are presented in this report. The boreholes were drilled in a combination of alluvium/colluvium, ash-flow tuff, ash-fall tuff, or bedded tuff to depths of 4.6 to 36.6 meters. Air was used as a drilling medium to minimize disturbance of the water content and water potential of drill cuttings, core, and formation rock. Drill cuttings were collected at approximately 0.6-meter intervals. Core was taken at selected intervals from the alluvium/colluvium using drive-coring methods and from tuff using rotary-coring methods. Nonwelded and bedded tuffs were continuously cored using rotary-coring methods. Gravimetric water-content and water-potential values of core generally were greater than those of corresponding drill cuttings. Gravimetric water-content, porosity, and water-potential values of samples generally decreased, and bulk density values increased, as the degree of welding increased. Grain-density values remained fairly constant with changes in the degree of welding. A high degree of spatial variability in water-content and water-potential profiles was noted in closely spaced boreholes that penetrate similar lithologic subunits and was also noted in adjacent boreholes located in different topographic positions. Variability within a thick lithologic unit usually was small. 18 refs., 21 figs., 17 tabs

  1. Low temperature spent fuel oxidation under tuff repository conditions

    International Nuclear Information System (INIS)

    Einziger, R.E.; Woodley, R.E.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations Project is studying the suitability of tuffaceous rocks at Yucca Mountain, Nye County, Nevada, for high level waste disposal. The oxidation state of LWR spent fuel in a tuff repository may be a significant factor in determining its ability to inhibit radionuclide migration. Long term exposure at low temperatures to the moist air expected in a tuff repository is expected to increase the oxidation state of the fuel. A program is underway to determine the spent fuel oxidation mechanisms which might be active in a tuff repository. Initial work involves a series of TGA experiments to determine the effectiveness of the technique and to obtain preliminary oxidation data. Tests were run at 200 0 C and 225 0 C for as long as 720 hours. Grain boundary diffusion appears to open up a greater surface area for oxidation prior to onset of bulk diffusion. Temperature strongly influences the oxidation rates. The effect of moisture is small but readily measurable. 25 refs., 7 figs., 4 tabs

  2. Environmental applications of the LANL nuclear microprobe

    International Nuclear Information System (INIS)

    Hickmott, D.D.; Herrin, J.M.; Abell, R.; George, M.; Gauerke, E.R.; Denniston, R.F.

    1997-01-01

    The LANL nuclear microprobe has been used to study the distributions of trace elements (TE) of environmental interest including: (1) metals in coal and fly ash, (2) Pb in the Bandelier Tuff (BT), (3) Ba in tree rings, (4) Mn, Fe, Sr and Y in Yucca Mountain calcites. Micro-PIXE (MP) analyses with 5-10 micrometer spatial resolution provide constraints on processes that redistribute contaminants in the environment, and hence may help answer environmental problems where fine-scale chemical records are important. MP analyses of particulates in coal and ash show that pyrite contains As, Se, Hg and Pb; macerals contain Cr, halogens and S; cenospheres contain As, Se and Ni; and hematite ash contains Ni and As. Understanding these elemental modes of occurrence allows prediction of metal behavior in boilers and may enhance compliance with the Clean Air Act Amendments. Fine-grained high-Pb minerals were identified using SEM and MP analyses of BT minerals. These minerals were from samples associated with deep-groundwater wells containing Pb at levels greater than regulatory limits. Pb is concentrated in Pb minerals (e.g. cerussite), smectite, and hematite formed during low-T alteration of tuff. Understanding mineralogic speciation of metals may provide insights into sources of groundwater pollution. Tree rings from ponderosa pines that grew in a Ba-contaminated drainage were analyzed using MP. Ba concentrations are typically higher in rings that formed after operations discharging Ba to the environment began. Such tree-ring analyses may ultimately provide information on rates of contaminant migration in the environment. TE in zoned calcites from Yucca Mountain were analyzed by MP. Calcites from the saturated zone (SZ) have distinct chemical signatures (high Fe, Mn and low Y). No calcites in the unsaturated zone with SZ chemical signatures were found using MP

  3. The mechanisms of pyrite oxidation and leaching: A fundamental perspective

    Science.gov (United States)

    Chandra, A. P.; Gerson, A. R.

    2010-09-01

    Pyrite is the earth's most abundant sulfide mineral. Its frequent undesirable association with minerals of economic value such as sphalerite, chalcopyrite and galena, and precious metals such as gold necessitates costly separation processes such as leaching and flotation. Additionally pyrite oxidation is a major contributor to the environmental problem of acid rock drainage. The surface oxidation reactions of pyrite are therefore important both economically and environmentally. Significant variations in electrical properties resulting from lattice substitution of minor and trace elements into the lattice structure exist between pyrite from different geographical locations. Furthermore the presence of low coordination surface sites as a result of conchoidal fracture causes a reduction in the band gap at the surface compared to the bulk thus adding further electrochemical variability. Given the now general acceptance after decades of research that electrochemistry dominates the oxidation process, the geographical location, elemental composition and semi-conductor type (n or p) of pyrite are important considerations. Aqueous pyrite oxidation results in the production of sulfate and ferrous iron. However other products such as elemental sulfur, polysulfides, hydrogen sulfide, ferric hydroxide, iron oxide and iron(III) oxyhydroxide may also form. Intermediate species such as thiosulfate, sulfite and polythionates are also proposed to occur. Oxidation and leach rates are generally influenced by solution Eh, pH, oxidant type and concentration, hydrodynamics, grain size and surface area in relation to solution volume, temperature and pressure. Of these, solution Eh is most critical as expected for an electrochemically controlled process, and directly correlates with surface area normalised rates. Studies using mixed mineral systems further indicate the importance of electrochemical processes during the oxidation process. Spatially resolved surface characterisation of fresh

  4. Geophysical tomography for imaging water movement in welded tuff

    International Nuclear Information System (INIS)

    Daily, W.; Ramirez, A.

    1986-01-01

    Alterant tomography has been evaluated for its ability to delineate in-situ water flow paths in a fractured welded-tuff rock mass. The evaluation involved a field experiment in which tomographs of electromagnetic attenuation factor (or attenuation rate) at 300 MHZ were made before, during, and after the introduction to the rock of two different water-based tracers: a plain water and dye solution, and salt water and dye. Alterant tomographs were constructed by subtracting, cell by cell, the attenuation factors derived from measurements before each tracer was added to the rock mass from the attenuation factors derived after each tracer was added. The alterant tomographs were compared with other evidence of water movement in the rock: borescope logs of fractures, and postexperiment cores used to locate the dye tracer on the fractured surfaces. These comparisons indicate that alterant tomography is suitable for mapping water flow through fractures and that it may be useful in inferring which of the fractures are hydrologically connected in the image plane. The technique appears to be sensitive enough to delineate flow through a single fracture and to define fractures with a spatial resolution of about 10 cm on an imaging scale of a few meters. 9 refs., 3 figs

  5. Study of amorphous phases in the ash of power plant (Zemianske Kostolany site); Studium amorfnych faz v elektrarenskych popoloch (lokalita Zemianske Kostolany)

    Energy Technology Data Exchange (ETDEWEB)

    Petkova, K [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra geocheomie, 84215 Bratislava (Slovakia); Lalinska-Volekova, B [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra mineralogie a petrologie, 84215 Bratislava (Slovakia)

    2012-04-25

    Using mineralogical methods (SEM, BSE, WDS, TEM, XRD) a chemical and mineral composition of selected samples of fresh power plant ash and of soils containing buried ash sediments in the area Zemianske Kostolany was studied. Chemically, the ash samples mainly comprised of Si, Fe, Al and Ca, followed by Mg, K, Na, Ti and S. From potentially toxic elements in the ash significantly increased arsenic content (358 - 1859 mg/kg), which is present mainly in the finest fraction of the studied samples. The dominant component of the investigated samples (average 74%) is created by amorphous aluminosilicate glass. These amorphous components have variable representation of Si, Al, Ca, Fe and were identified as a major phase bearing arsenic (by 2.28 wt. %). Arsenic binds to aggregates of nanoparticles, which consist of Al, Si, Ca, Fe, less to the phases of Fe and Ca. In addition to amorphous glass, arsenic binds also to unburned coal residues (up to 0.5 wt.%). From crystalline phases were identified quartz, calcite, mullite, feldspars, hematite, magnetite, cristobalite, rutile, mica light, pyrotite, pyrite, montmorillonite and perovskite. (authors)

  6. The composition of pyrite in volcanogenic massive sulfide deposits as determined with the proton microprobe

    International Nuclear Information System (INIS)

    Huston, D.L.; Sie, S.H.; Suter, G.F.; Ryan, C.G.

    1993-01-01

    Pixeprobe analysis of pyrite from Australian volcanogenic massive sulfide (VMS) deposits indicate significant levels of Cu, Zn, Pb, Ba, Ag, Sb, Bi (from inclusions), As, Tl, Mo, Au, In, Cd (from nonstoichiometric substitution), Co, Ni, Se and Te (from stoichiometric substitution). Pyrite in massive sulfide lenses is enriched in trace elements compared to that in the stringer zone owing to hydrothermal recrystallization. Metamorphic recrystallization also 'cleans' pyrite of trace elements. High Au values occur in pyrite with high As content. Pyrite in stringer zones is enriched in Se relative to the overlying massive sulfide lenses and the surrounding alteration zones. (orig.)

  7. The effects of leaching and floatation on the ash fusion temperatures of three selected lignites

    Energy Technology Data Exchange (ETDEWEB)

    Feng-hai Li; Jie-jie Huang; Yi-tian Fang; Yang Wang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    2011-07-15

    Experiments have been conducted with Huolinhe (HLH), Xiaolongtan (XLT), and Ethiopian (ET) lignites to investigate the effects of washing with water, acid-leaching, and floatation on their ash fusion temperatures (AFTs). The results show that the AFTs of XLT and ET are elevated by washing with water and floatation, but the AFT of HLH is decreased. The AFTs of all three lignites are increased markedly by acid leaching. A decrease in the total basic composition in ash increases its AFT, and vice versa. Changes in the mineral contents of the coals after treatment contribute to the variations in their AFTs. After washing with water, the lower AFT of HLH is brought about by the increases in the amounts of cordierite and anhydrite, whereas the higher AFT of XLT is caused by the decreases in the amounts of anhydrite and calcite. For the floatation treatment, the decrease of AFT for HLH is due to the reduction in the amount of kaolinite, but the elevation of AFT for XLT or ET is caused by the decrease in the amount of pyrite and the reductions in the amounts of gypsum and xanthoxenite, respectively. For the acid-leaching treatment, a decrease in the amount of pyrite and an increase in the amount of kaolinite result in increases in AFTs for HLH and XLT. Increases in the amounts of kaolinite and cristobalite in FET (ET after floatation), WET (ET after washing with water), and AET (ET after acid-leaching) lead to corresponding increases in the AFTs. 27 refs., 10 figs., 3 tabs.

  8. Mineralogy, petrology and whole-rock chemistry data compilation for selected samples of Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Connolly, J.R.

    1991-12-01

    Petrologic, bulk chemical, and mineralogic data are presented for 49 samples of tuffaceous rocks from core holes USW G-1 and UE-25a number-sign 1 at Yucca Mountain, Nevada. Included, in descending stratigraphic order, are 11 samples from the Topopah Spring Member of the Paintbrush Tuff, 12 samples from the Tuffaceous Beds of Calico Hills, 3 samples from the Prow Pass Member of the Crater Flat Tuff, 20 samples from the Bullfrog Member of the Crater Flat Tuff and 3 samples from the Tram Member of the Crater Flat Tuff. The suite of samples contains a wide variety of petrologic types, including zeolitized, glassy, and devitrified tuffs. Data vary considerably between groups of samples, and include thin section descriptions (some with modal analyses for which uncertainties are estimated), electron microprobe analyses of mineral phases and matrix, mineral identifications by X-ray diffraction, and major element analyses with uncertainty estimates

  9. The behavior of self-compacting concrete (SCC) with bagasse ash

    Science.gov (United States)

    Hanafiah, Saloma, Whardani, Putri Nurul Kusuma

    2017-11-01

    Self-Compacting Concrete (SCC) has the ability to flow and self-compacting. One of the benefit of SCC can reduced the construction time and labor cost. The materials to be used for see slightly different with the conventional concrete. Less coarse aggregate to be used up to 50%. The maximum size of coarse aggregate was also limited e.g. 10 mm. Other material was quartz sand with grain size of 50-650 µm. For reducing the around of cement, bagasse ash was used as partial replacement of cement. In this research, the variations of w/c to be used, e.g. 0.275, 0.300, 0.325 and the percentage of bagasse ash substitution were 10%, 15%, and 20%. EFNARC standard was conducted for slump flow test following the V-funnel test and L-box shape test. The maximum value of slump flow test was 75.75 cm, V-funnel test was 4.95 second, and L-box test was 1.000 yielded by mixture with w/c = 0.325 and 0% of bagasse ash. The minimum value of slump flow test was 61.50 cm, V-funnel test is 21.05 second, and L-box test was 0.743 yielded by mixture with w/c = 0.275 and 20% of bagasse ash. The maximum value of compressive strength was 67.239 MPa yielded by mixture with w/c = 0.275 and 15% of bagasse ash. And the minimum value of compressive strength was 41.813 MPa yielded by mixture with w/c = 0.325 and 20% bagasse ash.

  10. Specification of a test problem for HYDROCOIN [Hydrologic Code Intercomparison] Level 3 Case 2: Sensitivity analysis for deep disposal in partially saturated, fractured tuff

    International Nuclear Information System (INIS)

    Prindle, R.W.

    1987-08-01

    The international Hydrologic Code Intercomparison Project (HYDROCOIN) was formed to evaluate hydrogeologic models and computer codes and their use in performance assessment for high-level radioactive waste repositories. Three principal activities in the HYDROCOIN Project are Level 1, verification and benchmarking of hydrologic codes; Level 2, validation of hydrologic models; and Level 3, sensitivity and uncertainty analyses of the models and codes. This report presents a test case defined for the HYDROCOIN Level 3 activity to explore the feasibility of applying various sensitivity-analysis methodologies to a highly nonlinear model of isothermal, partially saturated flow through fractured tuff, and to develop modeling approaches to implement the methodologies for sensitivity analysis. These analyses involve an idealized representation of a repository sited above the water table in a layered sequence of welded and nonwelded, fractured, volcanic tuffs. The analyses suggested here include one-dimensional, steady flow; one-dimensional, nonsteady flow; and two-dimensional, steady flow. Performance measures to be used to evaluate model sensitivities are also defined; the measures are related to regulatory criteria for containment of high-level radioactive waste. 14 refs., 5 figs., 4 tabs

  11. High temperature co-treatment of bottom ash and stabilized fly ashes from waste incineration

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Mogensen, E.P.B.; Lundtorp, Kasper

    2001-01-01

    Bottom ashes from two Danish municipal solid waste incineration plants were heated at 900 degreesC with iron oxide stabilized air pollution control residues at actual mass flow ratios (9:1), simulating a treating method for the residues. The two residues were cotreated, producing one combined...... ashes. The process, thus, fixates the metals in the solid residues without altering the leaching properties of the bottom ash too significantly. (C) 2001 Elsevier Science Ltd. All rights reserved....... stream that may be utilized as a secondary road construction material. Scanning electron microscope analysis and grain size distribution analysis indicated that sintering of the particles did not occur. Batch leaching tests at liquid/solid 10 I/kg at a range of pH-values (6-10) quantified with respect...

  12. Geochemistry of Early Frasnian (Late Devonian) pyrite-ammonoid level in the Kostomłoty Basin, Poland, and a new proxy parameter for assessing the relative amount of syngenetic and diagenetic pyrite

    Science.gov (United States)

    Pisarzowska, Agnieszka; Berner, Zsolt A.; Racki, Grzegorz

    2014-07-01

    Pyrite geochemistry (isotope and trace element composition, degree of pyritization, S/Corg ratio) was used in context of selected lithogeochemical parameters (major and trace elements, including sulphur, organic carbon, and δ13C of carbonate carbon) to constrain fluctuations in depositional conditions during the Early to Middle Frasnian carbon isotopic perturbation (punctata Event) in the Kostomłoty Basin, Poland. Based on the ratio between the sum of oxyanionic elements and transition metals in pyrite, a new proxy parameter (index of syngenetic pyrite, ISYP) is proposed for assessing the relative amount of syngenetic pyrite in a sample. The distribution of the ISYP along the Kostomłoty - Małe Górki section (upper Szydłówek to the basal Kostomłoty beds) is in concert with conclusions inferred from paleoecologic data and other geochemical parameters (degree of pyritization, S/Corg, δ34Spyrite). According to these, the lower segment of the Szydłówek Beds was deposited in a normally oxygenated environment, but undergoing increasing primary productivity in surface water, as indicated by an increase in δ13Ccarb and in Cu/Zr ratio in bulk rock, which triggered the periodic deposition of sediments slightly enriched in organic matter, notably within the pyrite-ammonoid level (= Goniatite Level). Fluctuating, but in general high S/Corg ratios, DOPR values and ISYP values suggest that during this time - against the background of a generally dysoxic environment - shorter or longer lasting episodes of more restricted (anoxic and possibly even euxinic) bottom water conditions developed. Low sedimentation rates enabled a continuous and practically unlimited supply of sulphate during bacterial sulphate reduction (BSR), which in turn led to a strong depletion of pyrite sulphur in 34S in this interval (constantly around -29‰). In contrast, below and above the Goniatite Level, higher δ34S values (up to + 3‰), are compatible with closed system conditions and higher

  13. STRATIGRAPHY OF THE PB-1 WELL, NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, CHIHUAHUA, MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2005-06-25

    Three wells, PB-1, PB-2, and PB-3, were drilled in 2003 at the Nopal I uranium deposit as part of a natural analogue study to evaluate radionuclide transport processes. The wells penetrate through the Tertiary volcanic section down to the Cretaceous limestone basement, and intersect the top of the regional aquifer system. The PB-1 well, drilled immediately adjacent to the Nopal I ore body, was cored to a depth of 250 m, thus providing an opportunity to document the local stratigraphy. The uppermost unit encountered in the PB-1 well is the Nopal Formation, a densely welded, crystal-rich rhyolitic ash-flow tuff. The cored section is highly altered and devitrified, with kaolinite, quartz, chlorite, and montmorillonite replacing feldspars and much of the groundmass. Breccia zones within the tuff contain fracture fillings of hematite, limonite, and goethite. A zone of intense clay alteration encountered in the depth interval 17.45-22.30 m was interpreted to represent the basal vitrophyre of this unit. Underlying the basal vitrophyre is the Coloradas Formation, which consists of a welded, lithic-rich rhyolitic ash-flow tuff. The cored section of this unit has undergone devitrification and oxidation, and has a similar alteration mineralogy to that observed in the Nopal tuff. The Nopal I ore body is restricted to a brecciated zone that intersects these two volcanic units. A sharp contact between the Coloradas tuff and the underlying Pozos Formation was observed at a depth of 136.38 m. The Pozos Formation in the PB-1 core consists of interbedded, poorly sorted sandstone and conglomerate layers. The conglomeratic clasts consist of subangular to subrounded fragments of volcanic rocks, limestone, and chert. Thin (2-6 m) intervals of intercalated pumiceous tuffs were observed within this unit. The contact between the Pozos Formation and the underlying Cretaceous limestone basement was observed at a depth of 244.4 m.

  14. STRATIGRAPHY OF THE PB-1 WELL, NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, CHIHUAHUA, MEXICO

    International Nuclear Information System (INIS)

    2005-01-01

    Three wells, PB-1, PB-2, and PB-3, were drilled in 2003 at the Nopal I uranium deposit as part of a natural analogue study to evaluate radionuclide transport processes. The wells penetrate through the Tertiary volcanic section down to the Cretaceous limestone basement, and intersect the top of the regional aquifer system. The PB-1 well, drilled immediately adjacent to the Nopal I ore body, was cored to a depth of 250 m, thus providing an opportunity to document the local stratigraphy. The uppermost unit encountered in the PB-1 well is the Nopal Formation, a densely welded, crystal-rich rhyolitic ash-flow tuff. The cored section is highly altered and devitrified, with kaolinite, quartz, chlorite, and montmorillonite replacing feldspars and much of the groundmass. Breccia zones within the tuff contain fracture fillings of hematite, limonite, and goethite. A zone of intense clay alteration encountered in the depth interval 17.45-22.30 m was interpreted to represent the basal vitrophyre of this unit. Underlying the basal vitrophyre is the Coloradas Formation, which consists of a welded, lithic-rich rhyolitic ash-flow tuff. The cored section of this unit has undergone devitrification and oxidation, and has a similar alteration mineralogy to that observed in the Nopal tuff. The Nopal I ore body is restricted to a brecciated zone that intersects these two volcanic units. A sharp contact between the Coloradas tuff and the underlying Pozos Formation was observed at a depth of 136.38 m. The Pozos Formation in the PB-1 core consists of interbedded, poorly sorted sandstone and conglomerate layers. The conglomeratic clasts consist of subangular to subrounded fragments of volcanic rocks, limestone, and chert. Thin (2-6 m) intervals of intercalated pumiceous tuffs were observed within this unit. The contact between the Pozos Formation and the underlying Cretaceous limestone basement was observed at a depth of 244.4 m

  15. TRM performance prediction in Yucca Mountain welded tuff from linear cutter tests

    International Nuclear Information System (INIS)

    Gertsch, R.; Ozdemir, L.; Gertsch, L.

    1992-01-01

    Performance predictions were developed for tunnel boring machines operating in welded tuff for the construction of the experimental study facility and the potential nuclear waste repository at Yucca Mountain. The predictions were based on test data obtained from an extensive series of linear cutting tests performed on samples of Topopah Spring welded tuff from the Yucca Mountain Project site. Using the cutter force, spacing, and penetration data from the experimental program, the thrust, torque, power, and rate of penetration were estimated for a 25 ft diameter tunnel boring machine (TBM) operating in welded tuff. Guidelines were developed for the optimal design of the TBM cutterhead to achieve high production rates at the lowest possible excavation costs. The results show that the Topopah Spring welded tuff (TSw2) can be excavated at relatively high rates of advance with state-of-the-art TBMs. The results also show, however, that the TBM torque and power requirements will be higher than estimated based on rock physical properties and past tunneling experience in rock formations of similar strength

  16. Lattice location of gold in natural pyrite crystals

    International Nuclear Information System (INIS)

    Besten, Jacinta den; Jamieson, David N.; Ryan, Chris G.

    1999-01-01

    The lattice location of gold atoms in naturally occurring Au-doped pyrite crystals has been investigated with a nuclear microprobe using ion channeling. The specimens consisted of 300-μm diameter pyrite crystals in veins embedded in a quartz matrix from the Emperor mine in Fiji. The specimens were prepared by standard geological specimen preparation techniques and the pyrite crystals were analysed in situ in the quartz matrix. Significant trace elements in the crystals, determined by Proton Induced X-ray Emission with a 3 MeV H + microprobe, were Cu, As, Mo, Zn, Te, Au and Pb. The Au concentration was about 0.2 wt%. By the use of 2 MeV He + ion channeling, the Miller indices of the lowest order crystal axes nearest to the normal were determined from backscattering yield maps from two-dimensional angular scanning and comparison of the resulting patterns with published gnomonic projections. Channeling angular yield curves were obtained from Fe, S, As and Au signals. The results indicate that at least 35% of the Au is substituted onto lattice sites

  17. Cu-As Decoupling in Hydrothermal Systems: A Link Between Pyrite Chemistry and Fluid Composition

    Science.gov (United States)

    Reich, M.; Tardani, D.; Deditius, A.; Chryssoulis, S.; Wrage, J.; Sanchez-Alfaro, P.; Andrea, H.; Cinthia, J.

    2016-12-01

    Chemical zonations in pyrite have been recognized in most hydrothermal ore deposit types, showing in some cases marked oscillatory alternation of metals and metalloids in pyrite growth zones (e.g., of Cu-rich, As-(Au)-depleted zones and As-(Au)-rich, Cu-depleted zones). This decoupled geochemical behavior of Cu and As has been interpreted as a result of chemical changes in ore-forming fluids, although direct evidence connecting fluctuations in hydrothermal fluid composition with metal partitioning into pyrite growth zones is still lacking. Here we report a comprehensive trace element database of pyrite from an active hydrothermal system, the Tolhuaca Geothermal System (TGS) in southern Chile. We combined high-spatial resolution and X-ray mapping capabilities of electron microprobe analysis (EMPA) with low detection limits and depth-profiling capabilities of secondary-ion mass spectrometry (SIMS) in a suite of pyrite samples retrieved from a 1 km drill hole that crosses the argillic and propylitic alteration zones of the geothermal system. We show that the concentrations of precious metals (e.g., Au, Ag), metalloids (e.g., As, Sb, Se, Te), and base and heavy metals (e.g., Cu, Co, Ni, Pb) in pyrite at the TGS are significant. Among the elements analyzed, arsenic, Cu and Co are the most abundant with concentrations that vary from sub-ppm levels to a few wt. %. Pyrites from the deeper propylitic zone do not show significant zonation and high Cu-(Co)-As concentrations correlate with each other. In contrast, well-developed zonations were detected in pyrite from the shallow argillic alteration zone, where Cu(Co)-rich, As-depleted cores alternate with Cu(Co)-depleted, As-rich rims. These microanalytical data were contrasted with chemical data of fluid inclusion in quartz veins (high Cu/Na and low As/Na) and borehole fluids (low Cu/Na and high As/Na) reported at the TGS, showing a clear correspondence between Cu and As concentrations in pyrite-forming fluids and chemical

  18. Stratigraphy, sedimentology and inferred flow dynamics from the July 2015 block-and-ash flow deposits at Volcán de Colima, Mexico

    Science.gov (United States)

    Macorps, Elodie; Charbonnier, Sylvain J.; Varley, Nick R.; Capra, Lucia; Atlas, Zachary; Cabré, Josep

    2018-01-01

    The July 2015 block-and-ash flow (BAF) events represent the first documented series of large-volume and long-runout BAFs generated from sustained dome collapses at Volcán de Colima. This eruption is particularly exceptional at this volcano due to (1) the large volume of BAF material emplaced (0.0077 ± 0.001 km3), (2) the long runout reached by the associated BAFs (max. 10 km), and (3) the short period ( 18 h) over which two main long-sustained dome collapse events occurred (on 10 and 11 July, respectively). Stratigraphy and sedimentology of the 2015 BAF deposits exposed in the southern flank of the volcano based on lithofacies description, grain size measurements and clast componentry allowed the recognition of three main deposit facies (i.e., valley-confined, overbank and ash-cloud surge deposits). Correlations and lithofacies variations inside three main flow units from both the valley-confined and overbank deposits left from the emplacement of the second series of BAFs on 11 July provide detailed information about: (1) the distribution, volumes and sedimentological characteristics of the different units; (2) flow parameters (i.e., velocity and dynamic pressure) and mobility metrics as inferred from associated deposits; and (3) changes in the dynamics of the different flows and their material during emplacement. These data were coupled with geomorphic analyses to assess the role of the topography in controlling the behaviour and impacts of the successive BAF pulses on the volcano flanks. Finally, these findings are used to propose a conceptual model for transport and deposition mechanisms of the July 2015 BAFs at Volcán de Colima. In this model, deposition occurs by rapid stepwise aggradation of successive BAF pulses. Flow confinement in a narrow and sinuous channel enhance the mobility and runout of individual channelized BAF pulses. When these conditions occur, the progressive valley infilling from successive sustained dome-collapse events promote the

  19. Pyrite deformation and connections to gold mobility: Insight from micro-structural analysis and trace element mapping

    Science.gov (United States)

    Dubosq, R.; Lawley, C. J. M.; Rogowitz, A.; Schneider, D. A.; Jackson, S.

    2018-06-01

    The metamorphic transition of pyrite to pyrrhotite results in the liberation of lattice-bound and nano-particulate metals initially hosted within early sulphide minerals. This process forms the basis for the metamorphic-driven Au-upgrading model applied to many orogenic Au deposits, however the role of syn-metamorphic pyrite deformation in controlling the retention and release of Au and related pathfinder elements is poorly understood. The lower amphibolite facies metamorphic mineral assemblage (Act-Bt-Pl-Ep-Alm ± Cal ± Qz ± Ilm; 550 °C) of Canada's giant Detour Lake deposit falls within the range of pressure-temperature conditions (450 °C) for crystal plastic deformation of pyrite. We have applied a complementary approach of electron backscatter diffraction (EBSD) mapping and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 2D element mapping on pyrite from the Detour Lake deposit. Chemical element maps document an early generation of Au-rich sieve textured pyrite domains and a later stage of syn-metamorphic oscillatory-zoned Au-poor pyrite. Both pyrite types are cut by Au-rich fractures as a consequence of remobilization of Au with trace element enrichment of first-row transition elements, post-transition metals, chalcogens and metalloids during a late brittle deformation stage. However, similar enrichment in trace elements and Au can be observed along low-angle grain boundaries within otherwise Au-poor pyrite, indicating that heterogeneous microstructural misorientation patterns and higher strain domains are also relatively Au-rich. We therefore propose that the close spatial relationship between pyrite and Au at the microscale, features typical of orogenic Au deposits, reflects the entrapment of Au within deformation-induced microstructures in pyrite rather than the release of Au during the metamorphic transition from pyrite to pyrrhotite. Moreover, mass balance calculations at the deposit scale suggest that only a small percentage

  20. Thermoluminescence kinetics of pyrite (FeS2)

    International Nuclear Information System (INIS)

    Silverman, A.N; Levy, P.W.; Kierstead, J.A.

    1990-01-01

    Thermoluminescence of pyrite (FeS 2 ) has been investigated to study the kinetics of single peak glow curves. The material used normally exhibits one large and four small peaks. However a glow curve can be obtained with only the large single peak that is suitable for testing thermoluminescence kinetics. Glow curves from aliquots of a single natural pyrite crystal studied in detail contain two low intensity thermoluminescence (TL) peaks at ∼90 degree and ∼250 degree C, and two chemiluminescence (CL) peaks at ∼350 degree and ∼430 degree C. The CL peaks are largely removable by initially heating the sample chamber under vacuum, pumping through liquid nitrogen traps, and recording glow curves immediately after helium is introduced, procedures which reduce system contaminants that react with pyrite. The shape, the variation of the temperature of the peak maximum (T max ) with dose, and the retrapping to recombination cross section ratio σ of the large 250 degree C peak are better described by the general one trap (GOT) kinetic equation, the basic equation from which the 1st and 2nd order kinetic equations are obtained as special cases (see text), than by the 1st and 2nd order equations. 12 refs., 7 figs

  1. Can ash clog soil pores?

    Science.gov (United States)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands

  2. Tubular heat exchangers, preferably for hot ashes and the like with two inlet chambers for hot ashes at different pressures

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, B P; Borisov, N L; Semenov, M K; Ponomarev, I K; Tyryshkina, B G; Gorbatenko, I V

    1985-10-28

    The stand and the tubes are encased in a structure where the space between the stand and the structure is divided into a collector chamber and a distribution chamber. Ashes of shale are introduced at different pressures into a special inlet where equalizing takes place and the ashes will flow homogeneously through the heat exchanger.

  3. Estimation of possibilities of making euro pallets from reclaimed polyolefin’s with tuff

    Directory of Open Access Journals (Sweden)

    S. Kuciel

    2010-07-01

    Full Text Available Possibilities of reusing and developing of waste plastics are one of the main problems of waste management for municipal governmentespecially in the context of adapting Polish law to standards of EC [1]. During the last 10 years total amount of plastics waste increasedtwice, especially in communal agglomerations. Among communal waste plastics make up 7 to 14% of whole their mass and 30% of theirvolume [1,2]. Plastic products have been recycled to be used in a number of different products often different from their original use.Reclaimed plastics can’t be used as products which have contact with food or as high demands esthetic and hygienic products, they alsoshouldn’t be applied as short-time used products because they quickly come back to plastics store-place. Reclaimed plastics have lowerproperties than virgin plastics – mainly the strength falls with the simultaneous fall of modules and increase fragile especially for PP, PE,PS and PET [1]. One of the possibilities of reinforcement of polyolefines is adding diverse fillers like glass or carbon fibers (but they arerather expensive and natural fillers like mineral, wood and others [3]. It’s especially important for wasted of low density polyethylenewhich has low modulus. For the tests it was used waste polyethylene (LDPE and HDPE from industrial with 15% mineral fillers – tuff.For the tests it was prepared two kinds of composites materials with 15% of tuff powder. Besides for comparison it was tested recycledpolyethylene (HDPE and LDPE and next was tested specimens cut out from produced europallets (with 15% of tuff. It was testedmechanical properties all prepared composite materials like tensile strength, stress and bending e-modulus and processing properties likemelt flow, Vicat point and photos on SEM microscope.

