WorldWideScience

Sample records for pw laser interaction

  1. Strong field physics and QED experiments with ELI-NP 2×10PW laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Turcu, I. C. E., E-mail: Edmond.Turcu@eli-np.ro; Balascuta, S., E-mail: Edmond.Turcu@eli-np.ro; Negoita, F., E-mail: Edmond.Turcu@eli-np.ro [National Institute for Physics and Nuclear Engineering, ELI-NP, Str. Reactorului, nr. 30, P.O.Box MG-6, Bucharest-Magurele (Romania); Jaroszynski, D.; McKenna, P. [University of Strathclyde, Scottish Universities Physics Alliance (SUPA), Glasgow G4 0NG, Scotland (United Kingdom)

    2015-02-24

    The ELI-NP facility will focus a 10 PW pulsed laser beam at intensities of ∼10{sup 23} W/cm{sup 2} for the first time, enabling investigation of the new physical phenomena at the interfaces of plasma, nuclear and particle physics. The electric field in the laser focus has a maximum value of ∼10{sup 15} V/m at such laser intensities. In the ELI-NP Experimental Area E6, we propose the study of Radiation Reaction, Strong Field Quantum Electrodynamics (QED) effects and resulting production of Ultra-bright Sources of Gamma-rays which could be used for nuclear activation. Two powerful, synchronized 10 PW laser beams will be focused in the E6 Interaction Chamber on either gas or solid targets. One 10 PW beam is the Pump-beam and the other is the Probe-beam. The focused Pump beam accelerates the electrons to relativistic energies. The accelerated electron bunches interact with the very high electro-magnetic field of the focused Probe beam. The layout of the experimental area E6 will be presented with several options for the experimental configurations.

  2. Laser fusion research with GEKKO XII and PW laser system at Osaka

    International Nuclear Information System (INIS)

    Izawa, Y.; Mima, K.; Azechi, H.; Fujioka, S.; Fujita, H.; Fujimoto, Y.; Jitsuno, T.; Johzaki, Y.; Kitagawa, Y.; Kodama, R.; Kondo, K.; Miyanaga, N.; Nagai, K.; Nagatomo, H.; Nakai, M.; Nishihara, K.; Nishimura, H.; Norimatsu, T.; Shiraga, H.; Shigemori, K.; Sunahara, A.; Tanaka, K.A.; Tsubakimoto, K.; Nakao, Y.; Norreys, P.; Sakagami, H.

    2005-01-01

    Fast heating of the compressed core plasma up to 500eV has been successfully demonstrated by injecting a 400J/0.6ps PW laser into a compressed CD shell through a hollow gold cone. According to this result, we started the FIREX (Fast Ignition Realization Experiment) project toward demonstrating the ignition of the highly compressed DT fuel by the high energy PW laser heating. A new heating laser LFEX (Laser for Fast Ignition Experiment) is under construction. In this paper the progresses in the experimental studies on scientific issues related to fast ignition and the integrated code development toward the FIREX will be reported. Research results on implosion hydrodynamics, Rayleigh-Taylor instability growth and a new stabilization mechanism are also reported. (author)

  3. Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX

    Energy Technology Data Exchange (ETDEWEB)

    Cros, B., E-mail: brigitte.cros@u-psud.fr [LPGP, CNRS and Université Paris Sud, Orsay (France); Paradkar, B.S. [LPGP, CNRS and Université Paris Sud, Orsay (France); Davoine, X. [CEA DAM DIF, Arpajon F-91297 (France); Chancé, A. [CEA IRFU-SACM, Gif-Sur-Yvette (France); Desforges, F.G. [LPGP, CNRS and Université Paris Sud, Orsay (France); Dobosz-Dufrénoy, S. [CEA DSM-IRAMIS-SPAM, Gif-sur-Yvette (France); Delerue, N. [LAL, CNRS and Universit Paris Sud, Orsay (France); Ju, J.; Audet, T.L.; Maynard, G. [LPGP, CNRS and Université Paris Sud, Orsay (France); Lobet, M.; Gremillet, L. [CEA DAM DIF, Arpajon F-91297 (France); Mora, P. [CPhT, CNRS and Ecole Polytechnique, Palaiseau (France); Schwindling, J.; Delferrière, O. [CEA IRFU-SACM, Gif-Sur-Yvette (France); Bruni, C.; Rimbault, C.; Vinatier, T. [LAL, CNRS and Universit Paris Sud, Orsay (France); Di Piazza, A. [Max-Planck-Institut für Kernphysik, Heidelberg (Germany); Grech, M. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Palaiseau (France); and others

    2014-03-11

    Laser plasma acceleration of electrons has progressed along with advances in laser technology. It is thus expected that the development in the near-future of multi-PW-class laser and facilities will enable a vast range of scientific opportunities for laser plasma acceleration research. On one hand, high peak powers can be used to explore the extremely high intensity regime of laser wakefield acceleration, producing for example large amounts of electrons in the GeV range or generating high energy photons. On the other hand, the available laser energy can be used in the quasi-linear regime to create accelerating fields in large volumes of plasma and study controlled acceleration in a plasma stage of externally injected relativistic particles, either electrons or positrons. In the frame of the Centre Interdisciplinaire de la Lumière EXtrême (CILEX), the Apollon-10P laser will deliver two beams at the 1 PW and 10 PW levels, in ultra-short (>15fs) pulses, to a target area dedicated to electron acceleration studies, such as the exploration of the non-linear regimes predicted theoretically, or multi-stage laser plasma acceleration.

  4. High energy electron acceleration with PW-class laser system

    International Nuclear Information System (INIS)

    Nakanii, N.; Kondo, K.; Yabuuchi, T.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Kodama, R.; Mima, K.; Tanaka, K. A.; Mori, Y.; Miura, E.; Suzuki, S.; Asaka, T.; Yanagida, K.; Hanaki, H.; Kobayashi, T.

    2008-01-01

    We performed electron acceleration experiment with PW-class laser and a plasma tube, which was created by imploding a hollow polystyrene cylinder. In this experiment, electron energies in excess of 600 MeV have been observed. Moreover, the spectra of a comparatively high-density plasma ∼10 19 cm -3 had a bump around 10 MeV. Additionally, we performed the absolute sensitivity calibration of imaging plate for 1 GeV electrons from the injector Linac of Spring-8 in order to evaluate absolute number of GeV-class electrons in the laser acceleration experiment

  5. Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam

    Science.gov (United States)

    Shen, Baifei; Bu, Zhigang; Xu, Jiancai; Xu, Tongjun; Ji, Liangliang; Li, Ruxin; Xu, Zhizhan

    2018-04-01

    Exploring vacuum birefringence with the station of extreme light at Shanghai Coherent Light Facility is considered. Laser pulses of intensity beyond 1023 W cm-2 are capable of polarizing the vacuum due to the ultra-strong electro-magnetic fields. The subtle difference of the vacuum refractive indexes along electric and magnetic fields leads to a birefringence effect for lights propagating through. The vacuum birefringence effect can now be captured by colliding a hard x-ray free electron laser (XFEL) beam with a high-power laser. The initial XFEL beam of pure linear polarization is predicated to gain a very small ellipticity after passing through the laser stimulated vacuum. Various interaction geometries are considered, showing that the estimated ellipticity lies between 1.8 × 10-10 and 10-9 for a 100 PW laser interacting with a 12.9 keV XFEL beam, approaching the threshold for todays’ polarity detection technique. The detailed experimental set-up is designed, including the polarimeter, the focusing compound refractive lens and the optical path. When taking into account the efficiencies of the x-ray instruments, it is found that about 10 polarization-flipped x-ray photons can be detected for a single shot for our design. Considering the background noise level, accumulating runs are necessary to obtain high confident measurement.

  6. Progress in direct-drive laser fusion using GEKKO XII/PW facility

    International Nuclear Information System (INIS)

    Yamanaka, T.

    2002-01-01

    Extensive studies have been carried out for the fast-ignitor laser fusion which can provide one of the most feasible short tracks in the fusion energy development. We have upgraded the heating laser up to 1 PW(500 J/500 fs) and have started comprehensive studies on the transport of high current relativistic electron beam in the dense plasma. Substantial heating of the core plasma up to 1 keV is expected with implosion plasma produced by the Gekko XII laser. We have experimentally obtained for the first time all parameters to decide the growth rate of Rayleigh-Taylor instability using the HIPER irradiation system which can generate ablation pressure up to 60 Mbar and newly developed advanced x-ray diagnostic tools. We have proposed the FIREX (Fast Ignitor Realization Experiment) program for demonstrating the proof-of-principle of fast ignitor scheme. By the irradiation of ∼10 kJ/2-10 ps laser onto a DT core plasma formed by the GEKKO-XII, we are aiming at temperature of >8 keV and the fusion gain near unity. (author)

  7. 75 FR 14375 - Airworthiness Directives; Pratt & Whitney (PW) PW4000 Series Turbofan Engines

    Science.gov (United States)

    2010-03-25

    ...) PW4000 Series Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of..., PW4156, PW4156A, PW4158, PW4164, PW4168, PW4168A, PW4460, and PW4462 turbofan engines. This proposed AD..., PW4156, PW4156A, PW4158, PW4164, PW4168, PW4168A, PW4460, and PW4462 turbofan engines. These engines are...

  8. Selective Deuteron Acceleration and Neutron Production on the Vulcan PW Laser

    Science.gov (United States)

    Krygier, A. G.; Morrison, J. T.; Freeman, R. R.; Ahmed, H.; Green, J. A.; Alejo, A.; Kar, S.; Vassura, L.

    2014-10-01

    Fast neutron sources are important for a variety of applications including radiography and the detection of sensitive materials. Here we report on the results of an experiment using the Vulcan PW laser at Rutherford Appleton Laboratory to produce a nearly pure deuterium ion beam via Target Normal Sheath Acceleration. The typical contaminants are suppressed by freezing a μ m's thick layer of heavy water vapor (D2 O) onto a cryogenic target during the shot sequence. Neutrons were generated by colliding the accelerated deuterons were into secondary targets made of deuterated plastic in the pitcher-catcher arrangement. Absolute yields for deuterium ions and neutrons are reported. This work is supported by DOE Contract DE-FC02-04ER54789.

  9. New advanced characterization tools for PW-class lasers (Conference Presentation)

    Science.gov (United States)

    Quéré, Fabien

    2017-05-01

    Spatio-temporal couplings (STC) of laser beams are ubiquitous in ultrafast optics. In the femtosecond range, chirped-pulse amplification (CPA), the key technology of amplified ultrashort pulses, relies on the use of massive STCs induced at different locations in laser systems (for instance by gratings or prisms), which should all eventually perfectly cancel out at the laser output. Residual STCs, for example resulting from imperfect compensation, decrease the peak intensity at focus by increasing both the focal spot size and the pulse duration. This is particularly detrimental for ultrahigh-intensity (UHI) lasers, which aim for the highest possible peak intensities. However, it is precisely with these lasers that such uncontrolled defects are most likely to occur, due to the complexity of these systems and the large diameters of the output beams. Accurately measuring STCs is thus essential in ultrafast optics. Significant progress has been made in the last decade, and several techniques are now available for the partial or complete spatiotemporal characterization of near-visible femtosecond laser beams. However, none of these has yet been applied to UHI femtosecond lasers, due to the difficulty of handling these large and powerful beams. As a result, all UHI lasers are currently characterized under the unjustified and unverified assumption of the absence of STCs, using separate measurements in space and time. This situation is now becoming a major bottleneck for the development of UHI lasers and their applications. In particular, the optimal and reliable operation of PW-class lasers now available or under construction all around the world will simply not be possible without a proper spatiotemporal metrology. In this talk, we present the first complete spatiotemporal experimental reconstruction of the field E(t,r) for a 100 TW peak-power laser, obtained using self-referenced spatially-resolved Fourier transform spectroscopy [1,2], and thus reveal the spatiotemporal

  10. 75 FR 55459 - Airworthiness Directives; Pratt & Whitney (PW) PW4000 Series Turbofan Engines

    Science.gov (United States)

    2010-09-13

    ... Airworthiness Directives; Pratt & Whitney (PW) PW4000 Series Turbofan Engines AGENCY: Federal Aviation..., PW4152, PW4156A, PW4158, PW4164, PW4168, PW4168A, PW4460, and PW4462 turbofan engines. This AD requires... series turbofan engines. We published the proposed AD in the Federal Register on March 25, 2010 (75 FR...

  11. 76 FR 68660 - Airworthiness Directives; Pratt & Whitney Division (PW) PW4000 Series Turbofan Engines

    Science.gov (United States)

    2011-11-07

    ... Airworthiness Directives; Pratt & Whitney Division (PW) PW4000 Series Turbofan Engines AGENCY: Federal Aviation... airworthiness directive (AD) for PW4000 series turbofan engines. This proposed AD would require replacing the..., PW4152, PW4156, PW4156A, PW4158, PW4160, PW4460, PW4462, and PW4650 turbofan engines, including models...

  12. Effect of micelle interface on the binding of anticoccidial PW2 peptide

    International Nuclear Information System (INIS)

    Tinoco, Luzineide W.; Gomes-Neto, Francisco; Valente, Ana Paula; Almeida, Fabio C. L.

    2007-01-01

    PW2 is an anticoccidial peptide active against Eimeria acervulina and Eimeria tenella. We determined the structure of PW2 in dodecylphosphocholine micelles. The structure showed two distinct regions: an amphipathic N-terminal 3 10 helix and an aromatic region containing WWR interface-binding motif. The aromatic region acted as a scaffold of the protein in the interface and shared the same structure in both DPC and SDS micelles. N-terminal helix interacted with DPC but not with SDS interface. Chemical shift change was slow when SDS was added to PW2 in DPC and fast when DPC was added to PW2 in SDS, indicating that interaction with DPC micelles was kinetically more stable than with SDS micelles. Also, DPC interface was able to accommodate PW2, but it maintained the conformational arrangement in the aromatic region observed for SDS micelles. This behavior, which is different from that observed for other antimicrobial peptides with WWR motif, may be associated with the absence of PW2 antibacterial activity and its selectivity for Eimeria parasites

  13. Effect of micelle interface on the binding of anticoccidial PW2 peptide

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, Luzineide W. [Universidade Federal do Rio de Janeiro, Nucleo de Pesquisas de Produtos Naturais (Brazil); Gomes-Neto, Francisco; Valente, Ana Paula; Almeida, Fabio C. L. [Universidade Federal do Rio de Janeiro, Centro Nacional de Ressonancia Magnetica Nuclear Jiri Jonas, Instituto de Bioquimica Medica, Programa de Biologia Estrutural (Brazil)], E-mail: falmeida@cnrmn.bioqmed.ufrj.br

    2007-12-15

    PW2 is an anticoccidial peptide active against Eimeria acervulina and Eimeria tenella. We determined the structure of PW2 in dodecylphosphocholine micelles. The structure showed two distinct regions: an amphipathic N-terminal 3{sub 10} helix and an aromatic region containing WWR interface-binding motif. The aromatic region acted as a scaffold of the protein in the interface and shared the same structure in both DPC and SDS micelles. N-terminal helix interacted with DPC but not with SDS interface. Chemical shift change was slow when SDS was added to PW2 in DPC and fast when DPC was added to PW2 in SDS, indicating that interaction with DPC micelles was kinetically more stable than with SDS micelles. Also, DPC interface was able to accommodate PW2, but it maintained the conformational arrangement in the aromatic region observed for SDS micelles. This behavior, which is different from that observed for other antimicrobial peptides with WWR motif, may be associated with the absence of PW2 antibacterial activity and its selectivity for Eimeria parasites.

  14. Genuine two-fluid computations of laser-plasma interaction for generation of nonlinear force driven plasma blocks

    International Nuclear Information System (INIS)

    Nafari, F.; Yazdani, E.; Malekynia, B.; Ghoranneviss, M.

    2010-01-01

    Complete text of publication follows. Anomalous interaction of picosecond laser pulses of terawatt to petawatt power is due to suppression of relativistic self-focusing if prepulses are cut-off by a contrast ratio higher than 10 8 . Resulting non-linear ponderomotive forces induced at the skin-layer interaction of a short laser-pulse with a proper preplasma layer produced by the laser prepulse in front of a solid target accelerate two thin (a few μm) quasi-neutral plasma blocks, propagating in forward and backward directions, backward moving against the laser light (ablation) and forward moving into the target. This compressed block produces an ion current density of above 10 11 A/cm 2 . This may support the requirement to produce a fast ignition deuterium tritium fusion at densities not much higher than the solid state by a single shot pw-ps laser pulse. With studying skin-layer subrelativistic interaction of a short (≤ 1 ps) laser pulse with an initial Rayleigh density profile in genuine two-fluid hydrodynamic model, time and spatial distributions of ion block temperature are presented.

  15. High average power, diode pumped petawatt laser systems: a new generation of lasers enabling precision science and commercial applications

    Science.gov (United States)

    Haefner, C. L.; Bayramian, A.; Betts, S.; Bopp, R.; Buck, S.; Cupal, J.; Drouin, M.; Erlandson, A.; Horáček, J.; Horner, J.; Jarboe, J.; Kasl, K.; Kim, D.; Koh, E.; Koubíková, L.; Maranville, W.; Marshall, C.; Mason, D.; Menapace, J.; Miller, P.; Mazurek, P.; Naylon, A.; Novák, J.; Peceli, D.; Rosso, P.; Schaffers, K.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Steele, R.; Stolz, C.; Suratwala, T.; Telford, S.; Thoma, J.; VanBlarcom, D.; Weiss, J.; Wegner, P.

    2017-05-01

    Large laser systems that deliver optical pulses with peak powers exceeding one Petawatt (PW) have been constructed at dozens of research facilities worldwide and have fostered research in High-Energy-Density (HED) Science, High-Field and nonlinear physics [1]. Furthermore, the high intensities exceeding 1018W/cm2 allow for efficiently driving secondary sources that inherit some of the properties of the laser pulse, e.g. pulse duration, spatial and/or divergence characteristics. In the intervening decades since that first PW laser, single-shot proof-of-principle experiments have been successful in demonstrating new high-intensity laser-matter interactions and subsequent secondary particle and photon sources. These secondary sources include generation and acceleration of charged-particle (electron, proton, ion) and neutron beams, and x-ray and gamma-ray sources, generation of radioisotopes for positron emission tomography (PET), targeted cancer therapy, medical imaging, and the transmutation of radioactive waste [2, 3]. Each of these promising applications requires lasers with peak power of hundreds of terawatt (TW) to petawatt (PW) and with average power of tens to hundreds of kW to achieve the required secondary source flux.

  16. mPW1PW91 Calculated Conformational Study of Calix[n]arene (n = 4,5,6): Hydrogen Bond

    International Nuclear Information System (INIS)

    Kim, Kwang Ho; Choe, Jong In

    2009-01-01

    We have performed mPW1PW91 calculations to investigate the conformational characteristics and hydrogen bonds of p-tert-butylcalix[4]arene, p-tert-butylcalix[5]arene, calix[6]arene and p-tertbutylcalix[ 6]arene. The structures of the different conformers of 1-3 were optimized by using mPW1PW91/ 6-31+G(d,p) method. The relative stability of the four conformers of 1 is in the following order: cone (most stable) > partial-cone > 1,2-alternate > 1,3-alternate. The relative stability of the conformers of 2 is in the following order: cone (most stable) > 1,2-alternate > partial-cone > 1,3-alternate. The relative stability of the various conformers of 3 is in the following order: cone (pinched: most stable) > partial-cone > cone (winged) ∼ 1,2-alternate ∼ 1,2,3-alternate > 1,4-alternate > 1,3-alternate > 1,3,5-alternate. The structures of the various conformers of 4 were optimized by using the mPW1PW91/6-31G(d,p) method followed by single point calculation of mPW1PW91/6-31+G(d,p). The relative stability of the conformers of 4 is in the following order: cone (pinched) > 1,2-alternate > cone (winged) > 1,4-alternate ∼ partial-cone > 1,2,3-alternate > 1,3,5-alternate > 1,3-alternate

  17. 77 FR 16139 - Airworthiness Directives; Pratt & Whitney (PW) Turbofan Engines

    Science.gov (United States)

    2012-03-20

    ... Airworthiness Directives; Pratt & Whitney (PW) Turbofan Engines AGENCY: Federal Aviation Administration (FAA... & Whitney (PW) PW2037, PW2037(M), and PW2040 turbofan engines with certain fan blades with a cutback leading..., PW2040, PW2240, PW2337 Turbofan Engine Manual, Part No. 1A6231, Chapter/Section 72-31-12, Repair-14 and...

  18. 75 FR 14377 - Airworthiness Directives; Pratt & Whitney (PW) Model PW2037, PW2037(M), and PW2040 Turbofan Engines

    Science.gov (United States)

    2010-03-25

    ... removing erosion damage on fan blades with cutback leading edges and restoring the leading edge contour. This proposed AD results from reports from PW that fan blade leading edge erosion can result in a fan... comments electronically. Mail: Docket Management Facility, U.S. Department of Transportation, 1200 New...

  19. H3PW12O40 Encapsulation by Nanoporous Metal Organic Framework HKUST-1: Synthesis, Characterization, Activity and Stability.

    Science.gov (United States)

    Rafiee, Ezzat; Nobakht, Narges

    2016-01-01

    Hybrid composite material was obtained through encapsulation of H3PW12O40 (PW) into HKUST-1 (Cu3(BTC)2, BTC = 1,3,5-benzenetricarboxylic acid), in molar composition of 5 Cu(NO3)2 · 3H2O/2.8 BTC/0.3 PW/0.6 CTAB by adding solutions of PW and copper salts to mixture of BTC and surfactant. The catalyst was characterized by various techniques including powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), laser particle size analyzer, Brunauer Emmett-Teller (BET). The acidity of the catalyst was measured by a potentiometric titration with n-butylamine and PW/HKUST-1 presented very strong acidic sites with Ei > 100 mV. This nano catalyst was successfully used for the synthesis of various β-keto enol ethers at 45 °C with 51-98% yield after 5-75 min. The catalyst was easily recycled and reused at least four times without significant loss of its activity (94% yield after forth run). The presence of the PW in PW/HKUST-1 and reused PW/HKUST-1 structure, eliminating any doubt about collapse of the HKUST-1 after catalytic reaction and can be followed by FT-IR, XRD and SEM techniques. Brönsted and Lewis acidity of the PW/HKUST-1 catalyst was distinguished by studying the FT-IR and determined by chemisorption of pyridine. The strength and dispersion of the protons on PW/HKUST-1 was considerably high and active surface protons became more available for reactant.

  20. Laser-driven ion acceleration: methods, challenges and prospects

    Science.gov (United States)

    Badziak, J.

    2018-01-01

    The recent development of laser technology has resulted in the construction of short-pulse lasers capable of generating fs light pulses with PW powers and intensities exceeding 1021 W/cm2, and has laid the basis for the multi-PW lasers, just being built in Europe, that will produce fs pulses of ultra-relativistic intensities ~ 1023 - 1024 W/cm2. The interaction of such an intense laser pulse with a dense target can result in the generation of collimated beams of ions of multi-MeV to GeV energies of sub-ps time durations and of extremely high beam intensities and ion fluencies, barely attainable with conventional RF-driven accelerators. Ion beams with such unique features have the potential for application in various fields of scientific research as well as in medical and technological developments. This paper provides a brief review of state-of-the art in laser-driven ion acceleration, with a focus on basic ion acceleration mechanisms and the production of ultra-intense ion beams. The challenges facing laser-driven ion acceleration studies, in particular those connected with potential applications of laser-accelerated ion beams, are also discussed.

  1. References: AePW publications

    Data.gov (United States)

    National Aeronautics and Space Administration — This page is the repository for the publications resulting from the AePW. This includes the special sessions at conferences: AIAA ASM 2012, Grapevine TX; AIAA SDM...

  2. Plasma lenses for ultrashort multi-petawatt laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Palastro, J. P.; Gordon, D.; Hafizi, B.; Johnson, L. A.; Peñano, J.; Hubbard, R. F.; Helle, M.; Kaganovich, D. [Naval Research Laboratory, Washington DC 20375-5346 (United States)

    2015-12-15

    An ideal plasma lens can provide the focusing power of a small f-number, solid-state focusing optic at a fraction of the diameter. An ideal plasma lens, however, relies on a steady-state, linear laser pulse-plasma interaction. Ultrashort multi-petawatt (MPW) pulses possess broad bandwidths and extreme intensities, and, as a result, their interaction with the plasma lens is neither steady state nor linear. Here, we examine nonlinear and time-dependent modifications to plasma lens focusing, and show that these result in chromatic and phase aberrations and amplitude distortion. We find that a plasma lens can provide enhanced focusing for 30 fs pulses with peak power up to ∼1 PW. The performance degrades through the MPW regime, until finally a focusing penalty is incurred at ∼10 PW.

  3. 5. Laser plasma interaction

    International Nuclear Information System (INIS)

    Labaune, C.; Fuchs, J.; Bandulet, H.

    2002-01-01

    Imprint elimination, smoothing and preheat control are considerable problems in inertial fusion and their possible solution can be achieved by using low-density porous materials as a buffer in target design. The articles gathered in this document present various aspects of the laser-plasma interaction, among which we have noticed: -) numerical algorithmic improvements of the Vlasov solver toward the simulation of the laser-plasma interaction are proposed, -) the dependence of radiation temperatures and X-ray conversion efficiencies of hohlraum on the target structures and laser irradiation conditions are investigated, -) a study of laser interaction with ultra low-density (0,5 - 20 mg/cm 3 ) porous media analyzing backscattered light at incident laser frequency ω 0 and its harmonics 3*ω 0 /2 and 2*ω 0 is presented, -) investigations of laser interaction with solid targets and crater formation are carried out with the objective to determine the ablation loading efficiency, -) a self organization in an intense laser-driven plasma and the measure of the relative degree of order of the states in an open system based on the S-theorem are investigated, and -) the existence and stability of electromagnetic solitons generated in a relativistic interaction of an intense laser light with uniform under-dense cold plasma are studied

  4. Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems

    Science.gov (United States)

    Ďurák, Michal; Velpula, Praveen Kumar; Kramer, Daniel; Cupal, Josef; Medřík, Tomáš; Hřebíček, Jan; Golasowski, Jiří; Peceli, Davorin; Kozlová, Michaela; Rus, Bedřich

    2017-01-01

    Increasing the laser-induced damage resistance of optical components is one of the major challenges in the development of Peta-watt (PW) class laser systems. The extreme light infrastructure (ELI) beamlines project will provide ultrafast laser systems with peak powers up to 10 PW available every minute and PW class beams at 10 Hz complemented by a 5-TW, 1-kHz beamline. Sustainable performance of PW class laser systems relies on the durability of the employed optical components. As part of an effort to evaluate the damage resistance of components utilized in ELI beamlines systems, damage thresholds of several optical multilayer dielectric coatings were measured with different laser parameters and in different environments. Three coatings were tested with 10 Hz and 1 kHz pulse repetition rates, and the effect of a cleaning treatment on their damage resistance was examined. To explore the damage threshold behavior at different vacuum levels, one coating was subject to tests at various residual gas pressures. No change of damage threshold in a high vacuum with respect to ambient pressure was recorded. The effect of the cleaning treatment was found to be inconsistent, suggesting that development of the optimal cleaning treatment for a given coating requires consideration of its specific properties.

  5. Laser-induced interactions

    International Nuclear Information System (INIS)

    Green, W.R.

    1979-01-01

    This dissertation discusses some of the new ways that lasers can be used to control the energy flow in a medium. Experimental and theoretical considerations of the laser-induced collision are discussed. The laser-induced collision is a process in which a laser is used to selectively transfer energy from a state in one atomic or molecular species to another state in a different species. The first experimental demonstration of this process is described, along with later experiments in which lasers were used to create collisional cross sections as large as 10 - 13 cm 2 . Laser-induced collisions utilizing both a dipole-dipole interaction and dipole-quadrupole interaction have been experimentally demonstrated. The theoretical aspects of other related processes such as laser-induced spin-exchange, collision induced Raman emission, and laser-induced charge transfer are discussed. Experimental systems that could be used to demonstrate these various processes are presented. An experiment which produced an inversion of the resonance line of an ion by optical pumping of the neutral atom is described. This type of scheme has been proposed as a possible method for constructing VUV and x-ray lasers

  6. Laser Materials Processing Final Report CRADA No. TC-1526-98

    Energy Technology Data Exchange (ETDEWEB)

    Crane, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lehane, C. J. [United Technologies Corp., East Hartford, CT (United States)

    2017-09-08

    This CRADA project was a joint effort between Lawrence Livermore National Laboratory (LLNL) and United Technologies Corporation (UTC)/Pratt & Whitney (P&W) to demonstrate process capability for drilling holes in turbine airfoils using LLNL-developed femtosecond laser machining technology. The basis for this development was the ability of femtosecond lasers to drill precision holes in variety of materials with little or no collateral damage. The ultimate objective was to develop a laser machine tool consisting of an extremely advanced femtosecond laser subsystem to be developed by LLNL on a best-effort basis and a drilling station for turbine blades and vanes to be developed by P&W. In addition, P&W was responsible for commercializing the system. The goal of the so called Advanced Laser Drilling (ALD) system was to drill specified complex hole-shapes in turbine blades and vanes with a high degree precision and repeatability and simultaneously capable of very high speed processing.

  7. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    Science.gov (United States)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  8. Modelling the effects of the radiation reaction force on the interaction of thin foils with ultra-intense laser fields

    Science.gov (United States)

    Duff, M. J.; Capdessus, R.; Del Sorbo, D.; Ridgers, C. P.; King, M.; McKenna, P.

    2018-06-01

    The effects of the radiation reaction (RR) force on thin foils undergoing radiation pressure acceleration (RPA) are investigated. Using QED-particle-in-cell simulations, the influence of the RR force on the collective electron dynamics within the target can be examined. The magnitude of the RR force is found to be strongly dependent on the target thickness, leading to effects which can be observed on a macroscopic scale, such as changes to the distribution of the emitted radiation and the target dynamics. This suggests that such parameters may be controlled in experiments at multi-PW laser facilities. In addition, the effects of the RR force are characterized in terms of an average radiation emission angle. We present an analytical model which, for the first time, describes the effect of the RR force on the collective electron dynamics within the ‘light-sail’ regime of RPA. The predictions of this model can be tested in future experiments with ultra-high intensity lasers interacting with solid targets.

  9. 青杄PwUSP2基因的克隆和表达分析%Cloning and Expression Analysis of PwUSP2 from Picea wilsonii

    Institute of Scientific and Technical Information of China (English)

    周燕妮; 李艳芳; 张通; 张凌云

    2015-01-01

    Universal stress proteins (USPs) involve in multiple abiotic responses including carbon starvation, O2 deprivation, drought and high salinity;however, it still remains elusive in plants. In this study, the full length cDNA of PwUSP2 was obtained using RACE-PCR method. Bioinformatics analysis showed that the full length cDNA of PwUSP2 is 987 bp, including the open reading frame (ORF) 723 bp. The PwUSP2 contains 240 ami-no acids with a theoretical molecular weight of 26.84 kDa and theoretical isoelectric points (pI) of 4.61. It is also a hydrophilic protein with serine and threonine binding sites and has non-transmembrane domain. Mean-while, it has the typical UspA domain of USP family but not the characteristic of ATP-binding site G-2X-G-9X-G[S/T]. RT-qPCR analysis showed that PwUSP2 was expressed in different tissues, while highly expressed in fruit. Furthermore, the expression of PwUSP2 signiifcantly changed under abiotic stresses such as abscisic acid (ABA) and methyl jasmonate (MeJA), indicating that PwUSP2 might be involved in response to multiple stresses in plants.%广泛逆境胁迫蛋白(USPs)参与碳缺乏、缺氧、干旱和高盐等多种非生物胁迫,但在植物中的研究尚不深入。本文通过RACE-PCR的方法获得青杄PwUSP2基因的cDNA全长,共987 bp,其中编码区723 bp,共编码240个氨基酸。利用生物信息学工具对其理化性质、二级结构和三级结构进行分析,结果显示,该蛋白理论分子质量为26.84 kDa,理论等电点为4.61,有丝氨酸和苏氨酸结合位点,为非跨膜的亲水蛋白。PwUSP2具有USP家族典型的UspA结构域,但无典型的ATP结合位点G-2X-G-9X-G[S/T]。RT-qPCR分析表明, PwUSP2在青杄花粉、果实、种子、成熟叶、幼叶、成茎中均有表达,在果实中表达量较高。同时, PwUSP2在脱落酸(ABA)、茉莉酸甲酯(MeJA)等非生物胁迫下表达量有明显变化,推测PwUSP2可能参与青杄对逆境胁迫的响应。

  10. New photon science and extreme field physics: volumetric interaction of ultra-intense laser pulses with over-dense targets

    Energy Technology Data Exchange (ETDEWEB)

    Hegelich, Bjorn M [Los Alamos National Laboratory

    2010-11-24

    (e.g . brown dwarfs) early in the interaction to extremely high energy densities of {approx}10{sup 11} J/cm{sup 3} at peak, dropping back to the underdense but extremely hot parameter range of gamma-ray bursts. Furthermore, whereas today this regime can only be accessed on very few dedicated facilities, employing special targets and pulse cleaning technology, the next generation of laser facilities like RAL-10PW, ELI, or Gekko-Exa will operate in this regime by default, turning its understanding in a necessity rather than a curiosity.

  11. High-field electron-photon interactions

    International Nuclear Information System (INIS)

    Hartemann, F V.

    1999-01-01

    Recent advances in novel technologies (including chirped-pulse amplification, femtosecond laser systems operating in the TW-PW range, high-gradient rf photoinjectors, and synchronized relativistic electron bunches with subpicosecond durations and THz bandwidths) allow experimentalists to study the interaction of relativistic electrons with ultrahigh-intensity photon fields. Ponderomotive scattering can accelerate these electrons with extremely high gradients in a three-dimensional vacuum laser focus. The nonlinear Doppler shift induced by relativistic radiation pressure in Compton backscattering is shown to yield complex nonlinear spectra which can be modified by using temporal laser pulse shaping techniques. Colliding laser pulses, where ponderomotive acceleration and Compton backscattering are combined, could also yield extremely short wavelength photons. Finally, one expects strong radiative corrections when the Doppler-upshifted laser wavelength approaches the Compton scale. These are discussed within the context of high-field classical electrodynamics, a new discipline borne out of the aforementioned innovations

  12. Laser-plasma interactions and applications

    CERN Document Server

    Neely, David; Bingham, Robert; Jaroszynski, Dino

    2013-01-01

    Laser-Plasma Interactions and Applications covers the fundamental and applied aspects of high power laser-plasma physics. With an internationally renowned team of authors, the book broadens the knowledge of young researchers working in high power laser-plasma science by providing them with a thorough pedagogical grounding in the interaction of laser radiation with matter, laser-plasma accelerators, and inertial confinement fusion. The text is organised such that the theoretical foundations of the subject are discussed first, in Part I. In Part II, topics in the area of high energy density physics are covered. Parts III and IV deal with the applications to inertial confinement fusion and as a driver of particle and radiation sources, respectively. Finally, Part V describes the principle diagnostic, targetry, and computational approaches used in the field. This book is designed to give students a thorough foundation in the fundamental physics of laser-plasma interactions. It will also provide readers with knowl...

  13. Plasma formation and target preheating by prepulse of PW laser light

    Science.gov (United States)

    Sentoku, Yasuhiko; Iwata, Natsumi; Koga, James; Dover, Nicholas; Nishiuchi, Mamiko

    2017-10-01

    An intense short pulse laser with intensity over 1021 W/cm2 has become available, i.e. J-KAREN-P at QST. Although the contrast of the short pulse is improved to be of the order of 10-11, there is an unavoidable prepulse, which has multiple spikes (ps) on top of an exponential profile with intensity greater than 1014 W/cm2 about 50 ps in front of the main pulse. The prepulse preheats the target and also produces tenuous plasmas in front of a target before the main pulse arrives. It is critical to understand such preheating of the target, where the nonlocal heat transport is essential at intensity >1014 W/cm2, since the target condition might totally change before the interaction with the main pulse. Using a hydro code, FLASH, and a collisional particle-in-cell code, PICLS, we study the preplasma formation and target preheating over tens of picoseconds timescale, and discuss the prepulse effects on the main pulse interaction. Work supported by the JSPS KAKENHI under Grant No. JP15K21767.

  14. Right ventricular function in asthmatic children determined with PW-TDI

    International Nuclear Information System (INIS)

    Wang Shaona; Song Lili; Cong Lin; Li Liping; Huang Yanxia

    2007-01-01

    Objective: To assess the right ventricular function of asthmatic children in onset period or remission period by using PW-TDI. Method: 36 children with confirmed asthma were enrolled. In tricuspid annular, the ECHO were recorded with PW-PDI pattern to obtain fight ventricular function (Sm, e-peak, Vmax for a-peak, and e/a), ICT, ET, IRT and Tei-Index. These were carried out in acute attack period and stable period. Result: Right ventficular function parameter (Sm, Vmax for e-peak, Vmax for a-peak, e/a and Tei-Index) in acute attack period were significant different compared to those in stable period (P<0.05). Conclusions: The fight ventricular function was impaired in patients with asthma in acute attack period. PW-TDI is helpful for assessing right ventricular function to asthmatic children. (authors)

  15. The endophytic bacterium Serratia sp. PW7 degrades pyrene in wheat.

    Science.gov (United States)

    Zhu, Xuezhu; Wang, Wanqing; Crowley, David E; Sun, Kai; Hao, Shupeng; Waigi, Michael Gatheru; Gao, Yanzheng

    2017-03-01

    This research was conducted to isolate polycyclic aromatic hydrocarbon-degrading (PAH-degrading) endophytic bacteria and investigate their potential in protecting plants against PAH contamination. Pyrene-degrading endophytic bacteria were isolated from plants grown in PAH-contaminated soil. Among these endophytic bacteria, strain PW7 (Serratia sp.) isolated from Plantago asiatica was selected to investigate the suppression of pyrene accumulation in Triticum aestivum L. In the in vitro tests, strain PW7 degraded 51.2% of the pyrene in the media within 14 days. The optimal biodegradation conditions were pH 7.0, 30 °C, and MS medium supplemented with additional glucose, maltose, sucrose, and peptones. In the in vivo tests, strain PW7 successfully colonized the roots and shoots of inoculated (E + ) wheat plants, and its colonization decreased pyrene accumulation and pyrene transportation from roots to shoots. Remarkably, the concentration of pyrene in shoots decreased much more than that in roots, suggesting that strain PW7 has the potential for protecting wheat against pyrene contamination and mitigating the threat of pyrene to human health via food consumption.

  16. Greco Laser-matter interaction

    International Nuclear Information System (INIS)

    1986-01-01

    Research program in 1985 at GRECO ILM (Group of Coordinated Research: Interaction Laser Matter) continued with its principal direction in fundamental physics of laser inertial confinement; also researches on X-ray lasers hare been undergone and new high power laser application fields with particle acceleration, material processing and X-ray sources. A six beam laser was operated. Wavelength effects were studied. Atomic physics was deeply stressed as dense medium diagnostics from multicharged ions. Research development in ultra-dense medium was also important X-ray laser research gave outstanding results. New research fields were developed this year: laser acceleration of particles by wave beating or Raman instability; dense laser produced plasma use as X-ray source; material processing by laser shocks [fr

  17. 77 FR 16916 - Airworthiness Directives; Pratt & Whitney (PW)Turbofan Engines

    Science.gov (United States)

    2012-03-23

    ... Airworthiness Directives; Pratt & Whitney (PW)Turbofan Engines AGENCY: Federal Aviation Administration (FAA... and -7R4H1 turbofan engines. This AD was prompted by the determination that a new lower life limit for... PW JT9D-7R4G2 and -7R4H1 turbofan engine models. We agree. In addition to the JT9D-7R4G2 and -7R4H1...

  18. Isochoric heating of DT fuels through PW-laser-produced proton beams

    International Nuclear Information System (INIS)

    Maynard, G.; Barriga-Carrasco, M.D.

    2005-01-01

    Laser Proton Source (LPS) can generate short bunch of energetic protons with a nearly zero initial emittance. It is thus expected that LPS can deposit a very high density of energy inside dense matter, in particular, in the context of fast ignition of an inertial fusion target. We investigate here one of the factors that can limit the density of deposited energy. It concerns the transverse diffusion, occurring during the transport between the LPS and DT. As the rear surface of LPS should be efficiently protected, the proton along its path has to interact with a substantial amount of high-Z material. Therefore the induced transverse dispersion can become significant. The transport of the proton beam inside a plasma target is calculated using a numerical code, which main features are presented

  19. Isochoric heating of DT fuels through PW-laser-produced proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, G. [Laboratoire de Physique des Gaz et des Pasmas, CNRS UMR8578, bat. 210, Universite Paris XI, F-91405, Orsay (France)]. E-mail: gilles.maynard@pgp.u-psud.fr; Barriga-Carrasco, M.D. [Laboratoire de Physique des Gaz et des Pasmas, CNRS UMR8578, bat. 210, Universite Paris XI, F-91405, Orsay (France)

    2005-05-21

    Laser Proton Source (LPS) can generate short bunch of energetic protons with a nearly zero initial emittance. It is thus expected that LPS can deposit a very high density of energy inside dense matter, in particular, in the context of fast ignition of an inertial fusion target. We investigate here one of the factors that can limit the density of deposited energy. It concerns the transverse diffusion, occurring during the transport between the LPS and DT. As the rear surface of LPS should be efficiently protected, the proton along its path has to interact with a substantial amount of high-Z material. Therefore the induced transverse dispersion can become significant. The transport of the proton beam inside a plasma target is calculated using a numerical code, which main features are presented.

  20. Femtosecond laser-matter interaction theory, experiments and applications

    CERN Document Server

    Gamaly, Eugene G

    2011-01-01

    Basics of Ultra-Short Laser-Solid InteractionsSubtle Atomic Motion Preceding a Phase Transition: Birth, Life and Death of PhononsUltra-Fast Disordering by fs-Lasers: Superheating Prior to Entropy CatastropheAblation of SolidsUltra-Short Laser-Matter Interaction Confined Inside a Bulk of Transparent SolidApplications of Ultra-Short Laser-Matter InteractionsConclusion Remarks.

  1. Petawatt laser system for the fast ignition studies at ILE, Osaka University

    International Nuclear Information System (INIS)

    Izawa, Y.

    2002-01-01

    We have developed a PW Nd:glass laser system, which can deliver 1 PW output with 500 J in 0.5 ps, to study a fast ignitor concept in laser fusion. In the front end of this system, the optical parametric chirped-pulse amplifier (OPCPA) was introduced. The OPCPA solves several problems arising in an existing Ti:sapphire regenerative amplifier, such as low single-pass gain, high prepulse and output fluctuation. A booster amplifier is a Cassegrain-type three pass disk system having a 350 mm clear aperture, which generated 1.1 kJ output energy with the spectral width of 3.7 nm corresponding to 0.5 ps in Fourier transform limited pulse. The spatial phase aberration mainly caused in the booster amplifier is corrected using a deformable mirror. The laser pulse is compressed by a pair of 1-m diffraction gratings and focused by a parabolic mirror. The timing jitter between PW laser and GEKKO XII is less than 10 ps, which was attained by injecting a weak pulse splitted out from the front end into the preamplifier of GEKKO XII. (author)

  2. Laser-electron Compton interaction in plasma channels

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.; Ben-Zvi, I.; Hirose, T.

    1998-10-01

    A concept of high intensity femtosecond laser synchrotron source (LSS) is based on Compton backscattering of focused electron and laser beams. The short Rayleigh length of the focused laser beam limits the length of interaction to a few picoseconds. However, the technology of the high repetition rate high-average power picosecond lasers required for high put through LSS applications is not developed yet. Another problem associated with the picosecond laser pulses is undesirable nonlinear effects occurring when the laser photons are concentrated in a short time interval. To avoid the nonlinear Compton scattering, the laser beam has to be split, and the required hard radiation flux is accumulated over a number of consecutive interactions that complicates the LSS design. In order to relieve the technological constraints and achieve a practically feasible high-power laser synchrotron source, the authors propose to confine the laser-electron interaction region in the extended plasma channel. This approach permits to use nanosecond laser pulses instead of the picosecond pulses. That helps to avoid the nonlinear Compton scattering regime and allows to utilize already existing technology of the high-repetition rate TEA CO 2 lasers operating at the atmospheric pressure. They demonstrate the advantages of the channeled LSS approach by the example of the prospective polarized positron source for Japan Linear Collider

  3. In vitro histological evaluation of the surgical margins made by different laser wavelengths in tongue tissues

    Science.gov (United States)

    Azevedo, Ana-Salvaterra; Ferreira, Fernando; Delgado, Maria-Leonor; Garcês, Fernanda; Carreira, Sofia; Martins, Marco; Suarez-Quintanilla, Juan

    2016-01-01

    Background Lasers have become standard tools for the surgical treatment of oral lesions. The purpose of this study is to determine the surgical margins and histologically evaluate the tissue thermal effects induced by different types of surgical instruments. Material and Methods Cuts were made in pork tongues’ mucosa with different lasers (Er:YAG at 2W with and without air / water spray and at 4W with and without air / water spray; CO2 at 3.5W and 7W in pulsed mode and at 7W in continuous mode; the diode laser at 3.5W and boost 3.5W in pulsed mode; Nd:YAG at 6W, 40Hz and electroscalpel at 5W and conventional scalpel as control. Macroscopic and microscopic morphological changes were evaluated. Results The results of this study showed that the surgical instruments that caused greater tissue damage extension were: the Nd:YAG laser (670.68μm), the diode 3.5W and boost PW (626.82μm), the CO2 7W CW (571.18μm), the CO2 at 7W PW (485.45μm), the diode 3.5W PW (456.15μm), the electroscalpel (409.57μm) and lastly the CO2 laser 3.5W PW (306.19μm) and Er:YAG (74.66μm) laser, regardless of power, mode or air / water spray used. An association between the Tissue Damage Extension and the Degree of Carbonization (r = 0.789; P = 0.01), and an association between the Tissue Damage Extension and Regularity of the Incision were found (r = -, 299; P = 0.01). Conclusions The results of this study suggest that lasers can be used in soft tissues biopsies of the oral cavity, enabling a correct histopathological analysis, as long as the biological effects of each laser type are considered. The Er:YAG laser revealed its potential for biopsies of the oral mucosa ensuring a successful histological evaluation and the CO2 laser at 3,5W in pulsed mode presented itself as the best choice for surgeries with hemostasis. Key words:CO2 laser, diode laser, Er:YAG laser, laser surgery, Nd:YAG laser, oral mucosa, thermal effect. PMID:27703606

  4. Integrated Laser-Target Interaction Experiments on the RAL Petawatt Laser

    International Nuclear Information System (INIS)

    Patel, P. K.; Key, M. H.; Mackinnon, A. J.; Akli, K.; Berry, R.; Borghesi, M.; Brummit, P. A.; Chambers, D.; Clarke, R. J.; Damian, C.; Chen, H.; Eagleton, R.; Freeman, R.; Glenzer, S.; Gregori, G.; Heathcote, R.; Izumi, N.; Kar, S.; King, J. A.; Kock, J.; Kuba, J.; May, M.; Moon, S.; Neely, D.; Neville, D. R.; Nikroo, A.; Niles, A.; Pasley, J.; Patel, N.; Park, H. S.; Romagnani, L.; Shepherd, R.; Snavely, R. A.; Stephens, R.; Stoeckl, C.; Storm, M.; Theobald, W.; Van Maren, R.; Wilks, S. C.; Zhang, B.

    2005-01-01

    We report on two recent experimental campaigns performed on the new Petawatt laser at the Rutherford Appleton Laboratory in the UK.The laser has recently demonstrated performance characteristics of 400 J of laser energy being delivered on target in a sub 400 fs pulse, reaching a peak focal intensity on the order of 10''21 W/cm''2. The experiments covered multiplic areas of investigation including hot electron transport in planar foil and cone focus geometries, relativistic laser-solid interactions proton beam focusing and heating, and high energy K-alpha production and radiography. A somewhat novel approach was taken to the experiments in that all of the diagnostics required for the different areas of study were fielded simultaneously and operated on all shots. Thus, we were able to obtain extensive sets of measurements on a single-shot basis which provides significant benefit to our understanding of the laser-target interaction conditions and plasma properties. (Author)

  5. Laser tissue interactions: an update for otolaryngology

    Science.gov (United States)

    Reinisch, Lou

    2000-05-01

    We review the laser, characteristics of laser light, the delivery of laser light, pulse lengths and laser tissue interactions. We review these parameters and how they have changed over the history of the laser and how we expect them to change in the future. This survey of laser use is targeted to the otolaryngologist. Very little background in lasers is necessary to follow the discussion. This is intended to introduce and reintroduce laser technology.

  6. Heat transfer modelling of pulsed laser-tissue interaction

    Science.gov (United States)

    Urzova, J.; Jelinek, M.

    2018-03-01

    Due to their attributes, the application of medical lasers is on the rise in numerous medical fields. From a biomedical point of view, the most interesting applications are the thermal interactions and the photoablative interactions, which effectively remove tissue without excessive heat damage to the remaining tissue. The objective of this work is to create a theoretical model for heat transfer in the tissue following its interaction with the laser beam to predict heat transfer during medical laser surgery procedures. The dimensions of the ablated crater (shape and ablation depth) were determined by computed tomography imaging. COMSOL Multiphysics software was used for temperature modelling. The parameters of tissue and blood, such as density, specific heat capacity, thermal conductivity and diffusivity, were calculated from the chemical ratio. The parameters of laser-tissue interaction, such as absorption and reflection coefficients, were experimentally determined. The parameters of the laser beam were power density, repetition frequency, pulse length and spot dimensions. Heat spreading after laser interaction with tissue was captured using a Fluke thermal camera. The model was verified for adipose tissue, skeletal muscle tissue and heart muscle tissue.

  7. Progress report 1986. Laser-matter interaction Greco

    International Nuclear Information System (INIS)

    1987-01-01

    Basic researches are based on laser-matter interaction, generation and study of dense and hot plasmas. The main aim is inertial fusion by laser; many researches are also engaged in other ways, basic ones such as X-ray laser and laser acceleration of particles, or applied ones such as X-ray sources or laser processing of materials [fr

  8. Relativistic ion acceleration by ultraintense laser interactions

    International Nuclear Information System (INIS)

    Nakajima, K.; Koga, J.K.; Nakagawa, K.

    2001-01-01

    There has been a great interest in relativistic particle generation by ultraintense laser interactions with matter. We propose the use of relativistically self-focused laser pulses for the acceleration of ions. Two dimensional PIC simulations are performed, which show the formation of a large positive electrostatic field near the front of a relativistically self-focused laser pulse. Several factors contribute to the acceleration including self-focusing distance, pulse depletion, and plasma density. Ultraintense laser-plasma interactions are capable of generating enormous electrostatic fields of ∼3 TV/m for acceleration of protons with relativistic energies exceeding 1 GeV

  9. Controlling Second Harmonic Efficiency of Laser Beam Interactions

    Science.gov (United States)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2011-01-01

    A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.

  10. Interactions between laser and arc plasma during laser-arc hybrid welding of magnesium alloy

    Science.gov (United States)

    Liu, Liming; Chen, Minghua

    2011-09-01

    This paper presents the results of the investigation on the interactions between laser and arc plasma during laser-arc hybrid welding on magnesium alloy AZ31B using the spectral diagnose technique. By comparably analyzing the variation in plasma information (the shape, the electron temperature and density) of single tungsten inert gas (TIG) welding with the laser-arc hybrid welding, it is found that the laser affects the arc plasma through the keyhole forming on the workpiece. Depending on the welding parameters there are three kinds of interactions taking place between laser and arc plasma.

  11. A 66pW Discontinuous Switch-Capacitor Energy Harvester for Self-Sustaining Sensor Applications.

    Science.gov (United States)

    Wu, Xiao; Shi, Yao; Jeloka, Supreet; Yang, Kaiyuan; Lee, Inhee; Sylvester, Dennis; Blaauw, David

    2016-06-01

    We present a discontinuous harvesting approach for switch capacitor DC-DC converters that enables ultra-low power energy harvesting. By slowly accumulating charge on an input capacitor and then transferring it to a battery in burst-mode, switching and leakage losses in the DC-DC converter can be optimally traded-off with the loss due to non-ideal MPPT operation. The harvester uses a 15pW mode controller, an automatic conversion ratio modulator, and a moving sum charge pump for low startup energy upon a mode switch. In 180nm CMOS, the harvester achieves >40% end-to-end efficiency from 113pW to 1.5μW with 66pW minimum input power, marking a >10× improvement over prior ultra-low power harvesters.

  12. Integrated laser-target interaction experiments on the RAL petawatt laser

    International Nuclear Information System (INIS)

    Patel, P K; Key, M H; Mackinnon, A J

    2005-01-01

    We review a recent experimental campaign to study the interaction physics of petawatt laser pulses incident at relativistic intensities on solid targets. The campaign was performed on the 500 J sub-picosecond petawatt laser at the Rutherford Appleton Laboratory. An extensive suite of optical, x-ray, and particle diagnostics was employed to characterise the processes of laser absorption, electron generation and transport, thermal and K-alpha x-ray generation, and proton acceleration

  13. Reactor process water (PW) piping inspections, 1984--1990

    International Nuclear Information System (INIS)

    Ehrhart, W.S.; Elder, J.B.; Sprayberry, R.E.; Vande Kamp, R.W.

    1990-01-01

    In July 1983, the NRC ordered the shutdown of five boiling water reactors (BWR's) because of concerns about reliability of ultrasonic examination for detecting intergranular stress corrosion cracking (IGSCC). These concerns arose because of leaking piping at Niagara Mohawk's Nine Mile Point which was attributed to IGSCC. The leaks were detected shortly after completion of ultrasonic examinations of the piping. At that time, the Dupont plant manager at Savannah River (SR) directed that investigations be performed to determine if similar problems could exist in SR reactors. Investigation determined that all conditions believed necessary for the initiation and propagation of IGSCC in austenitic stainless steel exist in SR reactor process water (PW) systems. Sensitized, high carbon, austenitic stainless steel, a high purity water system with high levels of dissolved oxygen, and the residual stresses associated with welding during construction combine to provide the necessary conditions. A periodic UT inspection program is now in place to monitor the condition of the reactor PW piping systems. The program is patterned after NRC NUREG 0313, i.e., welds are placed in categories based on their history. Welds in upgraded or replacement piping are examined on a standard schedule (at least every five years) while welds with evidence of IGSCC, evaluated as acceptable for service, are inspected at every extended outage (15 to 18 months). This includes all welds in PW systems three inches in diameter and above. Welds are replaced when MSCC exceeds the replacement criteria of more than twenty percent of pipe circumference of fifty percent of through-wall depth. In the future, we intend to perform flow sizing with automated UT techniques in addition to manual sizing to provide more information for comparison with future examinations

  14. Laser-plasma interactions for fast ignition

    Science.gov (United States)

    Kemp, A. J.; Fiuza, F.; Debayle, A.; Johzaki, T.; Mori, W. B.; Patel, P. K.; Sentoku, Y.; Silva, L. O.

    2014-05-01

    In the electron-driven fast-ignition (FI) approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser-plasma interactions (LPI) relevant to FI. Increases in computational and modelling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multi-dimensional particle-in-cell simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporal evolution. Scaling with irradiation conditions such as laser intensity are considered, as well as the dependence on plasma parameters. Different numerical modelling approaches and configurations are addressed, providing an overview of the modelling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of today's experiments for the full-scale FI problem.

  15. The suppression of radiation reaction and laser field depletion in laser-electron beam interaction

    Science.gov (United States)

    Ong, J. F.; Moritaka, T.; Takabe, H.

    2018-03-01

    The effects of radiation reaction (RR) have been studied extensively by using the interaction of ultraintense lasers with a counter-propagating relativistic electron. At the laser intensity at the order of 1023 W/cm2, the effects of RR are significant in a few laser periods for a relativistic electron. However, a laser at such intensity is tightly focused and the laser energy is usually assumed to be fixed. Then, the signal of RR and energy conservation cannot be guaranteed. To assess the effects of RR in a tightly focused laser pulse and the evolution of the laser energy, we simulated this interaction with a beam of 109 electrons by means of a Particle-In-Cell method. We observe that the effects of RR are suppressed due to the ponderomotive force and accompanied by a non-negligible amount of laser field energy reduction. This is because the ponderomotive force prevents the electrons from approaching the center of the laser pulse and leads to an interaction at the weaker field region. At the same time, the laser energy is absorbed through ponderomotive acceleration. Thus, the kinetic energy of the electron beam has to be carefully selected such that the effects of RR become obvious.

  16. Ultra-intense laser-matter interactions at extreme parameters

    International Nuclear Information System (INIS)

    Hegellich, Bjorn M.

    2010-01-01

    The field of shortpulse lasers has seen rapid growth in the recent years with the three major boundaries of energy, pulse duration and repetition rate being pushed in ever extremer regions. At peak powers, already exceeding 10 22 W/cm 2 , in virtually every experiment in relativistic laser physics, the laser pulse interacts with a more or less extended and heated plasma, due to prepulses and ASE-like pedestals on ps - ns time scales. By developing a new technique for ultrahigh contrast, we were able to initiate the next paradigm shift in relativistic laser-matter interactions, allowing us to interact ultrarelativistic pulses volumetrically with overdense targets. This becomes possible by using target and laser parameters that will turn the target relativistically transparent during the few 10s-100s femtoseconds fo the interaction. Specifically, we interact an ultraintese, ultrahigh contrast pulse with solid density, free standing, nanometer diamond target. This paradigm change towards a volumetric overdense interaction in turn enables new particle acceleration mechanisms for both electrons and ions, as well as forward directed relativistic surface harmonics. We report here on first experiments done on those topics at the 200 TW Trident laser at Los Alamos as well as at the Ti:Sapphire system at MBI. We will compare the experimental data to massive large scale 3D simulations done on the prototype of LANL's new Petafiop supercomputer Roadrunner, which is leading the current top 500 list. Specifically, we developed a shortpulse OPA based pulse cleaning technique. Fielding it at the Trident 200 TW laser at Los Alamos, we were able to improve the pulse contrast by 6 orders of magnitude to better than 2 x 10 -12 at less than a ps. This enabled for the first time the interaction of a 100J, 200TW laser pulse with a truly solid target with virtually no expansion before the main pulse - target interaction, making possible the use of very thin targets, The thinnest of these

  17. Laser-tissue interaction in tattoo removal by q-switched lasers.

    Science.gov (United States)

    Barua, Shyamanta

    2015-01-01

    Q-switched (QS) lasers are widely considered the gold standard for tattoo removal, with excellent clinical results, impressive predictability, and a good safety profile. The generation of giant pulses by the method of Q-switching is responsible for the unique laser-tissue interaction that is seen in tattoo removal by QS lasers. The QS lasers work by impaction and dissolution of the tattoo pigments. Mechanical fragmentation of the tattoo pigments encased in intracellular lamellated organelles followed by their phagocytosis by macrophages is thought to be the major event in the clearance of pigments by QS lasers. A few novel techniques have been tried in recent times to hasten the clearance of tattoo pigments.

  18. High-Intensity Femtosecond Laser Interaction with Rare Gas Clusters

    Institute of Scientific and Technical Information of China (English)

    林亚风; 钟钦; 曾淳; 陈哲

    2001-01-01

    With a 45 fs multiterawatt 790 nm laser system and jets of argon and krypton atomic clusters, a study of the interaction of fs intense laser pulses with large size rare gas dusters was conducted. The maximum laser intensity of about 7 × 1016 W/cm2 and dusters composed of thousands of atoms which were determined through Rayleigh scattering measurements were involved inthe experiments. On the one hand, the results indicate that the interaction is strongly cluster size dependent. The stronger the interaction, the larger the clusters are. On the other hand, a saturation followed by a drop of the energy of ions ejected from the interaction will occur when the laser intensity exceeds a definite value for clusters of a certain size.

  19. Optodynamics: dynamic aspects of laser beam-surface interaction

    International Nuclear Information System (INIS)

    Možina, J; Diaci, J

    2012-01-01

    This paper presents a synthesis of the results of our original research in the area of laser-material interaction and pulsed laser material processing with a special emphasis on the dynamic aspects of laser beam-surface interaction, which include the links between the laser material removal and the resulting material motion. In view of laser material processing, a laser beam is not only considered as a tool but also as a generator of information about the material transformation. The information is retained and conveyed by different kinds of optically induced mechanical waves. Several generation/detection schemes have been developed to extract this information, especially in the field of non-destructive material evaluation. Blast and acoustic waves, which propagate in the air surrounding the work-piece, have been studied using microphone detection as well as various setups of the laser beam deflection probe. Stress waves propagating through the work-piece have been studied using piezoelectric transducers and laser interferometers.

  20. X-ray diagnostics for laser matter interaction experiments; Diagnostics X pour les experiences d'interaction laser-matiere

    Energy Technology Data Exchange (ETDEWEB)

    Troussel, Ph

    2000-07-01

    Advances in the field of laser-driven inertially confined thermonuclear fusion research since the early 1990's are reviewed. It covers the experimental techniques used to study the interaction of laser radiation with matter and high density plasma. A high performance instrumentation (diagnostics) for observation of X radiation (from a few eV to a few keV) will be required to understand the physical processes involved in the interaction. This paper is a three-part: first part, describes diagnostics metrology realized around different X-ray sources (synchrotron, laser plasma...); a second part, synthesizes theoretical and experimental X-ray optics studies and show the interest for direct applications as X-ray spectroscopy and X-ray imaging around laser-produced plasma; a third part, is a review of high resolution X-ray imaging, performances of these optical system were summarized. (author)

  1. Multi-GeV electron-positron beam generation from laser-electron scattering.

    Science.gov (United States)

    Vranic, Marija; Klimo, Ondrej; Korn, Georg; Weber, Stefan

    2018-03-16

    The new generation of laser facilities is expected to deliver short (10 fs-100 fs) laser pulses with 10-100 PW of peak power. This opens an opportunity to study matter at extreme intensities in the laboratory and provides access to new physics. Here we propose to scatter GeV-class electron beams from laser-plasma accelerators with a multi-PW laser at normal incidence. In this configuration, one can both create and accelerate electron-positron pairs. The new particles are generated in the laser focus and gain relativistic momentum in the direction of laser propagation. Short focal length is an advantage, as it allows the particles to be ejected from the focal region with a net energy gain in vacuum. Electron-positron beams obtained in this setup have a low divergence, are quasi-neutral and spatially separated from the initial electron beam. The pairs attain multi-GeV energies which are not limited by the maximum energy of the initial electron beam. We present an analytical model for the expected energy cutoff, supported by 2D and 3D particle-in-cell simulations. The experimental implications, such as the sensitivity to temporal synchronisation and laser duration is assessed to provide guidance for the future experiments.