  4. Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite

    International Nuclear Information System (INIS)

    Gunawan, Richard; Zhang Dongke

    2009-01-01

    The interaction between ammonium nitrate based industrial explosives and pyrite-rich minerals in mining operations can lead to the occurrence of spontaneous explosion of the explosives. In an effort to provide a scientific basis for safe applications of industrial explosives in reactive mining grounds containing pyrite, ammonium nitrate decomposition, with and without the presence of pyrite, was studied using a simultaneous Differential Scanning Calorimetry and Thermogravimetric Analyser (DSC-TGA) and a gas-sealed isothermal reactor, respectively. The activation energy and the pre-exponential factor of ammonium nitrate decomposition were determined to be 102.6 kJ mol -1 and 4.55 x 10 7 s -1 without the presence of pyrite and 101.8 kJ mol -1 and 2.57 x 10 9 s -1 with the presence of pyrite. The kinetics of ammonium nitrate decomposition was then used to calculate the critical temperatures for ammonium nitrate decomposition with and without the presence of pyrite, based on the Frank-Kamenetskii model of thermal explosion. It was shown that the presence of pyrite reduces the temperature for, and accelerates the rate of, decomposition of ammonium nitrate. It was further shown that pyrite can significantly reduce the critical temperature of ammonium nitrate decomposition, causing undesired premature detonation of the explosives. The critical temperature also decreases with increasing diameter of the blast holes charged with the explosive. The concept of using the critical temperature as indication of the thermal stability of the explosives to evaluate the risk of spontaneous explosion was verified in the gas-sealed isothermal reactor experiments.

  5. Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite.

    Science.gov (United States)

    Gunawan, Richard; Zhang, Dongke

    2009-06-15

    The interaction between ammonium nitrate based industrial explosives and pyrite-rich minerals in mining operations can lead to the occurrence of spontaneous explosion of the explosives. In an effort to provide a scientific basis for safe applications of industrial explosives in reactive mining grounds containing pyrite, ammonium nitrate decomposition, with and without the presence of pyrite, was studied using a simultaneous Differential Scanning Calorimetry and Thermogravimetric Analyser (DSC-TGA) and a gas-sealed isothermal reactor, respectively. The activation energy and the pre-exponential factor of ammonium nitrate decomposition were determined to be 102.6 kJ mol(-1) and 4.55 x 10(7)s(-1) without the presence of pyrite and 101.8 kJ mol(-1) and 2.57 x 10(9)s(-1) with the presence of pyrite. The kinetics of ammonium nitrate decomposition was then used to calculate the critical temperatures for ammonium nitrate decomposition with and without the presence of pyrite, based on the Frank-Kamenetskii model of thermal explosion. It was shown that the presence of pyrite reduces the temperature for, and accelerates the rate of, decomposition of ammonium nitrate. It was further shown that pyrite can significantly reduce the critical temperature of ammonium nitrate decomposition, causing undesired premature detonation of the explosives. The critical temperature also decreases with increasing diameter of the blast holes charged with the explosive. The concept of using the critical temperature as indication of the thermal stability of the explosives to evaluate the risk of spontaneous explosion was verified in the gas-sealed isothermal reactor experiments.

  6. Unsaturated flow and transport through fractured rock related to high-level waste repositories

    International Nuclear Information System (INIS)

    Evans, D.D.; Rasmussen, T.C.

    1991-01-01

    Research results are summarized for a US Nuclear Regulatory Commission contract with the University of Arizona focusing on field and laboratory methods for characterizing unsaturated fluid flow and solute transport related to high-level radioactive waste repositories. Characterization activities are presented for the Apache Leap Tuff field site. The field site is located in unsaturated, fractured tuff in central Arizona. Hydraulic, pneumatic, and thermal characteristics of the tuff are summarized, along with methodologies employed to monitor and sample hydrologic and geochemical processes at the field site. Thermohydrologic experiments are reported which provide laboratory and field data related to the effects conditions and flow and transport in unsaturated, fractured rock. 29 refs., 17 figs., 21 tabs

  7. Flocculation of Pyrite Fines in Aqueous Suspensions with Corn Starch to Eliminate Mechanical Entrainment in Flotation

    Directory of Open Access Journals (Sweden)

    Wei Ge

    2015-10-01

    Full Text Available The hydrophilic flocculation of pyrite fines in aqueous suspensions with corn starch was studied by measuring particle size distribution, microscopy observation and micro-flotation. Furthermore, the interaction of corn starch with pyrite was investigated by determining the adsorption density and based on zeta potential measurements and X-ray photoelectron spectrometer (XPS analysis in this work. The results of the particle size distribution measurement show that corn starch can effectively aggregate pyrite fines, and the pyrite floccules (flocs are sensitive to mechanical stirring. The micro-flotation results suggest that the mechanical entrainment of pyrite fines in flotation can be effectively eliminated through the formation of large-size flocs. The zeta potential of pyrite particles decreases with the addition of corn starch. The XPS results prove that carboxyl groups are generated on the digested corn starch, and both iron hydroxyl compounds and ferrous disulfide on the pyrite surface can chemically interact with the corn starch digested by sodium hydroxide.

  8. The flotation of gold, uranium, and pyrite from Witwatersrand ores

    International Nuclear Information System (INIS)

    Lloyd, P.J.D.

    1981-01-01

    The Witwatersrand reefs contain gold, uranium, and pyrite in the following average concentrations: 0,001 per cent, 0,02 per cent, and 1,7 per cent respectively. The paper discusses the flotation of pyrite to produce a sulphide concentrate, reviews work done on the production of gold concentrates, discusses attempts to produce maximum concentrates, and closes with a review of processes for the simultaneous flotation of these three species. It is concluded that high recoveries of all three species can be achieved only if a rougher concentrate of perhaps 20 per cent of the feed (by mass) is produced, and it is suggested that reverse leaching (leaching before cyanidation) of this concentrate, followed by a cleaning flotation step for the recovery of the pyrite, would be more efficient than the routes employed at present [af

  9. Chloride Diffusion and Acid Resistance of Concrete Containing Zeolite and Tuff as Partial Replacements of Cement and Sand.

    Science.gov (United States)

    Mohseni, Ehsan; Tang, Waiching; Cui, Hongzhi

    2017-03-31

    In this paper, the properties of concrete containing zeolite and tuff as partial replacements of cement and sand were studied. The compressive strength, water absorption, chloride ion diffusion and resistance to acid environments of concretes made with zeolite at proportions of 10% and 15% of binder and tuff at ratios of 5%, 10% and 15% of fine aggregate were investigated. The results showed that the compressive strength of samples with zeolite and tuff increased considerably. In general, the concrete strength increased with increasing tuff content, and the strength was further improved when cement was replaced by zeolite. According to the water absorption results, specimens with zeolite showed the lowest water absorption values. With the incorporation of tuff and zeolite, the chloride resistance of specimens was enhanced significantly. In terms of the water absorption and chloride diffusion results, the most favorable replacement of cement and sand was 10% zeolite and 15% tuff, respectively. However, the resistance to acid attack reduced due to the absorbing characteristic and calcareous nature of the tuff.

  10. Preparation of Authigenic Pyrite from Methane-bearing Sediments for In Situ Sulfur Isotope Analysis Using SIMS.

    Science.gov (United States)

    Lin, Zhiyong; Sun, Xiaoming; Peckmann, Jörn; Lu, Yang; Strauss, Harald; Xu, Li; Lu, Hongfeng; Teichert, Barbara M A

    2017-08-31

    Different sulfur isotope compositions of authigenic pyrite typically result from the sulfate-driven anaerobic oxidation of methane (SO4-AOM) and organiclastic sulfate reduction (OSR) in marine sediments. However, unravelling the complex pyritization sequence is a challenge because of the coexistence of different sequentially formed pyrite phases. This manuscript describes a sample preparation procedure that enables the use of secondary ion mass spectroscopy (SIMS) to obtain in situ δ 34 S values of various pyrite generations. This allows researchers to constrain how SO4-AOM affects pyritization in methane-bearing sediments. SIMS analysis revealed an extreme range in δ 34 S values, spanning from -41.6 to +114.8‰, which is much wider than the range of δ 34 S values obtained by the traditional bulk sulfur isotope analysis of the same samples. Pyrite in the shallow sediment mainly consists of 34 S-depleted framboids, suggesting early diagenetic formation by OSR. Deeper in the sediment, more pyrite occurs as overgrowths and euhedral crystals, which display much higher SIMS δ 34 S values than the framboids. Such 34 S-enriched pyrite is related to enhanced SO4-AOM at the sulfate-methane transition zone, postdating OSR. High-resolution in situ SIMS sulfur isotope analyses allow for the reconstruction of the pyritization processes, which cannot be resolved by bulk sulfur isotope analysis.

  11. Distribution of rubidium, strontium, and zirconium in tuff from two deep coreholes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Spengler, R.W.; Peterman, Z.E.

    1991-01-01

    Variations in concentrations of trace elements Rb, Sr, and Zr within the sequence of high-silica tuff and dacitic lava beneath Yucca Mountain reflect both primary composition and secondary alteration. Rb and K concentrations have parallel trends. Rb concentrations are significantly lower within intervals containing zeolitic nonwelded to partially welded and bedded tuffs and are higher in thick moderately to densely welded zones. Sr concentrations increase with depth from about 30 parts per million (ppM) in the Topopah Spring Member of the Paintbrush Tuff to almost 300 ppM in the older tuffs. Zr concentrations are about 100 ppM in the Topopah Spring Member and also increase with depth to about 150 ppM in the Lithic Ridge Tuff and upper part of the older tuffs. Conspicuous local high concentrations of Sr in the lower part of the Tram Member, in the dacite lava, and in unit c of the older tuffs in USW G-1, and in the densely welded zone of the Bullfrog Member in USW GU-3/G-3 closely correlate with high concentrations of less-mobile Zr and may reflect either primary composition or elemental redistribution resulting largely from smectitic alteration. Initial 87 Sr/ 86 Sr values from composite samples increase upward in units above the Bullfrog Member of the Crater Flat Tuff. The progressive tenfold increase in Sr with depth coupled with the similarity of initial 87 Sr/ 86 Sr values within the Bullfrog Member and older units to those of Paleozoic marine carbonates are consistent with a massive influx or Sr from water derived from a Paleozoic carbonate aquifer. 23 refs., 4 figs., 1 tab

  12. Effect of Pyrite on Thiosulfate Leaching of Gold and the Role of Ammonium Alcohol Polyvinyl Phosphate (AAPP

    Directory of Open Access Journals (Sweden)

    Xiaoliang Liu

    2017-07-01

    Full Text Available The effect of pyrite and the role of ammonium alcohol polyvinyl phosphate (AAPP during gold leaching in ammoniacal thiosulfate solutions were investigated using pure gold foils. The results showed that pyrite catalyzed the decomposition and also significantly increased the consumption of thiosulfate. This detrimental effect became more severe with increasing pyrite content. Further, the presence of pyrite also substantially slowed the gold leaching kinetics and reduced the overall gold dissolution. The reduction in gold dissolution was found to be caused primarily by the surface passivation of the gold. The negative effects of pyrite, however, can be alleviated by the addition of AAPP. Comparison of zeta potentials of pyrite with and without AAPP suggests that AAPP had adsorbed on the surface of the pyrite and weakened the catalytic effect of pyrite on the thiosulfate decomposition by blocking the contact between the pyrite and thiosulfate anions. AAPP also competed with thiosulfate anions to complex with the cupric ion at the axial coordinate sites, and thus abated the oxidation of thiosulfate by cupric ions. Moreover, the indiscriminate adsorption of AAPP on the surfaces of gold and passivation species prevented the passivation of the gold surface by surface charge and electrostatic repulsion. Therefore, AAPP effectively stabilized the thiosulfate in the solution and facilitated the gold leaching in the presence of pyrite.

  13. Sap flow of black ash in wetland forests of northern Minnesota, USA: Hydrologic implications of tree mortality due to emerald ash borer

    Science.gov (United States)

    Andrew C. Telander; Robert A. Slesak; Anthony W. D' Amato; Brian J. Palik; Kenneth N. Brooks; Christian F. Lenhart

    2015-01-01

    Black ash (Fraxinus nigra) mortality caused by the invasive emerald ash borer (EAB) is of concern to land managers in the upper Great Lakes region, given the large areas of ash-dominated forest and potential alteration of wetland hydrology following loss of this foundation tree species. The importance of changes in evapotranspiration (ET) following...

  14. Version I of the users manual for the Tuff Data Base Interface

    International Nuclear Information System (INIS)

    Langkopf, B.S.; Satter, B.J.; Welch, E.P.

    1985-04-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project, managed by the Nevada Operations Office of the US Department of Energy, is investigating the feasibility of locating a repository at Yucca Mountain on and adjacent to the Nevada Test Site (NTS) in southern Nevada. A part of this investigation includes obtaining physical properties from laboratory tests on samples from Yucca Mountain and field tests of the in situ tuffs at Yucca Mountain. A computerized data base has been developed to store this data in a centralized location. The data base is stored on the Cyber 170/855 computer at Sandia using the System 2000 Data Base Management software. A user-friendly interface, the Tuff Data Base Interface, is being developed to allow NNWSI participants to retrieve information from the Tuff Data Base directly. The Interface gives NNWSI users a great deal of flexibility in retrieving portions of the Data Base. This report is an interim users manual for the Tuff Data Base Interface, as of August 1984. It gives basic instructions on accessing the Sandia computing system and explains the Interface on a question-by-question basis

  15. Temporal and spatial variations in fly ash quality

    Science.gov (United States)

    Hower, J.C.; Trimble, A.S.; Eble, C.F.

    2001-01-01

    Fly ash quality, both as the amount of petrographically distinguishable carbons and in chemistry, varies in both time and space. Temporal variations are a function of a number of variables. Variables can include variations in the coal blend organic petrography, mineralogy, and chemistry; variations in the pulverization of the coal, both as a function of the coal's Hardgrove grindability index and as a function of the maintenance and settings of the pulverizers; and variations in the operating conditions of the boiler, including changes in the pollution control system. Spatial variation, as an instantaneous measure of fly ash characteristics, should not involve changes in the first two sets of variables listed above. Spatial variations are a function of the gas flow within the boiler and ducts, certain flow conditions leading to a tendency for segregation of the less-dense carbons in one portion of the gas stream. Caution must be applied in sampling fly ash. Samples from a single bin, or series of bins, m ay not be representative of the whole fly ash, providing a biased view of the nature of the material. Further, it is generally not possible to be certain about variation until the analysis of the ash is complete. ?? 2001 Elsevier Science B.V. All rights reserved.

  16. Influence of the Interaction between Sphalerite and Pyrite on the Copper Activation of Sphalerite

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2018-01-01

    Full Text Available In this paper, the effect of pyrite on the activation of sphalerite was investigated by micro-flotation, copper adsorption experiments, X-ray photoelectron spectroscopy (XPS, and electrochemical measurement. The micro-flotation test results showed that the recovery and flotation rate of sphalerite with copper sulphate as activator and butyl xanthate as collector were significantly decreased with the increasing content of pyrite in pulp. Cu2+ adsorption results indicated that the adsorption of Cu2+ on the sphalerite surface were decreased when pyrite was present in the pulp. XPS surface analysis demonstrated that the proportion of Cu+ species increased in the activation products on the sphalerite surface, but the total atomic concentration of Cu atom was decreased. Linear voltammetry measurement suggested that the current density of Cu+ species oxidizing to Cu2+ species was increased when sphalerite was electrically contacted with pyrite, which confirmed the increased proportion of Cu+ species on Cu-activation sphalerite surface when contacting with pyrite. These results indicated that there is not only a competitive adsorption for cupric ions (Cu2+, but the galvanic interaction between sphalerite and pyrite also has a significant influence on the copper activation of sphalerite.

  17. Potential for thermochemical conversion of biomass residues from the integrated sugar-ethanol process - Fate of ash and ash-forming elements.

    Science.gov (United States)

    Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Zevenhoven, Maria; Hupa, Mikko

    2017-06-01

    In this work, potential for thermochemical conversion of biomass residues from an integrated sugar-ethanol process and the fate of ash and ash-forming elements in the process are presented. Ash, ash-forming elements, and energy flows in the process were determined using mass balances and analyses of eight different biomass samples for ash contents, elemental compositions, and heating values. The results show that the ash content increases from the sugarcane to the final residue, vinasse. The cane straw, which is left in the field, contains one-third of the energy and 25% of the K and Cl while the vinasse contains 2% of the energy and 40% of the K and Cl in the cane. K and Cl in biomass fuels cause corrosion and fouling problems in boilers and gasifiers. Over 85% of these elements in the straw are water soluble indicating that water leaching would improve it for utilization in thermochemical conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  19. Isotopic and microbiological signatures of pyrite-driven denitrification in a sandy aquifer

    NARCIS (Netherlands)

    Zhang, Y.-C.; Slomp, C.P.; Broers, H.P.; Bostick, B.; Passier, H.F.; Böttcher, M.E.; Omoregie, E.O.; Lloyd, J.R.; Polya, D.A.; Van Cappellen, P.

    2012-01-01

    Denitrificationdriven by pyrite oxidation can play a major role in the removal of nitrate from groundwater systems. As yet, limited information is available on the interactions between the micro-organisms and aqueous and mineral phases in aquifers where pyrite oxidation is occurring. In this study,

  20. A model of pyritic oxidation in waste rock dumps

    International Nuclear Information System (INIS)

    Davis, G.B.; Ritchie, A.I.M.

    1983-01-01

    The oxidation of pyrite can lead to high acid levels and high concentrations of trace metals in the water that runs off and percolates through pyritic material. This is the situation at the abandoned uranium mine at Rum Jungle in the Northern Territory of Australia, where pyritic oxidation in the waste rock dumps resulting from open cut mining of the uranium orebody has led to pollution of the nearby East Branch of the Finniss River, with trace metals such as copper, manganese and zinc. Mathematical equations are formulated which describe a model of pyritic oxidation within a waste rock dump, where it is assumed that oxygen transport is the rate limiting step in the oxidation process and that oxygen is transported by gaseous diffusion through the pore space of the dump, followed by diffusion into oxidation sites within the particles that comprise the dump. The equations have been solved numerically assuming values for such parameters as porosity, sulphur density and oxygen diffusion coefficients which are applicable to the waste rock dumps at Rum Jungle. An approximate solution to the equations is also presented. Calculations of the heat source distribution and the total SO 4 production rate are presented for both single size particles and for a range of particle sizes in the dump. The usefulness of the approximate solution, and of calculations based on single size particles in the dump in assessing the effectiveness of strategies to reduce pollution from such waste rock dumps are discussed

  1. Relationship between pyrite Stability and arsenic mobility during aquifer storage and recovery in southwest central Florida.

    Science.gov (United States)

    Jones, Gregg W; Pichler, Thomas

    2007-02-01

    Elevated arsenic concentrations are common in water recovered from aquifer storage and recovery (ASR) systems in west-central Florida that store surface water. Investigations of the Suwannee Limestone of the Upper Floridan aquifer, the storage zone for ASR systems, have shown that arsenic is highest in pyrite in zones of high moldic porosity. Geochemical modeling was employed to examine pyrite stability in limestone during simulated injections of surface water into wells open only to the Suwannee Limestone with known mineralogy and water chemistry. The goal was to determine if aquifer redox conditions could be altered to the degree of pyrite instability. Increasing amounts of injection water were added to native storage-zone water, and resulting reaction paths were plotted on pyrite stability diagrams. Native storage-zone water plotted within the pyrite stability field, indicating that conditions were sufficiently reducing to allow for pyrite stability. Thus, arsenic is immobilized in pyrite, and its groundwater concentration should be low. This was corroborated by analysis of water samples, none of which had arsenic concentrations above 0.036 microg/L. During simulation, however, as injection/native storage-zone water ratios increased, conditions became less reducing and pyrite became unstable. The result would be release of arsenic from limestone into storage-zone water.

  2. DFT study on the galvanic interaction between pyrite (100) and galena (100) surfaces

    International Nuclear Information System (INIS)

    Ke, Baolin; Li, Yuqiong; Chen, Jianhua; Zhao, Cuihua; Chen, Ye

    2016-01-01

    Graphical abstract: - Highlights: • Galvanic interaction is weakened with the increase of contact distance. • Electronic transfer mainly occurs on the contact layers. • Galvanic effect enhances nucleophilicity of galena and electrophilicity of pyrite. • Presence of H_2O increases the galvanic interaction. - Abstract: The galvanic interaction between pyrite and galena surface has been investigated using density functional theory (DFT) method. The calculated results show that galvanic interactions between pyrite and galena surface are decreased with the increase of contact distance. The galvanic interactions still occurs even the distance larger than the sum of two atoms radius (≈2.8 Å), and the limit distance of galvanic interaction between galena and pyrite surface is about 10 Å, which is consistent with the quantum tunneling effect. Through Mulliken charge population calculation, it is found that electrons transfer from galena to pyrite. For galena surface, Pb 6s and 6p states lose electrons and S 3p state loses a small amount of electrons, which causes the electron loss of galena. For pyrite surface, Fe 4p state obtains large numbers of electrons, resulting in the decrease of positive charge of Fe atom. However, the 3p state of S atom loses a small numbers of electrons. The reactivity of mineral surface has also been studied by calculating the frontier orbitals of minerals. Results suggest that the highest occupied molecular orbital (HOMO) coefficients of galena are increased whereas those of pyrite are decreased with the enhancing galvanic interaction, indicating that the oxidation of galena surface would be enhanced due to the galvanic interaction. The Fukui indices and dual descriptor values of surface atoms suggest that the nucleophilicity of the galena surface increases, meanwhile, the electrophilicity of pyrite surface increases with the decrease of the contact distance. In addition, the density of states (DOS) of atoms results show that the

  3. Energy dependent neutron imaging

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Hitterman, R.L.; Rhodes, E.

    1990-01-01

    A waste package consisting of a container and high-level nuclear waste is being developed for the permanent disposal of radioactive waste. Yucca Mountain, Nevada, is being studied as a potential site for the underground high-level nuclear waste repository. A major consideration for choosing Yucca Mountain is the presence of zeolite in tertiary ash-flow tuffs. The presence of zeolites could provide geological barriers to radionuclide migration. The suitability of the tuffaceous rocks at Yucca Mountain for the repository is being investigated since the properties of the environment around a waste site must be well characterized to reliably predict performance. The results of experiments at Lawrence Livermore National Laboratory (LLNL) to assess the possibility of imaging water in Nevada Test Site welded tuff samples showed that nuclear magnetic resonance imaging is not viable. This leaves neutron tomography and high-frequency electromagnetic geotomography as possibilities for the practical imaging of distribution and flow of fluids in rock, including tuff specimens. Water tracers are needed in electromagnetic tomography techniques since the contrast for detecting water in cracks of tuff is lower than in granite because of the higher porosity in tuff. The results of preliminary testing with geotomography by LLNL indicates relatively low spatial resolution. More sensitive techniques for detecting water is needed. This paper describes preliminary experiments to apply pulsed neutrons to image water in a sample of tuff. 3 refs., 3 figs

  4. The behavior of biogenic silica-rich rocks and volcanic tuffs as pozzolanic additives in cement

    Science.gov (United States)

    Fragoulis, Dimitris; Stamatakis, Michael; Anastasatou, Marianthi

    2015-04-01

    Cements currently produced, include a variety of pozzolanic materials, aiming for lower clinker addition and utilization of vast deposits of certain raw materials and/or mining wastes and byproducts. The major naturally occurring pozzolanic materials include glassy tuffs, zeolitic tuffs, diatomites and volcanic lavas rich in glassy phase, such as perlites. Therefore, based on the available raw materials in different locations, the cement composition might vary according to the accessibility of efficient pozzolanic materials. In the present investigation, the behavior of pozzolanic cements produced with representative samples of the aforementioned materials was studied, following the characterization of the implemented pozzolanas with respect to their chemical and mineralogical characteristics. Laboratory cements were produced by co-grinding 75% clinker, 5% gypsum and 20% pozzolana, for the same period of time (45 min). Regarding pozzolanic materials, four different types of pozzolanas were utilized namely, diatomite, perlite, zeolite tuff and glassy tuff. More specifically, two diatomite samples originated from Australia and Greece, with high and low reactive silica content respectively, two perlite samples originated from Turkey and from Milos Island, Greece, with different reactive silica contents, a zeolite tuff sample originated from Turkey and a glassy tuff sample originated from Milos Island, Greece. The above pozzolana samples, which were ground in the laboratory ball mill for cement production performed differently during grinding and that was reflected upon the specific surface area (cm2/gr) values. The perlites and the glassy tuff were the hardest to grind, whereas, the zeolite tuff and the Australian diatomite were the easiest ones. However, the exceedingly high specific surface area of the Australian diatomite renders cement difficult to transport and tricky to use for concrete manufacturing, due to the high water demand of the cement mixture. Regarding

  5. Copper-arsenic decoupling in an active geothermal system: A link between pyrite and fluid composition

    Science.gov (United States)

    Tardani, Daniele; Reich, Martin; Deditius, Artur P.; Chryssoulis, Stephen; Sánchez-Alfaro, Pablo; Wrage, Jackie; Roberts, Malcolm P.

    2017-05-01

    Over the past few decades several studies have reported that pyrite hosts appreciable amounts of trace elements which commonly occur forming complex zoning patterns within a single mineral grain. These chemical zonations in pyrite have been recognized in a variety of hydrothermal ore deposit types (e.g., porphyry Cu-Mo-Au, epithermal Au deposits, iron oxide-copper-gold, Carlin-type and Archean lode Au deposits, among others), showing, in some cases, marked oscillatory alternation of metals and metalloids in pyrite growth zones (e.g., of Cu-rich, As-(Au, Ag)-depleted zones and As-(Au, Ag)-rich, Cu-depleted zones). This decoupled geochemical behavior of Cu and As has been interpreted as a result of chemical changes in ore-forming fluids, although direct evidence connecting fluctuations in hydrothermal fluid composition with metal partitioning into pyrite growth zones is still lacking. In this study, we report a comprehensive trace element database of pyrite from the Tolhuaca Geothermal System (TGS) in southern Chile, a young and active hydrothermal system where fewer pyrite growth rims and mineralization events are present and the reservoir fluid (i.e. ore-forming fluid) is accessible. We combined the high-spatial resolution and X-ray mapping capabilities of electron microprobe analysis (EMPA) with low detection limits and depth-profiling capacity of secondary-ion mass spectrometry (SIMS) in a suite of pyrite samples retrieved from a ∼1 km drill hole that crosses the argillic (20-450 m) and propylitic (650-1000 m) alteration zones of the geothermal system. We show that the concentrations of precious metals (e.g., Au, Ag), metalloids (e.g., As, Sb, Se, Te), and base and heavy metals (e.g., Cu, Co, Ni, Pb) in pyrite at the TGS are significant. Among the elements analyzed, As and Cu are the most abundant with concentrations that vary from sub-ppm levels to a few wt.% (i.e., up to ∼5 wt.% As, ∼1.5 wt.% Cu). Detailed wavelength-dispersive spectrometry (WDS) X

  6. Isotopic and microbiological signatures of pyrite-driven denitrification in a sandy aquifer

    NARCIS (Netherlands)

    Zhang, Y.C.; Slomp, C.P.; Broers, H.P.; Bostick, B.; Passier, H.F.; Böttcher, M.E.; Omoregie, E.O.; Lloyd, J.R.; Polya, D.A.; Cappellen, P. van

    2012-01-01

    Denitrification driven by pyrite oxidation can play a major role in the removal of nitrate from groundwater systems. As yet, limited information is available on the interactions between the micro-organisms and aqueous and mineral phases in aquifers where pyrite oxidation is occurring. In this study,

  7. Pyrite Passivation by Triethylenetetramine: An Electrochemical Study

    Directory of Open Access Journals (Sweden)

    Yun Liu

    2013-01-01

    Full Text Available The potential of triethylenetetramine (TETA to inhibit the oxidation of pyrite in H2SO4 solution had been investigated by using the open-circuit potential (OCP, cyclic voltammetry (CV, potentiodynamic polarization, and electrochemical impedance (EIS, respectively. Experimental results indicate that TETA is an efficient coating agent in preventing the oxidation of pyrite and that the inhibition efficiency is more pronounced with the increase of TETA. The data from potentiodynamic polarization show that the inhibition efficiency (η% increases from 42.08% to 80.98% with the concentration of TETA increasing from 1% to 5%. These results are consistent with the measurement of EIS (43.09% to 82.55%. The information obtained from potentiodynamic polarization also displays that the TETA is a kind of mixed type inhibitor.

  8. Production of ferric sulphate from pyrite by thiobacillus ferrooxidans. Application to uranium ore leaching

    International Nuclear Information System (INIS)

    Rouas, C.

    1988-12-01

    A process for uranium extraction by oxidizing solutions of ferric sulphate produced by T. ferrooxidans from pyrite is developed. A new counting method specific of T. ferrooxidans is designed. An uranium resistant wild strain, with oxidizing properties as high as the strain ATCC 19859, is isolated. Optimal conditions for ferric sulphate production from pyrite are defined (pH 1.8, density of the medium 1.2%, pyrite granulometry [fr

  9. Estimates of the width of the wetting zone along a fracture subjected to an episodic infiltration event in variably saturated, densely welded tuff

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1988-01-01

    A central issue to be addressed within the Nevada Nuclear Waste Storage Investigations (NNWSI) is the role which fractures will play as the variably saturated, fractured rock mass surrounding the waste package responds to heating, cooling, and episodic infiltration events. Understanding the role of fractures during such events will, in part, depend on our ability to make geophysical measurements of perturbations in the moisture distribution in the vicinity of fractures. In this study we first examine the details of the perturbation in the moisture distribution in and around a fracture subjected to an episodic infiltration event, and then integrate that behavior over the scale at which moisture measurements are likely to be made during the Engineered Barrier Design Test of the NNWSI project. To model this system we use the TOUGH hydrothermal code and fracture and matrix properties considered relevant to the welded ash flow tuff found in the Topopah Spring member at Yucca Mountain as well as in the Grouse Canyon member within G-Tunnel at the Nevada Test Site. Our calculations provide insight into the anticipated spatial and temporal resolution obtainable through the use of the geophysical techniques being considered. These calculations should prove useful both in planning the implementation of these methods as well as in the interpretation of their results. 41 refs., 28 figs

  10. Triaxial- and uniaxial-compression testing methods developed for extraction of pore water from unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mower, T.E.; Higgins, J.D. [Colorado School of Mines, Golden, CO (USA). Dept. of Geology and Geological Engineering; Yang, I.C. [Geological Survey, Denver, CO (USA). Water Resources Div.

    1989-12-31

    To support the study of hydrologic system in the unsaturated zone at Yucca Mountain, Nevada, two extraction methods were examined to obtain representative, uncontaminated pore-water samples from unsaturated tuff. Results indicate that triaxial compression, which uses a standard cell, can remove pore water from nonwelded tuff that has an initial moisture content greater than 11% by weight; uniaxial compression, which uses a specifically fabricated cell, can extract pore water from nonwelded tuff that has an initial moisture content greater than 8% and from welded tuff that has an initial moisture content greater than 6.5%. For the ambient moisture conditions of Yucca Mountain tuffs, uniaxial compression is the most efficient method of pore-water extraction. 12 refs., 7 figs., 2 tabs.

  11. Report on assessment of the mechanism of bacterially assisted oxidation of pyritic uranium tailings

    International Nuclear Information System (INIS)

    Halbert, B.B.; Scharer, J.M.; Knapp, R.A.