  2. Lasers, light-atom interaction

    International Nuclear Information System (INIS)

    Cagnac, B.; Faroux, J.P.

    2002-01-01

    This book has a double purpose: first to explain in a way as simple as possible the interaction processes occurring between atoms and light waves, and secondly to help any scientist that needs further information to improve his knowledge of lasers. The content of this book has been parted into 3 more or less independent sections: 1) effect of an electromagnetic field on a 2-quantum state system, 2) operating mode of lasers in the framework of transition probabilities, and 3) calculation of the emitted wave. Einstein's phenomenological hypothesis has led to probability equations called rate equations, these equations do not give a true representation of the interaction process at the scale of the atom but this representation appears to be true on an average over a large population of atoms. Only quantum mechanics can describe accurately the light-atom interaction but at the cost of a far higher complexity. In the first part of the book quantum mechanics is introduced and applied under 2 simplifying hypothesis: -) the atom system has only 2 non-degenerate states and -) the intensity of the light wave is high enough to involve a large population of photons. Under these hypothesis, Rabi oscillations, Ramsey pattern and the splitting of Autler-Townes levels are explained. The second part is dedicated to the phenomenological model of Einstein that gives good results collectively. In the third part of the book, Maxwell equations are used to compute field spatial distribution that are currently found in experiments involving lasers. (A.C.)

  3. A novel [Bmim]PW/HMS catalyst with high catalytic performance for the oxidative desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ling; Luo, Guangqing; Kang, Lihua; Zhu, Mingyuan; Dai, Bin [Shihezi University, Shihezi (China)

    2013-02-15

    To effectively reduce the sulfur content in model fuel, [Bmim]PW/HMS catalyst was synthesized through impregnating the hexagonal mesoporous silica (HMS) support by phosphotungstic acid (HPW) and ionic liquid [Bmim] HSO{sub 4}. Physical structure characterizations of the catalysts showed that HMS retained mesoporous structure, and [Bmim] PW was well dispersed on the support of HMS. The catalytic activity of the [Bmim]PW/HMS was evaluated in the oxidative desulfurization process, and the optimal reaction conditions including loading of the catalysts, reaction temperature, catalyst amount, O/S (H{sub 2}O{sub 2}/sulfur) molar ratio and agitation speed were investigated. Under the optimal reaction conditions, the conversion of benzothiophene (BT), dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) could reach 79%, 98%, 88%, respectively.

  4. A novel [Bmim]PW/HMS catalyst with high catalytic performance for the oxidative desulfurization process

    International Nuclear Information System (INIS)

    Tang, Ling; Luo, Guangqing; Kang, Lihua; Zhu, Mingyuan; Dai, Bin

    2013-01-01

    To effectively reduce the sulfur content in model fuel, [Bmim]PW/HMS catalyst was synthesized through impregnating the hexagonal mesoporous silica (HMS) support by phosphotungstic acid (HPW) and ionic liquid [Bmim] HSO 4 . Physical structure characterizations of the catalysts showed that HMS retained mesoporous structure, and [Bmim] PW was well dispersed on the support of HMS. The catalytic activity of the [Bmim]PW/HMS was evaluated in the oxidative desulfurization process, and the optimal reaction conditions including loading of the catalysts, reaction temperature, catalyst amount, O/S (H 2 O 2 /sulfur) molar ratio and agitation speed were investigated. Under the optimal reaction conditions, the conversion of benzothiophene (BT), dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) could reach 79%, 98%, 88%, respectively

  5. Comparisons between PW Doppler system and enhanced FM Doppler system

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pedersen, P. C.

    1995-01-01

    This paper presents a new implementation of an echo-ranging FM Doppler system with improved performance, relative to the FM Doppler system reported previously. The use of long sweeps provides a significant reduction in peak to average power ratio compared to pulsed wave (PW) emission. A PW Doppler...... system exploits the direct relationship between arrival time of the received signal and range from the transducer. In the FM Doppler systems, a similar relationship exists in the spectral domain of the demodulated received signals, so that range is represented by frequency. Thus, a shift in location...... of moving scatterers between consecutive emissions corresponds to a frequency shift in the spectral signature. The improvement relative to the earlier version of the FM Doppler system is attained by utilizing cross-correlation of real spectra rather than of magnitude spectra for assessing flow velocity...

  6. Controlled synthesis of Pt/CS/PW12-GNs composite as an anodic electrocatalyst for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Li, Zhongshui; Lei, Fengling; Ye, Lingting; Zhang, Xiaofeng; Lin, Shen

    2015-01-01

    Controlled assembly in aqueous solution was used to synthesize the well-organized Pt/CS/PW 12 -GNs composite. By the aid of linear cationic polysaccharide chitosan, 2-D distribution worm-like Pt nanoparticles with their length and width of 15–20 and 3–4 nm, respectively, were formed on the surface of CS/PW 12 -GNs using HCOOH as a reducing agent at room temperature. The introduction of CS leads to well dispersion of worm-like Pt nanoparticles, the electroactivity of H 3 PW 12 O 40 (PW 12 ) alleviates CO poisoning toward Pt particles, and graphene nanosheets (GNs) ensure excellent electrical conductivity of the composites. The combined action among different components results in significantly enhanced catalytic activity of Pt/CS/PW 12 -GNs toward methanol oxidation and better tolerance of CO. The as-synthesized Pt/CS/PW 12 -GNs exhibit the forward peak current density of 445 mA mg −1 , which is much higher than that (220 mA mg −1 ) for Pt/C-JM (the commercially available Johnson Matthey Hispec4000 catalyst, simplified as Pt/C-JM) and some recently reported Pt/graphene-based nanomaterials. The construction of 2-D distribution worm-like Pt nanoparticles and facile wet chemical synthesis strategy provide a promising way to develop superior performance electrocatalysts for direct methanol fuel cells applications

  7. 31. European Conference on Laser Interaction with Matter. Book of abstracts

    International Nuclear Information System (INIS)

    2010-01-01

    The ECLIM conferences on the field of high intensity laser-matter interactions. In this year has the 50th anniversary of Maiman's first laser. ECLIM is a conference for all types of laser-matter interactions, especially for those occurring at high power. New lasers, new ideas are traditionally welcome. Applications as inertial fusion energy have been the driving force in the last decades towards increasing laser intensity, and toward the discovery of new, nonlinear interactions. This time the organizers want to open the doors even broader toward short-pulse laser-plasma interactions and attophysics, organizing even special session for the Extreme Light Infrastructure (ELI). ECLIM is this time hosted the first time in Hungary, one of the sites of the future's great undertaking, the ELI laser. (S.I.)

  8. Laser-plasma interactions in magnetized environment

    Science.gov (United States)

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2018-05-01

    Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes strongly magnetized. With mega-Gauss magnetic fields, scattering of optical lasers already becomes manifestly anisotropic. Special angles exist where coherent laser scattering is either enhanced or suppressed, as we demonstrate using a cold-fluid model. Consequently, by aiming laser beams at special angles, one may be able to optimize laser-plasma coupling in magnetized implosion experiments. In addition, magnetized scattering can be exploited to improve the performance of plasma-based laser pulse amplifiers. Using the magnetic field as an extra control variable, it is possible to produce optical pulses of higher intensity, as well as compress UV and soft x-ray pulses beyond the reach of other methods. In even stronger giga-Gauss magnetic fields, laser-plasma interaction enters a relativistic-quantum regime. Using quantum electrodynamics, we compute a modified wave dispersion relation, which enables correct interpretation of Faraday rotation measurements of strong magnetic fields.

  9. Fast-electron-relaxation measurement for laser-solid interaction at relativistic laser intensities

    International Nuclear Information System (INIS)

    Chen, H.; Shepherd, R.; Chung, H. K.; Kemp, A.; Hansen, S. B.; Wilks, S. C.; Ping, Y.; Widmann, K.; Fournier, K. B.; Beiersdorfer, P.; Dyer, G.; Faenov, A.; Pikuz, T.

    2007-01-01

    We present measurements of the fast-electron-relaxation time in short-pulse (0.5 ps) laser-solid interactions for laser intensities of 10 17 , 10 18 , and 10 19 W/cm 2 , using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. We find that the laser coupling to hot electrons increases as the laser intensity becomes relativistic, and that the thermalization of fast electrons occurs over time scales on the order of 10 ps at all laser intensities. The experimental data are analyzed using a combination of models that include Kα generation, collisional coupling, and plasma expansion

  10. Interaction physics for megajoule laser fusion targets

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1992-02-01

    Some little-explored interaction phenomena for targets irradiated with megajoule lasers are considered. Simple estimates show that the laser plasma interaction then occurs in a hot (multi-keV) plasma with density much less than the critical density. In such plasmas, Raman and Brillouin scattering into the forward hemisphere are potentially significant. A simple model shows that Raman forward scattering can be saturated at low levels by ponderomotive detuning. Calculations also illustrate a suppression of ponderomotive filamentation by plasma-induced beam smoothing

  11. Dissipative Structures At Laser-Solid Interactions

    Science.gov (United States)

    Nanai, Laszlo

    1989-05-01

    The questions which are discussed in this lecture refer to one of sections of laser-solid interactions, namely: to formation of different dissipative structures on the surface of metals and semiconductors when they are irradiated by intensive laser light in chemically active media (f.e.air). Some particular examples of the development at different spatial and time instabilities, periodic and stochastic structures, auto-wave processes are present-ed using testing materials vanadium metal and semiconducting V205 single crystals and light sources: cw and pulsed CO2 and YAG lasers.

  12. Strong field interaction of laser radiation

    International Nuclear Information System (INIS)

    Pukhov, Alexander

    2003-01-01

    The Review covers recent progress in laser-matter interaction at intensities above 10 18 W cm -2 . At these intensities electrons swing in the laser pulse with relativistic energies. The laser electric field is already much stronger than the atomic fields, and any material is instantaneously ionized, creating plasma. The physics of relativistic laser-plasma is highly non-linear and kinetic. The best numerical tools applicable here are particle-in-cell (PIC) codes, which provide the most fundamental plasma model as an ensemble of charged particles. The three-dimensional (3D) PIC code Virtual Laser-Plasma Laboratory runs on a massively parallel computer tracking trajectories of up to 10 9 particles simultaneously. This allows one to simulate real laser-plasma experiments for the first time. When the relativistically intense laser pulses propagate through plasma, a bunch of new physical effects appears. The laser pulses are subject to relativistic self-channelling and filamentation. The gigabar ponderomotive pressure of the laser pulse drives strong currents of plasma electrons in the laser propagation direction; these currents reach the Alfven limit and generate 100 MG quasistatic magnetic fields. These magnetic fields, in turn, lead to the mutual filament attraction and super-channel formation. The electrons in the channels are accelerated up to gigaelectronvolt energies and the ions gain multi-MeV energies. We discuss different mechanisms of particle acceleration and compare numerical simulations with experimental data. One of the very important applications of the relativistically strong laser beams is the fast ignition (FI) concept for the inertial fusion energy (IFE). Petawatt-class lasers may provide enough energy to isochorically ignite a pre-compressed target consisting of thermonuclear fuel. The FI approach would ease dramatically the constraints on the implosion symmetry and improve the energy gain. However, there is a set of problems to solve before the FI

  13. Laser-material interactions: A study of laser energy coupling with solids

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, Mark Alan [Univ. of California, Berkeley, CA (United States)

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding.

  14. Laser-material interactions: A study of laser energy coupling with solids

    International Nuclear Information System (INIS)

    Shannon, M.A.; California Univ., Berkeley, CA

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding

  15. Laser-driven particle and photon beams and some applications

    International Nuclear Information System (INIS)

    Ledingham, K W D; Galster, W

    2010-01-01

    Outstanding progress has been made in high-power laser technology in the last 10 years with laser powers reaching petawatt (PW) values. At present, there are 15 PW lasers built or being built around the world and plans are afoot for new, even higher power, lasers reaching values of exawatt (EW) or even zetawatt (ZW) powers. Petawatt lasers generate electric fields of 10 12 V m -1 with a large fraction of the total pulse energy being converted to relativistic electrons with energies reaching in excess of 1 GeV. In turn these electrons result in the generation of beams of protons, heavy ions, neutrons and high-energy photons. These laser-driven particle beams have encouraged many to think of carrying out experiments normally associated with conventional nuclear accelerators and reactors. To this end a number of introductory articles have been written under a trial name 'Laser Nuclear Physics' (Ledingham and Norreys 1999 Contemp. Phys. 40 367, Ledingham et al 2002 Europhys. News. 33 120, Ledingham et al 2003 Science 300 1107, Takabe et al 2001 J. Plasma Fusion Res. 77 1094). However, even greater strides have been made in the last 3 or 4 years in laser technology and it is timely to reassess the potential of laser-driven particle and photon beams. It must be acknowledged right from the outset that to date laser-driven particle beams have yet to compete favourably with conventional nuclear accelerator-generated beams in any way and so this is not a paper comparing laser and conventional accelerators. However, occasionally throughout the paper as a reality check, it will be mentioned what conventional nuclear accelerators can do.

  16. Laser-driven particle and photon beams and some applications

    Energy Technology Data Exchange (ETDEWEB)

    Ledingham, K W D; Galster, W, E-mail: K.Ledingham@phys.strath.ac.u [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2010-04-15

    Outstanding progress has been made in high-power laser technology in the last 10 years with laser powers reaching petawatt (PW) values. At present, there are 15 PW lasers built or being built around the world and plans are afoot for new, even higher power, lasers reaching values of exawatt (EW) or even zetawatt (ZW) powers. Petawatt lasers generate electric fields of 10{sup 12} V m{sup -1} with a large fraction of the total pulse energy being converted to relativistic electrons with energies reaching in excess of 1 GeV. In turn these electrons result in the generation of beams of protons, heavy ions, neutrons and high-energy photons. These laser-driven particle beams have encouraged many to think of carrying out experiments normally associated with conventional nuclear accelerators and reactors. To this end a number of introductory articles have been written under a trial name 'Laser Nuclear Physics' (Ledingham and Norreys 1999 Contemp. Phys. 40 367, Ledingham et al 2002 Europhys. News. 33 120, Ledingham et al 2003 Science 300 1107, Takabe et al 2001 J. Plasma Fusion Res. 77 1094). However, even greater strides have been made in the last 3 or 4 years in laser technology and it is timely to reassess the potential of laser-driven particle and photon beams. It must be acknowledged right from the outset that to date laser-driven particle beams have yet to compete favourably with conventional nuclear accelerator-generated beams in any way and so this is not a paper comparing laser and conventional accelerators. However, occasionally throughout the paper as a reality check, it will be mentioned what conventional nuclear accelerators can do.

  17. Femtosecond laser-plasma interaction with prepulse-generated liquid metal microjets

    International Nuclear Information System (INIS)

    Uryupina, D. S.; Ivanov, K. A.; Savel'ev, A. B.; Volkov, R. V.; Brantov, A. V.; Bychenkov, V. Yu.; Povarnitsyn, M. E.; Tikhonchuk, V. T.

    2012-01-01

    Ultrashort laser pulse interaction with a microstructured surface of a melted metal is a promising source of hard x-ray radiation. Microstructuring is achieved by a weak prepulse that produces narrow high-density microjets. As an x-ray source, the interaction of the main laser pulse with such jets is shown to be nearly two orders of magnitude more efficient than the interaction with ordinary metal targets. This paper presents the results of optical and x-ray studies of laser-plasma interaction physics under such conditions supported by numerical simulations of microjet formation and fast-electron generation.

  18. Femtosecond laser-plasma interaction with prepulse-generated liquid metal microjets

    Energy Technology Data Exchange (ETDEWEB)

    Uryupina, D. S.; Ivanov, K. A.; Savel' ev, A. B.; Volkov, R. V. [Faculty of Physics and International Laser Center of M.V. Lomonosov Moscow State University, 119991 Moscow, Leninskie Gory (Russian Federation); Brantov, A. V.; Bychenkov, V. Yu. [P. N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow (Russian Federation); Povarnitsyn, M. E. [Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Tikhonchuk, V. T. [CELIA, University of Bordeaux - CNRS - CEA, 33405 Talence (France)

    2012-01-15

    Ultrashort laser pulse interaction with a microstructured surface of a melted metal is a promising source of hard x-ray radiation. Microstructuring is achieved by a weak prepulse that produces narrow high-density microjets. As an x-ray source, the interaction of the main laser pulse with such jets is shown to be nearly two orders of magnitude more efficient than the interaction with ordinary metal targets. This paper presents the results of optical and x-ray studies of laser-plasma interaction physics under such conditions supported by numerical simulations of microjet formation and fast-electron generation.

  19. Laser-Bioplasma Interaction: The Blood Type Transmutation Induced by Multiple Ultrashort Wavelength Laser Beams

    Science.gov (United States)

    Stefan, V. Alexander

    2015-11-01

    The interaction of ultrashort wavelength multi laser beams with the flowing blood thin films leads to the transmutation of the blood types A, B, and AB into O type. This is a novel mechanism of importance for the transfusion medicine. Laser radiation is in resonance with the eigen-frequency modes of the antigen proteins and forces the proteins to parametrically oscillate until they get kicked out from the surface. The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation), upon the antigen protein molecule must exceed its weight. The scanning laser beam is partially reflected as long as the antigen(s) is not eliminated. The process of the protein detachment can last a few minutes. Supported by Nikola Tesla Labs., Stefan University.

  20. Experimental study of X-ray emission in laser-cluster interaction; Etude experimentale de l'emission X issue de l'interaction laser-agregats

    Energy Technology Data Exchange (ETDEWEB)

    Caillaud, T

    2004-09-01

    Rare gas cluster jets are an intermediate medium between solid and gas targets. Laser-cluster jets interaction may generate a great number of energetic particles as X-rays, UV, high harmonics, ions, electrons and neutrons. To understand all the mechanisms involved in such an interaction we need to make a complete study of individual cluster response to an ultra-short laser pulse. We studied the laser interaction with our argon cluster gas jet, which is well characterized in cluster size and density, to enlarge the knowledge of this interaction. We measured absorption, heating and X-ray emission spectra versus laser parameters and clusters size ({approx} 15-30 nm). We show that there is a strong refraction effect on laser propagation due to the residual gas density. This effect was confirmed by laser propagation simulation with a cylindrical 2-dimensional particle code WAKE. The role played by refraction was to limit maximum laser intensity on the focal spot and to increase interaction volume. By this way, X-ray emission was observed with laser intensity not so far from the ionization threshold (few 10{sup 14} W.cm{sup -2}). We also studied plasma expansion both at cluster scale and focal volume scale and deduced the deposited energy distribution as a function of time. Thanks to a simple hydrodynamic model, we used these results to study cluster expansion. X-ray emission is then simulated by TRANSPEC code in order to reproduce X-ray spectra and duration. Those results revealed an extremely brief X-ray emission consistent with a preliminary measure by streak camera (on ps scale). (author)

  1. Immobilization of sodium and phosphorus-bearing PW-7a waste in SYNROC. Progress report

    International Nuclear Information System (INIS)

    Ringwood, A.E.

    1982-01-01

    The phosphorus, sodium and gadolinium-rich PW-7a waste can be successfully incorporated in SYNROC-C. However, a new accessory phase, a Ca,Na,Ba phosphate isostructural with Ca 5 Na 2 (PO 4 ) 4 apppears in the SYNROC mineralogy. There is no evidence for the partition of key radionuclides (e.g. Sr, REE and hence actinides) into this phosphate. Its poor resistance to groundwater dissolution, whilst hardly desirable, may therefore not have a serious effect on the leaching performance of SYNROC containing PW-7a. 9 tables

  2. Effects of 915 nm GaAs diode laser on mitochondria of human dermal fibroblasts: analysis with confocal microscopy.

    Science.gov (United States)

    Belletti, Silvana; Uggeri, Jacopo; Mergoni, Giovanni; Vescovi, Paolo; Merigo, Elisabetta; Fornaini, Carlo; Nammour, Samir; Manfredi, Maddalena; Gatti, Rita

    2015-01-01

    Low-level laser therapy (LLLT) is widely used in tissue regeneration and pain therapy. Mitochondria are supposed to be one of the main cellular targets, due to the presence of cytochrome C oxidase as photo-acceptor. Laser stimulation could influence mitochondria metabolism affecting mainly transmembrane mitochondrial potential (Δψm). The aim of our study is to evaluate "in vitro" the early mitochondrial response after irradiation with a 915 GaAs laser. Since some evidences suggest that cellular response to LLLT can be differently modulated by the mode of irradiation, we would like to evaluate whether there are changes in the mitochondrial potential linked to the use of the laser treatments applied with continuous wave (CW) in respect to those applied with pulsed wave (PW). In this study, we analyzed effects of irradiation with a 915-nm GaAs diode laser on human dermal fibroblast. We compared effects of irradiation applied with either CW or PW at different fluences 45-15-5 J/cm(2) on Δψm. Laser scanning microscopy (LSM) was used in living cells to detect ROS (reactive oxygen species) using calcein AM and real-time changes of and Δψm following distribution of the potentiometric probe tetramethylrhodamine methyl ester (TMRM). At higher doses (45-15 J/cm(2)), fibroblasts showed a dose-dependent decrement of Δψm in either the modalities employed, with higher amplitudes in CW-treated cells. This behavior is transient and not followed by any sign of toxicity, even if reactive oxygen species generation was observed. At 5 J/cm(2), CW irradiation determined a little decrease (5%) of the baseline level of Δψm, while opposite behavior was shown when cells were irradiated with PW, with a 10% increment. Our results suggest that different responses observed at cellular level with low doses of irradiation, could be at the basis of efficacy of LLLT in clinical application, performed with PW rather than CW modalities.

  3. Laser Interaction and Related Plasma Phenomena: 13th International Conference. Proceedings

    International Nuclear Information System (INIS)

    Miley, G.H.; Campbell, E.M.; Hogan, W.J.; Maille-Petersen, C.; Coppedge, H.; Montoya, E.

    1997-01-01

    These proceedings contain papers presented at the Thirteenth International Conference on Laser Interaction and Related Plasma Phenomena held in Monterey, California in April, 1997. Topics covered in the conference included laser design, alternate concepts in volume ignition and advance fuels, beam/plasma interactions, nuclear-pumped lasers, alternate fast ignitors, heavy ion fusions, laser-ion beam interactions, extreme short-pulse interactions, high-energy-density plasma physics, and hydrodynamic instabilities. The conference was sponsored in part by the Lawrence Livermore National Laboratory of the United States Department of Energy. There were 80 papers presented and 23 have been abstracted for the Energy Science and Technology database

  4. Noise in strong laser-atom interactions: Phase telegraph noise

    International Nuclear Information System (INIS)

    Eberly, J.H.; Wodkiewicz, K.; Shore, B.W.

    1984-01-01

    We discuss strong laser-atom interactions that are subjected to jump-type (random telegraph) random-phase noise. Physically, the jumps may arise from laser fluctuations, from collisions of various kinds, or from other external forces. Our discussion is carried out in two stages. First, direct and partially heuristic calculations determine the laser spectrum and also give a third-order differential equation for the average inversion of a two-level atom on resonance. At this stage a number of general features of the interaction are able to be studied easily. The optical analog of motional narrowing, for example, is clearly predicted. Second, we show that the theory of generalized Poisson processes allows laser-atom interactions in the presence of random telegraph noise of all kinds (not only phase noise) to be treated systematically, by means of a master equation first used in the context of quantum optics by Burshtein. We use the Burshtein equation to obtain an exact expression for the two-level atom's steady-state resonance fluorescence spectrum, when the exciting laser exhibits phase telegraph noise. Some comparisons are made with results obtained from other noise models. Detailed treatments of the effects ofmly jumps, or as a model of finite laser bandwidth effects, in which the laser frequency exhibits random jumps. We show that these two types of frequency noise can be distinguished in light-scattering spectra. We also discuss examples which demonstrate both temporal and spectral motional narrowing, nonexponential correlations, and non-Lorentzian spectra. Its exact solubility in finite terms makes the frequency-telegraph noise model an attractive alternative to the white-noise Ornstein-Uhlenbeck frequency noise model which has been previously applied to laser-atom interactions

  5. Effects of Pilates exercises on sensory interaction, postural control and fatigue in patients with multiple sclerosis.

    Science.gov (United States)

    Soysal Tomruk, Melda; Uz, Muhammed Zahid; Kara, Bilge; İdiman, Egemen

    2016-05-01

    Decreased postural control, sensory integration deficits and fatigue are important problems that cause functional impairments in patients with multiple sclerosis (pwMS). To examine the effect of modified clinical Pilates exercises on sensory interaction and balance, postural control and fatigue in pwMS. Eleven patients with multiple sclerosis and 12 healthy matched controls were recruited in this study. Limits of stability and postural stability tests were used to evaluate postural control by Biodex Balance System and sensory interaction assessed. Fatigue was assessed by Modified Fatigue Impact Scale. Pilates exercises were applied two times a week for 10 weeks and measurements were repeated to pwMS after exercise training. Postural control and fatigue (except psychosocial parameter) of pwMS were significantly worser than healthy controls (pPilates training (ppilates exercises (p>0.05). Ten-week Pilates training is effective to improve sensory interaction and to decrease fatigue. Pilates exercises can be applied safely in ambulatory pwMS for enhance sensory interaction and balance and combat fatigue. More investigations are needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Controlled synthesis of Pt/CS/PW{sub 12}-GNs composite as an anodic electrocatalyst for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhongshui; Lei, Fengling; Ye, Lingting; Zhang, Xiaofeng; Lin, Shen, E-mail: shenlin@fjnu.edu.cn [Fujian Normal University, College of Chemistry & Chemical Engineering (China)

    2015-04-15

    Controlled assembly in aqueous solution was used to synthesize the well-organized Pt/CS/PW{sub 12}-GNs composite. By the aid of linear cationic polysaccharide chitosan, 2-D distribution worm-like Pt nanoparticles with their length and width of 15–20 and 3–4 nm, respectively, were formed on the surface of CS/PW{sub 12}-GNs using HCOOH as a reducing agent at room temperature. The introduction of CS leads to well dispersion of worm-like Pt nanoparticles, the electroactivity of H{sub 3}PW{sub 12}O{sub 40} (PW{sub 12}) alleviates CO poisoning toward Pt particles, and graphene nanosheets (GNs) ensure excellent electrical conductivity of the composites. The combined action among different components results in significantly enhanced catalytic activity of Pt/CS/PW{sub 12}-GNs toward methanol oxidation and better tolerance of CO. The as-synthesized Pt/CS/PW{sub 12}-GNs exhibit the forward peak current density of 445 mA mg{sup −1}, which is much higher than that (220 mA mg{sup −1}) for Pt/C-JM (the commercially available Johnson Matthey Hispec4000 catalyst, simplified as Pt/C-JM) and some recently reported Pt/graphene-based nanomaterials. The construction of 2-D distribution worm-like Pt nanoparticles and facile wet chemical synthesis strategy provide a promising way to develop superior performance electrocatalysts for direct methanol fuel cells applications.

  7. High Harmonic Inverse Free-Electron-Laser Interaction at 800 NM

    CERN Document Server

    Sears, Chris M S; Colby, Eric R; Cowan, Benjamin; Plettner, Tomas; Siemann, Robert; Spencer, James

    2005-01-01

    The inverse Free Electron Laser (IFEL) interaction has recently been proposed and used as a short wavelength modulator forμbunching of beams for laser acceleration experiments*,**. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.25 mJ/pulse laser at 800 nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. We will also discuss diagnostics for obtaining beam overlap and statistical techniques used to account for machine drifts and analyze the data.

  8. Transport calculation of neutron flux distribution in reflector of PW reactor

    International Nuclear Information System (INIS)

    Remec, I.

    1982-01-01

    Two-dimensional transport calculation of the neutron flux and spectrum in the equatorial plain of PW reactor, using computer program DOT 3, is presented. Results show significant differences between neutron fields in which test samples and reactor vessel are exposed. (author)

  9. NATO Advanced Study Institute on Laser Interactions with Atoms, Solids,and Plasmas

    CERN Document Server

    1994-01-01

    The aim of this NATO Advanced Study Institute was to bring together scientists and students working in the field of laser matter interactions in order to review and stimulate developmentoffundamental science with ultra-short pulse lasers. New techniques of pulse compression and colliding-pulse mode-locking have made possible the construction of lasers with pulse lengths in the femtosecond range. Such lasers are now in operation at several research laboratories in Europe and the United States. These laser facilities present a new and exciting research direction with both pure and applied science components. In this ASI the emphasis is on fundamental processes occurring in the interaction of short laser pulses with atoms, molecules, solids, and plasmas. In the case of laser-atom (molecule) interactions, high power lasers provide the first access to extreme high-intensity conditions above 10'8 Watts/em', a new frontier for nonlinear interaction of photons with atoms and molecules. New phenomena observed include ...

  10. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    International Nuclear Information System (INIS)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-01-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  11. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    Science.gov (United States)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-02-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  12. X-ray diagnostics for laser matter interaction experiments

    International Nuclear Information System (INIS)

    Troussel, Ph.

    2000-01-01

    Advances in the field of laser-driven inertially confined thermonuclear fusion research since the early 1990's are reviewed. It covers the experimental techniques used to study the interaction of laser radiation with matter and high density plasma. A high performance instrumentation (diagnostics) for observation of X radiation (from a few eV to a few keV) will be required to understand the physical processes involved in the interaction. This paper is a three-part: first part, describes diagnostics metrology realized around different X-ray sources (synchrotron, laser plasma...); a second part, synthesizes theoretical and experimental X-ray optics studies and show the interest for direct applications as X-ray spectroscopy and X-ray imaging around laser-produced plasma; a third part, is a review of high resolution X-ray imaging, performances of these optical system were summarized. (author)

  13. Experimental study of laser-plasma interaction physics with short laser wavelength

    International Nuclear Information System (INIS)

    Labaune, C.; Amiranoff, F.; Fabre, E.; Matthieussent, G.; Rousseaux, C.; Baton, S.

    1989-01-01

    Many non-linear processes can affect laser-plasma coupling in fusion experiments. The interaction processes of interest involve three or more waves, including the incident electromagnetic wave and various selections of electromagnetic, electrostatic and accoustic waves. Whenever plasma waves are involved (stimulated Raman scattering, two-plasmon decay instability, parametric decay instability and others), energetic electrons are created through the various damping processes of these waves: these energetic electrons in turn deleteriously affect the compression phase in laser fusion experiments through pre-heating of the fuel core. Some parametric processes lead primarily to loss of incident laser energy (stimulated Brillouin scattering) while others, such as filamentation, lead to strongly enhanced local laser intensities through the focusing of part (or all) of the laser beam into filaments of very small dimensions with a concomitant expulsion of the plasma out of these regions. So filamentation destroys the uniformity of energy deposition in the plasma and prevents high compression efficiency of the target. These interaction effects are typically of parametric nature, with their thresholds and growth rates depending critically on plasma scale lengths. Since these scale lengths increase with available laser energy and since millimeter sized plasmas are expected from reactor targets which will be used in direct drive implosion experiments, a good understanding of these processes and their saturation mechanisms becomes imperative. We report here the results on absolute energy measurements and time-resolved spectra of SRS and SBS obtained in various types of plasmas where the major changes were the inhomogeneity scale lengths. (author) 7 refs., 7 figs

  14. Interaction of laser radiation with urinary calculi

    OpenAIRE

    Mayo, M E

    2009-01-01

    Urolithias, calculus formation in the urinary system, affects 5 – 10% of the population and is a painful and recurrent medical condition. A common approach in the treatment of calculi is the use of laser radiation, a procedure known as laser lithotripsy, however, the technique has not yet been fully optimised. This research examines the experimental parameters relevant to the interactions of the variable microsecond pulsed holmium laser (λ = 2.12 μm, τp = 120 – 800 μs, I ~ 3 MW...

  15. Interaction of Intense Lasers with Plasmas

    Science.gov (United States)

    Shvets, Gennady

    1995-01-01

    This thesis addresses two important topics in nonlinear laser plasma physics: the interaction of intense lasers with a non thermal homogeneous plasma, the excitation of laser wakefields in hollow plasma channels, and the stability of channel guided propagation of laser pulses. In the first half of this thesis a new theoretical approach to the nonlinear interaction of intense laser pulses with underdense plasmas is developed. Unlike previous treatments, this theory is three-dimensional, relativistically covariant, and does not assume that astudied. An experimental check of this calculation is suggested, based on the predicted non-linear polarization rotation (the second harmonic is emitted polarized perpendicularly to polarization of the incident signal). The concept of renormalization is applied to the plasma and electromagnetic radiation (photons and plasmons). To the lowest order, this corresponds to relativistically correcting the electron mass for its oscillation in an intense EM field and to replacing the vacuum dispersion relation by the usual relativistic plasma dispersion relation. This renormalization procedure is then carried to higher order in epsilon=omega_sp{p} {2}a^2/[(1+a^2/2)^ {3/2}omega^2]. This yields the nonlinear modification of the index of refraction of a strong electromagnetic wave and the dispersion of a weak probe in the presence of the wave. In the second part of this thesis the stability of short laser pulses propagating through parabolic channels and the wake excitation of hollow plasma channels are studied. The stability of a channel guided short laser pulse propagation is analyzed for the first time. Perturbations to the laser pulse are shown to modify the ponderomotive pressure, which distorts the dielectric properties of the plasma channel. The channel perturbation then further distorts the laser pulse. A set of coupled mode equations is derived, and a matrix dispersion relation is obtained analytically. The ponderomotive excitation

  16. Selective removal of U(VI) from low concentration wastewater by functionalized HKUST-1@H3PW12O40

    International Nuclear Information System (INIS)

    Hui Zhang; Jinhua Xue; Nan Hu; Jing Sun; Dexin Ding; Yongdong Wang; Le Li

    2016-01-01

    The adsorption of U(VI) from low concentration solution by HKUST-1@H 3 PW 12 O 40 was studied as a function of various experimental parameters including pH, interfering ions, contact time, initial uranium concentration and temperature by batch experiments. Equilibrium data were found to fit with Langmuir isotherm model better than Freundlich isotherm model. The kinetic adsorption was fitted by the pseudo-second-order model well. Thermodynamic data from the adsorption experiments indicate that adsorption process is spontaneous and endothermic. HKUST-1@H 3 PW 12 O 40 can selectively adsorb U(VI) from multi-metal ion solutions and the adsorption capacity of HKUST-1@H 3 PW 12 O 40 don't decrease significantly after three cycles of desorption-reuse. The results show that HKUST-1@H 3 PW 12 O 40 is suitable for removal of U(VI) from low concentration solutions. (author)

  17. Laser-plasma interaction with an adaptive optics wavefront-corrected laser beam

    International Nuclear Information System (INIS)

    Lewis, K.

    2008-12-01

    The propagation of an intense laser beam trough a preformed plasma is of particular interest in order to achieve laser inertial confinement fusion. Experiments carried out with a near-diffraction limited laser beam, producing a single hot spot interacting with the plasma, delivered new results, presented in this Ph.D. dissertation. In particular the first experimental observation of the filament instability confirms the numerous theoretical and numerical studies on the subject. Beam spreading and filament-ion thresholds are studied thanks to near-field and far-field images, with respect to laser intensity, time and space, and plasma transverse velocity. Same diagnostics have been applied to the stimulated Brillouin scattered light, enabling the first observation of the transverse Brillouin activity in the plasma. (author)

  18. Interaction of high power ultrashort laser pulses with plasmas

    International Nuclear Information System (INIS)

    Geissler, M.

    2000-12-01

    The invention of short laser-pulses has opened a vast application range from testing ultra high-speed semiconductor devices to precision material processing, from triggering and tracing chemical reactions to sophisticated surgical applications in opthalmology and neurosurgery. In physical science, ultrashort light pulses enable researchers to follow ultrafast relaxation processes in the microcosm on time scale never before accessible and study light-matter-interactions at unprecedented intensity levels. The aim of this thesis is to investigate the interaction of ultrashort high power laser pulses with plasmas for a broad intensity range. First the ionization of atoms with intense laser fields is investigated. For sufficient strong and low frequent laser pulses, electrons can be removed from the core by a tunnel process through a potential barrier formed by the electric field of the laser. This mechanism is described by a well-established theory, but the interaction of few-cycle laser pulses with atoms can lead to regimes where the tunnel theory loses its validity. This regime is investigated and a new description of the ionization is found. Although the ionization plays a major role in many high-energy laser processes, there exist no simple and complete model for the evolution of laser pulses in field-ionizing media. A new propagation equation and the polarization response for field-ionizing media are presented and the results are compared with experimental data. Further the interaction of high power laser radiation with atoms result in nonlinear response of the electrons. The spectrum of this induced nonlinear dipole moment reaches beyond visible wavelengths into the x-ray regime. This effect is known as high harmonic generation (HHG) and is a promising tool for the generation of coherent shot wavelength radiation, but the conversions are still not efficient enough for most practical applications. Phase matching schemes to overcome the limitation are discussed

  19. Green and facile synthesis of graphene nanosheets/K{sub 3}PW{sub 12}O{sub 40} nanocomposites with enhanced photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hongxun, E-mail: yhongxun@126.com [School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou 350002 (China); Liu, Xiaoyan; Sun, Shengnan; Nie, Yu; Wu, Huipeng; Yang, Tongyi; Zheng, Shaojun [School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Lin, Shengling, E-mail: linshl5757@sina.com [School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China)

    2016-06-15

    Highlights: • A new graphene/K{sub 3}PW{sub 12}O{sub 40} (GPW) composite was synthesized via photoreduction method. • Graphene in the GPW could reduce the recombination of electron-hole pairs. • Graphene in the GPW could increase adsorptive property. • GPW hybrid shows an enhancement photocatalytic activity. - Abstract: K{sub 3}PW{sub 12}O{sub 40} is a promising polyoxometalate photocatalyst for the removal of organic pollutants from water. However, two main disadvantages of poor adsorptive performance and high recombination rate of photogenerated electron-hole pair hinder its practical applications. In this paper, a new graphene nanosheets/K{sub 3}PW{sub 12}O{sub 40} nanocomposite has been synthesized via a green photoreduction strategy, being low-cost and scalable production. Characterizations show that K{sub 3}PW{sub 12}O{sub 40} nanoparticles with 60 nm or so have been successfully deposited on the graphene nanosheets. As a kind of photocatalyst, the binary graphene nanosheets/K{sub 3}PW{sub 12}O{sub 40} nanocomposite displays improved photocatalytic activity compared to pure K{sub 3}PW{sub 12}O{sub 40}. This improvement is ascribed to the introduction of graphene nanosheets in the nanocomposite, which could increase adsorptive property and reduce the recombination of electron-hole pairs.

  20. Simulation of laser-tattoo pigment interaction in a tissue-mimicking phantom using Q-switched and long-pulsed lasers.

    Science.gov (United States)

    Ahn, K J; Kim, B J; Cho, S B

    2017-08-01

    Laser therapy is the treatment of choice in tattoo removal. However, the precise mechanisms of laser-tattoo pigment interactions remain to be evaluated. We evaluated the geometric patterns of laser-tattoo pigment particle interactions using a tattoo pigment-embedded tissue-mimicking (TM) phantom. A Q-switched (QS) neodymium-doped yttrium aluminum garnet laser was used at settings of 532-, 660-, and 1064-nm wavelengths, single-pulse and quick pulse-to-pulse treatment modes, and spot sizes of 4 and 7 mm. Most of the laser-tattoo interactions in the experimental conditions formed cocoon-shaped or oval photothermal and photoacoustic injury zones, which contained fragmented tattoo particles in various sizes depending on the conditions. In addition, a long-pulsed 755-nm alexandrite laser was used at a spot size of 6 mm and pulse widths of 3, 5, and 10 ms. The finer granular pattern of tattoo destruction was observed in TM phantoms treated with 3- and 5-ms pulse durations compared to those treated with a 10-ms pulse. We outlined various patterns of laser-tattoo pigment interactions in a tattoo-embedded TM phantom to predict macroscopic tattoo and surrounding tissue reactions after laser treatment for tattoo removal. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Quasilinear theory of laser-plasma interactions

    International Nuclear Information System (INIS)

    Neil, A.J.

    1992-01-01

    The interaction of a high intensity laser beam with a plasma is generally susceptible to the filamentation instability due to nonuniformities in the laser profile. In ponderomotive filamentation high intensity spots in the beam expell plasma by pondermotive force, lowering the local density, causing even more light to be focused into the already high intensity region. The result-the beam is broken up into a filamentary structure. Several optical smoothing techniques have been proposed to eliminate this problem. In the Random Phase Plates (RPS) approach, the beam is split into a very fine scale, time-stationary interference pattern. The irregularities in this pattern are small enough that thermal diffusion is then responsible for smoothing the illumination. In the Induced Spatial Incoherence (ISI) approach the beam is broken up into a larger scale but non-time-stationary interference pattern. In this dissertation the author proposes that the photons in an ISI beam resonantly interact with the sound waves in the wake of the beam. Such a resonant interaction induces diffusion in the velocity space of the photons. The diffusion will tend to spread the distribution of photons, thus if the diffusion time is much shorter than the e-folding time of the filamentation instability, the instability will be suppressed. Using a wave-kinetic description of laser-plasma interactions the author has applied quasilinear theory to model the resonant interactions of the photons in an ISI beam with the beam's wake field. An analytic expression is derived for the transverse diffusion coefficient. The quasilinear hypothesis was tested numerically and shown to yield an underestimate of the diffusion rate. By comparing the quasilinear diffusion rate with the maximum growth rate for the ponderomotive filamentation of a uniform beam, the author derived a worst case criterion for stability against ponderomotive filamentation

  2. Interaction of laser radiation with a low-density structured absorber

    Czech Academy of Sciences Publication Activity Database

    Rozanov, V. B.; Barishpol’tsev, D.V.; Vergunova, G.A.; Demchenko, N. N.; Ivanov, E.M.; Aristova, E.N.; Zmitrenko, N.V.; Limpouch, I.; Ullschmied, Jiří

    2016-01-01

    Roč. 122, č. 2 (2016), s. 256-276 ISSN 1063-7761 Institutional support: RVO:61389021 Keywords : laser radiation interaction * laser with low-density Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.196, year: 2016

  3. The interaction of intense subpicosecond laser pulses with underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Coverdale, Christine Ann [Univ. of California, Davis, CA (United States)

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 1016 W/cm2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by Lplasma ≥ 2LRayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (no ≤ 0.05ncr). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  4. 7. Lasers and plasmas forum - ILP 2015 Forum. Book of abstracts

    International Nuclear Information System (INIS)

    Mora, P.; Le Marec, A.; Ferri, S.; Corde, S.; Ceccotti, T.; Dozieres, M.; Pariente, G.; Azamoum, Y.; Cheriaux, G.; Baccou, C.; Romagnani, L.; Ravasio, A.; Masson-Laborde, P.E.; Laffite, S.; Neuville, C.; Casner, A.; Debayle, A.; Lobet, M.; Cosse, P.; Falize, E.; Taieb, R.; Rozmus, W.; Colaitis, A.; Boutoux, G.; Llor Aisa, E.; Ducret, J.E.; Le Pennec, M.; Barbrel, B.; Rouan, D.; Smets, R.; Seisson, G.; Boyer, S.; Massacrier, G.; Harmand, M.; Jacquemot, S.; Adam, J.C.; Boutoux, G.; Busquet, M.; Bychenkov, V. Yu.; Castan, A.; Chatagnier, A.; Chiaramello, M.; Debayle, A.; Deschaud, Basil; Do, A.; Fedeli, L.; Ferri, J.; Gangolf, T.; Gilles, D.; Vallet, A.; D'Humieres, E.; Khiar, B.; Grassi, A.; Hadj-Bachir, M.; Lee, P.; Lobet, M.; Loiseau, P.; Maitrallain, A.; Masson-Laborde, P.E.; Mollica, F.; Moreau, J.G.; Nicolas, Loic; Pain, J.-C.; Penninckx, D.; Riconda, C.; Ruyer, C.; Soleilhac, A.; Van Box Som, L.

    2015-06-01

    List of oral presentation abstracts: Effect of XUV lasers partial coherence on the characterization of their spectral properties; Study of ionization potential lowering and other statistical properties of coupled plasmas using numerical simulation and classical molecular dynamics; Plasma acceleration by particle beam; Electron acceleration by surface wave resonant excitation in relativistic regime; Optimization of a laser-generated X Ka source (Ti:Sa 10 TW - 100 Hz); Apollon 10 PW: description and status; The future of the research federation and of power laser facilities; Inertial confinement fusion and operation of 'rugby'-shape hohlraums; Chronometry and efficiency of direct attack implosion at OMEGA facility; Laser-plasma interaction physics in beam crossing configuration; NIF Discovery Science experiments for the study of the strongly nonlinear regime of the ablative Rayleigh-Taylor instability; X opacity measurements in mid-Z dense plasmas with a new target design of indirect heating; Photoionization dynamics: Transition and scattering delays; Ion acceleration induced by laser-produced electrostatic shocks; Electron Transport and Related Non-equilibrium Distribution Functions in Hot Large Scale ICF Plasmas; Rate optimization of neutron-less fusion reactions initiated by laser-accelerated protons; Nonlinear laser-plasma interactions modeling at hydrodynamic scales: application to beam crossing energy exchange; Evolution of a Sedov-Taylor blast-wave: radiative, nonlocal heat transport and field effects; Measuring ultra-intense laser beams in space time; A few applications of the radiative and quantum electrodynamics effects in future extreme-intensity laser-matter experiments; X-rays imaging diagnostics for PETAL; Laboratory Astrophysics with High Power Lasers; Femto-second electron dynamics in the Warm dense Matter; The extra-solar planets; Study of HEDP magnetic reconnection; Opacity of solar-type stars inside: what (un)certainties?; Validation of solar

  5. Comparison of Experimental Models for Predicting Laser Tissue Interaction from 3.8-Micron Lasers

    National Research Council Canada - National Science Library

    Williams, Charles Melville

    2004-01-01

    The purpose of this study was to compare and contrast the effects of single 3.8-micron laser pulses in an in-vitro and in-vivo model of human skin and to demonstrate the efficacy of in-vitro laser tissue interaction models...

  6. Interaction of intense femtosecond laser pulses with high-Z solids

    International Nuclear Information System (INIS)

    Zhidkov, A.; Sasaki, Akira; Utsumi, Takayuki; Fukumoto, Ichirou; Tajima, Toshiki; Yoshida, Masatake; Kondo, Kenichi

    2000-01-01

    A plasma irradiated by an intense very short pulse laser can be an ultimate high brightness source of incoherent inner-shell X-ray emission of 1-30 keV. The recently developed 100 TW, 20 fs laser facility in JAERI can make considerable enhancement here. To show this a hybrid model combining hydrodynamics and collisional particle-in-cell simulations is applied. Effect of laser prepulse on the interaction of an intense s-polarized femtosecond, ∼20/40 fs, laser pulse with high-Z solid targets is studied. A new absorption mechanism originating from the interaction of the laser pulse with plasma waves excited by the relativistic component of the Lorentz force is found to increase the absorption rate over 30% even for a very short laser pulse. The obtained hot electron temperature exceeds 0.5-1 MeV at optimal conditions for absorption. Results of the simulation for lower laser pulse intensities are in good agreement with the experimental measurements of the hot electron energy distribution. (author)

  7. Synthesis and physicochemical properties of Zr-MCM-41 mesoporous molecular sieves and Pt/H3PW12O40/Zr-MCM-41 catalysts

    International Nuclear Information System (INIS)

    Chen, L.F.; Wang, J.A.; Norena, L.E.; Aguilar, J.; Navarrete, J.; Salas, P.; Montoya, J.A.; Del Angel, P.

    2007-01-01

    For the first time, modifications of the surface and framework of Si-MCM-41 by depositing a heteropolyacid on the surface and by introducing foreign Zr 4+ ions into the framework are investigated. The Zr-modified Si-MCM-41 mesoporous materials (hereafter referred as WSZn, n=Si/Zr=25, 15, 8, 4) were synthesized through a surfactant-templated preparation approach, using low-cost fumed silica as the Si precursor. After impregnation with 25 wt% of H 3 PW 12 O 40 , the surface Broensted acidity of the Pt/H 3 PW 12 O 40 /WSZn catalysts was greatly enhanced by 2-10 times relative to the bare WSZn support. Two kinds of supported heteropolyacids were formed: (i) bulk-like heteropolyacid crystals with unchanged Keggin structures, and (ii) highly dispersed heteropolyacid with distorted Keggin units. The formation of various kinds of heteropolyacid structures is closely related to the interaction between the heteropolyanions and the hydroxyl groups in the host support. - Graphical abstract: Modifications of the surface and framework of Si-MCM-41 by depositing a heteropolyacid on the surface and by introducing foreign Zr 4+ ions into the framework are investigated. Broensted acidity of the Pt/H 3 PW 12 O 40 /Zr-MCM-41 catalysts was greatly enhanced by 2-10 times relative to the bare Zr-MCM-41 support

  8. Characterization of laser-tissue interaction processes by low-boiling emitted substances

    Science.gov (United States)

    Weigmann, Hans-Juergen; Lademann, Juergen; Serfling, Ulrike; Lehnert, W.; Sterry, Wolfram; Meffert, H.

    1996-01-01

    Main point in this study was the investigation of the gaseous and low-boiling substances produced in the laser plume during cw CO2 laser and XeCl laser irradiation of tissue by gas chromatography (GC)/mass spectrometry. The characteristic emitted amounts of chemicals were determined quantitatively using porcine muscular tissue. The produced components were used to determine the character of the chemical reaction conditions inside the interaction zone. It was found that the temperature, and the water content of the tissue are the main parameter determining kind and amount of the emitted substances. The relative intensity of the GC peak of benzene corresponds to a high temperature inside the interaction area while a relative strong methylbutanal peak is connected with a lower temperature which favors Maillard type reaction products. The water content of the tissue determines the extent of oxidation processes during laser tissue interaction. For that reason the moisture in the tissue is the most important parameter to reduce the emission of harmful chemicals in the laser plume. The same methods of investigation are applicable to characterize the interaction of a controlled and an uncontrolled rf electrosurgery device with tissue. The results obtained with model tissue are in agreement with the situation characteristic in laser surgery.

  9. Effect of PW12–GPK on the acid characteristics of Ni-, Pd- and Pt- catalysts deposited onto pillared Al montmorillonite

    Directory of Open Access Journals (Sweden)

    D. Zhumadullaev

    2012-03-01

    Full Text Available Acid characteristics of Ni-, Pd-, Pt- catalyzers , deposited to Al pillared CaH montmorillonite modified by heteropolyacid H3PW12O40·xH2O (PW12 by ammonia thermoadsorbtion method has been studied.

  10. Recommendations concerning the prevention of radiation-induced health hazards through the application of soft and MID lasers

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The Federal Health Office (BGA) recommends observation of the following practical hints: The application of soft lasers or MID lasers for cosmetic treatment or acupuncture represents a danger to the eye. Instructions for use of laser equipment have to indicate this danger. Appropriate use of the equipment will prevent damage. Any person applying soft lasers or MID lasers for treatment of customers or patients near the eye are required to give proof of a special training assuring appropriate handling, and of instructions in laser radiation protection. (orig./PW) [de

  11. Nonlinear laser-plasma interactions

    Science.gov (United States)

    Kaw, P. K.

    2017-12-01

    Soon after lasers were invented, there was tremendous curiosity on the nonlinear phenomena which would result in their interaction with a fully ionized plasma. Apart from the basic interest, it was realized that it could be used for the achievement of nuclear fusion in the laboratory. This led us to a paper on the propagation of a laser beam into an inhomogeneous fusion plasma, where it was first demonstrated that light would go up to the critical layer (where the frequency matches the plasma frequency) and get reflected from there with a reflection coefficient of order unity. The reflection coefficient was determined by collisional effects. Since the wave was expected to slow down to near zero group speed at the reflection point, the dominant collision frequency determining the reflection coefficient was the collision frequency at the reflection point. It turned out that the absorption of light was rather small for fusion temperatures. This placed a premium on investigation of nonlinear phenomena which might contribute to the absorption and penetration of the light into high-density plasma. An early investigation showed that electron jitter with respect to ions would be responsible for the excitation of decay instabilities which convert light waves into electrostatic plasma waves and ion waves near the critical frequency. These electrostatic waves would then get absorbed into the plasma even in the collisionless case and lead to plasma heating which is nonlinear. Detailed estimates of this heating were made. Similar nonlinear processes which could lead to stimulated scattering of light in the underdense region (ω >ω _p) were investigated together with a number of other workers. All these nonlinear processes need a critical threshold power for excitation. Another important process which was discovered around the same time had to do with filamentation and trapping of light when certain thresholds were exceeded. All of this work has been extensively verified in

  12. Curriculum in biomedical optics and laser-tissue interactions

    Science.gov (United States)

    Jacques, Steven L.

    2003-10-01

    A graduate student level curriculum has been developed for teaching the basic principles of how lasers and light interact with biological tissues and materials. The field of Photomedicine can be divided into two topic areas: (1) where tissue affects photons, used for diagnostic sensing, imaging, and spectroscopy of tissues and biomaterials, and (2) where photons affect tissue, used for surgical and therapeutic cutting, dissecting, machining, processing, coagulating, welding, and oxidizing tissues and biomaterials. The courses teach basic principles of tissue optical properties and light transport in tissues, and interaction of lasers and conventional light sources with tissues via photochemical, photothermal and photomechanical mechanisms.

  13. The prospect of laser fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, C.

    2000-01-01

    The inertial confinement fusion research has developed remarkably in these 30 years, which enables us to scope the inertial fusion energy in the next century. The recent progress in the ICF is briefly reviewed. The GEKKO XII n d glass laser has succeeded to get the long cherished world's purpose that was to compress a D-T fuel up to 1000 times the normal density. The neutron yield was some what less than the expected value. The MJ laser system is under construction expecting to ignite and bum a fuel. The alternative way is to use a PW short pulse laser for the fast ignition. The inertial fusion energy strategy is described with economic overviews on IFE power plants. Various applications of IFE are summarized. (author)

  14. Laser--plasma interaction in a theta-pinch geometry

    International Nuclear Information System (INIS)

    Armstrong, W.T.

    1978-06-01

    Prompt stimulated Brillouin scatter (SBS) is studied in an experiment wherein a high power, pulsed CO 2 laser irradiates an independently produced, theta-pinch plasma. SBS does not significantly affect laser heating of the plasma. Measurements of density profiles and temperature histories permitted examination of laser refraction, local heating and net absorption. Refractive containment of the CO 2 laser beam by an on-axis density minimum was observed at early times during the laser pulse. However, refractive containment was lost at late times due to the diffusive loss of the density minimum. Classical modeling of the expected heating required ''bleached'' absorption to account for the observed heating. A plasma absorptivity of approximately 46% was inferred from calorimetry measurements at 250 mtorr fill pressure. These results confirm that classical heating and refraction dominated the laser-plasma interaction

  15. Short-pulse laser interactions with disordered materials and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L. [Univ. of California, Berkeley, CA (United States)

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  16. Calculating the radiation characteristics of accelerated electrons in laser-plasma interactions

    International Nuclear Information System (INIS)

    Li, X. F.; Yu, Q.; Qu, J. F.; Kong, Q.; Gu, Y. J.; Ma, Y. Y.; Kawata, S.

    2016-01-01

    In this paper, we studied the characteristics of radiation emitted by electrons accelerated in a laser–plasma interaction by using the Lienard–Wiechert field. In the interaction of a laser pulse with a underdense plasma, electrons are accelerated by two mechanisms: direct laser acceleration (DLA) and laser wakefield acceleration (LWFA). At the beginning of the process, the DLA electrons emit most of the radiation, and the DLA electrons emit a much higher peak photon energy than the LWFA electrons. As the laser–plasma interaction progresses, the LWFA electrons become the major radiation emitter; however, even at this stage, the contribution from DLA electrons is significant, especially to the peak photon energy.

  17. Simulation of laser-target interactions in a vacuum

    International Nuclear Information System (INIS)

    Goldman, S.R.; Gitomer, S.L.; Kopp, R.A.; Saltzman, J.S.; Dingus, R.S.

    1985-01-01

    This paper presents numerical simulations for two problem classes. First we study (and compare against one-dimensional analogues) the two dimensional azimuthally symmetric interaction appropriate to a laser pulse energy of order 100 joules, flat-top pulse of width 50 nanoseconds, and wavelength of 0.25 μm, with intensities ranging from 2 x 10 9 W/cm 2 to 2 x 10 12 W/cm 2 . These conditions correspond to an experimental series shot on the Sprite laser at the Rutherford-Appleton Laboratory during the summer of 1985. Next we study the interaction, especially as concerns momentum coupling, for one-dimensional nondiverging geometry, at laser wavelengths of 0.25 μm and 10.6 μm and flat-topped pulsewidths of 1 μsec, with intensities ranging from 10 9 to 10 12 W/cm 2 . In all cases, calculations are for aluminum targets in vacuum

  18. Evaluation of the effect of prepulses on HF laser-target interactions

    International Nuclear Information System (INIS)

    Matzen, M.K.

    1979-06-01

    We have assessed the effect of multinanosecond, low-power-density prepulses on the interaction of multinanosecond, 10 14 W/cm 2 , approx. 3 -μm HF laser pulses with slab targets. The emphasis is on analyzing absorption and x-ray conversion efficiency. A survey of previous experiments gives no evidence that these prepulses will affect the total absorption. However, prepulses have been observed to cause qualitative changes in both the x-ray spectrum and conversion efficiency. Numerical simulations indicate that the laser-target interaction is effectively insensitive to low-power-density prepulses. These studies imply that basic laser-target experiments with multiplexed, HF laser pulses will provide an important characterization of the interaction of long pulse, multi-line, approx. 3 μm radiation with targets. Future wavelength comparison experiments will require prepulse suppression or target isolation

  19. Simulation of intense laser-dense matter interactions. X-ray production and laser absorption

    Energy Technology Data Exchange (ETDEWEB)

    Ueshima, Yutaka; Kishimoto, Yasuaki; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Sentoku, Yasuhiko; Tajima, Toshiki

    1998-03-01

    The development of short-pulse ultra high intensity lasers will enable us to generate short-pulse intense soft and hard X-rays. Acceleration of an electron in laser field generates intense illuminated located radiation, Larmor radiation, around KeV at 10{sup 18} W/cm{sup 2} with 100 TW and 1 {mu}m wave length laser. The Coulomb interaction between rest ions and relativistic electron generates broad energy radiation, bremsstrahlung emission, over MeV at 10{sup 18} W/cm{sup 2} with the same condition. These intense radiations come in short pulses of the same order as that of the irradiated laser. The generated intense X-rays, Larmor and bremsstrahlung radiation, can be applied to sources of short pulse X-ray, excitation source of inner-shell X-ray laser, position production and nuclear excitation, etc. (author)

  20. Advanced diagnostics for laser plasma interaction studies and some recent experiments

    International Nuclear Information System (INIS)

    Chaurasia, S.; Munda, D.S.; Dhareshwar, L.J.

    2008-10-01

    The complete characterization of Laser plasma interaction studies related to inertial confinement fusion laser and Equation of state (EOS) studies needs many diagnostics to explain the several physical phenomena occurring simultaneously in the laser produced plasma. This involves many on ion emission are important to understand physical phenomena which are responsible for generation of laser plasma as well as its interaction with an intense laser. In this report we describe the development of various x-ray diagnostics which are used in determining temporal, spatial and spectral properties of x-rays radiated from laser produced plasma. Diagnostics which have been used in experiments for investigation of laser-produced plasma as a source of ions are also described. Techniques using an optical streak camera and VISAR which are being used in the Equation of States (EOS) studies of various materials, which are important for material science, astrophysics as well as ICF is described in details. (author)

  1. Instrumental parameters' determination in a fluorescences X-ray Philips PW 1400 equipment

    International Nuclear Information System (INIS)

    Martinez, J.M.; Fasio, I.; Baronio, N.; Viola, M.

    1987-01-01

    The instrumental parameters of a Philips PW 1400 equipment wavelengths dispersive are determined; fundamentally, those related to the equipment's accuracy (stability at a very short, short and long term drift) as well as to those related to the detection system (dead time, detector's cleaning and detection limit). (S.M.) [es

  2. Interaction of ultra-high intensity laser pulse with a mass limited targets

    International Nuclear Information System (INIS)

    Andreev, A.A.; Platonov, K.Yu.; Limpouch, J.; Psikal, J.; Kawata, S.

    2006-01-01

    Complete test of publication follows. Ultra-high intensity laser pulses may be produced now via CPA scheme by using very short laser pulses of a relatively low energy. Interaction of such pulses with massive target is not very efficient as the energy delivered to charged particles spreads out quickly over large distances and it is redistributed between many secondary particles. One possibility to limit this undesirable energy spread is to use mass limited targets (MLT), for example droplets, big clusters or small foil sections. This is an intermediate regime in target dimensions between bulk solid and nanometer-size atomic cluster targets. A few experimental and theoretical studies have been carried out on laser absorption, fast particle generation and induced nuclear fusion reactions in the interaction of ultrashort laser pulses with MLT plasma. We investigate here laser interactions with MLT via 2D3V relativistic electromagnetic PIC simulations. We assume spherical droplet as a typical MLT. However, the sphere is represented in 2D simulations by an infinite cylinder irradiated uniformly along its length. We assume that MLT is fully ionized before main pulse interaction either due to insufficient laser contrast or due to a prepulse. For simplicity, we assume homogeneous plasma of high initial temperature. We analyze the interaction of relativistic laser pulses of various polarizations with targets of different shapes, such as a foil, quadrant and sphere. The mechanisms of laser absorption, electron and ion acceleration are clarified for different laser and target parameters. When laser interacts with the target front side, kinetic energy of electrons rises rapidly with fast oscillations in the kinetic and field energy, caused by electron oscillations in the laser field. Small energy oscillations, observed later, are caused by the electron motion back and forth through the droplet. Approximately 40% of laser energy is transferred to the kinetic energy of electrons

  3. Overview of Optical and Thermal Laser-Tissue Interaction and Nomenclature

    Science.gov (United States)

    Welch, Ashley J.; van Gemert, Martin J. C.