    1984-07-01

    The oxidation of pyritic minerals has been shown to be catalyzed by the presence of iron- and sulphur-oxidizing bacteria. Thiobacillus ferroxidans plays the most significant role in the formation and propagation of acidic conditions. Optimum growth conditions for the T. ferroxidans occurs at a temperature of 35 degrees C and pH of 2 to 3. Bacterially assisted oxidation of pyrite involves both direct and indirect contact mechanisms. The direct contact mechanism entails enzymatic oxidation of the insoluble sulphide moiety. The indirect mechanism involves bacterial oxidation of the dissolved ferrous component to the ferric state. The ferric iron, in turn, acts as the prime oxidant of pyrite and is reduced to ferrous iron. The re-oxidation of the dissolved ferrous component which is catalyzed by bacterial activity, completes the cyclic process. The rate of bacterial oxidation is affected by: the geochemistry and reactivity of the pyritic material; the amount of pyrite present in the waste material and the exposed surface area of the pyritic component; the availability of oxygen and carbon dioxide; the pH and temperature of the leach solution; and the presence (or absence) of organic inhibitors. Of the above factors, oxygen has been frequently identified as the rate limiting reactant in tailings

  12. Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation.

    Science.gov (United States)

    Mitchell, Timothy K; Nguyen, Anh V; Evans, Geoffrey M

    2005-06-30

    Heterocoagulation between various fine mineral particles contained within a mineral suspension with different structural and surface chemistry can interfere with the ability of the flotation processes to selectively separate the minerals involved. This paper examines the interactions between chalcopyrite (a copper mineral) and pyrite (an iron mineral often bearing gold) as they approach each other in suspensions with added chemicals, and relates the results to the experimental data for the flotation recovery and selectivity. The heterocoagulation was experimentally studied using the electrophoretic light scattering (ELS) technique and was modelled by incorporating colloidal forces, including the van der Waals, electrostatic double layer and hydrophobic forces. The ELS results indicated that pyrite has a positive zeta potential (zeta) up to its isoelectric point (IEP) at approximately pH 2.2, while chalcopyrite has a positive zeta up to its IEP at approximately pH 5.5. This produces heterocoagulation of chalcopyrite with pyrite between pH 2.2 and pH 5.5. The heterocoagulation was confirmed by the ELS spectra measured with a ZetaPlus instrument from Brookhaven and by small-scale flotation experiments.

  13. Geochemistry of shale and sedimentary pyrite as a proxy for gold fertility in the Selwyn basin area, Yukon

    Science.gov (United States)

    Sack, Patrick J.; Large, Ross R.; Gregory, Daniel D.

    2018-01-01

    Selwyn basin area strata contain sedimentary pyrite with Au above background levels when analyzed by laser ablation-inductively coupled mass spectrometry. Hyland Group rocks contain framboidal pyrite contents of 670 ppb Au, 1223 ppm As, and 5.3 ppm Te; the mean of all types of sedimentary pyrite in the Hyland Group is 391 ppb Au, 1489 ppm As, and 3.8 ppm Te. These levels are similar to sedimentary pyrite in host lithologies from major orogenic gold districts in New Zealand and Australia. Comparison of whole rock and pyrite data show that rocks deposited in continental slope settings with significant terrigenous input contain pyrite that is consistently enriched in Au, As, Te, Co, and Cu. Although data are limited, whole rock samples of stratigraphic units containing Au-rich pyrite also contain high Au, indicating that most of the Au is within sedimentary pyrite. Based on geologic characteristics and comparison of pyrite chemistry data with whole rock chemistry, Selwyn basin area strata have the necessary ingredients to form orogenic gold deposits: Au-enriched source rocks, metamorphic conditions permissive of forming a metamorphic ore fluid, and abundant structural preparation for channeling fluids and depositing ore.

  14. Triaxial-compression extraction of pore water from unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Yang, I.C.; Turner, A.K.; Sayre, T.M.; Montazer, P.

    1988-01-01

    The purpose of this experiment was to design and validate methods for extracting uncontaminated pore water from nonwelded parts of this tuff. Pore water is needed for chemical analysis to help characterize the local hydrologic system. A standard Hoek-Franklin triaxial cell was modified to create a chemically inert pore-water-extraction system. Experimentation was designed to determine the optimum stress and duration of triaxial compression for efficient extraction of uncontaminated pore water. Experimental stress paths consisted of a series of increasing stress levels. Trial axial stress levels ranged from 41 to 190 megapascals with lateral confining stresses of 34 to 69 megapascals. The duration of compression at any given stress level lasted from 10 minutes to 15 hours. A total of 40 experimental extraction trials were made. Tuff samples used in these tests were collected from drill-hole core from the Paintbrush nonwelded unit at Yucca Mountain. Pore water was extracted from tuff samples that had a water content greater than 13 percent by weight. Two stress paths have been determined to be applicable for future pore-water extraction from nonwelded tuff at Yucca Mountain. The initial water content of a sample affects the selection of an appropriate period of compression. 39 refs., 55 figs

  15. K-Ar age estimate for the KBS Tuff, East Turkana, Kenya

    International Nuclear Information System (INIS)

    McDougall, I.; Maier, R.; Sutherland-Hawkes, P.; Gleadow, A.J.W.

    1980-01-01

    Stone tools and numerous vertebrate fossils including hominids, have been found in close stratigraphic proximity to the KBS Tuff, whose age has been the subject of much debate. Concordant K-Ar ages, averaging 1.89 +- 0.01 Myr, are reported on anorthoclase phenocrysts from 13 pumice clasts collected from within the KBS Tuff or its correlatives. It is believed that this age is the best estimate currently available for the time of formation of this important marker horizon within the East Turkana Basin. (author)

  16. The influence of using volcanic ash and lime ash as filler on compressive strength in self compacting concrete

    Science.gov (United States)

    Karolina, Rahmi; Panatap Simanjuntak, Murydrischy

    2018-03-01

    Self Compacting Concrete (SCC) is a technology which is developing today in which concrete solidifies by itself without using vibrator. Casting conventional concrete which has a lot of reinforcement bars sometimes finds difficulty in achieving optimal solidity. The method used to solve this problem is by using SCC technology. SCC was made by using filler, volcanic ash, and lime ash as the filling materials so that the concrete became more solid and hollow space could be filled up. The variation of using these two materials was 10%, 15%, 20%, and 25% of the cementitious mass and using 1% of superplasticizer from cementitious material. The supporting testing was done by using the test when the concrete was still fluid and when it was solid. Malleable concrete was tested by using EFNARC 2002 standard in slump flow test, v-funnel test, l-shaped box test, and j-ring test to obtain filling ability and passing ability. In this malleable lime concrete test, there was the decrease, compared with normal SCC concrete without adding volcanic ash and lime ash. Testing was also done in solid concrete in compressive strength, tensile strength, and concrete absorption. The result of the testing showed that the optimum tensile strength in Variation 1, without volcanic ash and lime ash – with 1% of superplasticizer was 39.556 MPa, the optimum tensile strength in Variation 1, without volcanic ash and lime ash- with 1% of super-plasticizer was 3.563 MPa, while the value of optimum absorption which occurred in Variation 5 (25% of volcanic ash + 25% of lime ash + 50% of cement + 1% of superplasticizer) was 1.313%. This was caused by the addition of volcanic ash and lime ash which had high water absorption.

  17. On the genesis of pyrite-polymetallic deposits of the Rudnyi Altai

    International Nuclear Information System (INIS)

    Puchkov, E.V.; Najdenov, B.M.

    1986-01-01

    Results of lead isotope composition measurements in pyrite-polymetallic deposits of the Rudnyi Altai are presented. Porphyr dating by zirconium has shown isochronous age of 552 million years. Lead of galenites of various generations and galenite form of lead of pyrit provide similar lead-isotope values with model age of 370 million years. The isotopic-geochemical data obtained are interpreted as applied to the deposit genesis

  18. The influence of pyrite on the solubility of minjingu and panda ...

    African Journals Online (AJOL)

    A laboratory study was conducted to investigate the effect of pyrite rock on the solubility of Minjingu and Panda phosphate rocks. The rocks were ground to 100 mesh (0.045 mm) after which each phosphate rock was mixed with pyrite at P:S ratios of 1:4, 1 :3, 1:2, 1:1, 2:1, and 3: 1. The mixtures were moistened and incubated ...

  19. Evaluation of pyrite and pyrrhotite in concretes

    Directory of Open Access Journals (Sweden)

    A. P. Marcelino

    Full Text Available ABSTRACT It is well known that aggregate characteristics can intensively interfere in concrete behavior especially when sulfides are presented in the aggregates. The lack of consensus to content limit value of these deleterious sulfur compounds in concrete structures for dams has motivated several investigations worldwide. Within this scenario, this work presents a methodology to evaluate the presence of pyrite and pyrrhotite in concretes produced with aggregates containing sulfides. For the study, rock samples from the Irapé hydroelectric power plant area in Minas Gerais (Brazil were used. This plant was built in a geological site where the rock presented sulfide levels of at least 3%. These rock samples were first ground and then used as aggregates in mortars, which were, during almost one year, subjected to three different exposed conditions: temperature of 23° ± 2°C and relative humidity of 95 to 100%; calcium hydroxide solution diluted in water kept at two different temperatures: room temperature and 50° C. The presence and amount of pyrrhotite were obtained from a leaching process of the material (aggregate or mortar in a solution of hydrochloric acid. This procedure allowed also the evaluation of the pyrite content. The results showed that the amount of pyrite has remained virtually constant over time in the three exposure situations. This finding indicates that sulfur limits in aggregates should be set according to the type of iron sulfide presented and not solely by the total amount of sulfur.

  20. Selective separation of arsenopyrite from pyrite by biomodulation in the presence of Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    Chandraprabha, M N; Natarajan, K A; Somasundaran, P

    2004-08-15

    Effective methods for selective separation using flotation or flocculation of arsenopyrite from pyrite by biomodulation using Acidithiobacillus ferrooxidans are presented here. Adhesion of the bacterium to the surface of arsenopyrite was very slow compared to that to pyrite, resulting in a difference in surface modification of the minerals subsequent to interaction with cells. The cells were able to effectively depress pyrite flotation in presence of collectors like potassium isopropyl xanthate and potassium amyl xanthate. On the other hand the flotability of arsenopyrite after conditioning with the cells was not significantly affected. The activation of pyrite by copper sulfate was reduced when the minerals were conditioned together, resulting in better selectivity. Selective separation could also be achieved by flocculation of biomodulated samples.

  1. Biogas cleaning and upgrading with natural zeolites from tuffs.

    Science.gov (United States)

    Paolini, Valerio; Petracchini, Francesco; Guerriero, Ettore; Bencini, Alessandro; Drigo, Serena

    2016-01-01

    CO2 adsorption on synthetic zeolites has become a consolidated approach for biogas upgrading to biomethane. As an alternative to synthetic zeolites, tuff waste from building industry was investigated in this study: indeed, this material is available at a low price and contains a high fraction of natural zeolites. A selective adsorption of CO2 and H2S towards CH4 was confirmed, allowing to obtain a high-purity biomethane (CO2 biogas samples were used, and no significant effects due to biogas impurities (e.g. humidity, dust, moisture, etc.) were observed. Thermal and vacuum regenerations were also optimized and confirmed to be possible, without significant variations in efficiency. Hence, natural zeolites from tuffs may successfully be used in a pressure/vacuum swing adsorption process.

  2. Spatial variability of damage around faults in the Joe Lott Tuff Member of the Mount Belknap Volcanics, southwestern Utah

    Science.gov (United States)

    Okubo, C. H.

    2012-12-01

    In order to yield new insight into the process of faulting in fine-grained, poorly indurated volcanic ash, the distribution of strain around faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah, is investigated. Several distinct styles of inelastic strain are identified. Deformation bands are observed in tuff that is porous and granular in nature, or is inferred to have been so at the time of deformation. Where silicic alteration is pervasive, fractures are the dominant form of localized strain. Non-localized strain within the host rock is manifest as pore space compaction, including crushing of pumice clasts. Distinct differences in fault zone architecture are observed at different magnitudes of normal fault displacement, in the mode II orientation. A fault with cm-scale displacements is manifest as a single well-defined surface. Off-fault damage occurs as pore space compaction near the fault tips and formation of deformation band damage zones that are roughly symmetric about the fault. At a fault with larger meter-scale displacements, a fault core is present. A recognizable fault-related deformation band damage zone is not observed here, even though large areas of the host rock remain porous and granular and deformation bands had formed prior to faulting. The host rock is instead fractured in areas of pervasive alteration and shows possible textural evidence of fault pulverization. The zones of localized and distributed strain have notably different spatial extents around the causative fault. The region of distributed deformation, as indicated by changes in gas permeability of the macroscopically intact rock, extends up to four times farther from the fault than the highest densities of localized deformation (i.e., fractures and deformation bands). This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in poorly indurated tuff. Not surprisingly, the type of

  3. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role?

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arenillas, M.; Galvez-Martinez, S.; Mateo-Marti, E., E-mail: mateome@cab.inta-csic.es

    2017-08-31

    Highlights: • Surface annealing pretreatment on pyrite surfaces can select molecular adsorption. • Enriched monosulfide species on pyrite (100) surface favors NH{sub 2} adsorption form. • Enriching disulfide species on pyrite (100) surface promotes NH{sub 3}{sup +} adsorption form. • Unique structure of each aminoacid provides a particular fingerprint in the process. • Spectroscopy evidence, pretreatment surface processes drives molecular adsorption. - Abstract: This paper describes the first successful adsorption of the cysteine, cystine, methionine and alanine amino acids on the pyrite (100) surface under ultra-high vacuum conditions with crucial chemical adsorption parameters driving the process. We have demonstrated by X-ray photoemission spectroscopy (XPS) that the surface pretreatment annealing process on pyrite surfaces is a critical parameter driving surface reactivity. The presence of enriched monosulfide species on the pyrite (100) surface favours the amino acid NH{sub 2} chemical form, whereas a longer annealing surface pretreatment of over 3 h repairs the sulfur vacancies in the pyrite, enriching disulfide species on the pyrite surface, which promotes NH{sub 3}{sup +} adsorption due to the sulfur vacancies in the pyrite being replaced by sulfur atom dimers (S{sub 2}{sup 2−}) on the surface. Furthermore, even if the surface chemistry (monosulfide or disulfide species enrichment) is the main factor promoting a partial conversion from NH{sub 2} to NH{sub 3}{sup +} species, the unique chemical structure of each amino acid provides a particular fingerprint in the process.

  4. Pyrite-enhanced methylene blue degradation in non-thermal plasma water treatment reactor

    Energy Technology Data Exchange (ETDEWEB)

    Benetoli, Luis Otavio de Brito, E-mail: luskywalcker@yahoo.com.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Cadorin, Bruno Mena; Baldissarelli, Vanessa Zanon [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Geremias, Reginaldo [Departamento de Ciencias Rurais, Universidade Federal de Santa Catarina (UFSC), Curitibanos, SC (Brazil); Goncalvez de Souza, Ivan [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Debacher, Nito Angelo, E-mail: debacher@qmc.ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer We use O{sub 2} as the feed gas and pyrite was added to the non-thermal plasma reactor. Black-Right-Pointing-Pointer The methylene blue removal by NTP increased in the presence of pyrite. Black-Right-Pointing-Pointer The total organic carbon content decreased substantially. Black-Right-Pointing-Pointer The acute toxicity test showed that the treated solution is not toxic. Black-Right-Pointing-Pointer The dye degradation occurs via electron impact as well as successive hydroxylation. - Abstract: In this study, methylene blue (MB) removal from an aqueous phase by electrical discharge non-thermal plasma (NTP) over water was investigated using three different feed gases: N{sub 2}, Ar, and O{sub 2}. The results showed that the dye removal rate was not strongly dependent on the feed gas when the electrical current was kept the same for all gases. The hydrogen peroxide generation in the water varied according to the feed gas (N{sub 2} < Ar < O{sub 2}). Using O{sub 2} as the feed gas, pyrite was added to the reactor in acid medium resulting in an accentuated increase in the dye removal, which suggests that pyrite acts as a Fenton-like catalyst. The total organic carbon (TOC) content of the dye solution decreased slightly as the plasma treatment time increased, but in the presence of the pyrite catalyst the TOC removal increased substantially. The acute toxicity test using Artemia sp. microcrustaceans showed that the treated solution is not toxic when Ar, O{sub 2} or O{sub 2}-pyrite is employed. Electrospray ionization mass spectrometry analysis (ESI-MS) of the treated samples indicated that the dye degradation occurs via high energy electron impact as well as successive hydroxylation in the benzene rings of the dye molecules.

  5. The age of volcanic tuffs from the Upper Freshwater Molasse (North Alpine Foreland Basin) and their possible use for tephrostratigraphic correlations across Europe for the Middle Miocene

    Science.gov (United States)

    Rocholl, Alexander; Schaltegger, Urs; Gilg, H. Albert; Wijbrans, Jan; Böhme, Madelaine

    2018-03-01

    The Middle Miocene Upper Freshwater Molasse sediments represent the last cycle of clastic sedimentation during the evolution of the North Alpine Foreland Basin. They are characterized by small-scale lateral and temporal facies changes that make intra-basin stratigraphic correlations at regional scale difficult. This study provides new U-Pb zircon ages as well as revised 40Ar/39Ar data of volcanic ash horizons in the Upper Freshwater Molasse sediments from southern Germany and Switzerland. In a first and preliminary attempt, we propose their possible correlation to other European tephra deposits. The U-Pb zircon data of one Swiss (Bischofszell) and seven southern German (Zahling, Hachelstuhl, Laimering, Unterneul, Krumbad, Ponholz) tuff horizons indicate eruption ages between roughly 13.0 and 15.5 Ma. The stratigraphic position of the Unterneul and Laimering tuffs, bracketing the ejecta of the Ries impact (Brockhorizon), suggests that the Ries impact occurred between 14.93 and 15.00 Ma, thus assigning the event to the reversed chron C5Bn1r (15.032-14.870 Ma) which is in accordance with paleomagnetic evidence. We combine our data with published ages of tuff horizons from Italy, Switzerland, Bavaria, Styria, Hungary, and Romania to derive a preliminary tephrochronological scheme for the Middle Miocene in Central Europe in the age window from 13.2 to 15.5 Ma. The scheme is based on the current state of knowledge that the Carpathian-Pannonian volcanic field was the only area in the region producing explosive calc-alkaline felsic volcanism. This preliminary scheme will require verification by more high-quality ages complemented by isotopic, geochemical and paleomagnetic data.

  6. Rheology of fly ashes from coal and biomass co-combustion

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming

    2010-01-01

    The presence of large amounts of alkali metals, chlorine and sulphur in most biomass fuels - compared to coal - can create serious ash-related problems such as deposition, agglomeration and/or corrosion. This paper discusses the viscosity characteristics of fly ash from the co-combustion of various...... coal/biomass blends in a pilot scale pf-boiler. The produced data provide information on the melting of the ash and its flow characteristics, as a function of temperature, which may be used to modify the temperature profile of the boiler in order to avoid slagging. Straw co-firing lowers the ash...... viscosity leading to higher stickiness of the ash particles. Wood co-firing has only minor effects, due to the composition of wood ash and the low percentage of wood in the coal/biomass blend....

  7. Pyrite-pyrrhotite intergrowths in calcite marble from Bistriški Vintgar, Slovenia

    International Nuclear Information System (INIS)

    Zavašnik, J

    2016-01-01

    Roman marble quarry in Bistrica gorge in southern Pohorje Mt. (north-eastern Slovenia) is situated in a 20 m thick lens of layered marble, at the contact zone between granodiorite and metamorphites. Grey and yellowish non-homogenous calcite marble is heavily included by mica, quartz, feldspars, zoisite, pyrite and amphiboles. In the present research, we have studied numerous pyrite (FeS 2 ) crystals associated with yellowish-bronze non-stoichiometric pyrrhotite (Fe 1−x S), not previously reported from this locality. SEM investigation revealed unusual sequence of crystallisation: primary skeletal pyrrhotite matrix is sparsely overgrown by well-crystalline pyrite, both being overgrown by smaller, well-developed hexagonal pyrrhotite crystals of the second generation. With TEM we identify the pyrrhotite as 5T-Fe 1-x S phase, where x is about 0.1 and is equivalent to Fe 9 S 10 . The pyrite-pyrrhotite coexistence allows us a construction of fO 2 -pH diagram of stability fields, which reflects geochemical conditions at the time of marble re-crystallisation. (paper)

  8. Leachability and physical stability of solidified and stabilized pyrite cinder sludge from dye effluent treatment

    Directory of Open Access Journals (Sweden)

    Kerkez Đurđa V.

    2015-01-01

    Full Text Available This work is concerned with exploring the possibilities of using solidification/stabilization (S/S treatment for toxic sludge generated in dye effluent treatment, when pyrite cinder is used as catalytic iron source in the modified heterogeneous Fenton process. S/S treatment was performed by using different clay materials (kaolin, bentonite and native clay from the territory of Vojvodina and fly ash in order to immobilize toxic metals and arsenic presented in sludge. For the evaluation of the extraction potential of toxic metals and the effectiveness of the S/S treatment applied, four single-step leaching tests were performed. Leaching test results indicated that all applied S/S treatments were effective in immobilizing toxic metals and arsenic presented in sludge. X-ray diffraction analysis confirmed the formation of pozzolanic products, and compressive strength measurement proved the treatment efficacy. It can be concluded that the S/S technique has significant potential for solving the problem of hazardous industrial waste and its safe disposal. [Projekat Ministarstva nauke Republike Srbije, br. III43005 i br. TR37004

  9. Pyritized ooids from the Arabian Sea basin

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.S.; Rao, Ch.M.; Reddy, N.P.C.

    Pyritized ooids in association with turbidites were observed in a box core collected at a depth of 3627 m from the Arabian Sea Basin. Ooids having a shallow water origin were transported to the present depth by turbidity currents or slumping...

  10. The one-dimensional compression method for extraction of pore water from unsaturated tuff and effects on pore-water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, J.D.; Burger, P.A. [Colorado School of Mines, Golden, CO (United States); Yang, L.C. [Geological Survey, Denver, CO (United States)

    1997-12-31

    Study of the hydrologic system at Yucca Mountain, Nevada, requires extraction of pore-water samples from unsaturated tuff bedrock. Two generations of compression cells have been designed and tested for extracting representative, unaltered pore-water samples from unsaturated tuff cores. The one-dimensional compression cell has a maximum compressive stress rating of 552 MPa. Results from 86 tests show that the minimum degree of saturation for successful extraction of pore water was about 14% for non welded tuff and about 61% for densely welded tuff. The high-pressure, one-dimensional compression cell has a maximum compressive stress rating of 827 MPa. Results from 109 tests show that the minimum degree of saturation for successful extraction of pore water was about 7.5% for non welded tuff and about 34% for densely welded tuff. Geochemical analyses show that, in general, there is a decrease in ion concentration of pore waters as extraction pressures increase. Only small changes in pore-water composition occur during the one-dimensional extraction test.

  11. On Mattering: A Coal Ash Flood and the Limits of Environmental Knowledge

    Directory of Open Access Journals (Sweden)

    Hatmaker, Susie

    2014-05-01

    Full Text Available This paper investigates the largest flood of coal ash in United States history as an event at once monumental and insignificant. It traces affective forces generative of both the ash, and its invisibility. In the moment of rupture, the ash flowed out of a large holding pond in a spill of layered sediments – each layer of particulate a temporary resting place for a forceful trajectory of matter spurned into motion elsewhere in space and time. This paper takes up the atemporal matter of this coal ash flood to ask: out of what movements and connections was the ash formed? How did this particular landscape change to accommodate its accumulation? What trajectories flowed into the pond, and what hidden memories sat buried in its mass? Drawing on ethnographic and archival research, this paper weaves together juxtaposed scenes that form (some of the backstory of this event, and invites a reconsideration of the practices of knowledge that helped condition it.

  12. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    International Nuclear Information System (INIS)

    J.S. Stuckless; D. O'Leary

    2006-01-01

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain

  13. Rheological behavior of water-ash mixtures from Sakurajima and Ontake volcanoes: implications for lahar flow dynamics

    Science.gov (United States)

    Kurokawa, Aika K.; Ishibashi, Hidemi; Miwa, Takahiro; Nanayama, Futoshi

    2018-06-01

    Lahars represent one of the most serious volcanic hazards, potentially causing severe damage to the surrounding environment, not only immediately after eruption but also later due to rainfall or snowfall. The flow of a lahar is governed by volcanic topography and its rheological behavior, which is controlled by its volume, microscale properties, and the concentration of particles. However, the effects of particle properties on the rheology of lahars are poorly understood. In this study, viscosity measurements were performed on water-ash mixtures from Sakurajima and Ontake volcanoes. Samples from Sakurajima show strong and simple shear thinning, whereas those from Ontake show viscosity fluctuations and a transition between shear thinning and shear thickening. Particle analysis of the volcanic ash together with a theoretical analysis suggests that the rheological difference between the two types of suspension can be explained by variations in particle size distribution and shape. In particular, to induce the complex rheology of the Ontake samples, coexistence of two particle size groups may be required since two independent behaviors, one of which follows the streamline (Stokes number St << 1, inertial number I < 0.001) and the other shows a complicated motion ( St 1, I 0.001), compete against each other. The variations in the spatial distribution of polydisperse particles, and the time dependence of this feature which generates apparent rheological changes, indicate that processes related to microscale particle heterogeneities are important in understanding the flow dynamics of lahars and natural polydisperse granular-fluid mixtures in general.

  14. Can pore-clogging by ash explain post-fire runoff?

    Science.gov (United States)

    Stoof, Cathelijne R.; Gevaert, Anouk I.; Baver, Christine; Hassanpour, Bahareh; Morales, Veronica L.; Zhang, Wei; Martin, Deborah; Giri, Shree K.; Steenhuis, Tammo S.

    2016-01-01

    Ash plays an important role in controlling runoff and erosion processes after wildfire and has frequently been hypothesised to clog soil pores and reduce infiltration. Yet evidence for clogging is incomplete, as research has focussed on identifying the presence of ash in soil; the actual flow processes remain unknown. We conducted laboratory infiltration experiments coupled with microscope observations in pure sands, saturated hydraulic conductivity analysis, and interaction energy calculations, to test whether ash can clog pores (i.e. block pores such that infiltration is hampered and ponding occurs). Although results confirmed previous observations of ash washing into pores, clogging was not observed in the pure sands tested, nor were conditions found for which this does occur. Clogging by means of strong attachment of ash to sand was deemed unlikely given the negative surface charge of the two materials. Ponding due to washing in of ash was also considered improbable given the high saturated conductivity of pure ash and ash–sand mixtures. This first mechanistic step towards analysing ash transport and attachment processes in field soils therefore suggests that pore clogging by ash is unlikely to occur in sands. Discussion is provided on other mechanisms by which ash can affect post-fire hydrology.

  15. Performance prediction of mechanical excavators from linear cutter tests on Yucca Mountain welded tuffs

    International Nuclear Information System (INIS)

    Gertsch, R.; Ozdemir, L.

    1992-09-01

    The performances of mechanical excavators are predicted for excavations in welded tuff. Emphasis is given to tunnel boring machine evaluations based on linear cutting machine test data obtained on samples of Topopah Spring welded tuff. The tests involve measurement of forces as cutters are applied to the rock surface at certain spacing and penetrations. Two disc and two point-attack cutters representing currently available technology are thus evaluated. The performance predictions based on these direct experimental measurements are believed to be more accurate than any previous values for mechanical excavation of welded tuff. The calculations of performance are predicated on minimizing the amount of energy required to excavate the welded tuff. Specific energy decreases with increasing spacing and penetration, and reaches its lowest at the widest spacing and deepest penetration used in this test program. Using the force, spacing, and penetration data from this experimental program, the thrust, torque, power, and rate of penetration are calculated for several types of mechanical excavators. The results of this study show that the candidate excavators will require higher torque and power than heretofore estimated

  16. Performance testing of waste forms in a tuff environment

    International Nuclear Information System (INIS)

    Oversby, V.M.

    1983-11-01

    This paper describes experimental work conducted to establish the chemical composition of water which will have reacted with Topopah Spring Member tuff prior to contact with waste packages. The experimental program to determine the behavior of spent fuel and borosilicate glass in the presence of this water is then described. Preliminary results of experiments using spent fuel segments with defects in the Zircaloy cladding are presented. Some results from parametric testing of a borosilicate glass with tuff and 304L stainless steel are also discussed. Experiments conducted using Topopah Spring tuff and J-13 well water have been conducted to provide an estimate of the post-emplacement environment for waste packages in a repository at Yucca Mountain. The results show that emplacement of waste packages should cause only small changes in the water chemistry and rock mineralogy. The changes in environment should not have any detrimental effects on the performance of metal barriers or waste forms. The NNWSI waste form testing program has provided preliminary results related to the release rate of radionuclides from the waste package. Those results indicate that release rates from both spent fuel and borosilicate glass should be below 1 part in 10 5 per year. Future testing will be directed toward making release rate testing more closely relevant to site specific conditions. 17 references, 7 figures

  17. Stratigraphy of the PB-1 well, Nopal I uranium deposit, Sierra Pena Blanca, Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, P.; Fayek, M.; Goodell, P.; Ghezzehei, T.; Melchor, F.; Murrell, M.; Oliver, R.; Reyes-Cortes, I.A.; de la Garza, R.; Simmons, A.

    2008-08-01

    The Nopal I site in the Pena Blanca uranium district has a number of geologic and hydrologic similarities to the proposed high-level radioactive waste repository at Yucca Mountain, making it a useful analogue to evaluate process models for radionuclide transport. The PB-1 well was drilled in 2003 at the Nopal I uranium deposit as part of a DOE-sponsored natural analogue study to constrain processes affecting radionuclide transport. The well penetrates through the Tertiary volcanic section down to Cretaceous limestone and intersects the regional aquifer system. The well, drilled along the margin of the Nopal I ore body, was continuously cored to a depth of 250 m, thus providing an opportunity to document the local stratigraphy. Detailed observations of these units were afforded through petrographic description and rock-property measurements of the core, together with geophysical logs of the well. The uppermost unit encountered in the PB-1 well is the Nopal Formation, a densely welded, crystal-rich, rhyolitic ash-flow tuff. This cored section is highly altered and devitrified, with kaolinite, quartz, chlorite, and montmorillonite replacing feldspars and much of the groundmass. Breccia zones within the tuff contain fracture fillings of hematite, limonite, goethite, jarosite, and opal. A zone of intense clay alteration encountered in the depth interval 17.45-22.30 m was interpreted to represent the basal vitrophyre of this unit. Underlying the Nopal Formation is the Coloradas Formation, which consists of a welded lithic-rich rhyolitic ash-flow tuff. The cored section of this unit has undergone devitrification and oxidation, and has a similar alteration mineralogy to that observed in the Nopal tuff. A sharp contact between the Coloradas tuff and the underlying Pozos Formation was observed at a depth of 136.38 m. The Pozos Formation consists of poorly sorted conglomerate containing clasts of subangular to subrounded fragments of volcanic rocks, limestone, and chert

  18. Stratigraphy of the PB-1 well, Nopal I uranium deposit, Sierra Pena Blanca, Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Dobson, P.; Fayek, M.; Goodell, P.; Ghezzehei, T.; Melchor, F.; Murrell, M.; Oliver, R.; Reyes-Cortes, I.A.; de la Garza, R.; Simmons, A.