    The development of a unified theory for the optical and thermal response of tissue to laser radiation is no longer in its infancy, though it is still not fully developed. This book describes our current understanding of the physical events that can occur when light interacts with tissue, particularly the sequence of formulations that estimate the optical and thermal responses of tissue to laser radiation. This overview is followed by an important chapter that describes the basic interactions of light with tissue. Part I considers basic tissue optics. Tissue is treated as an absorbing and scattering medium and methods are presented for calculating and measuring light propagation, including polarized light. Also, methods for estimating tissue optical properties from measurements of reflection and transmission are discussed. Part II concerns the thermal response of tissue owing to absorbed light, and rate reactions are presented for predicting the extent of laser induced thermal damage. Methods for measuring temperature, thermal properties, rate constants, pulsed ablation and laser tissue interactions are detailed. Part III is devoted to examples that use the theory presented in Parts I and II to analyze various medical applications of lasers. Discussions of Optical Coherence Tomography (OCT), forensic optics, and light stimulation of nerves are also included.

  4. Fokker-Planck simulations of interactions of femtosecond laser pulses with dense plasmas

    International Nuclear Information System (INIS)

    Drska, L.; Limpouch, J.; Liska, R.

    1993-01-01

    The interaction of femtosecond laser pulses with fully ionized solid-state density plasmas in the regime of the normal skin effect was investigated by means of numerical simulation. For short wavelength lasers and 120 fs FWHM laser pulses the regime of normal skin effect is shown to hold for peak intensities up to 10 17 W/cm 2 . Basic characteristics of the interaction are revealed and certain departures of the electron distribution function, of the plasma dielectric constant and of laser absorption from simplistic models are pointed out. (author) 1 tab., 4 figs., 14 refs

  5. Simulation of the dynamics of laser-cluster interaction

    International Nuclear Information System (INIS)

    Deiss, C.

    2009-01-01

    Ranging in size from a few atoms to several million atoms, clusters form a link between gases and solids. When irradiating clusters with intense femtosecond laser pulses, the production of energetic and highly charged ions, hot electrons, and extreme UV and X-ray photons, gives evidence of a very efficient energy conversion. The size of the system and the multitude of mechanisms at play provide a considerable challenge for the theoretical treatment of the interaction. In this thesis, we have developed a Classical Trajectory Monte Carlo simulation that gives insight into the particle dynamics during the interaction of laser pulses with large argon clusters (with more than 10000 atoms per cluster). Elastic electron-ion scattering, electron-electron scattering, electron-impact ionization and excitation, as well as three-body recombination and Auger decay are included via stochastic events. In a strongly simplified picture, the dynamics of the laser-cluster interaction can be summarized as follows: the intense laser field ionizes the cluster atoms and drives the population of quasi-free electrons. In collision events, further free electrons and high ionic charge states are created. As some electrons leave the cluster, the ions feel a net positive charge, and the cluster ultimately disintegrates in a Coulomb explosion. Even at moderate laser intensities (approx. 10 15 W/cm 2 ), impact ionization produces inner-shell vacancies in the cluster ions that decay by emitting characteristic X-ray radiation. The small population of fast electrons responsible for these ionization events is produced near the cluster poles, where the combination of polarization and charging of the cluster leads to strongly enhanced field strengths. We achieve a good agreement over large parameter ranges between the simulation and X-ray spectroscopy experiments. We also investigate the dependence of X-ray emission on laser intensity, pulse duration and cluster size. We find that in order to

  6. Femtosecond laser interaction with protection materials

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S.; Krueger, J.; Hertwig, A.; Fiedler, A.; Kautek, W

    2003-03-15

    Textile, aluminium and polyethylene used as components in laser protection curtains were investigated with respect to their ablation behaviour. Employing 33-fs pulses (800 nm wavelength, 1 kHz repetition rate), ex situ geometrical measurements of the ablation cavities and in situ acoustic investigations with a microphone were performed to determine the ablation thresholds in the single- and multi-pulse cases. The acoustical method proved advantageous for complex surface morphologies and/or single laser pulse interactions. Incubation phenomena can be observed for all the materials studied. Technically relevant multi-pulse ablation thresholds are presented and are compared with the single-pulse (1-on-1) irradiation.

  7. Relativistic electron mirrors from high intensity laser nanofoil interactions

    International Nuclear Information System (INIS)

    Kiefer, Daniel

    2012-01-01

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ 2 , where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  8. Interaction of laser radiation with metal island films

    Science.gov (United States)

    Benditskii, A. A.; Viduta, L. V.; Ostranitsa, A. P.; Tomchuk, P. M.; Iakovlev, V. A.

    1986-08-01

    The emission phenomena arising during the interaction of pulsed laser emission with island films are examined with reference to experimental results obtained for island films of gold irradiated by a CO2 laser at a wavelength of 10.6 microns. Well reproducible emission pulses that are also accompanied by light pulses are produced at intensities less than 10 to the 5th W/sq cm, with the film structure remaining unchanged. The maximum energy of the electrons emitted under the effect of laser radiation is estimated at 3 eV; the work function is 2.1 eV.

  9. UV and IR laser radiation's interaction with metal film and teflon surfaces

    Science.gov (United States)

    Fedenev, A. V.; Alekseev, S. B.; Goncharenko, I. M.; Koval', N. N.; Lipatov, E. I.; Orlovskii, V. M.; Shulepov, M. A.; Tarasenko, V. F.

    2003-04-01

    The interaction of Xe ([lambda] [similar] 1.73 [mu]m) and XeCl (0.308 [mu]m) laser radiation with surfaces of metal and TiN-ceramic coatings on glass and steel substrates has been studied. Correlation between parameters of surface erosion versus laser-specific energy was investigated. Monitoring of laser-induced erosion on smooth polished surfaces was performed using optical microscopy. The correlation has been revealed between characteristic zones of thin coatings damaged by irradiation and energy distribution over the laser beam cross section allowing evaluation of defects and adhesion of coatings. The interaction of pulsed periodical CO2 ([lambda] [similar] 10.6 [mu]m), and Xe ([lambda] [similar] 1.73 [mu]m) laser radiation with surfaces of teflon (polytetrafluoroethylene—PTFE) has been studied. Monitoring of erosion track on surfaces was performed through optical microscopy. It has been shown that at pulsed periodical CO2-radiation interaction with teflon the sputtering of polymer with formation of submicron-size particles occurs. Dependencies of particle sizes, form, and sputtering velocity on laser pulse duration and target temperature have been obtained.

  10. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tong Huifeng; Yuan Hong [Institute of Fluid Physics, Chinese Academy of Engineering Physics, P.O. Box 919-101, Mianyang, Sichuan 621900 (China); Tang Zhiping [CAS Key Laboratory for Mechanical Behavior and Design of Materials, Department of Mechanics and Mechanical Engineering, University of Science and Technology of China, Hefei 230026 (China)

    2013-01-28

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  11. Cryogenic cooling for high power laser amplifiers

    Directory of Open Access Journals (Sweden)

    Perin J.P.

    2013-11-01

    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  12. Laser interaction with biological material mathematical modeling

    CERN Document Server

    Kulikov, Kirill

    2014-01-01

    This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.

  13. Pulsed Laser Interactions with Silicon Nano structures in Emitter Formation

    International Nuclear Information System (INIS)

    Huat, V.L.C.; Leong, C.S.; Kamaruzzaman Sopian, Saleem Hussain Zaidi

    2015-01-01

    Silicon wafer thinning is now approaching fundamental limits for wafer thickness owing to thermal expansion mismatch between Al and Si, reduced yields in wet-chemical processing as a result of fragility, and reduced optical absorption. An alternate manufacturing approach is needed to eliminate current manufacturing issues. In recent years, pulsed lasers have become readily available and costs have been significantly reduced. Pulsed laser interactions with silicon, in terms of micromachining, diffusions, and edge isolation, are well known, and have become industrial manufacturing tools. In this paper, pulsed laser interactions with silicon nano structures were identified as the most desirable solution for the fundamental limitations discussed above. Silicon nano structures have the capability for extremely high absorption that significantly reduces requirements for laser power, as well as thermal shock to the thinner wafer. Laser-assisted crystallization, in the presence of doping materials, leads to nano structure profiles that are highly desirable for sunlight absorption. The objective of this paper is the replacement of high temperature POCl_3 diffusion by laser-assisted phosphorus layers. With these improvements, complete low-temperature processing of thinner wafers was achievable with 3.7 % efficiency. Two-dimensional laser scanning was proved to be able to form uniformly annealed surfaces with higher fill factor and open-circuit voltage. (author)

  14. Bright ultrashort x-rays from intense subpicosecond laser-plasma interactions

    International Nuclear Information System (INIS)

    Umstadter, D.

    1995-01-01

    Short-pulse, high-intensity lasers interacting with solid targets make possible the study of a new class of laser-plasma interactions. They are unique because during the ultrashort laser pulse relatively little expansion occurs, and the density scale length remains much less than the laser wavelength. This makes possible the direct deposition of a significant amount of the laser energy at close to solid density. Steep plasma temperature and density gradients subsequently cause rapid cooling, resulting in highly non-equilibrium conditions and the concurrent emission of extremely bright ultrashort x-ray pulses. In this study, the latter are investigated experimentally with temporally and spectrally resolved soft x-ray diagnostics. The emitted x-ray spectra from solid targets with various atomic numbers are characterized for a laser pulse width τ l ∼ 400 fs. These ultrashort x rays may be used as (1) a diagnostic of solid-density plasma conditions, (2) a tool for the study of radiation hydrodynamics in a parameter regime that is otherwise inaccessible, and (3) a source for time-resolved diffraction, spectroscopy, or microscopy studies of transient chemical, biological or physical phenomena

  15. LATIS3D The Gold Standard for Laser-Tissue-Interaction Modeling

    CERN Document Server

    London, R A; Gentile, N A; Kim, B M; Makarewicz, A M; Vincent, L; Yang, Y B

    2000-01-01

    The goal of this LDRD project has been to create LATIS3D--the world's premier computer program for laser-tissue interaction modeling. The development was based on recent experience with the 2D LATIS code and the ASCI code, KULL. With LATIS3D, important applications in laser medical therapy were researched including dynamical calculations of tissue emulsification and ablation, photothermal therapy, and photon transport for photodynamic therapy. This project also enhanced LLNL's core competency in laser-matter interactions and high-energy-density physics by pushing simulation codes into new parameter regimes and by attracting external expertise. This will benefit both existing LLNL programs such as ICF and SBSS and emerging programs in medical technology and other laser applications.

  16. LATIS3D: The Gold Standard for Laser-Tissue-Interaction Modeling

    International Nuclear Information System (INIS)

    London, R.A.; Makarewicz, A.M.; Kim, B.M.; Gentile, N.A.; Yang, Y.B.; Brlik, M.; Vincent, L.

    2000-01-01

    The goal of this LDRD project has been to create LATIS3D--the world's premier computer program for laser-tissue interaction modeling. The development was based on recent experience with the 2D LATIS code and the ASCI code, KULL. With LATIS3D, important applications in laser medical therapy were researched including dynamical calculations of tissue emulsification and ablation, photothermal therapy, and photon transport for photodynamic therapy. This project also enhanced LLNL's core competency in laser-matter interactions and high-energy-density physics by pushing simulation codes into new parameter regimes and by attracting external expertise. This will benefit both existing LLNL programs such as ICF and SBSS and emerging programs in medical technology and other laser applications

  17. Dense monoenergetic proton beams from chirped laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Galow, Benjamin J.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Department of Physics, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Liseykina, Tatyana V. [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany); Harman, Zoltan [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); ExtreMe Matter Institute EMMI, Planckstrasse 1, 64291 Darmstadt (Germany)

    2012-07-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. Feasibility of generating ultra-intense (10{sup 7} particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10{sup 21} W/cm{sup 2}.

  18. Dense monoenergetic proton beams from chirped laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianxing; Galow, Benjamin J.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Department of Physics, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Harman, Zoltan [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); ExtreMe Matter Institute EMMI, Planckstrasse 1, 64291 Darmstadt (Germany)

    2013-07-01

    Interactions of linearly and radially polarized frequency-chirped laser pulses with single protons and hydrogen gas targets are studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultra-intense (10{sup 7} particles per bunch) and phase-space collimated beams of protons is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10{sup 21} W/cm{sup 2}.

  19. Interaction of a pulsed alexandrite laser with hard and soft biological tissue

    Science.gov (United States)

    Paterson, Lorna M.; Dickinson, Mark R.; King, Terence A.; Watts, David C.

    1994-02-01

    An alexandrite laser has been used in the fixed-Q and Q-switched modes, at the fundamental and frequency doubled wavelengths on a selection of hard and soft tissue. In an investigation into the potential use of the laser for the removal of deep lying lesions such as cutaneous vascular lesions and tatoos, studies have been carried out to characterize the depth and extent of the laser/tissue interaction in samples of tissue which greatly absorb the 750 nm radiation. The interaction of the laser radiation with extracted teeth was investigated looking at healthy enamel and dentine, and caries. Surface profile measurements of the enamel and dentine before and after irradiation show little physical effect of the laser irradiation, whereas caries appear to be ablated.

  20. Relativistic electron mirrors from high intensity laser nanofoil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Daniel

    2012-12-21

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ{sup 2}, where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  1. A Review of Subsurface Behavior of Plutonium and Americium at the 200-PW-1/3/6 Operable Units

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Riley, Robert G.

    2008-01-31

    This report begins with a brief summary of the history and current status of 200-PW-1/3/6 OUs in section 2.0. This is followed by a description of our concentual model of Pu/Am migration at the 200-PW-1/3/6 OUs, during both past artificial recharge conditions and current natural recharge condictions (section 3.0). Section 4.0 discusses data gaps and information needs. The final section (section 5.0) provides recommendations for futher work to address the data gaps and information needs identified in section 4.0.

  2. A Review of Subsurface Behavior of Plutonium and Americium at the 200-PW-1/3/6 Operable Units

    International Nuclear Information System (INIS)

    Cantrell, Kirk J.; Riley, Robert G.

    2008-01-01

    This report begins with a brief summary of the history and current status of 200-PW-1/3/6 OUs in section 2.0. This is followed by a description of our conceptual model of Pu/Am migration at the 200-PW-1/3/6 OUs, during both past artificial recharge conditions and current natural recharge conditions (section 3.0). Section 4.0 discusses data gaps and information needs. The final section (section 5.0) provides recommendations for further work to address the data gaps and information needs identified in section 4.0

  3. Influence of laser-target interaction on the polarization of a CO2-laser

    International Nuclear Information System (INIS)

    Du, K.; Herziger, G.; Loosen, P.; Seelig, W.

    1988-01-01

    Laser materials processing shows a special peculiarity compared to other customary techniques: the generally reflecting target introduces optical feedback into the system. This feedback changes the mode properties of the laser radiation according to the targets dynamics. The authors report on one of these aspects of laser-target interaction resulting in the change of the polarization of the incident light. Based of rate equations, a theoretical model is presented in this paper that allows the calculation of this change with respect of the target properties, yielding a simple relation for the two orthogonal planes of polarization of a laser mode. This relation turns out to be linearly dependent of a function ψ (t) which describes the optical feedback. The relation holds for target reflexions of up to 10% and four times larger than τ 2 x τ 2 /τ 1 - τ 2 (where τ 1 , τ 2 are the time constants of the passive resonator for the two orthogonal planes of polarization). The model offers a method for the modulation for the modulation of laser radiation without change of frequency or intensity. It might also be of interest for high-power CO 2 laser cutting and welding of metals

  4. RHO Mutations (p.W126L and p.A346P in Two Japanese Families with Autosomal Dominant Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Satoshi Katagiri

    2014-01-01

    Full Text Available Purpose. To investigate genetic and clinical features of patients with rhodopsin (RHO mutations in two Japanese families with autosomal dominant retinitis pigmentosa (adRP. Methods. Whole-exome sequence analysis was performed in ten adRP families. Identified RHO mutations for the cosegregation analysis were confirmed by Sanger sequencing. Ophthalmic examinations were performed to evaluate the RP phenotypes. The impact of the RHO mutation on the rhodopsin conformation was examined by molecular modeling analysis. Results. In two adRP families, we identified two RHO mutations (c.377G>T (p.W126L and c.1036G>C (p.A346P, one of which was novel. Complete cosegregation was confirmed for each mutation exhibiting the RP phenotype in both families. Molecular modeling predicted that the novel mutation (p.W126L might impair rhodopsin function by affecting its conformational transition in the light-adapted form. Clinical phenotypes showed that patients with p.W126L exhibited sector RP, whereas patients with p.A346P exhibited classic RP. Conclusions. Our findings demonstrated that the novel mutation (p.W126L may be associated with the phenotype of sector RP. Identification of RHO mutations is a very useful tool for predicting disease severity and providing precise genetic counseling.

  5. The laser-matter interaction. Press conference wednesday 17 november 1999; L'interaction laser-matiere. Conference de presse mercredi 17 novembre 1999

    Energy Technology Data Exchange (ETDEWEB)

    Cohen-Tannoudji, C. [Ecole Normale Superieure, Dept. de Physique, 75 - Paris (France); Mons, M.; Schmidt, M.; Salieres, P. [CEA/Saclay, Dept. de Recherche sur l' Etat Condense, les Atomes et les Molecules, DRECAM, 91 - Gif-sur-Yvette (France); Chieze, J.P. [CEA/Saclay, Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee, DAPNIA, 91 - Gif-sur-Yvette (France)

    1999-11-01

    During the press conference of wednesday 17 november 1999, scientists of the CEA presented the knowledge and the researches in the domain of the laser-matter interactions. The possibilities of the new ultra-short pulses laser offer to study in real time the molecular dynamic, the molecules and chemical reactions vibrations. The texts of the five speeches form this paper. The CEA missions are also recalled. (A.L.B.)

  6. High contrast high intensity petawatt J-KAREN-P laser facility at QST

    Science.gov (United States)

    Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Sakaki, Hironao; Dover, Nicholas P.; Kondo, Kotaro; Pirozhkov, Alexander S.; Sagisaka, Akito; Fukuda, Yuji; Nishitani, Keita; Miyahara, Takumi; Ogura, Koichi; Alkhimova, Mariya A.; Pikuz, Tatiana A.; Faenov, Anatoly Y.; Watanabe, Yukinobu; Koga, James; Bulanov, Sergei V.; Kando, Masaki; Kondo, Kiminori

    2017-05-01

    We report on the J-KAREN-P laser facility at QST, which can provide PW peak power at 0.1 Hz on target. The system can deliver short pulses with an energy of 30 J and pulse duration of 30 fs after compression with a contrast level of better than 1012. Such performance in high field science will give rise to the birth of new applications and breakthroughs, which include relativistic particle acceleration, bright x-ray source generation, and nuclear activation. The current achieved laser intensity on target is up to > 9x1021 Wcm-2 with an energy of 9 J on target. The interaction with a 3 to 5- μm stainless steel tape target provides us electrons with a typical temperature of more than 10 MeV and energetic proton beams with typical maximum energies of > 40 MeV with good reproducibility. The protons are accelerated in the Target Normal Sheath Acceleration regime, which is suitable for many applications including as an injector into a beamline for medical use, which is one of our objectives.

  7. Interaction of a CO2 laser beam with a shock-tube plasma

    International Nuclear Information System (INIS)

    Box, S.J.C.; John, P.K.; Byszewski, W.W.

    1977-01-01

    The results of experimental investigations of the interaction of a CO 2 laser beam with plasma produced in an electromagnetic shock tube are presented. The interaction was investigated in two different configurations: with the laser beam perpendicular to the direction of propagation of the shock wave and with the laser beam parallel to the direction of the shock wave. The laser energy was 0.3 J in a 180-nsec pulse. The plasma density was in the range 10 17 --10 18 cm -3 and temperature was around 2 eV. Spectroscopic methods were used in the measurement of density and temperature. Direct observation of the path of the laser beam through the plasma was made by an image-convertor camera in conjunction with a narrow-band interference filter. The propagation of the laser through the plasma and energy absorption are discussed. The observed maximum increase in electron temperature due to the laser in the first configuration was 0.4 eV and the estimated temperature increase in the second configuration was about 2 eV

  8. Ultrafast laser-semiconductor interactions

    International Nuclear Information System (INIS)

    Schile, L.A.

    1996-01-01

    Studies of the ultrafast (< 100 fs) interactions of infrared, sub-100 fs laser pulses with IR, photosensitive semiconductor materials InGaAs, InSb, and HgCdTe are reported. Both the carrier dynamics and the associated Terahertz radiation from these materials are discussed. The most recent developments of femtosecond (< 100 fs) Optical Parametric Oscillators (OPO) has extended the wavelength range from the visible to 5.2 μm. The photogenerated semiconductor free carrier dynamics are determined in the 77 to 300 degrees K temperature range using the Transmission Correlation Peak (TCP) method. The electron-phonon scattering times are typically 200 - 600 fs. Depending upon the material composition and substrate on which the IR crystalline materials are deposited, the nonlinear TCP absorption gives recombination rates as fast as 10's of picoseconds. For the HgCdTe, there exists a 400 fs electron-phonon scattering process along with a much longer 3600 fs loss process. Studies of the interactions of these ultrashort laser pulses with semiconductors produce Terahertz (Thz) radiative pulses. With undoped InSb, there is a substantial change in the spectral content of this THz radiation between 80 - 260 degrees K while the spectrum of Te-doped InSb remains nearly unchanged, an effect attributed to its mobility being dominated by impurity scattering. At 80 degrees K, the terahertz radiation from undoped InSb is dependent on wavelength, with both a higher frequency spectrum and much larger amplitudes generated at longer wavelengths. No such effect is observed at 260 degrees K. Finally, new results on the dependence of the emitted THz radiation on the InSb crystal's orientation is presented

  9. Simulation of intense short-pulse laser-plasma interaction

    International Nuclear Information System (INIS)

    Yamagiwa, Mitsuru

    2000-01-01

    We have completed the massive parallelization of a 2-dimensional giga-particle code and have achieved a 530-fold acceleration rate with 512 processing elements (PE's). Using this we have implemented a simulation of the interaction of a solid thin film and a high intensity laser and have discovered a phenomenon in which high quality short pulses from the far ultraviolet to soft X-rays are generated at the back surface of the thin layer. We have also introduced the atomic process database code (Hullac) and have the possibility for high precision simulations of X-ray laser radiation. With respect to laser acceleration we have the possibility to quantitatively evaluate relativistic self-focusing assumed to occur in higher intensity fields. Ion acceleration from a solid target and an underdense plasma irradiated by an intense and an ultra intense laser, respectively, has also been studied by particle-in-cell (PIC) simulations. (author)

  10. Light-material interactions in laser material processing

    International Nuclear Information System (INIS)

    Chiang, S.; Albright, C.E.

    1989-01-01

    The authors discusses how light interactions with materials in laser material processing operations occur by a variety of mechanisms depending on the material being processed, the wavelength of the laser light, the gaseous environment, and the physical state of the material surface. The high reflectivity of metals limits the fraction of the beam power absorbed by the solid metal surface. For metals in the solid state, reflectivity increases as the wavelength of the laser light and the electrical conductivity of the metal increase. The reflectivity of metals is reduced upon heating to the melting point, and further reduced upon melting. At high power densities the liquid metal surface is heated so quickly that very rapid vaporization occurs. The recoil force produced by the evaporation causes a depression in the liquid/vapor interface. The keyhole resulting from this depression allows for multiple reflections and thus increases beam absorption in the liquid

  11. QED effects induced harmonics generation in extreme intense laser foil interaction

    Science.gov (United States)

    Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.

    2018-04-01

    A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.

  12. High-Power, High-Intensity Laser Propagation and Interactions

    Science.gov (United States)

    2014-03-10

    intensity as the weighting function. The full refractive index associated with the laser plasma interaction having a parabolic density variation ...radiation in turn enhances the electron density wave further amplifying the radiation. Considering spatial variations in the z direction only the FEL...effL/ at the entrance to the wiggler where effL is the effective interaction length. This requirement can be expressed by the following inequality

  13. Laser-solid interaction and dynamics of the laser-ablated materials

    International Nuclear Information System (INIS)

    Chen, K.R.; Leboeuf, J.N.; Geohegan, D.B.; Wood, R.F.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-01-01

    Rapid transformations through the liquid and vapor phases induced by laser-solid interactions are described by the authors' thermal model with the Clausius-Clapeyron equation to determine the vaporization temperature under different surface pressure condition. Hydrodynamic behavior of the vapor during and after ablation is described by gas dynamic equations. These two models are coupled. Modeling results show that lower background pressure results lower laser energy density threshold for vaporization. The ablation rate and the amount of materials removed are proportional to the laser energy density above its threshold. The authors also demonstrate a dynamic source effect that accelerates the unsteady expansion of laser-ablated material in the direction perpendicular to the solid. A dynamic partial ionization effect is studied as well. A self-similar theory shows that the maximum expansion velocity is proportional to c s α, where 1 - α is the slope of the velocity profile. Numerical hydrodynamic modeling is in good agreement with the theory. With these effects, α is reduced. Therefore, the expansion front velocity is significantly higher than that from conventional models. The results are consistent with experiments. They further study how the plume propagates in high background gas condition. Under appropriate conditions, the plume is slowed down, separates with the background, is backward moving, and hits the solid surface. Then, it splits into two parts when it rebounds from the surface. The results from the modeling will be compared with experimental observations where possible

  14. Chemical synthesis, characterization studies and reactivity of a catalytic material based on ZrO2-H3PW12O40

    International Nuclear Information System (INIS)

    Hernandez Enriquez, Juan Manuel; Garcia Alamilla, Ricardo; Paramo Garcia, Ulises; Rodrigo, Rebeca Silva; Garcia Serrano, Luz Arcelia

    2013-01-01

    In this work, the preparation and characterization of materials such as zirconium oxide (ZrO 2 ) and phosphotungstic acid promoted zirconium oxide (ZrO 2 -H 3 PW 12 O 40 ) is presented. Physico-chemical characterization results showed that addition of H 3 PW 12 O 40 acted as both a textural and chemical promoter of zirconium oxide. The incorporation of phosphotungstic acid into the ZrO 2 matrix delayed the sintering of the material and stabilized ZrO 2 in the tetragonal phase. ZrO 2 acidity was also enhanced, developing strong acid sites on its surface. The Pt/ZrO 2 -H 3 PW 12 O 40 catalyst was active for n-pentane isomerization at 250 deg C, exhibiting high selectivity to iso-pentane (95%). This result is probably due to its suitable acidity (author)

  15. Development of high power KrF laser for fundamental research of ICF driver and laser plasma interaction

    International Nuclear Information System (INIS)

    Wang Naiyan; Shan Yusheng; Ma Weiyi; Yao Gang; Zhou Chuangzhi; Tang Xiuzhang; Tang Zhihong; Gao Junsi; Wang Ganchang.

    1994-01-01

    A high power KrF laser system is under development in China Institute of Atomic Energy. The system consists of a front end, two-stage KrF amplifiers and two-stage Raman amplifiers, providing 100J, 1ns KrF laser with maximum average power density about 10 14 W/cm 2 on target for laser plasma interaction research. Some important technologies, such as front-end system, Angular Multiplexer, and injection locked oscillator are discussed. (author)

  16. Optical design for increased interaction length in a high gradient dielectric laser accelerator

    OpenAIRE

    Cesar, D.; Maxson, J.; Musumeci, P.; Shen, X.; England, R. J.; Wootton, K. P.

    2018-01-01

    We present a methodology for designing and measuring pulse front tilt in an ultrafast laser for use in dielectric laser acceleration. Previous research into dielectric laser accelerating modules has focused on measuring high accelerating gradients in novel structures, but has done so only for short electron-laser coupling lengths. Here we demonstrate an optical design to extend the laser-electron interaction to 1mm.

  17. Inoculating wheat (Triticum aestivum L.) with the endophytic bacterium Serratia sp. PW7 to reduce pyrene contamination.

    Science.gov (United States)

    Zhu, Xuezhu; Wang, Wanqing; Sun, Kai; Lin, Xianghao; Li, Shuang; Waigi, Michael Gatheru; Ling, Wanting

    2017-08-03

    This research was conducted to find an optimal inoculation way for a pyrene-degrading endophytic Serratia sp. PW7 to colonize wheat for reducing pyrene contamination. Three inoculation ways, which are soaking seeds in inocula (TS), dipping roots of seedlings in inocula (TR), and spraying inocula on leaves of seedlings (TL), were used in this study. Inoculated seedlings and noninoculated seedlings (CK) were, respectively, cultivated in Hoagland solutions supplemented with pyrene in a growth chamber. The results showed that strain PW7 successfully colonized the inoculated seedlings in high numbers, and significantly promoted the growth of seedlings (TS and TR). More importantly, strain PW7 reduced pyrene levels in the seedlings and the Hoagland solutions. Compared to the noninoculated seedlings, the pyrene contents of the inoculated seedlings were decreased by 35.7-86.3% in the shoots and by 26.8-60.1% in the roots after 8-day cultivation. By comparing the efficiencies of decreasing pyrene residues, it can be concluded that TR was an optimal inoculation way for endophytic strains to colonize the inoculated plants and to reduce the pyrene contamination. Our findings provide an optimized inoculation way to reduce organic contamination in crops by inoculating plants with functional endophytic bacteria.

  18. Korea-China Joint R and D on High Energy Density Sciences using High Power Laser

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Nam, S. M.; Park, S. K.; Rhee, Y. J.; Lim, C. H.

    2009-02-01

    As to the high energy pico-second Peta Watt laser technology for fast ignition, the design of front-end and pre/main amplifier were pursued and the OPCPA technology to increase the aspect ratio by reducing the pre-pulse were developed. Furthermore, the tiled-grating technology to replace a large grating were obtained. As to the fast electron generation and propagation, a solid target was used to generate MeV class electron with TW femto-second laser and a gas cluster was also used to generate MeV class electron with PW femto-second laser at SIOM

  19. Quasi-monoenergetic proton acceleration from cryogenic hydrogen microjet by ultrashort ultraintense laser pulses

    Science.gov (United States)

    Sharma, A.; Tibai, Z.; Hebling, J.; Fülöp, J. A.

    2018-03-01

    Laser-driven proton acceleration from a micron-sized cryogenic hydrogen microjet target is investigated using multi-dimensional particle-in-cell simulations. With few-cycle (20-fs) ultraintense (2-PW) laser pulses, high-energy quasi-monoenergetic proton acceleration is predicted in a new regime. A collisionless shock-wave acceleration mechanism influenced by Weibel instability results in a maximum proton energy as high as 160 MeV and a quasi-monoenergetic peak at 80 MeV for 1022 W/cm2 laser intensity with controlled prepulses. A self-generated strong quasi-static magnetic field is also observed in the plasma, which modifies the spatial distribution of the proton beam.

  20. 3d particle simulations on ultra short laser interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nishihara, Katsunobu; Okamoto, Takashi; Yasui, Hidekazu [Osaka Univ., Suita (Japan). Inst. of Laser Engineering

    1998-03-01

    Two topics related to ultra short laser interaction with matter, linear and nonlinear high frequency conductivity of a solid density hydrogen plasma and anisotropic self-focusing of an intense laser in an overdense plasma, have been investigated with the use of 3-d particle codes. Frequency dependence of linear conductivity in a dense plasma is obtained, which shows anomalous conductivity near plasma frequency. Since nonlinear conductivity decreases with v{sub o}{sup -3}, where v{sub o} is a quivering velocity, an optimum amplitude exists leading to a maximum electron heating. Anisotropic self-focusing of a linear polarized intense laser is observed in an overdense plasma. (author)

  1. PIC Simulation of Laser Plasma Interactions with Temporal Bandwidths

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2015-11-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temperal bandwidths under conditions relevant to current and future shock ignition experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth, the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using smoothing techniques such as SSD or ISI). We will show that temporal bandwidth along play an important role in the control of LPI's in these lasers and discuss future directions. This work is conducted under the auspices of NRL.

  2. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Gregory Elijah [The Ohio State Univ., Columbus, OH (United States)

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  3. 75 FR 66796 - Pricewaterhousecoopers LLP (“PwC”), Internal Firm Services Client Account Administrators Group...

    Science.gov (United States)

    2010-10-29

    ... LLP (``PwC''), Internal Firm Services Client Account Administrators Group Atlanta, GA; Amended...''), Internal Firm Services Client Account Administrators Group. Accordingly, the Department is amending this... Firm Services Client Account Administrators Group. The amended notice applicable to TA-W-73,630 is...

  4. Pattern analysis of laser-tattoo interactions for picosecond- and nanosecond-domain 1,064-nm neodymium-doped yttrium-aluminum-garnet lasers in tissue-mimicking phantom.

    Science.gov (United States)

    Ahn, Keun Jae; Zheng, Zhenlong; Kwon, Tae Rin; Kim, Beom Joon; Lee, Hye Sun; Cho, Sung Bin

    2017-05-08

    During laser treatment for tattoo removal, pigment chromophores absorb laser energy, resulting in fragmentation of the ink particles via selective photothermolysis. The present study aimed to outline macroscopic laser-tattoo interactions in tissue-mimicking (TM) phantoms treated with picosecond- and nanosecond-domain lasers. Additionally, high-speed cinematographs were captured to visualize time-dependent tattoo-tissue interactions, from laser irradiation to the formation of photothermal and photoacoustic injury zones (PIZs). In all experimental settings using the nanosecond or picosecond laser, tattoo pigments fragmented into coarse particles after a single laser pulse, and further disintegrated into smaller particles that dispersed toward the boundaries of PIZs after repetitive delivery of laser energy. Particles fractured by picosecond treatment were more evenly dispersed throughout PIZs than those fractured by nanosecond treatment. Additionally, picosecond-then-picosecond laser treatment (5-pass-picosecond treatment + 5-pass-picosecond treatment) induced greater disintegration of tattoo particles within PIZs than picosecond-then-nanosecond laser treatment (5-pass-picosecond treatment + 5-pass-nanosecond treatment). High-speed cinematography recorded the formation of PIZs after repeated reflection and propagation of acoustic waves over hundreds of microseconds to a few milliseconds. The present data may be of use in predicting three-dimensional laser-tattoo interactions and associated reactions in surrounding tissue.

  5. Prediction of hot electron production by ultraintense KrF laser-plasma interactions on solid-density targets

    International Nuclear Information System (INIS)

    Kato, Susumu; Takahashi, Eiichi; Miura, Eisuke; Owadano, Yoshiro; Nakamura, Tatsufumi; Kato, Tomokazu

    2002-01-01

    The scaling of hot electron temperature and the spectrum of electron energy by intense laser plasma interactions are reexamined from a viewpoint of the difference in laser wavelength. Laser plasma interaction such as parametric instabilities is usually determined by the Iλ2 scaling, where I and λ is the laser intensity and wavelength, respectively. However, the hot electron temperature is proportional to (ncr/ne0)1/2 [(1 + a 0 2 ) 1/2 - 1] rather than [(1 + a 0 2 ) 1/2 - 1] at the interaction with overdense plasmas, where ne0 is a electron density of overdense plasmas and a0 is a normalized laser intensity

  6. Comparative laser-tissue interaction effects at 1.96 and 2.01 um of Cr; Tm:YAG laser

    Science.gov (United States)

    Pankratov, Michail M.; Perrault, Donald F., Jr.; Shapshay, Stanley M.; Pinto, Joseph F.; Esterowitz, Dina; Aretz, H. Thomas

    1992-08-01

    A pulsed spiking and nonspiking Cr; thulium (Tm):YAG flash lamp pumped laser operating at 1.96 and 2.01 μm was investigated in vitro in the clinically relevant power range for its basic laser-tissue interaction with soft, cartilaginous, and bone tissues. Some explanations of the differences and possible medical applications are discussed.

  7. Quantum radiation reaction in head-on laser-electron beam interaction

    International Nuclear Information System (INIS)

    Vranic, Marija; Grismayer, Thomas; Fonseca, Ricardo A; Silva, Luis O

    2016-01-01

    In this paper, we investigate the evolution of the energy spread and the divergence of electron beams while they interact with different laser pulses at intensities where quantum effects and radiation reaction are of relevance. The interaction is modelled with a quantum electrodynamic (QED)-PIC code and the results are compared with those obtained using a standard PIC code with a classical radiation reaction module. In addition, an analytical model is presented that estimates the value of the final electron energy spread after the interaction with the laser has finished. While classical radiation reaction is a continuous process, in QED, radiation emission is stochastic. The two pictures reconcile in the limit when the emitted photons energy is small compared to the energy of the emitting electrons. The energy spread of the electron distribution function always tends to decrease with classical radiation reaction, whereas the stochastic QED emission can also enlarge it. These two tendencies compete in the QED-dominated regime. Our analysis, supported by the QED module, reveals an upper limit to the maximal attainable energy spread due to stochasticity that depends on laser intensity and the electron beam average energy. Beyond this limit, the energy spread decreases. These findings are verified for different laser pulse lengths ranging from short ∼30 fs pulses presently available to the long ∼150 fs pulses expected in the near-future laser facilities, and compared with a theoretical model. Our results also show that near future experiments will be able to probe this transition and to demonstrate the competition between enhanced QED induced energy spread and energy spectrum narrowing from classical radiation reaction. (paper)

  8. INTERACTION OF LASER RADIATION WITH MATTER: Influence of a target on operation of a pulsed CO2 laser emitting microsecond pulses

    Science.gov (United States)

    Baranov, V. Yu; Dolgov, V. A.; Malyuta, D. D.; Mezhevov, V. S.; Semak, V. V.

    1987-12-01

    The profile of pulses emitted by a TEA CO2 laser with an unstable resonator changed as a result of interaction of laser radiation with the surface of a metal in the presence of a breakdown plasma. This influence of a target on laser operation and its possible applications in laser processing of materials are analyzed.

  9. A versatile interaction chamber for laser-based spectroscopic applications, with the emphasis on Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Novotný, J.; Brada, M.; Petrilak, M.; Prochazka, D.; Novotný, K.; Hrdička, A.; Kaiser, J.

    2014-01-01

    The technical note describes the interaction chamber developed particularly for the laser spectroscopy technique applications, such as Laser-Induced Breakdown Spectroscopy (LIBS), Raman Spectroscopy and Laser-Induced Fluorescence. The chamber was designed in order to provide advanced possibilities for the research in mentioned fields and to facilitate routine research procedures. Parameters and the main benefits of the chamber are described, such as the built-in module for automatic 2D chemical mapping and the possibility to set different ambient gas conditions (pressure value and gas type). Together with the chamber description, selected LIBS application examples benefiting from chamber properties are described. - Highlights: • Development of the interaction chamber for LIBS applications • Example of automated chemical mapping of lead in a chalcopyrite sample • Example of LIBS measurement of fluorine in underpressure • Overview of chamber benefits

  10. Effects of external magnetic field on harmonics generated in laser interaction with underdense plasma

    International Nuclear Information System (INIS)

    Faghihi-Nik, M.; Ghorbanalilu, M.; Shokri, B.

    2010-01-01

    Complete text of publication follows. Generation of harmonic radiation is an important subject of laser plasma interaction and attracts great attention due to a wide range of applications. It has been seen that intense electromagnetic and quasi-static transverse magnetic fields are generated in laser plasma interaction. An extremely intense magnetic field (up to hundreds of MG) has been observed by experimental measurements in interaction of short laser pulses with plasma. These self-generated or applied magnetic fields affect the propagation of the laser pulses. In most laser interactions with homogeneous plasma, odd harmonics of laser frequency are generated. In this paper, we point out the possibility of even harmonics generation when a linearly polarized laser beam propagates in homogeneous plasma in the presence of a transverse magnetic field. It is shown that applying external field induces a transverse current density oscillating twice of the laser field which leds to generation of second harmonic radiation. This current density is derived using the perturbation method, and the steady state amplitude of the second harmonic obtained by solution of the wave equation. By the same procedure the current density and then the steady state amplitude of higher order harmonics are calculated. The efficiency of harmonic generation (the ratio of harmonic power to incident power) is a drastically function of the strength of external magnetic field. It is found that the efficiency of even harmonics is zero in the absence of magnetic field and increases as the magnetic field is increased. For odd harmonics, applying the external magnetic field enhances the generated harmonics as well. The conversion efficiency also increases with increase in plasma density and intensity of the laser beam.

  11. Computerized video interaction self-instruction of MR imaging fundamentals utilizing laser disk technology

    International Nuclear Information System (INIS)

    Genberg, R.W.; Javitt, M.C.; Popky, G.L.; Parker, J.A.; Pinkney, M.N.

    1986-01-01

    Interactive computer-assisted self-instruction is emerging as a recognized didactic modality and is now being introduced to teach physicians the physics of MR imaging. The interactive system consists of a PC-compatible computer, a 12-inch laser disk drive, and a high-resolution monitor. The laser disk, capable of storing 54,000 images, is pressed from a previously edited video tape of MR and video images. The interactive approach is achieved through the use of the computer and appropriate software. The software is written to include computer graphics overlays of the laser disk images, to select interactive branching paths (depending on the user's response to directives or questions), and to provide feedback to the user so that he can assess his performance. One of their systems is available for use in the scientific exhibit area

  12. Progress in Long Scale Length Laser-Plasma Interactions

    International Nuclear Information System (INIS)

    Glenzer, S H; Arnold, P; Bardsley, G; Berger, R L; Bonanno, G; Borger, T; Bower, D E; Bowers, M; Bryant, R; Buckman, S.; Burkhart, S C; Campbell, K; Chrisp, M P; Cohen, B I; Constantin, G; Cooper, F; Cox, J; Dewald, E; Divol, L; Dixit, S; Duncan, J; Eder, D; Edwards, J; Erbert, G; Felker, B; Fornes, J; Frieders, G; Froula, D H; Gardner, S D; Gates, C; Gonzalez, M; Grace, S; Gregori, G; Greenwood, A; Griffith, R; Hall, T; Hammel, B A; Haynam, C; Heestand, G; Henesian, M; Hermes, G; Hinkel, D; Holder, J; Holdner, F; Holtmeier, G; Hsing, W; Huber, S; James, T; Johnson, S; Jones, O S; Kalantar, D; Kamperschroer, J H; Kauffman, R; Kelleher, T; Knight, J; Kirkwood, R K; Kruer, W L; Labiak, W; Landen, O L; Langdon, A B; Langer, S; Latray, D; Lee, A; Lee, F D; Lund, D; MacGowan, B; Marshall, S; McBride, J; McCarville, T; McGrew, L; Mackinnon, A J; Mahavandi, S; Manes, K; Marshall, C; Mertens, E; Meezan, N; Miller, G; Montelongo, S; Moody, J D; Moses, E; Munro, D; Murray, J; Neumann, J; Newton, M; Ng, E; Niemann, C; Nikitin, A; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rekow, V; Rinnert, R; Riordan, B; Rhodes, M.

    2003-01-01

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 mm and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3ω) with a total intensity of 2 x 10 15 W cm -2 . The targets were filled with 1 atm of CO 2 producing of up to 7 mm long homogeneously heated plasmas with densities of n e = 6 x 10 20 cm -3 and temperatures of T e = 2 keV. The high energy in a NIF quad of beams of 16kJ, illuminating the target from one direction, creates unique conditions for the study of laser plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last ∼1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 6% for the smallest length (∼2 mm). increasing to 12% for ∼7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modeling of the laser-plasma interactions at ignition-size scale lengths

  13. Interaction of neutrons with the matter in the laser field

    International Nuclear Information System (INIS)

    Zaretskij, D.F.; Lomonosov, V.V.

    1980-01-01

    The interactions of neutrons with the molecules, atoms and nuclei in the presence of the coherent electromagnetic radiation are considered. There are two effects which are discussed in detail: 1) the ''acceleration'' of thermal neutrons passed through the excited by the resonance laser wave molecular gas; 2) the induced by the laser field the slow neutron capture accompanied by the compound nucleus level excitation. The given effects, if they are experimentally detected, give the possibility to control the neutron flux (spectrum change, polarization, spatial modulation and etc.) and change the interaction cross sections of thermal and resonance neutrons with nuclei due to excitation of p levels of the compound nucleus [ru

  14. Electromagnetic radiations from laser interaction with gas-filled Hohlraum

    Science.gov (United States)

    Yang, Ming; Yang, Yongmei; Li, Tingshuai; Yi, Tao; Wang, Chuanke; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2018-01-01

    The emission of intensive electromagnetic pulse (EMP) due to laser-target interactions at the ShenGuang-III laser facility has been evaluated by probes. EMP signals measured using the small discone antennas demonstrated two variation trends including a bilateral oscillation wave and a unilateral oscillation wave. The new trend of unilateral oscillation could be attributed to the hohlraum structure and low-Z gas in the hohlraum. The EMP waveform showed multiple peaks when the gas-filled hohlraum was shot by the high-power laser. Comparing the EMP signals with the verification of stimulated Raman scattering energy and hard x-ray energy spectrum, we found that the intensity of EMP signals decreased with the increase of the hohlraum size. The current results are expected to offer preliminary information to study physical processes on laser injecting gas-filled hohlraums in the National Ignition Facility implementation.

  15. Ion Acceleration by Laser Plasma Interaction from Cryogenic Microjets

    Energy Technology Data Exchange (ETDEWEB)

    Propp, Adrienne [Harvard Univ., Cambridge, MA (United States)

    2015-08-16

    Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high-power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. However, this mechanism is not ideal for creating the high-energy proton beams needed for future applications. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for exploring new regimes of ion acceleration. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an effort to test this hypothesis, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the flow of current up the jet into the nozzle during the interaction, heating the jet and damaging the orifice. However, we achieved a pure proton beam with evidence of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic films (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the possibility of transforming our liquid cryogenic

  16. Ion Acceleration by Laser Plasma Interaction from Cryogenic Microjets

    International Nuclear Information System (INIS)

    Propp, Adrienne

    2015-01-01

    Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high-power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. However, this mechanism is not ideal for creating the high-energy proton beams needed for future applications. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for exploring new regimes of ion acceleration. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an effort to test this hypothesis, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the flow of current up the jet into the nozzle during the interaction, heating the jet and damaging the orifice. However, we achieved a pure proton beam with evidence of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic films (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the possibility of transforming our liquid cryogenic

  17. Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS

    Czech Academy of Sciences Publication Activity Database

    Cikhardt, Jakub; Krása, Josef; De Marco, Massimo; Pfeifer, Miroslav; Velyhan, Andriy; Krouský, Eduard; Cikhardtová, B.; Klír, Daniel; Řezáč, Karel; Ullschmied, Jiří; Skála, Jiří; Kubeš, P.; Kravárik, J.

    2014-01-01

    Roč. 85, č. 10 (2014), s. 103507-103507 ISSN 0034-6748 R&D Projects: GA MŠk LM2010014; GA MŠk(CZ) LG13029; GA ČR GAP205/12/0454; GA MŠk EE2.3.20.0279 Grant - others:LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : laser PALS * laser-target interaction * target current * inductive probe Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) Impact factor: 1.614, year: 2014 http://dx.doi.org/10.1063/1.4898016

  18. Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime

    Energy Technology Data Exchange (ETDEWEB)

    Cao, L F; Uschmann, I; Forster, E; Zamponi, F; Kampfer, T; Fuhrmann, A; Holl, A; Redmer, R; Toleikis, S; Tschentsher, T; Glenzer, S H

    2008-04-30

    Laser plasma interaction experiments have been performed using a fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in an ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop x-ray Thomson scattering as a plasma diagnostic tool, e.g., using the VUV free-electron laser (FLASH) at DESY Hamburg.

  19. Two dimensional simulation of high power laser-surface interaction

    International Nuclear Information System (INIS)

    Goldman, S.R.; Wilke, M.D.; Green, R.E.L.; Johnson, R.P.; Busch, G.E.

    1998-01-01

    For laser intensities in the range of 10 8 --10 9 W/cm 2 , and pulse lengths of order 10 microsec or longer, the authors have modified the inertial confinement fusion code Lasnex to simulate gaseous and some dense material aspects of the laser-matter interaction. The unique aspect of their treatment consists of an ablation model which defines a dense material-vapor interface and then calculates the mass flow across this interface. The model treats the dense material as a rigid two-dimensional mass and heat reservoir suppressing all hydrodynamic motion in the dense material. The computer simulations and additional post-processors provide predictions for measurements including impulse given to the target, pressures at the target interface, electron temperatures and densities in the vapor-plasma plume region, and emission of radiation from the target. The authors will present an analysis of some relatively well diagnosed experiments which have been useful in developing their modeling. The simulations match experimentally obtained target impulses, pressures at the target surface inside the laser spot, and radiation emission from the target to within about 20%. Hence their simulational technique appears to form a useful basis for further investigation of laser-surface interaction in this intensity, pulse-width range. This work is useful in many technical areas such as materials processing

  20. Spectroscopic investigations of novel pharmaceuticals: Stability and resonant interaction with laser beam

    Science.gov (United States)

    Smarandache, Adriana; Boni, Mihai; Andrei, Ionut Relu; Handzlik, Jadwiga; Kiec-Kononowicz, Katarzyna; Staicu, Angela; Pascu, Mihail-Lucian

    2017-09-01

    This paper presents data about photophysics of two novel thio-hydantoins that exhibit promising pharmaceutical properties in multidrug resistance control. Time stability studies are necessary to establish the proper use of these compounds in different applications. As for their administration as drugs, it is imperative to know their shelf life, as well as storage conditions. At the same time, laser induced modified properties of the two new compounds are valuable to further investigate their specific interactions with other materials, including biological targets. The two new thio-hydantoins under generic names SZ-2 and SZ-7 were prepared as solutions in dimethyl sulfoxide at different concentrations, as well as in deionised water. For the stability assay they were kept in various light/temperature conditions up to 60 days. The stability was estimates based on UV-vis absorption measurements. The samples in bulk shape were exposed different time intervals to laser radiation emitted at 266 nm as the fourth harmonic of a Nd:YAG laser. The resonant interaction of the studied compounds with laser beams was analysed through spectroscopic methods UV-vis and FTIR absorption, as well as laser induced fluorescence spectroscopy. As for stability assay, only solutions kept in dark at 4 °C have preserved the absorption characteristics, considering the cumulated measuring errors, less than one week. The vibrational changes that occur in their FTIR and modified fluorescence spectra upon laser beam exposure are also discussed. A result of the experimental analysis is that modifications are induced in molecular structures of the investigated compounds by resonant interaction with laser radiation. This fact evidences that the molecules are photoreactive and their characteristics might be shaped through controlled laser radiation exposure using appropriate protocols. This conclusion opens many opportunities both in the biomedical field, but also in other industrial activities

  1. Multi - pulse tea CO2 laser beam interaction with the TiN thin films

    International Nuclear Information System (INIS)

    Gakovic, B.; Trtica, M.; Nenadovic, T.; Pavlicevic, B.

    1998-01-01

    The interaction of various types of energetic beams including a laser beam with the high-hardness coatings is of great fundamental and technological interest. The Nd:YAG, excimer and CO 2 are frequently used laser beams for this purpose. The interaction of a laser beam with low thickness coatings, deposited on austenitic stainless steel, is insufficiently known in the literature. Titanium nitride (TiN) possess the excellent physico-chemical characteristics. For this reason TiN films/coatings are widely used. The purpose of this article is a consideration of the effect of TEA C0 2 laser radiation on the TiN film deposited on austenitic stainless steel substrate (AISI 316). Investigation of TiN morphological changes, after multipulse laser irradiation, shown dependence on laser fluence, number of laser pulses and the laser pulse shape. Subsequently fast heating and cooling during multi-pulse laser bombardment cause the grain growth of TiN layer. Both laser pulses (pulses with tail and tail-free pulses) produced periodical wave like structure on polished substrate material. Periodicity is observed also on AISI 316 protected with TiN layer, but only with laser pulse with tail. (author)

  2. Plasma hydrodynamics of the intense laser-cluster interaction*

    Science.gov (United States)

    Milchberg, Howard

    2002-11-01

    We present a 1D hydrodynamic model of the intense laser-cluster interaction in which the laser field is treated self-consistently. We find that for clusters initially as small as 25Å in radius, for which the hydrodynamic model is appropriate, nonuniform expansion of the heated material results in long-time resonance of the laser field at the critical density plasma layer. A significant result of this is that the ponderomotive force, which is enhanced at the critical density surface, can be large enough to strongly modify the plasma hydrodynamics, even at laser intensities as low as 10^15 W/cm^2 for 800 nm laser pulses. Recent experiments in EUV and x-ray generation as a function of laser pulsewidth [1], and femtosecond time-resolved measurements of cluster transient polarizability [2] provide strong support for the basic physics of this model. Recent results using a 2D hybrid fluid/PIC code show qualitative agreement with the 1D hydrocode [3]. *Work supported by the National Science Foundation and the EUV-LLC. 1. E. Parra, I. Alexeev, J. Fan, K. Kim, S.J. McNaught, and H. M. Milchberg, Phys. Rev. E 62, R5931 (2000). 2. K.Y. Kim, I. Alexeev, E. Parra, and H.M. Milchberg, submitted for publication. 3. T. Taguchi, T. Antonsen, and H.M Milchberg, this meeting.

  3. Ultra-short laser interactions with nanoparticles in different media: from electromagnetic to thermal and electrostatic effects

    Science.gov (United States)

    Itina, Tatiana E.

    2017-02-01

    Key issues of the controlled synthesis of nanoparticles and nanostructures, as well as laser-particle interactions are considered in the context of the latest applications appearing in many fields such as photonics, medicine, 3D printing, etc. The results of a multi-physics numerical study of laser interaction with nanoparticles will be presented in the presence of several environments. In particular, attention will be paid to the numerical study of laser interactions with heterogeneous materials (eg. colloidal liquids and/or nanoparticles in a dielectric medium) and the aggregation/sintering/fragmentation processes induced by ultra-short laser pulses.

  4. Effects of laser-polarization and wiggler magnetic fields on electron acceleration in laser-cluster interaction

    Science.gov (United States)

    Singh Ghotra, Harjit; Kant, Niti

    2018-06-01

    We examine the electron dynamics during laser-cluster interaction. In addition to the electrostatic field of an individual cluster and laser field, we consider an external transverse wiggler magnetic field, which plays a pivotal role in enhancing the electron acceleration. Single-particle simulation has been presented with a short pulse linearly polarized as well as circularly polarized laser pulses for electron acceleration in a cluster. The persisting Coulomb field allows the electron to absorb energy from the laser field. The stochastically heated electron finds a weak electric field at the edge of the cluster from where it is ejected. The wiggler magnetic field connects the regions of the stochastically heated, ejected electron from the cluster and high energy gain by the electron from the laser field outside the cluster. This increases the field strength and hence supports the electron to meet the phase of the laser field for enhanced acceleration. A long duration resonance appears with an optimized magnetic wiggler field of about 3.4 kG. Hence, the relativistic energy gain by the electron is enhanced up to a few 100 MeV with an intense short pulse laser with an intensity of about 1019 W cm‑2 in the presence of a wiggler magnetic field.

  5. X ray emission: a tool and a probe for laser - clusters interaction; L'emission X: un outil et une sonde pour l'interaction laser - agregats

    Energy Technology Data Exchange (ETDEWEB)

    Prigent, Ch

    2004-12-01

    In intense laser-cluster interaction, the experimental results show a strong energetic coupling between radiation and matter. We have measured absolute X-ray yields and charge state distributions under well control conditions as a function of physical parameters governing the interaction; namely laser intensity, pulse duration, wavelength or polarization state of the laser light, the size and the species of the clusters (Ar, Kr, Xe). We have highlighted, for the first time, an intensity threshold in the X-ray production very low ({approx} 2.10{sup 14} W/cm{sup 2} for a pulse duration of 300 fs) which can results from an effect of the dynamical polarisation of clusters in an intense electric field. A weak dependence with the wavelength (400 nm / 800 nm) on the absolute X-ray yields has been found. Moreover, we have observed a saturation of the X-ray emission probability below a critical cluster size. (author)

  6. 75 FR 66797 - PricewaterhouseCoopers LLP (“PwC”) Internal Firm Services Client Account Administrators Group...

    Science.gov (United States)

    2010-10-29

    ... LLP (``PwC'') Internal Firm Services Client Account Administrators Group, Charlotte, NC; Amended... Firm Services Client Account Administrators Group. Accordingly, the Department is amending this... Firm Services Client Account Administrators Group. The amended notice applicable to TA-W-73,608 is...

  7. Design of H3PW12O40/TiO2 nano-photocatalyst for efficient photocatalysis under simulated sunlight irradiation

    International Nuclear Information System (INIS)

    Zhao, Kun; Lu, Ying; Lu, Nan; Zhao, Yahui; Yuan, Xing; Zhang, Hao; Teng, Lianghui; Li, Fu

    2013-01-01

    H 3 PW 12 O 40 /TiO 2 (PW 12 /TiO 2 ) nano-photocatalyst was successfully synthesized through a modified sol–gel-hydrothermal method. The X-ray diffraction (XRD) patterns, Fourier transform infrared (FT-IR) spectra, UV–vis diffuse reflectance spectrum (UV–vis DRS), and N 2 adsorption–desorption isotherms were characterized respectively to investigate the physical and chemical properties of prepared catalysts. Under simulated sunlight (320 nm 12 /TiO 2 . The results showed that the pollutants degradation followed first-order kinetics, and the kinetic constants of photocatalytic degradation of fuchsin acid, malachite green and PNP were 2.82, 4.66, and 3.48 times as great as that using pristine TiO 2 , respectively. The high pollutants degradation efficiency was ascribed to the synergistic effect between H 3 PW 12 O 40 and TiO 2 , which resulted in enhanced quantum efficiency and high light harvesting efficiency. We believe this work could provide new insights into the fabrication of photocatalyst with high photocatalytic performance and facilitate their practical application in environmental issues.

  8. Laser-driven ablation through fast electrons in PALS experiment at the laser radiation intensity of 1–50 PW/cm2

    Czech Academy of Sciences Publication Activity Database

    Gus’kov, S.Yu.; Demchenko, N. N.; Kasperczuk, A.; Pisarczyk, T.; Kalinowska, Z.; Chodukowski, T.; Renner, Oldřich; Šmíd, Michal; Krouský, Eduard; Pfeifer, Miroslav; Skála, Jiří; Ullschmied, Jiří; Pisarczyk, P.

    2014-01-01

    Roč. 32, č. 1 (2014), s. 177-195 ISSN 0263-0346 R&D Projects: GA MŠk LM2010014; GA MŠk EE2.3.20.0279 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Grant - others:AVČR(CZ) M100101208; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : inertial confinement fusion * shock ignition * laser-produced plasma * three-frame interferometry * X-ray spectroscopy * fast electron generation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.295, year: 2014

  9. Electron acceleration in laser-plasma interaction: development and characterization of an optical injector

    International Nuclear Information System (INIS)

    Rechatin, C.

    2009-09-01

    In any particle accelerator, the injector plays a crucial role since it determines most of the characteristics of the accelerated beam. This is also true for laser-plasma accelerators, that are based on the interaction of an ultra short, ultra intense laser with an underdense plasma. However, due to the compactness of these accelerators, injection is a real challenge: to obtain a good beam quality, injected electron beams have to be ultra short and precisely synchronized with the laser. In this manuscript, the relevance of an optical injector, that relies on a second laser pulse, is experimentally demonstrated. With this injector, mono energetic electron beams have been produced in a stable manner. Moreover, this injector gives control over the electron beam parameters. Using the parameters of the second laser pulse, it has been proven that the energy, the charge and the energy spread of the accelerated beam can be simply tuned. Those additional controls make it possible to study in great details the physical phenomena at play during the acceleration. Beam loading effects, due to the interaction of the accelerated bunch with the plasma, have been identified and studied. With optimized injector parameters, the narrowest electron beams measured to date in the laser plasma interaction have been obtained, with a relative energy spread of 1%. (author)

  10. Laser-matter interaction at high intensity and high temporal contrast; Interaction laser matiere a haut flux et fort contraste temporel

    Energy Technology Data Exchange (ETDEWEB)

    Doumy, G

    2006-01-15

    The continuous progress in the development of laser installations has already lead to ultra-short pulses capable of achieving very high focalized intensities (I > 10{sup 18} W/cm{sup 2}). At these intensities, matter presents new non-linear behaviours, due to the fact that the electrons are accelerated to relativistic speeds. The experimental access to this interaction regime on solid targets has long been forbidden because of the presence, alongside the femtosecond pulse, of a pedestal (mainly due to the amplified spontaneous emission (ASE) which occurs in the laser chain) intense enough to modify the state of the target. In this thesis, we first characterized, both experimentally and theoretically, a device which allows an improvement of the temporal contrast of the pulse: the Plasma Mirror. It consists in adjusting the focusing of the pulse on a dielectric target, so that the pedestal is mainly transmitted, while the main pulse is reflected by the overcritical plasma that it forms at the surface. The implementation of such a device on the UHI 10 laser facility (CEA Saclay - 10 TW - 60 fs) then allowed us to study the interaction between ultra-intense, high contrast pulses with solid targets. In a first part, we managed to generate and characterize dense plasmas resulting directly from the interaction between the main pulse and very thin foils (100 nm). This characterization was realized by using an XUV source obtained by high order harmonics generation in a rare gas jet. In a second part, we studied experimentally the phenomenon of high order harmonics generation on solid targets, which is still badly understood, but could potentially lead to a new kind of energetic ultra-short XUV sources. (author)

  11. Characteristics of the Single-Longitudinal-Mode Planar-Waveguide External Cavity Diode Laser at 1064 nm

    Science.gov (United States)

    Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan; Krainak, Michael

    2014-01-01

    We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064 nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to 104 at 10 mHz. The PWECL's compactness and low cost make it a candidate to replace traditional Nd:YAG nonplanar ring oscillators and fiber lasers in applications that require a single longitudinal mode.

  12. Escaping Electrons from Intense Laser-Solid Interactions as a Function of Laser Spot Size

    OpenAIRE

    Rusby, Dean; Gray, Ross; Butler, Nick; Dance, Rachel; Scott, Graeme; Bagnoud, Vincent; Zielbauer, Bernhard; McKenna, Paul; Neely, David

    2018-01-01

    The interaction of a high-intensity laser with a solid target produces an energetic distribution of electrons that pass into the target. These electrons reach the rear surface of the target creating strong electric potentials that act to restrict the further escape of additional electrons. The measurement of the angle, flux and spectra of the electrons that do escape gives insights to the initial interaction. Here, the escaping electrons have been measured using a differentially filtered imag...

  13. Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics

    International Nuclear Information System (INIS)

    Strozzi, D. J.; Bailey, D. S.; Michel, P.; Divol, L.; Sepke, S. M.

    2017-01-01

    The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.

  14. Petawatt laser system for fast ignitor studies at ILE, Osaka University

    International Nuclear Information System (INIS)

    Izawa, Y.; Kitagawa, Y.; Fujita, H.

    2003-01-01

    A petawatt laser system has been developed for the fast ignitor studies. Three new technologies were introduced; an optical parametric chirped pulse amplifier (OPCPA) in the front end for suppression of prepulse below 10 -8 the main pulse, a deformable mirror for correction of wave front distortion and the chirped pulse amplification in the GEKKO-XII. The system delivered successfully the output energy of 420 J in 470 fs on target, which corresponds to the focal intensity of more than 10 20 W/cm 2 . By using the PW laser, the heating experiments of the high density plasma imploded by GEKKO-XII started. (author)

  15. Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Padda, H.; King, M.; Gray, R. J.; Powell, H. W.; Gonzalez-Izquierdo, B.; Wilson, R.; Dance, R. J.; MacLellan, D. A.; Butler, N. M. H.; Capdessus, R.; McKenna, P., E-mail: paul.mckenna@strath.ac.uk [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Stockhausen, L. C. [Centro de Laseres Pulsados (CLPU), Parque Cientifico, Calle del Adaja s/n. 37185 Villamayor, Salamanca (Spain); Carroll, D. C. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Yuan, X. H. [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Borghesi, M. [Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Neely, D. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom)

    2016-06-15

    Multiple ion acceleration mechanisms can occur when an ultrathin foil is irradiated with an intense laser pulse, with the dominant mechanism changing over the course of the interaction. Measurement of the spatial-intensity distribution of the beam of energetic protons is used to investigate the transition from radiation pressure acceleration to transparency-driven processes. It is shown numerically that radiation pressure drives an increased expansion of the target ions within the spatial extent of the laser focal spot, which induces a radial deflection of relatively low energy sheath-accelerated protons to form an annular distribution. Through variation of the target foil thickness, the opening angle of the ring is shown to be correlated to the point in time transparency occurs during the interaction and is maximized when it occurs at the peak of the laser intensity profile. Corresponding experimental measurements of the ring size variation with target thickness exhibit the same trends and provide insight into the intra-pulse laser-plasma evolution.

  16. Dynamics of interaction of ultrashort laser pulses with solid targets

    International Nuclear Information System (INIS)

    Cang Yu; Wang Wei; Zhang Jie

    2001-01-01

    Using Saha equation, a simple model is proposed for the dynamics of interaction between ultrashort laser pulses and solid targets. An adiabatic expansion model is adopted to study the expansion phase after the heating phase. Temporal evolvement of the dynamics of the interaction is obtained, from which the electron temperature, density, ionization balances can be determined

  17. Short wavelength laser-plasma interaction experiments in a spherical geometry

    International Nuclear Information System (INIS)

    Keck, R.L.

    1984-01-01

    Short wavelength (250 to 500 nm) lasers should provide reduced fast electron preheat and increased laser-pellet coupling efficiency when used as laser fusion drivers. As part of an ongoing effort to study short wavelength laser plasm interaction, six beams of the 24 beam OMEGA Nd-glass laser system have been converted to operation at the third harmonic. This system is capable of providing in excess of 250 Joules of 351 nm light on spherical targets at intensities up to 2 x 10/sup 15/ W/cm/sup 2/. To date, experiments have been performed to study the uniformity of irradiation, laser absorption, fast electron production and preheat, energy transport within the target and underdense plasma instabilities. Both x-ray continuum measurements and Kα line measurements indicate that the absorption is dominated by inverse bremsstrahlung. Electron energy transport has been studied using x-ray burn-through and charge collector measurements. The results show that with 351 nm irradiation ablation pressures of order 100 Mbars are generated at intensities of 10/sup 15/ W/cm/sup 2/

  18. Effect of the laser wavelength: A long story of laser-plasma interaction physics for Inertial Confinement Fusion Teller Medal Lecture

    Directory of Open Access Journals (Sweden)

    Labaune Christine

    2013-11-01

    Full Text Available Laser-driven Inertial Confinement Fusion (ICF relies on the use of high-energy laser beams to compress and ignite a thermonuclear fuel with the ultimate goal of producing energy. Fusion is the holy grail of energy sources–combining abundant fuel with no greenhouse gas emissions, minimal waste products and a scale that can meet mankind's long-term energy demands. The quality and the efficiency of the coupling of the laser beams with the target are an essential step towards the success of laser fusion. A long-term program on laser-plasma interaction physics has been pursued to understand the propagation and the coupling of laser pulses in plasmas for a wide range of parameters.

  19. Effect of the laser wavelength: A long story of laser-plasma interaction physics for Inertial Confinement Fusion Teller Medal Lecture

    Science.gov (United States)

    Labaune, Christine

    2016-10-01

    Laser-driven Inertial Confinement Fusion (ICF) relies on the use of high-energy laser beams to compress and ignite a the1monuclear fuel with the ultimate goal of producing energy. Fusion is the holy grail of energy sources-combining abundant fuel with no greenhouse gas emissions, minimal waste products and a scale that can meet mankind's long-term energy demands. The quality and the efficiency of the coupling of the laser beams with the target are an essential step towards the success of laser fusion. A long-te1m program on laser-plasma interaction physics has been pursued to understand the propagation and the coupling of laser pulses in plasmas for a wide range of parameters.

  20. Femtosecond UV-laser pulses to unveil protein-protein interactions in living cells.

    Science.gov (United States)

    Itri, Francesco; Monti, Daria M; Della Ventura, Bartolomeo; Vinciguerra, Roberto; Chino, Marco; Gesuele, Felice; Lombardi, Angelina; Velotta, Raffaele; Altucci, Carlo; Birolo, Leila; Piccoli, Renata; Arciello, Angela

    2016-02-01

    A hallmark to decipher bioprocesses is to characterize protein-protein interactions in living cells. To do this, the development of innovative methodologies, which do not alter proteins and their natural environment, is particularly needed. Here, we report a method (LUCK, Laser UV Cross-linKing) to in vivo cross-link proteins by UV-laser irradiation of living cells. Upon irradiation of HeLa cells under controlled conditions, cross-linked products of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were detected, whose yield was found to be a linear function of the total irradiation energy. We demonstrated that stable dimers of GAPDH were formed through intersubunit cross-linking, as also observed when the pure protein was irradiated by UV-laser in vitro. We proposed a defined patch of aromatic residues located at the enzyme subunit interface as the cross-linking sites involved in dimer formation. Hence, by this technique, UV-laser is able to photofix protein surfaces that come in direct contact. Due to the ultra-short time scale of UV-laser-induced cross-linking, this technique could be extended to weld even transient protein interactions in their native context.

  1. Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators

    International Nuclear Information System (INIS)

    Fonseca, R A; Vieira, J; Silva, L O; Fiuza, F; Davidson, A; Tsung, F S; Mori, W B

    2013-01-01

    A new generation of laser wakefield accelerators (LWFA), supported by the extreme accelerating fields generated in the interaction of PW-Class lasers and underdense targets, promises the production of high quality electron beams in short distances for multiple applications. Achieving this goal will rely heavily on numerical modelling to further understand the underlying physics and identify optimal regimes, but large scale modelling of these scenarios is computationally heavy and requires the efficient use of state-of-the-art petascale supercomputing systems. We discuss the main difficulties involved in running these simulations and the new developments implemented in the OSIRIS framework to address these issues, ranging from multi-dimensional dynamic load balancing and hybrid distributed/shared memory parallelism to the vectorization of the PIC algorithm. We present the results of the OASCR Joule Metric program on the issue of large scale modelling of LWFA, demonstrating speedups of over 1 order of magnitude on the same hardware. Finally, scalability to over ∼10 6 cores and sustained performance over ∼2 P Flops is demonstrated, opening the way for large scale modelling of LWFA scenarios. (paper)

  2. Dynamics of moving interacting atoms in a laser radiation field and optical size resonances

    International Nuclear Information System (INIS)

    Gadomskii, O.N.; Glukhov, A.G.

    2005-01-01

    The forces acting on interacting moving atoms exposed to resonant laser radiation are calculated. It is shown that the forces acting on the atoms include the radiation pressure forces as well as the external and internal bias forces. The dependences of the forces on the atomic spacing, polarization, and laser radiation frequency are given. It is found that the internal bias force associated with the interaction of atomic dipoles via the reemitted field may play an important role in the dynamics of dense atomic ensembles in a light field. It is shown that optical size resonances appear in the system of interacting atoms at frequencies differing substantially from transition frequencies in the spectrum of atoms. It is noted that optical size resonances as well as the Doppler frequency shift in the spectrum of interacting atoms play a significant role in the processes of laser-radiation-controlled motion of the atoms

  3. High-order dispersion control of 10-petawatt Ti:sapphire laser facility.

    Science.gov (United States)

    Li, Shuai; Wang, Cheng; Liu, Yanqi; Xu, Yi; Li, Yanyan; Liu, Xingyan; Gan, Zebiao; Yu, Lianghong; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin

    2017-07-24

    A grism pair is utilized to control the high-order dispersion of the Shanghai Superintense Ultrafast Lasers Facility, which is a large-scale project aimed at delivering 10-PW laser pulses. We briefly present the characteristics of the laser system and calculate the cumulative B-integral, which determines the nonlinear phase shift influence on material dispersion. Three parameters are selected, grism separation, angle of incidence and slant distance of grating compressor, to determine their optimal values through an iterative searching procedure. Both the numerical and experimental results confirm that the spectral phase distortion is controlled, and the recompressed pulse with a duration of 24 fs is obtained in the single-shot mode. The distributions and stabilities of the pulse duration at different positions of the recompressed beam are also investigated. This approach offers a new feasible solution for the high-order dispersion compensation of femtosecond petawatt laser systems.

  4. Final Report: Laser-Material Interactions Relevant to Analytic Spectroscopy of Wide Band Gap Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, J. Thomas [Washington State Univ., Pullman, WA (United States)

    2014-04-05

    We summarize our studies aimed at developing an understanding of the underlying physics and chemistry in terms of laser materials interactions relevant to laser-based sampling and chemical analysis of wide bandgap materials. This work focused on the determination of mechanisms for the emission of electrons, ions, atoms, and molecules from laser irradiation of surfaces. We determined the important role of defects on these emissions, the thermal, chemical, and physical interactions responsible for matrix effects and mass-dependent transport/detection. This work supported development of new techniques and technology for the determination of trace elements contained such as nuclear waste materials.

  5. Interaction of single-pulse laser energy with bow shock in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Hong Yanji

    2014-04-01

    Full Text Available Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100 mJ pulse energy is used to break down the hypersonic flow in a shock tunnel. Three-dimensional Navier–Stokes equations are solved with an upwind scheme to simulate the interaction. The pressure at the stagnation point on the blunt body is measured and calculated to examine the pressure variation during the interaction. Schlieren imaging is used in conjunction with the calculated density gradients to examine the process of the interaction. The results show that the experimental pressure at the stagnation point on the blunt body and schlieren imaging fit well with the simulation. The pressure at the stagnation point on the blunt body will increase when the transmission shock approaches the blunt body and decrease with the formation of the rarefied wave. Bow shock is deformed during the interaction. Quasi-stationary waves are formed by high rate laser energy deposition to control the bow shock. The pressure and temperature at the stagnation point on the blunt body and the wave drag are reduced to 50%, 75% and 81% respectively according to the simulation. Schlieren imaging has provided important information for the investigation of the mechanism of the interaction.

  6. A 380pW Dual Mode Optical Wake-up Receiver with Ambient Noise Cancellation.

    Science.gov (United States)

    Lim, Wootaek; Jang, Taekwang; Lee, Inhee; Kim, Hun-Seok; Sylvester, Dennis; Blaauw, David

    2016-06-01

    We present a sub-nW optical wake-up receiver for wireless sensor nodes. The wake-up receiver supports dual mode operation for both ultra-low standby power and high data rates, while canceling ambient in-band noise. In 0.18µm CMOS the receiver consumes 380pW in always-on wake-up mode and 28.1µW in fast RX mode at 250kbps.

  7. Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter

    Science.gov (United States)

    Hugenschmidt, Manfred

    1986-10-01

    The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.

  8. The effect of pre-plasma formation under nonlocal transport conditions for ultra-relativistic laser-plasma interaction

    Science.gov (United States)

    Holec, M.; Nikl, J.; Vranic, M.; Weber, S.

    2018-04-01

    Interaction of high-power lasers with solid targets is in general strongly affected by the limited contrast available. The laser pre-pulse ionizes the target and produces a pre-plasma which can strongly modify the interaction of the main part of the laser pulse with the target. This is of particular importance for future experiments which will use laser intensities above 1021 W cm-2 and which are subject to the limited contrast. As a consequence the main part of the laser pulse will be modified while traversing the pre-plasma, interacting with it partially. A further complication arises from the fact that the interaction of a high-power pre-pulse with solid targets very often takes place under nonlocal transport conditions, i.e. the characteristic mean-free-path of the particles and photons is larger than the characteristic scale-lengths of density and temperature. The classical diffusion treatment of radiation and heat transport in the hydrodynamic model is then insufficient for the description of the pre-pulse physics. These phenomena also strongly modify the formation of the pre-plasma which in turn affects the propagation of the main laser pulse. In this paper nonlocal radiation-hydrodynamic simulations are carried out and serve as input for subsequent kinetic simulations of ultra-high intensity laser pulses interacting with the plasma in the ultra-relativistic regime. It is shown that the results of the kinetic simulations differ considerably whether a diffusive or nonlocal transport is used for the radiation-hydrodynamic simulations.

  9. Theory and simulations of radiation friction induced enhancement of laser-driven longitudinal fields

    Science.gov (United States)

    Gelfer, E. G.; Fedotov, A. M.; Weber, S.

    2018-06-01

    We consider the generation of a quasistatic longitudinal electric field by intense laser pulses propagating in a transparent plasma with radiation friction (RF) taken into account. For both circular and linear polarization of the driving pulse we develop a 1D analytical model of the process, which is valid in a wide range of laser and plasma parameters. We define the parameter region where RF results in an essential enhancement of the longitudinal field. The amplitude and the period of the generated longitudinal wave are estimated and optimized. Our theoretical predictions are confirmed by 1D and 2D PIC simulations. We also demonstrate numerically that RF should substantially enhance the longitudinal field generated in a plasma by a 10 PW laser such as ELI Beamlines.

  10. Investigation of thermo-optical characteristics of the interaction processes of laser radiation with silver nanoparticles

    International Nuclear Information System (INIS)

    Pustovalov, V K; Astafyeva, L G

    2013-01-01

    Metallic nanoparticles have been actively investigated in recent years by different optical and laser methods with the purpose of their applications in optoelectronics and photonics, chemistry, laser nanobiomedicine, optical diagnostics, and other fields. A major role among metallic nanoparticles is played by nanoparticles from the noble metals (silver, gold, etc). These particles have unique plasmonic properties (resonances in the range of wavelength 400–540 nm), which can be used for the absorption, scattering and transformation of laser energy. Analysis of the thermo-optical characteristics of the interaction processes of laser radiation with silver nanoparticles is carried out, taking into account absorption, scattering and extinction of laser radiation by nanoparticles, as well as the thermo-optical and other properties of nanoparticles. Estimations are made of the influence of these nanoparticle properties on the possible results of laser radiation interaction with silver nanoparticles, including heating, heat exchange, possible melting and evaporation, and processes in the ambient media. These results can be used in laser processing of silver nanoparticles and their applications in laser nanomedicine. (paper)

  11. X ray emission: a tool and a probe for laser - clusters interaction; L'emission X: un outil et une sonde pour l'interaction laser - agregats

    Energy Technology Data Exchange (ETDEWEB)

    Prigent, Ch

    2004-12-01

    In intense laser-cluster interaction, the experimental results show a strong energetic coupling between radiation and matter. We have measured absolute X-ray yields and charge state distributions under well control conditions as a function of physical parameters governing the interaction; namely laser intensity, pulse duration, wavelength or polarization state of the laser light, the size and the species of the clusters (Ar, Kr, Xe). We have highlighted, for the first time, an intensity threshold in the X-ray production very low ({approx} 2.10{sup 14} W/cm{sup 2} for a pulse duration of 300 fs) which can results from an effect of the dynamical polarisation of clusters in an intense electric field. A weak dependence with the wavelength (400 nm / 800 nm) on the absolute X-ray yields has been found. Moreover, we have observed a saturation of the X-ray emission probability below a critical cluster size. (author)

  12. On the mutual interaction between laser beams in plasmas

    International Nuclear Information System (INIS)

    Ren, C.; Duda, B.J.; Evans, R.G.; Fonseca, R.A.; Hemker, R.G.; Mori, W.B.

    2002-01-01

    The nonlinear interaction between light beams in a plasma is studied. In particular, nonlinearities due to relativistic mass corrections and density modulations from a plasma wave wake are considered; but the results can be generalized for other nonlinearities. A simple physical picture using the nonlinear phase velocity of the light wave in a plasma is developed to show that when two laser beams are coherent, the force can be repulsive or attractive, depending on their relative phase. When the two laser beams are polarized in mutually perpendicular directions, the force is always attractive. Using a variational method, a simple analytical expression for this attractive force is derived for Gaussian beams. The centers of the lasers move analogously to point masses under this attractive force with the laser power playing the role of the mass. Under an attractive force, solutions exist where the two lasers can spiral around each other. It is also shown that the plasma wave wake can cause the two spiraling lasers to become intertwined forming a braided pattern. The braiding is common to any nonlinearity which is not instantaneous. The analytical results concerning attraction, repulsion, and braiding have been confirmed using three dimensional particle-in-cell simulations. The simulations also show that angular momentum can radiate away leading to the coalescence of the remaining energy

  13. High-power laser-metal interactions in pressurized gaseous atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, G. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Lugomer, S.; Furic, K.; Ivanda, M. [Ruder Boskovic Institute, Zagreb (Croatia); Stipancic, M. [Electrotechnical faculty, Osijek (Croatia); Stubicar, M. [Faculty of natural sciences and mathematics, Zagreb (Croatia); Gamulin, O. [School of medicine, Univ. of Zagreb, Zagreb (Croatia)

    1996-09-01

    Metal surfaces were irradiated in pressurized gaseous atmospheres by a CO{sub 2} laser beam. The gaseous pressures ranged from 2 atm to 6 atm, the energy density of the light beam was about 20-50 J/cm{sup 2} with a power density {approx} 10{sup 9} W/cm{sup 2} and a pulse duration p 150 ns. In the above conditions some new effects were observed. The laser-material interaction occurred in a highly absorptive plasma regime, meaning that the metal surface was effectively screened from the beam. The interaction ended either with plasma adiabatic expansion, in the case of Mo (in O{sub 2}), Te (in N{sub 2}) and T{sub i} (in N{sub 2}), or with plasma explosion, in the case of T{sub i} (in O{sub 2}). The metal surface properties were studied by means of optical analysis, microhardness tests, X-ray diffraction and Raman backscattering.

  14. Control of proton beam divergence in intense-laser foil-plasma interaction

    International Nuclear Information System (INIS)

    Kawata, S.; Sonobe, R.; Miyazaki, S.; Sakai, K.; Kikuchi, T.

    2006-01-01

    Quality of an ion beam is one of the critical factors in intense-laser ion beam generation. A purpose of this study is the suppression of transverse proton divergence by a controlled electron cloud in laser-foil interactions. In this study, the foil target has a hole at the opposite side of the laser illumination. The electrons accelerated by an intense laser are limited in transverse by a neutral plasma at a protuberant part. Therefore the protons are accelerated and also controlled transversely by the electron cloud structure. In our 2.5-dimensional Particle-in-Cell simulations we demonstrate that the transverse shape of the electron cloud is well controlled and the collimated proton beam is generated successfully in the target with the hole. (authors)

  15. Pump requirements for betatron-generated femtosecond X-ray laser at saturation from inner-shell transitions

    International Nuclear Information System (INIS)

    Ribiere, M.; Grunenwald, J.; Ribeiro, P.; Sebban, S.; Phuoc, K.Ta; Gautier, J.; Kozlova, M.; Zeitoun, P.; Rousse, A.; Jacquemot, S.; Cheron, B.G.

    2012-01-01

    We study pump requirements to produce femtosecond X-ray laser pulses at saturation from inner-shell transitions in the amplified spontaneous emission regime. Since laser-based betatron radiation is considered as the pumping source, we first study the impact of the driving laser power on its intensity. Then we investigate the amplification behavior of the K-a transition of nitrogen at 3.2 nm (395 eV) from radiative transfer calculations coupled with kinetics modeling of the ion population densities. We show that the saturation regime may be experimentally achieved by using PW-class laser-accelerated electron bunches. Finally, we show that this X-ray laser scheme can be extended to heavier atoms and we calculate pump requirements to reach saturation at 1.5 nm (849 eV) from the K-a transition of neon. (authors)

  16. Progress of laser-plasma interaction simulations with the particle-in-cell code

    International Nuclear Information System (INIS)

    Sakagami, Hitoshi; Kishimoto, Yasuaki; Sentoku, Yasuhiko; Taguchi, Toshihiro

    2005-01-01

    As the laser-plasma interaction is a non-equilibrium, non-linear and relativistic phenomenon, we must introduce a microscopic method, namely, the relativistic electromagnetic PIC (Particle-In-Cell) simulation code. The PIC code requires a huge number of particles to validate simulation results, and its task is very computation-intensive. Thus simulation researches by the PIC code have been progressing along with advances in computer technology. Recently, parallel computers with tremendous computational power have become available, and thus we can perform three-dimensional PIC simulations for the laser-plasma interaction to investigate laser fusion. Some simulation results are shown with figures. We discuss a recent trend of large-scale PIC simulations that enable direct comparison between experimental facts and computational results. We also discharge/lightning simulations by the extended PIC code, which include various atomic and relaxation processes. (author)

  17. 60th Scottish Universities Summer School in Physics: 6th Laser-plasma interactions

    CERN Document Server

    Cairns, R A; Jaroszinski, D A

    2009-01-01

    Presents diagnostic methods, experimental techniques, and simulation tools used to study and model laser-plasma interactions. This book discusses the basic theory of the interaction of intense electromagnetic radiation fields with matter.

  18. Production of ultrahigh ion current densities at skin-layer subrelativistic laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Glowacz, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Jablonski, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Parys, P [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Wolowski, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Hora, H [Department of Theoretical Physics, University of New South Wales, Sydney (Australia); Krasa, J [Institute of Physics, ASCR, Prague (Czech Republic); Laska, L [Institute of Physics, ASCR, Prague (Czech Republic); Rohlena, K [Institute of Physics, ASCR, Prague (Czech Republic)

    2004-12-01

    Some applications of fast ions driven by a short ({<=}1 ps) laser pulse (e.g. fast ignition of ICF targets, x-ray laser pumping, laboratory astrophysics research or some nuclear physics experiments) require ion beams of picosecond (or shorter) time durations and of very high ion current densities ({approx}10{sup 10} A cm{sup -2} or higher). A possible way of producing ion beams with such extreme parameters is ballistic focusing of fast ions generated by a target normal sheath acceleration (TNSA) mechanism at relativistic laser intensities. In this paper we discuss another method, where the production of short-pulse ion beams of ultrahigh current densities is possible in a planar geometry at subrelativistic laser intensities and at a low energy ({<=}1 J) of the laser pulse. This method-referred to as skin-layer ponderomotive acceleration (S-LPA)-uses strong ponderomotive forces induced at the skin-layer interaction of a short laser pulse with a proper preplasma layer in front of a solid target. The basic features of the high-current ion generation by S-LPA were investigated using a simplified theory, numerical hydrodynamic simulations and measurements. The experiments were performed with subjoule 1 ps laser pulses interacting with massive or thin foil targets at intensities of up to 2 x 10{sup 17} W cm{sup -2}. It was found that both in the backward and forward directions highly collimated high-density ion beams (plasma blocks) with current densities at the ion source (close to the target) approaching 10{sup 10} A cm{sup -2} are produced, in accordance with the theory and numerical calculations. These ion current densities were found to be comparable to (or even higher than) those estimated from recent short-pulse TNSA experiments with relativistic laser intensities. Apart from the simpler physics of the laser-plasma interaction, the advantage of the considered method is the low energy of the driving laser pulses allowing the production of ultrahigh

  19. Laser-driven acceleration at ELI Beamlines - radioprotection aspects

    International Nuclear Information System (INIS)

    Olsovcova, V.; Fasso, A; Versaci, R.

    2014-01-01

    The international research centre ELI Beamlines, which is under construction in the village of Dolni Brezany near Prague, will exploit high power lasers of PW class to generate and accelerate beams of charged particles (up to tens of GeVs in energy). The beams will be used for both fundamental and applied research by experts from various scientific fields, including biology, medicine, plasma physics but also dosimetry and radiation protection. As laboratories operating lasers do not belong among the traditional 'radiation workplaces', there are no suitable specialized recommendations or standards available. Therefore, it is necessary to newly implement the existing general recommendations. Further, the generated mixed fields possess unique properties due to their production methods. As a result, the routinely used detection methods are not reliable or fail completely. (authors)

  20. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Science.gov (United States)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-10-01

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  1. How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?

    Czech Academy of Sciences Publication Activity Database

    Bulgakova, Nadezhda M.; Zhukov, V.P.; Collins, A.R.; Rostohar, Danijela; Derrien, Thibault; Mocek, Tomáš

    2015-01-01

    Roč. 336, May (2015), s. 364-374 ISSN 0169-4332 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : laser material processing * high power lasers * glass cutting * laser-matter interaction * biwave length irradiation * ambient gas ionization Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.150, year: 2015

  2. Double fillet lap of laser welding of thin sheet AZ31B Mg alloy

    Science.gov (United States)

    Ishak, Mahadzir; Salleh, M. N. M.

    2018-05-01

    In this paper, we describe the experimental laser welding of thin sheet AZ31B using double fillet lap joint method. Laser welding is capable of producing high quality weld seams especially for small weld bead on thin sheet product. In this experiment, both edges for upper and lower sheets were subjected to the laser beam from the pulse wave (PW) mode of fiber laser. Welded sample were tested their joint strength by tensile-shear strength method and the fracture loads were studied. Strength for all welded samples were investigated and the effect of laser parameters on the joint strength and appearances were studied. Pulsed energy (EP) from laser process give higher effect on joint strength compared to the welding speed (WS) and angle of irradiation (AOI). Highest joint strength was possessed by sample with high EP with the same value of WS and AOI. The strength was low due to the crack defect at the centre of weld region.

  3. Fundamental aspects of laser and ion-beam interactions with solid surfaces

    International Nuclear Information System (INIS)

    Wang, Z.L.

    1982-01-01

    In the first part of the thesis laser-beam interactions with solid surfaces are discussed. In the second part ion-beam interactions with solid surfaces are discussed and mainly the mixing of atoms due to ion bombardment. A study of ion-beam mixing of Cu-Au and Cu-W systems is described in order to illustrate the mechanism for ion beam mixing. As Cu-Au are miscible whereas Cu-W systems are not, and both systems have comparable mass numbers, comparison provides a test for current theories on ion-beam mixing. The results of experiments where 300 keV Kr 4+ ion-bombardment at a dose of 5x10 15 cm -2 has been applied to initiate mixing of a single layer structure and sandwich samples for both systems are described. Room temperature irradiations with a dose of 5x10 15 cm -2 show that Cu-Au mix readily, whereas a small mixing effect is observed for Cu-W systems. A comparable amount of mixing for Cu-Au induced by laser or ion beams is found whereas no mixing of Cu-W induced by laser irradiation is observed, which is in agreement with the criteria for formation of metastable solid solutions due to pulsed laser treatment. (Auth.)

  4. Electron density interferometry measurement in laser-matter interaction

    International Nuclear Information System (INIS)

    Popovics-Chenais, C.

    1981-05-01

    This work is concerned with the laser-interferometry measurement of the electronic density in the corona and the conduction zone external part. Particularly, it is aimed at showing up density gradients and at their space-time localization. The first chapter recalls the density profile influence on the absorption principal mechanisms and the laser energy transport. In chapter two, the numerical and analytical hydrodynamic models describing the density profile are analysed. The influence on the density profile of the ponderomotive force associated to high oscillating electric fields is studied, together with the limited thermal conduction and suprathermal electron population. The mechanism action, in our measurement conditions, is numerically simulated. Calculations are made with experimental parameters. The measurement interaction conditions, together with the diagnostic method by high resolution laser interferometry are detailed. The results are analysed with the help of numerical simulation which is the experiment modeling. An overview of the mechanisms shown up by interferometric measurements and their correlation with other diagnostics is the conclusion of this work [fr

  5. Identification of novel direct protein-protein interactions by irradiating living cells with femtosecond UV laser pulses.

    Science.gov (United States)

    Itri, Francesco; Monti, Daria Maria; Chino, Marco; Vinciguerra, Roberto; Altucci, Carlo; Lombardi, Angela; Piccoli, Renata; Birolo, Leila; Arciello, Angela

    2017-10-07

    The identification of protein-protein interaction networks in living cells is becoming increasingly fundamental to elucidate main biological processes and to understand disease molecular bases on a system-wide level. We recently described a method (LUCK, Laser UV Cross-linKing) to cross-link interacting protein surfaces in living cells by UV laser irradiation. By using this innovative methodology, that does not require any protein modification or cell engineering, here we demonstrate that, upon UV laser irradiation of HeLa cells, a direct interaction between GAPDH and alpha-enolase was "frozen" by a cross-linking event. We validated the occurrence of this direct interaction by co-immunoprecipitation and Immuno-FRET analyses. This represents a proof of principle of the LUCK capability to reveal direct protein interactions in their physiological environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Relative Nonlinear Electrodynamics Interaction of Charged Particles with Strong and Super Strong Laser Fields

    CERN Document Server

    Avetissian, Hamlet

    2006-01-01

    This book covers a large class of fundamental investigations into Relativistic Nonlinear Electrodynamics. It explores the interaction between charged particles and strong laser fields, mainly concentrating on contemporary problems of x-ray lasers, new type small set-up high-energy accelerators of charged particles, as well as electron-positron pair production from super powerful laser fields of relativistic intensities. It will also discuss nonlinear phenomena of threshold nature that eliminate the concurrent inverse processes in the problems of Laser Accelerator and Free Electron Laser, thus creating new opportunities for solving these problems.

  7. High intensive short laser pulse interaction with submicron clusters media

    International Nuclear Information System (INIS)

    Faenov, A. Ya

    2008-01-01

    The interaction of short intense laser pulses with structured targets, such as clusters, exhibits unique features, stemming from the enhanced absorption of the incident laser light compared to solid targets. Due to the increased absorption, these targets are heated significantly, leading to enhanced emission of x rays in the keV range and generation of electrons and multiple charged ions with kinetic energies from tens of keV to tens of MeV. Possible applications of these targets can be an electron/ion source for a table top accelerator, a neutron source for a material damage study, or an x ray source for microscopy or lithography. The overview of recent results, obtained by the high intensive short laser pulse interaction with different submicron clusters media will be presented. High resolution K and L shell spectra of plasma generated by superintense laser irradiation of micron sized Ar, Kr and Xe clusters have been measured with intensity 10"17"-10"19"W/cm"2"and a pulse duration of 30-1000fs. It is found that hot electrons produced by high contrast laser pulses allow the isochoric heating of clusters and shift the ion balance toward the higher charge states, which enhances both the X ray line yield and the ion kinetic energy. Irradiation of clusters, produced from such gas mixture, by a fs Ti:Sa laser pulses allows to enhance the soft X ray radiation of Heβ(665.7eV)and Lyα(653.7eV)of Oxygen in 2-8 times compare with the case of using as targets pure CO"2"or N"2"O clusters and reach values 2.8x10"10"(∼3μJ)and 2.7x10"10"(∼2.9μJ)ph/(sr·pulse), respectively. Nanostructure conventional soft X ray images of 100nm thick Mo and Zr foils in a wide field of view (cm"2"scale)with high spatial resolution (700nm)are obtained using the LiF crystals as soft X ray imaging detectors. When the target used for the ion acceleration studies consists of solid density clusters embedded into the background gas, its irradiation by high intensity laser light makes the target

  8. ŁPw Steel Arch Support – Designing and Test Results

    Directory of Open Access Journals (Sweden)

    Marek Rotkegel

    2013-01-01

    Full Text Available Increasingly difficult geological-mining conditions make it necessary to seek new and effective ways of securing roadways. The new types of support must meet very high strength requirements and must have very high load-bearing capacities. These two conditions were taken into consideration when an ŁPw type steel arch support was designed. High strength of the arches was obtained through using steel of improved mechanical parameters, while high load-bearing parameters were obtained through shaping elements of the support arches. The works were conducted within the framework of the targeted research project no. 6ZR8 2008 C/07012 undertaken by Huta Łabędy SA, Institute for Ferrous Metallurgy and Central Mining Institute between 2010 and 2012.

  9. Laser beam-plasma plume interaction during laser welding

    Science.gov (United States)

    Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt

    2003-10-01

    Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.

  10. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Alexander Roy [Univ. of Michigan, Ann Arbor, MI (United States); Krushelnick, Karl [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-09-08

    We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactions at 1021 Wcm-2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.

  11. X ray emission: a tool and a probe for laser - clusters interaction

    International Nuclear Information System (INIS)

    Prigent, Ch.

    2004-12-01

    In intense laser-cluster interaction, the experimental results show a strong energetic coupling between radiation and matter. We have measured absolute X-ray yields and charge state distributions under well control conditions as a function of physical parameters governing the interaction; namely laser intensity, pulse duration, wavelength or polarization state of the laser light, the size and the species of the clusters (Ar, Kr, Xe). We have highlighted, for the first time, an intensity threshold in the X-ray production very low (∼ 2.10 14 W/cm 2 for a pulse duration of 300 fs) which can results from an effect of the dynamical polarisation of clusters in an intense electric field. A weak dependence with the wavelength (400 nm / 800 nm) on the absolute X-ray yields has been found. Moreover, we have observed a saturation of the X-ray emission probability below a critical cluster size. (author)

  12. How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakova, Nadezhda M., E-mail: bulgakova@fzu.cz [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., Novosibirsk 630090 (Russian Federation); Zhukov, Vladimir P. [Institute of Computational Technologies SB RAS, 6 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Ave., 630073 Novosibirsk (Russian Federation); Collins, Adam R. [NCLA, NUI Galway, Galway (Ireland); Rostohar, Danijela; Derrien, Thibault J.-Y.; Mocek, Tomáš [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic)

    2015-05-01

    Highlights: • The factors influencing laser micromachining of transparent materials are analyzed. • Important role of ambient gas in laser processing is shown by numerical simulations. • The large potential of bi-wavelength laser processing is demonstrated. - Abstract: The interaction of short and ultrashort pulse laser radiation with glass materials is addressed. Particular attention is paid to regimes which are important in industrial applications such as laser cutting, drilling, functionalization of material surfaces, etc. Different factors influencing the ablation efficiency and quality are summarized and their importance is illustrated experimentally. The effects of ambient gas ionization in front of the irradiated target are also analyzed. A possibility to enhance laser coupling with transparent solids by bi-wavelength irradiation is discussed.

  13. Interaction of intense laser pulses with neutral gases and preformed plasmas

    International Nuclear Information System (INIS)

    Mackinnon, A. J.; Borghesi, M.; Iwase, A.; Jones, M. W.; Willi, O.

    1998-01-01

    The interaction of a high intensity laser pulse with a neutral gas or preformed plasma has been studied over a wide range of target and laser conditions. It was found that the propagation of 2ps laser pulses (λ=1.054μm, P=5-10TW, I∼5x10 14 -1x10 14 -1x10 18 Wcm -2 ) in neutral gases with atomic densities greater than 0.001 of critical was strongly influenced by ionisation induced refraction. Preformed density channels were effective in overcoming refraction but the channel length was found to be limited by ionization induced defocusing of the prepulse

  14. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    International Nuclear Information System (INIS)

    Nedyalkov, N.N.; Imamova, S.E.; Atanasov, P.A.; Toshkova, R.A.; Gardeva, E.G.; Yossifova, L.S.; Alexandrov, M.T.; Obara, M.

    2011-01-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  15. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    Science.gov (United States)

    Nedyalkov, N. N.; Imamova, S. E.; Atanasov, P. A.; Toshkova, R. A.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T.; Obara, M.

    2011-04-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  16. Electron acceleration via high contrast laser interacting with submicron clusters

    International Nuclear Information System (INIS)

    Zhang Lu; Chen Liming; Wang Weiming; Yan Wenchao; Yuan Dawei; Mao Jingyi; Wang Zhaohua; Liu Cheng; Shen Zhongwei; Li Yutong; Dong Quanli; Lu Xin; Ma Jinglong; Wei Zhiyi; Faenov, Anatoly; Pikuz, Tatiana; Li Dazhang; Sheng Zhengming; Zhang Jie

    2012-01-01

    We experimentally investigated electron acceleration from submicron size argon clusters-gas target irradiated by a 100 fs, 10 TW laser pulses having a high-contrast. Electron beams are observed in the longitudinal and transverse directions to the laser propagation. The measured energy of the longitudinal electron reaches 600 MeV and the charge of the electron beam in the transverse direction is more than 3 nC. A two-dimensional particle-in-cell simulation of the interaction has been performed and it shows an enhancement of electron charge by using the cluster-gas target.

  17. Chemical synthesis, characterization studies and reactivity of a catalytic material based on ZrO{sub 2}-H{sub 3}PW{sub 12}O{sub 40}; Sintesis quimica, estudios de caracterizacion y reactividad de un material catalitico a base de ZrO{sub 2}-H{sub 3}PW{sub 12}O{sub 40}

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Enriquez, Juan Manuel; Garcia Alamilla, Ricardo; Paramo Garcia, Ulises; Rodrigo, Rebeca Silva [Instituto Tecnologico de Ciudad Madero, Tamaulipas (Mexico). Division de Estudios de Posgrado e Investigacion; Garcia Serrano, Luz Arcelia, E-mail: jmanuelher@hotmail.com [Instituto Politecnico Nacional, Mexico, D.F. (Mexico). Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente

    2013-10-01

    In this work, the preparation and characterization of materials such as zirconium oxide (ZrO{sub 2}) and phosphotungstic acid promoted zirconium oxide (ZrO{sub 2}-H{sub 3}PW{sub 12}O{sub 40}) is presented. Physico-chemical characterization results showed that addition of H{sub 3}PW{sub 12}O{sub 40} acted as both a textural and chemical promoter of zirconium oxide. The incorporation of phosphotungstic acid into the ZrO{sub 2} matrix delayed the sintering of the material and stabilized ZrO{sub 2} in the tetragonal phase. ZrO{sub 2} acidity was also enhanced, developing strong acid sites on its surface. The Pt/ZrO{sub 2}-H{sub 3}PW{sub 12}O{sub 40} catalyst was active for n-pentane isomerization at 250 deg C, exhibiting high selectivity to iso-pentane (95%). This result is probably due to its suitable acidity (author)

  18. Particularities of interaction of CO sub 2 -laser radiation with oxide materials

    CERN Document Server

    Salikhov, T P

    2002-01-01

    The results of experimental investigation of vapor phase influence on the interaction parameters of the infrared laser radiation with oxide materials (Al sub 2 O sub 3 , ZrO sub 2 , CeO sub 2) have been presented. A phenomenon of laser radiation by the samples investigated under laser heating has been experimentally discovered for the first time. This phenomenon connected with forming of the stable vapor shell above the irradiated samples was expressed as a sharp drop in temperature on the heating curve and called as an absorption flash. (author)

  19. Electron acceleration by femtosecond laser interaction with micro-structured plasmas

    Science.gov (United States)

    Goers, Andy James

    Laser-driven accelerators are a promising and compact alternative to RF accelerator technology for generating relativistic electron bunches for medical, scientific, and security applications. This dissertation presents three experiments using structured plasmas designed to advance the state of the art in laser-based electron accelerators, with the goal of reducing the energy of the drive laser pulse and enabling higher repetition rate operation with current laser technology. First, electron acceleration by intense femtosecond laser pulses in He-like nitrogen plasma waveguides is demonstrated. Second, significant progress toward a proof of concept realization of quasi-phasematched direct acceleration (QPM-DLA) is presented. Finally, a laser wakefield accelerator at very high plasma density is studied, enabling relativistic electron beam generation with ˜10 mJ pulse energies. Major results from these experiments include: • Acceleration of electrons up to 120 MeV from an ionization injected wakefield accelerator driven in a 1.5 mm long He-like nitrogen plasma waveguide • Guiding of an intense, quasi-radially polarized femtosecond laser pulse in a 1 cm plasma waveguide. This pulse provides a strong drive field for the QPM-DLA concept. • Wakefield acceleration of electrons up to ˜10 MeV with sub-terawatt, ˜10 mJ pulses interacting with a thin (˜200 mum), high density (>1020 cm-3) plasma. • Observation of an intense, coherent, broadband wave breaking radiation flash from a high plasma density laser wakefield accelerator. The flash radiates > 1% of the drive laser pulse energy in a bandwidth consistent with half-cycle (˜1 fs) emission from violent unidirectional acceleration of electron bunches from rest. These results open the way to high repetition rate (>˜kHz) laser-driven generation of relativistic electron beams with existing laser technology.

  20. An ultra short pulse reconstruction software applied to the GEMINI high power laser system

    Energy Technology Data Exchange (ETDEWEB)

    Galletti, Mario, E-mail: mario.gall22@gmail.com [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Galimberti, Marco [Central Laser Facility, Rutherford Appleton Laboratory, Didcot (United Kingdom); Hooker, Chris [Central Laser Facility, Rutherford Appleton Laboratory, Didcot (United Kingdom); University of Oxford, Oxford (United Kingdom); Chekhlov, Oleg; Tang, Yunxin [Central Laser Facility, Rutherford Appleton Laboratory, Didcot (United Kingdom); Bisesto, Fabrizio Giuseppe [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Curcio, Alessandro [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Sapienza – University of Rome, P.le Aldo Moro, 2, 00185 Rome (Italy); Anania, Maria Pia [INFN – LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Giulietti, Danilo [Physics Department of the University and INFN, Pisa (Italy)

    2016-09-01

    The GRENOUILLE traces of Gemini pulses (15 J, 30 fs, PW, shot per 20 s) were acquired in the Gemini Target Area PetaWatt at the Central Laser Facility (CLF), Rutherford Appleton Laboratory (RAL). A comparison between the characterizations of the laser pulse parameters made using two different types of algorithms: Video Frog and GRenouille/FrOG (GROG), was made. The temporal and spectral parameters came out to be in great agreement for the two kinds of algorithms. In this experimental campaign it has been showed how GROG, the developed algorithm, works as well as VideoFrog algorithm with the PetaWatt pulse class. - Highlights: • Integration of the diagnostic tool on high power laser. • Validation of the GROG algorithm in comparison to a well-known commercial available software. • Complete characterization of the GEMINI ultra-short high power laser pulse.

  1. High energy density and extreme field physics in the transparent-overdense regime

    Energy Technology Data Exchange (ETDEWEB)

    Hegelich, Bjorn Manuel [Los Alamos National Laboratory; Yin, Kin [Los Alamos National Laboratory; Albright, Brian J [Los Alamos National Laboratory; Bowers, Kevin J [Los Alamos National Laboratory; Gautier, C [Los Alamos National Laboratory; Huang, C [Los Alamos National Laboratory; Jung, D [Los Alamos National Laboratory; Letzring, S [Los Alamos National Laboratory; Palaniyappan, S [Los Alamos National Laboratory; Shah, R [Los Alamos National Laboratory; Wu, H [Los Alamos National Laboratory; Fernandez, J. C. [Los Alamos National Laboratory; Dromey, B [QUEENS UNIV BELFAST; Henig, A [LUDWIG-MAXIMILLAN-UNIV MUNCHEN; Horlein, R [LUDWIG-MAXIMILLAN-UNIV MUNCHEN; Kefer, D. [LUDWIG-MAXIMILLAN-UNIV MUNCHEN; Tajima, T [LUDWIG-MAXIMILIN-UNIV MUNCHEN; Yan, X [QUEENS UNIV BELFAST; Habs, D [LUDWIG-MAXIMILIAN-UNIV MUNCHEN

    2011-01-31

    Conclusions of this report are: (1) high harmonics generated on solid surfaces are a very versatile source of intense coherent XUV radiation; (2) high harmonics can be used to probe and monitor the interaction of intense femtosecond laser pulses with nm-scale foil targets; (3) direct measurement of target density during relativistic interaction; (4) high harmonics generated with PW-scale short-pulse lasers could serve as unique backlighting sources for a wide range experiments; and (5) Trident can be a test bed to develop such experiments and the required instrumentation.

  2. High intensity laser interactions with sub-micron droplets

    International Nuclear Information System (INIS)

    Mountford, L.C.

    1999-01-01

    A high-density source of liquid ethanol droplets has been developed, characterised and used in laser interaction studies for the first time. Mie Scattering and attenuation measurements show that droplets with a radius of (0.5 ± 0.1) μm and atomic densities of 10 19 atoms/cm 3 can be produced, bridging the gap between clusters and macroscopic solids. Lower density (10 16 cm -3 ) sprays can also be produced and these are electrostatically split into smaller droplets with a radius of (0.3 ± 0.1) μm. This work has been accepted for publication in Review of Scientific Instruments. A range of high intensity interaction experiments have been carried out with this unique sub-micron source. The absolute yield of keV x-rays, generated using 527 nm, 2 ps pulses focused to ∼10 17 W/cm 2 , was measured for the first time. ∼7 μJ of x-rays with photon energies above 1 keV were produced, comparable to yields obtained from much higher Z Xenon clusters. At intensities ≤10 16 W/cm 2 the yield from droplets exceeds that from solid targets of similar Z. The droplet medium is debris free and self-renewing, providing a suitable x-ray source for lithographic techniques. Due to the spacing between the droplets, it was expected that the droplet plasma temperature would exceed that of a solid target plasma, which is typically limited by rapid heat conduction to <1 keV. Analysis of the x-ray data shows this to be true with a mean droplet plasma temperature of (2 ± 0.8) keV, and a number of measurements exceeding 5 keV (to appear in Applied Physics Letters). The absorption of high intensity laser pulses in the dense spray has been measured for the first time and this was found to be wavelength and polarisation independent and in excess of 60%. These first interaction measurements clearly indicate that there are significant differences between the laser heating of droplet, solid and cluster targets. (author)

  3. Dominance of hole-boring radiation pressure acceleration regime with thin ribbon of ionized solid hydrogen

    Science.gov (United States)

    Psikal, J.; Matys, M.

    2018-04-01

    Laser-driven proton acceleration from novel cryogenic hydrogen target of the thickness of tens of microns irradiated by multiPW laser pulse is investigated here for relevant laser parameters accessible in near future. It is demonstrated that the efficiency of proton acceleration from relatively thick hydrogen solid ribbon largely exceeds the acceleration efficiency for a thinner ionized plastic foil, which can be explained by enhanced hole boring (HB) driven by laser ponderomotive force in the case of light ions and lower target density. Three-dimensional particle-in-cell (PIC) simulations of laser pulse interaction with relatively thick hydrogen target show larger energies of protons accelerated in the target interior during the HB phase and reduced energies of protons accelerated from the rear side of the target by quasistatic electric field compared with the results obtained from two-dimensional PIC calculations. Linearly and circularly polarized multiPW laser pulses of duration exceeding 100 fs show similar performance in terms of proton acceleration from both the target interior as well as from the rear side of the target. When ultrashort pulse (∼30 fs) is assumed, the number of accelerated protons from the target interior is substantially reduced.

  4. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [General Energy Research Department, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)

    2015-10-28

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  5. Accelerated damage studies of titanate ceramics containing simulated PW-4b and JW-A waste

    International Nuclear Information System (INIS)

    Hart, K.P.; Vance, E.R.; Lumpkin, G.R.; Mitamura, H.; Matsumoto, S.; Banba, T.

    1999-01-01

    Ceramic waste forms are affected by radiation damage, primarily arising from aloha-decay processes that can lead to volume expansion and amorphization of the component crystalline phases. The understanding of the extent and impact of these effects on the overall durability of the waste form is critical to the prediction of their long-term performance under repository conditions. Since 1985 ANSTO and JAERI have carried out joint studies on the use of 244 Cm to simulate alpha-radiation damage in ceramic waste forms. These studies have focussed on synroc formulations doped with simulated PW-4b and JW-A wastes. The studies have established the relationship between density change and irradiation levels for Synroc containing JW-A and PW-4b wastes. The storage of samples at 200 C halves the rate of decrease in the density of the samples compared to that measured at room temperature. This effect is consistent with that found for natural samples where the amorphization of natural samples stored under crustal conditions is lower, by factors between 2 and 4, than that measured for samples from accelerated doping experiments stored at room temperature. (J.P.N.)

  6. Dual-beam operation of the Astra Gemini laser facility

    International Nuclear Information System (INIS)

    Bryan Parry; Nicola Booth; Oleg Chekhlov; John Collier; Edwin Divall; Klaus Ertel; Peta Foster; Steve Hawkes; Chris Hooker; Victoria Marshall

    2010-01-01

    Complete text of publication follows. Gemini is a Petawatt class Ti:Sapphire laser system at the Rutherford Appleton Laboratory, UK. It was designed as a dual beam laser, with two independently configurable 800 nm beams delivering 15 J to target in 30 fs pulse duration, giving 0.5 PW peak power per beam. It is capable of reaching intensities over 10 22 W/cm 2 . Gemini can achieve a maximum repetition rate of one shot every 20 seconds, allowing it to deliver hundreds of shots per day; a feature which makes it unique among PW lasers. Already this has proved valuable in experiments involving electron acceleration in gas jets. The first Gemini beamline became operational in 2008. Commissioning of the second beam was deferred to allow earlier access to the facility by experimental scientists, and to develop operational experience. In this mode, Gemini has already produced significant results from a number of advanced plasma physics experiments. The second beam of Gemini is now coming online, with the first dual beam experiment starting in June 2010. The flexibility offered by two short pulse, ultra high intensity beams is another aspect that makes this laser system unique. The dual beams enable versatile configurations and illumination geometries, facilitating a wider range of experiments than is possible with only a single beam. Operationally however, it introduces additional factors which must be monitored and controlled in order to achieve experimental success. The beams must be timed with respect to each other with accuracy less than the pulse duration. The beam foci must also be overlapped spatially, and the stability of both these factors maintained over extended periods. We report on the second beam commissioning process, including the latest results on the characteristics, stability and spatio-temporal overlap of the two beams. We present details of amplifier performance, along with measurements of beam quality, focal spot, pulse duration and contrast, to give a

  7. Tests of fundamental symmetries and interactions - using nuclei and lasers

    NARCIS (Netherlands)

    Jungmann, Klaus Peter

    State of the art laser technology and modern spectroscopic methods allow to address issues of fundamental symmetries and fundamental interactions in atoms with high precision experiments. In particular the discrete symmetries Parity (P), Charge Conjugation (C), Time Reversal (T) as well as their

  8. Size-dependent Fano Interaction in the Laser-etched Silicon Nanostructures

    Directory of Open Access Journals (Sweden)

    Kumar Rajesh

    2008-01-01

    Full Text Available AbstractPhoto-excitation and size-dependent Raman scattering studies on the silicon (Si nanostructures (NSs prepared by laser-induced etching are presented here. Asymmetric and red-shifted Raman line-shapes are observed due to photo-excited Fano interaction in the quantum confined nanoparticles. The Fano interaction is observed between photo-excited electronic transitions and discrete phonons in Si NSs. Photo-excited Fano studies on different Si NSs show that the Fano interaction is high for smaller size of Si NSs. Higher Fano interaction for smaller Si NSs is attributed to the enhanced interference between photo-excited electronic Raman scattering and phonon Raman scattering.

  9. Confirmation of radiation pressure effects in laser--plasma interactions

    International Nuclear Information System (INIS)

    Attwood, D.T.; Sweeney, D.W.; Auerbach, J.M.; Lee, P.H.Y.

    1977-10-01

    Interferometric data resolved in 1μm and 15 psec confirms the dominant role of radiation pressure during high intensity laser-plasma interactions. Specifically observed manifestations include electron density profiles steepened to 1 μm scale length, clearly defined upper and lower density shelves, and small and large scale deformation of transverse isodensity surfaces

  10. Interaction mechanisms of cavitation bubbles induced by spatially and temporally separated fs-laser pulses.

    Directory of Open Access Journals (Sweden)

    Nadine Tinne

    Full Text Available The emerging use of femtosecond lasers with high repetition rates in the MHz regime together with limited scan speed implies possible mutual optical and dynamical interaction effects of the individual cutting spots. In order to get more insight into the dynamics a time-resolved photographic analysis of the interaction of cavitation bubbles is presented. Particularly, we investigated the influence of fs-laser pulses and their resulting bubble dynamics with various spatial as well as temporal separations. Different time courses of characteristic interaction effects between the cavitation bubbles were observed depending on pulse energy and spatio-temporal pulse separation. These ranged from merely no interaction to the phenomena of strong water jet formation. Afterwards, the mechanisms are discussed regarding their impact on the medical application of effective tissue cutting lateral to the laser beam direction with best possible axial precision: the mechanical forces of photodisruption as well as the occurring water jet should have low axial extend and a preferably lateral priority. Furthermore, the overall efficiency of energy conversion into controlled mechanical impact should be maximized compared to the transmitted pulse energy and unwanted long range mechanical side effects, e.g. shock waves, axial jet components. In conclusion, these experimental results are of great importance for the prospective optimization of the ophthalmic surgical process with high-repetition rate fs-lasers.

  11. Towards passive and active laser stabilization using cavity-enhanced atomic interaction

    DEFF Research Database (Denmark)

    Schäffer, Stefan Alaric; Christensen, Bjarke Takashi Røjle; Rathmann, Stefan Mossor

    2017-01-01

    Ultra stable frequency references such as the ones used in optical atomic clocks and for quantum metrology may be obtained by stabilizing a laser to an optical cavity that is stable over time. State-of-the-art frequency references are constructed in this way, but their stabilities are currently...... experimental efforts derived from these proposals, to use cavity-enhanced interaction with atomic 88Sr samples as a frequency reference for laser stabilization. Such systems can be realized using both passive and active approaches where either the atomic phase response is used as an error signal, or the narrow...... atomic transition itself is used as a source for a spectrally pure laser. Both approaches shows the promise of being able to compete with the current state of the art in stable lasers and have similar limitations on their ultimately achievable linewidths [1, 2]....

  12. Proceedings of the first JAERI-Kansai international workshop on ultrashort-pulse ultrahigh-power lasers and simulation for laser-plasma interactions

    International Nuclear Information System (INIS)

    1998-03-01

    Records of the First JAERI-Kansai International Workshop, which focused on the subject of 'Ultrashort-Pulse Ultrahigh-Power Lasers and Simulation for Laser-Plasma Interactions', are contained in this issue. The First JAERI-Kansai International Workshop was held as Joint ICFA/JAERI-Kansai International Workshop '97 with International Committee for Future Accelerators (ICFA). This report consists of 24 contributed papers. (J.P.N.)

  13. Proceedings of the first JAERI-Kansai international workshop on ultrashort-pulse ultrahigh-power lasers and simulation for laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Records of the First JAERI-Kansai International Workshop, which focused on the subject of `Ultrashort-Pulse Ultrahigh-Power Lasers and Simulation for Laser-Plasma Interactions`, are contained in this issue. The First JAERI-Kansai International Workshop was held as Joint ICFA/JAERI-Kansai International Workshop `97 with International Committee for Future Accelerators (ICFA). This report consists of 24 contributed papers. (J.P.N.)

  14. A physical model for laser metal vapour interactions and laser supported detonation waves

    International Nuclear Information System (INIS)

    Liu Chenghai; Pei Wenbing; Yan Jun; Fan Furu

    1990-05-01

    A physical model for laser metal-vapour interactions has been developed in this paper. The model developed by authors has been used to study numerically the Laser Supported Detonation Waves (LSDWs) in vapour in front of metal targets, and some good results about LSDWs, such as ignition mechanism, threshold, propagation law and so on, have been obtained numerically with the model. In the model developed, a assumption for non-equilibrium between electrons and ions has been taken, and the target vapour has been discribed with two-temperature hydrodynamic equations of electrons and ions in the Euler space. The ionization-equilibrium assumption has been taken, and the Saha equations have been solved. The laser energy is absorbed due to inverse bremsstrahlung. Energy exchange between electrons and ions is by Coulomb scattering, and energy exchange between electrons and neutral particles is by way of electron-neutral elastic scattering. Electron and ion (including neutral particle) thermal conductions are taken respectively. The LSDWs threshold obtained is in agreement with experement reasonably, and a power law between LSDWs threshold and laser pulse duration, I th ∞τ p -1/2 , has been obtained. Some useful results about the LSDWs shield effects have also been obtained. In the developping phase of LSDWs, the optical thickness of front of LSDWs may reach 5 ∼ 10 in order of magnitude. It is shown that the LSDWs are able to play a very strong shield role

  15. Study of plasmas created by X-ray laser-matter interaction

    International Nuclear Information System (INIS)

    Galtier, E.

    2010-11-01

    This thesis took advantage of the emerging newly developed 4. generation sources of light, namely the free electron lasers, to create and characterize a state of matter under extreme conditions which is still obscure: the warm dense matter (WDM). WDM is found in giant planets and is also produced in inertial fusion. An experiment allowed to study the transitions between the different phases, solid/WDM/plasma, and characterize the mechanism responsible for the equilibration. The laser pulse FLASH, of duration and energy equal to about 20 femto-seconds and 30 μJ respectively, is micro-focussed on a solid target producing an isochoric heating. The intensity, greater than 10 16 W.cm -2 , has never been reached in such an experimental context so far. Emission spectra from an aluminium plasma are studied with a code coupling a genetic algorithm and a code of atomic physics, in order to interpret the whole temporal evolution of the XUV laser-matter interaction for the first time, despite the time integration of the experimental spectra. The first experimental proof of the important contribution of the Auger effect in the isochoric heating of an aluminium target is established. The first observation of the X-ray emission of a boron nitride target under extreme conditions has been investigated by a preliminary study. Additionally, the effect of hot electrons on the electron population distribution in the energy levels of the ions is analysed and shows an important similarity with the photo-ionization process occurring in XUV/X-ray laser-matter interaction. (author)

  16. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas; Interaction d'impulsions laser ultra-courtes et ultra-intenses avec des plasmas sous denses

    Energy Technology Data Exchange (ETDEWEB)

    Solodov, A

    2000-12-15

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  17. Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets

    International Nuclear Information System (INIS)

    De Marco, M.; Krása, J.; Margarone, D.; Giuffrida, L.; Vrana, R.; Velyhan, A.; Korn, G.; Weber, S.; Cikhardt, J.; Pfeifer, M.; Krouský, E.; Ullschmied, J.; Ahmed, H.; Borghesi, M.; Kar, S.; Limpouch, J.; Velardi, L.; Side, D. Delle; Nassisi, V.

    2016-01-01

    A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.

  18. Sludge characterization and treatment of produced water(PW using Tympanotonos Fuscatus coagulant (TFC

    Directory of Open Access Journals (Sweden)

    Matthew C. Menkiti

    2015-03-01

    Full Text Available This study investigated coag-flocculation (using TFC of PW and characterization of the post treatment settled sludge (PTSS. Effects of dosage, pH and settling time on treatment efficiency were evaluated. TFC and PTSS were subjected to Fourier transform infrared (FTIR, X–ray diffraction (XRD, Thermogravimetric/Differential scanning calorimetric and Scanning electron microscopic (SEM/Elemental analyses. Optimal treatment efficiency of 91.5% was obtained at 1 g/L and pH 2. It could be concluded that TFC was thermally stable and has potential for application as an effective bio-coagulant.

  19. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    Science.gov (United States)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  20. Electrons trajectories around a bubble regime in intense laser plasma interaction

    International Nuclear Information System (INIS)

    Lu, Ding; Xie, Bai-Song; Ali Bake, Muhammad; Sang, Hai-Bo; Zhao, Xue-Yan; Wu, Hai-Cheng

    2013-01-01

    Some typical electrons trajectories around a bubble regime in intense laser plasma interaction are investigated theoretically. By considering a modification of the fields and ellipsoid bubble shape due to the presence of residual electrons in the bubble regime, we study in detail the electrons nonlinear dynamics with or without laser pulse. To examine the electron dynamical behaviors, a set of typical electrons, which locate initially at the front of the bubble, on the transverse edge and at the bottom of the bubble respectively, are chosen for study. It is found that the range of trapped electrons in the case with laser pulse is a little narrower than that without laser pulse. The partial phase portraits for electrons around the bubble are presented numerically and their characteristic behaviors are discussed theoretically. Implication of our results on the high quality electron beam generation is also discussed briefly

  1. Splitter target for controlling magnetic reconnection in relativistic laser plasma interactions

    Science.gov (United States)

    Gu, Y. J.; Bulanov, S. S.; Korn, G.; Bulanov, S. V.

    2018-04-01

    The utilization of a conical target irradiated by a high power laser is proposed to study fast magnetic reconnection in relativistic plasma interactions. Such target, placed in front of the near critical density gas jet, splits the laser pulse, forming two parallel laser pulses in the 2D case and a donut shaped pulse in the 3D case. The magnetic annihilation and reconnection occur in the density downramp region of the subsequent gas jet. The magnetic field energy is converted into the particle kinetic energy. As a result, a backward accelerated electron beam is obtained as a signature of reconnection. The above mechanisms are demonstrated using particle-in-cell simulations in both 2D and 3D cases. Facilitating the synchronization of two laser beams, the proposed approach can be used in designing the corresponding experiments on studying fundamental problems of relativistic plasma physics.

  2. International Conference on the Interaction of atoms, molecules and plasmas with intense ultrashort laser pulses. Book of abstracts

    International Nuclear Information System (INIS)

    2006-01-01

    International Conference on the Interaction of atoms, molecules and plasmas with intense ultrashort laser pulses was held in Hungary in 2006. This conference which joined the ULTRA COST activity ('Laser-matter interactions with ultra-short pulses, high-frequency pulses and ultra-intense pulses. From attophysics to petawatt physics') and the XTRA ('Ultrashort XUV Pulses for Time-Resolved and Non-Linear Applications') Marie-Curie Research Training Network, intends to offer a possibility to the members of both of these activities to exchange ideas on recent theoretical and experimental results on the interaction of ultrashort laser pulses with matter giving a broad view from theoretical models to practical and technical applications. Ultrashort laser pulses reaching extra high intensities open new windows to obtain information about molecular and atomic processes. These pulses are even able to penetrate into atomic scalelengths not only by generating particles of ultrahigh energy but also inside the spatial and temporal atomic scalelengths. New regimes of laser-matter interaction were opened in the last decade with an increasing number of laboratories and researchers in these fields. (S.I.)