    2008-01-01

    The Nopal I site in the Pena Blanca uranium district has a number of geologic and hydrologic similarities to the proposed high-level radioactive waste repository at Yucca Mountain, making it a useful analogue to evaluate process models for radionuclide transport. The PB-1 well was drilled in 2003 at the Nopal I uranium deposit as part of a DOE-sponsored natural analogue study to constrain processes affecting radionuclide transport. The well penetrates through the Tertiary volcanic section down to Cretaceous limestone and intersects the regional aquifer system. The well, drilled along the margin of the Nopal I ore body, was continuously cored to a depth of 250 m, thus providing an opportunity to document the local stratigraphy. Detailed observations of these units were afforded through petrographic description and rock-property measurements of the core, together with geophysical logs of the well. The uppermost unit encountered in the PB-1 well is the Nopal Formation, a densely welded, crystal-rich, rhyolitic ash-flow tuff. This cored section is highly altered and devitrified, with kaolinite, quartz, chlorite, and montmorillonite replacing feldspars and much of the groundmass. Breccia zones within the tuff contain fracture fillings of hematite, limonite, goethite, jarosite, and opal. A zone of intense clay alteration encountered in the depth interval 17.45-22.30 m was interpreted to represent the basal vitrophyre of this unit. Underlying the Nopal Formation is the Coloradas Formation, which consists of a welded lithic-rich rhyolitic ash-flow tuff. The cored section of this unit has undergone devitrification and oxidation, and has a similar alteration mineralogy to that observed in the Nopal tuff. A sharp contact between the Coloradas tuff and the underlying Pozos Formation was observed at a depth of 136.38 m. The Pozos Formation consists of poorly sorted conglomerate containing clasts of subangular to subrounded fragments of volcanic rocks, limestone, and chert

  19. In situ characterization of natural pyrite bioleaching using electrochemical noise technique

    Science.gov (United States)

    Chen, Guo-bao; Yang, Hong-ying; Li, Hai-jun

    2016-02-01

    An in situ characterization technique called electrochemical noise (ECN) was used to investigate the bioleaching of natural pyrite. ECN experiments were conducted in four active systems (sulfuric acid, ferric-ion, 9k culture medium, and bioleaching solutions). The ECN data were analyzed in both the time and frequency domains. Spectral noise impedance spectra obtained from power spectral density (PSD) plots for different systems were compared. A reaction mechanism was also proposed on the basis of the experimental data analysis. The bioleaching system exhibits the lowest noise resistance of 0.101 MΩ. The bioleaching of natural pyrite is considered to be a bio-battery reaction, which distinguishes it from chemical oxidation reactions in ferric-ion and culture-medium (9k) solutions. The corrosion of pyrite becomes more severe over time after the long-term testing of bioleaching.

  20. Bench-scale experimental determination of the thermal diffusivity of crushed tuff

    International Nuclear Information System (INIS)

    Ryder, E.E.; Finley, R.E.; George, J.T.; Ho, C.K.; Longenbaugh, R.S.; Connolly, J.R.

    1996-06-01

    A bench-scale experiment was designed and constructed to determine the effective thermal diffusivity of crushed tuff. Crushed tuff particles ranging from 12.5 mm to 37.5 mm (0.5 in. to 1.5 in.) were used to fill a cylindrical volume of 1.58 m 3 at an effective porosity of 0.48. Two iterations of the experiment were completed; the first spanning approximately 502 hours and the second 237 hours. Temperatures near the axial heater reached 700 degrees C, with a significant volume of the test bed exceeding 100 degrees C. Three post-test analysis techniques were used to estimate the thermal diffusivity of the crushed tuff. The first approach used nonlinear parameter estimation linked to a one dimensional radial conduction model to estimate thermal diffusivity from the first 6 hours of test data. The second method used the multiphase TOUGH2 code in conjunction with the first 20 hours of test data not only to estimate the crushed tuffs thermal diffusivity, but also to explore convective behavior within the test bed. Finally, the nonlinear conduction code COYOTE-II was used to determine thermal properties based on 111 hours of cool-down data. The post-test thermal diffusivity estimates of 5.0 x 10-7 m 2 /s to 6.6 x 10-7 m 2 /s were converted to effective thermal conductivities and compared to estimates obtained from published porosity-based relationships. No obvious match between the experimental data and published relationships was found to exist; however, additional data for other particle sizes and porosities are needed

  1. Analysis of the rock mechanics properties of volcanic tuff units from Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Price, R.H.

    1983-08-01

    Over two hundred fifty mechanical experiments have been run on samples of tuff from Yucca Mountain, Nevada Test Site. Cores from the Topopah Spring, Calico Hills, Bullfrog and Tram tuff units were deformed to collect data for an initial evaluation of mechanical (elastic and strength) properties of the potential horizons for emplacement of commercial nuclear wastes. The experimental conditions ranged in sample saturation from room dry to fully saturated, confining pressure from 0.1 to 20 MPa, pore pressure from 0.1 to 5 MPa, temperature from 23 to 200 0 C, and strain rate from 10 -7 to 10 -2 s -1 . These test data have been analyzed for variations in elastic and strength properties with changes in test conditions, and to study the effects of bulk-rock characteristics on mechanical properties. In addition to the site-specific data on Yucca Mountain tuff, mechanical test results on silicic tuff from Rainier Mesa, Nevada Test Site, are also discussed. These data both overlap and augment the Yucca Mountain tuff data, allowing more definitive conclusions to be reached, as well as providing data at some test conditions not covered by the site-specific tests

  2. Evidence for large-magnitude, post-Eocene extension in the northern Shoshone Range, Nevada, and its implications for Carlin-type gold deposits in the lower plate of the Roberts Mountains allochthon

    Science.gov (United States)

    Colgan, Joseph P.; Henry, Christopher D.; John, David A.

    2014-01-01

    The northern Shoshone and Toiyabe Ranges in north-central Nevada expose numerous areas of mineralized Paleozoic rock, including major Carlin-type gold deposits at Pipeline and Cortez. Paleozoic rocks in these areas were previously interpreted to have undergone negligible postmineralization extension and tilting, but here we present new data that suggest major post-Eocene extension along west-dipping normal faults. Tertiary rocks in the northern Shoshone Range crop out in two W-NW–trending belts that locally overlie and intrude highly deformed Lower Paleozoic rocks of the Roberts Mountains allochthon. Tertiary exposures in the more extensive, northern belt were interpreted as subvertical breccia pipes (intrusions), but new field data indicate that these “pipes” consist of a 35.8 Ma densely welded dacitic ash flow tuff (informally named the tuff of Mount Lewis) interbedded with sandstones and coarse volcaniclastic deposits. Both tuff and sedimentary rocks strike N-S and dip 30° to 70° E; the steeply dipping compaction foliation in the tuffs was interpreted as subvertical flow foliation in breccia pipes. The southern belt along Mill Creek, previously mapped as undivided welded tuff, includes the tuff of Cove mine (34.4 Ma) and unit B of the Bates Mountain Tuff (30.6 Ma). These tuffs dip 30° to 50° east, suggesting that their west-dipping contacts with underlying Paleozoic rocks (previously mapped as depositional) are normal faults. Tertiary rocks in both belts were deposited on Paleozoic basement and none appear to be breccia pipes. We infer that their present east tilt is due to extension on west-dipping normal faults. Some of these faults may be the northern strands of middle Miocene (ca. 16 Ma) faults that cut and tilted the 34.0 Ma Caetano caldera ~40° east in the central Shoshone Range (

  3. Use of the Moessbauer effect for determining pyritic sulfur content in coal

    Energy Technology Data Exchange (ETDEWEB)

    Czerw, B; Sikora, T

    1986-10-01

    This paper discusses investigations into resonance absorption of gamma radiation. Standard equipment for measuring the Moessbauer effect in black coal consisting of a measuring head, the SM-4T spectrometer, a multichannel analyzer, the Standard electronic unit and a printer is evaluated. The MSP measuring system developed jointly by the EMAG Mine Automation Company and the Nuclear Research Institute in Swierk is described. The MSP equipment is used for measuring content of pyritic sulfur in coal. Its accuracy is satisfactory. Results of measuring pyritic and total sulfur content by means of quantitative chemical analysis and by the MSP resonance absorption method (Moessbauer effect) are compared. The mean standard deviation for pyritic sulfur is 0.14% and for total sulfur content 0.21%. 11 refs.

  4. Microbial Oxidation of Pyrite Coupled to Nitrate Reduction in Anoxic Groundwater Sediment

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher; Elberling, Bo; Jacobsen, Ole Stig

    2009-01-01

    denitrification process with pyrite as the primary electron donor. The process demonstrates a temperature dependency (Q10) of 1.8 and could be completely inhibited by addition of a bactericide (NaN3). Experimentally determined denitrification rates show that more than 50% of the observed nitrate reduction can...... be ascribed to pyrite oxidation. The apparent zero-order denitrification rate in anoxic pyrite containing sediment at groundwater temperature has been determined to be 2-3 µmol NO3- kg-1 day-1. The in situ groundwater chemistry at the boundary between the redoxcline and the anoxic zone reveals that between 65......-anoxic boundary in sandy aquifers thus determining the position and downward progression of the redox boundary between nitrate-containing and nitrate-free groundwater....

  5. Mo and Ni Removal from Drinking Water Using Zeolitic Tuff from Jordan

    Directory of Open Access Journals (Sweden)

    Khalil M. Ibrahim

    2016-11-01

    Full Text Available Mo and Ni metals could be hazardous in natural waters. The initial Mo and Ni concentration in the sampled domestic drinking water of north Jordan is 550 and 110 μg/L, respectively. The efficiency of using natural faujasite–phillipsite and phillipsite–chabazite tuffs in removing Mo and Ni from contaminated drinking water was tested. Batch experiments using different weights of the adsorbent were conducted at different contact times to determine the optimum conditions. The maximal uptake capacity of Mo from drinking water was equivalent to 440–420 μg/g adsorbent. The maximum removal efficiency of Mo by faujasite–phillipsite, phillipsite–chabazite, and the modified surfactant phillipsite–chabazite tuffs were 80%, 76%, and 78%, respectively. The proportional relationship between contact time and removal efficiency of Ni from water samples was observed. The maximum removal efficiency of Ni by the zeolitic tuffs is up to 90% compared to the original groundwater sample.

  6. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role?

    Science.gov (United States)

    Sanchez-Arenillas, M.; Galvez-Martinez, S.; Mateo-Marti, E.

    2017-08-01

    This paper describes the first successful adsorption of the cysteine, cystine, methionine and alanine amino acids on the pyrite (100) surface under ultra-high vacuum conditions with crucial chemical adsorption parameters driving the process. We have demonstrated by X-ray photoemission spectroscopy (XPS) that the surface pretreatment annealing process on pyrite surfaces is a critical parameter driving surface reactivity. The presence of enriched monosulfide species on the pyrite (100) surface favours the amino acid NH2 chemical form, whereas a longer annealing surface pretreatment of over 3 h repairs the sulfur vacancies in the pyrite, enriching disulfide species on the pyrite surface, which promotes NH3+ adsorption due to the sulfur vacancies in the pyrite being replaced by sulfur atom dimers (S22-) on the surface. Furthermore, even if the surface chemistry (monosulfide or disulfide species enrichment) is the main factor promoting a partial conversion from NH2 to NH3+ species, the unique chemical structure of each amino acid provides a particular fingerprint in the process.

  7. Spatial Mapping for Managing Oxidized Pyrite (FeS2 in South Sumatra Wetlands, Indonesia

    Directory of Open Access Journals (Sweden)

    M. Edi Armanto

    2016-02-01

    Full Text Available The research aimed to analyze spatial mapping for managing oxidized pyrite (FeS2 in South Sumatra wetlands, Indonesia. The field observations are done by exploring several transect on land units. The field description refers to Soil Survey Staff (2014. Water and soil samples were taken from selected key areas for laboratory analysis. The vegetation data was collected by making sample plots (squares method placed on each vegetation type with plot sizes depending on the vegetation type, namely 10 x 10 m for secondary forests and 5 x 5 m for shrubs and grass. The observations of surface water level were done during the river receding with units of m above sea level (m asl. The research results showed that pyrite formation is largely determined by the availability of natural vegetation as Sulfur (S donors, climate and uncontrolled water balance and supporting fauna such as crabs and mud shrimp.  Climate and water balance as well as supporting faunas is the main supporting factors to accelerate the process of pyrite formation. Oxidized pyrite serves to increase soil acidity, becomes toxic to fish ponds and arable soils, plant growth and disturbing the water and soil nutrient balances. Oxidized pyrite is predominantly accelerated by the dynamics of river water and disturbed natural vegetation by human activities.  The pyrite oxidation management approach is divided into three main components of technologies, namely water management, land management and commodity management.

  8. Pyrite: A blender plugin for visualizing molecular dynamics simulations using industry-standard rendering techniques.

    Science.gov (United States)

    Rajendiran, Nivedita; Durrant, Jacob D

    2018-05-05

    Molecular dynamics (MD) simulations provide critical insights into many biological mechanisms. Programs such as VMD, Chimera, and PyMOL can produce impressive simulation visualizations, but they lack many advanced rendering algorithms common in the film and video-game industries. In contrast, the modeling program Blender includes such algorithms but cannot import MD-simulation data. MD trajectories often require many gigabytes of memory/disk space, complicating Blender import. We present Pyrite, a Blender plugin that overcomes these limitations. Pyrite allows researchers to visualize MD simulations within Blender, with full access to Blender's cutting-edge rendering techniques. We expect Pyrite-generated images to appeal to students and non-specialists alike. A copy of the plugin is available at http://durrantlab.com/pyrite/, released under the terms of the GNU General Public License Version 3. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Adsorção de xantatos sobre pirita Adsorption of xanthate on pyrite

    Directory of Open Access Journals (Sweden)

    Fábio Garcia Penha

    2001-10-01

    Full Text Available This paper presents a study of adsorption of xanthate with alkyl chain of two (C2XK, four (C4XK and eight (C8XK atoms of carbon, on pyrite from Santa Catarina, Brazil. The results showed that pyrite surface changes from hydrophilic to hydrophobic when xanthate is adsorbed increasing the contact angle to 35º for C2XK, and to 90º for C4XK and C8XK. The rate of flotation of pyrite particles after adsorption increases with the increase of the number of carbon atoms in the alkyl chain in agreement with the results of contact angle measurements.

  10. Precombustion desulfurization using Microcel{trademark} and multi-gravity separator

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Luttrell, G.H.; Venkatraman, P. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1994-12-31

    Studies conducted at the Center for Coal and Minerals Processing (CCMP) indicate that surface-based processes such as froth flotation are inefficient in removing pyrite from fine coal. This shortcoming has been attributed to the fact that pyrite can become hydrophobic under certain conditions and to the inability of flotation to reject middling particles. To overcome these deficiencies, a new processing scheme has been developed at CCMP which involved the use of the Microcel{trademark} flotation column in combination with a centrifugal flowing-film separator, called a Multi-Gravity Separator (MGS). The flotation column removes ash-forming minerals such as clay, while the MGS is effective in removing pyrite. Preliminary test data obtained with high-sulfur coals shows that this processing scheme can nearly double the pyritic sulfur rejection with little loss in clean coal yield. This article discusses the underlying principles of the new circuit and provides test results obtained using eastern U.S. coals.

  11. Influence of palm oil fuel ash on fresh and mechanical properties of ...

    Indian Academy of Sciences (India)

    percentage of cement, with several supplementary cementitious materials (SCM) such as silica fume, ground granulated blast-furnace slag, fly ash and rice husk ash ..... Safiuddin M, West J and Soudki K 2011b Flowing ability of the mortars ...

  12. A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia

    Science.gov (United States)

    Ingham, Edwina S.; Cook, Nigel J.; Cliff, John; Ciobanu, Cristiana L.; Huddleston, Adam

    2014-01-01

    The common sulfide mineral pyrite is abundant throughout sedimentary uranium systems at Pepegoona, Pepegoona West and Pannikan, Lake Eyre Basin, South Australia. Combined chemical, isotopic and microstructural analysis of pyrite indicates variation in fluid composition, sulfur source and precipitation conditions during a protracted mineralization event. The results show the significant role played by pyrite as a metal scavenger and monitor of fluid changes in low-temperature hydrothermal systems. In-situ micrometer-scale sulfur isotope analyses of pyrite demonstrated broad-scale isotopic heterogeneity (δ34S = -43.9 to +32.4‰VCDT), indicative of complex, multi-faceted pyrite evolution, and sulfur derived from more than a single source. Preserved textures support this assertion and indicate a genetic model involving more than one phase of pyrite formation. Authigenic pyrite underwent prolonged evolution and recrystallization, evidenced by a genetic relationship between archetypal framboidal aggregates and pyrite euhedra. Secondary hydrothermal pyrite commonly displays hyper-enrichment of several trace elements (Mn, Co, Ni, As, Se, Mo, Sb, W and Tl) in ore-bearing horizons. Hydrothermal fluids of magmatic and meteoric origins supplied metals to the system but the geochemical signature of pyrite suggests a dominantly granitic source and also the influence of mafic rock types. Irregular variation in δ34S, coupled with oscillatory trace element zonation in secondary pyrite, is interpreted in terms of continuous variations in fluid composition and cycles of diagenetic recrystallization. A late-stage oxidizing fluid may have mobilized selenium from pre-existing pyrite. Subsequent restoration of reduced conditions within the aquifer caused ongoing pyrite re-crystallization and precipitation of selenium as native selenium. These results provide the first qualitative constraints on the formation mechanisms of the uranium deposits at Beverley North. Insights into

  13. Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process

    Energy Technology Data Exchange (ETDEWEB)

    Fathinia, Siavash [Department of Mining Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Fathinia, Mehrangiz [Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Rahmani, Ali Akbar [Department of Mining Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Khataee, Alireza, E-mail: a_khataee@tabrizu.ac.ir [Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-02-01

    Graphical abstract: - Highlights: • Pyrite nanoparticles were successfully produced by planetary ball milling process. • The physical and chemical properties of pyrite nanoparticles were fully examined. • The degradation of AO7 was notably enhanced by pyrite nanoparticles Fenton system. • The influences of basic operational parameters were investigated using CCD. - Abstract: In the present study pyrite nanoparticles were prepared by high energy mechanical ball milling utilizing a planetary ball mill. Various pyrite samples were produced by changing the milling time from 2 h to 6 h, in the constant milling speed of 320 rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) linked with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer–Emmett–Teller (BET) were performed to explain the characteristics of primary (unmilled) and milled pyrite samples. The average particle size distribution of the produced pyrite during 6 h milling was found to be between 20 nm and 100 nm. The catalytic performance of the different pyrite samples was examined in the heterogeneous Fenton process for degradation of C.I. Acid Orange 7 (AO7) solution. Results showed that the decolorization efficiency of AO7 in the presence of 6 h-milled pyrite sample was the highest. The impact of key parameters on the degradation efficiency of AO7 by pyrite nanoparticles catalyzed Fenton process was modeled using central composite design (CCD). Accordingly, the maximum removal efficiency of 96.30% was achieved at initial AO7 concentration of 16 mg/L, H{sub 2}O{sub 2} concentration of 5 mmol/L, catalyst amount of 0.5 g/L and reaction time of 25 min.

  14. Petrologic studies of drill cores USW-G2 and UE25b-1H, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Caporuscio, F.; Vaniman, D.; Bish, D.; Broxton, D.; Arney, B.; Heiken, G.; Byers, F.; Gooley, R.; Semarge, E.

    1982-07-01

    The tuffs of the Nevada Test Site are currently under investigation as a possible deep geologic site for high-level radioactive waste disposal. This report characterizes tuff retrieved in core from two drill holes, USW-G2 and UE25b-1H, at the Yucca Mountain block. The USW-G2 drill core is from the northernmost extent of the block, whereas UE25b-1H is adjacent to an earlier drill hole, UE25a-1. The drill cores USW-G2 and UE25b-1H bottomed at 6000 and 4200 ft, respectively. Petrographic and x-ray diffraction studies of the two drill cores are presented in this report and indicate that tuffs (composed primarily of variably welded ash flows) are partially recrystallized to secondary minerals. Correlations of stratigraphy are also made with previous drill cores from Yucca Mountain

  15. Environmental effects on corrosion in the Tuff repository

    International Nuclear Information System (INIS)

    Beavers, J.A.; Thompson, N.G.

    1990-02-01

    Cortest Columbus is investigating the long-term performance of container materials used for high-level waste packages as part of the information needed by the Nuclear Regulatory Commission to assess the Department of Energy's application to construct a geologic repository for high-level radioactive waste. The scope of work consists of employing short-term techniques, to examine a wide range of possible failure modes. Long-term tests are being used to verify and further examine specific failure modes identified as important by the short-term studies. The original focus of the program was on the salt repository but the emphasis was shifted to the Tuff repository. This report summarizes the results of a literature survey performed under Task 1 of the program. The survey focuses on the influence of environmental variables on the corrosion behavior of candidate container materials for the Tuff repository. Environmental variables considered include: radiation, thermal and microbial effects. 80 refs., 44 figs., 44 tabs

  16. Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit

    International Nuclear Information System (INIS)

    Clark, S.W.; Sulloway, H.M.

    2007-01-01

    This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion

  17. Thallium-rich pyrite ores from the Apuan Alps, Tuscany, Italy:constraints for their origin and environmental concerns

    Science.gov (United States)

    D'Orazio, Massimo; Biagioni, Cristian; Dini, Andrea; Vezzoni, Simone

    2017-06-01

    The southern sector of the Apuan Alps (AA) massif, Tuscany, Italy, is characterized by the occurrence of a series of baryte-pyrite-iron oxide orebodies whose Tl-rich nature was recognized only recently. The geochemistry of the pyrite ore was investigated through inductively coupled plasma mass spectrometry. In addition, lead isotope data for selected pyrite ores from AA were collected. Pyrite ores are characterized by a complex geochemistry, with high concentrations of Tl (up to 1100 μg/g) coupled with high As and Sb contents; the Co/Ni ratio is always <1. Geochemical data of pyrite and marcasite ore samples from other mining districts of Tuscany have been collected in order to compare them with those from the AA. These samples usually have very low Tl content (less than 2 μg/g) and high to very high Co/Ni and As/Sb ratios. Only some samples from the Sb-Hg ore deposits showed very high Tl concentrations (up to 3900 μg/g). Another difference is related to the lead isotope composition, with pyrite ores from AA markedly less radiogenic than those from the other deposits from Tuscany. Geochemical data of pyrite ores from AA give new insights on the genesis of the baryte-pyrite-iron oxide orebodies, relating their formation to low-temperature hydrothermal systems active during early Paleozoic; in addition, these data play a fundamental role in assessing the environmental impact of these deposits.

  18. A dynamic mathematical model for microbial removal of pyritic sulfur from coal.

    Science.gov (United States)

    Kargi, F; Weissman, J G

    1984-06-01

    A dynamic mathematical model has been developed to describe microbial desulfurization of coal by Thiobacillus ferrooxidans. The model considers adsorption and desorption of cells on coal particles and microbial oxidation of pyritic sulfur on particle surfaces. The influence of certain parameters, such as microbial growth rate constants, adsorption-description constants, pulp density, coal particle size, initial cell and solid phase substrate concentration on the maximum rate of pyritic sulfur removal, have been elucidated. The maximum rate of pyritic sulfur removal was strongly dependent upon the number of attached cells per coal particle. At sufficiently high initial cell concentrations, the surfaces of coal particles are nearly saturated by the cells and the maximum leaching rate is limited either by total external surface area of coal particles or by the concentration of pyritic sulfur in the coal phase. The maximum volumetric rate of pyritic sulfur removal (mg S/h cm(3) mixture) increases with the pulp density of coal and reaches a saturation level at high pulp densities (e.g. 45%). The maximum rate also increases with decreasing particle diameter in a hyperbolic form. Increases in adsorption coefficient or decreases in the desorption coefficient also result in considerable improvements in this rate. The model can be applied to other systems consisting of suspended solid substrate particles in liquid medium with microbial oxidation occurring on the particle surfaces (e.g., bacterial ore leaching). The results obtained from this model are in good agreement with published experimental data on microbial desulfurization of coal and bacterial ore leaching.

  19. Corrosion testing of type 304L stainless steel in tuff groundwater environments

    International Nuclear Information System (INIS)

    Westerman, R.E.; Pitman, S.G.; Haberman, J.H.

    1987-11-01

    The stress-corrosion cracking (SCC) resistance of Type 304L stainless steel (SS) to elevated temperatures in tuff rock and tuff groundwater environments was determined under irradiated and nonirradiated conditions using U-bend specimens and slow-strain-rate tests. The steel was tested both in the solution-annealed condition and after sensitization heat treatments. The material was found to be susceptible to SCC in both the solution-annealed and solution-annealed-and-sensitized conditions when exposed to an irradiated crushed tuff rock environment containing air and water vapor at 90 0 C. A similar exposure at 50 0 C did not result in failure after a 25-month test duration. Specimens of sensitized 304 SS conditioned with a variety of sensitization heat treatments resisted failure during a test of 1-year duration in which a nonirradiated environment of tuff rock and groundwater held at 200 0 C was allowed to boil to dryness on a cyclical basis. All specimens of sensitized 304 SS exposed to this environment failed. Slow-strain-rate studies were performed on 304L, 304, and 316L SS specimens. The 304L SS was tested in J-13 well water at 150 0 C, and the 316L SS at 95 0 C. Neither material showed evidence of SCC in these tests. Sensitized 304 SS did exhibit SCC in J-13 well water in tests conducted at 150 0 C. 12 refs., 27 figs., 13 tabs

  20. Isotopic and elemental chemistry of sedimentary pyrite: A combined analytical and statistical approach to a novel planetary biosignature

    Science.gov (United States)

    Figueroa, M. C.; Gregory, D. D.; Lyons, T. W.; Williford, K. H.

    2017-12-01

    Life processes affect trace element abundances in pyrite such that sedimentary and hydrothermal pyrite have significantly different trace element signatures. Thus, we propose that these biogeochemical data could be used to identify pyrite that formed biogenetically either early in our planet's history or on other planets, particularly Mars. The potential for this approach is elevated because pyrite is common in diverse sedimentary settings, and its trace element content can be preserved despite secondary overprints up to greenschist facies, thus minimizing the concerns about remobilization that can plague traditional whole rock studies. We are also including in-situ sulfur isotope analysis to further refine our understanding of the complex signatures of ancient pyrite. Sulfur isotope data can point straightforwardly to the involvement of life, because pyrite in sediments is inextricably linked to bacterial sulfate reduction and its diagnostic isotopic expressions. In addition to analyzing pyrite of known biological origin formed in the modern and ancient oceans under a range of conditions, we are building a data set for pyrite formed by hydrothermal and metamorphic processes to minimize the risk of false positives in life detection. We have used Random Forests (RF), a machine learning statistical technique with proven efficiency for classifying large geological datasets, to classify pyrite into biotic and abiotic end members. Coupling the trace element and sulfur isotope data from our analyses with a large existing dataset from diverse settings has yielded 4500 analyses with 18 different variables. Our initial results reveal the promise of the RF approach, correctly identifying biogenic pyrite 97 percent of the time. We will continue to couple new in-situ S-isotope and trace element analyses of biogenic pyrite grains from modern and ancient environments, using cutting-edge microanalytical techniques, with new data from high temperature settings. Our ultimately goal

  1. Formation, Sintering and Removal of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi

    conditions in laboratory-scale setups. Deposit formation was simulated in an Entrained Flow Reactor, to investigate the effect of operating conditions and ash chemistry on the rate of deposit formation. Experiments were performed using model biomass fly ash, prepared from mixtures of K2Si4O9, KCl, K2SO4, Ca....... Moreover, biomass ash deposits may cause severe corrosion of boiler surfaces. Therefore, reducing deposit formation and timely deposit removal are essential for optimal boiler operation. The formation, sintering and removal of boiler deposits has been investigated in this PhD project, by simulating boiler...... temperature increased the sticking probability of the fly ash particles/deposit surface, thereby increasing the rate of deposit formation. However, increasing flue gas velocity resulted in a decrease in the deposit formation rate, due to increased particle rebound. Furthermore, it was observed...

  2. Review of the thermal stability and cation exchange properties of the zeolite minerals clinoptilolite, mordenite, and analcime; applications to radioactive waste isolation in silicic tuff

    International Nuclear Information System (INIS)

    Smyth, J.R.; Caporuscio, F.A.

    1981-06-01

    Silicic tuffs of the southern Great Basin and basalts of the Columbia River Plateau are under investigation as potential host rocks for high- and intermediate-level radioactive wastes. Nonwelded and partially welded tuffs may contain major amounts (> 50%) of the zeolite minerals clinoptilolite, mordenite, and analcime. Densely welded tuffs and some basalt flows may contain clinoptilolite as fracture filling that limits the permeability of these rocks. The cation exchange properties of these zeolite minerals allow them to pose a formidable natural barrier to the migration of cationic species of various radionuclides in aqueous solutions. However, these minerals are unstable at elevated temperatures and at low water-vapor pressures and may break down either by reversible dehydration or by irreversible mineralogical reactions. All the breakdown reactions occurring at increased temperature involve a net volume reduction and evolution of fluids. Thus, they may provide a pathway (shrinkage fractures) and a driving force (fluid pressure) for release of radionuclides to the biosphere. These reactions may be avoided by keeping zeolite-bearing horizons saturated with water and below about 85 0 C. This may restrict allowable gross thermal loadings in waste repositories in volcanic rocks

  3. Influence of heterotrophic microbial growth on biological oxidation of pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, E.A.; Silverstein, J. [University of Nevada, Reno, NV (United States). Dept. of Civil Engineering

    2002-12-15

    Experiments were carried out to examine the possibility that enhanced growth of heterotrophic (non-iron-oxidising) bacteria would inhibit pyrite oxidation by Acidithiobacillus ferroxidans by out-competing the more slowly growing autotrophs for oxygen, nutrients or even attachment sites on the mineral surface. Glucose was added to microcosms containing pyrite, acidic mineral solution and cultures of A-ferrooxidans and Acidiphilium acidophilus under various experimental conditions. Results suggest that encouraging the growth of heterotrophic microorganisms under acid mine drainage conditions may be a feasible strategy for decreasing both the rate and the extent of sulfide mineral oxidation. 43 refs., 8 figs., 3 tabs.

  4. Age of the Xalnene Ash, Central Mexico and Archeological Implications

    Science.gov (United States)

    Renne, P. R.; Feinberg, J. M.; Waters, M. R.; Cabrales, J. A.; Castillo, P. O.; Campa, M. P.; Knight, K. B.

    2005-12-01

    Human footprints ~40 ka old have been reported from the Toloquilla quarry near Valsequillo Reservoir, ca. 15 km south of the city of Puebla in central Mexico (http://www.mexicanfootprints.co.uk/default.htm). If correct, this would be important evidence for early peopling of the Americas. The indentations interpreted as footprints and other ichnofossils occur on the surface of an indurated basaltic lapilli tuff within a several meter thick sequence of thinly bedded (1-10 cm) tuffs of similar character, lacking paleosols, erosional features or interlayered sediments, informally known as the Xalnene ash. A sample was collected at 18°55.402` N latitude and 098°09.375` W longitude from the surface on which the purported footprints occur. Lapilli were separated and analyzed by incremental heating 40Ar/39Ar methods, yielding 9 indistinguishable plateau ages averaging 1.30 ±0.03 Ma (2σ) for single lapilli (N=6) and multiple lapilli (N=3) subsamples. Though some minor discordance (presumably due to 39Ar recoil) is manifest in 5 of the age spectra, all plateaux comprise >60% of the 39Ar released and 4 or more consecutive steps. Paleomagnetic data from azimuthally unoriented bulk samples of 11.25 cm3 reveal a reverse polarity (I = -32.1°) thermoremanent component carried by titanomagnetite and a normal polarity component carried by goethite. Measurements on individual matrix-free lapilli lack the goethite component, which is presumed to be associated with the clay-rich cement. Consistency of the reverse component implies deposition of the lapilli at supra-Curie temperatures, with no postdepositional reworking. Reverse polarity is consistent with deposition during chron C1r.2r (1.77 to 1.07 Ma) as indicated by the 40Ar/39Ar data. If the features observed on the tuff are indeed footprints, their 1.3 Ma antiquity would be truly remarkable, predating by far any other evidence for human presence in the Americas and in fact predating the evolutionary emergence of Homo sapiens

  5. Methodology for determining time-dependent mechanical properties of tuff subjected to near-field repository conditions

    International Nuclear Information System (INIS)

    Blacic, J.D.; Andersen, R.

    1983-01-01

    We have established a methodology to determine the time dependence of strength and transport properties of tuff under conditions appropriate to a nuclear waste repository. Exploratory tests to determine the approximate magnitudes of thermomechanical property changes are nearly complete. In this report we describe the capabilities of an apparatus designed to precisely measure the time-dependent deformation and permeability of tuff at simulated repository conditions. Preliminary tests with this new apparatus indicate that microclastic creep failure of tuff occurs over a narrow strain range with little precursory Tertiary creep behavior. In one test, deformation under conditions of slowly decreasing effective pressure resulted in failure, whereas some strain indicators showed a decreasing rate of strain

  6. Methodology for determining time-dependent mechanical properties of tuff subjected to near-field repository conditions

    Energy Technology Data Exchange (ETDEWEB)

    Blacic, J.D.; Andersen, R.