  3. Explosive vaporization induced by high-power CO2-laser target interactions

    International Nuclear Information System (INIS)

    Hugenschmidt, M.; Vollrath, K.

    1976-01-01

    The interactions of high-power laser pulses with targets such as metals or dielectric materials causes a series of optical, thermal, and mechanical processes. Thereby, heating, melting, and vaporization can take place in a short time. At power densities of about 10 7 to several 10 8 W/cm 2 this can even be produced explosively. As compared to continuous ablation, this type of interaction can remove greater masses from the bulk of material. The investigations are performed by using an electron-beam preionized CO 2 -laser acting on different target materials. The energy of the laser pulses is about 30 J, the pulse-half-widths of the long-tail pulses 4 to 6 μs. Optical measurements yield some information on threshold values for these processes, for the formation and expansion of plasmas, and for the ejection of material in form of greater particles. High speed photographic techniques include a rotating mirror- and an image converter camera. Starting from shock-wave theory, gas dynamic equations (in unidimensional approximation) allow for a quantitative determination of the specific internal energies and pressures in the case of optical detonation. (orig.) [de

  4. Preparation and characterization of magnetic CsH{sub 2}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} nanocatalysts for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Feyzi, Mostafa, E-mail: Dalahoo2011@yahoo.com [Faculty of Chemistry, Razi University, P. O. Box: 6714967346, Kermanshah (Iran, Islamic Republic of); Nanoscience and Nanotechnology Research Center (NNRC), Razi University, P. O. Box: 6714967346, Kermanshah (Iran, Islamic Republic of); Nourozi, Leila [Faculty of Chemistry, Razi University, P. O. Box: 6714967346, Kermanshah (Iran, Islamic Republic of); Zakarianezhad, Mohammad [Department of Chemistry, Payam Noor University, Tehran (Iran, Islamic Republic of)

    2014-12-15

    Graphical abstract: In this study, a series of magnetic CsH{sub 2}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} nanocatalysts were prepared and tested for biodiesel production. The best operational conditions were CH3OH/oil = 12/1 at 60 °C with mechanical stirring, the biodiesel yield reaches to 81% in 4 h. Also notably, recovery of the catalyst can be achieved easily with the help of an external magnet with no need for expensive ultracentrifugation. - Highlights: • Effects of preparation conditions for biodiesel production were studied. • The CsH{sub 2}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} catalyst is efficient catalyst for biodiesel production. • The reaction conditions were found methanol/oil = 12/1, T = 60 °C. - Abstract: The magnetic CsH{sub 2}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} nanocatalysts were prepared via combination of sol–gel and impregnation methods. The effects of different H{sub 3}PW{sub 12}O{sub 40}/(Fe–SiO{sub 2}) weight percentage, loading of Cs as a promotor and calcination conditions on the catalytic performance has been studied. It was found that the catalyst with H{sub 3}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} = 4 wt.% and Cs = 2 wt.% is an optimal catalyst for biodiesel production. The activity of optimal catalyst was studied in different operational conditions. The best operational conditions were CH{sub 3}OH/oil = 12/1 at 60 °C with mechanical stirring rate of 500 rpm and the biodiesel yield reaches to 81% in 4 h. Characterization of catalysts was carried out by using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM), N{sub 2} adsorption–desorption measurements methods, Thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC)

  5. Aspects of the History of the Nerves: Bell's Theory, the Bell-Magendie Law and Controversy, and Two Forgotten Works by P.W. Lund and D.F. Eschricth

    DEFF Research Database (Denmark)

    Jørgensen, C. Barker

    2003-01-01

    History of nerves, Bell's Idea, Bell-Magendie law, Bell-Magendie controversy, Charles Bell, Francois Magendie, P.W. Lund, D.F. Eschricht, Herbert Mayo, Johannes Müller, Claude Bernard, spinal nerve roots, cranial nerves, recurrent sensitivity......History of nerves, Bell's Idea, Bell-Magendie law, Bell-Magendie controversy, Charles Bell, Francois Magendie, P.W. Lund, D.F. Eschricht, Herbert Mayo, Johannes Müller, Claude Bernard, spinal nerve roots, cranial nerves, recurrent sensitivity...

  6. Laser Pointers: Low-Cost, Low-Tech Innovative, Interactive Instruction Tool

    Science.gov (United States)

    Zdravkovska, Nevenka; Cech, Maureen; Beygo, Pinar; Kackley, Bob

    2010-01-01

    This paper discusses the use of laser pointers at the Engineering and Physical Sciences Library, University of Maryland, College Park, as a personal response system (PRS) tool to encourage student engagement in and interactivity with one-shot, lecture-based information literacy sessions. Unlike more sophisticated personal response systems like…

  7. Continuous atom laser with Bose-Einstein condensates involving three-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Carpentier, A V; Michinel, H; Novoa, D [Area de Optica, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas s/n, Ourense, ES-32004 (Spain); Olivieri, D N, E-mail: avcarpentier@uvigo.e [Area de Linguaxes e sistemas informaticos, Escola Superior de EnxenerIa Informatica, Universidade de Vigo, As Lagoas s/n, Ourense, ES-32004 (Spain)

    2010-05-28

    We demonstrate, through numerical simulations, the emission of a coherent continuous matter wave of constant amplitude from a Bose-Einstein condensate in a shallow optical dipole trap. The process is achieved by spatial control of the variations of the scattering length along the trapping axis, including elastic three-body interactions due to dipole interactions. In our approach, the outcoupling mechanism is atomic interactions, and thus, the trap remains unaltered. We calculate analytically the parameters for the experimental implementation of this continuous wave atom laser.

  8. Preliminary design of experiment high power density laser beam interaction with plasmas and development of a cold cathode electron beam laser amplifier

    International Nuclear Information System (INIS)

    Mosavi, R.K.; Kohanzadeh, Y.; Taherzadeh, M.; Vaziri, A.

    1976-01-01

    This experiment is designed to produce plasma by carbon dioxide pulsed laser, to measure plasma parameters and to study the interaction of the produced plasma with intense laser beams. The objectives of this experiment are the following: 1. To set up a TEA CO 2 laser oscillator and a cold cathode electron beam laser amplifier together as a system, to produce high energy optical pulses of short duration. 2. To achieve laser intensities of 10 11 watt/cm 2 or more at solid targets of polyethylene (C 2 H 4 )n, lithium hydride (LiH), and lithium deuteride in order to produce high temperature plasmas. 3. To design and develop diagnostic methods for studies of laser-induced plasmas. 4. To develop a high power CO 2 laser amplifier for the purpose of upgrading the optical energy delivered to the targets

  9. Enhancement of proton acceleration field in laser double-layer target interaction

    International Nuclear Information System (INIS)

    Gu, Y. J.; Kong, Q.; Li, X. F.; Yu, Q.; Wang, P. X.; Kawata, S.; Izumiyama, T.; Ma, Y. Y.

    2013-01-01

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations

  10. Collisionless energy absorption in the short-pulse intense laser-cluster interaction

    International Nuclear Information System (INIS)

    Kundu, M.; Bauer, D.

    2006-01-01

    In a previous paper [Phys. Rev. Lett. 96, 123401 (2006)] we have shown by means of three-dimensional particle-in-cell simulations and a simple rigid-sphere model that nonlinear resonance absorption is the dominant collisionless absorption mechanism in the intense, short-pulse laser cluster interaction. In this paper we present a more detailed account of the matter. In particular we show that the absorption efficiency is almost independent of the laser polarization. In the rigid-sphere model, the absorbed energy increases by many orders of magnitude at a certain threshold laser intensity. The particle-in-cell results display maximum fractional absorption around the same intensity. We calculate the threshold intensity and show that it is underestimated by the common overbarrier ionization estimate

  11. Laser-matter interaction at high intensity and high temporal contrast

    International Nuclear Information System (INIS)

    Doumy, G.

    2006-01-01

    The continuous progress in the development of laser installations has already lead to ultra-short pulses capable of achieving very high focalized intensities (I > 10 18 W/cm 2 ). At these intensities, matter presents new non-linear behaviours, due to the fact that the electrons are accelerated to relativistic speeds. The experimental access to this interaction regime on solid targets has long been forbidden because of the presence, alongside the femtosecond pulse, of a pedestal (mainly due to the amplified spontaneous emission (ASE) which occurs in the laser chain) intense enough to modify the state of the target. In this thesis, we first characterized, both experimentally and theoretically, a device which allows an improvement of the temporal contrast of the pulse: the Plasma Mirror. It consists in adjusting the focusing of the pulse on a dielectric target, so that the pedestal is mainly transmitted, while the main pulse is reflected by the overcritical plasma that it forms at the surface. The implementation of such a device on the UHI 10 laser facility (CEA Saclay - 10 TW - 60 fs) then allowed us to study the interaction between ultra-intense, high contrast pulses with solid targets. In a first part, we managed to generate and characterize dense plasmas resulting directly from the interaction between the main pulse and very thin foils (100 nm). This characterization was realized by using an XUV source obtained by high order harmonics generation in a rare gas jet. In a second part, we studied experimentally the phenomenon of high order harmonics generation on solid targets, which is still badly understood, but could potentially lead to a new kind of energetic ultra-short XUV sources. (author)

  12. Study of electrons distribution produced by laser-plasma interaction on x-ray generation

    International Nuclear Information System (INIS)

    Nikzad, L.; Sadighi-Bonabi, R.

    2010-01-01

    Complete text of publication follows. In the present work, X-ray beams are generated from interaction of relativistic electron beams produced by interaction of 500 mJ, 30 femtosecond Ti:sapphire laser pulses with thin solid targets such as lead, molybdenum and tungsten. After interaction of an intense pulsed laser with He gas-jet, a micron-scale laser produced plasma, creates and accelerates electron bunches, which propagate in the ion channel produced in the wake of the laser pulse. When an electron bunch is injected into the bubble in phase with its field, it will gain relativistic energies within very short distance. These accelerated electrons with Megaelectron-Volt energy and different distributions, can interact with targets to generate X-ray radiation with Kiloelectron-Volt energy, providing to be close enough to the gas-jet, where the relativistic accelerated electrons exist. Here, to determine the results, Monte Carlo simulation (MCNP-4C code) is employed to present Bremsstrahlung and characteristic X-ray production by quasi-Maxwellian and quasi-monoenergetic electron beams for three samples with different thicknesses. The outcome shows that for one specific electron spectrum and one definite target, the energy which the maximum characteristic x-ray flux takes place, varies with thickness. Also, for each material the energy which this maximum happens is constant for all thicknesses, for both produced electron spectra. For each sample, x-ray flux is calculated for different thicknesses and the thickness which the maximum characteristic x-ray flux occurs is obtained. Besides, it is concluded that by increasing the atomic number of the target, maximum X-ray flux moves towards higher energy. Also, comparison of the results for three targets and two electron distributions shows that by using quasi-monoenergetic electron spectra, more intense and narrower characteristic X-ray can be produced compared to the quasi-Maxwellian electron distribution, almost for all

  13. Kinect4FOG: monitoring and improving mobility in people with Parkinson's using a novel system incorporating the Microsoft Kinect v2.

    Science.gov (United States)

    Amini, Amin; Banitsas, Konstantinos; Young, William R

    2018-05-23

    Parkinson's is a neurodegenerative condition associated with several motor symptoms including tremors and slowness of movement. Freezing of gait (FOG); the sensation of one's feet being "glued" to the floor, is one of the most debilitating symptoms associated with advanced Parkinson's. FOG not only contributes to falls and related injuries, but also compromises quality of life as people often avoid engaging in functional daily activities both inside and outside the home. In the current study, we describe a novel system designed to detect FOG and falling in people with Parkinson's (PwP) as well as monitoring and improving their mobility using laser-based visual cues cast by an automated laser system. The system utilizes a RGB-D sensor based on Microsoft Kinect v2 and a laser casting system consisting of two servo motors and an Arduino microcontroller. This system was evaluated by 15 PwP with FOG. Here, we present details of the system along with a summary of feedback provided by PwP. Despite limitations regarding its outdoor use, feedback was very positive in terms of domestic usability and convenience, where 12/15 PwP showed interest in installing and using the system at their homes. Implications for Rehabilitation Providing an automatic and remotely manageable monitoring system for PwP gait analysis and fall detection. Providing an automatic, unobtrusive and dynamic visual cue system for PwP based on laser line projection. Gathering feedback from PwP about the practical usage of the implemented system through focus group events.

  14. Topics in high-intensity laser plasma interaction

    International Nuclear Information System (INIS)

    Leemans, W.P.

    1991-01-01

    The interaction of high intensity laser pulses with pre-formed and laser-produced plasmas is studied. Through experiments and simulations we have investigated stimulated Compton scattering in preformed plasmas and the plasma physics aspects of tunnel-ionized gases. A theoretical study is presented on the nonlinear dynamics of relativistic plasma waves driven by colinear optical mixing. The electron density-fluctuation spectra induced by stimulated Compton scattering have been directly observed for the first time. A CO2 laser was focused into pre-formed plasmas with densities n(e) varied from 0.4-6 x 10(exp 16) cu cm. The fluctuations corresponding to backscatter were probed using Thomson scattering. At low n(e), the scattered spectra peak at a frequency shift Delta omega is approximately kv e and appears to be in a linear regime. At the highest n(e), a nonlinear saturation of the SCS instability is observed due to a self-induced perturbation of the electron distribution function. Tunnel-ionized plasmas have been studied through experiments and particle simulations. Experimentally, qualitative evidence for plasma temperature control by varying the laser polarization was obtained by the measurement of stimulated Compton scattering fluctuation spectra and x-ray emission from such plasmas. A higher parallel temperature than expected from the single-particle tunneling model was observed. Simulations indicate that stochastic heating and the Weibel instability play an important role in plasma heating in all directions and isotropization. The non-linear dynamics associated with beatwave (Delta omega, Delta k) excited long wavelength plasma waves in the presence of strong, short wavelength density ripple have been examined, using the relativistic Lagrangian oscillator model. This model shows period doubling that roughly follows Feigenbaum scaling, and a transition to chaos

  15. ANALYSIS AND MITIGATION OF X-RAY HAZARD GENERATED FROM HIGH INTENSITY LASER-TARGET INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, R.; Liu, J.C.; Prinz, A.A.; Rokni, S.H.; Woods, M.; Xia, Z.; /SLAC

    2011-03-21

    Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4 x 10{sup 18} W/cm{sup 2}) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

  16. Interaction of a laser-breakdown plasma with a charged metallic target

    International Nuclear Information System (INIS)

    Vasil'ev, B.I.; Grasyuk, A.Z.; Dyad'kin, A.P.; Sukhanov, A.N.

    1981-01-01

    A study was made of the influence of a laser plasma on the potential of an insulated conducting target. It was discovered that the target potential changed stepwise on illumination with a high-power TEA CO 2 laser. A step, ΔU, in the target potential was observed and the dependences of ΔU on the initial potential, laser radiation energy density, and geometrical dimensions of the illuminated region were determined. There was an optimal pressure of the surrounding air for which ΔU had the maximum value. The dependence of ΔU on the pressure was determined, when illuminating a target in air and in nitrogen. The temporal characteristics of the variation in ΔU were correlated with the time variation of the visible and ultraviolet luminescence from the plasma. A mechanism was proposed to explain the potential step accompanying the interaction of a laser-produced plasma with a charged metallic target

  17. In vivo monitoring laser tissue interaction using high resolution Fourier-domain optical coherence tomography

    Science.gov (United States)

    Jo, Hang Chan; Shin, Dong Jun; Ahn, Jin-Chul; Chung, Phil-Sang; Kim, DaeYu

    2017-02-01

    Laser-induced therapies include laser ablation to remove or cut target tissue by irradiating high-power focused laser beam. These laser treatments are widely used tools for minimally invasive surgery and retinal surgical procedures in clinical settings. In this study, we demonstrate laser tissue interaction images of various sample tissues using high resolution Fourier-domain optical coherence tomography (Fd-OCT). We use a Q-switch diode-pumped Nd:YVO4 nanosecond laser (532nm central wavelength) with a 4W maximum output power at a 20 kHz repetition rate to ablate in vitro and in vivo samples including chicken breast and mouse ear tissues. The Fd-OCT system acquires time-series Bscan images at the same location during the tissue ablation experiments with 532nm laser irradiation. The real-time series of OCT cross-sectional (B-scan) images compare structural changes of 532nm laser ablation using same and different laser output powers. Laser tissue ablation is demonstrated by the width and the depth of the tissue ablation from the B-scan images.

  18. Induction of subterahertz surface waves on a metal wire by intense laser interaction with a foil

    Science.gov (United States)

    Teramoto, Kensuke; Inoue, Shunsuke; Tokita, Shigeki; Yasuhara, Ryo; Nakamiya, Yoshihide; Nagashima, Takeshi; Mori, Kazuaki; Hashida, Masaki; Sakabe, Shuji

    2018-02-01

    We have demonstrated that a pulsed electromagnetic wave (Sommerfeld wave) of subterahertz frequency and 11-MV/m field strength can be induced on a metal wire by the interaction of an intense femtosecond laser pule with an adjacent metal foil at a laser intensity of 8.5 × 1018W /c m2 . The polarity of the electric field of this surface wave is opposite to that obtained by the direct interaction of the laser with the wire. Numerical simulations suggest that an electromagnetic wave associated with electron emission from the foil induces the surface wave. A tungsten wire is placed normal to an aluminum foil with a gap so that the wire is not irradiated and damaged by the laser pulse, thus making it possible to generate surface waves on the wire repeatedly.

  19. A description of the apparatus to be used in interaction experiments with the ABC laser system

    International Nuclear Information System (INIS)

    Caruso, A.; Strangio, M.; Andreoli, P.L.; Cerioni, I.; Di Paolo, A.; Di Virgilio, L.

    1988-01-01

    This report contains the part of the Frascati Laboratorio Fusione Laser activity related to the Apparatus (target chamber, position and alignement system, diagnostics) to be used in the interaction experiments with the ABC laser system

  20. Attosecond pulse trains from long laser-gas interaction targets

    International Nuclear Information System (INIS)

    Hauri, C.P.; Lopez-Martens, R.; Varju, K.; Ruchon, T.; Gustafsson, E.; L'Huillier, A.

    2006-01-01

    Complete test of publication follows. Many experiments in attosecond physics require high XUV photon flux as well as a clean attosecond pulse train (APT) temporal structure. Temporal characterization of high-order harmonic generation (HHG) in long interaction targets is thus of high interest. HHG being a very inefficient process, a large effort has been made to increase the amount of XUV photons emitted per infrared laser pulse. Besides quasi phase-matching in a modulated capillary, loose driving laser focusing conditions and subsequent self-channeling have shown to significantly increase the conversion efficiency. We characterized the temporal structure of APTs generated during the self-channeling of an intense IR driving laser pulse. Our first results indicate, however, that the temporal structure of the APT generated during the HHG process might be affected by quantum path interference and spectral phase distortion due to the self-channeling process itself. In particular, our measurements show that the relative spectral phase between consecutive harmonics can strongly vary depending on the target length and the position of the laser focus with respect to the target. In general for short gas targets, no clean APT structure can be expected since the individual attosecond pulses carry significant chirp. For longer targets, however, we observe a flattening of the harmonic spectral phase, resulting in near-transform-limited attosecond pulse trains. A complete analysis of the process is complex and involves detailed knowledge of the spatial and temporal evolution of the self-channeling driver laser pulse throughout the gas target.

  1. Electron self-injection and acceleration in the bubble regime of laser-plasma interaction

    International Nuclear Information System (INIS)

    Kostyukov, I.; Nerush, E.

    2010-01-01

    Complete text of publication follows. The intense laser-plasma and beam-plasma interactions are highly nonlinear-phenomena, which besides being of fundamental interest, attract a great attention due to a number of important applications. One of the key applications is particle acceleration based on excitation of the strong plasma wakefield by laser pulse. In the linear regime of interaction when the laser intensity is low the plasma wake is the linear plasma wave. Moreover, the ponderomotive force of the laser pulse pushes out the plasma electrons from high intensity region leaving behind the laser pulse the plasma cavity - bubble, which is almost free from the plasma electrons. This is the bubble the laser-plasma interaction. Although the bubble propagates with velocity, which is close to speed of light, the huge charge of unshielded ions inside the plasma cavity can trap the cold plasma electrons. Moreover, the electrons are trapped in the accelerated phase of the bubble plasma field thereby leading to efficient electron acceleration. The electron self-injection is an important advantage of the plasma-based acceleration, which allows to exclude the beam loading system requiring accurate synchronization and additional space. The recent experiments have demonstrated high efficiency of the electron self-injection. The beam quality is often of crucial importance in many applications ranging from inertial confinement fusion to the x-ray free electron lasers. Despite a great interest there is still a little theory for relativistic electron dynamics in the plasma wake in multidimensional geometry including electron self-injection. The dynamics of the self-injected electrons can be roughly divided into three stage: (i) electron scattering by the laser pulse, (ii) electron trapping by the bubble, (iii) electron acceleration in the bubble. We developed two analytical models for electron dynamics in the bubble field and verify them by direct measurements of model parameters

  2. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas

    International Nuclear Information System (INIS)

    Solodov, A.

    2000-12-01

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  3. Analysis of the Interaction of Pulsed Laser with Nanoporous Activated Carbon Cloth

    Institute of Scientific and Technical Information of China (English)

    B.V. Kalucljerovic; M.S. Trtica; B.B. Radak; J.M. Stasic; S.S. Krstic Musovic; V.M. Dodevski

    2011-01-01

    Interaction of pulsed transversely excited atmospheric (TEA) CO2-1aser radiation at 10.6 μm with nanoporous activated carbon cloth was investigated. Activated carbon cloth of different adsorption characteristics was used. Activated carbon cloth modifications were initiated by laser pulse intensities from 0.5 to 28 MW/cm^2, depending on the cloth adsorption characteristics. CO2 laser radiation was effectively absorbed by the used activated carbon cloth and largely converted into thermal energy. The type of modification depended on laser power density, number of pulses, but mostly on material characteristics such as specific surface area. The higher the surface area of activated carbon cloth, the higher the damage threshold.

  4. 2nd Workshop on Laser Interaction and Related Plasma Phenomena

    CERN Document Server

    Hora, Heinrich

    1972-01-01

    Paul Harteck Rensselaer Polytechnic Institute Troy, New York When the Maser and the Laser Were discovered, people were speculating if this was the beginning of a new page, or even a new chapter, in the Book of Physics. The Second Workshop on "Laser Interaction and Related Plasma Phenomena" held in Hartford made it clear that the perspective had changed, that people now question if the consequences of these discoveries constitute a new chapter, or possibly a new era in Physics. While the papers presented were all stimulating and of out­ standing quality, of special interest were the experiments which demonstrated that triggering of thermonuclear fusion by Laser techniques is indeed in the realm of the possible. Along these lines, I enjoy recalling an anecdote concerning the late F. G. Houtermans. I think that all who knew him will agree that he was an unusual genius and at the same time a very amusing colleague.

  5. Multiclustered chimeras in large semiconductor laser arrays with nonlocal interactions

    Science.gov (United States)

    Shena, J.; Hizanidis, J.; Hövel, P.; Tsironis, G. P.

    2017-09-01

    The dynamics of a large array of coupled semiconductor lasers is studied numerically for a nonlocal coupling scheme. Our focus is on chimera states, a self-organized spatiotemporal pattern of coexisting coherence and incoherence. In laser systems, such states have been previously found for global and nearest-neighbor coupling, mainly in small networks. The technological advantage of large arrays has motivated us to study a system of 200 nonlocally coupled lasers with respect to the emerging collective dynamics. Moreover, the nonlocal nature of the coupling allows us to obtain robust chimera states with multiple (in)coherent domains. The crucial parameters are the coupling strength, the coupling phase and the range of the nonlocal interaction. We find that multiclustered chimera states exist in a wide region of the parameter space and we provide quantitative characterization for the obtained spatiotemporal patterns. By proposing two different experimental setups for the realization of the nonlocal coupling scheme, we are confident that our results can be confirmed in the laboratory.

  6. Deposition of tantalum carbide coatings on graphite by laser interactions

    Science.gov (United States)

    Veligdan, James; Branch, D.; Vanier, P. E.; Barietta, R. E.

    1994-01-01

    Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000 C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing involved the use of a CO2 laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl5 gas near the substrate. The results of preliminary experiments using these techniques are described.

  7. Laser plasma interactions in hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Kruer, W.L.

    1994-10-05

    Lasers plasma instabilities are an important constraint in x-ray driven inertial confinement fusion. In hohlraums irradiated with 1.06 {mu}m light on the Shiva laser, plasma instabilities were extremely deleterious, driving the program to the use of shorter wavelength light. Excellent coupling has been achieved in hohlraums driven with 0.35 {mu}m light on the Nova laser. Considerable attention is being given to the scaling of this excellent coupling to the larger hohlraums for an ignition target. Various instability control mechanisms such as large plasma wave damping and laser beam incoherence are discussed, as well as scaling experiments to check the instability levels.

  8. Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Taiee [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-09-25

    A systematic study of photon and neutron radiation doses generated in high-intensity laser-solid interactions is underway at SLAC National Accelerator Laboratory. We found that these laser-solid experiments are being performed using a 25 TW (up to 1 J in 40 fs) femtosecond pulsed Ti:sapphire laser at the Linac Coherent Light Source’s (LCLS) Matter in Extreme Conditions (MEC) facility. Additionally, radiation measurements were performed with passive and active detectors deployed at various locations inside and outside the target chamber. Results from radiation dose measurements for laser-solid experiments at SLAC MEC in 2014 with peak intensity between 1018 to 7.1x1019 W/cm2 are presented.

  9. Strong field QED in lepton colliders and electron/laser interactions

    Science.gov (United States)

    Hartin, Anthony

    2018-05-01

    The studies of strong field particle physics processes in electron/laser interactions and lepton collider interaction points (IPs) are reviewed. These processes are defined by the high intensity of the electromagnetic fields involved and the need to take them into account as fully as possible. Thus, the main theoretical framework considered is the Furry interaction picture within intense field quantum field theory. In this framework, the influence of a background electromagnetic field in the Lagrangian is calculated nonperturbatively, involving exact solutions for quantized charged particles in the background field. These “dressed” particles go on to interact perturbatively with other particles, enabling the background field to play both macroscopic and microscopic roles. Macroscopically, the background field starts to polarize the vacuum, in effect rendering it a dispersive medium. Particles encountering this dispersive vacuum obtain a lifetime, either radiating or decaying into pair particles at a rate dependent on the intensity of the background field. In fact, the intensity of the background field enters into the coupling constant of the strong field quantum electrodynamic Lagrangian, influencing all particle processes. A number of new phenomena occur. Particles gain an intensity-dependent rest mass shift that accounts for their presence in the dispersive vacuum. Multi-photon events involving more than one external field photon occur at each vertex. Higher order processes which exchange a virtual strong field particle resonate via the lifetimes of the unstable strong field states. Two main arenas of strong field physics are reviewed; those occurring in relativistic electron interactions with intense laser beams, and those occurring in the beam-beam physics at the interaction point of colliders. This review outlines the theory, describes its significant novel phenomenology and details the experimental schema required to detect strong field effects and the

  10. Interaction of cw CO2 laser radiation with plasma near-metallic substrate surface

    Science.gov (United States)

    Azharonok, V. V.; Astapchik, S. A.; Zabelin, Alexandre M.; Golubev, Vladimir S.; Golubev, V. S.; Grezev, A. N.; Filatov, Igor V.; Chubrik, N. I.; Shimanovich, V. D.

    2000-07-01

    Optical and spectroscopic methods were used in studying near-surface plasma that is formed under the effect CW CO2 laser of (2- 5)x106W/cm2 power density upon stainless steel in He and Ar shielding gases. The variation of plume spatial structure with time has been studied, the outflow of gas-vapor jets from the interaction area has been characterized. The spectra of plasma plume pulsations have been obtained for the frequency range Δf = 0-1 MHz. The temperature and electron concentration of plasma plume have been found under radiation effect upon the target of stainless steel. Consideration has been given to the most probable mechanisms of CW laser radiation-metal non-stationary interaction.

  11. Microwave modeling of laser plasma interactions. Final report

    International Nuclear Information System (INIS)

    1983-08-01

    For a large laser fusion targets and nanosecond pulse lengths, stimulated Brillouin scattering (SBS) and self-focusing are expected to be significant problems. The goal of the contractual effort was to examine certain aspects of these physical phenomena in a wavelength regime (lambda approx.5 cm) more amenable to detailed diagnostics than that characteristic of laser fusion (lambda approx.1 micron). The effort was to include the design, fabrication and operation of a suitable experimental apparatus. In addition, collaboration with Dr. Neville Luhmann and his associates at UCLA and with Dr. Curt Randall of LLNL, on analysis and modelling of the UCLA experiments was continued. Design and fabrication of the TRW experiment is described under ''Experiment Design'' and ''Experimental Apparatus''. The design goals for the key elements of the experimental apparatus were met, but final integration and operation of the experiment was not accomplished. Some theoretical considerations on the interaction between Stimulated Brillouin Scattering and Self-Focusing are also presented

  12. First laser-plasma interaction and hohlraum experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, E L; Glenzer, S H; Landen, O L; Suter, L J; Jones, O S; Schein, J; Froula, D; Divol, L; Campbell, K; Schneider, M S; Holder, J; McDonald, J W; Niemann, C; Mackinnon, A J; Hammel, B A [Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94550 (United States)

    2005-12-15

    Recently the first laser-plasma interaction and hohlraum experiments have been performed at the National Ignition Facility (NIF) in support of indirect drive inertial confinement fusion designs. The effects of laser beam smoothing by spectral dispersion and polarization smoothing on the intense (2 x 10{sup 15} W cm{sup -2}) beam propagation in gas-filled tubes has been studied at up to 7 mm plasma scales as found in indirect drive gas filled ignition hohlraum designs. These experiments have shown the expected full propagation without filamentation and beam break up when using full laser smoothing. In addition, vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the Nova and Omega laser facilities. Subsequently, novel long laser pulse hohlraum experiments have tested models of hohlraum plasma filling and long pulse hohlraum radiation production. The validity of the plasma filling assessment using in analytical models and radiation hydrodynamics calculations with the code LASNEX has been proven in these studies. The comparison of these results with modelling will be discussed.

  13. Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes

    NARCIS (Netherlands)

    Kim, Jun Wan; Choi, Sun Young; Yeom, Dong-Il; Aravazhi, S.; Pollnau, Markus; Griebner, Uwe; Petrov, Valentin; Rotermund, Fabian

    2013-01-01

    We report Q-switched operation of a planar waveguide laser by evanescent-field interaction with single-walled carbon nanotubes deposited on top of the waveguide. The saturable-absorber-integrated gain medium, which operates based on evanescent-field interaction, enables the realization of a

  14. Investigating the interaction of x-ray free electron laser radiation with grating structure

    NARCIS (Netherlands)

    Gaudin, J.; Ozkan, C.; Chalupsky, J.; Bajt, S.; Burian, T.; Vysin, L.; Coppola, N.; Farahani, S. D.; Chapman, H. N.; Galasso, G.; Hajkova, V.; Harmand, M.; Juha, L.; Jurek, M.; Loch, R. A.; Möller, S.; Nagasono, M.; Stormer, M.; Sinn, H.; Saksl, K.; Sobierajski, R.; Schulz, J.; Sovak, P.; Toleikis, S.; Tiedtke, K.; Tschentscher, T.; Krzywinski, J.

    2012-01-01

    The interaction of free electron laser pulses with grating structure is investigated using 4.6 +/- 0.1 nm radiation at the FLASH facility in Hamburg. For fluences above 63.7 +/- 8.7 mJ/cm(2), the interaction triggers a damage process starting at the edge of the grating structure as evidenced by

  15. Study of laser - matter interaction applied to the decontamination of paints; Etude de l'interaction laser - matiere appliquee a la decontamination de peintures

    Energy Technology Data Exchange (ETDEWEB)

    Brygo, F

    2005-12-15

    In nuclear industry, the paint layer on the walls must be removed during dismantling or maintenance operation. Laser ablation of the paint layer allows to reduce the generated waste volume, compared to the current techniques. Paints consist of a polymeric base in which fillers and pigments are included. The energy deposition of the laser beam in this scattering medium is studied using a multiple scattering model, and measurements of reflection / transmission of beam through thin layers. The paint ablation is studied with several Nd: YAG lasers and a TEA-CO{sub 2} laser, allowing to modify the fluence, the wavelength, the pulse duration, the repetition rate and the number of shots. Optical benches were carried out, and the parametric tests allow to define the optimal ablation parameters, in term of ablation efficiency. Ablation at high repetition rate is studied using an optical pyrometer and a specifically developed thermal model. Measurements and modelling highlight the heat accumulation that appears at high repetition rate. This accumulation allows to reduce the ablation threshold fluence and to increase the ablation efficiency. Analyses of the interaction and ablation regimes are proposed on the basis of the experimental results and models, and allow to optimise the decontamination process. (author)

  16. Contrasting the beam interaction characteristics of selected lasers with a partially stabilized zirconia bio-ceramic

    International Nuclear Information System (INIS)

    Lawrence, J.

    2002-01-01

    Differences in the beam interaction characteristics of a CO 2 laser, a Nd:YAG laser, a high power diode laser (HPDL) and an excimer laser with a partially stabilized zirconia bio-ceramic have been studied. A derivative of Beer-Lambert's law was applied and the laser beam absorption lengths of the four lasers were calculated as 33.55x10 -3 cm for the CO 2 laser, 18.22x10 -3 cm for the Nd : YAG laser, 17.17x10 -3 cm for the HPDL and 8.41x10 -6 cm for the excimer laser. It was determined graphically that the fluence threshold values at which significant material removal was effected by the CO 2 laser, the Nd:YAG laser, the HPDL and the excimer laser were 52 J cm -2 , 97 J cm -2 , 115 J cm -2 and 0.48 J cm -2 , respectively. The thermal loading value for the CO 2 laser, the Nd : YAG laser, the HPDL and the excimer laser were calculated as being 1.55 kJ cm -3 , 5.32 kJ cm 3 , 6.69 kJ cm -3 and 57.04 kJ cm -3 , respectively. (author)

  17. Studies of Positron Generation from Ultraintense Laser-Matter Interactions

    Science.gov (United States)

    Williams, Gerald Jackson

    Laser-produced pair jets possess unique characteristics that offer great potential for their use in laboratory-astrophysics experiments to study energetic phenomenon such as relativistic shock accelerations. High-flux, high-energy positron sources may also be used to study relativistic pair plasmas and useful as novel diagnostic tools for high energy density conditions. Copious amounts of positrons are produced with MeV energies from directly irradiating targets with ultraintense lasers where relativistic electrons, accelerated by the laser field, drive positron-electron pair production. Alternatively, laser wakefield accelerated electrons can produce pairs by the same mechanisms inside a secondary converter target. This dissertation describes a series of novel experiments that investigate the characteristics and scaling of pair production from ultraintense lasers, which are designed to establish a robust platform for laboratory-based relativistic pair plasmas. Results include a simple power-law scaling to estimate the effective positron yield for elemental targets for any Maxwellian electron source, typical of direct laser-target interactions. To facilitate these measurements, a solenoid electromagnetic coil was constructed to focus emitted particles, increasing the effective collection angle of the detector and enabling the investigation of pair production from thin targets and low-Z materials. Laser wakefield electron sources were also explored as a compact, high repetition rate platform for the production of high energy pairs with potential applications to the creation of charge-neutral relativistic pair plasmas. Plasma accelerators can produce low-divergence electron beams with energies approaching a GeV at Hz frequencies. It was found that, even for high-energy positrons, energy loss and scattering mechanisms in the target create a fundamental limit to the divergence and energy spectrum of the emitted positrons. The potential future application of laser

  18. The Validity of a Paraxial Approximation in the Simulation of Laser Plasma Interactions

    International Nuclear Information System (INIS)

    Hyole, E. M.

    2000-01-01

    The design of high-power lasers such as those used for inertial confinement fusion demands accurate modeling of the interaction between lasers and plasmas. In inertial confinement fusion, initial laser pulses ablate material from the hohlraum, which contains the target, creating a plasma. Plasma density variations due to plasma motion, ablating material and the ponderomotive force exerted by the laser on the plasma disrupt smooth laser propagation, undesirably focusing and scattering the light. Accurate and efficient computational simulations aid immensely in developing an understanding of these effects. In this paper, we compare the accuracy of two methods for calculating the propagation of laser light through plasmas. A full laser-plasma simulation typically consists of a fluid model for the plasma motion and a laser propagation model. These two pieces interact with each other as follows. First, given the plasma density, one propagates the laser with a refractive index determined by this density. Then, given the laser intensities, the calculation of one time step of the plasma motion provides a new density for the laser propagation. Because this procedure repeats over many time steps, each piece must be performed accurately and efficiently. In general, calculation of the light intensities necessitates the solution of the Helmholtz equation with a variable index of refraction. The Helmholtz equation becomes extremely difficult and time-consuming to solve as the problem size increases. The size of laser-plasma problems of present interest far exceeds current capabilities. To avoid solving the full Helmholtz equation one may use a partial approximation. Generally speaking the partial approximation applies when one expects negligible backscattering of the light and only mild scattering transverse to the direction of light propagation. This approximation results in a differential equation that is first-order in the propagation direction that can be integrated

  19. Interaction of an atom subject to an intense laser field with its own radiation field and nonlocality of electromagnetic interaction

    International Nuclear Information System (INIS)

    Gainutdinov, R Kh; Mutygullina, A A

    2009-01-01

    We discuss the interaction of an atom subject to an intense driving laser field with its own radiation field. In contrast to the states of bare atoms, the energy difference between some dressed states with the same total angular momentum, its projection and parity may be very small. The self-interaction of a combined atom-laser system associated with nonradiative transitions between such states is effectively strong. We show that the contribution to the radiative shift of the sidebands of the Mollow spectrum, which comes from such processes, is very significant and may be much larger than the trivial Lamb shift, which is the simple redistribution of the Lamb shifts of the corresponding bare states. In the final part, we discuss the possibility that in the Mollow spectrum nonlocality of electromagnetic interaction, which in other cases is hidden in the regularization and renormalization procedures, can manifest itself explicitly.

  20. Magnus expansion for laser-matter interaction: Application to generic few-cycle laser pulses

    DEFF Research Database (Denmark)

    Klaiber, Michael; Dimitrovski, Darko; Briggs, John S.

    2009-01-01

    We treat the interaction of an atom with a short intense few-cycle laser pulse by the use of the Magnus expansion of the time-evolution operator. Terms of the Magnus expansion up to the third order in the pulse duration are evaluated explicitly, and expressions for the transition probability...... of the Magnus approximation are in excellent agreement with time-dependent transition probabilities obtained from accurate ab initio numerical calculations. However, the limitation of the Magnus expansion for pulses having both vanishing momentum and position shifts is demonstrated also....

  1. INTERACTION OF LASER RADIATION WITH MATTER: Influence of surface breakdown on the process of drilling metals with pulsed CO2 laser radiation

    Science.gov (United States)

    Arutyunyan, R. V.; Baranov, V. Yu; Bobkov, I. V.; Bol'shov, Leonid A.; Dolgov, V. A.; Kanevskiĭ, M. F.; Malyuta, D. D.; Mezhevov, V. S.

    1988-03-01

    A report is given of the influence of low-threshold surface optical breakdown, occurring under the action of short (~ 5-μs) radiation pulses from a CO2 laser, on the process of the laser drilling of metals. Data are given on the difference between the interaction of radiation pulses having the same duration but differing in shape. A study was made of the influence of the pressure of the atmosphere surrounding a target on the results of laser drilling of metals. A theoretical explanation is given of the experimental results.

  2. Thermal Investigation of Interaction between High-power CW-laser Radiation and a Water-jet

    Science.gov (United States)

    Brecher, Christian; Janssen, Henning; Eckert, Markus; Schmidt, Florian

    The technology of a water guided laser beam has been industrially established for micro machining. Pulsed laser radiation is guided via a water jet (diameter: 25-250 μm) using total internal reflection. Due to the cylindrical jet shape the depth of field increases to above 50 mm, enabling parallel kerfs compared to conventional laser systems. However higher material thicknesses and macro geometries cannot be machined economically viable due to low average laser powers. Fraunhofer IPT has successfully combined a high-power continuous-wave (CW) fiber laser (6 kW) and water jet technology. The main challenge of guiding high-power laser radiation in water is the energy transferred to the jet by absorption, decreasing its stability. A model of laser water interaction in the water jet has been developed and validated experimentally. Based on the results an upscaling of system technology to 30 kW is discussed, enabling a high potential in cutting challenging materials at high qualities and high speeds.

  3. Control of ion beam generation in intense short pulse laser target interaction

    International Nuclear Information System (INIS)

    Nagashima, T.; Izumiyama, T.; Barada, D.; Kawata, S.; Gu, Y.J.; Wang, W.M.; Ma, Y.Y.; Kong, Q.

    2013-01-01

    In intense laser plasma interaction, several issues still remain to be solved for future laser particle acceleration. In this paper we focus on a control of generation of high-energy ions. In this study, near-critical density plasmas are employed and are illuminated by high intensity short laser pulses; we have successfully generated high-energy ions, and also controlled ion energy and the ion energy spectrum by multiple-stages acceleration. We performed particle-in-cell simulations in this paper. The first near-critical plasma target is illuminated by a laser pulse, and the ions accelerated are transferred to the next target. The next identical target is also illuminated by another identical large pulse, and the ion beam introduced is further accelerated and controlled. In this study four stages are employed, and finally a few hundreds of MeV of protons are realized. A quasi-monoenergetic energy spectrum is also obtained. (author)

  4. Design of an Experiment to Observe Laser-Plasma Interactions on NIKE

    Science.gov (United States)

    Phillips, L.; Weaver, J.; Manheimer, W.; Zalesak, S.; Schmitt, A.; Fyfe, D.; Afeyan, B.; Charbonneau-Lefort, M.

    2007-11-01

    Recent proposed designs (Obenschain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities combined with higher laser irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) that may lead, for example, to the generation of fast electrons. The proposed use of a 248 nm KrF laser to drive these targets is expected to minimize LPI; this is being studied by experiments at NRL's NIKE facility. We used a modification of the FAST code that models laser pulses with arbitrary spatial and temporal profiles to assist in designing these experiments. The goal is to design targets and pulseshapes to create plasma conditions that will produce sufficient growth of LPI to be observable on NIKE. Using, for example, a cryogenic DT target that is heated by a brief pulse and allowed to expand freely before interacting with a second, high-intensity pulse, allows the development of long scalelengths at low electron temperatures and leads to a predicted 20-efold growth in two-plasmon amplitude.

  5. Interaction of a laser breakdown plasma with a charged metallic target

    Energy Technology Data Exchange (ETDEWEB)

    Vasil' ev, B I; Grasyuk, A Z; Dyad' kin, A P; Sukhanov, A N [AN SSSR, Moscow. Fizicheskij Inst.

    1981-11-01

    An effect has been studied of the laser plasma on potential of an insulated conducting target made of aluminium. Targets of 2.4 and 6 cm diameter were used. Spot sizes on the target changed by means of a diaphragm. A change has been found in the charged target potential upon exposure to the high-power TEA CO/sub 2/ laser radiation. Dependences are presented of the jump in the target potential ..delta..U on the initial target potential, laser radiation energy density, geometrical size of the exposed region. It has been established that there is an optimal pressure of the ambient air under which ..delta..U reaches maximum. A dependence is presented of ..delta..U on the pressure upon target exposure in the air and in nitrogen. Temporal characteristics of the ..delta..U variation correlate with those of plasma glow in the visible and ultraviolet bands. A mechanism is suggested which explains the potential jump under the interaction between the laser plasma and the charged metallic target.

  6. Using X-ray spectroheliograph technique for investigations of laser-produced plasma under interaction with strong magnetic field

    International Nuclear Information System (INIS)

    Faenov, A.; Dyakin, V.; Magunov, A.; Pikuz, T.; Skobelev, I.; Pikuz, S.; Pisarczyk, T.; Wolowski, J.; Zielinska, E.

    1996-01-01

    A dense jet of a plasma consisting of multiply charged ions was generated in the interaction of a laser plasma with a strong external axial magnetic field. It is shown that using the high-luminosity X-ray spectroheliograph technique allows to measure plasma emission spectra with 2-dimensional spatial resolution even in the cases when these spectra have small intensities. The X-ray spectroscopy and interferometry methods are used to measure plasma parameter distributions. The dependencies of N e (z) and T e (z) measured in this paper can be used to calculate the evolution of plasma ionization state during plasma expansion. The quasihomogeneous laser jet, which appears when a laser plasma interacts with an external magnetic field can be used not only to form an active medium of a short wavelength laser, but probably also to tackle the urgent problem of transport in a laser ion injector. (orig.)

  7. Using X-ray spectroheliograph technique for investigations of laser-produced plasma under interaction with strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Dyakin, V. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Magunov, A. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Pikuz, T. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Skobelev, I. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Pikuz, S. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Fizicheskij Inst.; Kasperczyk, A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Pisarczyk, T. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Zielinska, E. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland)

    1996-08-01

    A dense jet of a plasma consisting of multiply charged ions was generated in the interaction of a laser plasma with a strong external axial magnetic field. It is shown that using the high-luminosity X-ray spectroheliograph technique allows to measure plasma emission spectra with 2-dimensional spatial resolution even in the cases when these spectra have small intensities. The X-ray spectroscopy and interferometry methods are used to measure plasma parameter distributions. The dependencies of N{sub e}(z) and T{sub e}(z) measured in this paper can be used to calculate the evolution of plasma ionization state during plasma expansion. The quasihomogeneous laser jet, which appears when a laser plasma interacts with an external magnetic field can be used not only to form an active medium of a short wavelength laser, but probably also to tackle the urgent problem of transport in a laser ion injector. (orig.).

  8. Interaction of Supernova Blast Waves with Interstellar Clouds: Experiments on the Omega Laser

    International Nuclear Information System (INIS)

    Klein, R.I.; Robey, H.F.; Perry, T.S.; Kane, J.O.; Greenough, J.A.; Marinak, M.M.

    2001-01-01

    The interaction of strong shock waves, such as those generated by the explosion of supernovae with interstellar clouds, is a problem of fundamental importance in understanding the evolution and the dynamics of the interstellar medium (ISM) as it is disrupted by shock waves. The physics of this essential interaction is critical to understanding the evolution of the ISM, the mixing of interstellar clouds with the ISM and the viability of this mechanism for triggered star formation. Here we present the results of a series of new OMEGA laser experiments investigating the evolution of a high density sphere embedded in a low density medium after the interaction of a strong shock wave, thereby emulating the supernova shock-cloud interaction. The interaction is viewed from two orthogonal directions enabling visualization of the both the initial distortion of the sphere into a vortex ring as well as the onset of an azimuthal instability that ultimately results in the three-dimensional breakup of the ring. These studies augment previous studies [1,2] on the NOVA laser by enabling the full three-dimensional topology of the interaction to be understood. We show that the experimental results for the vortex ring are in remarkable agreement with the incompressible theory of Widnall [3]. Implications for mixing in the ISM are discussed

  9. Interaction of both plasmas in CO2 laser-MAG hybrid welding of carbon steel

    Science.gov (United States)

    Kutsuna, Muneharu; Chen, Liang

    2003-03-01

    Researches and developments of laser and arc hybrid welding has been curried out since in 1978. Especially, CO2 laser and TIG hybrid welding has been studied for increasing the penetration depth and welding speed. Recently laser and MIG/MAG/Plasma hybrid welding processes have been developed and applied to industries. It was recognized as a new welding process that promote the flexibility of the process for increasing the penetration depth, welding speed and allowable joint gap and improving the quality of the welds. In the present work, CO2 Laser-MAG hybrid welding of carbon steel (SM490) was investigated to make clear the phenomenon and characteristics of hybrid welding process comparing with laser welding and MAG process. The effects of many process parameters such as welding current, arc voltage, welding speed, defocusing distance, laser-to-arc distance on penetration depth, bead shape, spatter, arc stability and plasma formation were investigated in the present work. Especially, the interaction of laser plasma and MAG arc plasma was considered by changing the laser to arc distance (=DLA).

  10. New target for high-intensity laser-matter interaction: Gravitational flow of micrometer-sized powders

    International Nuclear Information System (INIS)

    Servol, M.; Quere, F.; Bougeard, M.; Monot, P.; Martin, Ph.; Faenov, A.Ya; Pikuz, T.A.; Audebert, P.; Francucci, M.; Petrocelli, G.

    2005-01-01

    The design of efficient targets for high-intensity laser-matter interaction is essential to fully exploit the advantages of laser-induced photons or particles sources. We present an advantageous kind of target, consisting in a free gravitational flow of micrometer-sized powder, and describe its main technical characteristics. We demonstrate a laser-induced keV x-ray source using this target, and show that the photon flux obtained for the Kα line of Si by irradiating different silica powders is comparable to the one obtained with a bulk silica target

  11. Fast ions and hot electrons in the laser--plasma interaction

    International Nuclear Information System (INIS)

    Gitomer, S.J.; Jones, R.D.; Begay, F.; Ehler, A.W.; Kephart, J.F.; Kristal, R.

    1986-01-01

    Data on the emission of energetic ions produced in laser--matter interactions have been analyzed for a wide variety of laser wavelengths, energies, and pulse lengths. Strong correlation has been found between the bulk energy per AMU for fast ions measured by charge cups and the x-ray-determined hot electron temperature. Five theoretical models have been used to explain this correlation. The models include (1) a steady-state spherically symmetric fluid model with classical electron heat conduction, (2) a steady-state spherically symmetric fluid model with flux limited electron heat conduction, (3) a simple analytic model of an isothermal rarefaction followed by a free expansion, (4) the lasneX hydrodynamics code [Comments Plasma Phys. Controlled Fusion 2, 85 (1975)], calculations employing a spherical expansion and simple initial conditions, and (5) the lasneX code with its full array of absorption, transport, and emission physics. The results obtained with these models are in good agreement with the experiments and indicate that the detailed shape of the correlation curve between mean fast ion energy and hot electron temperature is due to target surface impurities at the higher temperatures (higher laser intensities) and to the expansion of bulk target material at the lower temperatures (lower laser intensities)

  12. Nuclear diagnostics of high intensity laser plasma interactions

    International Nuclear Information System (INIS)

    Krushelnick, K.; Santala, M.I.K.; Beg, F.N.; Clark, E.L.; Dangor, A.E.; Tatarakis, M.; Watts, I.; Wei, M.S.; Zepf, M.; Ledingham, K.W.D.; McCanny, T.; Spencer, I.; Clarke, R.J.; Norreys, P.A.

    2002-01-01

    Nuclear activation has been observed in materials exposed to energetic protons and heavy ions generated from high intensity laser-solid interactions (at focused intensities up to 5x10 19 W/cm 2 ). The energy spectrum of the protons is determined through the use of these nuclear activation techniques and is found to be consistent with other ion diagnostics. Heavy ion fusion reactions and large neutron fluxes from the (p, n) reactions were also observed. The reduction of proton emission and increase in heavy ion energy using heated targets was also observed

  13. Recent progress in particle acceleration from the interaction between thin-foil targets and J-KAREN laser pulses

    Science.gov (United States)

    Nishiuchi, Mamiko; Pirozhkov, Alexander S.; Sakaki, Hironao; Ogura, Koichi; Esirkepov, Timur Zh; Tanimoto, Tsuyoshi; Yogo, Akifumi; Hori, Toshihiko; Sagisaka, Akito; Fukuda, Yuji; Kanasaki, Masato; Kiriyama, Hiromitsu; Shimomura, Takuya; Tanoue, Manabu; Nakai, Yoshiki; Sasao, Hajime; Sasao, Fumitaka; Kanazawa, Shuhei; Kondo, Shuji; Matsumoto, Yoshihiro; Sakai, Seiji; Brenner, Ceri; Neely, David; Bulanov, Sergei V.; Kondo, Kiminori

    2012-07-01

    From the interaction between the high-contrast (˜more than 1010) 130 TW Ti:sapphire laser pulse and Stainless Steel-2.5 um-thick tape target, proton beam with energies up to 23 MeV with the conversion efficiency of ˜1% is obtained. After plasma mirror installation for contrast improvement, from the interaction between the 30 TW laser pulse and thin-foil target installed on the target holder with the hole whose shape is associated with the design of the well-known Wehnelt electrode of electron-gun, a 7 MeV intense proton beam is controlled dynamically and energy selected by the self-induced quasi-static electric field on the target holder. From the highly divergent beam having continuous spectrum, which are the typical features of the laser-driven proton beams from the interactions between the short-pulse laser and solid target, the spatial distribution of 7 MeV proton bunch is well manipulated to be focused to an small spots with an angular distribution of ˜10 mrad. The number of protons included in the bunch is >106.

  14. Extreme field limits in the interaction of laser light with ultrarelativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, S. V.; Esirkepov, T. Zh.; Hayashi, Y.; Kando, M.; Kiriyama, H.; Koga, J.; Kondo, K.; Kotaki, H.; Pirozhkov, A.; Bulanov, S. S.; Zhidkov, A.; Chen, P.; Neely, D.; Kato, Y.; Narozhny, N. B.; Korn, G. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); University of California, Berkeley, CA 94720 (United States); Osaka University, Osaka 565-0871 (Japan); National Taiwan University, Taipei 10617, Taiwan (China); Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka 431-1202 (Japan); Moscow Engineering Physics Institute (State University), Moscow 115409 (Russian Federation); Max-Planck-Institut fuer Quantenoptik, Garching 85748 (Germany) and ELI Beamline Facility, Institute of Physics, CAS, Prague 18221 (Czech Republic)

    2012-07-11

    The critical electric field of quantum electrodynamics is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. This field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. A feasibility of the experiments on the collision of laser light and high intensity electromagnetic pulses, generated by relativistic flying mirrors, with relativistic electrons for the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is discussed.

  15. Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser-Plasma Interactions

    Science.gov (United States)

    2016-08-19

    Science, University ofMichigan, AnnArbor,MI 48109-2099, USA E-mail: czulick@umich.edu Keywords: laser- plasma ,mass-limited, fast electrons , sheath...New J. Phys. 18 (2016) 063020 doi:10.1088/1367-2630/18/6/063020 PAPER Target surface area effects on hot electron dynamics from high intensity laser... plasma interactions CZulick, ARaymond,AMcKelvey, VChvykov, AMaksimchuk, AGRThomas, LWillingale, VYanovsky andKKrushelnick Center forUltrafast Optical

  16. Electron trajectory evaluation in laser-plasma interaction for effective output beam

    Science.gov (United States)

    Zobdeh, P.; Sadighi-Bonabi, R.; Afarideh, H.

    2010-06-01

    Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generated from other methods such as periodic plasma wave field, spheroidal cavity regime and plasma channel guided acceleration. Trajectory of electron motion is described as hyperbolic, parabolic or elliptic paths. We find that the self-generated electron bunch has a smaller energy width and more effective gain in energy spectrum. Initial condition for the ellipsoidal cavity is determined by laser-plasma parameters. The electron trajectory is influenced by its position, energy and cavity electrostatic potential.

  17. Generation of ten kilotesla longitudinal magnetic fields in ultraintense laser-solenoid target interactions

    OpenAIRE

    Xiao, K. D.; Zhou, C. T.; Zhang, H.; Huang, T. W.; Li, R.; Qiao, B.; Cao, J. M.; Cai, T. X.; Ruan, S. C.; He, X. T.

    2018-01-01

    Production of the huge longitudinal magnetic fields by using an ultraintense laser pulse irradiating a solenoid target is considered. Through three-dimensional particle-in-cell simulations, it is shown that the longitudinal magnetic field up to ten kilotesla can be observed in the ultraintense laser-solenoid target interactions. The finding is associated with both fast and return electron currents in the solenoid target. The huge longitudinal magnetic field is of interest for a number of impo...

  18. High-resolution multi-MeV x-ray radiography using relativistic laser-solid interaction

    International Nuclear Information System (INIS)

    Courtois, C.; Compant La Fontaine, A.; Barbotin, M.; Bazzoli, S.; Brebion, D.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Le Dain, L.; Lefebvre, E.; Pichoff, N.; Edwards, R.; Aedy, C.; Biddle, L.; Drew, D.; Gardner, M.; Ramsay, M.; Simons, A.; Sircombe, N.

    2011-01-01

    When high intensity (≥10 19 W cm -2 ) laser light interacts with matter, multi-MeV electrons are produced. These electrons can be utilized to generate a MeV bremsstrahlung x-ray emission spectrum as they propagate into a high-Z solid target positioned behind the interaction area. The short duration ( 2 ) object is then performed with few hundred microns spatial resolution.

  19. Analog phase lock between two lasers at LISA power levels

    International Nuclear Information System (INIS)

    Diekmann, Christian; Steier, Frank; Sheard, Benjamin; Heinzel, Gerhard; Danzmann, Karsten

    2009-01-01

    This paper presents the implementation of an analog optical phase-locked-loop with an offset frequency of about 20MHz between two lasers, where the detected light powers were of the order of 31 pW and 200 μW. The goal of this setup was the design and characterization of a photodiode transimpedance amplifier for application in LISA. By application of a transimpedance amplifier designed to have low noise and low power consumption, the phase noise between the two lasers was a factor of two above the shot noise limit down to 60mHz. The achievable phase sensitivity depends ultimately on the available power of the highly attenuated master laser and on the input current noise of the transimpedance amplifier of the photodetector. The limiting noise source below 60mHz was the analog phase measurement system that was used in this experiment. A digital phase measurement system that is currently under development at the AEI will be used in the near future. Its application should improve the sensitivity.

  20. Analog phase lock between two lasers at LISA power levels

    Energy Technology Data Exchange (ETDEWEB)

    Diekmann, Christian; Steier, Frank; Sheard, Benjamin; Heinzel, Gerhard; Danzmann, Karsten, E-mail: Christian.Diekmann@aei.mpg.d [Max-Planck-Institute for Gravitational Physics, Callinstr. 38, D-30167 Hannover (Germany)

    2009-03-01

    This paper presents the implementation of an analog optical phase-locked-loop with an offset frequency of about 20MHz between two lasers, where the detected light powers were of the order of 31 pW and 200 muW. The goal of this setup was the design and characterization of a photodiode transimpedance amplifier for application in LISA. By application of a transimpedance amplifier designed to have low noise and low power consumption, the phase noise between the two lasers was a factor of two above the shot noise limit down to 60mHz. The achievable phase sensitivity depends ultimately on the available power of the highly attenuated master laser and on the input current noise of the transimpedance amplifier of the photodetector. The limiting noise source below 60mHz was the analog phase measurement system that was used in this experiment. A digital phase measurement system that is currently under development at the AEI will be used in the near future. Its application should improve the sensitivity.

  1. Complete elimination of nonlinear light-matter interactions with broadband ultrafast laser pulses

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Dong, Daoyi; Petersen, Ian R.

    2017-01-01

    optical effects, however, the probability of pure single-photon absorption is usually very low, which is particularly pertinent in the case of strong ultrafast laser pulses with broad bandwidth. Here we demonstrate theoretically a counterintuitive coherent single-photon absorption scheme by eliminating...... nonlinear interactions of ultrafast laser pulses with quantum systems. That is, a completely linear response of the system with respect to the spectral energy density of the incident light at the transition frequency can be obtained for all transition probabilities between 0 and 100% in multilevel quantum...... systems. To that end, a multiobjective optimization algorithm is developed to find an optimal spectral phase of an ultrafast laser pulse, which is capable of eliminating all possible nonlinear optical responses while maximizing the probability of single-photon absorption between quantum states. This work...

  2. Higher-order interactions in molecular collisions studied by a novel laser spectroscopic method

    International Nuclear Information System (INIS)

    Kajita, M.; Tachikawa, M.; Shimizu, T.

    1986-01-01

    This is the first systematic experiment to study the characteristics of the dipole-quadrupole and dipole-induced dipole interactions as well as the dipole-dipole interaction. The authors developed a new method to measure the relaxation rate constant of a weak IR transition. The absorption cell is introduced inside the CO/sub 2/ laser cavity to improve sensitivity. The transient oscillation superimposed on the cw laser output is observed when the Stark pulse is applied to the absorbing molecules. The absorption increases when the better coincidence between the laser and absorption lines is obtained by application of the Stark voltage. The absorption decreases for a larger Stark voltage. The sign of the signal depends on whether the absorption intensity increases or decreases due to the Stark field. Since pressure broadening modifies the absorption line shape, the sign of the signal changes when the pressure is increased. The relaxation rate constant can be determined by observing the sign of the signal. The experiment is performed with the frequency coincidence between the CH/sub 3/CN ν/sub 7//sup r/ R(6.6) line and the CO/sub 2/ laser 9.4-μm R(22) line. The relaxation rate constants against various foreign gas molecules (polar molecules, nonpolar linear molecules, and spherical atoms and molecules) have been determined

  3. Enhanced proton acceleration by ultrashort laser pulse interaction with nanostructured thin films

    International Nuclear Information System (INIS)

    Mondal, Angana; Dalui, Malay; Tata, Sheroy; Sarkar, Subhrangshu; Jha, Jagannath; Lad, Amit; Krishnamurthy, M.; Ayyub, P.; Wang, W m; Sheng, Z m

    2015-01-01

    Enhancement of local electromagnetic field in nanostructured targets as opposed to plain polished targets has been experimentally observed and studied. This increase in field strength leads to enhanced hot electron generation, which gives rise to highly energetic ions through Target Normal Sheath Acceleration. As the laser energy coupled to the electrons increases, the sheath magnitude is expected to increase, leading to an enhancement in ion acceleration. We investigate energy enhancements in ions generated as a result of intense femtosecond laser interaction with nanostructured thin film targets, comprising 2 μm Ta foil coated with 100-200 nm diameter Ta clusters. The optimum nanoparticle size of 100 nm corresponding to maximum laser energy absorption has been predetermined through PIC simulations. The accelerated ions have been studied using Thompson parabola spectrometer at a laser intensity of 15 x 10 19 W/cm 2 at the TIFR high contrast 100 TW Ti:Sapphire laser facility. The proton cut-off energy is observed to increase rapidly with increasing cluster density till a saturation is reached. The enhancement in the proton cut-off energy is observed to be three-fold as compared to the proton cut-off energy for unstructured foils. (author)

  4. Enhancement of the Number of Fast Electrons Generated in a Laser Inverse Cone Interaction

    International Nuclear Information System (INIS)

    Yan-Ling, Ji; Gang, Jiang; Wei-Dong, Wu; Ji-Cheng, Zhang; Yong-Jian, Tang

    2010-01-01

    Enhancement of the energy-conversion efficiency from laser to target electrons is demonstrated by two-dimensional particle-in-cell simulations in a laser-inverse cone interaction. When an intense short-pulse laser illuminates the inverse cone target, the electrons at the cone end are accelerated by the ponderomotive force. Then these electrons are guided and confined to transport along the inverse cone walls by the induced electromagnetic fields. A device consisting of inverse hollow-cone and multihole array plasma is proposed in order to increase the energy-conversion efficiency from laser to electrons. Particle-in-cell simulations present that the multiholes transpiercing the cone end help to enhance the number of fast electrons and the maximum electron energy significantly. (physics of gases, plasmas, and electric discharges)

  5. Ultra-intense, short pulse laser-plasma interactions with applications to the fast ignitor

    International Nuclear Information System (INIS)

    Wilks, S.C.; Kruer, W.L.; Young, P.E.; Hammer, J.; Tabak, M.

    1995-04-01

    Due to the advent of chirped pulse amplification (CPA) as an efficient means of creating ultra-high intensity laser light (I > 5x10 17 W/cm 2 ) in pulses less than a few picoseconds, new ideas for achieving ignition and gain in DT targets with less than 1 megajoule of input energy are currently being pursued. Two types of powerful lasers are employed in this scheme: (1) channeling beams and (2) ignition beams. The current state of laser-plasma interactions relating to this fusion scheme will be discussed. In particular, plasma physics issues in the ultra-intense regime are crucial to the success of this scheme. We compare simulation and experimental results in this highly nonlinear regime

  6. Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets

    Science.gov (United States)

    Vyskočil, Jiří; Klimo, Ondřej; Weber, Stefan

    2018-05-01

    Bremsstrahlung emission from interactions of short ultra-intense laser pulses with solid foils is studied using particle-in-cell (PIC) simulations. A module for simulating bremsstrahlung has been implemented in the PIC loop to self-consistently account for the dynamics of the laser–plasma interaction, plasma expansion, and the emission of gamma ray photons. This module made it possible to study emission from thin targets, where refluxing of hot electrons plays an important role. It is shown that the angular distribution of the emitted photons exhibits a four-directional structure with the angle of emission decreasing with the increase of the width of the target. Additionally, a collimated forward flash consisting of high energy photons has been identified in thin targets. The conversion efficiency of the energy of the laser pulse to the energy of the gamma rays rises with both the driving pulse intensity, and the thickness of the target. The amount of gamma rays also increases with the atomic number of the target material, despite a lower absorption of the driving laser pulse. The angular spectrum of the emitted gamma rays is directly related to the increase of hot electron divergence during their refluxing and its measurement can be used in experiments to study this process.

  7. Application of laser resonance scattering to the study of high-temperature plasma-wall interaction

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Muraoka, Katsunori; Hamamoto, Makoto; Akazaki, Masanori; Miyazoe, Yasushi

    1981-01-01

    Studies on laser resonance scattering and its application to the study of high-temperature plasma-wall interaction are reviewed. The application of dye laser beam to resonant scattering method has been developed. This method is able to detect low density atoms. The fluorescent photon counts can be estimated for a two-level system and a three-level system. The S/N ratio, Which is in close connection with the detection limit, has been estimated. The doppler effect due to the thermal motion of atoms is taken into consideration. The calibration of the absolute number of atoms is necessary. Tunable coherent light is used as the light source for resonance scattering method. This is able to excite atoms strongly and to increase the detection efficiency. As dye lasers, a N 2 laser, a YAG laser, and a KrF excimer laser have been studied. In VUV region, rare gas or rare gas halide lasers can be used. The strong output power can be expected when the resonance lines of atoms meet the synchronizing region of the excimer laser. The resonance scattering method is applied to the detection of impurity metal atoms in plasma. The studies of laser systems for the detection of hydrogen atoms are also in progress. (Kato, T.)

  8. A 1.1nW Energy Harvesting System with 544pW Quiescent Power for Next Generation Implants.

    Science.gov (United States)

    Bandyopadhyay, Saurav; Mercier, Patrick P; Lysaght, Andrew C; Stankovic, Konstantina M; Chandrakasan, Anantha P

    2014-12-01

    This paper presents a nW power management unit (PMU) for an autonomous wireless sensor that sustains itself by harvesting energy from the endocochlear potential (EP), the 70-100 mV electrochemical bio-potential inside the mammalian ear. Due to the anatomical constraints inside the inner ear, the total extractable power from the EP is limited to 1.1-6.25 nW. A nW boost converter is used to increase the input voltage (30-55 mV) to a higher voltage (0.8 to 1.1 V) usable by CMOS circuits in the sensor. A pW Charge Pump circuit is used to minimize the leakage in the boost converter. Further, ultra-low-power control circuits consisting of digital implementations of input impedance adjustment circuits and Zero Current Switching circuits along with Timer and Reference circuits keep the quiescent power of the PMU down to 544 pW. The designed boost converter achieves a peak power conversion efficiency of 56%. The PMU can sustain itself and a duty-cyled ultra-low power load while extracting power from the EP of a live guinea pig. The PMU circuits have been implemented on a 0.18µm CMOS process.

  9. Ion Acceleration from the Interaction of Ultra-Intense Lasers with Solid Foils

    International Nuclear Information System (INIS)

    Allen, M

    2004-01-01

    The discovery that ultra-intense laser pulses (I > 10 18 W/cm 2 ) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 10 18 W/cm 2 ), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by U p = ([1 + Iλ 2 /1.3 x 10 18 ] 1/2 - 1) m o c 2 , where Iλ 2 is the irradiance in W (micro)m 2 /cm 2 and m o c 2 is the electron rest mass. At laser irradiance of Iλ 2 ∼ 10 20 W (micro)m 2 /cm 2 , the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target. In this thesis we present several experiments that study the accelerated ions by affecting the contamination layer from which they originate. Radiative heating was employed as a method of removing contamination from palladium targets doped

  10. Proton- and x-ray beams generated by ultra-fast CO2 lasers for medical applications

    Science.gov (United States)

    Pogorelsky, Igor; Polyanskiy, Mikhail; Yakimenko, Vitaly; Ben-Zvi, Ilan; Shkolnikov, Peter; Najmudin, Zulfikar; Palmer, Charlotte A. J.; Dover, Nicholas P.; Oliva, Piernicola; Carpinelli, Massimo

    2011-05-01

    Recent progress in using picosecond CO2 lasers for Thomson scattering and ion-acceleration experiments underlines their potentials for enabling secondary radiation- and particle- sources. These experiments capitalize on certain advantages of long-wavelength CO2 lasers, such as higher number of photons per energy unit, and favorable scaling of the electrons' ponderomotive energy and critical plasma density. The high-flux x-ray bursts produced by Thomson scattering of the CO2 laser off a counter-propagating electron beam enabled high-contrast, time-resolved imaging of biological objects in the picosecond time frame. In different experiments, the laser, focused on a hydrogen jet, generated monoenergetic proton beams via the radiation-pressure mechanism. The strong power-scaling of this regime promises realization of proton beams suitable for laser-driven proton cancer therapy after upgrading the CO2 laser to sub-PW peak power. This planned improvement includes optimizing the 10-μm ultra-short pulse generation, assuring higher amplification in the CO2 gas under combined isotopic- and power-broadening effects, and shortening the postamplification pulse to a few laser cycles (150-200 fs) via chirping and compression. These developments will move us closer to practical applications of ultra-fast CO2 lasers in medicine and other areas.

  11. Suppression of stochastic pulsation in laser-plasma interaction by smoothing methods

    International Nuclear Information System (INIS)

    Hora, H.; Aydin, M.

    1992-01-01

    The control of the very complex behavior of a plasma with laser interaction by smoothing with induced spatial incoherence or other methods was related to improving the lateral uniformity of the irradiation. While this is important, it is shown from numerical hydrodynamic studies that the very strong temporal pulsation (stuttering) will mostly be suppressed by these smoothing methods too

  12. Experimental approach to interaction physics challenges of the shock ignition scheme using short pulse lasers.

    Science.gov (United States)

    Goyon, C; Depierreux, S; Yahia, V; Loisel, G; Baccou, C; Courvoisier, C; Borisenko, N G; Orekhov, A; Rosmej, O; Labaune, C

    2013-12-06

    An experimental program was designed to study the most important issues of laser-plasma interaction physics in the context of the shock ignition scheme. In the new experiments presented in this Letter, a combination of kilojoule and short laser pulses was used to study the laser-plasma coupling at high laser intensities for a large range of electron densities and plasma profiles. We find that the backscatter is dominated by stimulated Brillouin scattering with stimulated Raman scattering staying at a limited level. This is in agreement with past experiments using long pulses but laser intensities limited to 2×10(15)  W/cm2, or short pulses with intensities up to 5×10(16)  W/cm2 as well as with 2D particle-in-cell simulations.

  13. Escaping Electrons from Intense Laser-Solid Interactions as a Function of Laser Spot Size

    Directory of Open Access Journals (Sweden)

    Rusby Dean

    2018-01-01

    Full Text Available The interaction of a high-intensity laser with a solid target produces an energetic distribution of electrons that pass into the target. These electrons reach the rear surface of the target creating strong electric potentials that act to restrict the further escape of additional electrons. The measurement of the angle, flux and spectra of the electrons that do escape gives insights to the initial interaction. Here, the escaping electrons have been measured using a differentially filtered image plate stack, from interactions with intensities from mid 1020-1017 W/cm2, where the intensity has been reduced by defocussing to increase the size of the focal spot. An increase in electron flux is initially observed as the intensity is reduced from 4x1020 to 6x1018 W/cm2. The temperature of the electron distribution is also measured and found to be relatively constant. 2D particle-in-cell modelling is used to demonstrate the importance of pre-plasma conditions in understanding these observations.

  14. Dependence of core heating properties on heating pulse duration and intensity

    Science.gov (United States)

    Johzaki, Tomoyuki; Nagatomo, Hideo; Sunahara, Atsushi; Cai, Hongbo; Sakagami, Hitoshi; Mima, Kunioki

    2009-11-01

    In the cone-guiding fast ignition, an imploded core is heated by the energy transport of fast electrons generated by the ultra-intense short-pulse laser at the cone inner surface. The fast core heating (˜800eV) has been demonstrated at integrated experiments with GEKKO-XII+ PW laser systems. As the next step, experiments using more powerful heating laser, FIREX, have been started at ILE, Osaka university. In FIREX-I (phase-I of FIREX), our goal is the demonstration of efficient core heating (Ti ˜ 5keV) using a newly developed 10kJ LFEX laser. In the first integrated experiments, the LFEX laser is operated with low energy mode (˜0.5kJ/4ps) to validate the previous GEKKO+PW experiments. Between the two experiments, though the laser energy is similar (˜0.5kJ), the duration is different; ˜0.5ps in the PW laser and ˜ 4ps in the LFEX laser. In this paper, we evaluate the dependence of core heating properties on the heating pulse duration on the basis of integrated simulations with FI^3 (Fast Ignition Integrated Interconnecting) code system.

  15. Ray tracing method for simulation of laser beam interaction with random packings of powders

    Science.gov (United States)

    Kovalev, O. B.; Kovaleva, I. O.; Belyaev, V. V.

    2018-03-01

    Selective laser sintering is a technology of rapid manufacturing of a free form that is created as a solid object by selectively fusing successive layers of powder using a laser. The motivation of this study is due to the currently insufficient understanding of the processes and phenomena of selective laser melting of powders whose time scales differ by orders of magnitude. To construct random packings from mono- and polydispersed solid spheres, the algorithm of their generation based on the discrete element method is used. A numerical method of ray tracing is proposed that is used to simulate the interaction of laser radiation with a random bulk packing of spherical particles and to predict the optical properties of the granular layer, the extinction and absorption coefficients, depending on the optical properties of a powder material.

  16. Interaction of a high-power laser pulse with supercritical-density porous materials

    International Nuclear Information System (INIS)

    Gus'kov, Sergei Yu; Rozanov, Vladislav B; Caruso, A; Strangio, C

    2000-01-01

    The properties of a nonequilibrium plasma produced by high-power laser pulses with intensities I L ∼ 10 14 -10 15 W cm -2 irradiating plane targets made of a porous material are investigated. The mean density of matter in targets was substantially higher than the critical plasma density corresponding to a plasma resonance. The density of porous material was ρ a ∼ 1 - 20 mg cm -3 , whereas the critical density at the wavelength of incident radiation was ρ cr ∼ 3 mg cm -3 . An anomalously high absorption (no less than 80%) of laser radiation inside a target was observed. Within the first 3 - 4 ns of interaction, the plasma flow through the irradiated target surface in the direction opposite of the direction of the laser beam was noticeably suppressed. Only about 5% of absorbed laser energy was transformed into the energy of particles in this flow during the laser pulse. Absorbed energy was stored as the internal plasma energy at this stage (the greenhouse effect). Then, this energy was transformed, similar to a strong explosion, into the energy of a powerful hydrodynamic flow of matter surrounding the absorption region. The specific features of the formation and evolution of a nonequilibrium laser-produced plasma in porous media are theoretically analysed. This study allows the results of experiments to be explained. In particular, we investigated absorption of laser radiation in the bulk of a target, volume evaporation of porous material, the expansion of a laser-produced plasma inside the pores, stochastic collisions of plasma flows, and hydrothermal energy dissipation. These processes give rise to long-lived oscillations of plasma density and lead to the formation of an internal region where laser radiation is absorbed. (invited paper)

  17. Ultra-intense, short pulse laser-plasma interactions with applications to the fast ignitor

    Energy Technology Data Exchange (ETDEWEB)

    Wilks, S.C.; Kruer, W.L.; Young, P.E.; Hammer, J.; Tabak, M.

    1995-04-01

    Due to the advent of chirped pulse amplification (CPA) as an efficient means of creating ultra-high intensity laser light (I > 5{times}10{sup 17} W/cm{sup 2}) in pulses less than a few picoseconds, new ideas for achieving ignition and gain in DT targets with less than 1 megajoule of input energy are currently being pursued. Two types of powerful lasers are employed in this scheme: (1) channeling beams and (2) ignition beams. The current state of laser-plasma interactions relating to this fusion scheme will be discussed. In particular, plasma physics issues in the ultra-intense regime are crucial to the success of this scheme. We compare simulation and experimental results in this highly nonlinear regime.

  18. Simple collision operators for direct Vlasov simulations of laser plasma interaction and transport

    International Nuclear Information System (INIS)

    Arber, T D; Sircombe, N J

    2010-01-01

    Non-local electron transport effects have a direct influence on the compression of cryogenic targets in laser driven ICF and target heating in high energy density experiments. There is a growing need for self-consistent models of laser plasma interactions coupled to nonlocal transport. We present a direct Vlasov solver that includes multiple species and a simple collision operator. This BGK model operator - which conserves particle density, energy and momentum - is fully implicit. For collisionless plasmas it has been shown that a double layer may be formed in which an accelerated, kinetic ion population satisfies the zero current condition. Here we extend this result to collisionalities of interest to laser driven ignition to assess the validity of nonlocal electron transport models based on fluid ions.

  19. Self-generated magnetic fields and energy transport by ultra-intense laser-plasma interaction

    International Nuclear Information System (INIS)

    Abudurexiti, A.; Tuniyazi, P.; Wang Qian

    2011-01-01

    The electromagnetic instability (Weibel instability) and its mechanism in ultra-intense laser-plasma interactions are studied by using three-dimensional particle-in-cell simulations. The transport of energy in electron thermal conduction is analyzed by the Spitzer-Harm theory, and the election's vertical pyrogenation phenomenon that resulted from anisotropic heating of laser is observed. The results indicate that the strong magnetic field excited by Weibel instability makes the electron beam deposit its energy within a very short distance, and it restrains the electron thermal flux formed when the laser ponderomotive force bursts through the electron. With the increase of the self-generated magnetic field, the electron will be seized by the wave of magnetic field, and the transport of heat will be restricted. (authors)

  20. Characterization of aerosols produced by laser-matter interaction during paint-stripping experiments by laser

    International Nuclear Information System (INIS)

    Dewalle, P.

    2009-01-01

    Laser ablation is one of the physical processes that are being considered for paint stripping in possibly contaminated areas, especially for decommissioning and dismantling of nuclear facilities. In this regard, the knowledge of 'ablation products', consisting of particles and gases, is an important issue.The numeric and weight concentration of particles, their size distribution, their morphology and their density have been determined for laser ablation of two wall paints. The main gas species have also been identified. The aerosol is composed of nano-particles, of which the number is predominant, and sub-micron particles. Their morphologies and their chemical composition are very distinct: carbon aggregates have been identified, as well as spherical particles of titanium dioxide. These results show that nano-scale aggregates come from the vaporization of the paint polymer, whereas sub-micron particles are due to mechanical ejection of titanium dioxide particles. The expansion of the plume resulting from laser-paint interaction has been monitored by means of three optical techniques: light extinction, scattering and emission. The frames show the propagation of a shock wave followed by the ejection of matter with a specific 'mushroom' shape. Measurements based on these results show that the peripheral part of the plume contains the primary particles of carbon aggregates; it is the warmest area, which reaches a few thousands Kelvin degrees. Its central part is composed of titanium dioxide spherical particles. (author) [fr

  1. X-ray spectroscopic technique for energetic electron transport studies in short-pulse laser/plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tutt, T.E.

    1994-12-01

    When a solid target is irradiated by a laser beam, the material is locally heated to a high temperature and a plasma forms. The interaction of the laser with plasma can produce energetic electrons. By observing the behavior of these {open_quotes}hot{close_quotes} electrons, we hope to obtain a better understanding of Laser/Plasma Interactions. In this work we employ a layered-fluorescer technique to study the transport, and therefore the energetics, of the electrons. The plasma forms on a thin foil of metallic Pd which is bonded to thin layer of metallic Sn. Electrons formed from the plasma penetrate first the Pd and then the Sn. In both layers the energetic electrons promote inner (K) shell ionization of the metallic atoms which leads to the emission of characteristic K{sub {alpha}} x-rays of the fluorescers. By recording the x-ray spectrum emitted by the two foils, we can estimate the energy-dependent range of the electrons and their numbers.

  2. Experimental simulation of lightning, interacting explosions and astrophysical jets with pulsed lasers

    International Nuclear Information System (INIS)

    Villagran-Muniz, M; Sobral, H; Navarro-Gonzalez, R; Velazquez, P F; Raga, A C

    2003-01-01

    Tabletop laboratory experiments have been used to simulate natural lightning, interacting explosions and astrophysical jets. When a high-energy laser pulse is focused in air, a laser-induced plasma (LIP) is produced, that generates a shock wave and an adiabatic expansion of the gas. In our work we have used LIPs in order to simulate lightning, for the study of chemical reactions relevant to atmospheric science. Several diagnostics have been applied to our LIPs, such as deflectometry, shadowgraphy and interferometry, which yield full spatial information of the process (electron density and temperature, the position of the shock wave fronts and the expansion of the hot gas), with a time resolution that ranges from nanoseconds to milliseconds. A new diagnostic alternative was implemented for shadowgraphy, which uses either continuous lasers or conventional light sources. The experimental results have been reproduced by hydrodynamic codes that we have developed. With astrophysical applications in mind, we have simulated and diagnosed the interaction of two explosions, with the aforementioned techniques. For this purpose, two LIPs are synchronized and diagnosed spatially and temporarily. Also, by producing the LIP in a glass sphere with a nozzle that ejects a shock wave and hot gas, we are able to simulate astrophysical jets. With such experiments, astrophysical models developed by us have been validated, showing excellent agreement between experiments and numerical simulations

  3. Influence of irradiation conditions on plasma evolution in laser-surface interaction

    Science.gov (United States)

    Hermann, J.; Boulmer-Leborgne, C.; Dubreuil, B.; Mihailescu, I. N.

    1993-09-01

    The plasma plume induced by pulsed CO2 laser irradiation of a Ti target at power densities up to 4×108 W cm-2 was studied by emission spectroscopy. Time- and space-resolved measurements were performed by varying laser intensity, laser temporal pulse shape, ambient gas pressure, and the nature of the ambient gas. Experimental results are discussed by comparison with usual models. We show that shock wave and plasma propagation depend critically on the ratio Ivap/Ii, Ivap being the intensity threshold for surface vaporization and Ii the plasma ignition threshold of the ambient gas. Spectroscopic diagnostics of the helium breakdown plasma show maximum values of electron temperature and electron density in the order of kTe˜10 eV and ne=1018 cm-3, respectively. The plasma cannot be described by local thermodynamic equilibrium modeling. Nevertheless, excited metal atoms appear to be in equilibrium with electrons, hence, they can be used like a probe to measure the electron temperature. In order to get information on the role of the plasma in the laser-surface interaction, Ti surfaces were investigated by microscopy after irradiation. Thus an enhanced momentum transfer from the plasma to the target due to the recoil pressure of the breakdown plasma could be evidenced.

  4. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines

    Directory of Open Access Journals (Sweden)

    S. Weber

    2017-07-01

    Full Text Available ELI-Beamlines (ELI-BL, one of the three pillars of the Extreme Light Infrastructure endeavour, will be in a unique position to perform research in high-energy-density-physics (HEDP, plasma physics and ultra-high intensity (UHI (>1022W/cm2 laser–plasma interaction. Recently the need for HED laboratory physics was identified and the P3 (plasma physics platform installation under construction in ELI-BL will be an answer. The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones, high-pressure quantum ones, warm dense matter (WDM and ultra-relativistic plasmas. HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion (ICF. Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses. This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI, and gives a brief overview of some research under way in the field of UHI, laboratory astrophysics, ICF, WDM, and plasma optics.

  5. Interaction of few-cycle laser pulses in an isotropic nonlinear medium

    International Nuclear Information System (INIS)

    Oganesyan, D L; Vardanyan, A O

    2007-01-01

    The interaction of few-cycle laser pulses propagating in an isotropic nonlinear medium is studied theoretically. A system of nonlinear Maxwell's equations is integrated numerically with respect to time by the finite difference method. The interaction of mutually orthogonal linearly polarised 0.81-μm, 10-fs pulses is considered. Both the instant Kerr polarisation response and Raman inertial response of the medium in the nonlinear part of the medium are taken into account. The spectral shift of the probe pulse caused by the cross-action of the reference pulse is studied. The spectra of the interacting pulses are studied for different time delays between them and the shifts of these spectra are obtained as a function of the time delay. (nonlinear optical phenomena)

  6. Dynamics of a collisionless plasma interacting with an ultra-intense laser pulse

    International Nuclear Information System (INIS)

    Capdessus, Remi

    2013-01-01

    The interaction of a plasma with an ultra-intense laser pulse becomes more and more interesting as a result of the advances made in terms of numerical tools laser technology. The radiation reaction impacts the electrons dynamics, those of the synchrotron radiation as well as those of the ions by means of charge separation field, for laser intensities above 10 22 W/cm 2 . The kinetic equations governing the particles transport at ultra-high intensity have been obtained. The radiation reaction involves the shrinkage of the space volume of the electrons phases. It has been shown with numerical simulations the strong retro-action that the collective effects induce on the synchrotron radiation generated by the accelerated electrons. The importance of the collective effects depends strongly on the ions mass and of the thickness of the considered plasma. These effects could be verified experimentally with hydrogen cryogenic targets. (author) [fr

  7. Time of Flight based diagnostics for high energy laser driven ion beams

    Science.gov (United States)

    Scuderi, V.; Milluzzo, G.; Alejo, A.; Amico, A. G.; Booth, N.; Cirrone, G. A. P.; Doria, D.; Green, J.; Kar, S.; Larosa, G.; Leanza, R.; Margarone, D.; McKenna, P.; Padda, H.; Petringa, G.; Pipek, J.; Romagnani, L.; Romano, F.; Schillaci, F.; Borghesi, M.; Cuttone, G.; Korn, G.

    2017-03-01

    Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.).

  8. Time of Flight based diagnostics for high energy laser driven ion beams

    International Nuclear Information System (INIS)

    Scuderi, V.; Margarone, D.; Schillaci, F.; Milluzzo, G.; Amico, A.G.; Cirrone, G.A.P.; Larosa, G.; Leanza, R.; Petringa, G.; Pipek, J.; Romano, F.; Alejo, A.; Doria, D.; Kar, S.; Borghesi, M.; Booth, N.; Green, J.; McKenna, P.; Padda, H.; Romagnani, L.

    2017-01-01

    Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.).

  9. First experimental comparisons of laser-plasma interactions between spherical and cylindrical hohlraums at SGIII laser facility

    Directory of Open Access Journals (Sweden)

    Yaohua Chen

    2017-03-01

    Full Text Available We present our recent laser-plasmas instability (LPI comparison experiment at the SGIII laser facility between the spherical and cylindrical hohlraums. Three kinds of filling are considered: vacuum, gas-filling with or without a capsule inside. A spherical hohlraum of 3.6 mm in diameter, and a cylindrical hohlraum of 2.4 mm × 4.3 mm are used. The capsule diameter is 0.96 mm. A flat-top laser pulse with 3 ns duration and up to 92.73 kJ energy is used. The experiment has shown that the LPI level in the spherical hohlraum is close to that of the outer beam in the cylindrical hohlraum, while much lower than that of the inner beam. The experiment is further simulated by using our 2-dimensional radiation hydrodynamic code LARED-Integration, and the laser back-scattering fraction and the stimulated Raman scatter (SRS spectrum are post-processed by the high efficiency code of laser interaction with plasmas HLIP. According to the simulation, the plasma waves are strongly damped and the SRS is mainly developed at the plasma conditions of electron density from 0.08 nc to 0.1 nc and electron temperature from 1.5 keV to 2.0 keV inside the hohlraums. However, obvious differences between the simulation and experiment are found, such as that the SRS back-scattering is underestimated, and the numerical SRS spectrum peaks at a larger wavelength and at a later time than the data. These differences indicate that the development of a 3D radiation hydrodynamic code, with more accurate physics models, is mandatory for spherical hohlraum study.

  10. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    Science.gov (United States)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  11. Highlighting the nuances behind interaction of picosecond pulses with human skin: Relating distinct laser-tissue interactions to their potential in cutaneous interventions

    Science.gov (United States)

    Uzunbajakava, Natallia E.; Varghese, Babu; Botchkareva, Natalia V.; Verhagen, Rieko; Vogel, Alfred

    2018-02-01

    In recent years, several commercial systems relying on picosecond pulses have been introduced into the field of cutaneous interventions. In parallel with this development, a somewhat distinct research prototype also operating in the picosecond regime was described in literature. Albeit both market-available products and the investigational device employ laser beams of nearly the same pulse duration and were reported to cause laser-induced optical breakdown (LIOB), they are different in terms of wavelength, applied fluence, laser beam quality, optical architecture and related focusing optics, resulting in different histomorphological features (such as e.g. lesion size, location, expression of collagen). Understanding the differences between these systems in relation to implications for clinical results raises a need in highlighting the nuances behind interaction of picosecond pulses with biological tissue. To achieve this, we accentuate the interplay of irradiance levels of picosecond pulses in W/cm2 , absorption properties of a target tissue at a wavelength of a light source and resulting interaction mechanisms with biological object. We also relate these nuances to potential consequences for cutaneous interventions.

  12. Monostatic coaxial 1.5 μm laser Doppler velocimeter using a scanning Fabry-Perot interferometer

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2013-01-01

    on heterodyne detection, our sFPI-LDV has the advantages of having large remote sensing range not limited by laser coherence, high velocity dynamic range not limited by detector bandwidth and inherent sign discrimination of Doppler shift. The more optically efficient coaxial arrangement where transmitter...... achieves ~40 dB reduction in strength of unwanted reflections (i.e. leakage) while maintaining high optical efficiency. Experiments with a solid target demonstrate the performance of the sFPI-LDV system with high sensitivity down to pW level at present update rates up to 10 Hz....

  13. Photocatalytic performance of TiO2 catalysts modified by H3PW12O40, ZrO2 and CeO2

    Institute of Scientific and Technical Information of China (English)

    CAI Tiejun; LIAO Yuchao; PENG Zhenshan; LONG Yunfei; WEI Zongyuan; DENG Qian

    2009-01-01

    The binary composite photo-catalysts CeO2/TiO2, ZrO2/TiO2 and the ternary composite photo-catalysts H3PW12O40-CeO2/TiO2,H2PW12O40-ZrO2/TiO2 were prepared by sol-gel method. The catalysts were characterized by thermogravimetric-differential thermal analysis (TG-DTA), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The photocatalyfic elimination of methanol was used as model reaction to evaluate the photocatalytic activity of the composite catalysts under ultraviolet light irradiation. The effects of doped content, activation temperature, time, initial concentration of methanol and gas flow rate on the catalytic activity were investigated. The results showed that after doping a certain amount of CeO2 and ZrO2, crystaniTation process of TiO2 was restrained, particles of catalysts are smaller and more uniform. Doping ZrO2 not only significantly improved the catalytic activity, but also increased thermal stability. Doping H3PW12O40 also enhanced the catalytic activity. The catalytic activities of binary and ternary composite photocatalysts were significantly higher than tin-doped TiO2. The dynamics law of photocatalytic reaction over the binary CeO2/TiO2 and ZrO2/TiO2 catalysts has been studied. The activation energy 15.627 and 15.631 kJ/mol and pre-exponential factors 0.5176 and 0.9899 s-1 over each corresponding catalyst were obtained. This reaction accords to the first order dynamics law.

  14. Observations of MeV electrons and scattered light from intense, subpicosecond laser-plasma interactions

    International Nuclear Information System (INIS)

    Darrow, C.; Lane, S.; Klem, D.; Perry, M.D.

    1993-01-01

    In this paper the authors present work in progress in their experimental investigation of the coupling of intense, subpicosecond laser pulses with plasmas preformed on solid targets. (This situation is to be contrasted with the interaction of intense laser fields with solid-density matter. A subject which has generated considerable interest in the last several years.) The characterization of the energy distribution of energetic electrons which escape a solid target irradiated by an intense laser is discussed. The authors have also performed experiments to study the excitation of parametric instabilities near the quarter-critical layer and second-harmonic generation near the critical layer in the plasma. They discuss some preliminary scattered light spectroscopy measurements

  15. Effect of radiation damping on the interaction of ultra-intense laser pulses with an overdense plasma

    International Nuclear Information System (INIS)

    Zhidkov, Alexei; Koga, James; Sasaki, Akira; Ueshima, Yutaka

    2001-01-01

    The effect of radiation damping on the interaction of an ultra-intense laser pulse with an overdense plasma is studied via relativistic particle-in-cell simulation. The calculation is performed for a Cu solid slab including ionization. We find a strong effect from radiation damping on the electron energy cut-off at about 150 MeV and on the absorption of a laser pulse with an intensity I=5x10 22 W/cm 2 and duration of 20 fs. Hot electrons reradiate more then 10% of the laser energy during the laser pulse. With the laser intensity, the energy loss due to the radiation damping increases as I 3 . In addition, we observe that the laser pulse may not propagate in the plasma even if ω pl 2 /ω 2 γ<1. The increase of skin depth with the laser intensity due to relativistic effects gives rise to the absorption efficiency. (author)

  16. Towards a petawatt-class few-cycle infrared laser system via dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Midorikawa, Katsumi; Takahashi, Eiji J

    2018-05-16

    Expansion of the wavelength range for an ultrafast laser is an important ingredient for extending its range of applications. Conventionally, optical parametric amplification (OPA) has been employed to expand the laser wavelength to the infrared (IR) region. However, the achievable pulse energy and peak power have been limited to the mJ and the GW level, respectively. A major difficulty in the further energy scaling of OPA results from a lack of suitable large nonlinear crystals. Here, we circumvent this difficulty by employing a dual-chirped optical parametric amplification (DC-OPA) scheme. We successfully generate a multi-TW IR femtosecond laser pulse with an energy of 100 mJ order, which is higher than that reported in previous works. We also obtain excellent energy scaling ability, ultrashort pulses, flexiable wavelength tunability, and high-energy stability, which prove that DC-OPA is a superior method for the energy scaling of IR pulses to the 10 J/PW level.

  17. Fundamentals of ultrafast laser-material interaction

    Czech Academy of Sciences Publication Activity Database

    Shugaev, M.V.; Wu, Ch.; Armbruster, O.; Naghilou, A.; Brouwer, N.; Ivanov, D.S.; Derrien, Thibault; Bulgakova, Nadezhda M.; Kautek, W.; Rethfeld, B.; Zhigilei, L.

    2016-01-01

    Roč. 41, č. 12 (2016), s. 960-968 ISSN 0883-7694 R&D Projects: GA MŠk LO1602; GA ČR GA16-12960S EU Projects: European Commission(XE) 657424 - QuantumLaP Institutional support: RVO:68378271 Keywords : femtosecond laser * Coulomb explosion * microscopic mechanisms * electron-diffraction * molecular- dynamics * metal targets * ablation * surface * dielectrics Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 5.199, year: 2016

  18. Theoretical study of the generation of terahertz radiation by the interaction of two laser beams with graphite nanoparticles

    Science.gov (United States)

    Sepehri Javan, N.; Rouhi Erdi, F.

    2017-12-01

    In this theoretical study, we investigate the generation of terahertz radiation by considering the beating of two similar Gaussian laser beams with different frequencies of ω1 and ω2 in a spatially modulated medium of graphite nanoparticles. The medium is assumed to contain spherical graphite nanoparticles of two different configurations: in the first configuration, the electric fields of the laser beams are parallel to the normal vector of the basal plane of the graphite structure, whereas in the second configuration, the electric fields are perpendicular to the normal vector of the basal plane. The interaction of the electric fields of lasers with the electronic clouds of the nanoparticles generates a ponderomotive force that in turn leads to the creation of a macroscopic electron current in the direction of laser polarizations and at the beat frequency ω1-ω2 , which can generate terahertz radiation. We show that, when the beat frequency lies near the effective plasmon frequency of the nanoparticles and the electric fields are parallel to the basal-plane normal, a resonant interaction of the laser beams causes intense terahertz radiation.

  19. On the Acceleration and Transport of Electrons Generated by Intense Laser-Plasma Interactions at Sharp Interfaces

    Science.gov (United States)

    May, Joshua Joseph

    The continued development of the chirped pulse amplification technique has allowed for the development of lasers with powers of in excess of 10 15W, for pulse lengths with durations of between .01 and 10 picoseconds, and which can be focused to energy densities greater than 100 giga-atmospheres. When such lasers are focused onto material targets, the possibility of creating particle beams with energy fluxes of comparable parameters arises. Such interactions have a number of theorized applications. For instance, in the Fast Ignition concept for Inertial Confinement Fusion [1], a high-intensity laser efficiently transfers its energy into an electron beam with an appropriate spectra which is then transported into a compressed target and initiate a fusion reaction. Another possible use is the so called Radiation Pressure Acceleration mechanism, in which a high-intensity, circularly polarized laser is used to create a mono-energetic ion beam which could then be used for medical imaging and treatment, among other applications. For this latter application, it is important that the laser energy is transferred to the ions and not to the electrons. However the physics of such high energy-density laser-matter interactions is highly kinetic and non-linear, and presently not fully understood. In this dissertation, we use the Particle-in-Cell code OSIRIS [2, 3] to explore the generation and transport of relativistic particle beams created by high intensity lasers focused onto solid density matter at normal incidence. To explore the generation of relativistic electrons by such interactions, we use primarily one-dimensional (1D) and two-dimensional (2D), and a few three-dimensional simulations (3D). We initially examine the idealized case of normal incidence of relatively short, plane-wave lasers on flat, sharp interfaces. We find that in 1D the results are highly dependent on the initial temperature of the plasma, with significant absorption into relativistic electrons only

  20. Deposition and modification of tantalum carbide coatings on graphite by laser interactions

    International Nuclear Information System (INIS)

    Veligdan, J.; Branch, D.; Vanier, P.E.; Barletta, R.E.

    1992-01-01

    Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000 degrees C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing, involved the use of a CO 2 laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl 5 gas near the substrate. Results of preliminary experiments using these techniques are described

  1. Experimental investigation of the generation of harmonic photons from the interaction of free electrons with intense laser radiation

    International Nuclear Information System (INIS)

    Englert, T.J.

    1983-01-01

    An experimental investigation of the generation of second harmonic photons through the interaction of free electrons with an intense laser beam has been performed. Second harmonic photons with a wavelength of 530nm generated from the interaction of free electrons with 1060nm photons from a neodymium-glass laser are implied by observing Doppler shifted photons with wavelengths of 490nm and 507nm. The observed photon wavelengths results from a Doppler shift of the laser photon wavelengths as viewed in the rest frame of the electrons combined with a Doppler shift of the second harmonic photons emitted from 1600eV and 500eV electrons. Comparison of experimental results with those predicted by cross sections, derived using classical and quantum electrodynamics, shows reasonable agreement with both theories. Although second harmonic photons are created, the dynamics of second harmonic photon generation (accelerated electron motion due to the electromagnetic field or actual two-photon interaction with the electron) cannot be resolved without further experiment

  2. The Brain Physics: Multi Laser Beam Interaction with the Brain Topions (the Brain Neurocenters)

    Science.gov (United States)

    Stefan, V. Alexander

    2015-03-01

    A novel method for the treatment of the neurological diseases is proposed. The multiple-energy laser photons (the blue scanning photons and ultraviolet focusing photons) interact with the specific DNA molecules within the topion (such as Parkinson's and Alzheimer's brain topion) via the matching of laser frequency with the oscillation eigen-frequency of a particular molecule within the DNA. In this way, the corrupt molecules (the structure of molecules) can be manipulated so as to treat (eliminate) the neurological disease. Supported by Nikola Tesla Labs, Stefan University.

  3. Study of plasma formation in CW CO2 laser beam-metal surface interaction

    Science.gov (United States)

    Azharonok, V. V.; Vasilchenko, Zh V.; Golubev, Vladimir S.; Gresev, A. N.; Zabelin, Alexandre M.; Chubrik, N. I.; Shimanovich, V. D.

    1994-04-01

    An interaction of the cw CO2 laser beam and a moving metal surface has been studied. The pulsed and thermodynamical parameters of the surface plasma were investigated by optical and spectroscopical methods. The subsonic radiation wave propagation in the erosion plasma torch has been studied.

  4. Characteristics of laser ultrasound interaction with multi-layered dissimilar metals adhesive interface by numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kuanshuang, E-mail: zkuanshuang@buaa.edu.cn [School of Mechanical Engineering and Automation, BeiHang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Zhou, Zhenggan; Zhou, Jianghua; Sun, Guangkai [School of Mechanical Engineering and Automation, BeiHang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China)

    2015-10-30

    Highlights: • We investigate laser generated ultrasound in multi-layered adhesive structure. • We find the difference of waveforms with different probe points. • Probe points and frequency range influence characterization of the damage interface. • Reflection coefficients of longitudinal waves can quantify the void defect. - Abstract: The characteristics of laser-generated ultrasonic wave interaction with multi-layered dissimilar metals adhesive interface are investigated by finite element method (FEM). The physical model of laser-generated ultrasonic wave in the multi-layered dissimilar metals adhesive structure is built. The surface temperature evolution with different laser power densities is analyzed to obtain the parameters of pulsed laser with thermoelastic regime. The differences of laser ultrasonic waves with different center frequencies measured at the center of laser irradiation would verify the interfacial features of adhesive structures. The optimum frequency range and probe point would be beneficial for the detection of the small void defect. The numerical results indicate that the different frequency range and probe points would evidently influence the identification and quantitative characterization of the small void defect. The research findings would lay a foundation for testing interfacial integrity.

  5. Characteristics of laser ultrasound interaction with multi-layered dissimilar metals adhesive interface by numerical simulation

    International Nuclear Information System (INIS)

    Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua; Sun, Guangkai

    2015-01-01

    Highlights: • We investigate laser generated ultrasound in multi-layered adhesive structure. • We find the difference of waveforms with different probe points. • Probe points and frequency range influence characterization of the damage interface. • Reflection coefficients of longitudinal waves can quantify the void defect. - Abstract: The characteristics of laser-generated ultrasonic wave interaction with multi-layered dissimilar metals adhesive interface are investigated by finite element method (FEM). The physical model of laser-generated ultrasonic wave in the multi-layered dissimilar metals adhesive structure is built. The surface temperature evolution with different laser power densities is analyzed to obtain the parameters of pulsed laser with thermoelastic regime. The differences of laser ultrasonic waves with different center frequencies measured at the center of laser irradiation would verify the interfacial features of adhesive structures. The optimum frequency range and probe point would be beneficial for the detection of the small void defect. The numerical results indicate that the different frequency range and probe points would evidently influence the identification and quantitative characterization of the small void defect. The research findings would lay a foundation for testing interfacial integrity.

  6. Nonstationary plasma-thermo-fluid dynamics and transition in processes of deep penetration laser beam-matter interaction

    Science.gov (United States)

    Golubev, Vladimir S.; Banishev, Alexander F.; Azharonok, V. V.; Zabelin, Alexandre M.

    1994-09-01

    A qualitative analysis of the role of some hydrodynamic flows and instabilities by the process of laser beam-metal sample deep penetration interaction is presented. The forces of vapor pressure, melt surface tension and thermocapillary forces can determined a number of oscillatory and nonstationary phenomena in keyhole and weld pool. Dynamics of keyhole formation in metal plates has been studied under laser beam pulse effect ((lambda) equals 1.06 micrometers ). Velocities of the keyhole bottom motion have been determined at 0.5 X 105 - 106 W/cm2 laser power densities. Oscillatory regime of plate break- down has been found out. Small-dimensional structures with d-(lambda) period was found on the frozen cavity walls, which, in our opinion, can contribute significantly to laser beam absorption. A new form of periodic structure on the frozen pattern being a helix-shaped modulation of the keyhole walls and bottom relief has been revealed. Temperature oscillations related to capillary oscillations in the melt layer were discovered in the cavity. Interaction of the CW CO2 laser beam and the matter by beam penetration into a moving metal sample has been studied. The pulsed and thermodynamic parameters of the surface plasma were investigated by optical and spectroscopic methods. The frequencies of plasma jets pulsations (in 10 - 105 Hz range) are related to possible melt surface instabilities of the keyhole.

  7. Study of the interaction between heavy ions and integrated circuits using a pulsed laser beam

    International Nuclear Information System (INIS)

    Lewis, D.; Fouillat, P.; Pouget, V.; Lapuyade, H.

    2002-01-01

    A new pulsed laser beam equipment dedicated to the characterization of integrated circuit is presented. Using ultra-short laser pulses is a convenient way to simulate experimentally the spatial environment of integrated circuits when interactions with heavy ions occur. This experimental set-up can be considered as a complementary tool for particle accelerators to evaluate the hardness assurance of integrated circuits for space applications. These particles generate temporally electrical disturbance called Single Event Effect (SEE). The theoretical approach of an equivalence between heavy ions and a laser pulses is discussed. The experimental set-up and some relevant operational methodologies are presented. Experimental results demonstrate that the induced electrical responses due to an heavy ion or a laser pulse are quite similar. Some sensitivity mappings of integrated circuits provided by this test bench illustrate the capabilities and the limitations of this laser-based technique. Contrary to the particle accelerators, it provides useful information concerning the spatial and temporal dependences of SEE mechanisms. (authors)

  8. Laser-Bioplasma Interaction: Excitation and Suppression of the Brain Waves by the Multi-photon Pulsed-operated Fiber Lasers in the Ultraviolet Range of Frequencies

    Science.gov (United States)

    Stefan, V. Alexander; IAPS-team Team

    2017-10-01

    The novel study of the laser excitation-suppression of the brain waves is proposed. It is based on the pulsed-operated multi-photon fiber-laser interaction with the brain parvalbumin (PV) neurons. The repetition frequency matches the low frequency brain waves (5-100 Hz); enabling the resonance-scanning of the wide range of the PV neurons (the generators of the brain wave activity). The tunable fiber laser frequencies are in the ultraviolet frequency range, thus enabling the monitoring of the PV neuron-DNA, within the 10s of milliseconds. In medicine, the method can be used as an ``instantaneous-on-off anesthetic.'' Supported by Nikola Tesla Labs, Stefan University.

  9. High density ultrashort relativistic positron beam generation by laser-plasma interaction

    Czech Academy of Sciences Publication Activity Database

    Gu, Yanjun; Klimo, Ondřej; Weber, Stefan A.; Korn, Georg

    2016-01-01

    Roč. 18, č. 11 (2016), 1-7, č. článku 113023. ISSN 1367-2630 R&D Projects: GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : radation reaction effect * pair creation * laser-plasma interaction Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.786, year: 2016

  10. Dynamical resonance shift and unification of resonances in short-pulse laser-cluster interaction

    Science.gov (United States)

    Mahalik, S. S.; Kundu, M.

    2018-06-01

    Pronounced maximum absorption of laser light irradiating a rare-gas or metal cluster is widely expected during the linear resonance (LR) when Mie-plasma wavelength λM of electrons equals the laser wavelength λ . On the contrary, by performing molecular dynamics (MD) simulations of an argon cluster irradiated by short 5-fs (FWHM) laser pulses it is revealed that, for a given laser pulse energy and a cluster, at each peak intensity there exists a λ —shifted from the expected λM—that corresponds to a unified dynamical LR at which evolution of the cluster happens through very efficient unification of possible resonances in various stages, including (i) the LR in the initial time of plasma creation, (ii) the LR in the Coulomb expanding phase in the later time, and (iii) anharmonic resonance in the marginally overdense regime for a relatively longer pulse duration, leading to maximum laser absorption accompanied by maximum removal of electrons from cluster and also maximum allowed average charge states for the argon cluster. Increasing the laser intensity, the absorption maxima is found to shift to a higher wavelength in the band of λ ≈(1 -1.5 ) λM than permanently staying at the expected λM. A naive rigid sphere model also corroborates the wavelength shift of the absorption peak as found in MD and unequivocally proves that maximum laser absorption in a cluster happens at a shifted λ in the marginally overdense regime of λ ≈(1 -1.5 ) λM instead of λM of LR. The present study is important for guiding an optimal condition laser-cluster interaction experiment in the short-pulse regime.

  11. Ho:YAG laser: intervertebral disk cell interaction using three-dimensional cell culture system

    Science.gov (United States)

    Sato, Masato; Ishihara, Miya; Arai, Tsunenori; Asazuma, Takashi; Kikuchi, Toshiyuki; Kikuchi, Makoto; Fujikawa, Kyosuke

    2000-06-01

    The purpose of this study is to evaluate the influence on the intervertebral disc cells after laser irradiation using three- dimensional culture system and to clarify the optimum Ho:YAG laser irradiation condition on percutaneous laser disc decompression (PLDD) for lumbar disc herniation. Since the Ho:YAG laser ablation is characterized by water-vapor bubble dynamics, not only thermal effect but also acoustic effect on cell metabolism might occur in the intervertebral disc. We studied the disc cell reaction from the metabolic point of view to investigate photothermal and photoacoustic effects on three-dimensional cultured disc cell. Intervertebral discs were obtained from female 30 Japanese white rabbits weighing about 1 kg. A pulsed Ho:YAG laser (wavelength: 2.1 micrometer, pulse width: about 200 microseconds) was delivered through a 200 micrometer-core diameter single silica glass fiber. We used the Ho:YAG laser irradiation fluence ranging from 60 to approximately 800 J/cm2 at the fiber end. To investigate acoustic effect, the acoustic transducer constructed with polyvinylidene fluoride (PVdF) film and acoustic absorber was used to detect the stress wave. Thermocouple and thermography were used to investigate thermal effect. Concerning damage of plasma membrane and ability of matrix synthesis, thermal effect might mainly affect cell reaction in total energy of 54 J (closed to practically used condition), but in 27 J, acoustic effect might contribute to it. We found that total energy was key parameter among the optimum condition, so that temperature and/or stress wave may influence Ho:YAG laser-disc cell interactions.

  12. Analysis of opto-thermal interaction of porcine stomach tissue with 808-nm laser for endoscopic submucosal dissection

    Directory of Open Access Journals (Sweden)

    Seongjun Kim

    2015-11-01

    Full Text Available In endoscopic submucosal dissection (ESD, the narrow gastrointestinal space can cause difficulty in surgical interventions. Tissue ablation apparatuses with high-power CO2 lasers or Nd:YAG lasers have been developed to facilitate endoscopic surgical procedures. We studied the interaction of 808-nm laser light with a porcine stomach tissue, with the aim of developing a therapeutic medical device that can remove lesions at the gastrointestinal wall by irradiating a near-infrared laser light incorporated in an endoscopic system. The perforation depths at the porcine fillet and the stomach tissues linearly increased in the range of 2–8 mm in proportion to the laser energy density of 63.7–382 kJ/cm2. Despite the distinct structural and compositional difference, the variation of the perforation depth between the stomach and the fillet was not found at 808-nm wavelength in our measurement. We further studied the laser–tissue interaction by changing the concentration of the methyl blue solution used conventionally as a submucosal fluidic cushion (SFC in ESD procedures. The temperature of the mucosal layer increased more rapidly at higher concentration of the methyl blue solution, because of enhanced light absorption at the SFC layer. The insertion of the SFC would protect the muscle layer from thermal damage. We confirmed that more effective laser treatment should be enabled by tuning the opto-thermal properties of the SFC. This study can contribute to the optimization of the driving parameters for laser incision techniques as an alternative to conventional surgical interventions.

  13. Preparation of H3PW12O40/MCM-48 and its photocatalytic degradation of pesticides.

    Science.gov (United States)

    Liu, Xia; Li, Yan-zhou; Gan, Qiang; Feng, Chang-gen

    2014-08-01

    A composite catalyst H3PW12O40/MCM-48 was prepared by loading photocatalyst phosphotungstic acid H3PW12O40 (HPW) to molecular sieve MCM-48 by impregnation method, and its structure was characterized by Fourier transform infrared (FT-IR) spectra, small angle X-ray diffraction (XRD) patterns, nitrogen adsorption analysis and High-resolution transmission electron microscopy (HRTEM) analysis. Photocatalytic degradation activities of HPW/MCM-48 against pesticides imidacloprid and paraquat were evaluated under UV radiation (365 nm). The results show that HPW/MCM-48 maintains the mesoprous molecular sieve structure of MCM-48 and the Keggin structure of HPW, while the BET surface area is 793.35 m2 x g(-1), pore volume is 1.46 cm3 x g(-1), average pore diameter is 2.76 nm, suggesting loading HPW on MCM-48 is a considerable way to improve its surface area. After 14 h UV irradiation (365 nm), 57.38% imidacloprid and 63.79% paraquat were degraded by 20 mg HPW/MCM-48 catalyst, while HPW and blank group degraded the two pesticides at the degradation rate of about 25% and 5%, respectively. Implying loading on MCM-48 could greaterly improve the degradation activity of HPW. The reslut of degradation kinetics show that, the degradation process of HPW/MCM-48 fits first order kinetics equation. The rate constant Ka of HPW/MCM-48 toward imidacloprid and paraquat are 0.089 h and 0.117 h, with the half-life t(1/2) of 7.8 h and 5.9 h, respectively.

  14. Thermal interaction of short-pulsed laser focused beams with skin tissues

    International Nuclear Information System (INIS)

    Jiao Jian; Guo Zhixiong

    2009-01-01

    Time-dependent thermal interaction is developed in a skin tissue cylinder subjected to the irradiation of a train of short laser pulses. The skin embedded with a small tumor is stratified as three layers: epidermis, dermis and subcutaneous fat with different optical, thermal and physiological properties. The laser beam is focused to the tumor site by an objective lens for thermal therapy. The ultrafast radiation heat transfer of the focused beam is simulated by the transient discrete ordinates method. The transient Pennes bio-heat equation is solved numerically by the finite volume method with alternating direction implicit scheme. Emphasis is placed on the characterization of the focused beam propagation and absorption and the temperature rise in the focal spot. The effects of the focal spot size and location, the laser power, and the bio-heat equation are investigated. Comparisons with collimated irradiation are conducted. The focused beam can penetrate a greater depth and produce higher temperature rise at the target area, and thus reduce the possibility of thermal damage to the surrounding healthy tissue. It is ideal for killing cancerous cells and small tumors.

  15. Thermal interaction of short-pulsed laser focused beams with skin tissues

    Energy Technology Data Exchange (ETDEWEB)

    Jiao Jian; Guo Zhixiong [Department of Mechanical and Aerospace Engineering, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States)], E-mail: guo@jove.rutgers.edu

    2009-07-07

    Time-dependent thermal interaction is developed in a skin tissue cylinder subjected to the irradiation of a train of short laser pulses. The skin embedded with a small tumor is stratified as three layers: epidermis, dermis and subcutaneous fat with different optical, thermal and physiological properties. The laser beam is focused to the tumor site by an objective lens for thermal therapy. The ultrafast radiation heat transfer of the focused beam is simulated by the transient discrete ordinates method. The transient Pennes bio-heat equation is solved numerically by the finite volume method with alternating direction implicit scheme. Emphasis is placed on the characterization of the focused beam propagation and absorption and the temperature rise in the focal spot. The effects of the focal spot size and location, the laser power, and the bio-heat equation are investigated. Comparisons with collimated irradiation are conducted. The focused beam can penetrate a greater depth and produce higher temperature rise at the target area, and thus reduce the possibility of thermal damage to the surrounding healthy tissue. It is ideal for killing cancerous cells and small tumors.

  16. Laser-beam interactions with materials

    International Nuclear Information System (INIS)

    Allmen, M.V.

    1987-01-01

    Lasers are becoming popular tools and research instruments in materials research, metallurgy, semiconductor technology and engineering. This text treats, from a physicist's point of view, the processes that lasers can induce in materials. A broad view of the field and its perspectives is given: physical topics covered range from optics to shock waves, and applications range from semiconductor annealing to fusion-plasma production. Intuitive analytical models are used whenever possible, in order to foster creative thinking and facilitate access to newcomers and nonspecialists

  17. German Adjuvant Intergroup Node-positive Study (GAIN): a phase III trial comparing two dose-dense regimens (iddEPC versus ddEC-PwX) in high-risk early breast cancer patients.

    Science.gov (United States)

    Möbus, V; von Minckwitz, G; Jackisch, C; Lück, H-J; Schneeweiss, A; Tesch, H; Elling, D; Harbeck, N; Conrad, B; Fehm, T; Huober, J; Müller, V; Bauerfeind, I; du Bois, A; Loibl, S; Nekljudova, V; Untch, M; Thomssen, C

    2017-08-01

    Dose-dense (dd) regimens are one of the preferred options for the adjuvant treatment of breast cancer patients with intermediate to high risk. The German Adjuvant Intergroup Node-positive trial aimed at optimizing intense dd (idd) strategies by evaluating drug combinations and the addition of capecitabine. Women (aged 18 years and biologically <65 years) with histologically involved axillary lymph nodes were randomly assigned to receive three courses each of epirubicin (E) 150 mg/m2, paclitaxel (P) 225 mg/m2 and cyclophosphamide (C) 2500 mg/m2 (reduced to 2000 mg/m2 after recruitment of 1200 patients) q2w intravenously (i.v.) (iddEPC-regimen) or ddEC (E 112.5 mg/m2 + C 600 mg/m2, i.v. q2w for 4 cycles) followed by paclitaxel weekly (Pw 67.5 mg/m2 i.v. q8d for 10 weeks) plus capecitabine (X 2000 mg/m2 p.o. days 1-14, q22 for 4 cycles) (ddEC-PwX-regimen). Further randomization assigned patients to ibandronate for 2 years versus observation and to pegfilgrastim day 2 versus 4. From June 2004 to August 2008, 2994 patients were randomized to either iddEPC (N = 1498), or ddEC-PwX (N = 1496) and started treatment. Median age was 50 years; pN1 (37.8%), pN2 (35.3%); pN3 (26.9%); 46.4% were G3 tumors; 76.9% hormone receptor-positive and 22% HER2-positive. After a median follow-up of 74 months, 645 events and 383 deaths were recorded. Hematological adverse events grades 3-4 were more common with iddEPC (P < 0.001), nonhematological with ddEC-PwX (P = 0.04), even if the toxicity profile of the two regimens was different. At 5 years, estimated disease-free survival rates for ddEC-PwX and iddEPC were 81.7% [95% confidence interval (CI) 79.5-83.6] versus 80.2% (95% CI 78.0-82.2). Hazard ratio (HR)=0.95 (95% CI 0.81-1.11, log-rank P = 0.49). Five-year overall survival rates were 89.4% for ddEC-PwX (95% CI 87.7-91.0) and 89.0% for iddEPC (95% CI 87.2-90.6), HR = 0.85 (95% CI 0.69-1.04, log-rank P = 0.10). Adding

  18. Realistic PIC modelling of laser-plasma interaction: a direct implicit method with adjustable damping and high order weight functions

    International Nuclear Information System (INIS)

    Drouin, M.

    2009-11-01

    This research thesis proposes a new formulation of the relativistic implicit direct method, based on the weak formulation of the wave equation which is solved by means of a Newton algorithm. The first part of this thesis deals with the properties of the explicit particle-in-cell (PIC) methods: properties and limitations of an explicit PIC code, linear analysis of a numerical plasma, numerical heating phenomenon, interest of a higher order interpolation function, and presentation of two applications in high density relativistic laser-plasma interaction. The second and main part of this report deals with adapting the direct implicit method to laser-plasma interaction: presentation of the state of the art, formulating of the direct implicit method, resolution of the wave equation. The third part concerns various numerical and physical validations of the ELIXIRS code: case of laser wave propagation in vacuum, demonstration of the adjustable damping which is a characteristic of the proposed algorithm, influence of space-time discretization on energy conservation, expansion of a thermal plasma in vacuum, two cases of plasma-beam unsteadiness in relativistic regime, and then a case of the overcritical laser-plasma interaction

  19. Ion collisions and deceleration in laser-produced plasma-jet interaction with walls

    Czech Academy of Sciences Publication Activity Database

    Renner, Oldřich; Krouský, Eduard; Liska, R.; Šmíd, M.; Larroche, O.; Dalimier, E.

    2011-01-01

    Roč. 56, - (2011), T165-T174 ISSN 0001-7043 R&D Projects: GA MŠk(CZ) LC528; GA ČR GAP205/10/0814 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-produced plasma jets * plasma-wall interaction * plasma diagnostics * X-ray spectroscopy * fluid and kinetic plasma simulation Subject RIV: BL - Plasma and Gas Discharge Physics

  20. Theoretical study of ultrarelativistic laser-electron interaction with radiation reaction

    Directory of Open Access Journals (Sweden)

    Seto K.

    2013-11-01

    Full Text Available When the laser intensity becomes higher than 1022  W/cm2, the motion of an electron becomes relativistic, and emits large amounts of radiation. This radiation energy loss transferred to the kinetic energy loss of the electron, is treated as an external force, the “radiation reaction force”. We show the new equation of motion including this radiation reaction and the simulation method, as well as results of single electron system or dual electrons system with Liénard-Wiechert field interaction.

  1. Stimulated Brillouin scattering reflectivity in the case of a spatially smoothed laser beam interacting with an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Tikhonchuk, V.T.; Mounaix, P.; Pesme, D.

    1997-01-01

    The stimulated Brillouin scattering (SBS) instability is investigated theoretically in the case of a spatially smoothed laser beam interacting with an inhomogeneous plasma in the regime of strong ion acoustic damping. The domain of parameters being considered corresponds to most of the present day experiments carried out with nanosecond laser pulses interacting with preformed plasmas: the characteristic length for convective amplification is assumed to be much shorter than the longitudinal correlation length of the laser field. The SBS reflectivity of one individual hot spot is analytically computed taking into account thermal noise emission and pump depletion within the hot spot. The SBS reflectivity of the whole beam is then obtained by summing up the individual hot spot reflectivities in accordance with their statistical distribution. copyright 1997 American Institute of Physics

  2. Annual Scientific Report for DE-FG03-02NA00063 Coherent imaging of laser-plasma interactions using XUV high harmonic radiation

    International Nuclear Information System (INIS)

    Henry C. Kapteyn

    2005-01-01

    In this project, we use coherent short-wavelength light generated using high-order harmonic generation as a probe of laser-plasma dynamics and phase transitions on femtosecond time-scales. The interaction of ultrashort laser pulses with materials and plasmas is relevant to stockpile stewardship, to understanding the equation of state of matter at high pressures and temperatures, and to plasma concepts such as the fast-ignitor ICF fusion concept and laser-based particle acceleration. Femtosecond laser technology makes it possible to use a small-scale setup to generate 20fs pulses with average power >10W at multiple kHz repetition rates, that can be focused to intensities in excess of 1017W/cm2. These lasers can be used either to rapidly heat materials to initiate phase transitions, or to create laser plasmas over a wide parameter space. These lasers can also be used to generate fully spatially coherent XUV beams with which to probe these materials and plasma systems. We are in process of implementing imaging studies of plasma hydrodynamics and warm, dense matter. The data will be compared with simulation codes of laser-plasma interactions, making it possible to refine and validate these codes

  3. Interactions of acetylated histones with DNA as revealed by UV laser induced histone-DNA crosslinking

    International Nuclear Information System (INIS)

    Stefanovsky, V.Yu.; Dimitrov, S.I.; Angelov, D.; Pashev, I.G.