    1983-01-01

    We have established a methodology to determine the time dependence of strength and transport properties of tuff under conditions appropriate to a nuclear waste repository. Exploratory tests to determine the approximate magnitudes of thermomechanical property changes are nearly complete. In this report we describe the capabilities of an apparatus designed to precisely measure the time-dependent deformation and permeability of tuff at simulated repository conditions. Preliminary tests with this new apparatus indicate that microclastic creep failure of tuff occurs over a narrow strain range with little precursory Tertiary creep behavior. In one test, deformation under conditions of slowly decreasing effective pressure resulted in failure, whereas some strain indicators showed a decreasing rate of strain.

  7. Stress corrosion cracking tests on high-level-waste container materials in simulated tuff repository environments

    International Nuclear Information System (INIS)

    Abraham, T.; Jain, H.; Soo, P.

    1986-06-01

    Types 304L, 316L, and 321 austenitic stainless steel and Incoloy 825 are being considered as candidate container materials for emplacing high-level waste in a tuff repository. The stress corrosion cracking susceptibility of these materials under simulated tuff repository conditions was evaluated by using the notched C-ring method. The tests were conducted in boiling synthetic groundwater as well as in the steam/air phase above the boiling solutions. All specimens were in contact with crushed Topopah Spring tuff. The investigation showed that microcracks are frequently observed after testing as a result of stress corrosion cracking or intergranular attack. Results showing changes in water chemistry during test are also presented

  8. Sorption and desorption of remazol yellow by a Fe-zeolitic tuff

    International Nuclear Information System (INIS)

    Solache R, M. J.; Villalva C, R.; Diaz N, M. C.

    2010-01-01

    The adsorption of remazol yellow from aqueous solution was evaluated using a Fe-zeolitic tuff. The adsorbent was characterized by scanning electron microscopy, IR spectroscopy and X-ray diffraction. Sorption kinetic and isotherms were determined and the adsorption behavior was analyzed. Kinetic pseudo-second order and Langmuir-Freundlich models were successfully applied to the experimental results, indicating chemisorption on a heterogeneous material. The regeneration of the material was best accomplished by using a H 2 O 2 solution. The sorption capacity of the Fe-zeolitic tuff increased when the saturated samples were treated with a H 2O2 or FeCl 3 solution. (Author)

  9. Sorption and desorption of remazol yellow by a Fe-zeolitic tuff

    Energy Technology Data Exchange (ETDEWEB)

    Solache R, M. J. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Villalva C, R.; Diaz N, M. C., E-mail: marcos.solache@inin.gob.m [Instituto Tecnologico de Toluca, Division de Estudios del Posgrado, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico)

    2010-07-01

    The adsorption of remazol yellow from aqueous solution was evaluated using a Fe-zeolitic tuff. The adsorbent was characterized by scanning electron microscopy, IR spectroscopy and X-ray diffraction. Sorption kinetic and isotherms were determined and the adsorption behavior was analyzed. Kinetic pseudo-second order and Langmuir-Freundlich models were successfully applied to the experimental results, indicating chemisorption on a heterogeneous material. The regeneration of the material was best accomplished by using a H{sub 2}O{sub 2} solution. The sorption capacity of the Fe-zeolitic tuff increased when the saturated samples were treated with a H{sub 2O2} or FeCl{sub 3} solution. (Author)

  10. Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations.

    Science.gov (United States)

    Tabelin, Carlito Baltazar; Veerawattananun, Suchol; Ito, Mayumi; Hiroyoshi, Naoki; Igarashi, Toshifumi

    2017-02-15

    Pyrite is one of the most common and geochemically important sulfide minerals in nature because of its role in the redox recycling of iron (Fe). It is also the primary cause of acid mine drainage (AMD) that is considered as a serious and widespread problem facing the mining and mineral processing industries. In the environment, pyrite oxidation occurs in the presence of ubiquitous metal oxides, but the roles that they play in this process remain largely unknown. This study evaluates the effects of hematite (α-Fe 2 O 3 ) and alumina (α-Al 2 O 3 ) on pyrite oxidation by batch-reactor type experiments, surface-sensitive characterization of the oxidation layer and thermodynamic/kinetic modeling calculations. In the presence of hematite, dissolved sulfur (S) concentration dramatically decreased independent of the pH, and the formation of intermediate sulfoxy anionic species on the surface of pyrite was retarded. These results indicate that hematite minimized the overall extent of pyrite oxidation, but the kinetic model could not explain how this suppression occurred. In contrast, pyrite oxidation was enhanced in the alumina suspension as suggested by the higher dissolved S concentration and stronger infrared (IR) absorption bands of surface-bound oxidation products. Based on the kinetic model, alumina enhanced the oxidative dissolution of pyrite because of its strong acid buffering capacity, which increased the suspension pH. The higher pH values increased the oxidation of Fe 2+ to Fe 3+ by dissolved O 2 (DO) that enhanced the overall oxidative dissolution kinetics of pyrite. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Fate of the naturally occurring radioactive materials during treatment of acid mine drainage with coal fly ash and aluminium hydroxide.

    Science.gov (United States)

    Madzivire, Godfrey; Maleka, Peane P; Vadapalli, Viswanath R K; Gitari, Wilson M; Lindsay, Robert; Petrik, Leslie F

    2014-01-15

    Mining of coal is very extensive and coal is mainly used to produce electricity. Coal power stations generate huge amounts of coal fly ash of which a small amount is used in the construction industry. Mining exposes pyrite containing rocks to H2O and O2. This results in the oxidation of FeS2 to form H2SO4. The acidic water, often termed acid mine drainage (AMD), causes dissolution of potentially toxic elements such as, Fe, Al, Mn and naturally occurring radioactive materials such as U and Th from the associated bedrock. This results in an outflow of AMD with high concentrations of sulphate ions, Fe, Al, Mn and naturally occurring radioactive materials. Treatment of AMD with coal fly ash has shown that good quality water can be produced which is suitable for irrigation purposes. Most of the potentially toxic elements (Fe, Al, Mn, etc) and substantial amounts of sulphate ions are removed during treatment with coal fly ash. This research endeavours to establish the fate of the radioactive materials in mine water with coal fly ash containing radioactive materials. It was established that coal fly ash treatment method was capable of removing radioactive materials from mine water to within the target water quality range for drinking water standards. The alpha and beta radioactivity of the mine water was reduced by 88% and 75% respectively. The reduced radioactivity in the mine water was due to greater than 90% removal of U and Th radioactive materials from the mine water after treatment with coal fly ash as ThO2 and UO2. No radioisotopes were found to leach from the coal fly ash into the mine water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Air oxidation of aqueous sodium sulfide solutions with coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, D; Chaudhuri, S K [Southern Illinois University, Carbondale, IL (United States). Dept. of Mining Engineering

    1999-02-01

    The paper investigated the potential of coal fly ash as a catalyst in the air oxidation of aqueous sodium sulfide (Na{sub 2}S) solutions in the temperature range of 303-333 K. The rate of oxidation was found to be independent of the initial concentration of Na{sub 2}S in the range of 5.80 x 10{sup -2} - 28.45 x 10{sup -2} kmol/m{sup 3}. The effects of fly ash loading, source of fly ash, speed of agitation, air flow rate, fly ash particle size were also studied. Experimental results suggested a film-diffusion controlled reaction mechanism. The deactivation of the catalytic effect of fly ash was found to be less than 31% even after five repeated uses.

  13. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    Science.gov (United States)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  14. Application and verification of cold air velocity technique for solving tube ash erosion problem in PC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Kisoo; Jeong, Kwon Seok [Korea Southern Power Corporation, Gimhae (Korea, Republic of)

    2012-06-15

    Fly ash erosion is a leading cause of boiler tube failure in PC boilers. Therefore, shields or baffle plates are installed in specific areas to mitigate fly ash erosion and prevent boiler tube failure. However, the tube failure problems caused by fly ash erosion cannot be eliminated with this solution alone, because each PC boiler has a different flue gas flow pattern and erosion can become severe in unexpected zones. This problem is caused by an asymmetric internal flow velocity and local growth of the flue gas velocity. For these reasons, clearly defining the flow pattern in PC boilers is important for solving the problem of tube failure caused by fly ash erosion. For this purpose, the cold air velocity technique (CAVT) can be applied to the fly ash erosion problem. In this study, CAVT was carried out on the Hadong 2 PC boiler and the feasibility of application of CAVT to conventional PC boilers was validated.

  15. Application and verification of cold air velocity technique for solving tube ash erosion problem in PC boilers

    International Nuclear Information System (INIS)

    Yoo, Kisoo; Jeong, Kwon Seok

    2012-01-01

    Fly ash erosion is a leading cause of boiler tube failure in PC boilers. Therefore, shields or baffle plates are installed in specific areas to mitigate fly ash erosion and prevent boiler tube failure. However, the tube failure problems caused by fly ash erosion cannot be eliminated with this solution alone, because each PC boiler has a different flue gas flow pattern and erosion can become severe in unexpected zones. This problem is caused by an asymmetric internal flow velocity and local growth of the flue gas velocity. For these reasons, clearly defining the flow pattern in PC boilers is important for solving the problem of tube failure caused by fly ash erosion. For this purpose, the cold air velocity technique (CAVT) can be applied to the fly ash erosion problem. In this study, CAVT was carried out on the Hadong 2 PC boiler and the feasibility of application of CAVT to conventional PC boilers was validated

  16. Management methods ash from combustion of biomass. Review of productions and associated methods. Extended abstract

    International Nuclear Information System (INIS)

    Boulday, D.; Marcovecchio, F.

    2016-02-01

    The study deals with the management of biomass ashes from industrial and collective facilities (wood log excluded) and provides a state of the art, in France and in Europe, flows, methods of recovery and post-treatment, physico-chemical characteristics and programs for new opportunities. Currently, flows of biomass ash are estimated at 110 kt-330 kt in France and 1 500 kt - 4 500 kt in Europe and should amount respectively 330 kt-1000 kt and 3100 kt-8000 kt in 2020. The physical and chemical composition of biomass ash is influenced by many factors: fuel, pretreatment, post-treatment, additives, fly and bottom ash, power installation, type of combustion equipment, extraction mode...However, these ashes have characteristics which are commonly accepted: liming / neutralizing power, fertilizer, pozzolanic behavior generally almost zero. In France and Europe, a distinction is made between fly and bottom ashes, usually less polluted. However, this separation does not always make sense according to the valuation mode, the type of equipment (including fluidized bed or grid) or mixtures of ash made in the plant (e.g. mix of bottom and coarse ash). Currently, the main outlet is ash landfill, followed by agricultural and forestry recycling. The other identified opportunities concern a few countries and marginal flows: brick-works, road engineering... The development of biomass energy, coupled with a reduction in landfill options, has given rise to many research and demonstration programs in recent years, particularly in France, with some promising solutions. Many limiting factors, which can be different according to opportunities, have been identified. More or less advanced solutions aimed at reducing the harmful effects of these factors (slaking lime, sorting, grinding...).However to date, the most robust and massive solution for ash recycling material remains undoubtedly the agricultural recycling. According to the study, it's necessary to consolidate the agricultural

  17. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Stuckless; D. O' Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  18. Juvenile fragment studies on lapilli tuffs of the Messel maar-diatreme-volcano, Germany: implications for rockmagnetic properties

    Science.gov (United States)

    Nitzsche, T.; de Wall, H.; Rolf, C.; Schuessler, U.

    2006-12-01

    In 2001 the 433 m deep Messel 2001 bore hole was drilled in the centre of the Messel Pit, 25 km south of Frankfurt (Germany). Interdisciplinary, geoscientific results obtained from this drilling proved the origin of the circular-shaped basin as a maar-diatreme-structure beneath the surface. Recovered deposits consist of sedimentary rocks (0-240 m) and volcaniclastic rocks such as lapilli tuffs (240-373 m) as well as rocks of the underlying diatreme breccia (373-433 m). The lapilli tuffs, as matter of interest here, show little differentiation on a macro- and microscopic scale and appear as unsorted volcaniclastics with dominating juvenile lapilli and accidental clasts in the range of (sub)millimetres to centimetres in diameter. Decimeter-sized blocks of the crystalline basement occur at certain depths, but are comparatively scarce and inconspicuous, concerning the total thickness of the tuffs. Rock magnetic properties measured on core samples of the lapilli tuffs explain the origin of detected downhole magnetic anomalies performed during the drilling project 2001. Thereby, the juvenile fragments as main carrier of ferrimagnetic minerals (titano-magnetites) specify the rock magnetic character of the volcanic material and account for downhole logging data of the magnetic susceptibility (MS) and the natural remanent magnetisation (NRM). Besides similar remanence acquisition properties throughout the lapilli tuffs, differences in the magnetic stability behaviour are realised for the upper and lower half of the tuffs. Thermal magnetic experiments prove the magnetic differences and the acquisition of (partial) thermal remanent magnetisation (pTRM), respectively, and allow estimations of emplacement temperatures 300 ° C for the lower half of the lapilli tuffs. This study deals with image analytical and geochemical investigations on juvenile fragments as implication for the rock magnetic results and provides insights into the heat and magma source of the Messel maar

  19. Fly ash particles spheroidization using low temperature plasma energy

    Science.gov (United States)

    Shekhovtsov, V. V.; Volokitin, O. G.; Kondratyuk, A. A.; Vitske, R. E.

    2016-11-01

    The paper presents the investigations on producing spherical particles 65-110 μm in size using the energy of low temperature plasma (LTP). These particles are based on flow ash produced by the thermal power plant in Seversk, Tomsk region, Russia. The obtained spherical particles have no defects and are characterized by a smooth exterior surface. The test bench is designed to produce these particles. With due regard for plasma temperature field distribution, it is shown that the transition of fly ash particles to a state of viscous flow occurs at 20 mm distance from the plasma jet. The X-ray phase analysis is carried out for the both original state of fly ash powders and the particles obtained. This analysis shows that fly ash contains 56.23 wt.% SiO2; 20.61 wt.% Al2O3 and 17.55 wt.% Fe2O3 phases that mostly contribute to the integral (experimental) intensity of the diffraction maximum. The LTP treatment results in a complex redistribution of the amorphous phase amount in the obtained spherical particles, including the reduction of O2Si, phase, increase of O22Al20 and Fe2O3 phases and change in Al, O density of O22Al20 chemical unit cell.

  20. Source and Enrichment of Toxic Elements in Coal Seams around Mafic Intrusions: Constraints from Pyrites in the Yuandian Coal Mine in Anhui, Eastern China

    Directory of Open Access Journals (Sweden)

    Yanfei An

    2018-04-01

    Full Text Available Pyrite, a mineral that can cause potential environmental issues in coal mining, is commonly found in coal seams around intrusions. In this paper, pyrites from the Yuandian Coal Mine (Huaibei Coalfield, Anhui, Eastern China were studied using SEM, Raman and LA-ICP-MS. The pyrite morphologic and geochemical data suggest that (1 four pyrite generations are present (framboidal sedimentary pyrites (Py I in the original coal, coarse-grained magmatic pyrites (Py II in the intruding diabase, fine-grained metamorphic pyrites (Py III in the intrusive contact aureole, and spheroid/vein hydrothermal pyrites (Py IV in the cokeite; and (2 concentrations of cobalt, nickel, arsenic, selenium, lead and copper in the metamorphic pyrites are much higher than the other pyrite generations. We propose that mafic magmatism is the main contributor of the toxic elements to the intrusion-related cokeite at Yuandian.

  1. Paleoredoc and pyritization of soft-bodied fossils in the Ordovician Frankfort Shale of New York

    DEFF Research Database (Denmark)

    Farrell, Una C.; Briggs, Derek E. G.; Hammarlund, Emma U.

    2013-01-01

    Multiple beds in the Frankfort Shale (Upper Ordovician, New York State), including the original "Beecher's Trilobite Bed," yield fossils with pyritized soft-tissues. A bed-by-bed geochemical and sedimentological analysis was carried out to test previous models of soft-tissue pyritization...

  2. Protecting black ash from the emerald ash borer

    Science.gov (United States)

    Les Benedict

    2010-01-01

    Black ash (Fraxinus nigra) is an important resource for Tribes in the Northeast and Great Lakes regions of the North American continent. Ash in North America is being threatened with widespread destruction as a result of the introduction of emerald ash borer beetle (Agrilus planipennis) in 2002. Measures are being taken to slow the spread of emerald ash borer beetle....

  3. Coal Ash Aerosol in East Asian Outflow as a Source for Oceanic Deposition of Iron and Other Metals

    Science.gov (United States)

    Anderson, J. R.; Hua, X.

    2008-12-01

    While ocean deposition of East Asian dust is given significant emphasis as a source of biologically-active trace elements, iron in particular, dust events are episodic and highly seasonal. There is, however, a constant source of aerosol that is chemically similar to dust (albeit amorphous in structure rather than crystalline) in the ash particles emitted from many hundreds of coal-fired power plants that are sited along the entire coastal region of China and Korea. The emission controls on these facilities vary widely and, in even cases of state-of-the-art emission controls, the secondary release of ash can be significant. There are of course even more small industrial and household sources of coal combustion emissions, in most cases with little or no emissions controls. Ash from a modern coal-fired power facility in Korea has been examined chemically and morphologically with electron microscopic techniques. As is characteristic of all such facilities, two principal types of ash are present: (1) flyash, silicate glass spheres that are emitted with the smoke and removed by electrostatic precipitators; and (2) bottom ash, "clinkers" and noncombustible material sticking to the furnace walls that are mixed with water and ground after cooling, then removed as a slurry to a dumping area. In addition, iron sulfide (pyrite) is a common constituent of coal and provides both a source of sulfur dioxide gas and also molten iron spherical particles in the ash. The iron spheres then are rapidly oxidized upon cooling. Bottom ash is a more complex material than flyash in that it contains more iron and other trace metals, plus it contains varying amounts of uncombusted carbon. The post-combustion handling of bottom ash can lead to significant emissions despite the fact that little or none goes out the stack. The iron oxide spheres can also be emitted by this secondary method. The concentrations of ash can be very high in close proximity to power plants (PM10 of several hundred

  4. Element migration of pyrites during ductile deformation of the Yuleken porphyry Cu deposit (NW-China)

    Science.gov (United States)

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen; Li, Jilei; Cao, Mingjian; Xiang, Peng; Wu, Chu; You, Jun

    2017-01-01

    The strongly deformed Yuleken porphyry Cu deposit (YPCD) occurs in the Kalaxiangar porphyry Cu belt (KPCB), which occupies the central area of the Central Asian Orogenic Belt (CAOB) between the Sawu’er island arc and the Altay Terrane in northern Xinjiang. The YPCD is one of several typical subduction-related deposits in the KPCB, which has undergone syn-collisional and post-collisional metallogenic overprinting. The YPCD is characterized by three pyrite-forming stages, namely a hydrothermal stage A (Py I), a syn-ductile deformation stage B (Py II) characterized by Cu-Au enrichment, and a fracture-filling stage C (Py III). In this study, we conducted systematic petrographic and geochemical studies of pyrites and coexist biotite, which formed during different stages, in order to constrain the physicochemical conditions of the ore formation. Euhedral, fragmented Py I has low Pb and high Te and Se concentration and Ni contents are low with Co/Ni ratios mostly between 1 and 10 (average 9.00). Py I is further characterized by enrichments of Bi, As, Ni, Cu, Te and Se in the core relative to the rim domains. Anhedral round Py II has moderate Co and Ni contents with high Co/Ni ratios >10 (average 95.2), and average contents of 46.5 ppm Pb and 5.80 ppm Te. Py II is further characterized by decreasing Bi, Cu, Pb, Zn, Ag, Te, Mo, Sb and Au contents from the rim to the core domains. Annealed Py III has the lowest Co content of all pyrite types with Co/Ni ratios mostly <0.1 (average 1.33). Furthermore, Py III has average contents of 3.31 ppm Pb, 1.33 ppm Te and 94.6 ppm Se. In addition, Fe does not correlate with Cu and S in the Py I and Py III, while Py II displays a negative correlation between Fe and Cu as well as a positive correlation between Fe and S. Therefore, pyrites which formed during different tectonic regimes also have different chemical compositions. Biotite geothermometer and oxygen fugacity estimates display increasing temperatures and oxygen

  5. Bacterial leaching of pyritic gold ores

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, F.M.; Cashion, J.D.; Brown, L.J. [Monash Univ., Clayton, VIC (Australia). Dept. of Physics; Jay, W.H. [Monash Univ., Clayton, VIC (Australia). Chemical Engineering Department

    1996-12-31

    The bacterial oxidation process is well known in nature but has only recently come under investigation as a viable and relatively clean method of gold recovery from ores. However there is currently little information about the process at an atomic scale. It is known that the bacterial attack progresses preferentially along grain boundaries which is precisely where the gold has been deposited from aqueous infiltration. Samples have been obtained from the Wiluna mine in Western Australia consisting of the original ore, 2 pre-treatments, and from six successive bacterial reactors. {sup 57}Fe Moessbauer spectra taken at room temperature show only two quadrupole split doublets which can be ascribed to pyrite, FeS{sub 2}, and arsenopyrite, FeAsS. However, the presence of any superparamagnetic oxide or oxyhydroxide species would be expected to give a spectrum very similar to that of pyrite and would be undetectable in small quantities. At a temperature of 5K, a broad magnetically split sextet is observable with a mean hyperfine field of approximately 50T. This field is characteristic of magnetically ordered ferric iron surrounded by an octahedron of oxygens. The intensity and characteristics of this subspectrum alters through the series and interpretations will be given on the oxidation products of the bacterial leaching

  6. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, L.J.; Jay, W.H.

    1996-01-01

    The bacterial oxidation process is well known in nature but has only recently come under investigation as a viable and relatively clean method of gold recovery from ores. However there is currently little information about the process at an atomic scale. It is known that the bacterial attack progresses preferentially along grain boundaries which is precisely where the gold has been deposited from aqueous infiltration. Samples have been obtained from the Wiluna mine in Western Australia consisting of the original ore, 2 pre-treatments, and from six successive bacterial reactors. 57 Fe Moessbauer spectra taken at room temperature show only two quadrupole split doublets which can be ascribed to pyrite, FeS 2 , and arsenopyrite, FeAsS. However, the presence of any superparamagnetic oxide or oxyhydroxide species would be expected to give a spectrum very similar to that of pyrite and would be undetectable in small quantities. At a temperature of 5K, a broad magnetically split sextet is observable with a mean hyperfine field of approximately 50T. This field is characteristic of magnetically ordered ferric iron surrounded by an octahedron of oxygens. The intensity and characteristics of this subspectrum alters through the series and interpretations will be given on the oxidation products of the bacterial leaching

  7. Stratigraphy, sedimentology and eruptive mechanisms in the tuff cone of El Golfo (Lanzarote, Canary Islands)

    Science.gov (United States)

    Pedrazzi, Dario; Martí, Joan; Geyer, Adelina

    2013-07-01

    The tuff cone of El Golfo on the western coast of Lanzarote (Canary Islands) is a typical hydrovolcanic edifice. Along with other edifices of the same age, it was constructed along a fracture oriented NEE-SWW that coincides with the main structural trend of recent volcanism in this part of the island. We conducted a detailed stratigraphic study of the succession of deposits present in this tuff cone and here interpret them in light of the depositional processes and eruptive dynamics that we were able to infer. The eruptive sequence is represented by a succession of pyroclastic deposits, most of which were emplaced by flow, plus a number of air-fall deposits and ballistic blocks and bombs. We distinguished five different eruptive/depositional stages on the basis of differences in inferred current flow regimes and fragmentation efficiencies represented by the resulting deposits; the different stages may be related to variations in the explosive energy. Eight lithofacies were identified based on sedimentary discontinuities, grain size, components, variations in primary laminations and bedforms. The volcanic edifice was constructed very rapidly around the vent, and this is inferred to have controlled the amount of water that was able to enter the eruption conduit. The sedimentological characteristics of the deposits and the nature and distribution of palagonitic alteration suggest that most of the pyroclastic succession in El Golfo was deposited in a subaerial environment. This type of hydrovolcanic explosive activity is common in the coastal zones of Lanzarote and the other Canary Islands and is one of the main potential hazards that could threaten the human population of this archipelago. Detailed studies of these hydrovolcanic eruptions such as the one we present here can help volcanologists understand the hazards that this type of eruption can generate and provide essential information for undertaking risk assessment in similar volcanic environments.

  8. Application of Fly Ash from Solid Fuel Combustion in Concrete

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard

    2008-01-01

    with implementation of low-NOx combustion technologies. The present thesis concerns three areas of importance within this field: 1) testing of fly ash adsorption behavior; 2) the influence of fuel type and combustion conditions on the ash adsorption behaviour including full-scale experiments at the power plant...... has a low sensitivity toward small variations in AEA adsorption between different fly ashes and it requires further work before a finished procedure is accomplished. Finally, it was shown that changes in temperature affect both test methods. Pulverized fuel has been combusted in an entrained flow...... formation. It was found that the AEA adsorption of the fly ash was reduced up to five times compared to reference operation, when the plant was operated with minimum furnace air staging, three levels of burners instead of four and without recycled flue gas. The lower AEA requirements of the fly ash...

  9. Chemostratigraphy and trace element pattern of authigenic pyrite in a Frasnian-Fammenian transition section (Büdesheimer bach, Germany)

    Science.gov (United States)

    Pujol, F.; Berner, Z.; Neumann, T.; Stüben, D.

    2003-04-01

    Trace element contents in authigenic pyrite were investigated in relationship to the geochemistry of host rocks in a 160 m deep drilling at Büdesheimer Bach (Prümer Mulde, Germany), in order to put constrains on possible changes in depositional conditions and seawater composition related to the Kellwasser events (Frasnian/Fammenian transition). The approach is based on the observation that the trace element pattern of authigenic pyrite is controlled by genetic conditions (Stüben et al., 2002) and that the content of elements with generally high degree of pyritization (DTMP, degree of trace metal pyritization, like As, Mo, Co, Ni, etc.) depends on their availability at the site of pyrite formation (e.g. Huerta-Diaz and Morse, 1992). The distribution of trace elements in the bulk rock essentially reflects mineralogical composition and redox conditions which are mainly controlled by the flux of organic matter entering the sediment. The lower and upper Kellwasser horizons are marked by an increase in carbonate and organic carbon content (up to 2%), coupled with an increase in the degree of pyritization of Fe (DOP: 0.4-0.8), indicating a change from normal marine to suboxic/anoxic conditions. A simultaneous drop in the Ba content of the host lithology, which usually is used as a proxy for paleoproductivity, can be explained by the removal of Ba dissolved in pore water under anoxic conditions (McManus et al., 1998). While low in the host rock, the Ba content of authigenic pyrite is high in these horizons, suggesting that pyrite may preserve the initial composition of pore water even for some elements with generally low DTMP, like Ba. Consequently, Ba content in pyrite may serve as indicator for productivity even when the Ba content of sediment can not be used due to its poor preservation. During these anoxic episodes also a significant increase in the content of As, U, V was registered in pyrite. Opposite to these, others like Ni, Co, Ag show a decrease in their

  10. Volcanism at 1.45 Ma within the Yellowstone Volcanic Field, United States

    Science.gov (United States)

    Rivera, Tiffany A.; Furlong, Ryan; Vincent, Jaime; Gardiner, Stephanie; Jicha, Brian R.; Schmitz, Mark D.; Lippert, Peter C.

    2018-05-01

    Rhyolitic volcanism in the Yellowstone Volcanic Field has spanned over two million years and consisted of both explosive caldera-forming eruptions and smaller effusive flows and domes. Effusive eruptions have been documented preceding and following caldera-forming eruptions, however the temporal and petrogenetic relationships of these magmas to the caldera-forming eruptions are relatively unknown. Here we present new 40Ar/39Ar dates for four small-volume eruptions located on the western rim of the second-cycle caldera, the source of the 1.300 ± 0.001 Ma Mesa Falls Tuff. We supplement our new eruption ages with whole rock major and trace element chemistry, Pb isotopic ratios of feldspar, and paleomagnetic and rock magnetic analyses. Eruption ages for the effusive Green Canyon Flow (1.299 ± 0.002 Ma) and Moonshine Mountain Dome (1.302 ± 0.003 Ma) are in close temporal proximity to the eruption age of the Mesa Falls Tuff. In contrast, our results indicate a period of volcanism at ca 1.45 Ma within the Yellowstone Volcanic Field, including the eruption of the Bishop Mountain Flow (1.458 ± 0.002 Ma) and Tuff of Lyle Spring (1.450 ± 0.003 Ma). These high-silica rhyolites are chemically and isotopically distinct from the Mesa Falls Tuff and related 1.3 Ma effusive eruptions. The 40Ar/39Ar data from the Tuff of Lyle Spring demonstrate significant antecrystic inheritance, prevalent within the upper welded ash-flow tuff matrix, and minimal within individual pumice. Antecrysts are up to 20 kyr older than the eruption, with subpopulations of grains occurring every few thousand years. We interpret these results as an indicator for the timing of magmatic pulses into a growing magmatic system that would ultimately erupt the Tuff of Lyle Spring, and which we more broadly interpret as the tempo of crustal accumulation associated with bimodal magmatism. We propose a system whereby chemically, isotopically, and temporally distinct, isolated small-volume magma batches are

  11. Development of a Zero-Cement Binder Using Slag, Fly Ash, and Rice Husk Ash with Chemical Activator

    Directory of Open Access Journals (Sweden)

    M. R. Karim

    2015-01-01

    Full Text Available The increasing demand and consumption of cement have necessitated the use of slag, fly ash, rice husk ash (RHA, and so forth as a supplement of cement in concrete construction. The aim of the study is to develop a zero-cement binder (Z-Cem using slag, fly ash, and RHA combined with chemical activator. NaOH, Ca(OH2, and KOH were used in varying weights and molar concentrations. Z-Cem was tested for its consistency, setting time, flow, compressive strength, XRD, SEM, and FTIR. The consistency and setting time of the Z-Cem paste increase with increasing RHA content. The Z-Cem mortar requires more superplasticizer to maintain a constant flow of 110±5% compared with OPC. The compressive strength of the Z-Cem mortar is significantly influenced by the amounts, types, and molar concentration of the activators. The Z-Cem mortar achieves a compressive strength of 42–44 MPa at 28 days with 5% NaOH or at 2.5 molar concentrations. The FTIR results reveal that molecules in the Z-Cem mortar have a silica-hydrate (Si-H bond with sodium or other inorganic metals (i.e., sodium/calcium-silica-hydrate-alumina gel. Therefore, Z-Cem could be developed using the aforementioned materials with the chemical activator.

  12. Volcanic ash impacts on critical infrastructure

    Science.gov (United States)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  13. Chemical and sulphur isotope compositions of pyrite in the ...

    Indian Academy of Sciences (India)

    sulphide mineralization and their chemical evo- lution in relative .... properties and chemical compositions. Electron ..... from the sulphide lode provide clues to the chang- ing fluid ..... Raymond O L 1996 Pyrite composition and ore geneis in.

  14. Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    Francisco Grau

    2015-10-01

    Full Text Available Biomasses are organic materials that are derived from any living or recently-living structure. Plenty of biomasses are produced nationwide. Biomasses are mostly combusted and usually discarded or disposed of without treatment as biomass ashes, which include wood and sugarcane bagasse ashes. Thus, recycling or treatment of biomass ashes leads to utilizing the natural materials as an economical and environmental alternative. This study is intended to provide an environmental solution for uncontrolled disposal of biomass ashes by way of recycling the biomass ash and replacing the soils in geotechnical engineering projects. Therefore, in this study, characteristic tests of wood and sugarcane bagasse ashes that are considered the most common biomass ashes are conducted. The test of chemical compositions of biomass ashes is conducted using energy dispersive X-ray spectroscopy (EDS, and Scanning Electron Microscope (SEM, and heavy metal analysis is also conducted. Engineering behaviors including hydraulic conductivity, constrained modulus and shear modulus are examined. Also, coal fly ash Class C is used in this study for comparison with biomass ashes, and Ottawa 20/30 sands containing biomass ashes are examined to identify the soil replacement effect of biomass ashes. The results show that the particle sizes of biomass ashes are halfway between coal fly ash Class C and Ottawa 20/30 sand, and biomass ashes consist of a heterogeneous mixture of different particle sizes and shapes. Also, all heavy metal concentrations were found to be below the US Environmental Protection Agency (EPA maximum limit. Hydraulic conductivity values of Ottawa 20/30 sand decrease significantly when replacing them with only 1%–2% of biomass ashes. While both the constrained modulus and shear modulus of biomass ashes are lower than Ottawa 20/30 sand, those of mixtures containing up to 10% biomass ashes are little affected by replacing the soils with biomass ashes.