    1989-01-01

    The interaction of acetylated histones with DNA in chromatin has been studied by UV laser-induced crosslinking histones to DNA. After irradiation of the nuclei, the covalently linked protein-DNA complexes were isolated and the presence of histones in them demonstrated immunochemically. When chromatin from irradiated nuclei was treated with clostripain, which selectively cleaved the N-terminal tails of core histones, no one of them was found covalently linked to DNA, thus showing that crosslinking proceeded solely via the N-terminal regions. However, the crosslinking ability of the laser was preserved both upon physiological acetylation of histones, known to be restricted to the N-terminal tails, and with chemically acetylated chromatin. This finding is direct evidence that the postsynthetic histone acetylation does not release the N-terminal tails from interaction with DNA

  4. Investigation of ion acceleration mechanism through laser-matter interaction in femtosecond domain

    Energy Technology Data Exchange (ETDEWEB)

    Altana, C., E-mail: altana@lns.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania (Italy); Muoio, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F.S. D’Alcontres 31, 98166 Messina (Italy); Lanzalone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Enna “Kore”, Via delle Olimpiadi, 94100 Enna (Italy); Tudisco, S. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Brandi, F. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Cirrone, G.A.P. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Cristoforetti, G. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Fazzi, A. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Ferrara, P.; Fulgentini, L. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Giove, D. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Koester, P. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Labate, L. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); and others

    2016-09-01

    An experimental campaign aiming to investigate the ion acceleration mechanisms through laser-matter interaction in the femtosecond domain has been carried out at the ILIL facility at a laser intensity of up to 2×10{sup 19} W/cm{sup 2}. A Thomson Parabola Spectrometer was used to identify different ion species and measure the energy spectra and the corresponding temperature parameters. We discuss the dependence of the protons spectra upon the structural characteristics of the targets (thickness and atomic mass) and the role of surface versus target bulk during acceleration process. - Highlights: • Ion acceleration mechanism in TNSA regime was investigated. • The energy spectra and the corresponding temperature parameters were measured. • Dependence of the spectra upon the target structural characteristics was discussed.

  5. A tesselation-based model for intensity estimation and laser plasma interactions calculations in three dimensions

    Science.gov (United States)

    Colaïtis, A.; Chapman, T.; Strozzi, D.; Divol, L.; Michel, P.

    2018-03-01

    A three-dimensional laser propagation model for computation of laser-plasma interactions is presented. It is focused on indirect drive geometries in inertial confinement fusion and formulated for use at large temporal and spatial scales. A modified tesselation-based estimator and a relaxation scheme are used to estimate the intensity distribution in plasma from geometrical optics rays. Comparisons with reference solutions show that this approach is well-suited to reproduce realistic 3D intensity field distributions of beams smoothed by phase plates. It is shown that the method requires a reduced number of rays compared to traditional rigid-scale intensity estimation. Using this field estimator, we have implemented laser refraction, inverse-bremsstrahlung absorption, and steady-state crossed-beam energy transfer with a linear kinetic model in the numerical code Vampire. Probe beam amplification and laser spot shapes are compared with experimental results and pf3d paraxial simulations. These results are promising for the efficient and accurate computation of laser intensity distributions in holhraums, which is of importance for determining the capsule implosion shape and risks of laser-plasma instabilities such as hot electron generation and backscatter in multi-beam configurations.

  6. Observation of Eye Pattern on Super-Resolution Near-Field Structure Disk with Write-Strategy Technique

    Science.gov (United States)

    Fuji, Hiroshi; Kikukawa, Takashi; Tominaga, Junji

    2004-07-01

    Pit-edge recording at a density of 150 nm pits and spaces is carried out on a super-resolution near-field structure (super-RENS) disk with a platinum oxide layer. Pits are recorded and read using a 635-nm-wavelength laser and an objective lens with a 0.6 numerical aperture. We arrange laser pulses to correctly record the pits on the disk by a write-strategy technique. The laser-pulse figure includes a unit time of 0.25 T and intensities of Pw1, Pw2 and Pw3. After recording pits of various lengths, the observation of an eye pattern is achieved despite a pit smaller than the resolution limit. Furthermore, the eye pattern maintains its shape even though other pits fill the adjacent tracks at a track density of 600 nm. The disk can be used as a pit-edge recording system through a write-strategy technique.

  7. Plasma effects in attosecond pulse generation from ultra-relativistic laser-plasma interactions

    International Nuclear Information System (INIS)

    Boyd, T.J.M.

    2010-01-01

    Complete text of publication follows. Particle-in-cell simulations were performed to examine the influence of plasma effects on high harmonic spectra from the interaction of ultra-intense p-polarized laser pulses with overdense plasma targets. Furthermore, a theoretical model is proposed to explain the radiation mechanism that leads to attosecond pulse generation in the reflected field. It is shown that plasma harmonic emission affects the spectral characteristics, causing deviations in the harmonic power decay as compared with the so-called universal 8/3-decay. These deviations may occur, in a varying degree, as a consequence of the extent to which the plasma line and its harmonics affect the emission. It is also found a strong correlation of the emitted attosecond pulses with electron density structures within the plasma, responsible to generate intense localised electrostatic fields. A theoretical model based on the excitation of Langmuir waves by the re-entrant Brunel electron beams in the plasma and their electromagnetic interaction with the laser field is proposed to explain the flatter power spectral emission - described by a weaker 5/3 index and observed in numerical simulations - than that of the universal decay.

  8. Parametric Raman crystalline anti-Stokes laser at 503 nm with collinear beam interaction at tangential phase matching

    Science.gov (United States)

    Smetanin, S. N.; Jelínek, M.; Kubeček, V.

    2017-07-01

    Stimulated-Raman-scattering in crystals can be used for the single-pass frequency-conversion to the Stokes-shifted wavelengths. The anti-Stokes shift can also be achieved but the phase-matching condition has to be fulfilled because of the parametric four-wave mixing process. To widen the angular-tolerance of four-wave mixing and to obtain high-conversion-efficiency into the anti-Stokes, we developed a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phase-matched collinear beam interaction of orthogonally-polarized Raman components in calcite oriented at the phase-matched angle under 532 nm 20 ps laser excitation. The excitation laser beam was split into two orthogonally-polarized components entering the calcite at the certain incidence angles to fulfill the nearly collinear phase-matching and also to compensate walk-off of extraordinary waves for collinear beam interaction. The phase matching of parametric Raman interaction is tangential and insensitive to the angular mismatch if the Poynting vectors of the biharmonic pump and parametrically generated (anti-Stokes) waves are collinear. For the first time it allows to achieve experimentally the highest conversion efficiency into the anti-Stokes wave (503 nm) up to 30% from the probe wave and up to 3.5% from both pump and probe waves in the single-pass picosecond parametric calcite Raman laser. The highest anti-Stokes pulse energy was 1.4 μJ.

  9. QED cascade with 10 PW-class lasers

    Czech Academy of Sciences Publication Activity Database

    Jirka, Martin; Klimo, Ondřej; Vranic, M.; Weber, Stefan A.; Korn, Georg

    2017-01-01

    Roč. 7, Nov (2017), s. 1-7, č. článku 15302. ISSN 2045-2322 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk EF16_013/0001793; GA MŠk EF15_003/0000449; GA ČR(CZ) GA15-02964S; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162; OP VVV - ELITAS(XE) CZ.02.1.01/0.0/0.0/16_013/0001793; OP VVV - HiFi(XE) CZ.02.1.01/0.0/0.0/15_003/0000449 Institutional support: RVO:68378271 Keywords : intensity * regime * optics * plasma * pulse Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 4.259, year: 2016

  10. Laser ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Bykovskij, Yu

    1979-02-01

    The characteristics a laser source of multiply-ionized ions are described with regard to the interaction of laser radiation and matter, ion energy spectrum, angular ion distribution. The amount of multiple-ionization ions is evaluated. Out of laser source applications a laser injector of multiple-ionization ions and nuclei, laser mass spectrometry, laser X-ray microradiography, and a laser neutron generators are described.

  11. Synchrotron radiation based on laser-plasma interaction in the relativistic range

    International Nuclear Information System (INIS)

    Albert, F.

    2007-12-01

    This work illustrates the experimental characterization of a new compact X-ray source: the Betatron X-ray source. It is the first time that collimated hard X-ray source is produced by laser. Through the focusing of an ultra-intense laser radiation (30 TW, 30 fs) on a helium plasma, the ponderomotive force linked to the light intensity gradient expels the plasma electrons forming an accelerating cavity in the wake of the laser plasma. Some electrons trapped in the back of this structure, are accelerated and oscillate to produce X-radiation. This document is composed of 8 chapters. The first one is a presentation of the topic. The second chapter gives an account of the physics behind the laser-plasma interaction in the relativistic range and for ultra-short pulses. The third chapter presents the theoretical characteristics of the Betatron X-ray source. This chapter begins with an analogy with current synchrotron radiation and the radiation emitted by an electron undergoing Betatron oscillations is described in terms of power, spectral intensity and photon flux. The fourth chapter is dedicated to the numerical simulation of the Betatron radiation. The trajectories of the electrons are computed from the equation of motion, taking into account longitudinal and transverse forces. The radiation emission term is then computed from the radiation equation detailed in the previous chapter. The fifth chapter presents the experimental setting to produce Betatron X-rays. The sixth chapter gives the experimental characterization of the source (size, divergence and spectrum) on one hand, and on the other hand studies how source flux and spectra vary when laser and plasma parameters change. The seventh chapter presents experimental methods used to characterize the electrons trajectories in the plasma wiggler. The last chapter draws some perspectives on this source in terms of improvement and uses. (A.C.)

  12. Dynamics of laser mass-limited foil interaction at ultra-high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, T. P., E-mail: tongpu@nudt.edu.cn [College of Science, National University of Defense Technology, Changsha 410073 (China); State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073 (China); Sheng, Z. M. [Key Laboratory for Laser Plasmas (MoE) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, Y.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q. [College of Science, National University of Defense Technology, Changsha 410073 (China); Pukhov, A. [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf (Germany)

    2014-05-15

    By using three-dimensional particle-in-cell simulations with synchrotron radiation damping incorporated, dynamics of ultra-intense laser driven mass-limited foils is presented. When a circularly polarized laser pulse with a peak intensity of ∼10{sup 22} W/cm{sup 2} irradiates a mass-limited nanofoil, electrons are pushed forward collectively and a strong charge separation field forms which acts as a “light sail” and accelerates the protons. When the laser wing parts overtake the foil from the foil boundaries, electrons do a betatron-like oscillation around the center proton bunch. Under some conditions, betatron-like resonance takes place, resulting in energetic circulating electrons. Finally, bright femto-second x rays are emitted in a small cone. It is also shown that the radiation damping does not alter the foil dynamics radically at considered laser intensities. The effects of the transverse foil size and laser polarization on x-ray emission and foil dynamics are also discussed.

  13. Scattering of a light wave by a thin fiber on or near a prism: experiment and analytical theory.

    Science.gov (United States)

    Tajima, Fumiaki; Nishiyama, Yoshio

    2012-06-01

    We have performed an experiment of the scattering of the near field on a prism created by a laser wave, evanescent wave (EW), or plane wave (PW) of an incident angle slightly larger than or smaller than the critical angle, by a thin fiber of subwavelength diameter set above the prism, and we made an analytical theory of an adapted model for the experiment. We have been able to analyze the experimental data exactly by the model theory better than any other theory we have ever known. The importance of the multiple interaction of the wave between the fiber and the surface and also the close similarity of the scattering characteristics between the EW and the PW mentioned above have been acknowledged by the analysis of the data obtained.

  14. Molecular dynamics simulations of matrix assisted laser desorption ionization: Matrix-analyte interactions

    International Nuclear Information System (INIS)

    Nangia, Shivangi; Garrison, Barbara J.

    2011-01-01

    There is synergy between matrix assisted laser desorption ionization (MALDI) experiments and molecular dynamics (MD) simulations. To understand analyte ejection from the matrix, MD simulations have been employed. Prior calculations show that the ejected analyte molecules remain solvated by the matrix molecules in the ablated plume. In contrast, the experimental data show free analyte ions. The main idea of this work is that analyte molecule ejection may depend on the microscopic details of analyte interaction with the matrix. Intermolecular matrix-analyte interactions have been studied by focusing on 2,5-dihydroxybenzoic acid (DHB; matrix) and amino acids (AA; analyte) using Chemistry at HARvard Molecular Mechanics (CHARMM) force field. A series of AA molecules have been studied to analyze the DHB-AA interaction. A relative scale of AA molecule affinity towards DHB has been developed.

  15. Measuring the coherence properties of light emission from laser-plasma interactions. Final report

    International Nuclear Information System (INIS)

    Batha, S.H.

    1998-01-01

    Several detrimental instabilities can be excited when a high-intensity laser interacts with plasma. The temporal evolution and spectra of the scattered light emitted by many of these instabilities are used to characterize the instabilities and to benchmark theories. It has been difficult to image the emission region with sufficient resolution to make quantitative comparisons with theory. Direct measurement of the emission region would yield information on ponderomotive steepening phenomena, the true emission zone of convective instabilities, and on the saturation of absolute instabilities. The increase in laser intensity caused by the filamentation instability is conjectured to elevate the levels of parametric instabilities found in high-energy laser-plasma interactions. Because the diameter of the filaments is very small (on the order of 10 microm), it is impossible to image the emission sites directly and either to prove or to disprove this conjecture. The research reported here examines an alternate method of measuring the emission region of scattered light from parametric instabilities. This report provides a brief background of coherence theory by defining the relevant parameters in Section 2. A concrete example of the effect that multiple scattering sites would have on the proposed measurement is provided in Section 3. The following section briefly describes experiments that might be able to demonstrate the proposed technique. The conclusion raises the issue of coherence and its effect on the expected angular distribution of scattering light from parametric instabilities

  16. Experimental study for angular distribution of the hot electrons generated by femtosecond laser interaction with solid targets

    International Nuclear Information System (INIS)

    Cai, D.F.; Gu, Y.Q.; Zheng, Z.J.; Wen, T.S.; Chunyu, S.T.; Wang, Z.B.; Yang, X.D.

    2003-01-01

    The experimental results of angular distribution of hot electrons in the interaction of a 60 fs, 125 mJ, 800 nm, ∼10 17 W cm -2 laser pulse with Al targets are reported. Three obvious peaks of hot electrons emission have been observed, as there is a weak normal component of the laser electric field. These emission peaks are located in the directions of the specular reflection of the laser, the target normal, and the backreflection of the laser, respectively. In the case of the P-polarized laser pulse, which has a strong normal component of the laser electric field, the peak in the backreflection of the laser disappeared, and only two obvious peaks of hot electron emissions existed. It shows that the different directions of hot electrons emission are dominated by different absorption or acceleration mechanisms. The experimental result of the hot electrons energy spectrum at the target normal shows that the effective temperature of hot electrons is about 190 keV, which is consistent with a scaling law of the resonance absorption

  17. Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles.

    Science.gov (United States)

    Toytman, I; Silbergleit, A; Simanovski, D; Palanker, D

    2010-10-01

    Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency, by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 times greater than that required in sequential approach. Simultaneous focusing of the laser in multiple spots along the line of intended cut can extend this ratio to 1.7. Counterpropagating jets forming during collapse of two bubbles in materials with low viscosity can further extend the cutting zone-up to approximately a factor of 1.5.

  18. Laser-supported detonation waves and pulsed laser propulsion

    International Nuclear Information System (INIS)

    Kare, J.

    1990-01-01

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10 4 K, 10 2 atmospheres, 10 7 w/cm 2 ) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition of the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the Program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research question still outstanding in this area

  19. Modeling Laser-Plasma Interaction over a Suite of NIF Experiments

    Science.gov (United States)

    Strozzi, D. J.; Berger, R. L.; Jones, O. S.; Chapman, T.; Woods, D. T.; MacLaren, S. A.; Michel, P.; Divol, L.

    2017-10-01

    We systematically study laser-plasma interaction (LPI) on NIF indirect-drive experiments, namely backscatter and cross-beam energy transfer. LLNL's best practice radiation-hydrodynamic simulation methodology in the Lasnex simulation code is employed without ad-hoc tuning to match experimental data. This entails converged numerical resolution, an improved DCA model for coronal (ne 1 keV) gold opacity, electron heat flux strongly limited to 0.03neTe3 / 2 me- 1 / 2 , and the inline CBET model. The rad-hydro plasma conditions are used for LPI analysis, namely linear instability gains, and the paraxial-envelope code pF3D. Simulated scattered-light spectra are also compared to measurements. We initially focus on shots with low backscatter, so its self-consistent treatment should not be important. These shots have low hohlraum fill density and short laser pulses, and the only significant backscatter is outer-beams Brillouin. Our long-term goals are to understand reflectivity trends to guide target design and develop LPI mitigation strategies. Work performed under auspices of US DoE by LLNL under Contract DE-AC52-07NA27344.

  20. Compact X-ray sources. Simulating the electron/strong laser interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hartin, Anthony [DESY, CFEL, Hamburg (Germany)

    2016-07-01

    The collision of an intense laser with an electron bunch can be used to produce X-rays via the inverse Compton scattering (ICS) mechanism. The ICS can be simulated via either a classical theory in which electrons and photons are treated in terms of classical electromagnetic waves - or a quantum theory in which charged particles interact with strong electromagnetic fields. The laser intensity used in a practical ICS collision is likely to be at such a level that quantum effects may be significant and the use of quantum theory may become a necessity. A simulation study is presented here comparing the classical and quantum approaches to the ICS. A custom particle-in-cell (PIC) software code, with photon generation by monte carlo of the exact quantum transition probability is used to simulate the quantum treatment. Peak resonant energies and the angular distribution of the X-rays are obtained and compared with those predicted by the classical theory. The conditions under which significant differences between the two theories emerges is obtained.

  1. Laser heating of large noble gas clusters: from the resonant to the relativistic interaction regimes

    Energy Technology Data Exchange (ETDEWEB)

    Gumbrell, E T; Moore, A S; Clark, E L; Garbett, W J; Comley, A J; Edwards, R D; Eagleton, R E [Plasma Physics Division, AWE Aldermaston, Reading RG7 4PR (United Kingdom); Lazarus, J A; Nilson, P M; Robinson, J S; Hohenberger, M; Symes, D R; Smith, R A [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom); Clarke, R J [Rutherford Appleton Laboratory, Chilton OX11 0QX (United Kingdom)], E-mail: edward.gumbrell@awe.co.uk, E-mail: r.a.smith@imperial.ac.uk

    2008-12-15

    Wide-ranging measurements of sub-picosecond laser interactions with large noble gas cluster targets have been conducted in order to help clarify the nature and extent of the underlying laser-plasma heating. Within the sub-relativistic vacuum irradiance range of 10{sup 16}-10{sup 17} W cm{sup -2}, we find that electron temperatures measured with continuum x-ray spectroscopy exhibit a pronounced multi-keV enhancement. Analysis indicates this behaviour to be consistent with collisional or collisionless resonant heating mechanisms. We also present the first measurements of laser-to-cluster energy deposition at relativistic vacuum irradiances, our data demonstrating absorption fractions of 90% or more. Optical probing was used to resolve the onset of a supersonic ionization front resulting from this very high absorption, and shows that despite significant pre-focus heating, the greatest plasma energy densities can be generated about the vacuum focus position. Electron energy spectra measurements confirm that laser-plasma super-heating occurs, and together with ion data establish that relativistic laser-plasma coupling in atomic clusters can take place without significant MeV particle beam production. In conjunction with optical self-emission data, the optical probing also indicates laser pre-pulse effects at peak vacuum irradiance of 5 x 10{sup 19} W cm{sup -2}. Laser absorption, plasma heating and energy transport data are supported throughout with analytical and numerical modelling.

  2. Note: Diagnosing femtosecond laser-solid interactions with monochromatic Kα imager and x-ray pinhole camera

    International Nuclear Information System (INIS)

    Lin, X. X.; Li, Y. T.; Liu, F.; Du, F.; Wang, S. J.; Chen, L. M.; Zhang, L.; Zheng, Y.; Liu, X.; Liu, X. L.; Wang, Z. H.; Ma, J. L.; Wei, Z. Y.; Liu, B. C.; Zhang, J.

    2011-01-01

    An x-ray pinhole camera and a monochromatic K α imager are used to measure the interactions of intense femtosecond laser pulses with Cu foil targets. The two diagnostics give different features in the spot size and the laser energy scaling, which are resulted from different physical processes. Under our experimental conditons, the K α emission is mainly excited by the fast electrons transporting inside the cold bulk target. In contrast, the x-ray pinhole signals are dominated by the broadband thermal x-ray emission from the hot plasma at the front target surface.

  3. Spectroscopic and Dynamic Applications of Laser - Interactions.

    Science.gov (United States)

    Quesada, Mark Alejandro

    1987-05-01

    Five different studies of laser-molecule interactions are conducted in this thesis. In part one, the first observation of Autler-Townes splitting of molecules is discussed and used to measure vibronic transition moments between excited electronic states. The effect was observed in the two-color, four -photon ionization of hydrogen via the resonant levels E,F(v = 6, J = 1) and D(v = 2, J = 2). Calculations gave good fits to the observed spectra yielding a vibronic transition moment of 2.0 +/- 0.5 a.u. between the above excited states. In part two, a method for extracting the alignment parameters of a molecular angular momentum distribution using laser-induced fluorescence is presented. The treatment is applicable to the common case of cylindrically symmetric orientation distributions in the high J-limit. Four different combinations of rotational branches in the LIF absorption emission process are examined. Computer algebra programs are used to generate simple analytical expressions which account for the influence of saturation on determining alignment parameters. In part three, the application of MPI-optogalvanic spectroscopy to the molecule 1,4-diazabicyclo (2.2.2) octane (DABCO) at various levels in a methane/air flame environment is described. The method employs a burner design that permits access to preheated and primary reaction zones of the flame for laser probing. Hot bands arising from two-photon resonant (X_1 ' to A_1') transitions are measured and the intramolecular vibrational potentials for the ground and first excited state are determined. In part four, DABCO's nu_ {13} torsional mode relaxation in a helium -DABCO and argon-DABCO supersonic jet, under low expansion conditions, is discussed. Modeling of the relaxation using the linear Landau-Teller relaxation equation is undertaken with various attempts to incorporate the effects of velocity slip. The relaxation rate is found to be independent of slip and the cross section dependent on the inverse of

  4. Investigation on the Effect of Pulsed Energy on Strength of Fillet Lap Laser Welded AZ31B Magnesium Alloys

    Science.gov (United States)

    Salleh, M. N. M.; Ishak, M.; Aiman, M. H.; Idris, S. R. A.; Romlay, F. R. M.

    2017-09-01

    AZ31B magnesium alloy have been hugely applied in the aerospace, automotive, and electronic industries. However, welding thin sheet AZ31B was challenging due to its properties which is easily to evaporated especially using conventional fusion welding method such as metal inert gas (MIG). Laser could be applied to weld this metal since it produces lower heat input. The application of fiber laser welding has been widely since this type of laser could produce better welding product especially in the automotive sectors. Low power fiber laser was used to weld this non-ferrous metal where pulse wave (PW) mode was used. Double fillet lap joint was applied to weld as thin as 0.6 mm thick of AZ31B and the effect of pulsed energy on the strength was studied. Bond width, throat length, and penetration depth also was studied related to the pulsed energy which effecting the joint. Higher pulsed energy contributes to the higher fracture load with angle of irradiation lower than 3 °

  5. Treatment of Dentine Hypersensitivity by Diode Laser: A Clinical Study

    Directory of Open Access Journals (Sweden)

    Romeo Umberto

    2012-01-01

    Full Text Available Introduction. Dentine hypersensitivity (DH is characterized by pain after stimuli that usually provoke no symptoms. This study compared the effectiveness of GaAlAs diode laser alone and with topical sodium fluoride gel (NaF. Materials and Methods. The study was conducted on 10 patients (8 F/2 M, age 25–60 and 115 teeth with DH assessed by air and tactile stimuli measured by Numeric Rating Scale (NRS. Teeth were randomly divided into G1 (34 teeth treated by 1.25% NaF; G2 (33 teeth lased at 0.5 W PW (T on 100 m and T off 100 ms, fluence 62.2 J/cm2 in defocused mode with a 320 μ fiber. Each tooth received three 1′ applications; G3 (48 teeth received NaF gel plus laser at same G2 parameters. NRS was checked at each control. Results. Significant pain reduction was showed. The NRS reduction percentages were calculated, and there was a concrete decrease of DH above all in G3 than G2 and G1. Conclusion. Diode laser is a useful device for DH treatment if used alone and mainly if used with NaF gel.

  6. The laser thermonuclear fusion

    International Nuclear Information System (INIS)

    Coutant, J.; Dautray, R.; Decroisette, M.; Watteau, J.P.

    1987-01-01

    Principle of the thermonuclear fusion by inertial confinement: required characteristics of the deuterium-tritium plasma and of the high power lasers to be used Development of high power lasers: active media used; amplifiers; frequency conversion; beam quality; pulse conditioning; existing large systems. The laser-matter interaction: collision and collective interaction of the laser radiation with matter; transport of the absorbed energy; heating and compression of deuterium-tritium; diagnoses and their comparison with the numerical simulation of the experiment; performances. Conclusions: difficulties to overcome; megajoule lasers; other energy source: particles beams [fr

  7. Angularly resolved characterization of ion beams from laser-ultrathin foil interactions

    Science.gov (United States)

    Scullion, C.; Doria, D.; Romagnani, L.; Ahmed, H.; Alejo, A.; Ettlinger, O. C.; Gray, R. J.; Green, J.; Hicks, G. S.; Jung, D.; Naughton, K.; Padda, H.; Poder, K.; Scott, G. G.; Symes, D. R.; Kar, S.; McKenna, P.; Najmudin, Z.; Neely, D.; Zepf, M.; Borghesi, M.

    2016-09-01

    Methods and techniques used to capture and analyze beam profiles produced from the interaction of intense, ultrashort laser pulses and ultrathin foil targets using stacks of Radiochromic Film (RCF) and Columbia Resin #39 (CR-39) are presented. The identification of structure in the beam is particularly important in this regime, as it may be indicative of the dominance of specific acceleration mechanisms. Additionally, RCF can be used to deconvolve proton spectra with coarse energy resolution while mantaining angular information across the whole beam.

  8. Angularly resolved characterization of ion beams from laser-ultrathin foil interactions

    International Nuclear Information System (INIS)

    Scullion, C.; Doria, D.; Ahmed, H.; Alejo, A.; Jung, D.; Naughton, K.; Kar, S.; Zepf, M.; Romagnani, L.; Ettlinger, O.C.; Hicks, G.S.; Poder, K.; Najmudin, Z.; Gray, R.J.; Padda, H.; McKenna, P.; Green, J.; Scott, G.G.; Symes, D.R.; Neely, D.

    2016-01-01

    Methods and techniques used to capture and analyze beam profiles produced from the interaction of intense, ultrashort laser pulses and ultrathin foil targets using stacks of Radiochromic Film (RCF) and Columbia Resin #39 (CR-39) are presented. The identification of structure in the beam is particularly important in this regime, as it may be indicative of the dominance of specific acceleration mechanisms. Additionally, RCF can be used to deconvolve proton spectra with coarse energy resolution while mantaining angular information across the whole beam.

  9. Laser plasma interaction in rugby-shaped hohlraums

    Science.gov (United States)

    Masson-Laborde, P.-E.; Philippe, F.; Tassin, V.; Monteil, M.-C.; Gauthier, P.; Casner, A.; Depierreux, S.; Seytor, P.; Teychenne, D.; Loiseau, P.; Freymerie, P.

    2014-10-01

    Rugby shaped-hohlraum has proven to give high performance compared to a classical similar-diameter cylinder hohlraum. Due to this performance, this hohlraum has been chosen as baseline ignition target for the Laser MegaJoule (LMJ). Many experiments have therefore been performed during the last years on the Omega laser facility in order to study in details the rugby hohlraum. In this talk, we will discuss the interpretation of these experiments from the point of view of the laser plasma instability problem. Experimental comparisons have been done between rugby, cylinder and elliptical shape rugby hohlraums and we will discuss how the geometry differences will affect the evolution of laser plasma instabilities (LPI). The efficiency of laser smoothing techniques on these instabilities will also be discussed as well as gas filling effect. The experimental results will be compared with FCI2 hydroradiative calculations and linear postprocessing with Piranah. Experimental Raman and Brillouin spectrum, from which we can infer the location of the parametric instabilities, will be compared to simulated ones, and will give the possibility to compare LPI between the different hohlraum geometries.

  10. Interactions of two co-propagating laser beams in underdense plasmas using a generalized Peaceman-Rachford ADI form

    International Nuclear Information System (INIS)

    Mahdy, A.I.

    2005-12-01

    A generalized Peaceman-Rachford (P-R) ADI form based on the regularized finite difference scheme is employed in order to study the interactions of two co-propagating laser beams in underdense plasmas. A numerical algorithm using the P-R ADI form is constructed for solution of coupled 2D time-dependent non-linear Schroedinger equations for quasineutral plasmas in paraxial approximation. The ability of the form to solve the equations is discussed, and its performance in simulating phenomena associated with the interactions in the presence of pondermotive nonlinearity and relativistic nonlinearity is examined. It is shown that the generalized P-R ADI form can accurately solve the coupled NLS equations. With simulation results, the form is shown to be suitable to simulate the interactions of two co-propagating laser beams with underdense plasma, and it can successively simulate the associated phenomena at varying conditions. (author)

  11. The interaction of super-intense ultra-short laser pulse and micro-clusters with large atomic clusters

    International Nuclear Information System (INIS)

    Miao Jingwei; Yang Chaowen; An Zhu; Yuan Xuedong; Sun Weiguo; Luo Xiaobing; Wang Hu; Bai Lixing; Shi Miangong; Miao Lei; Zhen Zhijian; Gu Yuqin; Liu Hongjie; Zhu Zhouseng; Sun Liwei; Liao Xuehua

    2007-01-01

    The fusion mechanism of large deuterium clusters (100-1000 Atoms/per cluster) in super-intense ultra-short laser pulse field, Coulomb explosions of micro-cluster in solids, gases and Large-size clusters have been studied using the interaction of a high-intensity femtosecond laser pulses with large deuterium clusters, collision of high-quality beam of micro-cluster from 2.5 MV van de Graaff accelerator with solids, gases and large clusters. The experimental advance of the project is reported. (authors)

  12. Laser-plasma accelerators, acceleration of particles through laser-matter interaction at ultra-high intensity

    International Nuclear Information System (INIS)

    Lefebvre, E.

    2010-01-01

    This series of slides overviews the development of powerful lasers for inertial confinement fusion (Icf) at NIF (National Ignition Facility, Usa) and LMJ (Laser Megajoule, France) facilities. Then the principle of laser wakefield acceleration is presented and the possibility of designing compact accelerators delivering 200 GeV/m while conventional RF accelerators reach only 50 MeV/m, is considered. This technical breakthrough will bring important gains in terms of size, cost and new uses for accelerators. While Icf will use nanosecond (10 -9 s) laser pulses, wakefield accelerators will use femtosecond (10 -15 s) laser pulses which means more power but less energy. The electrons accelerated by laser can produce a multi-MeV X radiation useful for industrial radiography or cancer treatment. (A.C.)

  13. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    Directory of Open Access Journals (Sweden)

    S. S. Bulanov

    2015-06-01

    Full Text Available The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He^{3} ions, having almost the same penetration depth as He^{4} with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.

  14. Multi-scale description of the laser-plasma interaction: application to the physics of shock ignition in inertial confinement fusion

    International Nuclear Information System (INIS)

    Colaitis, Arnaud

    2015-01-01

    This manuscript presents a novel formulation of the Laser-Plasma Interaction (LPI) at hydrodynamical scales, that couples the plasma dynamics with linear and nonlinear LPI processes. The standard Ray Tracing model, based on Geometrical Optics, is not well suited for that purpose because it does not readily describe the laser intensity distribution in plasma. We propose an alternative model formulated for a Lagrangian hydrodynamic code. It is based on the ray-based Paraxial Complex Geometrical Optics (PCGO) that describes Gaussian optical beamlets. A method for modeling non-Gaussian laser beams smoothed by Phase Plates is presented, that allows to create intensity variations that reproduce the beam envelope, contrast and high-intensity statistics predicted by paraxial laser propagation codes. We propose in line reduced models for the non-linear laser-plasma interaction, in the case of the Cross-Beam Energy Transfer (CBET) and the generation of Hot Electrons (HE). The in line CBET model is validated against a time-dependent conventional paraxial electromagnetic wave propagation code, in a well-defined plasma configuration with density and velocity profiles corresponding to an inhomogeneous plasma. Good agreement is found past a transient period on the picosecond time scale, notably for the spatial distribution of density perturbations and laser intensities in the interaction region. Application of the model to a direct-drive Inertial Confinement Fusion (ICF) configuration shows that CBET significantly degrades the irradiation symmetry by amplifying low frequency modes and reducing the laser-capsule coupling efficiency, ultimately leading to large modulations of the shell areal density and lower convergence ratios. The LPI/HE model predicts the HE fluxes, temperatures, angular dispersion and direction from the laser intensity of PCGO beamlets from simplified expressions based on theoretical models and scaling laws obtained in kinetic simulations. The HE beams

  15. Computational Magnetohydrodynamics of General Materials in Generalized Coordinates and Applications to Laser-Target Interactions

    Science.gov (United States)

    MacGillivray, Jeff T.; Peterkin, Robert E., Jr.

    2003-10-01

    We have developed a multiblock arbitrary coordinate Hydromagnetics (MACH) code for computing the time-evolution of materials of arbitrary phase (solid, liquid, gas, and plasma) in response to forces that arise from material and magnetic pressures. MACH is a single-fluid, time-dependent, arbitrary Lagrangian-Eulerian (ALE) magnetohydrodynamic (MHD) simulation environment. The 2 1/2 -dimensional MACH2 and the parallel 3-D MACH3 are widely used in the MHD community to perform accurate simulation of the time evolution of electrically conducting materials in a wide variety of laboratory situations. In this presentation, we discuss simulations of the interaction of an intense laser beam with a solid target in an ambient gas. Of particular interest to us is a laser-supported detonation wave (blast wave) that originates near the surface of the target when the laser intensity is sufficiently large to vaporize target material within the focal spot of the beam. Because the MACH3 simulations are fully three-dimensional, we are able to simulate non-normal laser incidence. A magnetic field is also produced from plasma energy near the edge of the focal spot.

  16. Experimental platform for investigations of high-intensity laser plasma interactions in the magnetic field of a pulsed power generator

    Science.gov (United States)

    Ivanov, V. V.; Maximov, A. V.; Swanson, K. J.; Wong, N. L.; Sarkisov, G. S.; Wiewior, P. P.; Astanovitskiy, A. L.; Covington, A. M.

    2018-03-01

    An experimental platform for the studying of high-intensity laser plasma interactions in strong magnetic fields has been developed based on the 1 MA Zebra pulsed power generator coupled with the 50-TW Leopard laser. The Zebra generator produces 100-300 T longitudinal and transverse magnetic fields with different types of loads. The Leopard laser creates plasma at an intensity of 1019 W/cm2 in the magnetic field of coil loads. Focusing and targeting systems are integrated in the vacuum chamber of the pulsed power generator and protected from the plasma debris and strong mechanical shock. The first experiments with plasma at laser intensity >2 × 1018 W/cm2 demonstrated collimation of the laser produced plasma in the axial magnetic field strength >100 T.

  17. Multiply charged ions of the oxygen - produced at interaction of laser radiation with two-element solids

    International Nuclear Information System (INIS)

    Bedilov, M.R.; Bedilov, R.M.; Kamalova, J.O.; Davletov, I.Yu.; Matnazarov, A.R.

    2007-01-01

    Full text: The interest to study of the oxygen multiply charged ions spectra produced at interaction laser radiation with one and two-element solids, is associate with possibility of creating laser and inertial thermonuclear syntheses, effective sources of multiply charged ions and nuclei atoms elements, plasma lasers, lasers on multiply charged transition, design of radiation-resistant materials and others. The present time many works is devoted to multiply charged ions, obtained from one element targets. Experimental results of study charge and energy spectra multiply charged ions of the oxygen, formed at interaction laser radiation with one and two-element solids are given in this work. Our experiments, we used installation, which is described in [1]. Neodymium laser had following parameters: wavelength 1.06 μm; intensity q = (0.1 h 1000) GW/sm 2 ; angle of incidence = 180. Were study one element Al, and two-element Al 2 O 3 , Y 2 O 3 targets by a diameter of 10 mm and thickness of 3 mm. Analysis obtained charge and energy spectra of multiply charged ions one (Al) and two-element (Al 2 O 3 , Y 2 O 3 ) targets depending on intensity of laser radiation and targets components reveal the following: - maximal charge number one element target (Al) at q 500 GW/sm 2 is equal Z max = 6 and all peaks corresponding to charge numbers Z = 1 - 6 well resolved, but two-element targets (Al 2 O 3 ) Z max ions Al decrease before 3. Also it is necessary to note that, Z max ions of the oxygen depend on target components. In case Al 2 O 3 and Y 2 O 3 maximal charge number of oxygen ions are equal Z max = 6 and 3, accordingly; - obtained charge and energy spectra of oxygen ions being included in two-element targets, are indicative of that, general regularities of the change Z max , E max and structures charge and energy spectra depending on q laser are saved. However they hang by target components; - common features and some differences of energy spectra multiply charged oxygen ions

  18. Laser-induced stresses versus mechanical stress power measurements during laser ablation of solids

    International Nuclear Information System (INIS)

    Shannon, M.A.; Russo, R.E.

    1995-01-01

    Laser-induced stresses resulting from high-power laser-material interactions have been studied extensively. However, the rate of change in mechanical energy, or stress power, due to laser-induced stresses has only recently been investigated. An unanswered question for monitoring laser-material interactions in the far-field is whether stress power differs from stresses measured, particularly with respect to laser-energy coupling to a solid target. This letter shows experimental acoustic data which demonstrate that stress power measured in the far field of the target shows changes in laser-energy coupling, whereas the stresses measured do not. For the ambient medium above the target, stress power and stress together reflect changes in laser-energy coupling. copyright 1995 American Institute of Physics

  19. Laser interaction effects of electromagnetic absorption and microstructural defects on hot-spot formation in RDX-PCTFE energetic aggregates

    International Nuclear Information System (INIS)

    Brown, Judith A; LaBarbera, Darrell A; Zikry, Mohammed A

    2014-01-01

    Hot-spot formation in energetic aggregates subjected to dynamic pressure loading and laser irradiation has been investigated. Specialized finite-element techniques with a dislocation-density-based crystalline plasticity constitutive formulation and thermo-mechanical coupling of heat conduction, adiabatic heating, laser heating and thermal decomposition were used to predict hot-spot formation in RDX–polymer aggregates subjected to dynamic pressures and laser energies. The effects of the electromagnetic absorption coefficient coupled with void distribution and spacing, grain morphology, crystal–binder interactions and dislocation densities were analyzed to determine their influence on the time, location and mechanisms of hot-spot formation. Four different mechanisms for hot-spot initiation under dynamic laser and pressure loads were identified, which depend on the localization of plastic shear strain and laser heat absorption within the aggregate. The predictions indicate that hot-spot formation is accelerated by higher absorption coefficients and by localized plastic deformations that occur in areas of significant laser heating. (paper)

  20. Transmission electron microscopy of nanostructures synthesized by laser and charged particle beam interaction with materials

    International Nuclear Information System (INIS)

    Dey, G. K.

    2011-01-01

    Transmission Electron Microscopy (TEM), because of its ability to image atomic arrangements directly and its ability to give spectroscopic information at similar resolution has emerged as a very powerful tool for understanding the structure of materials at atomic level. TEM has been particularly useful in resolving the interface structures in materials. This form of microscopy is very suitable for resolving the structure and defects in ultrafine microstructures such as those of the nanocrystalline phases. After a brief description of the different characterization abilities of the aberration corrected transmission electron microscope, this presentation describes the results of TEM investigations on nanocrystalline microstructures generated by laser materials interaction and due to interaction of electrons and ions with materials. Excimer laser has become an attractive choice for new and precision application for ablation and deposition in recent times. In this work, a KrF excimer laser having 30 ns pulse width and 600 mJ energy at source has been used to deposit zirconia on Zr-base alloy in order to explore the ability of the thin oxide film to act as a diffusion barrier to hydrogen ingress into the alloy. It has been found that the variation in pressure by an order of three has resulted in maximum influence on the roughness of the laser deposited oxide film that has not been possible to achieve by other parameters within the range of the instrument. Present study has also indicated an interrelation among the roughness, adherence and the film-thickness, where the last one is indicated by the XPS study. Transmission electron microscopy was carried out to study the size, size distribution and defects in the deposited film. Nanocrystalline phases generated by interaction of electron and ion irradiation of Zr based alloys; Ni based alloys and Fe based alloys have been examined in detail by conventional and high resolution transmission electron microscopy. Results of

  1. Radiation sources based on laser-plasma interactions

    NARCIS (Netherlands)

    Jaroszynski, D.A.; Bingham, R.; Brunetti, E.; Ersfeld, B.; Gallacher, J.G.; Geer, van der S.B.; Issac, R.; Jamison, S.P.; Jones, D.; Loos, de M.J.; Lyachev, A.; Pavlov, V.M.; Reitsma, A.J.W.; Saveliev, Y.M.; Vieux, G.; Wiggins, S.M.

    2006-01-01

    Plasma waves excited by intense laser beams can be harnessed to produce femtosecond duration bunches of electrons with relativistic energies. The very large electrostatic forces of plasma density wakes trailing behind an intense laser pulse provide field potentials capable of accelerating charged

  2. Studies of the relativistic electron source and related phenomena in Petawatt Laser matter interactions

    International Nuclear Information System (INIS)

    Key, M.H.; Campbell, E.M.; Cowan, T.E.; Hatchett, S.P.; Henry, E.A.; Koch, J.A.; Landgon, A.B.; Lasinski, B.F.; Lee, R.W.; MacKinnon, A.; Offenberger, A.; Pennington, D.M.; Perry, M.D.; Sangster, T.C.; Yasuike, K.; Snavely, R.; Roth, M.; Phillips, T.W.; Stoyer, M.A.; Wilks, S.C.; Singh, M.S.

    1999-01-01

    The interaction of laser radiation with solid targets at 1 petawatt power and intensity up to 3x10 20 Wcm -2 has been studied with emphasis on relativistic electrons and high energy ions. Secondary effects including Bremsstrahlung radiation, nuclear interactions and heating have been characterized. A collimated beam of protons with up to 55 MeV energy is emitted normal to the rear surface of thin targets and its characteristics and origin are discussed. The significance of the data for radiography, fast ignition and proton beam applications is summarized

  3. The interpretation of the intensity of components of laser scattering by interaction with matter

    Science.gov (United States)

    Fidanovski, Z.; Srećković, M.; Ostojić, S.; Ilić, J.; Merkle, M.

    2012-05-01

    The measurement of scattered light properties offers many optical, acoustic, dielectric, thermodynamic data about the scattering medium. Brillouin spectroscopy with various modifications and different laser types has been a measurement technique in acoustics for a long time, but it is still important as an autonomous technique. It enables more detailed and exhaustive knowledge of the acoustic and optical properties of matter. A series of Rayleigh-Brillouin spectra are recorded for a set of organic solvents and phytol. The equipment used in spectra recordings enables the measurement of four components of scattered laser intensity Ihh, Ihv, Ivv and Ivh. The ratios of the linewidth, as well as shifts, are determined for Rayleigh-Brillouin spectra. According to them, the hypersound velocity and absorption coefficients can be calculated. There is much software for data processing obtained in laser interaction with matter, with different programming tools. An analysis of spectra is performed, i.e. an examination of which distribution (Gaussian or Lorentzian) better explains the experimentally obtained diagrams.

  4. Direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear optical and dynamical laser interaction

    International Nuclear Information System (INIS)

    Lalousis, P.

    1984-01-01

    Nonthermal direct electrodynamic interaction between laser energy and a fully ionized plasma was studied. The particular emphasis is on the action of nonlinear forces, in which the optical electromagnetic fields act on the plasma electrons which then transfer their energy to the ions electrostatically. Instead of the usual single fluid model, the plasma is treated as two separate conducting fluids for electrons and ions, coupled by momentum and Coulomb interactions. The equations governing the two fluids are derived from first principles, and numerical algorithms for computing these equations are developed, enabling the plasma oscillatons to be resolved and studied. Fully ionized plasma expansion without laser irradiation is studied first numerically. Remarkable damping mechanisms by coupling to ion oscillations have been observed. Inhomogeneities in densities of the two fluids result in large electrostatic fields and double layers are generated. There is quite close agreement between numerically calculated electrostatic fields and analytical solutions. Laser interaction with fully ionized plasma is also studied numerically. The generation of cavitons is numerically observed, and it is inferred that laser plasma interactions produce very high electrostatic fields in the vicinity of cavitons. It is further shown that charge neutrality is not necessarily maintained in a caviton

  5. Experimental Studies of Simultaneous 351 nm and 527 nm Laser Beam Interactions in a Long Scalelength Plasma

    International Nuclear Information System (INIS)

    Moody, J D; Divol, L; Glenzer, S H; MacKinnon, A J; Froula, D H; Gregori, G; Kruer, W L; Suter, L J; Williams, E A; Bahr, R; Seka, W

    2003-01-01

    We describe experiments investigating the simultaneous backscattering from 351 nm (3w) and 527 nm (2w) interaction beams in a long scalelength laser-produced plasma for intensities (le) 1 x 10 15 W/cm 2 . Measurements show comparable scattering fractions for both color probe beams. Time resolved spectra of stimulated Raman and Brillouin scattering (SRS and SBS) indicate the effects of laser intensity and smoothing as well as plasma composition and parameters on the scattering levels

  6. A novel truncating AIP mutation, p.W279*, in a familial isolated pituitary adenoma (FIPA) kindred.

    Science.gov (United States)

    Cansu, Güven Barış; Taşkıran, Bengür; Trivellin, Giampaolo; Faucz, Fabio R; Stratakis, Constantine A

    2016-07-01

    Familial isolated pituitary adenomas (FIPA) constitute 2-3% of pituitary tumours. AIP is the most commonly mutated gene in FIPA. We herein report a novel germline mutation of the AIP gene in a family with FIPA. We present two patients, a father and his 12-year-old daughter, diagnosed clinically and using laboratory measures with acromegaly-gigantism. Both underwent transsphenoidal hypophyseal surgery for macroadenomas. We initially detected a novel heterozygous germline AIP mutation, c.836G>A (p.W279*), in the father's DNA. We then found the same mutation in his affected daughter. Pituitary adenomas associated with AIP mutations mostly present as FIPA (68%) at an early age (78% occur at treatment success, and genetic counseling.

  7. Attenuation of laser power of a focused Gaussian beam during interaction between a laser and powder in coaxial laser cladding

    International Nuclear Information System (INIS)

    Liu Jichang; Li Lijun; Zhang Yuanzhong; Xie Xiaozhu

    2005-01-01

    The power of a focused laser beam with a Gaussian intensity profile attenuated by powder in coaxial laser cladding is investigated experimentally and theoretically, and its resolution model is developed. With some assumptions, it is concluded that the attenuation of laser power is an exponential function and is determined by the powder feed rate, particle moving speed, spraying angles and waist positions and diameters of the laser beam and powder flow, grain diameter and run of the laser beam through the powder flow. The attenuation of laser power increases with powder feed rate or run of laser beam through the powder flow. In the experiment presented, 300 W laser power from a focused Gaussian beam is attenuated by a coaxial powder flow. The experimental results agree well with the values calculated with the developed model

  8. Physics of laser-plasma interaction for shock ignition of fusion reactions

    International Nuclear Information System (INIS)

    Tikhonchuk, V T; Colaïtis, A; Vallet, A; Llor Aisa, E; Duchateau, G; Nicolaï, Ph; Ribeyre, X

    2016-01-01

    The shock ignition scheme is an alternative approach, which aims to achieve ignition of fusion reactions in two subsequent steps: first, the target is compressed at a low implosion velocity and second, a strong converging shock is launched during the stagnation phase and ignites the hot spot. In this paper we describe the major elements of this scheme and recent achievements concerning the laser-plasma interaction, the crucial role of hot electrons in the shock generation, the shock amplification in the imploding shell and the ignition conditions. (paper)

  9. High-speed photography of plasma during excimer laser-tissue interaction

    International Nuclear Information System (INIS)

    Murray, Andrea K; Dickinson, Mark R

    2004-01-01

    During high fluence laser-tissue interaction, ablation of tissue occurs, debris is removed from the ablation site and is then ejected at high velocity. This debris may be observed as a combination of luminous plasma and non-luminous plume, both of which have the potential to shield the ablation site. This study examined the role of ablation debris in shielding the tissue and determined its effects on the ablation rate over a range of laser pulse energies, pulse repetition rates and pulse numbers for dentine; the velocity differences between hard and soft tissues were also examined. High-speed photography was carried out at up to 1 x 10 8 frames per second. A maximum velocity of 2.58 ± 0.52 x 10 4 m s -1 was recorded for dentine debris within the first 10 ns following ejection. The maximum duration of tissue shielding due to a single pulse, determined by attenuation of a probe beam, was found to be ∼7 ms, ∼80 μs of which was due to luminous plasma and the remainder due to the non-luminous plume

  10. Coherent nonlinear backscattering by laser-plasma interactions

    International Nuclear Information System (INIS)

    Anderson, D.; Wilhelmsson, H.

    1974-01-01

    A theoretical analysis is carried out for the problem of coherent nonlinear backscattering of laser radiation by a high density plasma. A number of effects of direct interest to the DT-pellet fusion research is investigated. A simple physical description is introduced, which relies on a nonlinear potential formulation of the scattering equations. The simplicity and the unified nature of the approach enables one to evaluate and compare the influence on the radiation reflectivity of different effects, such as e.g. inhomogeneities, blow-off velocities, temperature gradients, laser band width and relativistic oscillatory velocities. The understanding of the role played by the various phenomena has consequently improved and it is thought that this approach should be useful for the interpretation of laser-plasma data obtained by computer simulation or laboratory experiments. The results may also be utilized to estimate how and to what extent one may avoid undesired anomalous reflection when planning new laser-plasma devices. (Auth.)

  11. Laser-induced plasmas as an analytical source for quantitative analysis of gaseous and aerosol systems: Fundamentals of plasma-particle interactions

    Science.gov (United States)

    Diwakar, Prasoon K.

    2009-11-01

    Laser-induced Breakdown Spectroscopy (LIBS) is a relatively new analytical diagnostic technique which has gained serious attention in recent past due to its simplicity, robustness, and portability and multi-element analysis capabilities. LIBS has been used successfully for analysis of elements in different media including solids, liquids and gases. Since 1963, when the first breakdown study was reported, to 1983, when the first LIBS experiments were reported, the technique has come a long way, but the majority of fundamental understanding of the processes that occur has taken place in last few years, which has propelled LIBS in the direction of being a well established analytical technique. This study, which mostly focuses on LIBS involving aerosols, has been able to unravel some of the mysteries and provide knowledge that will be valuable to LIBS community as a whole. LIBS processes can be broken down to three basic steps, namely, plasma formation, analyte introduction, and plasma-analyte interactions. In this study, these three steps have been investigated in laser-induced plasma, focusing mainly on the plasma-particle interactions. Understanding plasma-particle interactions and the fundamental processes involved is important in advancing laser-induced breakdown spectroscopy as a reliable and accurate analytical technique. Critical understanding of plasma-particle interactions includes study of the plasma evolution, analyte atomization, and the particle dissociation and diffusion. In this dissertation, temporal and spatial studies have been done to understand the fundamentals of the LIBS processes including the breakdown of gases by the laser pulse, plasma inception mechanisms, plasma evolution, analyte introduction and plasma-particle interactions and their influence on LIBS signal. Spectral measurements were performed in a laser-induced plasma and the results reveal localized perturbations in the plasma properties in the vicinity of the analyte species, for

  12. Osteoblast interaction with laser cladded HA and SiO2-HA coatings on Ti-6Al-4V

    International Nuclear Information System (INIS)

    Yang Yuling; Serpersu, Kaan; He Wei; Paital, Sameer R.; Dahotre, Narendra B.

    2011-01-01

    In order to improve the bioactivity and biocompatibility of titanium endosseous implants, the morphology and composition of the surfaces were modified. Polished Ti-6Al-4V substrates were coated by a laser cladding process with different precursors: 100 wt.% HA and 25 wt.% SiO 2 -HA. X-ray diffraction of the laser processed samples showed the presence of CaTiO 3 , Ca 3 (PO 4 ) 2 , and Ca 2 SiO 4 phases within the coatings. From in vitro studies, it was observed that compared to the unmodified substrate all laser cladded samples presented improved cellular interactions and bioactivity. The samples processed with 25 wt.% SiO 2 -HA precursor showed a significantly higher HA precipitation after immersion in simulated body fluid than 100 wt.% HA precursor and titanium substrates. The in vitro biocompatibility of the laser cladded coatings and titanium substrate was investigated by culturing of mouse MC3T3-E1 pre-osteoblast cell line and analyzing the cell viability, cell proliferation, and cell morphology. A significantly higher cell attachment and proliferation rate were observed for both laser cladded 100 wt.% HA and 25 wt.% SiO 2 -HA samples. Compared to 100 wt.% HA sample, 25 wt.% SiO 2 -HA samples presented a slightly improved cellular interaction due to the addition of SiO 2 . The staining of the actin filaments showed that the laser cladded samples induced a normal cytoskeleton and well-developed focal adhesion contacts. Scanning electron microscopic image of the cell cultured samples revealed better cell attachment and spreading for 25 wt.% SiO 2 -HA and 100 wt.% HA coatings than titanium substrate. These results suggest that the laser cladding process improves the bioactivity and biocompatibility of titanium. The observed biological improvements are mainly due to the coating induced changes in surface chemistry and surface morphology. Highlights: → Laser cladding of Ti alloys with bioceramics creates new phases. → Laser cladded samples with SiO 2 -doped

  13. ILIAS - Ion and laser beam interaction and application studies. A scientific portrait of the PHELIX theory group

    Energy Technology Data Exchange (ETDEWEB)

    Bock, R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Gibbon, P. [Forschungszentrum Juelich GmbH (Germany). Zentralinstitut fuer Angewandte Mathematik; Maruhn, J.A. [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Mulser, P. [Technische Univ. Darmstadt (DE). Theoretical Quantum Electronics (TQE); Scheid, W. [Justus-Liebig-Univ., Giessen (Germany). Inst. fur Theor. Phys.; Schlegel, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany). Theoretische Abteilung; Tauschwitz, A.

    2005-06-01

    In January 2005 R. Bock (GSI), P. Gibbon (FZ Juelich), J. Maruhn (Univ. Frankfurt), P. Mulser (TU Darmstadt), W. Scheid (Univ. Giessen), and T. Schlegel (GSI) established the ILIAS study group in high power laser interaction theory, with the following goals: To disseminate within ILIAS and collaborators the expertise in plasma, atomic, nuclear and nonlinear physics, and numerical simulation techniques held by individual members of the ILIAS study group. To coordinate the theoretical activities related to petawatt physics with lasers at GSI. To explore the potential of intense laser beams interacting with bulk matter, heavy ion beams and with mass-limited systems and single particles (e.g. cluster, mesoscopic and atomic physics). To propose relevant experiments for the PHELIX project and to discuss them in detail with the experimentalists in order to arrive at a coherent, GSI-specific scientific program. In elaborating such a concept the availability of the GSI accelerator system for laser petawatt experiments will play a major role. To attract and involve students and young researchers to establish a stable theoretical group of young experts. This goal could be reached within 2 - 3 years from now. To intensify these efforts a regular seminar is already held by the ILIAS members. By individual members pertinent lectures and seminars will be offered at their respective Universities. (orig.)

  14. Simulations of the interaction of intense petawatt laser pulses with dense Z-pinch plasmas : final report LDRD 39670

    International Nuclear Information System (INIS)

    Welch, Dale Robert; MacFarlane, Joseph John; Mehlhorn, Thomas Alan; Campbell, Robert B.

    2004-01-01

    We have studied the feasibility of using the 3D fully electromagnetic implicit hybrid particle code LSP (Large Scale Plasma) to study laser plasma interactions with dense, compressed plasmas like those created with Z, and which might be created with the planned ZR. We have determined that with the proper additional physics and numerical algorithms developed during the LDRD period, LSP was transformed into a unique platform for studying such interactions. Its uniqueness stems from its ability to consider realistic compressed densities and low initial target temperatures (if required), an ability that conventional PIC codes do not possess. Through several test cases, validations, and applications to next generation machines described in this report, we have established the suitability of the code to look at fast ignition issues for ZR, as well as other high-density laser plasma interaction problems relevant to the HEDP program at Sandia (e.g. backlighting)

  15. Contribution to the beam plasma material interactions during material processing with TEA CO2 laser radiation

    Science.gov (United States)

    Jaschek, Rainer; Konrad, Peter E.; Mayerhofer, Roland; Bergmann, Hans W.; Bickel, Peter G.; Kowalewicz, Roland; Kuttenberger, Alfred; Christiansen, Jens

    1995-03-01

    The TEA-CO2-laser (transversely excited atmospheric pressure) is a tool for the pulsed processing of materials with peak power densities up to 1010 W/cm2 and a FWHM of 70 ns. The interaction between the laser beam, the surface of the work piece and the surrounding atmosphere as well as gas pressure and the formation of an induced plasma influences the response of the target. It was found that depending on the power density and the atmosphere the response can take two forms. (1) No target modification due to optical break through of the atmosphere and therefore shielding of the target (air pressure above 10 mbar, depending on the material). (2) Processing of materials (air pressure below 10 mbar, depending on the material) with melting of metallic surfaces (power density above 0.5 109 W/cm2), hole formation (power density of 5 109 W/cm2) and shock hardening (power density of 3.5 1010 W/cm2). All those phenomena are usually linked with the occurrence of laser supported combustion waves and laser supported detonation waves, respectively for which the mechanism is still not completely understood. The present paper shows how short time photography and spatial and temporal resolved spectroscopy can be used to better understand the various processes that occur during laser beam interaction. The spectra of titanium and aluminum are observed and correlated with the modification of the target. If the power density is high enough and the gas pressure above a material and gas composition specific threshold, the plasma radiation shows only spectral lines of the background atmosphere. If the gas pressure is below this threshold, a modification of the target surface (melting, evaporation and solid state transformation) with TEA-CO2- laser pulses is possible and the material specific spectra is observed. In some cases spatial and temporal resolved spectroscopy of a plasma allows the calculation of electron temperatures by comparison of two spectral lines.

  16. High Heat Flux Interactions and Tritium Removal from Plasma Facing Components by a Scanning Laser

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Hassanein, A.

    2002-01-01

    A new technique for studying high heat flux interactions with plasma facing components is presented. The beam from a continuous wave 300 W neodymium laser was focused to 80 W/mm2 and scanned at high speed over the surface of carbon tiles. These tiles were previously used in the TFTR [Tokamak Fusion Test Reactor] inner limiter and have a surface layer of amorphous hydrogenated carbon that was codeposited during plasma operations. Laser scanning released up to 84% of the codeposited tritium. The temperature rise of the codeposit on the tiles was significantly higher than that of the manufactured material. In one experiment, the codeposit surface temperature rose to 1,770 C while for the same conditions, the manufactured surface increased to only 1,080 C. The peak temperature did not follow the usual square-root dependence on heat pulse duration. Durations of order 100 ms resulted in brittle destruction and material loss from the surface, while a duration of approximately 10 ms showed minimal change. A digital microscope imaged the codeposit before, during, and after the interaction with the laser and revealed hot spots on a 100-micron scale. These results will be compared to analytic modeling and are relevant to the response of plasma facing components to disruptions and vertical displacement events (VDEs) in next-step magnetic fusion devices

  17. Ultra-relativistic ion acceleration in the laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yongsheng; Wang Naiyan; Tang Xiuzhang; Shi Yijin [China Institute of Atomic Energy, Beijing 102413 (China); Xueqing Yan [Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China)

    2012-09-15

    An analytical relativistic model is proposed to describe the relativistic ion acceleration in the interaction of ultra-intense laser pulses with thin-foil plasmas. It is found that there is a critical value of the ion momentum to make sure that the ions are trapped by the light sail and accelerated in the radiation pressure acceleration (RPA) region. If the initial ion momentum is smaller than the critical value, that is in the classical case of RPA, the potential has a deep well and traps the ions to be accelerated, as the same described before by simulation results [Eliasson et al., New J. Phys. 11, 073006 (2009)]. There is a new ion acceleration region different from RPA, called ultra-relativistic acceleration, if the ion momentum exceeds the critical value. In this case, ions will experience a potential downhill. The dependence of the ion momentum and the self-similar variable at the ion front on the acceleration time has been obtained. In the ultra-relativistic limit, the ion momentum at the ion front is proportional to t{sup 4/5}, where t is the acceleration time. In our analytical hydrodynamical model, it is naturally predicted that the ion distribution from RPA is not monoenergetic, although the phase-stable acceleration mechanism is effective. The critical conditions of the laser and plasma parameters which identify the two acceleration modes have been achieved.

  18. Ultra-relativistic ion acceleration in the laser-plasma interactions

    International Nuclear Information System (INIS)

    Huang Yongsheng; Wang Naiyan; Tang Xiuzhang; Shi Yijin; Xueqing Yan

    2012-01-01

    An analytical relativistic model is proposed to describe the relativistic ion acceleration in the interaction of ultra-intense laser pulses with thin-foil plasmas. It is found that there is a critical value of the ion momentum to make sure that the ions are trapped by the light sail and accelerated in the radiation pressure acceleration (RPA) region. If the initial ion momentum is smaller than the critical value, that is in the classical case of RPA, the potential has a deep well and traps the ions to be accelerated, as the same described before by simulation results [Eliasson et al., New J. Phys. 11, 073006 (2009)]. There is a new ion acceleration region different from RPA, called ultra-relativistic acceleration, if the ion momentum exceeds the critical value. In this case, ions will experience a potential downhill. The dependence of the ion momentum and the self-similar variable at the ion front on the acceleration time has been obtained. In the ultra-relativistic limit, the ion momentum at the ion front is proportional to t 4/5 , where t is the acceleration time. In our analytical hydrodynamical model, it is naturally predicted that the ion distribution from RPA is not monoenergetic, although the phase-stable acceleration mechanism is effective. The critical conditions of the laser and plasma parameters which identify the two acceleration modes have been achieved.

  19. Effect of fiber laser parameters on laser welded AZ31B Magnesium alloys

    Directory of Open Access Journals (Sweden)

    Mat Salleh Naqiuddin

    2017-01-01

    Full Text Available Recently, the usage of Magnesium (Mg alloys has been hugely applied in the industrial application such as in automotive, marine, and electronic due to its advantages of recyclability and lightweight. This alloys required low heat input to be weld since it is easily evaporated due to the Magnesium Oxide (MgO at the surface and it also possesses lower melting point compared to steel. Laser welding is more convenient to weld Mg alloys due to its high power and lower heat input. AZ31B was selected since it has strong mechanical properties among others Mg alloys due to the major alloying elements; Aluminium (Al and Zinc (Zn. Low power fiber laser machine with wavelength of 900 nm was used in this experiment. The intention of this work was to investigate the effect of low power fiber laser parameters and effect of shielding gas on weld penetration and microstructure. Another aim in this work was to produce the joint for this thin sheets metal. Penetration depth and microstructure evaluation were emphasized in the analysis section. Bead-on-Plate (BOP and laser lap welding was conducted on AZ31B with thicknesses of 1.0 mm and 0.6 mm for feasibility study using pulsed wave (PW mode. Defocusing features was used in order to find better focal position, which has less occurrence of evaporation (underfill. The effect of different angle of irradiation was also investigated. Two types of shielding gases, Argon (Ar and Nitrogen (N2 were used in order to study the effect of shielding gas. Lastly, the effect of pulsed energy on penetration types and depth of BOP welded samples was investigated. Focus point was found at focal length of 156 mm with 393.75 μm. For BOP experiment, higher pulsed energy used contributes to melt through defect. Meanwhile, Ns shielding gas proved to be better shielding gas in laser welding the AZ31B. Higher angle of irradiation could reduce the underfill defect. Fillet Lap joint of similar metal was successfully done where 2.0 J of

  20. Engineering design of the interaction waveguide for high-power accelerator-driven microwave free-electron lasers

    International Nuclear Information System (INIS)

    Hopkins, D.B.; Clay, H.W.; Stallard, B.W.; Throop, A.L.; Listvinsky, G.; Makowski, M.A.

    1989-01-01

    Linear induction accelerators (LIAs) operating at beam energies of a few million electron volts and currents of a few thousand amperes are suitable drivers for free-electron lasers (FELs). Such lasers are capable of producing gigawatts of peak power and megawatts of average power at microwave frequencies. Such devices are being studied as possible power sources for future high-gradient accelerators and are being constructed for plasma heating applications. At high power levels, the engineering design of the interaction waveguide presents a challenge. This paper discusses several concerns, including electrical breakdown and metal fatigue limits, choice of material, and choice of operating propagation mode. 13 refs., 3 figs

  1. Characterization of the fast electrons distribution produced in a high intensity laser target interaction

    Energy Technology Data Exchange (ETDEWEB)

    Westover, B. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Chen, C. D.; Patel, P. K.; McLean, H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Beg, F. N., E-mail: fbeg@ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States)

    2014-03-15

    Experiments on the Titan laser (∼150 J, 0.7 ps, 2 × 10{sup 20} W cm{sup −2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo code Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2 MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5 MeV and 4 MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.

  2. Laser-plasma interaction physics for shock ignition

    Directory of Open Access Journals (Sweden)

    Goyon C.

    2013-11-01

    Full Text Available In the shock ignition scheme, the ICF target is first compressed with a long (nanosecond pulse before creating a convergent shock with a short (∼100 ps pulse to ignite thermonuclear reactions. This short pulse is typically (∼2.1015–1016 W/cm2 above LPI (Laser Plasma Instabilities thresholds. The plasma is in a regime where the electron temperature is expected to be very high (2–4 keV and the laser coupling to the plasma is not well understood. Emulating LPI in the corona requires large and hot plasmas produced by high-energy lasers. We conducted experiments on the LIL (Ligne d'Integration Laser, 10 kJ at 3ω and the LULI2000 (0.4 kJ at 2ω facilities, to approach these conditions and study absorption and LPI produced by a high intensity beam in preformed plasmas. After introducing the main risks associated with the short pulse propagation, we present the latest experiment we conducted on LPI in relevant conditions for shock ignition.

  3. The semi classical laser theory and some applications of laser

    International Nuclear Information System (INIS)

    Abdalla, Abbaker Ali

    1995-04-01

    The semi classical laser theory is concerned with the interaction between light and matter in such a way that the matter is treated quantum-mechanically whereas light is treated in terms of the classical electromagnetic equations. In this work the Maxwell-Bloch equations are employed to describe the interaction between light and matter. Applications of the theory as well as different types of lasers are reviewed. (Author)

  4. Dynamic study of a compressed electron layer during the hole-boring stage in a sharp-front laser interaction region

    Directory of Open Access Journals (Sweden)

    W. P. Wang

    2012-08-01

    Full Text Available This study investigates the dynamics of a compressed electron layer (CEL when a circularly polarized laser pulse with a sharp front irradiates a high-density foil. A time-dependent model for CEL motion during the hole-boring stage is proposed to describe details of the interaction for any shape of laser pulse. The opacity case, where the laser pulse is totally reflected, is investigated using this model. The results obtained are consistent with the results from particle-in-cell (PIC simulations. A relaxation distance determined by the laser-front steepness is necessary to build a stable CEL state before ions rejoin into the CEL. For the transparent case, the laser-front steepness is important for the formation of the stable CEL state at the back surface of the target. Considering the motion of ions, both the CEL and ion dynamics are important to rebalance the laser pressure and electrostatic charge-separation force as the hole-boring stage changes to the light-sail stage.

  5. Research on interaction of laser light and non-metals. Evaluation of laser irradiation behavior to concrete

    International Nuclear Information System (INIS)

    Yamada, Tomonori; Muramatsu, Toshiharu

    2015-02-01

    In this study the response of hardened cement pastes, which are a major component of concrete, to laser irradiation was investigated under various experimental conditions aiming at the future application to “laser-processing” of concrete. (1) 75 tests were performed with combinations of following experimental conditions: (a) a water/cement ratio of the hardened cement pastes was either of 0.25, 0.30, or 0.35; (b) a laser power density was either of 100, 200, 300, 400, or 500 W/cm 2 ; and (c) laser irradiation duration was ranging from 1 to 40 seconds. It was found that hardened cement paste subjected to laser irradiation explodes very easily to be hollowed in all the experimental conditions; this response is applicable to “laser-drilling” of a hardened cement paste. The “laser-drilling” speeds up following to laser power increment or to irradiation time extension. It was also found that samples tend to melt rather than explode under the irradiation with a smaller laser power density (100 W/cm 2 ) at a high water/cement ratio (0.35). (2) Totally 75 laser irradiation tests for fixed mortar blocks were performed with combinations of following experimental conditions: (a) fine aggregate in the mortar blocks was either of quartz, limestone, or Nachiguro-ishi; (b) a laser power density was either of 100, 200, 300, 400, or 500 W/cm 2 ; and (c) laser irradiation duration was ranging from 0.2 to 40 seconds. Although it was found that all kinds of the mortar fuse under laser irradiation after all, difference in the response to laser irradiation among the mortars was also found; energy density required to fuse the mortar including limestone was larger than that required to fuse the mortar including quartz or Nachiguro-ishi. (author)

  6. Interactive Game for Teaching Laser Amplification Used at the National Ignition Facility

    International Nuclear Information System (INIS)

    Lin, E.

    2009-01-01

    The purpose of this project was to create an interactive game to expose high school students to concepts in laser amplification by demonstrating the National Ignition Facility's main amplifier at Lawrence Livermore National Laboratory. To succeed, the game had to be able to communicate effectively the basic concepts of laser amplification as accurately as possible and to be capable of exposing as many students as possible. Since concepts need to be communicated in a way that students understand, the Science Content Standards for California Public Schools were used to make assumptions about high school students knowledge of light. Effectively communicating a new concept necessitates the omission on terminology and symbolism. Therefore, creating a powerful experience was ideal for communicating this material. Various methods of reinforcing this experience ranging from color choice to abstractions kept the student focused on the game to maximize concept retention. The program was created in Java to allow the creation of a Java Applet that can be embedded onto a webpage, which is a perfect medium for mass exposure. Because a game requires interaction, the game animations had to be easily manipulated to enable the program to respond to user input. Image sprites, as opposed to image folders, were used in these animations to minimize the number of Hypertext Transfer Protocol connections, and thus, significantly reduce the transfer time of necessary animation files. These image sprites were loaded and cropped into a list of animation frames. Since the caching of large transition animations caused the Java Virtual Machine to run out of memory, large animations were implemented as animated Graphics Interchange Format images since transitions require no interaction, and thus, no frame manipulation was needed. This reduced the animation's memory footprint. The first version of this game was completed during this project. Future work for the project could include the creation

  7. X-ray spectroscopic diagnostics of plasma produced by femtosecond laser pulses at interaction with cluster target

    International Nuclear Information System (INIS)

    Skobelev, I.Yu.; Faenov, A.Ya.; Magunov, A.I.

    2002-01-01

    By means of X-ray spectroscopy one determined parameters of plasma produced at interaction of supershort laser pulses with cluster targets. One investigated into the effect of both initial properties of a cluster target and properties of a laser pulse on plasma characteristics. To diagnose plasma one applied a model of production of emitting spectra covering a whole number of free parameters. The conducted experimental investigations show that the investigated model of cluster heating by supershort pulses is the actual physical model, while the applied fitting parameters have a meaning of average values of plasma parameters [ru

  8. Laser-plasma interactions and implosion symmetry in rugby hohlraums

    Science.gov (United States)

    Michel, Pierre; Berger, R. L.; Lasinski, B. F.; Ross, J. S.; Divol, L.; Williams, E. A.; Meeker, D.; Langdon, B. A.; Park, H.; Amendt, P.

    2011-10-01

    Cross-beam energy transfer is studied in the context of ``rugby''-hohlraum experiments at the Omega laser facility in FY11, in preparation for future NIF experiments. The transfer acts in opposite direction between rugby and cylinder hohlraums due to the different beam pointing geometries and flow patterns. Its interaction with backscatter is also different as both happen in similar regions inside rugby hohlraums. We will analyze the effects of non-linearities and temporal beam smoothing on energy transfer using the code pF3d. Calculations will be compared to experiments at Omega; analysis of future rugby hohlraum experiments on NIF will also be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Measurement Of Ultrafast Ionisation From Intense Laser Interactions With Gas-Jets

    International Nuclear Information System (INIS)

    Gizzi, Leonida A.; Galimberti, Marco; Giulietti, Antonio; Giulietti, Danilo; Koester, Petra; Labate, Luca; Tomassini, Paolo; Martin, Philippe; Ceccotti, Tiberio; De Oliveira, Pascal; Monot, Pascal

    2006-01-01

    Interaction of an intense, ultrashort laser pulse with a gas-jet target is investigated through femtosecond optical interferometry to study the dynamics of ionization of the gas. Experimental results are presented in which the propagation of the pulse in the gas and the consequent plasma formation is followed step by step with high temporal and spatial resolution. We demonstrate that, combining the phase shift with the measurable depletion of fringe visibility associated with the transient change of refractive index in the ionizing region and taking into account probe travel time can provide direct information on gas ionization dynamics

  10. Review of multi-dimensional large-scale kinetic simulation and physics validation of ion acceleration in relativistic laser-matter interaction

    International Nuclear Information System (INIS)

    Wu, Hui-Chun; Hegelich, B.M.; Fernandez, J.C.; Shah, R.C.; Palaniyappan, S.; Jung, D.; Yin, L.; Albright, B.J.; Bowers, K.; Kwan, T.J.

    2012-01-01

    Two new experimental technologies enabled realization of Break-out afterburner (BOA) - High quality Trident laser and free-standing C nm-targets. VPIC is an powerful tool for fundamental research of relativistic laser-matter interaction. Predictions from VPIC are validated - Novel BOA and Solitary ion acceleration mechanisms. VPIC is a fully explicit Particle In Cell (PIC) code: models plasma as billions of macro-particles moving on a computational mesh. VPIC particle advance (which typically dominates computation) has been optimized extensively for many different supercomputers. Laser-driven ions lead to realization promising applications - Ion-based fast ignition; active interrogation, hadron therapy.

  11. Volkov basis for simulation of interaction of strong laser pulses and solids

    Science.gov (United States)

    Kidd, Daniel; Covington, Cody; Li, Yonghui; Varga, Kálmán

    2018-01-01

    An efficient and accurate basis comprised of Volkov states is implemented and tested for time-dependent simulations of interactions between strong laser pulses and crystalline solids. The Volkov states are eigenstates of the free electron Hamiltonian in an electromagnetic field and analytically represent the rapidly oscillating time-dependence of the orbitals, allowing significantly faster time propagation than conventional approaches. The Volkov approach can be readily implemented in plane-wave codes by multiplying the potential energy matrix elements with a simple time-dependent phase factor.

  12. Relativistic effects in ultra-high-intensity laser-plasma interaction: electron parametric instabilities and ponderomotive force

    International Nuclear Information System (INIS)

    Quesnel, Brice

    1998-01-01

    This research thesis reports a theoretical and numeric study of the behaviour of two non linear phenomena of the laser-plasma interaction physics in a relativistic regime: the electronic parametric instabilities, and the ponderomotive force. In a first part, the author establishes the three-dimensional scattering relationship of electron parametric instabilities for a circularly polarised wave propagating in a homogeneous and cold plasma, without limitations of wave intensity, nor of plasma density. Results are verified by comparison with those of two-dimensional numerical simulations. The Weibel instability is also briefly studied in relativistic regime. In the second part, the author establishes an expression of the ponderomotive force exerted by an ultra-intense laser pulse in the vacuum about the focus point. A numerical code of integration of equations of motion of an electron in the laser field is used for the different expressions corresponding different approximation degrees. Results are used to interpret a recent experiment, and to critic other theoretical works [fr

  13. Ultrashort pulse laser technology laser sources and applications

    CERN Document Server

    Schrempel, Frank; Dausinger, Friedrich

    2016-01-01

    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  14. Osteoblast interaction with laser cladded HA and SiO{sub 2}-HA coatings on Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yuling [Department of Physics, Northeastern University, Shenyang 110004 (China); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Serpersu, Kaan [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); He Wei, E-mail: whe5@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Paital, Sameer R. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Dahotre, Narendra B. [Department of Materials Science and Engineering, University of North Texas, Denton, TX 76207 (United States)

    2011-12-01

    In order to improve the bioactivity and biocompatibility of titanium endosseous implants, the morphology and composition of the surfaces were modified. Polished Ti-6Al-4V substrates were coated by a laser cladding process with different precursors: 100 wt.% HA and 25 wt.% SiO{sub 2}-HA. X-ray diffraction of the laser processed samples showed the presence of CaTiO{sub 3}, Ca{sub 3}(PO{sub 4}){sub 2}, and Ca{sub 2}SiO{sub 4} phases within the coatings. From in vitro studies, it was observed that compared to the unmodified substrate all laser cladded samples presented improved cellular interactions and bioactivity. The samples processed with 25 wt.% SiO{sub 2}-HA precursor showed a significantly higher HA precipitation after immersion in simulated body fluid than 100 wt.% HA precursor and titanium substrates. The in vitro biocompatibility of the laser cladded coatings and titanium substrate was investigated by culturing of mouse MC3T3-E1 pre-osteoblast cell line and analyzing the cell viability, cell proliferation, and cell morphology. A significantly higher cell attachment and proliferation rate were observed for both laser cladded 100 wt.% HA and 25 wt.% SiO{sub 2}-HA samples. Compared to 100 wt.% HA sample, 25 wt.% SiO{sub 2}-HA samples presented a slightly improved cellular interaction due to the addition of SiO{sub 2}. The staining of the actin filaments showed that the laser cladded samples induced a normal cytoskeleton and well-developed focal adhesion contacts. Scanning electron microscopic image of the cell cultured samples revealed better cell attachment and spreading for 25 wt.% SiO{sub 2}-HA and 100 wt.% HA coatings than titanium substrate. These results suggest that the laser cladding process improves the bioactivity and biocompatibility of titanium. The observed biological improvements are mainly due to the coating induced changes in surface chemistry and surface morphology. Highlights: {yields} Laser cladding of Ti alloys with bioceramics creates new

  15. Security training with interactive laser-video-disk technology

    International Nuclear Information System (INIS)

    Wilson, D.

    1988-01-01

    DOE, through its contractor EG and G Energy Measurements, Inc., has developed a state-of-the-art interactive-video system for use at the Department of Energy's Central Training Academy. Called the Security Training and Evaluation Shooting System (STRESS), the computer-driven decision shooting system employs the latest is laservideo-disk technology. STRESS is designed to provide realistic and stressful training for security inspectors employed by the DOE and its contractors. The system uses wide-screen video projection, sophisticated scenario-branching technology, and customized video scenarios especially designed for the DOE. Firing a weapon that has been modified to shoot ''laser bullets,'' and wearing a special vest that detects ''hits'': the security inspector encounters adversaries on the wide screen who can shoot or be shot by the inspector in scenarios that demand fast decisions. Based on those decisions, the computer provides instantaneous branching to different scenes, giving the inspector confrontational training with the realism and variability of real life

  16. Spin effects in strong-field laser-electron interactions

    International Nuclear Information System (INIS)

    Ahrens, S; Bauke, H; Müller, T-O; Villalba-Chávez, S; Müller, C

    2013-01-01

    The electron spin degree of freedom can play a significant role in relativistic scattering processes involving intense laser fields. In this contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac scattering in an x-ray laser field of high intensity, (ii) photo-induced electron-positron pair production in a strong laser wave and (iii) multiphoton electron-positron pair production on an atomic nucleus. We show that in all cases under consideration the electron spin can have a characteristic impact on the process properties and their total probabilities. To this end, spin-resolved calculations based on the Dirac equation in the presence of an intense laser field are performed. The predictions from Dirac theory are also compared with the corresponding results from the Klein-Gordon equation.

  17. Laser-Plasma Interactions in Drive Campaign targets on the National Ignition Facility

    International Nuclear Information System (INIS)

    Hinkel, D E; Callahan, D A; Moody, J D; Amendt, P A; Lasinski, B F; MacGowan, B J; Meeker, D; Michel, P A; Ralph, J; Rosen, M D; Ross, J S; Schneider, M B; Storm, E; Strozzi, D J; Williams, E A

    2016-01-01

    The Drive campaign [D A Callahan et al., this conference] on the National Ignition Facility (NIF) laser [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)] has the focused goal of understanding and optimizing the hohlraum for ignition. Both the temperature and symmetry of the radiation drive depend on laser and hohlraum characteristics. The drive temperature depends on the coupling of laser energy to the hohlraum, and the symmetry of the drive depends on beam-to-beam interactions that result in energy transfer [P. A. Michel, S. H. Glenzer, L. Divol, et al, Phys. Plasmas 17, 056305 (2010).] within the hohlraum. To this end, hohlraums are being fielded where shape (rugby vs. cylindrical hohlraums), gas fill composition (neopentane at room temperature vs. cryogenic helium), and gas fill density (increase of ∼ 150%) are independently changed. Cylindrical hohlraums with higher gas fill density show improved inner beam propagation, as should rugby hohlraums, because of the larger radius over the capsule (7 mm vs. 5.75 mm in a cylindrical hohlraum). Energy coupling improves in room temperature neopentane targets, as well as in hohlraums at higher gas fill density. In addition cross-beam energy transfer is being addressed directly by using targets that mock up one end of a hohlraum, but allow observation of the laser beam uniformity after energy transfer. Ideas such as splitting quads into “doublets” by re-pointing the right and left half of quads are also being pursued. LPI results of the Drive campaign will be summarized, and analyses of future directions presented. (paper)

  18. Laser Shock Processing of Metallic Materials: Coupling of Laser-Plasma Interaction and Material Behaviour Models for the Assessment of Key Process Issues

    International Nuclear Information System (INIS)

    Ocana, J. L.; Morales, M.; Molpeceres, C.; Porro, J. A.

    2010-01-01

    Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm 2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals. The main advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Although significant work from the experimental side has been contributed to explore the optimum conditions of application of the treatments and to assess their ultimate capability to provide enhanced mechanical behaviour to work-pieces of typical materials, only limited attempts have been developed in the way of full comprehension and predictive assessment of the characteristic physical processes and material transformations with a specific consideration of real material properties. In the present paper, a review on the physical issues dominating the development of LSP processes from a high intensity laser-matter interaction point of view is presented along with the theoretical and computational methods developed by the authors for their predictive assessment and practical results at laboratory scale on the application of the technique to different materials.

  19. Laser manipulation of atomic and molecular flows

    Science.gov (United States)

    Lilly, Taylor C.

    The continuing advance of laser technology enables a range of broadly applicable, laser-based flow manipulation techniques. The characteristics of these laser-based flow manipulations suggest that they may augment, or be superior to, such traditional electro-mechanical methods as ionic flow control, shock tubes, and small scale wind tunnels. In this study, methodology was developed for investigating laser flow manipulation techniques, and testing their feasibility for a number of aerospace, basic physics, and micro technology applications. Theories for laser-atom and laser-molecule interactions have been under development since the advent of laser technology. The theories have yet to be adequately integrated into kinetic flow solvers. Realizing this integration would greatly enhance the scaling of laser-species interactions beyond the realm of ultra-cold atomic physics. This goal was realized in the present study. A representative numerical investigation, of laser-based neutral atomic and molecular flow manipulations, was conducted using near-resonant and non-resonant laser fields. To simulate the laser interactions over a range of laser and flow conditions, the following tools were employed: a custom collisionless gas particle trajectory code and a specifically modified version of the Direct Simulation Monte Carlo statistical kinetic solver known as SMILE. In addition to the numerical investigations, a validating experiment was conducted. The experimental results showed good agreement with the numerical simulations when experimental parameters, such as finite laser line width, were taken into account. Several areas of interest were addressed: laser induced neutral flow steering, collimation, direct flow acceleration, and neutral gas heating. Near-resonant continuous wave laser, and non-resonant pulsed laser, interactions with cesium and nitrogen were simulated. These simulations showed trends and some limitations associated with these interactions, used for flow

  20. Effects of laser wavelength and density scale length on absorption of ultrashort intense lasers on solid-density targets

    Energy Technology Data Exchange (ETDEWEB)

    Susumu, Kato; Eiichi, Takahashi; Tatsuya, Aota; Yuji, Matsumoto; Isao, Okuda; Yoshiro, Owadano [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan)

    2004-07-01

    The interaction of intense laser pulses with overdense plasmas has attracted much interest for the fast igniter concept in inertial fusion energy. Hot electron temperatures and electron energy spectra in the course of interaction between intense laser pulse and overdense plasmas are reexamined from a viewpoint of the difference in laser wavelength. The hot electron temperature measured by a particle-in-cell simulation is scaled by I rather than I{lambda}{sup 2} at the interaction with overdense plasmas with fixed ions, where I and {lambda} are the laser intensity and wavelength, respectively. (authors)

  1. A high repetition rate transverse beam profile diagnostic for laser-plasma proton sources

    Science.gov (United States)

    Dover, Nicholas; Nishiuchi, Mamiko; Sakaki, Hironao; Kando, Masaki; Nishitani, Keita

    2016-10-01

    The recently upgraded J-KAREN-P laser can provide PW peak power and intensities approaching 1022 Wcm-2 at 0.1 Hz. Scaling of sheath acceleration to such high intensities predicts generation of protons to near 100 MeV, but changes in electron heating mechanisms may affect the emitted proton beam properties, such as divergence and pointing. High repetition rate simultaneous measurement of the transverse proton distribution and energy spectrum are therefore key to understanding and optimising the source. Recently plastic scintillators have been used to measure online proton beam transverse profiles, removing the need for time consuming post-processing. We are therefore developing a scintillator based transverse proton beam profile diagnostic for use in ion acceleration experiments using the J-KAREN-P laser. Differential filtering provides a coarse energy spectrum measurement, and time-gating allows differentiation of protons from other radiation. We will discuss the design and implementation of the diagnostic, as well as proof-of-principle results from initial experiments on the J-KAREN-P system demonstrating the measurement of sheath accelerated proton beams up to 20 MeV.

  2. Simulation of QED effects in ultrahigh intensity laser-plasma interaction

    International Nuclear Information System (INIS)

    Kostyukov, I.; Nerush, E.

    2010-01-01

    Complete text of publication follows. Due to an impressive progress in laser technology, laser pulses with peak intensity of nearly 2 x 10 22 W/cm 2 are now available in laboratory. When the matter is irradiated by so intense laser pulses high energy density plasma is produced. Besides of fundamental interest such plasma is the efficient source of particles and radiation with extreme parameters that opens bright perspectives in developments of advanced particle accelerators, next generation of radiation sources, laboratory modelling of astrophysics phenomena etc. Even high laser intensity the radiation reaction and QED effects become important. One of the QED effects, which recently attracts much attention, is the electron-positron plasma creation in strong laser field. The plasma can be produced via electromagnetic cascades: the seeded charged particles is accelerated in the field of counter-propagating laser pulses, then they emit energetic photons, the photons by turn decay in the laser field and create electron-positron pairs. The pair particles accelerated in the laser field produce new generation of the photons and pairs. For self-consistent study of the electron-positron plasma dynamics in the laser field we develop 2D code based on particle-in-cell and Monte-Carlo methods. The electron, positron and photon dynamics as well as evolution of the plasma and laser fields are calculated by PIC technique while photon emission and pair production are calculated by Monte-Carlo method. We simulate pair production in the field of counter-propagating linearly polarized laser pulses. It is shown that for the laser intensity above threshold the plasma production becomes so intense that the laser pulse are strongly absorbed in the plasma. The laser intensity threshold and the rate of laser field absorption are calculated. Acknowledgements. This work has been supported by federal target 'The scientific and scientific-pedagogical personnel of innovation in Russia' and by

  3. Effects of three-mode field interactions in laser instabilities and in beat-frequency spectroscopy

    International Nuclear Information System (INIS)

    Herdow, S.T.

    1982-01-01

    Population pulsations are fluctuations in the population difference (of a two level system) due to the presence of two or more coherent waves interfering in the medium. In this work, the author shows that population pulsations generated by three waves, a central wave and two mode-locked sidebands, are responsible for both the multiwavelength and the single-wavelength instabilities of single-mode lasers containing homgeneously-broadened media. The role of the population pulsations in establishing these instabilities, however, diminish as the central mode is detuned away from the atomic resonance frequency. For homogeneously-broadened lasers, the author finds two regions of single-wavelength instability. The first is at line center, for which population pulsations are solely responsible, and the second is off line center where the unsaturated medium provides the required gain and anomalous dispersion. For the case of inhomogeneously-broadened lasers, the author shows that population pulsations significantly increase the instability range over that predicted by Casperson for single-mode bad-cavity lasers. Both the unidirectional ring and the standing-wave cavities are treated. The Fourier expansion technique, used in this work, for treating three-frequency operation in saturation spectroscopy is shown to be equivalent (in appropriate limits) to the linear stability analysis in laser theory and optical bistability. The author also shows, in single-sideband saturation spectroscopy, that for long interaction lengths propagation effects can significantly influence the absorption and dispersion coefficients of the medium. Finally, the author shows that under certain conditions the pronounced splitting effects of the population pulsations develop into regions of intense absorption

  4. The chirped-pulse inverse free-electron laser: A high-gradient vacuum laser accelerator

    International Nuclear Information System (INIS)

    Hartemann, F.V.; Landahl, E.C.; Troha, A.L.; Van Meter, J.R.; Baldis, H.A.; Freeman, R.R.; Luhmann, N.C. Jr.; Song, L.; Kerman, A.K.; Yu, D.U.

    1999-01-01

    The inverse free-electron laser (IFEL) interaction is studied theoretically and computationally in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. The IFEL concept has been demonstrated as a viable vacuum laser acceleration process; it is shown here that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread. copyright 1999 American Institute of Physics

  5. Laser spectroscopy and laser isotope separation of atomic gadolinium

    International Nuclear Information System (INIS)

    Chen, Y. W.; Yamanaka, C.; Nomaru, K.; Kou, K.; Niki, H.; Izawa, Y.; Nakai, S.

    1994-01-01

    Atomic vapor laser isotope separation (AVLIS) is a process which uses intense pulsed lasers to selectively photoionize one isotopic species of a chemical element, after which these ions are extracted electromagnetically. The AVLIS has several advantages over the traditional methods based on the mass difference, such as high selectivity, low energy consumption, short starting time and versatility to any atoms. The efforts for atomic vapor laser isotope separation at ILT and ILE, Osaka University have been concentrated into the following items: 1) studies on laser spectroscopy and laser isotope separation of atomic gadolinium, 2) studies on interaction processes including coherent dynamics, propagation effects and atom-ion collision in AVLIS system, 3) development of laser systems for AVLIS. In this paper, we present experimental results on the laser spectroscopy and laser isotope separation of atomic gadolinium.

  6. Histologic evaluation of laser lipolysis: pulsed 1064-nm Nd:YAG laser versus cw 980-nm diode laser.

    Science.gov (United States)

    Mordon, Serge; Eymard-Maurin, Anne Françoise; Wassmer, Benjamin; Ringot, Jean

    2007-01-01

    The use of the laser as an auxiliary tool has refined the traditional technique for lipoplasty. During laser lipolysis, the interaction between the laser and the fat produced direct cellular destruction before the suction, reduced bleeding, and promoted skin tightening. This study sought to perform a comparative histologic evaluation of laser lipolysis with the pulsed 1064-nm Nd:YAG laser versus a continuous 980-nm diode laser. A pulsed 1064-nm Nd:YAG (Smart-Lipo; Deka, Italy) and a CW 980-nm diode laser (Pharaon, Osyris, France) were evaluated at different energy settings for lipolysis on the thighs of a fresh cadaver. The lasers were coupled to a 600-microm optical fiber inserted in a 1-mm diameter cannula. Biopsy specimens were taken on irradiated and non-irradiated areas. Hematoxylin-erythrosin-safran staining and immunostaining (anti-PS100 polyclonal antibody) were performed to identify fat tissue damage. In the absence of laser exposures (control specimens), cavities created by cannulation were seen; adipocytes were round in appearance and not deflated. At low energy settings, tumescent adipocytes were observed. At higher energy settings, cytoplasmic retraction, disruption of membranes, and heat-coagulated collagen fibers were noted; coagulated blood cells were also present. For the highest energy settings, carbonization of fat tissue involving fibers and membranes was clearly seen. For equivalent energy settings, 1064-nm and 980-nm wavelengths gave similar histologic results. Laser lipolysis is a relatively new technique that is still under development. Our histologic findings suggest several positive benefits of the laser, including skin retraction and a reduction in intraoperative bleeding. The interaction of the laser with the tissue is similar at 980 nm and 1064 nm with the same energy settings. Because higher volumes of fat are removed with higher total energy, a high-power 980-nm diode laser could offer an interesting alternative to the 1064-nm Nd

  7. The effect of quantum correction on plasma electron heating in ultraviolet laser interaction

    Energy Technology Data Exchange (ETDEWEB)

    Zare, S.; Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir; Anvari, A. [Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Yazdani, E. [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)

    2015-04-14

    The interaction of the sub-picosecond UV laser in sub-relativistic intensities with deuterium is investigated. At high plasma temperatures, based on the quantum correction in the collision frequency, the electron heating and the ion block generation in plasma are studied. It is found that due to the quantum correction, the electron heating increases considerably and the electron temperature uniformly reaches up to the maximum value of 4.91 × 10{sup 7 }K. Considering the quantum correction, the electron temperature at the laser initial coupling stage is improved more than 66.55% of the amount achieved in the classical model. As a consequence, by the modified collision frequency, the ion block is accelerated quicker with higher maximum velocity in comparison with the one by the classical collision frequency. This study proves the necessity of considering a quantum mechanical correction in the collision frequency at high plasma temperatures.

  8. Interaction of quinones with three pyrimidine bases: A laser flash photolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Adity [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Basu, Samita, E-mail: samita.basu@saha.ac.i [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

    2009-11-15

    The interaction between three different pyrimidine bases, uracil (U), cytosine (C) and thymine (T) and two quinones, 2-methyl-1,4-naphthoquinone or menadione (MQ) and 9,10-anthraquinone (AQ) have been studied using laser flash photolysis technique in organic homogeneous medium. The three pyrimidines have revealed a difference in their extent of reactivity towards the quinones, which has been attributed to their structural difference. Our works have revealed that the difference in structural dimension of the quinones is also responsible for affecting the reactivity of these pyrimidines in homogeneous medium.

  9. Interaction of quinones with three pyrimidine bases: A laser flash photolysis study

    International Nuclear Information System (INIS)

    Bose, Adity; Basu, Samita

    2009-01-01

    The interaction between three different pyrimidine bases, uracil (U), cytosine (C) and thymine (T) and two quinones, 2-methyl-1,4-naphthoquinone or menadione (MQ) and 9,10-anthraquinone (AQ) have been studied using laser flash photolysis technique in organic homogeneous medium. The three pyrimidines have revealed a difference in their extent of reactivity towards the quinones, which has been attributed to their structural difference. Our works have revealed that the difference in structural dimension of the quinones is also responsible for affecting the reactivity of these pyrimidines in homogeneous medium.

  10. Manipulating femtosecond laser interactions in bulk glass and thin-film with spatial light modulation (Conference Presentation)

    Science.gov (United States)

    Alimohammadian, Ehsan; Ho, Stephen; Ertorer, Erden; Gherghe, Sebastian; Li, Jianzhao; Herman, Peter R.

    2017-03-01

    Spatial Light Modulators (SLM) are emerging as a power tool for laser beam shaping whereby digitally addressed phase shifts can impose computer-generated hologram patterns on incoming laser light. SLM provide several additional advantages with ultrashort-pulsed lasers in controlling the shape of both surface and internal interactions with materials. Inside transparent materials, nonlinear optical effects can confine strong absorption only to the focal volume, extend dissipation over long filament tracks, or reach below diffraction-limited spot sizes. Hence, SLM beam shaping has been widely adopted for laser material processing applications that include parallel structuring, filamentation, fiber Bragg grating formation and optical aberration correction. This paper reports on a range of SLM applications we have studied in femtosecond processing of transparent glasses and thin films. Laser phase-fronts were tailored by the SLM to compensate for spherical surface aberration, and to further address the nonlinear interactions that interplay between Kerr-lens self-focusing and plasma defocusing effects over shallow and deep focusing inside the glass. Limits of strong and weak focusing were examined around the respective formation of low-loss optical waveguides and long uniform filament tracks. Further, we have employed the SLM for beam patterning inside thin film, exploring the limits of phase noise, resolution and fringe contrast during interferometric intra-film structuring. Femtosecond laser pulses of 200 fs pulse duration and 515 nm wavelength were shaped by a phase-only LCOS-SLM (Hamamatsu X10468-04). By imposing radial phase profiles, axicon, grating and beam splitting gratings, volume shape control of filament diameter, length, and uniformity as well as simultaneous formation of multiple filaments has been demonstrated. Similarly, competing effects of spherical surface aberration, self-focusing, and plasma de-focusing were studied and delineated to enable formation

  11. High power laser-matter interaction

    CERN Document Server

    Mulser, Peter

    2010-01-01

    This book intended as a guide for scientists and students who have just discovered the field as a new and attractive area of research, and for scientists who have worked in another field and want to join now the subject of laser plasmas. In the first chapter the plasma dynamics is described phenomenologically by a two fluid model and similarity relations from dimensional analysis. Chapter 2 is devoted to plasma optics and collisional absorption in the dielectric and ballistic model. Linear resonance absorption at the plasma frequency and its mild nonlinearities as well as the self-quenching of high amplitude electron plasma waves by wave breaking are discussed in Chapter 3. With increasing laser intensity the plasma dynamics is dominated by radiation pressure, at resonance producing all kinds of parametric instabilities and out of resonance leading to density steps, self-focusing and filamentation, described in Chapters 4 and 5. A self-contained treatment of field ionization of atoms and related phenomena ar...

  12. Interaction of doughnut-shaped laser pulses with glasses

    Czech Academy of Sciences Publication Activity Database

    Zhukov, V.P.; Rubenchik, A.M.; Fedoruk, M.P.; Bulgakova, Nadezhda M.

    2017-01-01

    Roč. 34, č. 2 (2017), s. 463-471 ISSN 0740-3224 R&D Projects: GA MŠk LO1602; GA MŠk EF15_003/0000445; GA MŠk LM2015086 Grant - others:OP VVV - BIATRI(XE) CZ.02.1.01/0.0/0.0/15_003/0000445 Institutional support: RVO:68378271 Keywords : femtosecond-laser * transparent materials * wave-guides * photonic devices * fused-silica * dielectrics * media * filamentation * fabrication * ionization Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.843, year: 2016

  13. Laser Safety and Hazard Analysis for the Trailer (B70) Based AURA Laser System

    International Nuclear Information System (INIS)

    AUGUSTONI, ARNOLD L.

    2003-01-01

    A laser safety and hazard analysis was performed for the AURA laser system based on the 2000 version of the American National Standards Institute's (ANSI) Standard Z136.1, for ''Safe Use of Lasers'' and the 2000 version of the ANSI Standard Z136.6, for ''Safe Use of Lasers Outdoors''. The trailer based AURA laser system is a mobile platform, which is used to perform laser interaction experiments and tests at various national test sites. The trailer (B70) based AURA laser system is generally operated on the United State Air Force Starfire Optical Range (SOR) at Kirtland Air Force Base (KAFB), New Mexico. The laser is used to perform laser interaction testing inside the laser trailer as well as outside the trailer at target sites located at various distances from the exit telescope. In order to protect personnel, who work inside the Nominal Hazard Zone (NHZ), from hazardous laser emission exposures it was necessary to determine the Maximum Permissible Exposure (MPE) for each laser wavelength (wavelength bands) and calculate the appropriate minimum Optical Density (OD min ) of the laser safety eyewear used by authorized personnel and the Nominal Ocular Hazard Distance (NOHD) to protect unauthorized personnel who may have violated the boundaries of the control area and enter into the laser's NHZ

  14. Pulsed laser facilities operating from UV to IR at the Gas Laser Lab of the Lebedev Institute

    Science.gov (United States)

    Ionin, Andrei; Kholin, Igor; Vasil'Ev, Boris; Zvorykin, Vladimir

    2003-05-01

    Pulsed laser facilities developed at the Gas Lasers Lab of the Lebedev Physics Institute and their applications for different laser-matter interactions are discussed. The lasers operating from UV to mid-IR spectral region are as follows: e-beam pumped KrF laser (λ= 0.248 μm) with output energy 100 J; e-beam sustained discharge CO2(10.6 μm) and fundamental band CO (5-6 μm) lasers with output energy up to ~1 kJ; overtone CO laser (2.5-4.2 μm) with output energy ~ 50 J and N2O laser (10.9 μm) with output energy of 100 J; optically pumped NH3 laser (11-14 μm). Special attention is paid to an e-beam sustained discharge Ar-Xe laser (1.73 μm ~ 100 J) as a potential candidate for a laser-propulsion facility. The high energy laser facilities are used for interaction of laser radiation with polymer materials, metals, graphite, rocks, etc.

  15. Laser ablation principles and applications

    CERN Document Server

    1994-01-01

    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  16. Inertial fusion by laser

    International Nuclear Information System (INIS)

    Dautray, R.; Watteau, J.-P.

    1980-01-01

    Following a brief historical survey of research into the effects of interaction of laser with matter, the principles of fusion by inertial confinement are described and the main parameters and possible levels given. The development of power lasers is then discussed with details of performances of the main lasers used in various laboratories, and with an assessment of the respective merits of neodymium glass, carbon dioxide or iodine lasers. The phenomena of laser radiation and its interaction with matter is then described, with emphasis on the results of experiments concerned with target implosion with the object of compressing and heating the mixture of heavy hydrogen and tritium to be ignited. Finally, a review is made of future possibilities opened up by the use of large power lasers which have recently become operational or are being constructed, and the ground still to be covered before a reactor can be produced [fr

  17. Contribution of power lasers to fundamental physics

    International Nuclear Information System (INIS)

    Mainfray, G.

    1997-01-01

    The use of power lasers for studying the response of atoms that are perturbed by an intense laser electromagnetic field was considered at the CEA as soon as 1966, leading to a new research domain, atom multi-photonic ionization, and the analysis of the photon-matter interaction. The development of a new generation of compact laser delivering several terawatt in a few tenth of picoseconds resulting in illuminations superior to 10 18 W/cm 2 , enabled the shift to researches concerning photon-plasma interactions and the relativistic regime of the laser-plasma interaction

  18. Nuclear Physics Research at ELI-NP

    Science.gov (United States)

    Zamfir, N. V.

    2018-05-01

    The new research facility Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Romania, on the Magurele Physics campus. Valued more than 300 Meuros the center will be operational in 2019. The research center will use a high brilliance Gamma Beam and a High-power Laser beam, with unprecedented characteristics worldwide, to investigate the interaction of very intense radiation with matter with specific focus on nuclear phenomena and their applications. The energetic particle beams and radiation produced by the 2x10 PW laser beam interacting with matter will be studied. The precisely tunable energy and excellent bandwidth of the gamma-ray beam will allow for new experimental approaches regarding nuclear astrophysics, nuclear resonance fluorescence, and applications. The experimental equipment is presented, together with the main directions of the research envisioned with special emphasizes on nuclear physics studies.

  19. XPS studies of short pulse laser interaction with copper

    International Nuclear Information System (INIS)

    Stefanov, P.; Minkovski, N.; Balchev, I.; Avramova, I.; Sabotinov, N.; Marinova, Ts.

    2006-01-01

    The effect of laser ablation on copper foil irradiated by a short 30 ns laser pulse was investigated by X-ray photoelectron spectroscopy. The laser fluence was varied from 8 to 16.5 J/cm 2 and the velocity of the laser beam from 10 to 100 mm/s. This range of laser fluence is characterized by a different intensity of laser ablation. The experiments were done in two kinds of ambient atmosphere: air and argon jet gas. The chemical state and composition of the irradiated copper surface were determined using the modified Auger parameter (α') and O/Cu intensity ratio. The ablation atmosphere was found to influence the size and chemical state of the copper particles deposited from the vapor plume. During irradiation in air atmosphere the copper nanoparticles react with oxygen and water vapor from the air and are deposited in the form of a CuO and Cu(OH) 2 thin film. In argon atmosphere the processed copper surface is oxidized after exposure to air

  20. Study of laser plasma interactions in the relativistic regime

    International Nuclear Information System (INIS)

    Umstadter, D.

    1997-01-01

    We discuss the first experimental demonstration of electron acceleration by a laser wakefield over instances greater than a Rayleigh range (or the distance a laser normally propagates in vacuum). A self-modulated laser wakefield plasma wave is shown to have a field gradient that exceeds that of an RF linac by four orders of magnitude (E => 200 GV/m) and accelerates electrons with over 1-nC of charge per bunch in a beam with space-charge-limited emittance (1 mm-mrad). Above a laser power threshold, a plasma channel, created by the intense ultrashort laser pulse (I approx. 4 x1018 W/CM2, gamma = 1 micron, r = 400 fs), was found to increase the laser propagation distance, decrease the electron beam divergence, and increase the electron energy. The plasma wave, directly measured with coherent Thomson scattering is shown to damp-due to beam loading-in a duration of 1.5 ps or approx. 100 plasma periods. These results may have important implications for the proposed fast ignitor concept

  1. Hydrodynamic modeling of laser interaction with micro-structured targets

    International Nuclear Information System (INIS)

    Velechovsky, Jan; Limpouch, Jiri; Liska, Richard; Tikhonchuk, Vladimir

    2016-01-01

    A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian–Eulerian hydrocode PALE. In conclusion, the numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.

  2. PwRn1, a novel Ty3/gypsy-like retrotransposon of Paragonimus westermani: molecular characters and its differentially preserved mobile potential according to host chromosomal polyploidy

    Directory of Open Access Journals (Sweden)

    Kong Yoon

    2008-10-01

    Full Text Available Abstract Background Retrotransposons have been known to involve in the remodeling and evolution of host genome. These reverse transcribing elements, which show a complex evolutionary pathway with diverse intermediate forms, have been comprehensively analyzed from a wide range of host genomes, while the information remains limited to only a few species in the phylum Platyhelminthes. Results A LTR retrotransposon and its homologs with a strong phylogenetic affinity toward CsRn1 of Clonorchis sinensis were isolated from a trematode parasite Paragonimus westermani via a degenerate PCR method and from an insect species Anopheles gambiae by in silico analysis of the whole mosquito genome, respectively. These elements, designated PwRn1 and AgCR-1 – AgCR-14 conserved unique features including a t-RNATrp primer binding site and the unusual CHCC signature of Gag proteins. Their flanking LTRs displayed >97% nucleotide identities and thus, these elements were likely to have expanded recently in the trematode and insect genomes. They evolved heterogeneous expression strategies: a single fused ORF, two separate ORFs with an identical reading frame and two ORFs overlapped by -1 frameshifting. Phylogenetic analyses suggested that the elements with the separate ORFs had evolved from an ancestral form(s with the overlapped ORFs. The mobile potential of PwRn1 was likely to be maintained differentially in association with the karyotype of host genomes, as was examined by the presence/absence of intergenomic polymorphism and mRNA transcripts. Conclusion Our results on the structural diversity of CsRn1-like elements can provide a molecular tool to dissect a more detailed evolutionary episode of LTR retrotransposons. The PwRn1-associated genomic polymorphism, which is substantial in diploids, will also be informative in addressing genomic diversification following inter-/intra-specific hybridization in P. westermani populations.

  3. Laser-induced electron dynamics including photoionization: A heuristic model within time-dependent configuration interaction theory.

    Science.gov (United States)

    Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann

    2009-09-21

    We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.

  4. Generation of shock fronts in the interaction of short pulses of intense laser light in supercritical plasma

    International Nuclear Information System (INIS)

    Lopez V, V.E.; Ondarza R, R.

    2004-01-01

    The investigation of the laser interaction with plasma has been carried out mainly in laboratories of Europe, Japan and United States during the last decades. This studies concern the propagation of intense light laser in a non homogeneous plasma, the radiation absorption and the generation of suprathermal electrons, among others. Numerical simulations made by Denavit, for radiation pulses for up of 10 20 W/cm 2 on solid targets, have allowed to observe the generation of ionic crash fronts with high propagation speeds. In this work it is expanded the study of this effect through algorithms of particles simulation. (Author)

  5. The use of lasers in manufacturing

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This book contains the proceedings of a conference on the use of lasers in manufacturing, topics covered include: An introduction to industrial lasers; Production laser hardening for aerospace; The role of fiber optics in laser material processing; and Light-material interactions in laser material processing

  6. Power Laser Ablation Symposia

    CERN Document Server

    Phipps, Claude

    2007-01-01

    Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficu...

  7. Scaling of laser-plasma interactions with laser wavelength and plasma size

    International Nuclear Information System (INIS)

    Max, C.E.; Campbell, E.M.; Mead, W.C.; Kruer, W.L.; Phillion, D.W.; Turner, R.E.; Lasinski, B.F.; Estabrook, K.G.

    1983-01-01

    Plasma size is an important parameter in wavelength-scaling experiments because it determines both the threshold and potential gain for a variety of laser-plasma instabilities. Most experiments to date have of necessity produced relatively small plasmas, due to laser energy and pulse-length limitations. We have discussed in detail three recent Livermore experiments which had large enough plasmas that some instability thresholds were exceeded or approached. Our evidence for Raman scatter, filamentation, and the two-plasmon decay instability needs to be confirmed in experiments which measure several instability signatures simultaneously, and which produce more quantitative information about the local density and temperature profiles than we have today

  8. Scaling of laser-plasma interactions with laser wavelength and plasma size

    Energy Technology Data Exchange (ETDEWEB)

    Max, C.E.; Campbell, E.M.; Mead, W.C.; Kruer, W.L.; Phillion, D.W.; Turner, R.E.; Lasinski, B.F.; Estabrook, K.G.

    1983-01-25

    Plasma size is an important parameter in wavelength-scaling experiments because it determines both the threshold and potential gain for a variety of laser-plasma instabilities. Most experiments to date have of necessity produced relatively small plasmas, due to laser energy and pulse-length limitations. We have discussed in detail three recent Livermore experiments which had large enough plasmas that some instability thresholds were exceeded or approached. Our evidence for Raman scatter, filamentation, and the two-plasmon decay instability needs to be confirmed in experiments which measure several instability signatures simultaneously, and which produce more quantitative information about the local density and temperature profiles than we have today.

  9. First Laser-Plasma Interaction and Hohlraum Experiments on NIF

    International Nuclear Information System (INIS)

    Dewald, E L; Glenzer, S H; Landen, O L; Suter, L J; Jones, O S; Schein, J; Froula, D; Divol, L; Campbell, K; Schneider, M S; McDonald, J W; Niemann, C; Mackinnon, A J

    2005-01-01

    Recently the first hohlraum experiments have been performed at the National Ignition Facility (NIF) in support of indirect drive Inertial Confinement Fusion (ICF) designs. The effects of laser beam smoothing by spectral dispersion (SSD) and polarization smoothing (PS) on the beam propagation in long scale gas-filled pipes has been studied at plasma scales as found in indirect drive gas filled ignition hohlraum designs. The long scale gas-filled target experiments have shown propagation over 7 mm of dense plasma without filamentation and beam break up when using full laser smoothing. Vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. Subsequently, novel long laser pulse hohlraum experiments have tested models of hohlraum plasma filling and long pulse hohlraum radiation production. The validity of the plasma filling assessment in analytical models and in LASNEX calculations has been proven for the first time. The comparison of these results with modeling will be discussed

  10. Study of the laser-induced damage of reflective components in the sub-picosecond regime

    International Nuclear Information System (INIS)

    Sozet, Martin

    2016-01-01

    In this thesis, laser-induced damage phenomenon of reflective components is investigated in the sub-picosecond regime. These components, made of stacks of dielectric materials, are widely used in powerful laser facilities such as PETAL laser. PETAL laser has been built at the CEA-CESTA in France to deliver multi-kJ/500 fs pulses at 1053 nm and reach a power higher than 6 PW. For this kind of laser systems, reflective components are commonly used instead of optics operating in transmission to limit the accumulation of non-linear phase along the beam propagation due to the high intensities. Optical components irradiated by the highest power densities are the pulse compression gratings, transport mirrors and the focusing parabola, located at the end of the laser chain. Nowadays, laser-induced damage is the main factor that limits the overall performances of powerful laser systems. This manuscript presents three study axes to better understand and control damage phenomenon. The first one concerns the conception of reflective optics for the peta-watt applications. The design of new structures has been investigated to reach high diffraction efficiencies in the case of pulse compression gratings and a high reflectivity in the case of mirrors, while reducing the Electric-field enhancement which is one of the causes of the laser-induced damage. The second axis deals with the development of a precise damage metrology with new testing tools which brings new perspectives and a new viewpoint for the assessment of the laser resistance of optical components. Finally, the third axis concerns the study the damage growth after several irradiations in the sub-picosecond regime. The evolution of the damage area during growth sequences is observed and compared to numerical simulations. It enables to improve the understanding in the growth phenomenon. In the end, these studies will allow to develop predictive models of the laser-induced damage and new tools for the conception of

  11. Interacting collective modes in a laser cavity

    International Nuclear Information System (INIS)

    Graca, E.L.; Brito, A.L. de; Baseia, B.

    1985-01-01

    Collective operators are defined for the quantized radiation field in a one-dimensional laser cavity coupled to a semi-infinite outside region and the overlaps of neighbouring collective modes are considered to show how they modify, in the linear appoximation, the time evolution of the radiation field below threshold. The model and procedure work directly within a continuous spectrum of modes and allow us to get an improved insight on the prescription for the laser field in single-mode operation. (Author) [pt

  12. Photon technology. Laser processing technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey has been conducted to develop laser processing technology utilizing the interaction between substance and photon. This is a part of the leading research on photon technology development. The photon technology development is aimed at novel technology development highly utilizing the quantum nature of photons. In the field of laser processing, high quality photons are used as tools, special functions of atoms and molecules will be discovered, and processing for functional fabrication (photon machining) will be established. A role of laser processing in industries has become significant, which is currently spreading not only into cutting and welding of materials and scalpels but also into such a special field as ultrafine processing of materials. The spreading is sometimes obstructed due to the difficulty of procurement of suitable machines and materials, and the increase of cost. The purpose of this study is to develop the optimal laser technology, to elucidate the interaction between substance and photon, and to develop the laser system and the transmission and regulation systems which realize the optimal conditions. 387 refs., 115 figs., 25 tabs.

  13. Aerodynamic Interactions During Laser Cutting

    Science.gov (United States)

    Fieret, J.; Terry, M. J.; Ward, B. A.

    1986-11-01

    Most laser cutting systems utilise a gas jet to remove molten or vaporised material from the kerf. The speed, economy and quality of the cut can be strongly dependent on the aerodynamic conditions created by the nozzle, workpiece proximity and kerf shape. Adverse conditions can be established that may lead to an unwelcome lack of reproducibility of cut quality. Relatively low gas nozzle pressures can result in supersonic flow in the jet with its associated shock fronts. When the nozzle is placed at conventional distances (1-2mm) above the workpiece, the force exerted by the gas on the workpiece and the cut products (the cutting pressure) can be significantly less than the nozzle pressure. Higher cutting pressures can be achieved by increasing the height of the nozzle above the workpiece, to a more damage resistant zone, provided that the shock structure of the jet is taken into account. Conventional conical nozzles with circular exits can be operated with conditions that will result in cutting pressures up to 3 Bar (g) in the more distant zone. At higher pressures in circular tipped nozzles the cutting pressure in this zone decays to inadequate levels. Investigations of a large number of non-circular nozzle tip shapes have resulted in the selection of a few specific shapes that can provide cutting pressures in excess of 6 Bar(g) at distances of 4 to 7mm from the nozzle tip. Since there is a strong correlation between cutting pressure and the speed and quality of laser cutting, the paper describes the aerodynamic requirements for achieving the above effects and reports the cutting results arising from the different nozzle designs and conditions. The results of the work of other investigators, who report anomalous laser cutting results, will be examined and reviewed in the light of the above work.

  14. Experimental study on energy distribution of the hot electrons generated by femtosecond laser interacting with solid targets

    International Nuclear Information System (INIS)

    Gu Yuqiu; Zheng Zhijian; Zhou Weimin; Wen Tianshu; Chunyu Shutai; Cai Dafeng; Sichuan Univ., Chengdu; Neijiang Teachers College, Neijiang; Jiao Chunye; Chen Hao; Sichuan Univ., Chengdu; Yang Xiangdong

    2005-01-01

    This paper reports the results of the experiment of hot electron energy distribution during the femtosecond laser-solid target interaction. The hot electrons formed an anisotropic energy distribution. In the direction of the target normal, the energy spectrum of the hot electron was a Maxwellian-like distribution with an effective temperature of 206 keV, which was due to the resonance absorption. In the direction of the specular reflection of laser, there appeared a local plateau of hot electron energy spectrum at the beginning and then it was decreased gradually, which maybe produced by several acceleration mechanisms. The effective temperature and the yield of hot electrons in the direction of the target normal is larger than those in the direction of the specular reflection of laser, which proves that the resonance absorption mechanism is more effective than others. (authors)

  15. Study of the radiation X-UV produced during the relativistic interaction between a femtosecond laser and an helium plasma; Etude du rayonnement X-UV produit lors de l'interaction relativiste entre un laser femtoseconde et un plasme d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Ta Phuoc, K

    2002-10-15

    The aim of this work is to design a new source of X-radiation that is both femtosecond and polychromatic. We have studied the Larmor radiation emitted during the relativistic interaction between an intense femtosecond laser and an under dense helium plasma. When the value of a{sub 0}, the laser force parameter, is below 1 and when the interaction is volume is important, the characteristics of the emitted radiation are those of Bremsstrahlung radiation and radiative recombination. When the value of a{sub 0} is about 5 the emitted radiation is strongly different and look like much more the Larmor radiation. Nevertheless some features such as the shape of the angular distribution or the amplitude of the laser polarization effect are not yet well understood. The spectra of the X-ray produced is peaked around 150 eV and spreads up to 2 keV. The number of photons produced by laser shot is over 10{sup 9} and the duration of the X-ray impulse is expected to be in the same order of magnitude as that of the laser impulse: 30 fs. The average photon flux is 2*10{sup 3} ph/s/0.1%BW at 2 keV and reaches 6*10{sup 7} ph/s/0.1%BW at 0.15 keV. The average brilliance is 1.5*10{sup 4} ph/s/mm{sup 2}/mrad{sup 2}/0.1%BW at 2 keV and 8*10{sup 4} ph/s/mm{sup 2}/mrad{sup 2}/0.1%BW at 0.15 keV. Different ways are considered to improve the characteristics of this new X-ray source. (A.C.)

  16. Theoretical study of the interaction between intense laser pulses and rare gas clusters; Etude theorique de l'interaction entre une impulsion laser intense et un agregat de gaz rare

    Energy Technology Data Exchange (ETDEWEB)

    Micheau, S

    2007-07-15

    The irradiation of nanometer-scale rare gas clusters by a short (a few hundreds of femtosecond) and intense (I > 10{sup 15} W/cm{sup 2}) laser pulse yields multi-keV short X-ray bursts. We employ an hydrodynamic model, the so-called 'nano-plasma model', to understand the mechanisms that tailor the interaction. In this model, the cluster is treated as a dielectric sphere embedded in the quasi-static laser field leading to the formation of a plasma of nano-metric size. We have shown that this model cannot reproduce the experimental results such as the high ionization states and associated X-ray spectra. We have thus included in the model two additional mechanisms that significantly improve the ionization dynamics. First, we have introduced high order ionization processes involving intermediate excited states X{sup q+} + e{sup -} {yields} X{sup q+*} + e{sup -} {yields}... {yields} X{sup q+1+} + 2 e{sup -}. We have used a model potential approach to describe the electronic structure of the cluster's ions (and atoms), and we have computed the total excitation and ionization cross-sections in the distorted-wave Born approximation. Secondly we have studied the influence of screening phenomena induced by the electronic density on the interaction dynamics. By using a sophisticated potential, we have shown that screening effects enhance ionization and lower excitation cross sections with respect to the unscreened data. The improved nano-plasma model allows us to reproduce the populations of highly charged states experimentally observed, and the variation of argon He{sub {alpha}} emission with respect to the various experimental parameters (cluster size, laser pulse duration, intensity and wavelength). We have further computed time- and energy-resolved X-ray spectra which emphasize ultra-short emission duration (less than 100 fs), and therefore indicate that cluster-based X-ray sources are adequate to ultrafast X-ray science applications. (author)

  17. Interactive Game for Teaching Laser Amplification Used at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lin, E

    2009-08-06

    The purpose of this project was to create an interactive game to expose high school students to concepts in laser amplification by demonstrating the National Ignition Facility's main amplifier at Lawrence Livermore National Laboratory. To succeed, the game had to be able to communicate effectively the basic concepts of laser amplification as accurately as possible and to be capable of exposing as many students as possible. Since concepts need to be communicated in a way that students understand, the Science Content Standards for California Public Schools were used to make assumptions about high school students knowledge of light. Effectively communicating a new concept necessitates the omission on terminology and symbolism. Therefore, creating a powerful experience was ideal for communicating this material. Various methods of reinforcing this experience ranging from color choice to abstractions kept the student focused on the game to maximize concept retention. The program was created in Java to allow the creation of a Java Applet that can be embedded onto a webpage, which is a perfect medium for mass exposure. Because a game requires interaction, the game animations had to be easily manipulated to enable the program to respond to user input. Image sprites, as opposed to image folders, were used in these animations to minimize the number of Hypertext Transfer Protocol connections, and thus, significantly reduce the transfer time of necessary animation files. These image sprites were loaded and cropped into a list of animation frames. Since the caching of large transition animations caused the Java Virtual Machine to run out of memory, large animations were implemented as animated Graphics Interchange Format images since transitions require no interaction, and thus, no frame manipulation was needed. This reduced the animation's memory footprint. The first version of this game was completed during this project. Future work for the project could include the

  18. Laser-Neuron Interaction with Femtosecond Beat-Modulated 800-1200 nm Photon Beams, as the Treatment of Brain Cancer Tissue. Laser Neurophysics

    Science.gov (United States)

    Stefan, V. Alexander

    2011-03-01

    I propose a novel mechanism for the brain cancer tissue treatment: nonlinear interaction of ultrashort pulses of beat-photon, (ω1 -- ω2) , or double-photon, (ω1 +ω2) , beams with the cancer tissue. The multiphoton scattering is described via photon diffusion equation. The open-scull cerebral tissue can be irradiated with the beat-modulated photon pulses with the laser irradiances in the range of a few mW/cm2 , and repetition rate of a few 100s Hz generated in the beat-wave driven free electron laser. V. Stefan, B. I. Cohen, and C. Joshi, Nonlinear Mixing of Electromagnetic Waves in PlasmasScience 27 January 1989: V. Alexander Stefan, Genomic Medical Physics: A New Physics in the Making, (S-U-Press, 2008).} This highly accurate cancer tissue ablation removal may prove to be an efficient method for the treatment of brain cancer. Work supported in part by Nikola Tesla Laboratories (Stefan University), La Jolla, CA.

  19. A validation of a simple model for the calculation of the ionization energies in X-ray laser-cluster interactions

    Energy Technology Data Exchange (ETDEWEB)

    White, Jeff; Ackad, Edward [Department of Physics, Southern Illinois University Edwardsville, Edwardsville, Illinois 62026 (United States)

    2015-02-15

    The outer-ionization of an electron from a cluster is an unambiguous quantity, while the inner-ionization threshold is not, resulting in different microscopic quantum-classical hybrid models used in laser-cluster interactions. A simple local ionization threshold model for the change in the ionization energy is proposed and examined, for atoms and ions, at distances in between the initial configuration of the cluster to well into the cluster's disintegration. This model is compared with a full Hartree-Fock energy calculation which accounts for the electron correlation effects using the coupled cluster method with single and double excitations with perturbative triples (CCSD(T)). Good agreement is found between the two lending a strong theoretical support to works which rely on such models for the final and transient properties of the laser-cluster interaction.

  20. Contributed Review: The novel gas puff targets for laser-matter interaction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wachulak, Przemyslaw W., E-mail: wachulak@gmail.com [Institute of Optoelectronics, Military University of Technology, Ul. Gen. S. Kaliskiego 2, 00-908 Warsaw (Poland)

    2016-09-15

    Various types of targetry are used nowadays in laser matter interaction experiments. Such targets are characterized using different methods capable of acquiring information about the targets such as density, spatial distribution, and temporal behavior. In this mini-review paper, a particular type of target will be presented. The targets under consideration are gas puff targets of various and novel geometries. Those targets were investigated using extreme ultraviolet (EUV) and soft X-ray (SXR) imaging techniques, such as shadowgraphy, tomography, and pinhole camera imaging. Details about characterization of those targets in the EUV and SXR spectral regions will be presented.