  15. Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids

    International Nuclear Information System (INIS)

    Saikia, Binoy K.; Khound, Kakoli; Baruah, Bimala P.

    2014-01-01

    Highlights: • Extractive de-sulfurization and de-ashing process for cleaning high sulfur coals. • The process removes inorganic as well as organic sulfur components from high sulfur coals. • The process has less risk to chemists and other surroundings. - Abstract: The environmental consequences of energy production from coals are well known, and are driving the development of desulfurization technologies. In this investigation, ionic liquids were examined for extractive desulfurization and de-ashing in industrially important high sulfur sub-bituminous Indian coals. The ionic liquids, namely, 1-n-butyl-3-methylimidazolium tetrafluoroborate (IL1) and 1-n-butyl 3-methylimidazolium chloride (IL2) were employed for desulfurization of a few Indian coal samples in presence of HCOOH/H 2 O 2 and V 2 O 5 . Results show the maximum removal of 50.20% of the total sulfur, 48.00% of the organic sulfur, and 70.37 wt% of the ash in this process. The ionic liquids were recovered and subsequently used for further desulfurization. FT-IR spectra reveal the transformation of organic sulfur functionalities into the sulfoxides (S=O) and sulfones (-SO 2 ) due to the oxidative reactions. The sulfate, pyrite and sulfides (aryls) signals in the near edge X-ray absorption fine structure (NEXAFS) of the oxidized coal samples showed sulfur transformation during the desulfurization process. The study demonstrates the removal of significant amount of inorganic as well as organic sulfur (aryls) components from the original high sulfur coal samples to make them cleaner

  16. Stratigraphic relations and hydrologic properties of the Paintbrush Tuff (PTn) hydrologic unit, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Moyer, T.C.; Geslin, J.K.; Flint, L.E.

    1996-01-01

    Yucca Mountain is being investigated as a potential site for a high- level nuclear waste repository. The intent of this study was to clarify stratigraphic relations within the Paintbrush Tuff (PTn) unit at Yucca Mountain in order to better understand vertical and lateral variations in hydrologic properties as they relate to the lithologic character of these rocks. This report defines informal stratigraphic units within the PTn interval, demonstrates their lateral continuity in the Yucca Mountain region, describes later and vertical variations within them, and characterizes their hydrologic properties and importance to numerical flow and transport models. We present tables summarizing the depth to stratigraphic contacts in cored borehole studies, and unit descriptions and correlations in 10 measured sections

  17. Stratigraphic relations and hydrologic properties of the Paintbrush Tuff (PTn) hydrologic unit, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, T.C.; Geslin, J.K. [Science Applications International Corp., Golden, CO (United States); Flint, L.E. [U.S. Geological Survey, Yucca Mountain Project, Mercury, NV (United States)

    1996-08-01

    Yucca Mountain is being investigated as a potential site for a high- level nuclear waste repository. The intent of this study was to clarify stratigraphic relations within the Paintbrush Tuff (PTn) unit at Yucca Mountain in order to better understand vertical and lateral variations in hydrologic properties as they relate to the lithologic character of these rocks. This report defines informal stratigraphic units within the PTn interval, demonstrates their lateral continuity in the Yucca Mountain region, describes later and vertical variations within them, and characterizes their hydrologic properties and importance to numerical flow and transport models. We present tables summarizing the depth to stratigraphic contacts in cored borehole studies, and unit descriptions and correlations in 10 measured sections.

  18. Research on the calculation method of shale and tuff content: taking tuffaceous reservoirs of X depression in the Hailar–Tamtsag Basin as an example

    International Nuclear Information System (INIS)

    Liu, Sihui; Huang, Buzhou; Pan, Baozhi; Guo, Yuhang; Fang, Chunhui; Wang, Guiping; Sun, Fengxian; Qiu, Haibo; Jiang, Bici

    2015-01-01

    Shale content is known in reservoir evaluation as an important parameter in well logging. However, the log response characteristics are simultaneously affected by shale and tuff existing in tuffaceous sandstone reservoirs. Due to the fact that tuff content exerts an influence on the calculation of shale content, the former is equally important as the latter. Owing to the differences in the source and composition between shale and tuff, the calculation of tuff content using the same methods for shale content cannot meet the accuracy requirements of logging evaluation. The present study takes the tuffaceous reservoirs in the X depression of the Hailar–Tamtsag Basin as an example. The differences in the log response characteristics between shale and tuff are theoretically analyzed and verified using core analysis data. The tuff is then divided into fine- and coarse-grained fractions, according to the differences in the distribution of the radioactive elements, uranium, thorium and potassium. Next, a volume model suitable for tuffaceous sandstone reservoirs is established to include a sandstone matrix, shale, fine-grained tuff, coarse-grained tuff and pore. A comparison of three optimization algorithms shows that the particle swarm optimization (PSO) yields better calculation results with small mean errors. The resistivity differences among shale, fine-grained tuff and coarse-grained tuff are considered in the calculation of saturation. The water saturation of tuffaceous reservoirs is computed using the improved Poupon’s equation, which is suitable for tuffaceous sandstone reservoirs with low water salinity. The method is used in well Y, and is shown to have a good application effect. (paper)

  19. Trace element mapping of pyrite from Archean gold deposits – A comparison between PIXE and EPMA

    Energy Technology Data Exchange (ETDEWEB)

    Agangi, A., E-mail: aagangi@uj.ac.za [University of Johannesburg, Department of Geology, Auckland Park 2006 (South Africa); Przybyłowicz, W., E-mail: przybylowicz@tlabs.ac.za [Materials Research Department, iThemba LABS, National Research Foundation, Somerset West 7129 (South Africa); AGH University of Science and Technology, Faculty of Physics & Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow (Poland); Hofmann, A., E-mail: ahofmann@uj.ac.za [University of Johannesburg, Department of Geology, Auckland Park 2006 (South Africa)

    2015-04-01

    Chemical zoning of pyrites can record the evolution of mineralising fluids at widely varying P–T conditions ranging from diagenesis to medium-grade metamorphism. If preserved, zoning can reveal growth textures, brecciation and veining, resorption and recrystallisation events, thus shedding light on the processes that contributed to ore formation. Chemical zoning of sulfides is invisible in optical microscopy, but can be studied by chemical etching, high-contrast back-scattering electron images, and elemental imaging. In this study we compared micro-PIXE and WDS-EPMA elemental maps on the chemically zoned pyrites in mineralised vein-bearing samples from the Sheba and Fairview gold mines in the Barberton Greenstone Belt, South Africa. Elemental images show complex distribution of trace elements, suggesting multiple events of pyrite crystallisation and gold deposition. EPMA maps show fine-scale variations reflecting growth and recrystallisation textures marked, in particular, by variations of As, Ni, and Co. In PIXE maps, gold occurs both as finely-distributed and discrete inclusions, suggesting incorporation in the pyrite structure as solid solution, and deposition as electrum inclusions, respectively. Micro-PIXE and EPMA provide complementary information, forming together a powerful tool to obtain information on chemical zoning of pyrites in ore deposits.

  20. Surface structure-dependent pyrite oxidation in relatively dry and moist air: Implications for the reaction mechanism and sulfur evolution

    Science.gov (United States)

    Zhu, Jianxi; Xian, Haiyang; Lin, Xiaoju; Tang, Hongmei; Du, Runxiang; Yang, Yiping; Zhu, Runliang; Liang, Xiaoliang; Wei, Jingming; Teng, H. Henry; He, Hongping

    2018-05-01

    Pyrite oxidation not only is environmentally significant in the formation of acid mine (or acid rock) drainage and oxidative acidification of lacustrine sediment but also is a critical stage in geochemical sulfur evolution. The oxidation process is always controlled by the reactivity of pyrite, which in turn is controlled by its surface structure. In this study, the oxidation behavior of naturally existing {1 0 0}, {1 1 1}, and {2 1 0} facets of pyrite was investigated using a comprehensive approach combining X-ray photoelectron spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, and time-of-flight secondary-ion mass spectrometry with periodic density functional theoretical (DFT) calculations. The experimental results show that (i) the initial oxidation rates of both pyrite {1 1 1} and {2 1 0} are much greater than that of pyrite {1 0 0}; (ii) the initial oxidation rate of pyrite {2 1 0} is greater than that of pyrite {1 1 1} in low relative humidity, which is reversed in high relative humidity; and (iii) inner sphere oxygen-bearing sulfur species are originally generated from surface reactions and then converted to outer sphere species. The facet dependent rate law can be expressed as: r{hkl} =k{hkl}haP0.5(t + 1) - 0.5 , where r{hkl} is the orientation dependent reaction rate, k{hkl} is the orientation dependent rate constant, h is the relative humidity, P is the oxygen partial pressure, and t is the oxidation time in seconds. {1 1 1} is the most sensitive facet for pyrite oxidation. Combined with DFT theoretical investigations, water catalyzed electron transfer is speculated as the rate-limiting step. These findings disclose the structure-reactivity dependence of pyrite, which not only presents new insight into the mechanism of pyrite oxidation but also provides fundamental data to evaluate sulfur speciation evolution, suggesting that the surface structure sensitivity should be considered to estimate the reactivity at the mineral

  1. Ash formation, deposition, corrosion, and erosion in conventional boilers

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.A.; Jones, M.L. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustion and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.

  2. Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process.

    Science.gov (United States)

    Han, Yifan; Ma, Xiaomei; Zhao, Wei; Chang, Yunkang; Zhang, Xiaoxia; Wang, Xingbiao; Wang, Jingjing; Huang, Zhiyong

    2013-10-01

    The microbial ecology of the pyrite-pyrolusite bioleaching system and its interaction with ore has not been well-described. A 16S rRNA gene clone library was created to evaluate changes in the microbial community at different stages of the pyrite-pyrolusite bioleaching process in a shaken flask. The results revealed that the bacterial community was disturbed after 5 days of the reaction. Phylogenetic analysis of 16S rRNA sequences demonstrated that the predominant microorganisms were members of a genus of sulfur-oxidizing bacteria, Thiomonas sp., that subsequently remained dominant during the bioleaching process. Compared with iron-oxidizing bacteria, sulfur-oxidizing bacteria were more favorable to the pyrite-pyrolusite bioleaching system. Decreased pH due to microbial acid production was an important condition for bioleaching efficiency. Iron-oxidizing bacteria competed for pyrite reduction power with Mn(IV) in pyrolusite under specific conditions. These results extend our knowledge of microbial dynamics during pyrite-pyrolusite bioleaching, which is a key issue to improve commercial applications. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Manganese-oxide minerals in fractures of the Crater Flat Tuff in drill core USW G-4, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Carlos, B.A.; Bish, D.L.; Chipera, S.J.

    1990-07-01

    The Crater Flat Tuff is almost entirely below the water table in drill hole USW G-4 at Yucca Mountain, Nevada. Manganese-oxide minerals from the Crater Flat Tuff in USW G-4 were studied using optical, scanning electron microscopic, electron microprobe, and x-ray powder diffraction methods to determine their distribution, mineralogy, and chemistry. Manganese-oxide minerals coat fractures in all three members of the Crater Flat Tuff (Prow Pass, Bullfrog, and Tram), but they are most abundant in fractures in the densely welded devitrified intervals of these members. The coatings are mostly of the cryptomelane/hollandite mineral group, but the chemistry of these coatings varies considerably. Some of the chemical variations, particularly the presence of calcium, sodium, and strontium, can be explained by admixture with todorokite, seen in some x-ray powder diffraction patterns. Other chemical variations, particularly between Ba and Pb, demonstrate that considerable substitution of Pb for Ba occurs in hollandite. Manganese-oxide coatings are common in the 10-m interval that produced 75% of the water pumped from USW G-4 in a flow survey in 1983. Their presence in water-producing zones suggests that manganese oxides may exert a significant chemical effect on groundwater beneath Yucca Mountain. In particular, the ability of the manganese oxides found at Yucca Mountain to be easily reduced suggests that they may affect the redox conditions of the groundwater and may oxidize dissolved or suspended species. Although the Mn oxides at Yucca Mountain have low exchange capacities, these minerals may retard the migration of some radionuclides, particularly the actinides, through scavenging and coprecipitation. 23 refs., 21 figs., 2 tabs

  4. Ash Utilisation 2012. Ashes in a Sustainable Society. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Conference themes: Risk assessment, Fly ash- Road construction, Recycling and Greenhouse gases, Storage of ashes, Fertilizer, Metal Mining, Support and Barriers, Construction Material, Civil Engineering, and MSWI bottom ash.

  5. Thin film preparation of semiconducting iron pyrite

    Science.gov (United States)

    Smestad, Greg P.; Ennaoui, Ahmed; Fiechter, Sebastian; Hofmann, Wolfgang; Tributsch, Helmut; Kautek, Wolfgang

    1990-08-01

    Pyrite (Fe52) has been investigated as a promising new absorber material for thin film solar cell applications because of its high optical absorption coefficient of 1OL cm1, and its bandgap of 0.9 to 1.0 eV. Thin layers have been prepared by Metal Organic Chemical Vapor Deposition, MOCVD, Chemical Spray Pyrolysis, CSP, Chemical Vapor Transport, CVT, and Sulfurization of Iron Oxide films, 510. It is postulated that for the material FeS2, if x is not zero, a high point defect concentration results from replacing 2 dipoles by single S atoms. This causes the observed photovoltages and solar conversion efficiencies to be lower than expected. Using the Fe-O-S ternary phase diagram and the related activity plots, a thermodynamic understanding is formulated for the resulting composition of each of these types of films. It is found that by operating in the oxide portion of the phase diagram, the resulting oxidation state favors pyrite formation over FeS. By proper orientation of the grains relative to the film surface, and by control of pinholes and stoichiometry, an efficient thin film photovolatic solar cell material could be achieved.

  6. Ash particle erosion on steam boiler convective section

    Energy Technology Data Exchange (ETDEWEB)

    Meuronen, V

    1998-12-31

    In this study, equations for the calculation of erosion wear caused by ash particles on convective heat exchanger tubes of steam boilers are presented. A new, three-dimensional test arrangement was used in the testing of the erosion wear of convective heat exchanger tubes of steam boilers. When using the sleeve-method, three different tube materials and three tube constructions could be tested. New results were obtained from the analyses. The main mechanisms of erosion wear phenomena and erosion wear as a function of collision conditions and material properties have been studied. Properties of fossil fuels have also been presented. When burning solid fuels, such as pulverized coal and peat in steam boilers, most of the ash is entrained by the flue gas in the furnace. In bubbling and circulating fluidized bed boilers, particle concentration in the flue gas is high because of bed material entrained in the flue gas. Hard particles, such as sharp edged quartz crystals, cause erosion wear when colliding on convective heat exchanger tubes and on the rear wall of the steam boiler. The most important ways to reduce erosion wear in steam boilers is to keep the velocity of the flue gas moderate and prevent channelling of the ash flow in a certain part of the cross section of the flue gas channel, especially near the back wall. One can do this by constructing the boiler with the following components. Screen plates can be used to make the velocity and ash flow distributions more even at the cross-section of the channel. Shield plates and plate type constructions in superheaters can also be used. Erosion testing was conducted with three types of tube constructions: a one tube row, an in- line tube bank with six tube rows, and a staggered tube bark with six tube rows. Three flow velocities and two particle concentrations were used in the tests, which were carried out at room temperature. Three particle materials were used: quartz, coal ash and peat ash particles. Mass loss

  7. Unsaturated zone flow modeling for GWTT-95

    International Nuclear Information System (INIS)

    Ho, C.K.; Altman, S.J.; McKenna, S.A.; Arnold, B.W.

    1995-01-01

    In accordance with the Nuclear Regulatory Commission regulation regarding groundwater travel times at geologic repositories, various models of unsaturated flow in fractured tuff have been developed and implemented to assess groundwater travel times at the potential repository at Yucca Mountain, Nevada. Kaplan used one-dimensional models to describe the uncertainty and sensitivity of travel times to various processes at Yucca Mountain. Robey and Arnold et al. used a two-dimensional equivalent continuum model (ECM) with inter- and intra-unit heterogeneity in an attempt to assess fast-flow paths through the unsaturated, fractured tuff at Yucca Mountain (GWTT-94). However, significant flow through the fractures in previous models was not simulated due to the characteristics of the ECM, which requires the matrix to be nearly saturated before flow through the fractures is initiated. In the current study (GWTT-95), four two-dimensional cross-sections at Yucca Mountain are simulated using both the ECM and dual-permeability (DK) models. The properties of both the fracture and matrix domains are geostatistically simulated, yielding completely heterogeneous continua. Then, simulations of flow through the four cross-sections are performed using spatially nonuniform infiltration boundary conditions. Steady-state groundwater travel times from the potential repository to the water table are calculated

  8. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques.

    Science.gov (United States)

    Fantauzzi, Marzia; Licheri, Cristina; Atzei, Davide; Loi, Giovanni; Elsener, Bernhard; Rossi, Giovanni; Rossi, Antonella

    2011-10-01

    In this work, a multi-technical bulk and surface analytical approach was used to investigate the bioleaching of a pyrite and arsenopyrite flotation concentrate with a mixed microflora mainly consisting of Acidithiobacillus ferrooxidans. X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and X-ray-induced Auger electron spectroscopy mineral surfaces investigations, along with inductively coupled plasma-atomic emission spectroscopy and carbon, hydrogen, nitrogen and sulphur determination (CHNS) analyses, were carried out prior and after bioleaching. The flotation concentrate was a mixture of pyrite (FeS(2)) and arsenopyrite (FeAsS); after bioleaching, 95% of the initial content of pyrite and 85% of arsenopyrite were dissolved. The chemical state of the main elements (Fe, As and S) at the surface of the bioreactor feed particles and of the residue after bioleaching was investigated by X-ray photoelectron and X-ray excited Auger electron spectroscopy. After bioleaching, no signals of iron, arsenic and sulphur originating from pyrite and arsenopyrite were detected, confirming a strong oxidation and the dissolution of the particles. On the surfaces of the mineral residue particles, elemental sulphur as reaction intermediate of the leaching process and precipitated secondary phases (Fe-OOH and jarosite), together with adsorbed arsenates, was detected. Evidence of microbial cells adhesion at mineral surfaces was also produced: carbon and nitrogen were revealed by CHNS, and nitrogen was also detected on the bioleached surfaces by XPS. This was attributed to the deposition, on the mineral surfaces, of the remnants of a bio-film consisting of an extra-cellular polymer layer that had favoured the bacterial action. © Springer-Verlag 2011

  9. Regional risk assessment of reuse of ash in civil engineering applications; Regional riskanalys av askanvaendning i anlaeggningsbyggande

    Energy Technology Data Exchange (ETDEWEB)

    Wik, Ola

    2009-07-15

    A previously proposal (Vaermeforsk report 979, 2006) for common environmental guidelines for reuse of ash in civil engineering applications has only to a limited extent considered eventual additive effects of pollutants from other sources than recycled aggregates. Furthermore the assessment had a strict focus on local effects not considering the possible outcome of a large-scale use of alternative recycled aggregates. The objective of this project has been to characterize the risk of a large-scale use of ashes produced within a regional area. The project targeted at analysing: 1. The possible large-scale negative environmental effects of recycling all ashes fitting for civil engineering applications within a regional watershed area. 2. If environmental effects on a regional scale motivates adjustment of the proposed common environmental guidelines for reuse of ash. In order to perform a regional risk assessment information on the material flow of ashes and traditional aggregates as well as other anthropogenic and natural sources and flows of substances to be analysed is needed. The prime research task of this project was to: Generate material and substance flow information for two different watershed areas, Motala Stroem and Emaan, with respect to lead, cadmium and mercury; and to Compare the generated data with environmental quality standards for surface waters and draft river basin management plans presented by Swedish river basin district authorities. Data on material and substance flow was complied using the following practise; Ashes - data on material flow, substance content and emissions collected from all productions sites. Emissions was estimated using L/S 10 data from standardised leaching test. Missing data was assigned using expert judgement. Aggregates - data on material flow compiled from regional databases. Substance content and emissions calculated based on national generic data. Emissions was estimated using L/S 10 data from standardised leaching

  10. Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea

    DEFF Research Database (Denmark)

    Neretin, LN; Bottcher, ME; Jørgensen, BB

    2004-01-01

    Pyritization in late Pleistocene sediments of the Black Sea is driven by sulfide formed during anaerobic methane oxidation. A sulfidization front is formed by the opposing gradients of sulfide and dissolved iron. The sulfidization processes are controlled by the diffusion flux of sulfide from above...... and by the solid reactive iron content. Two processes of diffusion-limited pyrite formation were identified. The first process includes pyrite precipitation with the accumulation of iron sulfide precursors with the average chemical composition of FeSn (n = 1.10-1.29), including greigite. Elemental sulfur...... and polysulfides, formed from H,S by a reductive dissolution of Fe(Ill)-containing minerals, serve as intermediates to convert iron sulfides into pyrite. In the second process, a "direct" pyrite precipitation occurs through prolonged exposure of iron-containing minerals to dissolved sulfide. Methane-driven sulfate...

  11. 40Ar/39Ar dating of pyrite

    International Nuclear Information System (INIS)

    York, D.; Masliwec, A.; Kuybida, P.; Hanes, J.A.; Hall, C.M.; Kenyon, W.J.; Spooner, E.T.C.; Scott, S.D.

    1982-01-01

    To overcome difficulties encountered in the customary method of determining the age of mineralization of sulphide ore deposits by analysing silicate material, the sulphide minerals themselves have been examined to see if they contained sufficient potassium and argon for 40 Ar/ 39 Ar age determination. Initial results indicate that this is the case for pyrite from the Geco ore body in northwestern Ontario, Canada. (U.K.)

  12. Criticality characteristics of mixtures of plutonium, silicon dioxide, Nevada tuff, and water

    International Nuclear Information System (INIS)

    Sanchez, R.G.; Myers, W.; Stratton, W.

    1996-01-01

    The major objective of this study has been to examine the possibility of a nuclear explosion should 50 to 100 kg of plutonium be mixed with SiO 2 , vitrified, placed within a heavy steel container, and buried in the material known as Nevada tuff. To accomplish this objective, the authors have created a survey of critical states or configurations of mixtures of plutonium, SiO 2 , tuff, and water and examined these data to determine those configurations that might be unstable or autocatalytic. They have identified regions of criticality instability with the possibility of autocatalytic power behavior. Autocatalytic behavior is possible but improbable, for a very limited range of wet systems

  13. Paleotransport of lanthanides and strontium recorded in calcite compositions from tuffs at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Chipera, S.J.

    1996-01-01

    Secondary calcite occurs in both saturated and unsaturated hydrologic zones (SZ and UZ, respectively) in the tuffs at Yucca Mountain, Nevada, USA. In the upper UZ, the major constituents of the calcite crystal structure (C, O) have surface origins. At greater depth there is a open-quotes barren zone,close quotes straddling the water table, where calcite is rare and mixing of surface and subsurface sources may occur. Deep in the SZ, distinctive Mn calcites reflect deep sources, including Ca released as analcime or albite formed and carbonates derived from underlying Paleozoic rocks. In the UZ and in the barren zone, above the deep Mn calcites, variations in calcite lanthanide chemistry can be used to distinguish rhyolitic from quartz-latitic sources. Lanthanide ratios and Sr contents of calcites record the chemical evolution of waters flowing through the UZ and upper SZ. Variations in calcite chemistry in the UZ and in the barren zone show that (1) Sr, which is readily exchanged with clays or zeolites, is essentially removed from some flowpaths that are in contact with these minerals and (2) traces of Mn oxides found in the tuffs have a significant effect of groundwater chemistry in the UZ and in the barren zone by removing almost all Ce from solution (evidenced by characteristic Ce depletions in calcite throughout this zone). Extreme Ce removal may be a result of Ce oxidation (Ce 3+ → Ce 4+ ) at the surfaces of some Mn oxides, particularly rancieite. Higher Sr contents and lack of Ce depletions in the deeper Mn calcites reflect different ages, origins, and transport systems. The calcite record of lanthanide and Sr transport in the UZ shows that minor minerals (clays and zeolites) and even trace minerals (Mn oxides) will affect the compositions of groundwaters that flow over distances greater than a few tens of meters. 43 refs., 8 figs., 4 tabs

  14. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs

  15. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  16. Effect of Phospholipid on Pyrite Oxidation and Microbial Communities under Simulated Acid Mine Drainage (AMD) Conditions.

    Science.gov (United States)

    Pierre Louis, Andro-Marc; Yu, Hui; Shumlas, Samantha L; Van Aken, Benoit; Schoonen, Martin A A; Strongin, Daniel R

    2015-07-07

    The effect of phospholipid on the biogeochemistry of pyrite oxidation, which leads to acid mine drainage (AMD) chemistry in the environment, was investigated. Metagenomic analyses were carried out to understand how the microbial community structure, which developed during the oxidation of pyrite-containing coal mining overburden/waste rock (OWR), was affected by the presence of adsorbed phospholipid. Using columns packed with OWR (with and without lipid adsorption), the release of sulfate (SO4(2-)) and soluble iron (FeTot) was investigated. Exposure of lipid-free OWR to flowing pH-neutral water resulted in an acidic effluent with a pH range of 2-4.5 over a 3-year period. The average concentration of FeTot and SO4(2-) in the effluent was ≥20 and ≥30 mg/L, respectively. In contrast, in packed-column experiments where OWR was first treated with phospholipid, the effluent pH remained at ∼6.5 and the average concentrations of FeTot and SO4(2-) were ≤2 and l.6 mg/L, respectively. 16S rDNA metagenomic pyrosequencing analysis of the microbial communities associated with OWR samples revealed the development of AMD-like communities dominated by acidophilic sulfide-oxidizing bacteria on untreated OWR samples, but not on refuse pretreated with phospholipid.

  17. Bond strength of cementitious borehole plugs in welded tuff

    International Nuclear Information System (INIS)

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young's modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs

  18. Radionuclide sorption in Yucca Mountain tuffs with J-13 well water: Neptunium, uranium, and plutonium. Yucca Mountain site characterization program milestone 3338

    International Nuclear Information System (INIS)

    Triay, I.R.; Cotter, C.R.; Kraus, S.M.; Huddleston, M.H.

    1996-08-01

    We studied the retardation of actinides (neptunium, uranium, and plutonium) by sorption as a function of radionuclide concentration in water from Well J-13 and of tuffs from Yucca Mountain. Three major tuff types were examined: devitrified, vitric, and zeolitic. To identify the sorbing minerals in the tuffs, we conducted batch sorption experiments with pure mineral separates. These experiments were performed with water from Well J-13 (a sodium bicarbonate groundwater) under oxidizing conditions in the pH range from 7 to 8.5. The results indicate that all actinides studied sorb strongly to synthetic hematite and also that Np(V) and U(VI) do not sorb appreciably to devitrified or vitric tuffs, albite, or quartz. The sorption of neptunium onto clinoptilolite-rich tuffs and pure clinoptilolite can be fitted with a sorption distribution coefficient in the concentration range from 1 X 10 -7 to 3 X 10 -5 M. The sorption of uranium onto clinoptilolite-rich tuffs and pure clinoptilolite is not linear in the concentration range from 8 X 10 -8 to 1 X 10 -4 M, and it can be fitted with nonlinear isotherm models (such as the Langmuir or the Freundlich Isotherms). The sorption of neptunium and uranium onto clinoptilolite in J-13 well water increases with decreasing pH in the range from 7 to 8.5. The sorption of plutonium (initially in the Pu(V) oxidation state) onto tuffs and pure mineral separates in J-13 well water at pH 7 is significant. Plutonium sorption decreases as a function of tuff type in the order: zeolitic > vitric > devitrified; and as a function of mineralogy in the order: hematite > clinoptilolite > albite > quartz

  19. Cristobalite in volcanic ash of the soufriere hills volcano, montserrat, british west indies

    Science.gov (United States)

    Baxter; Bonadonna; Dupree; Hards; Kohn; Murphy; Nichols; Nicholson; Norton; Searl; Sparks; Vickers

    1999-02-19

    Crystalline silica (mostly cristobalite) was produced by vapor-phase crystallization and devitrification in the andesite lava dome of the Soufriere Hills volcano, Montserrat. The sub-10-micrometer fraction of ash generated by pyroclastic flows formed by lava dome collapse contains 10 to 24 weight percent crystalline silica, an enrichment of 2 to 5 relative to the magma caused by selective crushing of the groundmass. The sub-10-micrometer fraction of ash generated by explosive eruptions has much lower contents (3 to 6 percent) of crystalline silica. High levels of cristobalite in respirable ash raise concerns about adverse health effects of long-term human exposure to ash from lava dome eruptions.

  20. Microphysical Properties of Alaskan Volcanic Ash

    Science.gov (United States)

    Puthukkudy, A.; Espinosa, R.; Rocha Lima, A.; Remer, L.; Colarco, P. R.; Whelley, P.; Krotkov, N. A.; Young, K.; Dubovik, O.; Wallace, K.; Martins, J. V.

    2017-12-01

    Volcanic ash has the potential to cause a variety of severe problems for human health and the environment. Therefore, effective monitoring of the dispersion and fallout from volcanic ash clouds and characterization of the aerosol particle properties are essential. One way to acquire information from volcanic clouds is through satellite remote sensing: such images have greater coverage than ground-based observations and can present a "big picture" perspective. A challenge of remote sensing is that assumptions of certain properties of the target are often a pre-requisite for making accurate and quantitative retrievals. For example, detailed information about size distribution, sphericity, and optical properties of the constituent matter is needed or must be assumed. The same kind of information is also needed for atmospheric transport models to properly simulate the dispersion and fallout of volcanic ash. Presented here is a laboratory method to determine the microphysical and optical properties of volcanic ash samples collected from two Alaskan volcanoes with markedly different compositions. Our method uses a Polarized Imaging Nephelometer (PI-Neph) and a system that re-suspends the particles in an air flow. The PI-Neph measures angular light scattering and polarization of the re-suspended particles from 3o to 175o in scattering angle, with an angular resolution of 1o . Primary measurements include phase function and polarized phase function at three wavelengths (445nm, 532nm, and 661nm). Size distribution, sphericity, and complex refractive index are retrieved indirectly from the PI-Neph measurements using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm. We report the results of this method applied to samples from the Mt. Okmok (2008) and Mt. Katmai (1912) volcanic eruptions. To our knowledge, this is the first time direct measurements of phase matrix elements of ash from Mt. Okmok and Mt. Katmai have been reported. Retrieved

  1. Treatment of liquid radioactive waste by adsorption of some radionuclides on calcite sand, volcanic ash and comparing it with nickel ferro-cyanide

    International Nuclear Information System (INIS)

    Takriti, S.; Ali, A. F.

    2009-09-01

    Adsorption of 137 Cs existed in the liquid radioactive waste on the calcite sand and volcanic ash has been investigated. X-ray studies of sand and ash were used to have more information about the geological composition. The geological results show that the sand used is calcium carbonate and the ash is uncrystalline old volcanic ash. The radioactive measurements indicated that the calcite sand able to adsorb the 137 Cs with weak bond that can not resist the water flow. Otherwise, the volcanic ash can maintain the 137 Cs for long time and the water flow can not liberate the 137 Cs adsorbed into the volcanic ash. The adsorption of 137 Cs on nickel ferro-cyanide was more effective than other compounds. (author)

  2. Biomass ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    Bristol, D.R.; Noel, D.J.; O`Brien, B. [HYDRA-CO Operations, Inc., Syracuse, NY (United States); Parker, B. [US Energy Corp., Fort Fairfield, ME (United States)

    1993-12-31

    This paper demonstrates that with careful analysis of ash from multiple biomass and waste wood fired power plants that most of the ash can serve a useful purpose. Some applications require higher levels of consistency than others. Examples of ash spreading for agricultural purposes as a lime supplement for soil enhancement in Maine and North Carolina, as well as a roadbase material in Maine are discussed. Use of ash as a horticultural additive is explored, as well as in composting as a filtering media and as cover material for landfills. The ash utilization is evaluated in a framework of environmental responsibility, regulations, handling and cost. Depending on the chemical and physical properties of the biomass derived fly ash and bottom ash, it can be used in one or more applications. Developing a program that utilizes ash produced in biomass facilities is environmentally and socially sound and can be financially attractive.

  3. A study of fine aggregate replacement with fly ash an environmental friendly and economical solution.

    Science.gov (United States)

    Pofale, A D; Deo, S V

    2010-10-01

    The use of fly ash as a replacement of sand has a great potential to benefit our society in terms of reducing demand of natural sand, reducing environmental problems, conserving energy and reducing landfill area requirement. This paper presents an approach to increase the utilization of fly ash and conserve scarcely available natural sand for sustainable development. The experimental investigation by the inclusion of fly ash as a partial replacement of sand as compared to control cement mortar mixes indicated 50% to 100% increase in the compressive strength of mortar at 91 days. Replacement of 50% sand with fly ash can save about 0.4 m3 sand. Comparison of cost per N/mm2 compressive strength has shown about 40% to 60% saving in cost. Based on the experimental results, correlations are developed for finding out the compressive strength and cost at 28 and 91 days. Sand was replaced with 10% to 50% of fly ash by weight and 0.5, 0.55, 0.6 and 0.65 W/C ratios were used. Flow test performed for mortar revealed that as the percentage replacement of sand with the fly ash increased the flow of the mortar decreased. It was also observed that wet and dry densities were more than the control mortar for 10% & 20% replacement of sand with fly ash but for higher replacement percentage density reduced marginally.

  4. Conditions and timescales for welding block-and-ash flow deposits

    Science.gov (United States)

    Heap, M. J.; Kolzenburg, S.; Russell, J. K.; Campbell, M. E.; Welles, J.; Farquharson, J. I.; Ryan, A.

    2014-12-01

    Welding of pyroclastic deposits to reform a coherent rock mass is a common phenomenon, especially for pumiceous pyroclastic density current deposits (i.e., ignimbrites). However, and despite the pervasive abundance of block-and-ash flow (BAF) deposits in the geological and modern record, instances of strongly welded BAF deposits are few. Here, we present a series of high-temperature (800-900 °C) compaction experiments designed to map the conditions (deposit thickness/stress and temperature/viscosity) and timescales that permit or inhibit the welding of BAF deposits. Our experiments were performed on unconsolidated aggregates (containing an ash and lapilli component) derived from crushed and sieved lava blocks (containing 25% crystals) taken from the well-documented welded BAF deposit at Mount Meager volcano (British Columbia, Canada). The experiments demonstrate that welding efficiency increases with increasing time and temperature. Progressive welding is expressed by increasing axial strain, porosity loss, and bulk density. The rate of change of each of these physical properties reduces as welding progresses. Microstructural analysis of the experimental products shows that the loss of interclast porosity during welding results from the progressive sintering and amalgamation of vitric fragments, and that the pore shape changes from sub-equant pores to stretched lenses sandwiched between vitric and crystal fragments. The coincidence between the microstructure and rock physical properties of the natural and experimental samples highlight that we have successfully reproduced welded BAF in the laboratory. Furthermore, our permeability measurements highlight a hysteresis in the return journey of the "there-and-back-again" volcanic permeability cycle (expressed by an increase in permeability due to vesiculation and fragmentation followed by a decrease due to welding). This hysteresis cannot be described by a single porosity-permeability power law relationship and

  5. Consideration of Nuclear Criticality When Directly Disposing Highly Enriched Spent Nuclear Fuel in Unsaturated Tuff - I: Nuclear Criticality Constraints

    International Nuclear Information System (INIS)

    Rechard, Rob P.; Sanchez, Lawrence C.; Trellue, Holly R.

    2003-01-01

    This paper presents the mass, concentration, and volume required for a critical event to occur in homogeneous mixtures of fissile material and various other geologic materials. The fissile material considered is primarily highly enriched uranium spent fuel; however, 239 Pu is considered in some cases. The non-fissile materials examined are those found in the proposed repository area at Yucca Mountain, Nevada: volcanic tuff, iron rust, concrete, and naturally occurring water. For 235 U, the minimum critical solid concentration for tuff was 5 kg/m 3 (similar to sandstone), and in goethite, 45 kg/m 3 . The critical mass of uranium was sensitive to a number of factors, such as moisture content and fissile enrichment, but had a minimum, assuming almost 100% saturation and >20% enrichment, of 18 kg in tuff as Soddyite (or 9.5 kg as UO 2 ) and 7 kg in goethite. For 239 Pu, the minimum critical solid concentration for tuff was 3 kg/m 3 (similar to sandstone); in goethite, 20 kg/m 3 . The critical mass of plutonium was also sensitive to a number of factors, but had a minimum, assuming 100% saturation and 80-90% enrichment, of 5 kg in tuff and 6 kg in goethite

  6. Effects of tuff waste package components on release from 76-68 simulated waste glass: Final report

    International Nuclear Information System (INIS)

    McVay, G.L.; Robinson, G.R.

    1984-04-01

    An experimental matrix has been conducted that will allow evaluation of the effects of waste package constituents on the waste form release behavior in a tuff repository environment. Tuff rock and groundwater were used along with 304L, 316, and 1020M ferrous metals to evaluate release from uranium-doped MCC 76-68 simulated waste glass. One of the major findings was that in the absence of 1020M mild steel, tuff rock powder dominates the system. However, when 1020M mild steel is present, it appears to dominate the system. The rock-dominated system results in suppressed glass-water reaction and leaching while the 1020M-dominated system results in enhanced leaching - but the metal effectively scavenges uranium from solution. The 300-series stainless steels play no significant role in affecting glass leaching characteristics. 6 refs., 28 figs., 5 tabs

  7. Zircaloy cladding corrosion degradation in a Tuff repository: initial experimental plan

    International Nuclear Information System (INIS)

    Smith, H.D.

    1984-07-01

    The projected environmental history of a Tuff repository sited in an unsaturated hydrologic setting is evaluated to identify the potentially most severe corrosion conditions for Zircaloy spent fuel cladding. Three distinct corrosion periods are identified over the projected history. In two of those, liquid water may be present which is believed to produce the most severe corrosive environment for Zircaloy spent fuel cladding. In the time interval 100 to 1000 years after emplacement in the repository, the most severe condition is exposure to 170 0 C water at about 100 psi in an unbreached canister. This condition will be reproduced experimentally in an autoclave. For times after 1000 years, the most severe condition is exposure to 90 0 C water that is equilibrated with the tuff and invades breached canisters. This condition will be reproduced with a water bath system

  8. Unpacking paleoenvironmental change across OAE2 using paired d34S records of pyrite and organic matter

    Science.gov (United States)

    Raven, M. R.; Gomes, M.; Fike, D. A.

    2017-12-01

    Pyrite sulfur isotopes have proven to be a powerful tool for reconstructing major changes in global redox state and the emergence of microbial metabolisms. Still, pyrite can be a challenging archive, as its formation depends on the availability of reactive iron species and can occur over multiple generations of sedimentary processes. Accordingly, pyrite δ34S records commonly have large point-to-point variability reflecting local processes. By pairing pyrite δ34S records with those of coexisting organic matter (OM), including both kerogens and extractable bitumens, we can begin to parse the various potential causes of this variability and gain greater insights into changes in the sedimentary paleoenvironment. Here, we present the first collection of records of OM δ34S for the Cretaceous, focusing on sections spanning Ocean Anoxic Event 2 (OAE2, 94 Mya), a period of globally widespread marine anoxia and carbon cycle disruption. In carbonates and shales from OAE2 in Pont d'Issole, France, pyrite and OM δ34S values vary in parallel throughout most of the section, consistent with their shared sulfide source. There are also distinct exceptions: In one interval, an excursion in pyrite δ34S is entirely absent from the organic sulfur record but associated with unusual organic sulfur redox speciation (by XAS), potentially reflecting later exposure to oxic porewaters. Across the core interval of shale deposition during OAE2, the offset between pyrite and OM δ34S values declines smoothly from +17.4 to -7.9‰, which we interpret in terms of changes in the speciation of detrital iron minerals that may have regional implications. We then compare these results with data for other well-characterized OAE2 sections, including Cismon (Italy), Tarfaya (Morocco), and the Demerara Rise (offshore Brazil), which represent environments with a variety of apparent redox states. These paired pyrite - OM δ34S profiles yield new information about how the local and global forcings

  9. Uniaxial compression test series on Bullfrog Tuff

    International Nuclear Information System (INIS)

    Price, R.H.; Jones, A.K.; Nimick, K.G.

    1982-04-01

    Nineteen uniaxial compressive experiments were performed on samples of the Bullfrog Member of the Crater Flat Tuff, obtained from drillhole USW-G1 at Yucca Mountain on the Nevada Test Site. The water saturated samples were deformed at a nominal strain rate of 10 -5 sec -1 , atmospheric pressure and room temperature. Resultant unconfined compressive strengths, axial strains to failure, Young's moduli and Poisson's ratios ranged from 4.63 to 153. MPa, .0028 to .0058, 2.03 to 28.9 GPa and .08 to .16, respectively

  10. Uranium deposits associated to tertiary acid volcanism of the Pena Blanca Sierra (Chihuahua, Mexico)

    International Nuclear Information System (INIS)

    Aniel, B.

    1986-12-01

    The uraniferous deposits located in the Sierra de Pena Blanca (Chihuahua, Mexico) are the consequence of successive events that modified acid volcanic rocks. The devitrification of the Nopal Formation, vitroclastic tuffs, is esential in the cooling history because it releases uranium that becomes available. The uranium present in fluids as uranylcarbonate complexes, precipitate along the lamellea of hematite (exsolutions of the ilmenites). The presence of sulfur causes the destabilization of the ilmenites with uranium oxide (pitchblende - titanium oxide - pyrite), the pseudomorph of magnetites (pitchblende - pyrite) and the transformation of hematite into pyrite. The silice coming from the kaolinization of feldspars recristallizes as microcristalline quartz so that the rock appears compact. Fractures cause the uplifting of the lower unit of Nopal formation. It has been altered to montmorillonite. A carbonatation of this tuff has been observed and these two types of alteration occur after kaolinization. The Escuadra formation overlies the Nopal formation. The deposition takes place on an eroded basement where a soil developed. The two formations will together undergo transformations due to the saturation level and the primary ore will be only oxidized or oxidized, transported and reconcentrated. Late and localized thermal activities have been observed and may be the result of tectonic movements occurring after the supergene modification [fr

  11. Results and interpretation of preliminary aquifer tests in boreholes UE-25c number-sign 1, UE-25c number-sign 2, and UE-25c number-sign 3, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Geldon, A.L.

    1996-01-01

    Pumping and injection tests conducted in 1983 and 1984 in boreholes UE-25c number-sign 1, UE-25c number-sign 2, and UE-25c number-sign 3 (the c-holes) at Yucca Mountain, Nevada, were analyzed with respect to information obtained from lithologic and borehole geophysical logs, core permeameter tests, and borehole flow surveys. The three closely spaced c-holes, each of which is about 3,000 feet deep, are completed mainly in nonwelded to densely welded, ash-flow tuff of the tuffs and lavas of Calico Hills and the Crater Flat Tuff of Miocene age. Below the water table, tectonic and cooling fractures pervade the tuffaceous rocks but are distributed mainly in 11 transmissive intervals, many of which also have matrix permeability. Information contained in this report is presented as part of ongoing investigations by the US Geological Survey (USGS) regarding the hydrologic and geologic suitability of Yucca Mountain, Nevada, as a potential site for the storage of high-level nuclear waste in an underground mined geologic repository. This investigation was conducted in cooperation with the US Department of Energy under Interagency Agreement DE-AI08-78ET44802, as part of the Yucca Mountain Site Characterization Project

  12. Ash reduction system using electrically heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  13. Electrochemical Properties for Co-Doped Pyrite with High Conductivity

    Directory of Open Access Journals (Sweden)

    Yongchao Liu

    2015-09-01

    Full Text Available In this paper, the hydrothermal method was adopted to synthesize nanostructure Co-doped pyrite (FeS2. The structural properties and morphology of the synthesized materials were characterized using X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. Co in the crystal lattice of FeS2 could change the growth rate of different crystal planes of the crystal particles, which resulted in various polyhedrons with clear faces and sharp outlines. In addition, the electrochemical performance of the doping pyrite in Li/FeS2 batteries was evaluated using the galvanostatic discharge test, cyclic voltammetry and electrochemical impedance spectroscopy. The results showed that the discharge capacity of the doped material (801.8 mAh·g−1 with a doping ratio of 7% was significantly higher than that of the original FeS2 (574.6 mAh·g−1 because of the enhanced conductivity. Therefore, the doping method is potentially effective for improving the electrochemical performance of FeS2.

  14. Geotechnical instrumentation requirements for at-depth testing and repository monitoring in tuff

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1982-01-01

    Minimum required geotechnical measurements for confirmation of repository performance include thermal and thermomechanical responses; changes in stress, strain, and displacements; and pore pressure and groundwater flow characteristics. Conditions expected in tuff are: maximum rock temperatures of less than 250 0 C, stresses less than 100 MPa, strains between +-0.01 mm/mm, and pore pressures less than 35 KPa in the unsaturated zone where hydraulic head is not the primary contributor. The paper describes instrumentation needed to make the desired measurements. In general, the instrumentation and data system are required to be stable and reliable for tens of years. Designs must consider requirements for temperature stability, temperature expansion compensation, moisture resistance, and long-term durability in mining-type environments. Severe requirements such as these suggest consideration of techniques for in-situ replacement of instrumentation. State-of-the-art instrumentation is briefly described along with a discussion of needs for refinement, replacement/recalibration and instrumentation development

  15. Some geochemical considerations for a potential repository site in tuff at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Erdal, B.R.; Bish, D.L.; Crowe, B.M.; Daniels, W.R.; Ogard, A.E.; Rundberg, R.S.; Vaniman, D.T.; Wolfsberg, K.

    1982-01-01

    The Nevada Nuclear Waste Storage Investigations, which is evaluating potential locations for a high-level waste repository at the Nevada Test Site and environs, is currently focusing its investigations on tuff, principally in Yucca Mountain, as a host rock. This paper discusses some of the geochemical investigations. Particular emphasis is placed on definition of some basic elements and necessary technical approaches for the geochemistry data acquisition and modeling program. Some site-specific tuff geochemical information that is important for site selection and repository performance will be identified and the current status of knowledge will then be discussed

  16. Development of novel ash hybrids to introgress resistance to emerald ash borer into north American ash species

    Science.gov (United States)

    Jennifer L. Koch; David W. Carey; Mary E. Mason

    2008-01-01

    Currently, there is no evidence that any of the native North American ash species have any resistance to the emerald ash borer (EAB). This means that the entire ash resource of the eastern United States and Canada is at risk of loss due to EAB. In contrast, outbreaks of EAB in Asian ash species are rare and appear to be isolated responses to stress (Bauer et al. 2005,...

  17. Geohydrology of Bandelier Tuff

    International Nuclear Information System (INIS)

    Abeele, M.V.; Wheeler, M.L.; Burton, B.W.

    1981-10-01

    The Los Alamos National Laboratory has been disposing of radioactive wastes since 1944. Environmental studies and monitoring for radioactive contamination started concurrently. In this report, only two mechanisms and rates by which the radionuclides can enter the environment are studied in detail: subsurface transport of radionuclides by migrating water, and diffusion of tritiated water (HTO) in the vapor phase. The report also includes a section concerning the influence of moisture on shear strength and possible resulting subsidences occurring in the pit overburdens. Because subsurface transport of radionuclides is influenced by the hydraulic conductivity and this in turn is regulated by the moisture content of any given material, a study was also undertaken involving precipitation, the most important climatic element influencing the geohydrology of any given area. Further work is in progress to correlate HTO emanation to atmospheric and pedological properties, especially including thermal characteristics of the tuff

  18. Oxygen isotope evidence for sorption of molecular oxygen to pyrite surface sites and incorporation into sulfate in oxidation experiments

    International Nuclear Information System (INIS)

    Tichomirowa, Marion; Junghans, Manuela

    2009-01-01

    Experiments were conducted to investigate (i) the rate of O-isotope exchange between SO 4 and water molecules at low pH and surface temperatures typical for conditions of acid mine drainage (AMD) and (ii) the O- and S-isotope composition of sulfates produced by pyrite oxidation under closed and open conditions (limited and free access of atmospheric O 2 ) to identify the O source/s in sulfide oxidation (water or atmospheric molecular O 2 ) and to better understand the pyrite oxidation pathway. An O-isotope exchange between SO 4 and water was observed over a pH range of 0-2 only at 50 deg. C, whereas no exchange occurred at lower temperatures over a period of 8 a. The calculated half-time of the exchange rate for 50 deg. C (pH = 0 and 1) is in good agreement with former experimental data for higher and lower temperatures and excludes the possibility of isotope exchange for typical AMD conditions (T ≤ 25 deg. C, pH ≥ 3) for decades. Pyrite oxidation experiments revealed two dependencies of the O-isotope composition of dissolved sulfates: O-isotope values decreased with longer duration of experiments and increasing grain size of pyrite. Both changes are interpreted as evidence for chemisorption of molecular O 2 to pyrite surface sites. The sorption of molecular O 2 is important at initial oxidation stages and more abundant in finer grained pyrite fractions and leads to its incorporation in the produced SO 4 . The calculated bulk contribution of atmospheric O 2 in the dissolved SO 4 reached up to 50% during initial oxidation stages (first 5 days, pH 2, fine-grained pyrite fraction) and decreased to less than 20% after about 100 days. Based on the direct incorporation of molecular O 2 in the early-formed sulfates, chemisorption and electron transfer of molecular O 2 on S sites of the pyrite surface are proposed, in addition to chemisorption on Fe sites. After about 10 days, the O of all newly-formed sulfates originates only from water, indicating direct interaction

  19. Creep in Topopah Spring Member welded tuff. Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.J. III; Boyd, P.J.; Noel, J.S. [New England Research, Inc., White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

    1995-06-01

    A laboratory investigation has been carried out to determine the effects of elevated temperature and stress on the creep deformation of welded tuffs recovered from Busted Butte in the vicinity of Yucca Mountain, Nevada. Water saturated specimens of tuff from thermal/mechanical unit TSw2 were tested in creep at a confining pressure of 5.0 MPa, a pore pressure of 4.5 MPa, and temperatures of 25 and 250 C. At each stress level the load was held constant for a minimum of 2.5 {times} 10{sup 5} seconds and for as long as 1.8 {times} 10{sup 6} seconds. One specimen was tested at a single stress of 80 MPa and a temperature of 250 C. The sample failed after a short time. Subsequent experiments were initiated with an initial differential stress of 50 or 60 MPa; the stress was then increased in 10 MPa increments until failure. The data showed that creep deformation occurred in the form of time-dependent axial and radial strains, particularly beyond 90% of the unconfined, quasi-static fracture strength. There was little dilatancy associated with the deformation of the welded tuff at stresses below 90% of the fracture strength. Insufficient data have been collected in this preliminary study to determine the relationship between temperature, stress, creep deformation to failure, and total failure time at a fixed creep stress.

  20. Creep in Topopah Spring Member welded tuff. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Martin, R.J. III; Boyd, P.J.; Noel, J.S.; Price, R.H.

    1995-06-01

    A laboratory investigation has been carried out to determine the effects of elevated temperature and stress on the creep deformation of welded tuffs recovered from Busted Butte in the vicinity of Yucca Mountain, Nevada. Water saturated specimens of tuff from thermal/mechanical unit TSw2 were tested in creep at a confining pressure of 5.0 MPa, a pore pressure of 4.5 MPa, and temperatures of 25 and 250 C. At each stress level the load was held constant for a minimum of 2.5 x 10 5 seconds and for as long as 1.8 x 10 6 seconds. One specimen was tested at a single stress of 80 MPa and a temperature of 250 C. The sample failed after a short time. Subsequent experiments were initiated with an initial differential stress of 50 or 60 MPa; the stress was then increased in 10 MPa increments until failure. The data showed that creep deformation occurred in the form of time-dependent axial and radial strains, particularly beyond 90% of the unconfined, quasi-static fracture strength. There was little dilatancy associated with the deformation of the welded tuff at stresses below 90% of the fracture strength. Insufficient data have been collected in this preliminary study to determine the relationship between temperature, stress, creep deformation to failure, and total failure time at a fixed creep stress

  1. Silica from Ash

    Indian Academy of Sciences (India)

    management, polymer composites and chemical process design. Figure 1 Difference in color of the ash ... The selection of ash is important as the quality of ash determines the total amount as well as quality of silica recoverable Ash which has undergone maximum extent of combustion is highly desirable as it contains ...

  2. Simulated aerobic pedogenesis in pyritic overburden with a positive acid-base account

    Energy Technology Data Exchange (ETDEWEB)

    Doolittle, J.J.; Hossner, L.R.; Wilding, L.P. (South Dakota State University, Brookings, SD (United States). Dept. of Plant Science)

    Reclamation of surface-mined land is often hindered by the excess salts and acidity produced by the weathering of pyritic overburden. This study was conducted to document the initial transformations that occur when pyritic overburden containing excess acid neutralizing potential is used as parent material in minesoil construction. An overburden containing 0.8% FeS[sub 2] (pyrite) and 1.6% inorganic carbonate (predominantly dolomite) was collected from the highwall of an active lignite surface mine in Panola County, Texas. The overburden was lightly crushed through a 13-mm sieve and packed into three replicate lysimeters (0.75 by 0.75 by 1.2 m). The lysimeters were leached monthly with 63.5 mm of deionized water for 24 mo. The initial material had a pH of 8.3 and an excess acid neutralizing potential. Progressive FeS[sub 2] oxidation released H[sub 2]SO[sub 4], and the pH decreased to 6.8. The dolomite dissolved, neutralizing the acidity, with subsequent release of Ca and Mg ions into solution. Leachate Ca[sup 2+] and SO[sub 4][sup 2-] concentrations exceeded the ion activity product of gypsum in the lower 60 cm of the lysimeters. Thin-section analysis revealed that gypsum crystals precipitated along margins of residual pyrite particles and in conductive vughs and channels. The continued accumulation of gypsum in minesoil development could eventually lead to the formation of a gypsic or a petrogypsic horizon. A restrictive layer such as this would decrease vertical movement of water and O[sub 2] which would reduce vegetative growth, increase runoff and erosion, and thus increase the probability of reclamation failure.

  3. Thermal conductivity, bulk properties, and thermal stratigraphy of silicic tuffs from the upper portion of hole USW-G1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Lappin, A.R.; VanBuskirk, R.G.; Enniss, D.O.; Buters, S.W.; Prater, F.M.; Muller, C.B.; Bergosh, J.L.

    1982-03-01

    Thermal-conductivity and bulk-property measurements were made on welded and nonwelded silicic tuffs from the upper portion of Hole USW-G1, located near the southwestern margin of the Nevada Test Site. Bulk-property measurements were made by standard techniques. Thermal conductivities were measured at temperatures as high as 280 0 C, confining pressures to 10 MPa, and pore pressures to 1.5 MPa. Extrapolation of measured saturated conductivities to zero porosity suggests that matrix conductivity of both zeolitized and devitrified tuffs is independent of stratigraphic position, depth, and probably location. This fact allows development of a thermal-conductivity stratigraphy for the upper portion of Hole G1. Estimates of saturated conductivities of zeolitized nonwelded tuffs and devitrified tuffs below the water table appear most reliable. Estimated conductivities of saturated densely welded devitrified tuffs above the water table are less reliable, due to both internal complexity and limited data presently available. Estimation of conductivity of dewatered tuffs requires use of different air thermal conductivities in devitrified and zeolitized samples. Estimated effects of in-situ fracturing generally appear negligible

  4. Electrolytic recuperation of heavy metals and chlorine from fly-ashes and washwater of a household incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Maes, H.; Carpels, M.; Elslander, H.; Van Houtven, D.; Vereecken, J.; Kinnaer, L.; Hermans, N.; Gielen, C.; Van Kerckhoven, M.; Raats, L. [Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol (Belgium)

    1995-12-31

    The treatment and processing of the residues which result from the household incineration process were investigated in a study conducted in Belgium. Incineration produces large amounts of solid residue, particularly fly-ash, which contains a large degree of heavy metals. Also, the large amount of acid washwater flow which comes from the gas washer is highly concentrated with chlorine, and heavy metals. Presently, both the fly-ash and the wastewater are dumped at disposal sites. Two objectives for waste management were presented. The first was to improve the fly-ash for potential use as, for example, filler in road surfaces. The second was to reduce the wastewater flow and to use neutralizing reagents or an electro-chemical treatment on the washwater, in order to recuperate the chlorine. The fly-ash was treated by leaching with the acid washwater. The leached heavy metals were recuperated by electrolysis. It was concluded, however, that electrolytic recuperation of heavy metals from fly ash was not economically feasible. 2 refs., 7 tabs., 8 figs.

  5. The potential use of storm water and effluent from a constructed wetland for re-vegetating a degraded pyrite trail in Queen Elizabeth National Park, Uganda

    Science.gov (United States)

    Osaliya, R.; Kansiime, F.; Oryem-Origa, H.; Kateyo, E.

    During the operation of the Kilembe Mines (copper mining) a cobaltiferous stockpile was constructed, which began to erode after the closure of the mines in the early 1970s. The erosion of the pyrite stockpile resulted in a large acid trail all the way to Lake George (a Ramsar site). The acid trail contaminated a large area of Queen Elizabeth National Park (QENP) resulting in the death of most of the shallow-rooted vegetation. Processes and conditions created by storm water and effluent from a constructed wetland were assessed for vegetation regeneration in the degraded QENP pyrite trail. Cynodon dactylon, Imperata cylindrica and Hyparrhenia filipendula dominated the regeneration zone (RZ) where storm water and effluent from a constructed wetland was flowing; and the adjacent unpolluted area (UP) with importance value indices of 186.4 and 83.3 respectively. Typha latifolia and C. dactylon formed two distinct vegetation sub-zones within the RZ with the former inhabiting areas with a higher water table. Soil pH was significantly higher in the RZ, followed by UP and bare pyrite trail (BPT) at both 0-15 cm and 16-30 cm depths. Soil electrical conductivity was not significantly different in the RZ and BPT but significantly higher than that in UP for both depths. For 0-15 cm depth, RZ had significantly higher concentrations of copper than BPT and UP which had similar concentrations. Still at this depth (0-15 cm), the unpolluted area had significantly higher concentrations of total phosphorus and total nitrogen than the regeneration zone and the bare pyrite trail which had similar concentrations. The RZ dominated by Typha had significantly higher concentrations of TP and TN compared to the RZ dominated by Cynodon. The concentrations of NH 4-N were significantly lower in Typha regeneration zone than in CRZ at 0-15 cm depth but similar at 16-30 cm depth. At 16-30 cm depth, concentrations of copper were significantly higher in the regeneration zone followed by the bare pyrite

  6. Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.

    Science.gov (United States)

    Lee, H K; Kim, H K; Hwang, E A

    2010-02-01

    Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste.

  7. Studying the melting behavior of coal, biomass, and coal/biomass ash using viscosity and heated stage XRD data

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Folkedahl, B.; Dam-Johansen, Kim

    2006-01-01

    by the cocombustion tests appeared to be somewhat different compared to that of the laboratory-prepared ash samples. The heated stage XRD data provide useful information regarding the reactions among the various ash compounds and the phase transformations during the heating and cooling of the ash samples and helped...... a high-temperature rotational viscometer and a hot stage XRD. The produced data were used to calculate the operating temperature of a pilot-scale entrained flow reactor during the cocombustion of biomass/ coal samples in order to ensure the slag flow and to avoid corrosion of the walls due to liquid slag...

  8. Gelatin/DMSO. A new approach to enhancing the performance of a pyrite electrode in a lithium battery

    Energy Technology Data Exchange (ETDEWEB)

    Montoro, L.A.; Rosolen, J.M. [Department of Chemistry, FFCLRP-University of Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2003-04-01

    We have studied the electrochemical behavior of natural pyrite (FeS{sub 1.9}, n-type semiconductor) treated nonaqueously with dimethylsulfoxide (DMSO) solvent and also with a gelatin/DMSO solution. Composite electrodes (comprised of pyrite, polyvinilidene fluoride, polyethylene oxide and carbon) were characterized in a lithium cell at room temperature by cyclic voltammetry and galvanostatic measurements; the electrolyte used was LiPF{sub 6} in a solution of ethylene carbonate and dimethyl carbonate (1 mol l{sup -1}). The gelatin/DMSO treatment greatly improved the reversible specific capacity of a pyrite electrode. For galvanostatic discharge/charge at a current density of 0.4 mA cm{sup -2} and between voltage limits of 3.2 and 1.1 V, its reversible specific capacity at the 15th cycle equaled 275 mA h g{sup -1}, an impressive value compared to less than 25 mA h g{sup -1} for a pristine pyrite electrode.

  9. G-Tunnel Welded Tuff Mining experiment evaluations

    International Nuclear Information System (INIS)

    Zimmerman, R.M.; Bellman, R.A. Jr.; Mann, K.L.; Zerga, D.P.; Fowler, M.; Johnson, J.R.

    1988-12-01

    Designers and analysts of radioactive waste repositories must be able to predict the mechanical behavior of the host rock. Sandia National Laboratories elected to conduct a mine-by in welded tuff so that predictive-type information could be obtained regarding the response of the rock to a drill and blast excavation process, where smooth blasting techniques were used. This report describes the results of the mining processes and presents and discusses the rock mass responses to the mining and ground support activities. 37 refs., 20 figs., 7 tabs

  10. System for manufacturing ash products and energy from refuse waste

    Energy Technology Data Exchange (ETDEWEB)

    Sutin, G.L.; Mahoney, P.F.

    1996-01-04

    The present invention provides a system of manufacturing energy and ash products from solid waste. The system includes apparatus for receiving solid waste for processing, apparatus for shredding the received solid waste, apparatus for removing ferrous material from the shredded solid waste to create processed refuse fuel (PRF) and apparatus for efficiently combusting the PRF. A conveyor transfers the PRF to the combusting apparatus such that the density of the PRF is always controlled for continuous non-problematic flow. Apparatus for recovering residual combustion particulate from the combustion residual gases and for recovering solid ash residue provides the system with the ability to generate steam and electrical energy, and to recover for reuse and recycling valuable materials from the solid ash residue. (author) figs.

  11. Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants

    Directory of Open Access Journals (Sweden)

    Carolina Gil-Lozano

    2014-06-01

    Full Text Available The Fenton reaction is the most widely used advanced oxidation process (AOP for wastewater treatment. This study reports on the use of pyrite nanoparticles and microparticles as Fenton reagents for the oxidative degradation of copper phthalocyanine (CuPc as a representative contaminant. Upon oxidative dissolution in water, pyrite (FeS2 particles can generate H2O2 at their surface while simultaneously promoting recycling of Fe3+ into Fe2+ and vice versa. Pyrite nanoparticles were synthesized by the hot injection method. The use of a high concentration of precursors gave individual nanoparticles (diameter: 20 nm with broader crystallinity at the outer interfaces, providing a greater number of surface defects, which is advantageous for generating H2O2. Batch reactions were run to monitor the kinetics of CuPc degradation in real time and the amount of H2O2. A markedly greater degradation of CuPc was achieved with nanoparticles as compared to microparticles: at low loadings (0.08 mg/L and 20 h reaction time, the former enabled 60% CuPc removal, whereas the latter enabled only 7% removal. These results confirm that the use of low concentrations of synthetic nanoparticles can be a cost effective alternative to conventional Fenton procedures for use in wastewater treatment, avoiding the potential risks caused by the release of heavy metals upon dissolution of natural pyrites.

  12. Investigating the formation of acid mine drainage of Toledo pyrite concentrate using column cells

    Science.gov (United States)

    Aguila, Diosa Marie

    2018-01-01

    Acid mine drainage (AMD) is an inevitable problem in mining and has adverse effects in water quality. Studying AMD formation will be valuable in controlling the composition of mine waters and in planning the rehabilitation method for a mine. In this research, kinetics of AMD formation of Toledo pyrite was studied using two column experiments. The mechanisms of AMD formation and the effects of various factors on pH drop were first studied. Another column test was done for validation and to study the role of Fe2+/Fe3+ ratio in the change of leachate pH. The first experiment revealed that time and particle size are the most significant factors. It was also observed that the sudden pH drop during the starting hours was due to cracks formed from beneficiation, and the formation of Fe(OH)3. The laddered behavior of pH thereafter was due to decrease in formation of Fe(OH)3, and the precipitates in pyrite surface that lowered the surface area available for pyrite oxidation. The results of the second experiment validated the laddered behavior of pH. It was also observed that particle size distribution and pyrite surface were affected by the change in pH. Fe2+/Fe3+ ratio of leachate generally decreased as pH dropped.

  13. False deformation temperatures for ash fusibility associated with the conditions for ash preparation

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Gupta, S.K.; Gupta, R.P.; Sanders, R.H.; Creelman, R.A.; Bryant, G.W. [University of Newcastle, Callaghan, NSW (Australia). Cooperative Research Centre for Black Coal Utilization, Dept. of Chemical Engineering

    1999-07-01

    A study was made to investigate the fusibility behaviour of coal ashes of high ash fusion temperatures. Coals and ashes formed in the boiler were sampled in several Australian power stations, with laboratory ashes being prepared from the coals. The laboratory ashes gave lower values for the deformation temperature (DT) than the combustion ashes when the ash had low levels of basic oxide components. Thermo-mechanical analysis, quantitative X-ray diffraction and scanning electron microscopy were used to establish the mechanisms responsible for the difference. Laboratory ash is finer than combustion ash and it includes unreacted minerals (such as quartz, kaolinite and illite) and anhydrite (CaSO{sub 4}). Fusion events which appear to be characteristic of reacting illite, at temperatures from 900 to 1200{degree}C, were observed for the laboratory ashes, these being associated with the formation of melt phase and substantial shrinkage. The combustion ashes did not contain this mineral and their fusion events were observed at temperatures exceeding 1300{degree}C. The low DTs of coal ashes with low levels of basic oxides are therefore a characteristic of laboratory ash rather than that found in practical combustion systems. These low temperatures are not expected to be associated with slagging in pulverised coal fired systems. 10 refs., 3 figs., 2 tabs.

  14. Uncertainties in sealing a nuclear waste repository in partially saturated tuff

    International Nuclear Information System (INIS)

    Tillerson, J.R.; Fernandez, J.A.; Hinkebein, T.E.

    1989-01-01

    Sealing a nuclear waste repository in partially saturated tuff presents unique challenges to assuring performance of sealing components. Design and performance of components for sealing shafts, ramps, drifts, and exploratory boreholes depend on specific features of both the repository design and the site; of particular importance is the hydrologic environment in the unsaturated zone, including the role of fracture flow. Repository design features important to sealing of a repository include the size and location of shaft and ramp accesses, excavation methods, and the underground layout features such as grade (drainage direction) and location relative to geologic structure. Uncertainties about seal components relate to the postclosure environment for the seals, the emplacement methods, the material properties, and the potential performance of the components. An approach has been developed to reduce uncertainties and to increase confidence in seal performance; it includes gathering extensive site characterization data, establishing conservative design requirements, testing seal components in laboratory and field environments, and refining designs of both the seals and the repository before seals are installed. 9 refs., 5 figs., 2 tabs

  15. Bioleaching of low grade uranium ore containing pyrite using A. ferrooxidans and A. thiooxidans

    International Nuclear Information System (INIS)

    Alexey Borisovich Umanskii; Anton Mihaylovich Klyushnikov

    2013-01-01

    A process of uranium extraction from ore containing 3.1 % pyrite by bacterial leaching was investigated in shaken flasks during 90 days. The highest uranium recovery amounting to 85.1 % was obtained using binary mixture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans that was exceeding results obtained by traditional acid leaching technique up to 27 %. High uranium recovery was founded to be due to the high degree of pyrite dissolution that can be readily achieved by bacterial leaching (up to 98.0 %). (author)

  16. New mechanism for enhancing ash removal efficiency and reducing tritium inventory

    International Nuclear Information System (INIS)

    Li Chengyue; Deng Baiquan; Yan Jiancheng

    2007-01-01

    A new mechanism is suggested to suppress ash particle back streams in the divertor region of our fusion experimental breeder (FEB) reactor for enhancing the ash removal efficiency and reducing the tritium inventory by applications of the nonlinear effect of high power rf ponderomotive force potential which reflects the plate-released and re-ionized He + back to the plate. Meanwhile, the potential does not hinder α particles, which are coming from scraping of the layer, flowing to the target plate. However, it does stop tritium ions flowing to the target. Based on the FEB design parameters, our calculations have shown that the ash removal efficiency can be improved by as much as 40% if the parallel component of rf field 150-200 V/cm is applied to the location at a perpendicular distance L=20 cm apart from the plate and the plate-recycling neutral helium atom energy is about 0.75 eV, at the same time, the tritium inventory can be reduced to some extent. (authors)

  17. Objective rapid delineation of areas at risk from block-and-ash pyroclastic flows and surges

    Science.gov (United States)

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Schilling, S.P.

    2009-01-01

    Assessments of pyroclastic flow (PF) hazards are commonly based on mapping of PF and surge deposits and estimations of inundation limits, and/or computer models of varying degrees of sophistication. In volcanic crises a PF hazard map may be sorely needed, but limited time, exposures, or safety aspects may preclude fieldwork, and insufficient time or baseline data may be available for reliable dynamic simulations. We have developed a statistically constrained simulation model for block-and-ash type PFs to estimate potential areas of inundation by adapting methodology from Iverson et al. (Geol Soc America Bull 110:972-984, (1998) for lahars. The predictive equations for block-and-ash PFs are calibrated with data from several volcanoes and given by A = (0.05 to 0.1) V2/3, B = (35 to 40) V2/3, where A is cross-sectional area of inundation, B is planimetric area and V is deposit volume. The proportionality coefficients were obtained from regression analyses and comparison of simulations to mapped deposits. The method embeds the predictive equations in a GIS program coupled with DEM topography, using the LAHARZ program of Schilling (1998). Although the method is objective and reproducible, any PF hazard zone so computed should be considered as an approximate guide only, due to uncertainties on the coefficients applicable to individual PFs, the authenticity of DEM details, and the volume of future collapses. The statistical uncertainty of the predictive equations, which imply a factor of two or more in predicting A or B for a specified V, is superposed on the uncertainty of forecasting V for the next PF to descend a particular valley. Multiple inundation zones, produced by simulations using a selected range of volumes, partly accommodate these uncertainties. The resulting maps show graphically that PF inundation potentials are highest nearest volcano sources and along valley thalwegs, and diminish with distance from source and lateral distance from thalweg. The model does

  18. The Use of Adsorbent Materials of Improving the Characteristics of Polluted Soils, Part 1 Phytoremediation of Soils Polluted with Oil Products, Cultivated with Technical Plants

    Directory of Open Access Journals (Sweden)

    Smaranda Masu

    2015-10-01

    Full Text Available In this study are presented in pot experimental variants regarding alternatives to improve the characteristics of soils polluted with 74.12 ± 3.50 g·kg-1 D.M. total petroleum hydrocarbon (TPH in order to apply the phytoremediation process using technical plants from the common flax (Linum usitatissimum. The harmful effects of TPH polluted soils to plants was reduced by using fly ash from thermal plant as temporary adsorbent of non-polar pollutants, petroleum products. The increase of water retention capacity of the soil was achieved by treatments with indigenous volcanic tuff. The lack of nutrients, based on N and P in soils contaminated with TPH rich in C compounds are completed using sewage sludge anaerobically stabilized. The use of appropriate amounts of fly ash and fertilizer agents in the presence of volcanic tuff caused the formation of strong networks of roots and rich harvests of plants, stems and seeds from the treated soil. The TPH reduction efficiency of TPH polluted soils treated with fly ash (TPH soil: fly ash ratio 12:1 wt. / wt. and anaerobically stabilized sewage sludge respectively indigenous volcanic tuff during one vegetative cycle of crops was in the range of 56.2 - 63.25 %.

  19. Constraining Diameters of Ash Particles in Io's Pele Plume by DSMC Simulation

    Science.gov (United States)

    McDoniel, William; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2013-10-01

    The black “butterfly wings” seen at Pele are produced by silicate ash which is to some extent entrained in the gas flow from very low altitudes. These particles are key to understanding the volcanism at Pele. However, the Pele plume is not nearly as dusty as Prometheus, and these are not the only particles in the plume, as the SO2 in the plume will also condense as it cools. It is therefore difficult to estimate a size distribution for the ash particles by observation, and the drag on ash particles from the plume flow is significant enough that ballistic models are also of limited use. Using Direct Simulation Monte Carlo, we can simulate a gas plume at Pele which demonstrates very good agreement with observations. By extending this model down to nearly the surface of the lava lake, ash particles can be included in the simulation by assuming that they are initially entrained in the very dense (for Io) gas immediately above the magma. Particles are seen to fall to the ground to the east and west of the vent, agreeing with the orientation of the “butterfly wings”, and particles with larger diameters fall to the ground closer to the lava lake. We present a model for mapping simulated deposition density to the coloration of the surface and we use it to estimate the size distribution of ash particles in the plume.

  20. Acid-base properties of a limed pyritic overburden during simulated weathering

    Energy Technology Data Exchange (ETDEWEB)

    Doolittle, J.J.; Hossner, L.R. [South Dakota State University, Brookings, SD (United States). Plant Science Dept.

    1997-11-01

    Surface-mine reclamation is often hindered by the formation of acid mine soil and acid mine drainage from FeS{sub 2} oxidation. Surface soils containing FeS{sub 2} are often treated with crushed limestone (predominately CaCO{sub 3}) to prevent aid minesoil formation. The main objective of this study was to evaluate the long-term effectiveness of liming pyritic minesoil to prevent the formation of acid minesoil and acid mine drainage. Pyritic minesoils that did not receive lime became acidic very rapidly and produced acidic leachate. Almost all of the FeS{sub 2} in this treatment oxidized during the first 200 d. The addition of lime at a rate of 25% of the theoretical acid-base account (ABA) significantly slowed FeS{sub 2} oxidation, but rapid oxidation ensued after the added lime was neutralized. Treatments receiving a liming rate of 50% ABA or greater remained neutral to alkaline throughout the study. Acid-base values and residual FeS{sub 2}-CO{sub 3} data, however, indicate that the lime was dissolving from the system faster than the FeS{sub 2} was oxidizing, and all the treatments would eventually become acidic. The results indicate that the liming of a pyritic overburden to an ABA of 125% is not a sustainable solution to preventing acid minesoil and acid mine drainage. 25 refs., 6 figs., 3 tabs.

  1. Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes

    OpenAIRE

    T. D. Gunneswara Rao; Mudimby Andal

    2014-01-01

    Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, as partial replacement to fine aggregates and as admixture. Addition of fly ash to the concrete in any one of the form mentioned above, makes the concrete more workable and durable than the conven...

  2. Terrestrial sedimentary pyrites as a potential source of trace metal release to groundwater – A case study from the Emsland, Germany

    International Nuclear Information System (INIS)

    Houben, Georg J.; Sitnikova, Maria A.; Post, Vincent E.A.

    2017-01-01

    Pyrite is a common minor constituent of terrestrial freshwater sediments and a sink for trace elements. Different amounts and morphological types (framboids and euhedral crystals) of sedimentary pyrites were found in the heavy mineral fraction of cores obtained from several drillholes located in the Emsland region, NW Germany. Their trace element contents were investigated to assess their potential for groundwater contamination after oxidation, e.g. induced by dewatering or autotrophic denitrification. Nickel, arsenic and cadmium were found in significant concentrations in pyrite. Geochemical modeling showed that elevated trace metal concentrations in groundwater, potentially exceeding drinking water standards, should preferentially occur in a less than 1 m thick zone situated around the depth of the redoxcline, where nitrate is reduced by pyrite. This was confirmed by depth-specific groundwater sampling in the Emsland and by previously published studies. The absolute concentration of released trace metals depends on their content in the pyrite but also strongly on the nitrate load of groundwater. - Highlights: • Pyrite from heavy mineral fraction of aquifer sediment analyzed for trace metal content. • Pyrites contain significant concentration of trace metals, such as nickel, arsenic, cadmium. • Trace elements are released by autotrophic denitrification. • Reactive transport model predicts small zone of trace element accumulation. • Release of trace elements strongly dependent on nitrate content of groundwater.

  3. Correlation of Surface Adsorption and Oxidation with a Floatability Difference of Galena and Pyrite in High-Alkaline Lime Systems.

    Science.gov (United States)

    Niu, Xiaopeng; Ruan, Renman; Xia, Liuyin; Li, Li; Sun, Heyun; Jia, Yan; Tan, Qiaoyi

    2018-02-27

    When it comes to Pb-Zn ores with high amounts of pyrite, the major problem encountered is the low separation efficiency between galena and pyrite. By virtue of high dosage of lime and collector sodium diethyl dithiocarbamate (DDTC), pyrite and zinc minerals are depressed, allowing the galena to be floated. However, there have been significant conflicting reports on the flotation behavior of galena at high pH. In this context, correlation of the surface adsorption and oxidation with the floatability difference of galena and pyrite in high-alkaline lime systems would be a key issue for process optimization. Captive bubble contact angle measurements were performed on freshly polished mineral surfaces in situ exposed to lime solutions of varying pH as a function of immersion time. Furthermore, single mineral microflotation tests were conducted. Both tests indicated that the degree of hydrophobicity on the surfaces of galena and pyrite increased in the presence of DDTC at natural or mild pulp pH. While in a saturated lime solution, at pH 12.5, DDTC only worked for galena, but not for pyrite. Surface chemistry analysis by time-of-flight secondary ion mass spectrometry (Tof-SIMS) confirmed the preference of DDTC on the galena surface at pH 12.5, which contributed to a merit recovery. Further important evidence through measurements of Tof-SIMS, ion chromatography, and high-performance liquid chromatography indicated that in high-alkaline lime systems, the merit floatability of galena could exclude the insignificant contribution of elemental sulfur (S 8 ) and was dominantly attributed by the strong adsorption of DDTC. In contrast, the poor flotation response of pyrite at high pH was due to the prevailing adsorption of CaOH + species. This study provides an important surface chemistry evidence for a better understanding of the mechanism on the better selectivity in the galena-pyrite separation adopting high-alkaline lime systems.

  4. Surface chemistry of pyrite during the pre-processing for the flotation in alkaline sodium carbonate medium during uranium ore processing

    International Nuclear Information System (INIS)

    Neudert, A.; Sommer, H.; Schubert, H.

    1991-01-01

    It is often necessary during processing of uranium ore to flotate pyrite at sodium carbonate alkaline pH value caused by the subsequent hydrometallurgical process stages. It was found out by ESCA analyses that the pyrite surface changes chemically prior to the addition of flotation agents. FeS 2 becomes FeO within a few hours in the case of storage in process water; limonite and/or geothite result from pyrite. The copper ions of the activator CuSO 4 are exclusively monovalent on the pyrite surface. The resulting heavy metal xanthogenate is Cu(I) xanthogenate. Conclusions are derived for the flotation practice for the intensification of the reagent regime. (orig./HP) [de

  5. Microautoradiography in studies of Pu(V) sorption by trace and fracture minerals in tuff

    International Nuclear Information System (INIS)

    Vaniman, D.; Furlano, A.; Chipera, S.; Thompson, J.; Triay, I.

    1996-01-01

    Microautoradiography was used to evaluate the mineralogic basis of Pu(V) retention by tuffs from Yucca Mountain, Nevada. Altered orthopyroxenes and oxide minerals are associated with high Pu retention but are limited to specific stratigraphic horizons. A weaker but more general association of Pu with smectite occurs in most samples. Thin-sections that cross fractures allow comparative studies of Pu retention by fracture-lining versus matrix minerals. Using Ag metal in emulsions as a measure of underlying Pu concentration, electron-microprobe analysis can quantify Pu retention along fracture walls and provide mineral/mineral Pu retention factors. For smectite-lined microfractures in zeolitized tuff, the smectite/clinoptilolite Pu retention factor is >80

  6. Direct Quantitative Analysis of Arsenic in Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Sri Hartuti

    2012-01-01

    Full Text Available A rapid, simple method based on graphite furnace atomic absorption spectrometry is described for the direct determination of arsenic in coal fly ash. Solid samples were directly introduced into the atomizer without preliminary treatment. The direct analysis method was not always free of spectral matrix interference, but the stabilization of arsenic by adding palladium nitrate (chemical modifier and the optimization of the parameters in the furnace program (temperature, rate of temperature increase, hold time, and argon gas flow gave good results for the total arsenic determination. The optimal furnace program was determined by analyzing different concentrations of a reference material (NIST1633b, which showed the best linearity for calibration. The optimized parameters for the furnace programs for the ashing and atomization steps were as follows: temperatures of 500–1200 and 2150°C, heating rates of 100 and 500°C s−1, hold times of 90 and 7 s, and medium then maximum and medium argon gas flows, respectively. The calibration plots were linear with a correlation coefficient of 0.9699. This method was validated using arsenic-containing raw coal samples in accordance with the requirements of the mass balance calculation; the distribution rate of As in the fly ashes ranged from 101 to 119%.

  7. Emerald ash borer biocontrol in ash saplings: the potential for early stage recovery of North American ash

    Science.gov (United States)

    In many parts of North America, ash stands have been reduced by the emerald ash borer (Agrilus planipennis) invasion to a few surviving mature trees and young basal sprouts, saplings, and seedlings. Without a seed bank, ash tree recovery will require survival and maturation of these younger cohorts...

  8. Radioactivity of wood ash

    International Nuclear Information System (INIS)

    Rantavaara, A.; Moring, M.

    2000-01-01

    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg -1 , in decreasing order: 137 Cs, 40 K, 90 Sr, 210 Pb, 226 Ra, 232 Th, 134 Cs, 235 U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and 210 Pb was hardly detectable. The NH 4 Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  9. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    DEFF Research Database (Denmark)

    Binning, Philip John; Postma, Diederik Jan; Russel, T.F.

    2007-01-01

    Pyrite oxidation in unsaturated mine waste rock dumps and soils is limited by the supply of oxygen from the atmosphere. In models, oxygen transport through the subsurface is often assumed to be driven by diffusion. However, oxygen comprises 23.2% by mass of dry air, and when oxygen is consumed at...... parameters; for example, the time to approach steady state depends exponentially on the distance between the soil surface and the subsurface reactive zone. Copyright 2007 by the American Geophysical Union....... at depth in the unsaturated zone, a pressure gradient is created between the reactive zone and the ground surface, causing a substantial advective air flow into the subsurface. To determine the balance between advective and diffusive transport, a one-dimensional multicomponent unsaturated zone gas...

  10. Preliminary report on the geology and geophysics of drill hole UE25a-1, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Spengler, R.W.; Muller, D.C.; Livermore, R.B.

    1979-01-01

    A subsurface geologic study in connection with the Nevada Nuclear Waste Storage Investigations has furnished detailed stratigraphic and structural information about tuffs underlying northeastern Yucca Mountain on the Nevada Test Site. Drill hole UE25a-1 penetrated thick sequences of nonwelded to densely welded ash-flow and bedded tuffs of Tertiary age. Stratigraphic units that were identified from the drill-hole data include the Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, tuffaceous beds of Calico Hills, and the Prow Pass and Bullfrog Members of the Crater Flat Tuff. Structural analysis of the core indicated densely welded zones to be highly fractured. Many fractures show near-vertical inclinations and are commonly coated with secondary silica, manganese and iron oxides, and calcite. Five falt zones were recognized, most of which occurred in the Topopah Spring Member. Shear fractures commonly show oblique-slip movement and some suggest a sizable component of lateral compression. Graphic logs are included that show the correlation of lithology, structural properties, and geophysical logs. Many rock units have characteristic log responses but highly fractured zones, occurring principally in the Tiva Canyon and Topopah Spring Members restricted log coverage to the lower half of the drill hole

  11. Further description of the petrology of the Topopah Spring member of the paintbrush tuff in drill holes UE25A-1 and USW-G1 and of the lithic-rich tuff in USW-G1, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Carroll, P.I.; Caporuscio, F.A.; Bish, D.L.

    1981-11-01

    The Topopah Spring Member of the Paintbrush Tuff and the Lithic-rich tuff and two Tertiary volcanic units that occur in cores from drill holes UE25a-1 and USW-G1 at Yucca Mountain, Nevada. Recently they have been suggested as possibly suitable for the permanent storage of high-level radioactive waste. Earlier petrologic characterization of these units is augmented here. The Topopah Spring Member (approximately 350 m thick) has two compound cooling units. The upper, thinner unit is densely welded to vitrophyric. The lower unit ranges from nonwelded to vitrophyric, and its nonwelded base is extensively zeolitized to clinoptilolite and mordenite. Heulandite occurs as fracture fill in the overlying vitrophyric part, but zeolites are absent above that vitrophyre. Here primary devitrification plus vapor-phase crystallization dominate the mineralogy. Vapor-phase effects are especially prominent between the two vitrophyres in both cores and include numerous large lithophysal cavities throughout most of this moderately to densely welded tuff. The Lithic-rich tuff extends from 1203 to 1506 m in the USW-G1 drill core. It is nonwelded to partly welded but is well indurated due to pervasive intergrowths of authigenic minerals. These phases are analcime, albite, alkali feldspar, sericite, chlorite and quartz. The transition from analcime to secondary albite corresponds to Iijima's zeolite Zone IV boundary, and this boundary appears in USW-G1 at 1326 m. However, analcime remains as a prominent phase through most of the Lithic-rich tuff. Further work is necessary to assess the suitability of either of these horizons for a waste repository. In the Topopah Spring Member, both mechanical and hydrologic properties of thick lithophysal zone must be studied, as well as the complete sequence of fracture fill. For both units, zeolite and clay mineral stabilities need to be investigated

  12. Decay of Rhenish Tuffs in Dutch Monuments. Part 2 : Laboratory Experiments as a Basis for the Choice of Restoration Stone

    NARCIS (Netherlands)

    Van Hees, R.P.J.; Brendle, S.; Nijland, T.G.; De Haas, G.J.L.M.; Tolboom, H.J.

    2003-01-01

    Rhenish tuffs (Eifel, Germany), have been used as building material in the Netherlands since Roman times. They were the most important natural building stone in the Netherlands in early medieval times. In addition, tuff was used as raw material for production of trass, that served as a pozzolanic

  13. Decay of Rhenish Tuff in Dutch monuments. Part 2 : Laboratory experiments as a basis for the choice of restoration stone

    NARCIS (Netherlands)

    Hees, R.P.J. van; Brendle, S.; Nijland, T.G.; Haas, G.J.L.M. de; Tolboom, H.J.

    2003-01-01

    Rhenish tuffs (Eifel, Getmany), have been used as building material in the Netherlands since Roman times. They were the most important natural building stone in the Netherlands in early medieval times. In addition, tuff was used as raw material for production of trass, that served as a pozzolanic

  14. The effect of w/c ratio on microstructure of self-compacting concrete (SCC) with sugarcane bagasse ash (SCBA)

    Science.gov (United States)

    Hanafiah, Saloma, Victor, Amalina, Khoirunnisa Nur

    2017-11-01

    Self-Compacting Concrete (SCC) is a concrete that can flow and compact by itself without vibrator. The ability of SCC to flow by itself makes this concrete very suitable for construction that has very small reinforcement gaps. In this study, SCC was designed to get a compressive strength above 60 MPa at the age of 28 days. Sugarcane bagasse ash was used as substitution material for cement replacement. Percentages of sugarcane bagasse ash used were 10%, 15%, and 20%. There were three w/c values that vary from 0.275, 0.300, and 0.325. Testing standards referred to ASTM, EFNARC and ACI. The fresh concrete test was slump flow, L-box and V-funnel. The maximum compressive strength was in the mixture with the sugarcane bagasse ash composition of 15% and w/c=0.275 which was 67.24 MPa. The result of SEM test analysis found that the mixture composition with 15% sugarcane bagasse ash has solid CSH structure, small amount of pores, and smaller pore diameter than other mixtures.

  15. The origin of copiapite from chlorite pyritic schist (Wiesciszowice, Lower Silesia, Poland) in the light of Moessbauer analysis

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, Z., E-mail: zdzislaw.adamczyk@polsl.pl [Silesian University of Technology, Institute of Applied Geology (Poland); Komraus, J. L., E-mail: komraus@us.edu.pl [University of Silesia, Institute of Physics (Poland)

    2008-01-15

    This work presents the results of the analysis of copiapite, formed from weathering and oxidation of pyrite in pyritic schist from Wiesciszowice, Lower Silesia (Poland). The pure phase of copiapite was found in secondary minerals after pyrite and identified by optical microscopy, XRD and Moessbauer spectroscopy. In the analyzed copiapite major cations appear to be Fe{sup 2+} and Fe{sup 3+}. Some Fe{sup 3+} is substituted by other cations, mainly Al{sup 3+}. Al{sup 3+} probably comes from leaching of chlorite from which hydrated sulphates of iron, mainly szomolnokite, form followed by hydrated sulphates fibroferrite, which is replaced by copiapite.

  16. Thermal analyses for a nuclear-waste repository in tuff using USW-G1 borehole data

    International Nuclear Information System (INIS)

    Johnson, R.L.

    1982-10-01

    Thermal calculations using properties of tuffs obtained from the USW-G1 borehole, located near the SW margin of the Nevada Test Site (NTS), have been completed for a nuclear waste repository sited in welded tuff below the water table. The analyses considered two wasteforms, high level waste and spent fuel, emplaced at two different, gross thermal loadings, 50 and 75 kW/Acre (20.24 and 30.36 kW/ha). Calculations were made assuming that no boiling of the groundwater occurs; i.e., that the hydrostatic head potential was reestablished soon after waste emplacement. 23 figures, 2 tables

  17. Mineralogy, origin and commercial value of the zeolite-rich tuffs in the Petrota-Pentalofos area, Evros County, Greece

    Directory of Open Access Journals (Sweden)

    Walsh, J. N.

    1998-04-01

    Full Text Available The zeolite-rich tuffs of the Petrota-Pentalofos area were deposited in the Arrestees Basin during the Eocene. They are up to 100 m thick and extend more than 15 Km in a long axis. Most of the outcrops consist of frequent alternations of very fine grained tuff with pumice and lapel tuffs, the latter containing detrital fragments of the Mesozoic substrate of the basin. X-ray Diffraction, Scanning Electron Microscopy and light microscopy analysis on quarry and borehole samples has shown that the tuffs are composed mainly of clinoptilolite and minor cristobalite, with a small proportion of detrital constituents (quartz, mica-schist and pyrogenic crystals (feldspars, quartz, biotite. Minor amounts of mordenite randomly occur in some of the northern outcrops, closer to the occurrences of lava. ICP-AES chemical analysis of the tuffs gives evidence that the original magmas were of quartz-latite composition. The tuffs rest on pre-Cenozoic metamorphic basement and pass gradationally upwards into sandstone and limestone. Evidence is given for deposition of the tuffs in a supra to infra-littoral environment. The zeolitic tuffs originated as epiclastic volcanic sediments, transported by water from the source of the eruption. The transformation of the volcanic glass of the tuffs to zeolite and cristobalite has taken place by meteoric waters in an open hydrological system existed during the Tertiary. The zeolitic rocks are currently being exploited as an animal feed supplement.Las tobas ricas en cebollitas del área de Petrota-Pentalofos se depositaron en la cuenca de Orejitas durante el Doceno. Alcanzan 100 m de potencia y superan los 15 km de extensión longitudinal. La mayoría de los afloramientos consisten en alternancias de toba de grano muy fino y toba de pómez y lapilli con fragmentos detritos del sustrato Mesozoico de la cuenca. Análisis por difamación de rayos X, microscopía electrónica de barrido y microscopía óptica en muestras de mano y de

  18. In situ remediation of hexavalent chromium with pyrite fines : bench scale demonstration

    International Nuclear Information System (INIS)

    Cathum, S.; Wong, W.P.; Brown, C.E.

    2002-01-01

    An in situ remediation technique for chromium contaminated soil with pyrite fines was presented. Past industrial activities and lack of disposal facilities have contributed to a serious problem dealing with chromium, which cannot be eliminated from the environment because it is an element. Both bench-scale and laboratory testing was conducted to confirm the efficiency of the proposed process which successfully converted Cr(VI) into Cr(III) in soil and water. Cr(III) is less toxic and immobile in the environment compared to Cr(VI) which moves freely in the soil matrix, posing a risk to the groundwater quality. pH in the range of 2.0 to 7.6 has no effect on the reactivity of pyrite towards Cr(VI). The optimization of the bench-scale treatment resulted in a large volume of chromium waste, mostly from the control experiments and column hydrology testing. These waste streams were treated according to municipal guidelines before disposal to the environment. Samples of chromium waste before and after treatment were analyzed. Cr (VI) was completely mineralized to below guideline levels. It was determined that several conditions, including contact time between pyrite and Cr(VI), are crucial for complete mineralization of Cr(VI). 13 refs., 8 tabs., 9 figs

  19. THE COMPRESSIVE AND FLEXURAL STRENGTHS OF SELF-COMPACTING CONCRETE USING RAW RICE HUSK ASH

    Directory of Open Access Journals (Sweden)

    MD NOR ATAN

    2011-12-01

    Full Text Available This study investigates the compressive and flexural strengths of self-compacting concrete incorporating raw rice husk ash, individually and in combination with other types of mineral additives, as partial cement replacement. The additives paired with raw rice husk ash were fine limestone powder, pulverized fuel ash and silica fumes. The mix design was based on the rational method where solid constituents were fixed while water and superplasticizer contents were adjusted to produce optimum viscosity and flowability. All mixes were designed to achieve SF1 class slump-flow with conformity criteria ≥ 520 mm and ≤ 700 mm. Test results show that 15% replacement of cement using raw rice husk ash produced grade 40 concrete. It was also revealed that 30% and 45% cement replacements using raw rice husk ash combined with limestone powder and raw rice husk ash combined with limestone powder and silica fume respectively, produced comparable compressive strength to normal concrete and improved flexural strengths.

  20. Neogene fallout tuffs from the Yellowstone hotspot in the Columbia Plateau region, Oregon, Washington and Idaho, USA.

    Directory of Open Access Journals (Sweden)

    Barbara P Nash

    Full Text Available Sedimentary sequences in the Columbia Plateau region of the Pacific Northwest ranging in age from 16-4 Ma contain fallout tuffs whose origins lie in volcanic centers of the Yellowstone hotspot in northwestern Nevada, eastern Oregon and the Snake River Plain in Idaho. Silicic volcanism began in the region contemporaneously with early eruptions of the Columbia River Basalt Group (CRBG, and the abundance of widespread fallout tuffs provides the opportunity to establish a tephrostratigrahic framework for the region. Sedimentary basins with volcaniclastic deposits also contain diverse assemblages of fauna and flora that were preserved during the Mid-Miocene Climatic Optimum, including Sucker Creek, Mascall, Latah, Virgin Valley and Trout Creek. Correlation of ashfall units establish that the lower Bully Creek Formation in eastern Oregon is contemporaneous with the Virgin Valley Formation, the Sucker Creek Formation, Oregon and Idaho, Trout Creek Formation, Oregon, and the Latah Formation in the Clearwater Embayment in Washington and Idaho. In addition, it can be established that the Trout Creek flora are younger than the Mascall and Latah flora. A tentative correlation of a fallout tuff from the Clarkia fossil beds, Idaho, with a pumice bed in the Bully Creek Formation places the remarkably well preserved Clarkia flora assemblage between the Mascall and Trout Creek flora. Large-volume supereruptions that originated between 11.8 and 10.1 Ma from the Bruneau-Jarbidge and Twin Falls volcanic centers of the Yellowstone hotspot in the central Snake River Plain deposited voluminous fallout tuffs in the Ellensberg Formation which forms sedimentary interbeds in the CRBG. These occurrences extend the known distribution of these fallout tuffs 500 km to the northwest of their source in the Snake River Plain. Heretofore, the distal products of these large eruptions had only been recognized to the east of their sources in the High Plains of Nebraska and Kansas.